Sample records for surface measurement network

  1. Colloid Surface Chemistry Critically Affects Multiple Particle Tracking Measurements of Biomaterials

    PubMed Central

    Valentine, M. T.; Perlman, Z. E.; Gardel, M. L.; Shin, J. H.; Matsudaira, P.; Mitchison, T. J.; Weitz, D. A.

    2004-01-01

    Characterization of the properties of complex biomaterials using microrheological techniques has the promise of providing fundamental insights into their biomechanical functions; however, precise interpretations of such measurements are hindered by inadequate characterization of the interactions between tracers and the networks they probe. We here show that colloid surface chemistry can profoundly affect multiple particle tracking measurements of networks of fibrin, entangled F-actin solutions, and networks of cross-linked F-actin. We present a simple protocol to render the surface of colloidal probe particles protein-resistant by grafting short amine-terminated methoxy-poly(ethylene glycol) to the surface of carboxylated microspheres. We demonstrate that these poly(ethylene glycol)-coated tracers adsorb significantly less protein than particles coated with bovine serum albumin or unmodified probe particles. We establish that varying particle surface chemistry selectively tunes the sensitivity of the particles to different physical properties of their microenvironments. Specifically, particles that are weakly bound to a heterogeneous network are sensitive to changes in network stiffness, whereas protein-resistant tracers measure changes in the viscosity of the fluid and in the network microstructure. We demonstrate experimentally that two-particle microrheology analysis significantly reduces differences arising from tracer surface chemistry, indicating that modifications of network properties near the particle do not introduce large-scale heterogeneities. Our results establish that controlling colloid-protein interactions is crucial to the successful application of multiple particle tracking techniques to reconstituted protein networks, cytoplasm, and cells. PMID:15189896

  2. Validating Large Scale Networks Using Temporary Local Scale Networks

    USDA-ARS?s Scientific Manuscript database

    The USDA NRCS Soil Climate Analysis Network and NOAA Climate Reference Networks are nationwide meteorological and land surface data networks with soil moisture measurements in the top layers of soil. There is considerable interest in scaling these point measurements to larger scales for validating ...

  3. Inversion of surface parameters using fast learning neural networks

    NASA Technical Reports Server (NTRS)

    Dawson, M. S.; Olvera, J.; Fung, A. K.; Manry, M. T.

    1992-01-01

    A neural network approach to the inversion of surface scattering parameters is presented. Simulated data sets based on a surface scattering model are used so that the data may be viewed as taken from a completely known randomly rough surface. The fast learning (FL) neural network and a multilayer perceptron (MLP) trained with backpropagation learning (BP network) are tested on the simulated backscattering data. The RMS error of training the FL network is found to be less than one half the error of the BP network while requiring one to two orders of magnitude less CPU time. When applied to inversion of parameters from a statistically rough surface, the FL method is successful at recovering the surface permittivity, the surface correlation length, and the RMS surface height in less time and with less error than the BP network. Further applications of the FL neural network to the inversion of parameters from backscatter measurements of an inhomogeneous layer above a half space are shown.

  4. Data fusion with artificial neural networks (ANN) for classification of earth surface from microwave satellite measurements

    NASA Technical Reports Server (NTRS)

    Lure, Y. M. Fleming; Grody, Norman C.; Chiou, Y. S. Peter; Yeh, H. Y. Michael

    1993-01-01

    A data fusion system with artificial neural networks (ANN) is used for fast and accurate classification of five earth surface conditions and surface changes, based on seven SSMI multichannel microwave satellite measurements. The measurements include brightness temperatures at 19, 22, 37, and 85 GHz at both H and V polarizations (only V at 22 GHz). The seven channel measurements are processed through a convolution computation such that all measurements are located at same grid. Five surface classes including non-scattering surface, precipitation over land, over ocean, snow, and desert are identified from ground-truth observations. The system processes sensory data in three consecutive phases: (1) pre-processing to extract feature vectors and enhance separability among detected classes; (2) preliminary classification of Earth surface patterns using two separate and parallely acting classifiers: back-propagation neural network and binary decision tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain the optimal performance in overall classification. Both the binary decision tree classifier and the fusion processing centers are implemented by neural network architectures. The fusion system configuration is a hierarchical neural network architecture, in which each functional neural net will handle different processing phases in a pipelined fashion. There is a total of around 13,500 samples for this analysis, of which 4 percent are used as the training set and 96 percent as the testing set. After training, this classification system is able to bring up the detection accuracy to 94 percent compared with 88 percent for back-propagation artificial neural networks and 80 percent for binary decision tree classifiers. The neural network data fusion classification is currently under progress to be integrated in an image processing system at NOAA and to be implemented in a prototype of a massively parallel and dynamically reconfigurable Modular Neural Ring (MNR).

  5. Comparison of Data Quality of NOAA's ISIS and SURFRAD Networks to NREL's SRRL-BMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderberg, M.; Sengupta, M.

    2014-11-01

    This report provides analyses of broadband solar radiometric data quality for the National Oceanic and Atmospheric Administration's Integrated Surface Irradiance Study and Surface Radiation Budget Network (SURFRAD) solar measurement networks. The data quality of these networks is compared to that of the National Renewable Energy Laboratory's Solar Radiation Research Laboratory Baseline Measurement System (SRRL-BMS) native data resolutions and hourly averages of the data from the years 2002 through 2013. This report describes the solar radiometric data quality testing and flagging procedures and the method used to determine and tabulate data quality statistics. Monthly data quality statistics for each network weremore » plotted by year against the statistics for the SRRL-BMS. Some of the plots are presented in the body of the report, but most are in the appendix. These plots indicate that the overall solar radiometric data quality of the SURFRAD network is superior to that of the Integrated Surface Irradiance Study network and can be comparable to SRRL-BMS.« less

  6. Optimal measurement of ice-sheet deformation from surface-marker arrays

    NASA Astrophysics Data System (ADS)

    Macayeal, D. R.

    Surface strain rate is best observed by fitting a strain-rate ellipsoid to the measured movement of a stake network or other collection of surface features, using a least squares procedure. Error of the resulting fit varies as 1/(L delta t square root of N), where L is the stake separation, delta is the time period between initial and final stake survey, and n is the number of stakes in the network. This relation suggests that if n is sufficiently high, the traditional practice of revisiting stake-network sites on successive field seasons may be replaced by a less costly single year operation. A demonstration using Ross Ice Shelf data shows that reasonably accurate measurements are obtained from 12 stakes after only 4 days of deformation. It is possible for the least squares procedure to aid airborne photogrammetric surveys because reducing the time interval between survey and re-survey permits better surface feature recognition.

  7. Wireless sensor node for surface seawater density measurements.

    PubMed

    Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto

    2012-01-01

    An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes' law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  8. Wireless Sensor Node for Surface Seawater Density Measurements

    PubMed Central

    Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto

    2012-01-01

    An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes’ law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings. PMID:22736986

  9. Polymer network/carbon layer on monolith support and monolith catalytic reactor

    DOEpatents

    Nordquist, Andrew Francis; Wilhelm, Frederick Carl; Waller, Francis Joseph; Machado, Reinaldo Mario

    2003-08-26

    The present invention relates to an improved monolith catalytic reactor and a monolith support. The improvement in the support resides in a polymer network/carbon coating applied to the surface of a porous substrate and a catalytic metal, preferably a transition metal catalyst applied to the surface of the polymer network/carbon coating. The monolith support has from 100 to 800 cells per square inch and a polymer network/carbon coating with surface area of from 0.1 to 15 m.sup.2 /gram as measured by adsorption of N.sub.2 or Kr using the BET method.

  10. Coupled Gravity and Elevation Measurements of Ice Sheet Mass Change

    NASA Technical Reports Server (NTRS)

    Jezek, K. C.

    2005-01-01

    We measured surface gravity and position at ten locations about two glaciological measurement networks located on the South-central Greenland Ice during June 2004. Six of the individual sites of the first network were occupied the previous year. At the repeat sites we were able to measure annual accumulation rate and surface displacement by referencing measurements to aluminum poles left in the firn the previous year. We occupied 4 additional sites at a second measurement network for the first time since initial observations were last made at the network in 1981. At each individual site, we operated a GPS unit for 90 minutes - the unit was operated simultaneously with a base station unit in Sondrestrom Fjord so as to enable differential, post-processing of the data. We installed an aluminum, accumulation-rate-pole at each site. The base section of the pole also served as the mount for the GPS antenna. A new, Scintrex gravimeter was used at each site and relative gravity measurements were tied to the network of absolute gravity stations in Sondrestrom. We measured snow physical properties in two shallow pits. This report summarizes our observations and data analysis.

  11. Classification of reflected signals from cavitated tooth surfaces using an artificial intelligence technique incorporating a fiber optic displacement sensor

    NASA Astrophysics Data System (ADS)

    Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith

    2014-05-01

    An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.

  12. Classification of reflected signals from cavitated tooth surfaces using an artificial intelligence technique incorporating a fiber optic displacement sensor.

    PubMed

    Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith

    2014-05-01

    An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.

  13. DATA FROM A SOLAR ULTRAVIOLET MONITORING NETWORK

    EPA Science Inventory

    The U.S. Environmental Protection Agency, in conjunction with the National Park Service, operates a network of 21 spectrophotometers, measuring spectrally-resolved, surface UV radiation of wavelengths 290-363 nanometers. Fourteen of the measurement sites are in National Parks,...

  14. The value and limitations of global air-sampling networks for improving our understanding trace gas behavior

    NASA Astrophysics Data System (ADS)

    Montzka, S. A.

    2016-12-01

    Measurements from global surface-based air sampling networks provide a fundamental understanding of how and why concentrations of long-lived trace gases are changing over time. Results from these networks are used to quantify trace-gas concentrations and their time-dependent changes on global and smaller scales, and thus provide a means to quantify emission rates, loss frequencies, and mixing processes. Substantial advances in measurement and sampling technologies and the ability of these programs to create and maintain reliable gas standards mean that spatial concentration gradients and time-dependent changes are often very reliably measured. The presence of multiple independent networks allows an assessment of this reliability. Furthermore, recent global `snap-shot' surveys (e.g., HIPPO and ATom) and ongoing atmospheric profiling programs help us assess the ability of surface-based data to describe concentration distributions throughout most of the atmosphere ( 80% of its mass). In this overview talk, I'll explore the usefulness and limitations of existing long-term, ongoing sampling network programs and their advantages and disadvantages for characterizing concentrations on global and regional scales, and how recent advances (and short-term sampling programs) help us assess the accuracy of the surface networks to provide estimates of source and sink magnitudes, and inter-annual variability in both.

  15. A Modeling Framework for Inference of Surface Emissions Using Mobile Observations

    NASA Astrophysics Data System (ADS)

    Fasoli, B.; Mitchell, L.; Crosman, E.; Mendoza, D. L.; Lin, J. C.

    2016-12-01

    Our ability to quantify surface emissions depends on the precision of observations and the spatial density of measurement networks. Mobile measurement techniques offer a cost effective strategy for quantifying atmospheric conditions over space without requiring a dense network of in-situ sites. However, interpretation of these data and inversion of dispersed measurements to estimate surface emissions can be difficult. We introduce a framework using the Stochastic Time-Inverted Lagrangian Transport (STILT) model that assimilates both spatially resolved observations and an emissions inventory to better estimate surface fluxes. Salt Lake City is a unique laboratory for the study of urban carbon emissions. It is the only U.S. city that utilizes light-rail trains to continuously measure high frequency carbon dioxide (CO2) and methane (CH4); it is home to one of the longest and most spatially resolved high precision CO2 measurement networks (air.utah.edu); and it is one of four cities in the world for which the Hestia anthropogenic emissions inventory has been produced which characterizes CO2 emissions at the scale of individual buildings and roadways. Using these data and modeling resources, we evaluate spatially resolved CO2 measurements and transported CO2 emissions on hourly timescales at a dense spatial resolution across Salt Lake City.

  16. Ground-Based Network and Supersite Observations to Complement and Enrich EOS Research

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.

    2011-01-01

    Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System (EOS) - to intensively study, and gain a better understanding of, the Earth as an integrated system. Space-borne remote sensing observations, however, are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. Through numerous participations, particularly but not limited to the EOS remote-sensing/retrieval and validation projects over the years, NASA/GSFC has developed and continuously refined ground-based networks and mobile observatories that proved to be vital in providing high temporal measurements, which complement and enrich the satellite observations. These are: the AERO NET (AErosol RObotic NETwork) a federation of ground-based globally distributed network of spectral sun-sky photometers; the MPLNET (Micro-Pulse Lidar NETwork, a similarly organized network of micro-pulse lidar systems measuring aerosol and cloud vertical structure continuously; and the SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere, mobile observatories, a suite of spectral radiometers and in-situ probes acquiring supersite measurements. Most MPLNET sites are collocated with those of AERONET, and both networks always support the deployment of SMART-COMMIT worldwide. These data products follow the data structure of EOS conventions: Level-0, instrument archived raw data; Level-1 (or 1.5), real-time data with no (or limited) quality assurance; Level-2, not real high temporal and spectral resolutions. In this talk, we will present NASA/GSFC groundbased facilities, serving as network or supersite observations, which have been playing key roles in major international research projects over diverse aerosol regimes to complement and enrich the EOS scientific research.

  17. Evaluation of Deep Learning Models for Predicting CO2 Flux

    NASA Astrophysics Data System (ADS)

    Halem, M.; Nguyen, P.; Frankel, D.

    2017-12-01

    Artificial neural networks have been employed to calculate surface flux measurements from station data because they are able to fit highly nonlinear relations between input and output variables without knowing the detail relationships between the variables. However, the accuracy in performing neural net estimates of CO2 flux from observations of CO2 and other atmospheric variables is influenced by the architecture of the neural model, the availability, and complexity of interactions between physical variables such as wind, temperature, and indirect variables like latent heat, and sensible heat, etc. We evaluate two deep learning models, feed forward and recurrent neural network models to learn how they each respond to the physical measurements, time dependency of the measurements of CO2 concentration, humidity, pressure, temperature, wind speed etc. for predicting the CO2 flux. In this paper, we focus on a) building neural network models for estimating CO2 flux based on DOE data from tower Atmospheric Radiation Measurement data; b) evaluating the impact of choosing the surface variables and model hyper-parameters on the accuracy and predictions of surface flux; c) assessing the applicability of the neural network models on estimate CO2 flux by using OCO-2 satellite data; d) studying the efficiency of using GPU-acceleration for neural network performance using IBM Power AI deep learning software and packages on IBM Minsky system.

  18. [Detecting the moisture content of forest surface soil based on the microwave remote sensing technology.

    PubMed

    Li, Ming Ze; Gao, Yuan Ke; Di, Xue Ying; Fan, Wen Yi

    2016-03-01

    The moisture content of forest surface soil is an important parameter in forest ecosystems. It is practically significant for forest ecosystem related research to use microwave remote sensing technology for rapid and accurate estimation of the moisture content of forest surface soil. With the aid of TDR-300 soil moisture content measuring instrument, the moisture contents of forest surface soils of 120 sample plots at Tahe Forestry Bureau of Daxing'anling region in Heilongjiang Province were measured. Taking the moisture content of forest surface soil as the dependent variable and the polarization decomposition parameters of C band Quad-pol SAR data as independent variables, two types of quantitative estimation models (multilinear regression model and BP-neural network model) for predicting moisture content of forest surface soils were developed. The spatial distribution of moisture content of forest surface soil on the regional scale was then derived with model inversion. Results showed that the model precision was 86.0% and 89.4% with RMSE of 3.0% and 2.7% for the multilinear regression model and the BP-neural network model, respectively. It indicated that the BP-neural network model had a better performance than the multilinear regression model in quantitative estimation of the moisture content of forest surface soil. The spatial distribution of forest surface soil moisture content in the study area was then obtained by using the BP neural network model simulation with the Quad-pol SAR data.

  19. A network of autonomous surface ozone monitors in Antarctica: technical description and first results

    NASA Astrophysics Data System (ADS)

    Bauguitte, S. J.; Brough, N.; Frey, M. M.; Jones, A. E.; Roscoe, H. K.; Wolff, E. W.

    2009-12-01

    Concentrations of surface ozone over polar regions cannot be derived from satellite data so can only be studied from ground-based platforms. To understand the regional picture a carefully-designed network of ground-based monitors is required. Here we report on a network of 10 autonomous ozone monitors that was established around the Weddell Sea sector of coastal Antarctica with a transect up onto the Antarctic Plateau during the International Polar Year. The aim was to measure for a full year, thus gaining a much-improved broader view of boundary layer ozone seasonality at different locations as well as on factors affecting the budget of surface ozone in Antarctica. Of specific interest were the balance between halogen-driven destruction and photochemical production from snow-emitted precursors, as well as the spatial extent of ozone depletion events. Each ozone monitor measured successfully within its predefined duty cycle throughout the year, with some differences in performance dependent on power availability. Here we present technical information and first results from the network.

  20. Novel method for water vapour monitoring using wireless communication networks measurements

    NASA Astrophysics Data System (ADS)

    David, N.; Alpert, P.; Messer, H.

    2009-04-01

    We propose a new technique for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Water vapour plays a crucial part in a variety of atmospheric processes. As the most influential of greenhouse gases, it absorbs long-wave terrestrial radiation. The water vapour cycle of evaporation and recondensation is a major energy redistributing mechanism transferring heat energy from the Earth's surface to the atmosphere. Additionally, humidity has an important role in weather forecasting as a key variable required for initialization of atmospheric models and hazard warning techniques. However, current methods of monitoring humidity suffer from low spatial resolution, high cost or a lack of precision when measuring near ground levels. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, the proposed method can provide moisture observations at high temporal and spatial resolution. Further, the implementation cost is minimal, since the data used is already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which include absence of rain, fog or clouds along the propagation path. We present results from real-data measurements taken from microwave links used in a backhaul cellular network that show very good agreement with surface station humidity measurements.

  1. Photogrammetry research for FAST eleven-meter reflector panel surface shape measurement

    NASA Astrophysics Data System (ADS)

    Zhou, Rongwei; Zhu, Lichun; Li, Weimin; Hu, Jingwen; Zhai, Xuebing

    2010-10-01

    In order to design and manufacture the Five-hundred-meter Aperture Spherical Radio Telescope (FAST) active reflector measuring equipment, measurement on each reflector panel surface shape was presented, static measurement of the whole neutral spherical network of nodes was performed, real-time dynamic measurement at the cable network dynamic deformation was undertaken. In the implementation process of the FAST, reflector panel surface shape detection was completed before eleven-meter reflector panel installation. Binocular vision system was constructed based on the method of binocular stereo vision in machine vision, eleven-meter reflector panel surface shape was measured with photogrammetry method. Cameras were calibrated with the feature points. Under the linearity camera model, the lighting spot array was used as calibration standard pattern, and the intrinsic and extrinsic parameters were acquired. The images were collected for digital image processing and analyzing with two cameras, feature points were extracted with the detection algorithm of characteristic points, and those characteristic points were matched based on epipolar constraint method. Three-dimensional reconstruction coordinates of feature points were analyzed and reflective panel surface shape structure was established by curve and surface fitting method. The error of reflector panel surface shape was calculated to realize automatic measurement on reflector panel surface shape. The results show that unit reflector panel surface inspection accuracy was 2.30mm, within the standard deviation error of 5.00mm. Compared with the requirement of reflector panel machining precision, photogrammetry has fine precision and operation feasibility on eleven-meter reflector panel surface shape measurement for FAST.

  2. Modeling polyvinyl chloride Plasma Modification by Neural Networks

    NASA Astrophysics Data System (ADS)

    Wang, Changquan

    2018-03-01

    Neural networks model were constructed to analyze the connection between dielectric barrier discharge parameters and surface properties of material. The experiment data were generated from polyvinyl chloride plasma modification by using uniform design. Discharge voltage, discharge gas gap and treatment time were as neural network input layer parameters. The measured values of contact angle were as the output layer parameters. A nonlinear mathematical model of the surface modification for polyvinyl chloride was developed based upon the neural networks. The optimum model parameters were obtained by the simulation evaluation and error analysis. The results of the optimal model show that the predicted value is very close to the actual test value. The prediction model obtained here are useful for discharge plasma surface modification analysis.

  3. Investigation of membrane mechanics using spring networks: application to red-blood-cell modelling.

    PubMed

    Chen, Mingzhu; Boyle, Fergal J

    2014-10-01

    In recent years a number of red-blood-cell (RBC) models have been proposed using spring networks to represent the RBC membrane. Some results predicted by these models agree well with experimental measurements. However, the suitability of these membrane models has been questioned. The RBC membrane, like a continuum membrane, is mechanically isotropic throughout its surface, but the mechanical properties of a spring network vary on the network surface and change with deformation. In this work spring-network mechanics are investigated in large deformation for the first time via an assessment of the effect of network parameters, i.e. network mesh, spring type and surface constraint. It is found that a spring network is conditionally equivalent to a continuum membrane. In addition, spring networks are employed for RBC modelling to replicate the optical tweezers test. It is found that a spring network is sufficient for modelling the RBC membrane but strain-hardening springs are required. Moreover, the deformation profile of a spring network is presented for the first time via the degree of shear. It is found that spring-network deformation approaches continuous as the mesh density increases. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. 3D reconstruction of the porous microstructure of Al2O3-coatings based on sequentially revealed surface data

    NASA Astrophysics Data System (ADS)

    Loftfield, Nina; Kästner, Markus; Reithmeier, Eduard

    2018-06-01

    Local and global liquid transport properties correlate strongly with the morphology of porous materials. Therefore, by characterizing the porous network information is indirectly gained on the materials properties. Properties like the open-porosity are easily accessible with techniques like mercury porosimetry. However, the 3D image reconstruction, destructive or non-destructive, holds advantages like an accurate spatially resolved representation of the investigated material. Common 3D data acquisition is done by x-ray microtomography or a combination of focused ion beam based milling and scanning electron microscopy. In this work a reconstruction approach similar to the latter one is implemented. The porous network is reconstructed based on an alternating process of milling the surface by fly cutting and measuring the surface data with a confocal laser scanning microscope. This has the benefit of reconstructing the pore network on the basis of surface height data, measuring the structure boundaries directly. The stack of milled surface height data needs to be registered and the pore structure to be segmented. The segmented pore structure is connected throughout each height layer and afterwards meshed. The investigated materials are porous surface coatings of aluminum oxide for the usage in tribological pairings.

  5. Estimating regional CO2 and CH4 fluxes using GOSAT XCO2 and XCH4 observations

    NASA Astrophysics Data System (ADS)

    Fraser, A. C.; Palmer, P. I.; Feng, L.; Parker, R.; Boesch, H.; Cogan, A. J.

    2012-12-01

    We infer regional monthly surface flux estimates for CO2 and CH4, June 2009-December 2010, from proxy dry-air column-averaged mole fractions of CO2 and CH4 from the Greenhouse gases Observing SATellite (GOSAT) using an ensemble Kalman Filter combined with the GEOS-Chem chemistry transport model. We compare these flux estimates with estimates inferred from in situ surface mole fraction measurements and from combining in situ and GOSAT measurements in order to quantify the added value of GOSAT data above the conventional surface measurement network. We find that the error reduction, a measure of how much the posterior fluxes are being informed by the assimilated data, at least doubles when GOSAT measurements are used versus the surface only inversions, with the exception of regions that are well covered by the surface network at the spatial and temporal resolution of our flux estimation calculation. We have incorporated a new online bias correction scheme to account for GOSAT biases. We report global and regional flux estimates inferred from GOSAT and/or in situ measurements. While the global posterior fluxes from GOSAT and in situ measurements agree, we find significant differences in the regional fluxes, particularly over the tropics. We evaluate the posterior fluxes by comparing them against independent surface mole fraction, column, and aircraft measurements using the GEOS-Chem model as an intermediary.

  6. Estimating network effect in geocenter motion: Theory

    NASA Astrophysics Data System (ADS)

    Zannat, Umma Jamila; Tregoning, Paul

    2017-10-01

    Geophysical models and their interpretations of several processes of interest, such as sea level rise, postseismic relaxation, and glacial isostatic adjustment, are intertwined with the need to realize the International Terrestrial Reference Frame. However, this realization needs to take into account the geocenter motion, that is, the motion of the center of figure of the Earth surface, due to, for example, deformation of the surface by earthquakes or hydrological loading effects. Usually, there is also a discrepancy, known as the network effect, between the theoretically convenient center of figure and the physically accessible center of network frames, because of unavoidable factors such as uneven station distribution, lack of stations in the oceans, disparity in the coverage between the two hemispheres, and the existence of tectonically deforming zones. Here we develop a method to estimate the magnitude of the network effect, that is, the error introduced by the incomplete sampling of the Earth surface, in measuring the geocenter motion, for a network of space geodetic stations of a fixed size N. For this purpose, we use, as our proposed estimate, the standard deviations of the changes in Helmert parameters measured by a random network of the same size N. We show that our estimate scales as 1/√N and give an explicit formula for it in terms of the vector spherical harmonics expansion of the displacement field. In a complementary paper we apply this formalism to coseismic displacements and elastic deformations due to surface water movements.

  7. Understanding the role of hydrogen bonding in the aggregation of fumed silica particles in triglyceride solvents.

    PubMed

    Whitby, Catherine P; Krebsz, Melinda; Booty, Samuel J

    2018-10-01

    Fumed silica particles are thought to thicken organic solvents into gels by aggregating to form networks. Hydrogen bonding between silanol groups on different particle surfaces causes the aggregation. The gel structure and hence flow behaviour is altered by varying the proportion of silanol groups on the particle surfaces. However, characterising the gel using rheology measurements alone is not sufficient to optimise the aggregation. We have used confocal microscopy to characterise the changes in the network microstructure caused by altering the particle surface chemistry. Organogels were formed by dispersing fumed silica nanoparticles in a triglyceride solvent. The particle surface chemistry was systematically varied from oleophobic to oleophilic by functionalisation with hydrocarbons. We directly visualised the particle networks using confocal scanning laser microscopy and investigated the correlations between the network structure and the shear response of the organogels. Our key finding is that the sizes of the pore spaces in the networks depend on the fraction of silanol groups available to form hydrogen bonds. The reduction in the network elasticity of gels formed by methylated particles can be accounted for by the increasing pore size and tenuous nature of the networks. This is the first report that characterises the changes in the microstructure of fumed silica particle networks in non-polar solvents caused by manipulating the particle surface chemistry. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Surface adsorption and hopping cause probe-size-dependent microrheology of actin networks

    NASA Astrophysics Data System (ADS)

    He, Jun; Tang, Jay X.

    2011-04-01

    A network of filaments formed primarily by the abundant cytoskeletal protein actin gives animal cells their shape and elasticity. The rheological properties of reconstituted actin networks have been studied by tracking micron-sized probe beads embedded within the networks. We investigate how microrheology depends on surface properties of probe particles by varying the stickiness of their surface. For this purpose, we chose carboxylate polystyrene (PS) beads, silica beads, bovine serum albumin (BSA) -coated PS beads, and polyethylene glycol (PEG) -grafted PS beads, which show descending stickiness to actin filaments, characterized by confocal imaging and microrheology. Probe size dependence of microrheology is observed for all four types of beads. For the slippery PEG beads, particle-tracking microrheology detects weaker networks using smaller beads, which tend to diffuse through the network by hopping from one confinement “cage” to another. This trend is reversed for the other three types of beads, for which microrheology measures stiffer networks for smaller beads due to physisorption of nearby filaments to the bead surface. We explain the probe size dependence with two simple models. We also evaluate depletion effect near nonadsorption bead surface using quantitative image analysis and discuss the possible impact of depletion on microrheology. Analysis of these effects is necessary in order to accurately define the actin network rheology both in vitro and in vivo.

  9. Solar energy microclimate as determined from satellite observations

    NASA Technical Reports Server (NTRS)

    Vonder Haar, T. H.; Ellis, J. S.

    1975-01-01

    A method is presented for determining solar insolation at the earth's surface using satellite broadband visible radiance and cloud imagery data, along with conventional in situ measurements. Conventional measurements are used to both tune satellite measurements and to develop empirical relationships between satellite observations and surface solar insolation. Cloudiness is the primary modulator of sunshine. The satellite measurements as applied in this method consider cloudiness both explicitly and implicitly in determining surface solar insolation at space scales smaller than the conventional pyranometer network.

  10. The Pascal Mars Scout Mission

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Except for Earth, Mars is the planet most amenable to surface-based climate studies. Its surface is accessible, and the kind of observations that are needed, such as meteorological measurements from a long-lived global network, are readily achievable. Weather controls the movement of dust, the exchange of water between the surface and atmosphere, and the cycling of CO2 between the poles. We know there is a weather signal, we know how to measure it, and we know how to interpret it. Pascal seeks to understand the long-term global behavior of near-surface weather systems on Mars, how they interact with its surface, and, therefore, how they control its climate system. To achieve this, Pascal delivers 18 Science Stations to the surface of the planet that operate for three Mars years (5.6 Earth years). The network has stations operating in the tropics, midlatitudes, and polar regions of both hemispheres. During entry, descent, and landing, each Pascal probe acquires deceleration measurements to determine thermal structure, and descent images to characterize local terrain. On the surface, each Science Station takes daily measurements of pressure, opacity, temperature, wind speed, and water vapor concentration and monthly panoramic images of the landing environment. These data will characterize the planet's climate system and how atmosphere-surface interactions control it. The Pascal mission is named after 17th century French Scientist, Blaise Pascal, who pioneered measurements of atmospheric pressure. Pressure is the most critical measurement because it records the "heartbeat" of the planet's general circulation and climate system.

  11. Synthesis of platinum nanowire networks using a soft template.

    PubMed

    Song, Yujiang; Garcia, Robert M; Dorin, Rachel M; Wang, Haorong; Qiu, Yan; Coker, Eric N; Steen, William A; Miller, James E; Shelnutt, John A

    2007-12-01

    Platinum nanowire networks have been synthesized by chemical reduction of a platinum complex using sodium borohydride in the presence of a soft template formed by cetyltrimethylammonium bromide in a two-phase water-chloroform system. The interconnected polycrystalline nanowires possess the highest surface area (53 +/- 1 m2/g) and electroactive surface area (32.4 +/- 3.6 m2/g) reported for unsupported platinum nanomaterials; the high surface area results from the small average diameter of the nanowires (2.2 nm) and the 2-10 nm pores determined by nitrogen adsorption measurements. Synthetic control over the network was achieved simply by varying the stirring rate and reagent concentrations, in some cases leading to other types of nanostructures including wormlike platinum nanoparticles. Similarly, substitution of a palladium complex for platinum gives palladium nanowire networks. A mechanism of formation of the metal nanowire networks is proposed based on confined metal growth within a soft template consisting of a network of swollen inverse wormlike micelles.

  12. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, May 2008

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2008-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2008. Potentiometric contours are based on water-level measurements collected at 567 wells during the period May 6-May 27, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours. Measured values of the potentiometric surface ranged from 7 feet below NGVD29 near Fernandina Beach, Florida, to 124 feet above NGVD29 in Polk County, Florida. The average water level of the network in May 2008 was about 1 foot lower than the average in September 2007 following below-average rainfall during the dry season of 2007-08. Seasonal differences in network average water levels generally range from 4 to 6 feet. For 457 wells with previous measurements, May 2008 levels ranged from about 19 feet below to about 11 feet above September 2007 water levels. The average water level of the network in May 2008 was about 1 foot higher than the average in May 2007. For 544 wells with previous measurements, May 2008 levels ranged from about 8 feet below to about 13 feet above May 2007 water levels. Long-term hydrographs of ground-water levels for continuous and periodic wells are available at internet site: http://waterdata.usgs.gov/fl/nwis/gw

  13. Gravity deformation measurements of 70m reflector surfaces

    NASA Technical Reports Server (NTRS)

    Brenner, Michael; Imbriale, William A.; Britcliffe, Michael K.

    2001-01-01

    Two of NASA's Deep Space Network (DSN) 70-meter reflectors are measured using a Leica TDM-5000 theodolite. The main reflector surface was measured at five elevation angles so that a gravity deformation model could be derived that described the main reflector distortions over the entire range of elevation angles. The report describes the measurement equipment and accuracy and the results derived from the data.

  14. Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network

    PubMed Central

    Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S.; Zeng, Xiao Cheng

    2016-01-01

    Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks−Chandler−Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ > 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ < 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ = 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter. PMID:27803319

  15. LOTOS: A Proposed Lower Tropospheric Observing System from the Land Surface through the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Cohn, S. A.; Lee, W. C.; Carbone, R. E.; Oncley, S.; Brown, W. O. J.; Spuler, S.; Horst, T. W.

    2015-12-01

    Advances in sensor capabilities, but also in electronics, optics, RF communication, and off-the-grid power are enabling new measurement paradigms. NCAR's Earth Observing Laboratory (EOL) is considering new sensors, new deployment modes, and integrated observing strategies to address challenges in understanding within the atmospheric boundary layer and the underlying coupling to the land surface. Our vision is of a network of deployable observing sites, each with a suite of complementary instruments that measure surface-atmosphere exchange, and the state and evolution of the boundary layer. EOL has made good progress on distributed surface energy balance and flux stations, and on boundary layer remote sensing of wind and water vapor, all suitable for deployments of combined instruments and as network of such sites. We will present the status of the CentNet surface network development, the 449-MHz modular wind profiler, and a water vapor and temperature profiling differential absorption lidar (DIAL) under development. We will further present a concept for a test bed to better understand the value of these and other possible instruments in forming an instrument suite flexible for multiple research purposes.

  16. Analysis of the Diurnal Cycle and Cloud Effects on the Surface Radiation Budget of the SURFRAD Network

    NASA Astrophysics Data System (ADS)

    Long, C. N.; Augustine, J. A.; McComiskey, A. C.

    2017-12-01

    The NOAA Earth Systems Research Laboratory (ESRL) Global Monitoring Division (GMD) operates a network of seven surface radiation budget sites (SURFRAD) across the continental United States. The SURFRAD network was established in 1993 with the primary objective to support climate research with accurate, continuous, long-term measurements of the surface radiation budget over the United States and is a major contributor to the WMO international Baseline Surface Radiation Network. The data from the SURFRAD sites have been used in many studies including trend analyses of surface solar brightening (Long et al, 2009; Augustine and Dutton, 2013; Gan et al., 2015). These studies have focused mostly on long term aggregate trends. Here we will present results of studies that take a closer look across the years of the cloud influence on the surface radiation budget components partitioned by seasonal and diurnal analyses, and using derived quantities now available from the SURFRAD data archive produced by the Radiative Flux Analysis value added processing. The results show distinct differences between the sites surface radiative energy budgets and cloud radiative effects due to their differing climates and latitudinal locations.

  17. Structure of the lunar interior from magnetic field measurements

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1976-01-01

    A network of lunar surface and orbiting magnetometers was used to obtain measurements of electrical conductivity and magnetic permeability of the lunar interior. An exceptionally large solar transient event, when the moon was in a geomagnetic tail lobe, enabled the most accurate lunar electromagnetic sounding information to date to be obtained. A new analytical technique using a network of two surface magnetometers and a satellite magnetometer superimposes many time series measurements to improve the signal-to-noise ratio and uses both the amplitude and phase information of all three vector components of the magnetic field data. Size constraints on a hypothetical highly conducting lunar core are investigated with the aid of the permeability results.

  18. On the use of SPM to probe the interplay between polymer surface chemistry and polymer surface mechanics

    NASA Astrophysics Data System (ADS)

    Brogly, Maurice; Noel, Olivier; Awada, Houssein; Castelein, Gilles

    2007-03-01

    Adhesive properties of a polymer surface results from the complex contribution of surface chemistry and activation of sliding and dissipating mechanisms within the polymer surface layer. The purpose of this study is to dissociate the different contributions (chemical and mechanical) included in an AFM force-distance curve in order to establish relationships between the surface viscoelastic properties of the polymer, the surface chemistry of functionalized polymer surfaces and the adhesive forces, as determined by C-AFM experiments. Indeed we are interested in the measurements of local attractive or adhesive forces in AFM contact mode, of controlled chemical and mechanical model substrates. In order to investigate the interplay between mechanical or viscoelastic mechanisms and surface chemistry during the tip - polymer contact, we achieved force measurements on model PDMS polymer networks, whose surfaces are chemically controlled with the same functional groups as before (silicon substrates). On the basis of AFM nano-indentation experiments, surface Young moduli have been determined. The results show that the viscoelastic contribution is dominating in the adhesion force measurement. We propose an original model, which express the local adhesion force to the energy dissipated within the contact and the surface properties of the material (thermodynamic work of adhesion). Moreover we show that the dissipation function is related to Mc, the mass between crosslinks of the network.

  19. Novel method for water vapour monitoring using wireless communication networks measurements

    NASA Astrophysics Data System (ADS)

    David, N.; Alpert, P.; Messer, H.

    2010-09-01

    We propose a new technique for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from microwave links used in a backhaul cellular network that show very good correlation with surface station humidity measurements (comparisons were performed for several links, found at different locations, during different time periods, showing correlations in the range of 0.5-0.9).

  20. Coarse Scale In Situ Albedo Observations over Heterogeneous Land Surfaces and Validation Strategy

    NASA Astrophysics Data System (ADS)

    Xiao, Q.; Wu, X.; Wen, J.; BAI, J., Sr.

    2017-12-01

    To evaluate and improve the quality of coarse-pixel land surface albedo products, validation with ground measurements of albedo is crucial over the spatially and temporally heterogeneous land surface. The performance of albedo validation depends on the quality of ground-based albedo measurements at a corresponding coarse-pixel scale, which can be conceptualized as the "truth" value of albedo at coarse-pixel scale. The wireless sensor network (WSN) technology provides access to continuously observe on the large pixel scale. Taking the albedo products as an example, this paper was dedicated to the validation of coarse-scale albedo products over heterogeneous surfaces based on the WSN observed data, which is aiming at narrowing down the uncertainty of results caused by the spatial scaling mismatch between satellite and ground measurements over heterogeneous surfaces. The reference value of albedo at coarse-pixel scale can be obtained through an upscaling transform function based on all of the observations for that pixel. We will devote to further improve and develop new method that that are better able to account for the spatio-temporal characteristic of surface albedo in the future. Additionally, how to use the widely distributed single site measurements over the heterogeneous surfaces is also a question to be answered. Keywords: Remote sensing; Albedo; Validation; Wireless sensor network (WSN); Upscaling; Heterogeneous land surface; Albedo truth at coarse-pixel scale

  1. Shortwave surface radiation network for observing small-scale cloud inhomogeneity fields

    NASA Astrophysics Data System (ADS)

    Lakshmi Madhavan, Bomidi; Kalisch, John; Macke, Andreas

    2016-03-01

    As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high-density network of 99 silicon photodiode pyranometers was set up around Jülich (10 km × 12 km area) from April to July 2013 to capture the small-scale variability of cloud-induced radiation fields at the surface. In this paper, we provide the details of this unique setup of the pyranometer network, data processing, quality control, and uncertainty assessment under variable conditions. Some exemplary days with clear, broken cloudy, and overcast skies were explored to assess the spatiotemporal observations from the network along with other collocated radiation and sky imager measurements available during the HOPE period.

  2. Influence of different land surfaces on atmospheric conditions measured by a wireless sensor network

    NASA Astrophysics Data System (ADS)

    Lengfeld, Katharina; Ament, Felix

    2010-05-01

    Atmospheric conditions close to the surface, like temperature, wind speed and humidity, vary on small scales because of surface heterogeneities. Therefore, the traditional measuring approach of using a single, highly accurate station is of limited representativeness for a larger domain, because it is not able to determine these small scale variabilities. However, both the variability and the domain averages are important information for the development and validation of atmospheric models and soil-vegetation-atmosphere-transfer (SVAT) schemes. Due to progress in microelectronics it is possible to construct networks of comparably cheap meteorological stations with moderate accuracy. Such a network provides data in high spatial and temporal resolution. The EPFL Lausanne developed such a network called SensorScope, consisting of low cost autonomous stations. Each station observes air and surface temperature, humidity, wind direction and speed, incoming solar radiation, precipitations, soil moisture and soil temperature and sends the data via radio communication to a base station. This base station forwards the collected data via GSM/GPRS to a central server. Within the FLUXPAT project in August 2009 we deployed 15 stations as a twin transect near Jülich, Germany. One aim of this first experiment was to test the quality of the low cost sensors by comparing them to more accurate reference measurements. It turned out, that although the network is not highly accurate, the measurements are consistent. Consequently an analysis of the pattern of atmospheric conditions is feasible. For example, we detect a variability of ± 0.5K in the mean temperature at a distance of only 2.3 km. The transect covers different types of vegetation and a small river. Therefore, we analyzed the influence of different land surfaces and the distance to the river on meteorological conditions. On the one hand, some results meet our expectations, e.g. the relative humidity decreases with increasing distance to the river. But on the other hand we found unexpected anomalies in the air temperature, which will be discussed in detail by selected case studies.

  3. Meteorological Processes Affecting the Transport of Emissions from the Navajo Generating Station to Grand Canyon National Park.

    NASA Astrophysics Data System (ADS)

    Lindsey, Charles G.; Chen, Jun; Dye, Timothy S.; Willard Richards, L.; Blumenthal, Donald L.

    1999-08-01

    During the 1990 Navajo Generating Station (NGS) Winter Visibility Study, a network of surface and upper-air meteorological measurement systems was operated in and around Grand Canyon National Park to investigate atmospheric processes in complex terrain that affected the transport of emissions from the nearby NGS. This network included 15 surface monitoring stations, eight balloon sounding stations (equipped with a mix of rawinsonde, tethersonde, and Airsonde sounding systems), three Doppler radar wind profilers, and four Doppler sodars. Measurements were made from 10 January through 31 March 1990. Data from this network were used to prepare objectively analyzed wind fields, trajectories, and streak lines to represent transport of emissions from the NGS, and to prepare isentropic analyses of the data. The results of these meteorological analyses were merged in the form of a computer animation that depicted the streak line analyses along with measurements of perfluorocarbon tracer, SO2, and sulfate aerosol concentrations, as well as visibility measurements collected by an extensive surface monitoring network. These analyses revealed that synoptic-scale circulations associated with the passage of low pressure systems followed by the formation of high pressure ridges accompanied the majority of cases when NGS emittants appeared to be transported to the Grand Canyon. The authors' results also revealed terrain influences on transport within the topography of the study area, especially mesoscale flows inside the Lake Powell basin and along the plain above the Marble Canyon.

  4. Near-field fault slip of the 2016 Vettore Mw 6.6 earthquake (Central Italy) measured using low-cost GNSS.

    PubMed

    Wilkinson, Maxwell W; McCaffrey, Ken J W; Jones, Richard R; Roberts, Gerald P; Holdsworth, Robert E; Gregory, Laura C; Walters, Richard J; Wedmore, Luke; Goodall, Huw; Iezzi, Francesco

    2017-07-04

    The temporal evolution of slip on surface ruptures during an earthquake is important for assessing fault displacement, defining seismic hazard and for predicting ground motion. However, measurements of near-field surface displacement at high temporal resolution are elusive. We present a novel record of near-field co-seismic displacement, measured with 1-second temporal resolution during the 30 th October 2016 M w 6.6 Vettore earthquake (Central Italy), using low-cost Global Navigation Satellite System (GNSS) receivers located in the footwall and hangingwall of the Mt. Vettore - Mt. Bove fault system, close to new surface ruptures. We observe a clear temporal and spatial link between our near-field record and InSAR, far-field GPS data, regional measurements from the Italian Strong Motion and National Seismic networks, and field measurements of surface ruptures. Comparison of these datasets illustrates that the observed surface ruptures are the propagation of slip from depth on a surface rupturing (i.e. capable) fault array, as a direct and immediate response to the 30 th October earthquake. Large near-field displacement ceased within 6-8 seconds of the origin time, implying that shaking induced gravitational processes were not the primary driving mechanism. We demonstrate that low-cost GNSS is an accurate monitoring tool when installed as custom-made, short-baseline networks.

  5. Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network.

    PubMed

    Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-11-15

    Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks-Chandler-Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ [Formula: see text] 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ [Formula: see text] 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ [Formula: see text] 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter.

  6. Regional and local networks of horizontal control, Cerro Prieto geothermal area

    USGS Publications Warehouse

    Massey, B.L.

    1979-01-01

    The Cerro Prieto geothermal area in the Mexicali Valley 30 km southeast of Mexicali, Baja California, is probably deforming due to (1) the extraction of large volumes of steam and hot water, and (2) active tectonism. Two networks of precise horizontal control were established in Mexicali Valley by the U.S. Geological Survey in 1977 - 1978 to measure both types of movement as they occur. These networks consisted of (1) a regional trilateration net brought into the mountain ranges west of the geothermal area from survey stations on an existing U.S. Geological Survey crustal-strain network north of the international border, and (2) a local net tied to stations in the regional net and encompassing the area of present and planned geothermal production. Survey lines in this net were selected to span areas of probable ground-surface movements in and around the geothermal area. Electronic distance measuring (EDM) instruments, operating with a modulated laser beam, were used to measure the distances between stations in both networks. The regional net was run using a highly precise long-range EDM instrument, helicopters for transportation of men and equipment to inaccessible stations on mountain peaks, and a fixed wing airplane flying along the line of sight. Precision of measurements with this complex long-range system approached 0-2 ppm of line length. The local net was measured with a medium-range EDM instrument requiring minimal ancillary equipment. Precision of measurements with this less complex system approached 3 ppm for the shorter line lengths. The detection and analysis of ground-surface movements resulting from tectonic strains or induced by geothermal fluid withdrawal is dependent on subsequent resurveys of these networks. ?? 1979.

  7. Optimization of CO2 Surface Flux using GOSAT Total Column CO2: First Results for 2009-2010

    NASA Astrophysics Data System (ADS)

    Basu, S.; Houweling, S.

    2011-12-01

    Constraining surface flux estimates of CO2 using satellite measurements has been one of the long-standing goals of the atmospheric inverse modeling community. We present the first results of inverting GOSAT total column CO2 measurements for obtaining global monthly CO2 flux maps over one year (June 2009 to May 2010). We use the SRON RemoTeC retrieval of CO2 for our inversions. The SRON retrieval has been shown to have no bias when compared to TCCON total column measurements, and latitudinal gradients of the retrieved CO2 are consistent with gradients deduced from the surface flask network [Butz et al, 2011]. This makes this retrieval an ideal candidate for atmospheric inversions, which are highly sensitive to spurious gradients. Our inversion system is analogous to the CarbonTracker (CT) data assimilation system; it is initialized with the prior CO2 fluxes of CT, and uses the same atmospheric transport model, i.e., TM5. The two major differences are (a) we add GOSAT CO2 data to the inversion in addition to flask data, and (b) we use a 4DVAR optimization system instead of a Kalman filter. We compare inversions using (a) only GOSAT total column CO2 measurements, (b) only surface flask CO2 measurements, and (c) the joint data set of GOSAT and surface flask measurements. We validate GOSAT-only inversions against the NOAA surface flask network and joint inversions against CONTRAIL and other aircraft campaigns. We see that inverted fluxes from a GOSAT-only inversion are consistent with fluxes from a stations-only inversion, reaffirming the low biases in SRON retrievals. From the joint inversion, we estimate the amount of added constraints upon adding GOSAT total column measurements to existing surface layer measurements.

  8. Interfacial welding of dynamic covalent network polymers

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Shi, Qian; Li, Hao; Jabour, John; Yang, Hua; Dunn, Martin L.; Wang, Tiejun; Qi, H. Jerry

    2016-09-01

    Dynamic covalent network (or covalent adaptable network) polymers can rearrange their macromolecular chain network by bond exchange reactions (BERs) where an active unit replaces a unit in an existing bond to form a new bond. Such macromolecular events, when they occur in large amounts, can attribute to unusual properties that are not seen in conventional covalent network polymers, such as shape reforming and surface welding; the latter further enables the important attributes of material malleability and powder-based reprocessing. In this paper, a multiscale modeling framework is developed to study the surface welding of thermally induced dynamic covalent network polymers. At the macromolecular network level, a lattice model is developed to describe the chain density evolution across the interface and its connection to bulk stress relaxation due to BERs. The chain density evolution rule is then fed into a continuum level interfacial model that takes into account surface roughness and applied pressure to predict the effective elastic modulus and interfacial fracture energy of welded polymers. The model yields particularly accessible results where the moduli and interfacial strength of the welded samples as a function of temperature and pressure can be predicted with four parameters, three of which can be measured directly. The model identifies the dependency of surface welding efficiency on the applied thermal and mechanical fields: the pressure will affect the real contact area under the consideration of surface roughness of dynamic covalent network polymers; the chain density increment on the real contact area of interface is only dependent on the welding time and temperature. The modeling approach shows good agreement with experiments and can be extended to other types of dynamic covalent network polymers using different stimuli for BERs, such as light and moisture etc.

  9. Map showing the potentiometric surface of the Magothy Aquifer in southern Maryland, September 1979

    USGS Publications Warehouse

    Mack, Frederick K.; Wheeler, J.C.; Curtin, Stephen E.

    1980-01-01

    This map is based on measurements made on a network of 77 observation wells in southern Maryland. Highest levels of the potentiometric surface, 63 to 67 feet above sea level, were measured near the outcrop or subcrop of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. The surface slopes to the southeast to about 5 feet above sea level along much of the western shore of the Chesapeake Bay. Four separate, distinct, and extensive cones of depression have developed in the surface around the well fields of the city of Annapolis, Broadneck, town of Waldorf, and Chalk Point. Several square miles of each cone are below sea level and in localized areas at Chalk Point and Waldorf, the surface is 40 to 50 feet below sea level. The network of wells was developed as part of the cooperative program between the U.S. Geological Survey, the Maryland Geological Survey, and the Maryland Energy and Coastal Zone Administration. (USGS)

  10. Formation of porous networks on polymeric surfaces by femtosecond laser micromachining

    NASA Astrophysics Data System (ADS)

    Assaf, Youssef; Kietzig, Anne-Marie

    2017-02-01

    In this study, porous network structures were successfully created on various polymer surfaces by femtosecond laser micromachining. Six different polymers (poly(tetrafluoroethylene) (PTFE), poly(methyl methacrylate) (PMMA), high density poly(ethylene) (HDPE), poly(lactic acid) (PLA), poly(carbonate) (PC), and poly(ethylene terephthalate) (PET)) were machined at different fluences and pulse numbers, and the resulting structures were identified and compared by lacunarity analysis. At low fluence and pulse numbers, porous networks were confirmed to form on all materials except PLA. Furthermore, all networks except for PMMA were shown to bundle up at high fluence and pulse numbers. In the case of PC, a complete breakdown of the structure at such conditions was observed. Operation slightly above threshold fluence and at low pulse numbers is therefore recommended for porous network formation. Finally, the thickness over which these structures formed was measured and compared to two intrinsic material dependent parameters: the single pulse threshold fluence and the incubation coefficient. Results indicate that a lower threshold fluence at operating conditions favors material removal over structure formation and is hence detrimental to porous network formation. Favorable machining conditions and material-dependent parameters for the formation of porous networks on polymer surfaces have thus been identified.

  11. Estimating network effect in geocenter motion: Applications

    NASA Astrophysics Data System (ADS)

    Zannat, Umma Jamila; Tregoning, Paul

    2017-10-01

    The network effect is the error associated with the subsampling of the Earth surface by space geodetic networks. It is an obstacle toward the precise measurement of geocenter motion, that is, the relative motion between the center of mass of the Earth system and the center of figure of the Earth surface. In a complementary paper, we proposed a theoretical approach to estimate the magnitude of this effect from the displacement fields predicted by geophysical models. Here we evaluate the effectiveness of our estimate for two illustrative physical processes: coseismic displacements inducing instantaneous changes in the Helmert parameters and elastic deformation due to surface water movements causing secular drifts in those parameters. For the first, we consider simplified models of the 2004 Sumatra-Andaman and the 2011 Tōhoku-Oki earthquakes, and for the second, we use the observations of the Gravity Recovery and Climate Experiment, complemented by an ocean model. In both case studies, it is found that the magnitude of the network effect, even for a large global network, is often as large as the magnitude of the changes in the Helmert parameters themselves. However, we also show that our proposed modification to the definition of the center of network frame to include weights proportional to the area of the Earth surface that the stations represent can significantly reduce the network effect in most cases.

  12. Target Recognition Using Neural Networks for Model Deformation Measurements

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.; Hibler, David L.

    1999-01-01

    Optical measurements provide a non-invasive method for measuring deformation of wind tunnel models. Model deformation systems use targets mounted or painted on the surface of the model to identify known positions, and photogrammetric methods are used to calculate 3-D positions of the targets on the model from digital 2-D images. Under ideal conditions, the reflective targets are placed against a dark background and provide high-contrast images, aiding in target recognition. However, glints of light reflecting from the model surface, or reduced contrast caused by light source or model smoothness constraints, can compromise accurate target determination using current algorithmic methods. This paper describes a technique using a neural network and image processing technologies which increases the reliability of target recognition systems. Unlike algorithmic methods, the neural network can be trained to identify the characteristic patterns that distinguish targets from other objects of similar size and appearance and can adapt to changes in lighting and environmental conditions.

  13. A Mars Micro-Meteorological Station Mission

    NASA Technical Reports Server (NTRS)

    Merrihew, Steven C.; Haberle, Robert; Lemke, Lawrence G.

    1995-01-01

    The Mars Micro-Meteorological Station (Micro-Met) Mission is designed to provide the global surface pressure measurements required to help characterize the martian general circulation and climate system. Measurements of surface pressure distributed both spatially and temporally, coupled with simultaneous measurements from orbit, will enable the determination of the general circulation, structure and driving factors of the martian atmosphere as well as the seasonal CO2 cycle. The influence of these atmospheric factors will in turn provide insight into the overall martian climate system. With the science objective defined as the long term (at least one Mars year) globally distributed measurement of surface atmospheric pressure, a straightforward, near term and low cost network mission has been designed. The Micro-Met mission utilizes a unique silicon micro-machined pressure sensor coupled with a robust and lightweight surface station to deliver to Mars 16 Micro-Met stations via a Med-Lite launch vehicle. The battery powered Micro-Met surface stations are designed to autonomously measure, record and transmit the science data via a UHF relay satellite. Entry, descent and landing is provided by an aeroshell with a new lightweight ceramic thermal protection system, a parachute and an impact absorbing structure. The robust lander is capable of surviving the landing loads imposed by the high altitude landing sites required in a global network. By trading the ability to make many measurements at a single site for the ability to make a single measurement at several sites, the Micro-Met mission design satisfies the requirement for truly global meteorological science.

  14. Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements

    NASA Astrophysics Data System (ADS)

    David, N.; Alpert, P.; Messer, H.

    2009-04-01

    We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show convincing correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements), the other in central Israel (29 measurements). The correlation between the microwave link measurements and the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The Root Mean Square Differences (RMSD) were 1.8 g/m3 and 3.4 g/m3 for the northern and central site measurements, respectively.

  15. The NetLander mission: a geophysical network on the surface of Mars

    NASA Astrophysics Data System (ADS)

    Ferri, F.; Counil, J. L.; Marsal, O.; Rocard, F.; Bonneville, R.; NetLander Team

    2001-12-01

    The NetLander mission aims at deploying on the surface of Mars a network of four identical landers which will perform simultaneous measurements in order to study the internal structure of Mars, its subsurface, surface, atmosphere and ionosphere. Seismic measurements will evidence the main transitions (lithosphere-mantle-core) as well as mantle discontinuities and crustal structure. The geodetic measurements will allow to determine the state of the core, liquid or not, and to retrieve the density of the core and mantle. The magnetic experiment will retrieve the conductivity profile down to several hundred of kilometers depth, gathering information on temperature gradient and phase transitions. The search for ground water, liquid or solid, will be performed locally by three experiments: seismometers, magnetometers and a ground penetrating radar. Local geology and surface mineralogy will be investigated through a multispectral stereo panoramic camera. A dedicated package will study the thermal properties of the soil at the landing sites. The NetLander will investigate the atmospheric vertical structure at the entry sites, complementing the existing three profiles. The network's ability to measure spatial and seasonal variations of pressure and the near-surface relative humidity will provide an unprecedented opportunity to characterize the H2O cycle. The meteorological package will also provide data relevant to the initiation and evolution of dust processes. Ionospheric investigations, coming along mainly with radio science, radar and electromagnetic sounding, will allow studying ionization processes and monitoring both the large-scale and small-scale plasma variations. The NetLander is a CNES led European mission to be launched in 2007. The nine instruments forming the payload will be provided by space agencies and research laboratories from more than ten European countries and USA.

  16. Optical track width measurements below 100 nm using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Smith, R. J.; See, C. W.; Somekh, M. G.; Yacoot, A.; Choi, E.

    2005-12-01

    This paper discusses the feasibility of using artificial neural networks (ANNs), together with a high precision scanning optical profiler, to measure very fine track widths that are considerably below the conventional diffraction limit of a conventional optical microscope. The ANN is trained using optical profiles obtained from tracks of known widths, the network is then assessed by applying it to test profiles. The optical profiler is an ultra-stable common path scanning interferometer, which provides extremely precise surface measurements. Preliminary results, obtained with a 0.3 NA objective lens and a laser wavelength of 633 nm, show that the system is capable of measuring a 50 nm track width, with a standard deviation less than 4 nm.

  17. Optical depth measurements by shadow-band radiometers and their uncertainties.

    PubMed

    Alexandrov, Mikhail D; Kiedron, Peter; Michalsky, Joseph J; Hodges, Gary; Flynn, Connor J; Lacis, Andrew A

    2007-11-20

    Shadow-band radiometers in general, and especially the Multi-Filter Rotating Shadow-band Radiometer (MFRSR), are widely used for atmospheric optical depth measurements. The major programs running MFRSR networks in the United States include the Department of Energy Atmospheric Radiation Measurement (ARM) Program, U.S. Department of Agriculture UV-B Monitoring and Research Program, National Oceanic and Atmospheric Administration Surface Radiation (SURFRAD) Network, and NASA Solar Irradiance Research Network (SIRN). We discuss a number of technical issues specific to shadow-band radiometers and their impact on the optical depth measurements. These problems include instrument tilt and misalignment, as well as some data processing artifacts. Techniques for data evaluation and automatic detection of some of these problems are described.

  18. Design of the primary pre-TRMM and TRMM ground truth site

    NASA Technical Reports Server (NTRS)

    Garstang, Michael

    1988-01-01

    The primary objective of the Tropical Rain Measuring Mission (TRMM) were to: integrate the rain gage measurements with radar measurements of rainfall using the KSFC/Patrick digitized radar and associated rainfall network; delineate the major rain bearing systems over Florida using the Weather Service reported radar/rainfall distributions; combine the integrated measurements with the delineated rain bearing systems; use the results of the combined measurements and delineated rain bearing systems to represent patterns of rainfall which actually exist and contribute significantly to the rainfall to test sampling strategies and based on the results of these analyses decide upon the ground truth network; and complete the design begun in Phase 1 of a multi-scale (space and time) surface observing precipitation network centered upon KSFC. Work accomplished and in progress is discussed.

  19. A Mars environmental survey (MESUR) - Feasibility of a low cost global approach

    NASA Technical Reports Server (NTRS)

    Hubbard, G. S.; Wercinski, Paul F.; Sarver, George L.; Hanel, Robert P.; Ramos, Ruben

    1991-01-01

    In situ measurements of Mars' surface and atmosphere are the objectives of a novel network mission concept called the Mars Environmental SURvey (MESUR). As envisioned, the MESUR mission will emplace a pole-to-pole global distribution of 16 landers on the Martian surface over three launch opportunites using medium-lift (Delta-class) launch vehicles. The basic concept is to deploy small free-flying probes which would directly enter the Martian atmosphere, measure the upper atmospheric structure, image the local terrain before landing, and survive landing to perform meteorology, seismology, surface imaging, and soil chemistry measurements. Data will be returned via dedicated relay orbiter or direct-to-earth transmission. The mission philosophy is to: (1) 'grow' a network over a period of years using a series of launch opportunities; (2) develop a level-of-effort which is flexible and responsive to a broad set of objectives; (3) focus on Mars science while providing a solid basis for future human presence; and (4) minimize overall project cost and complexity wherever possible.

  20. Wavelets and Elman Neural Networks for monitoring environmental variables

    NASA Astrophysics Data System (ADS)

    Ciarlini, Patrizia; Maniscalco, Umberto

    2008-11-01

    An application in cultural heritage is introduced. Wavelet decomposition and Neural Networks like virtual sensors are jointly used to simulate physical and chemical measurements in specific locations of a monument. Virtual sensors, suitably trained and tested, can substitute real sensors in monitoring the monument surface quality, while the real ones should be installed for a long time and at high costs. The application of the wavelet decomposition to the environmental data series allows getting the treatment of underlying temporal structure at low frequencies. Consequently a separate training of suitable Elman Neural Networks for high/low components can be performed, thus improving the networks convergence in learning time and measurement accuracy in working time.

  1. Rheology and microrheology of materials at the air-water interface

    NASA Astrophysics Data System (ADS)

    Walder, Robert Benjamin

    2008-10-01

    The study of materials at the air-water interface is an important area of research in soft condensed matter physics. Films at the air-water interface have been a system of interest to physics, chemistry and biology for the last 20 years. The unique properties of these surface films provide ideal models for 2-d films, surface chemistry and provide a platform for creating 2 dimensional analogue materials to cellular membranes. Measurements of the surface rheology of cross-linked F-actin networks associated with a lipid monolayer at the air-water interface of a Langmuir monolayer have been performed. The rheological measurements are made using a Couette cell. These data demonstrate that the network has a finite elastic modulus that grows as a function of the cross-linking concentration. We also note that under steady-state flow the system behaves as a power law fluid in which the effective viscosity decreases with imposed shear. A Langmuir monolayer trough that is equipped for simultaneous microrheology and standard rheology measurements has been constructed. The central elements are the trough itself with a full range of optical tools accessing the air-water interface from below the trough and a portable knife-edge torsion pendulum that can access the interface from above. The ability to simultaneously measure the mechanical response of Langmuir monolayers on very different length scales is an important step for our understanding of the mechanical response of two-dimensional viscoelastic networks. The optical tweezer microrheometer is used to study the micromechanical properties of Langmuir monolayers. Microrheology measurements are made a variety of surface pressures that correspond to different ordered phases of the monolayer. The complex shear modulus shows an order of magnitude increase for the liquid condensed phase of DPPC compared to the liquid expanded phase.

  2. Ground-based Network and Supersite Measurements for Studying Aerosol Properties and Aerosol-Cloud Interactions

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations contain large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. The development and deployment of AERONET (AErosol RObotic NETwork) sunphotometer network and SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile supersite are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To characterize the regional natural and anthropogenic aerosols, AERONET is an internationally federated network of unique sunphotometry that contains more than 250 permanent sites worldwide. Since 1993, there are more than 480 million aerosol optical depth observations and about 15 sites have continuous records longer than 10 years for annual/seasonal trend analyses. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instrument into three categories: flux radiometer, radiance sensor and in-situ probe. Through participation in many satellite remote-sensing/retrieval and validation projects over eight years, SMART-COMMIT have gradually refine( and been proven vital for field deployment. In this paper, we will demonstrate the capability of AERONET SMART-COMMIT in current Asian Monsoon Year-2008 campaigns that are designed and being executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., airborne dust, smoke, mega-city pollutant). Feedback mechanisms between aerosol radiative effects and monsoon dynamics have been recently proposed, however there is a lack of consensus on whether aerosol forcing would be more likely to enhance or reduce the strength of the monsoon circulation. We envision robust approaches which well-collocated ground-based measurements and space-borne observations will greatly advance our understanding of absorbing aerosols (e.g., "Global Dimming" vs. "Elevated Heat-Pump" effects) on aerosol cloud water cycle interactions.

  3. Quality-control design for surface-water sampling in the National Water-Quality Network

    USGS Publications Warehouse

    Riskin, Melissa L.; Reutter, David C.; Martin, Jeffrey D.; Mueller, David K.

    2018-04-10

    The data-quality objectives for samples collected at surface-water sites in the National Water-Quality Network include estimating the extent to which contamination, matrix effects, and measurement variability affect interpretation of environmental conditions. Quality-control samples provide insight into how well the samples collected at surface-water sites represent the true environmental conditions. Quality-control samples used in this program include field blanks, replicates, and field matrix spikes. This report describes the design for collection of these quality-control samples and the data management needed to properly identify these samples in the U.S. Geological Survey’s national database.

  4. Map showing the potentiometric surface of the Magothy Aquifer in southern Maryland, September 1981

    USGS Publications Warehouse

    Mack, F.K.; Wheeler, J.C.; Curtin, S.E.

    1982-01-01

    The map is based on measurements from a network of 83 observation wells cased to the Magothy aquifer. Highest levels of the potentiometric surface, 59 to 60 feet above sea level, were measured near the outcrop-subcrop of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. The surface slopes to the southeast to above sea level along much of the western shore of Chesapeake Bay. Three separate, distinct, and extensive cones of depression have developed in the potentiometric surface around the well fields of the city of Annapolis-Broadneck Peninsula area, town of Waldorf, and Chalk Point. Several square miles of each cone are below sea level, and, in some areas at Chalk Point and Waldorf, the cone is 40 to 50 feet below sea level. The network of wells was developed as part of the cooperative program between the U.S. Geological Survey, the Maryland Geological Survey, and the Maryland Energy and Coastal Zone Administration. (USGS)

  5. Land subsidence and recovery in the Albuquerque Basin, New Mexico, 1993–2014

    USGS Publications Warehouse

    Driscoll, Jessica M.; Brandt, Justin T.

    2017-08-14

    The Albuquerque Bernalillo County Water Utility Authority (ABCWUA) drinking water supply was almost exclusively sourced from groundwater from within the Albuquerque Basin before 2008. In 2008, the San Juan-Chama Drinking Water Project (SJCDWP) provided surface-water resources to augment the groundwater supply, allowing for a reduction in groundwater pumping in the Albuquerque Basin. In 2013, the U.S. Geological Survey, in cooperation with the ABCWUA, began a study to measure and compare aquifer-system and land-surface elevation change before and after the SJCDWP in 2008. Three methods of data collection with different temporal and spatial resolutions were used for this study: (1) aquifer-system compaction data collected continuously at a single extensometer from 1994 to 2013; (2) land-surface elevation change from Global Positioning System (GPS) surveys of a network of monuments collected in 1994–95, 2005, and 2014; and (3) spatially distributed Interferometric Synthetic Aperture Radar (InSAR) satellite data from 1993 to 2010. Collection of extensometer data allows for direct and continuous measurement of aquifer-system compaction at the extensometer location. The GPS surveys of a network of monuments allow for periodic measurements of land-surface elevation change at monument locations. Interferograms are limited in time by lifespan of the satellite, orbital pattern, and data quality but allow for measurement of gridded land-surface elevation change over the study area. Each of these methods was employed to provide a better understanding of aquifer-system compaction and land-surface elevation change for the Albuquerque Basin.Results do not show large magnitudes of subsidence in the Albuquerque Basin. High temporal-resolution but low spatial-resolution data measurements of aquifer-system compaction at the Albuquerque extensometer show elastic aquifer-system response to recovering groundwater levels. Results from the GPS survey of the network of monuments show inconsistent land-surface elevation changes over the Albuquerque Basin, likely because of the lack of significant change and the complexity of subsurface stratigraphy in addition to the spatial and temporal heterogeneity of groundwater withdrawals over the study period. Results from the InSAR analysis show areas of land-surface elevation increase after 2008, which could be attributed to elastic recovery of the aquifer system. The spatial extent to which elastic recovery of the aquifer system has resulted in recovery of land-surface elevation is limited to the in-situ measurements at the extensometer. Examination of spatially distributed InSAR data relative to limited spatial extent of the complex heterogeneity subsurface stratigraphy may explain some of the heterogeneity of land-surface elevation changes over this study period.

  6. Identification of tipping elements of the Indian Summer Monsoon using climate network approach

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Surovyatkina, Elena; Kurths, Jurgen

    2015-04-01

    Spatial and temporal variability of the rainfall is a vital question for more than one billion of people inhabiting the Indian subcontinent. Indian Summer Monsoon (ISM) rainfall is crucial for India's economy, social welfare, and environment and large efforts are being put into predicting the Indian Summer Monsoon. For predictability of the ISM, it is crucial to identify tipping elements - regions over the Indian subcontinent which play a key role in the spatial organization of the Indian monsoon system. Here, we use climate network approach for identification of such tipping elements of the ISM. First, we build climate networks of the extreme rainfall, surface air temperature and pressure over the Indian subcontinent for pre-monsoon, monsoon and post-monsoon seasons. We construct network of extreme rainfall event using observational satellite data from 1998 to 2012 from the Tropical Rainfall Measuring Mission (TRMM 3B42V7) and reanalysis gridded daily rainfall data for a time period of 57 years (1951-2007) (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE). For the network of surface air temperature and pressure fields, we use re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). Second, we filter out data by coarse-graining the network through network measures, and identify tipping regions of the ISM. Finally, we compare obtained results of the network analysis with surface wind fields and show that occurrence of the tipping elements is mostly caused by monsoonal wind circulation, migration of the Intertropical Convergence Zone (ITCZ) and Westerlies. We conclude that climate network approach enables to select the most informative regions for the ISM, providing realistic description of the ISM dynamics with fewer data, and also help to identify tipping regions of the ISM. Obtained tipping elements deserve a special attention for the meteorologists and can be used as markers of the ISM variability.

  7. Approach jamming effectiveness evaluation for surface-type infrared decoy in network centric warship formation

    NASA Astrophysics Data System (ADS)

    Lv, Mingshan

    2015-10-01

    The passive and photoelectrical jamming to anti-ship missile in the condition of network centric warship formation is an important research issue of fleet EW operation. An approach jamming method of shipborne surface-type infrared decoy countering the infrared image guided anti-ship missile is put forward. By analyzing the countering process the jamming effectiveness evaluation model is constructed. By simulation the method is proved t reasonable and effective. This method breaks through the traditional restrict that the passive and photoelectricity jamming measure can only be used in the end self-defence and provides a new method for network centric worship formation to support each other.

  8. Atmospheric conditions measured by a wireless sensor network on the local scale

    NASA Astrophysics Data System (ADS)

    Lengfeld, K.; Ament, F.

    2010-09-01

    Atmospheric conditions close to the surface, like temperature, wind speed and humidity, vary on small scales because of surface heterogeneities. Therefore, the traditional measuring approach of using a single, highly accurate station is of limited representativeness for a larger domain, because it is not able to determine these small scale variabilities. However, both the variability and the domain averages are important information for the development and validation of atmospheric models and soil-vegetation-atmosphere-transfer (SVAT) schemes. Due to progress in microelectronics it is possible to construct networks of comparably cheap meteorological stations with moderate accuracy. Such a network provides data in high spatial and temporal resolution. The EPFL Lausanne developed such a network called SensorScope, consisting of low cost autonomous stations. Each station observes air and surface temperature, humidity, wind direction and speed, incoming solar radiation, precipitation, soil moisture and soil temperature and sends the data via radio communication to a base station. This base station forwards the collected data via GSM/GPRS to a central server. The first measuring campaign took place within the FLUXPAT project in August 2009. We deployed 15 stations as a twin transect near Jülich, Germany. To test the quality of the low cost sensors we compared two of them to more accurate reference systems. It turned out, that although the network sensors are not highly accurate, the measurements are consistent. Consequently an analysis of the pattern of atmospheric conditions is feasible. The transect is 2.3 km long and covers different types of vegetation and a small river. Therefore, we analyse the influence of different land surfaces and the distance to the river on meteorological conditions. For example, we found a difference in air temperature of 0.8°C between the station closest to and the station farthest from the river. The decreasing relative humidity with increasing distance to the river meets our expectations. But there are also some unexpected anomalies in the air temperature, which will be discussed in detail by selected case studies. By analysing the correlation of the fluctuation of the meteorological conditions, we want to detect clusters depending on different land surfaces and distance to the river. Since April 2010 a second deployment is set up at the Airport Hamburg. It consists of 14 stations placed along the two runways in northward and in eastward direction. The aim of this project is to analyse whether the atmospheric conditions in such an uniform environment are really homogeneous. To do so we will apply the same analyses for these measurements we used for FLUXPAT.

  9. Map showing the potentiometric surface of the Magothy Aquifer in southern Maryland, September 1982

    USGS Publications Warehouse

    Mack, Frederick K.; Wheeler, Judith C.; Curtin, Stephen E.

    1982-01-01

    A map was prepared that shows the potentiometric surface of the Magothy aquifer in southern Maryland in September 1982. The map is based on measurements from a network of 83 observation wells. The highest levels of the potentiometric surface, 57 and 58 feet above sea level, were measured near the outcrop-subcrop of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. The potentiometric surface slopes to the southeast to about sea level along much of the western shore of the Chesapeake Bay. Three distinct and extensive cones of depression have developed in the potentiometric surface around the well fields of the Annapolis area, Waldorf area, and Chalk Point. Several square miles of each cone are below sea level, and in some areas at Chalk Point and Waldorf, the cone is more than 50 feet below sea level. The network of wells was developed as part of the cooperative program between the U.S. Geological Survey, the Maryland Geological Survey, and the Maryland Energy Administration. (USGS)

  10. Tool to assess contents of ARM surface meteorology network netCDF files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staudt, A.; Kwan, T.; Tichler, J.

    The Atmospheric Radiation Measurement (ARM) Program, supported by the US Department of Energy, is a major program of atmospheric measurement and modeling designed to improve the understanding of processes and properties that affect atmospheric radiation, with a particular focus on the influence of clouds and the role of cloud radiative feedback in the climate system. The ARM Program will use three highly instrumented primary measurement sites. Deployment of instrumentation at the first site, located in the Southern Great Plains of the United States, began in May of 1992. The first phase of deployment at the second site in the Tropicalmore » Western Pacific is scheduled for late in 1995. The third site will be in the North Slope of Alaska and adjacent Arctic Ocean. To meet the scientific objectives of ARM, observations from the ARM sites are combined with data from other sources; these are called external data. Among these external data sets are surface meteorological observations from the Oklahoma Mesonet, a Kansas automated weather network, the Wind Profiler Demonstration Network (WPDN), and the National Weather Service (NWS) surface stations. Before combining these data with the Surface Meteorological Observations Station (SMOS) ARM data, it was necessary to assess the contents and quality of both the ARM and the external data sets. Since these data sets had previously been converted to netCDF format for use by the ARM Science Team, a tool was written to assess the contents of the netCDF files.« less

  11. Using Multiple Space Assests with In-Situ Measurements to Track Flooding in Thailand

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Doubleday, Joshua; Mclaren, David; Tran, Daniel; Khunboa, Chatchai; Leelapatra, Watis; Pergamon, Vichain; Tanpipat, Veerachai; Chitradon, Royal; Boonya-aroonnet, Surajate; hide

    2001-01-01

    Increasing numbers of space assets can enable coordinated measurements of flooding phenomena to enhance tracking of extreme events. We describe the use of space and ground measurements to target further measurements as part of a flood monitoring system in Thailand. We utilize rapidly delivered MODIS data to detect major areas of flooding and the target the Earth Observing One Advanced Land Imager sensor to acquire higher spatial resolution data. Automatic surface water extent mapping products delivered to interested parties. We are also working to extend our network to include in-situ sensing networks and additional space assets.

  12. 40 CFR 60.255 - Performance tests and other compliance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Transfer Network (TTN) under Emission Measurement Center Preliminary Methods. The monitoring plan approved... be recorded and quantified. The optical surfaces exposed to the effluent gases must be cleaned prior... adjustments. For systems using automatic zero adjustments, the optical surfaces must be cleaned when the...

  13. Distributed Sensible Heat Flux Measurements for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Huwald, H.; Brauchli, T.; Lehning, M.; Higgins, C. W.

    2015-12-01

    The sensible heat flux component of the surface energy balance is typically computed using eddy covariance or two point profile measurements while alternative approaches such as the flux variance method based on convective scaling has been much less explored and applied. Flux variance (FV) certainly has a few limitations and constraints but may be an interesting and competitive method in low-cost and power limited wireless sensor networks (WSN) with the advantage of providing spatio-temporal sensible heat flux over the domain of the network. In a first step, parameters such as sampling frequency, sensor response time, and averaging interval are investigated. Then we explore the applicability and the potential of the FV method for use in WSN in a field experiment. Low-cost sensor systems are tested and compared against reference instruments (3D sonic anemometers) to evaluate the performance and limitations of the sensors as well as the method with respect to the standard calculations. Comparison experiments were carried out at several sites to gauge the flux measurements over different surface types (gravel, grass, water) from the low-cost systems. This study should also serve as an example of spatially distributed sensible heat flux measurements.

  14. A Simultaneously Antimicrobial, Protein-Repellent, and Cell-Compatible Polyzwitterion Network.

    PubMed

    Kurowska, Monika; Eickenscheidt, Alice; Guevara-Solarte, Diana-Lorena; Widyaya, Vania Tanda; Marx, Franziska; Al-Ahmad, Ali; Lienkamp, Karen

    2017-04-10

    A simultaneously antimicrobial, protein-repellent, and cell-compatible surface-attached polymer network is reported, which reduces the growth of bacterial biofilms on surfaces through its multifunctionality. The coating was made from a poly(oxonorbornene)-based zwitterion (PZI), which was surface-attached and cross-linked in one step by simultaneous UV-activated CH insertion and thiol-ene reaction. The process was applicable to both laboratory surfaces like silicon, glass, and gold and real-life surfaces like polyurethane foam wound dressings. The chemical structure and physical properties of the PZI surface and the two reference surfaces SMAMP ("synthetic mimic of an antimicrobial peptide"), an antimicrobial but protein-adhesive polymer coating, and PSB (poly(sulfobetaine)), a protein-repellent but not antimicrobial polyzwitterion coating were characterized by Fourier transform infrared spectroscopy, ellipsometry, contact angle measurements, photoelectron spectroscopy, swellability measurements (using surface plasmon resonance spectroscopy, SPR), zeta potential measurements, and atomic force microscopy. The time-dependent antimicrobial activity assay (time-kill assay) confirmed the high antimicrobial activity of the PZI; SPR was used to demonstrate that it was also highly protein-repellent. Biofilm formation studies showed that the material effectively reduced the growth of Escherichia coli and Staphylococcus aureus biofilms. Additionally, it was shown that the PZI was highly compatible with immortalized human mucosal gingiva keratinocytes and human red blood cells using the Alamar Blue assay, the live-dead stain, and the hemolysis assay. PZI thus may be an attractive coating for biomedical applications, particularly for the fight against bacterial biofilms on medical devices and in other applications.

  15. Surface Wave Dispersion Measurements and Tomography From Ambient Seismic Noise in China

    DTIC Science & Technology

    2007-12-20

    Recovering the Green’s function from field - field correlations in an open scattering medium (L), J. Acoust. Soc. Amer. 113 (6), 2973- 2976, 2003. Eagle, D...The basic approach can be traced back much earlier studies of random fields in seismology (Aki, 1957; Toksoz, 1964; Claerbout, 1968), in...Seismic Network (CNDSN), Center of China Digital Seismic Network (CCDSN) stations, and China Seismic Network ( CSN ). We refer here as China National

  16. Dust transport over the eastern Mediterranean derived from Total Ozone Mapping Spectrometer, Aerosol Robotic Network, and surface measurements

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Gerasopoulos, E.; Vrekoussis, M.; Kouvarakis, G.; Kubilay, N.; Hatzianastassiou, N.; Vardavas, I.; Mihalopoulos, N.

    2007-02-01

    Multiyear surface PM10 measurements performed on Crete Island, Greece, have been used in conjunction with satellite (Total Ozone Mapping Spectrometer (TOMS)) and ground-based remote sensing measurements (Aerosol Robotic Network (AERONET)) to enhance our understanding of the evolution of mineral dust events over the eastern Mediterranean. An analysis of southerly air masses at altitudes of 1000 and 3000 m over a 5 year period (2000-2005), showed that dust can potentially arrive over Crete, either simultaneously in the lower free troposphere and inside the boundary layer (vertical extended transport (VET)) or initially into the free troposphere with the heavier particles gradually being scavenged inside the boundary layer (free troposphere transport (FTT)). Both pathways present significant seasonal variations but on an annual basis contribute almost equally to the dust transport in the area. During VET the aerosol index (AI) derived from TOMS was significantly correlated with surface PM10, and in general AI was found to be adequate for the characterization of dust loadings over the eastern Mediterranean on a climatological basis. A significant covariance between PM10 and AOT was observed during VET as well, indicating that AOT levels from AERONET may be estimated by PM10 levels at the surface. Surface measurements are thus crucial for the validation of remote sensing measurements and hence are a powerful tool for the investigation of the impact of aerosols on climate.

  17. Lunar surface magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Colburn, D. S.; Schubert, G.

    1972-01-01

    The Apollo 16 lunar surface magnetometer (LSM) activation completed the network installation of magnetic observatories on the lunar surface and initiated simultaneous measurements of the global response of the moon to large-scale solar and terrestrial magnetic fields. Fossil remanent magnetic fields have been measured at nine locations on the lunar surface, including the Apollo 16 LSM site in the Descartes highlands area. This fossil record indicates the possible existence of an ancient lunar dynamo or a solar or terrestrial field much stronger than exists at present. The experimental technique and operation of the LSM are described and the results obtained are discussed.

  18. Application of Artificial Neural Network and Response Surface Methodology in Modeling of Surface Roughness in WS2 Solid Lubricant Assisted MQL Turning of Inconel 718

    NASA Astrophysics Data System (ADS)

    Maheshwera Reddy Paturi, Uma; Devarasetti, Harish; Abimbola Fadare, David; Reddy Narala, Suresh Kumar

    2018-04-01

    In the present paper, the artificial neural network (ANN) and response surface methodology (RSM) are used in modeling of surface roughness in WS2 (tungsten disulphide) solid lubricant assisted minimal quantity lubrication (MQL) machining. The real time MQL turning of Inconel 718 experimental data considered in this paper was available in the literature [1]. In ANN modeling, performance parameters such as mean square error (MSE), mean absolute percentage error (MAPE) and average error in prediction (AEP) for the experimental data were determined based on Levenberg–Marquardt (LM) feed forward back propagation training algorithm with tansig as transfer function. The MATLAB tool box has been utilized in training and testing of neural network model. Neural network model with three input neurons, one hidden layer with five neurons and one output neuron (3-5-1 architecture) is found to be most confidence and optimal. The coefficient of determination (R2) for both the ANN and RSM model were seen to be 0.998 and 0.982 respectively. The surface roughness predictions from ANN and RSM model were related with experimentally measured values and found to be in good agreement with each other. However, the prediction efficacy of ANN model is relatively high when compared with RSM model predictions.

  19. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy.

    PubMed

    Chen, Jun; Yang, Jin; Li, Zhaoling; Fan, Xing; Zi, Yunlong; Jing, Qingshen; Guo, Hengyu; Wen, Zhen; Pradel, Ken C; Niu, Simiao; Wang, Zhong Lin

    2015-03-24

    With 70% of the earth's surface covered with water, wave energy is abundant and has the potential to be one of the most environmentally benign forms of electric energy. However, owing to lack of effective technology, water wave energy harvesting is almost unexplored as an energy source. Here, we report a network design made of triboelectric nanogenerators (TENGs) for large-scale harvesting of kinetic water energy. Relying on surface charging effect between the conventional polymers and very thin layer of metal as electrodes for each TENG, the TENG networks (TENG-NW) that naturally float on the water surface convert the slow, random, and high-force oscillatory wave energy into electricity. On the basis of the measured output of a single TENG, the TENG-NW is expected to give an average power output of 1.15 MW from 1 km(2) surface area. Given the compelling features, such as being lightweight, extremely cost-effective, environmentally friendly, easily implemented, and capable of floating on the water surface, the TENG-NW renders an innovative and effective approach toward large-scale blue energy harvesting from the ocean.

  20. Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements

    NASA Astrophysics Data System (ADS)

    Fraser, A.; Palmer, P. I.; Feng, L.; Boesch, H.; Cogan, A.; Parker, R.; Dlugokencky, E. J.; Fraser, P. J.; Krummel, P. B.; Langenfelds, R. L.; O'Doherty, S.; Prinn, R. G.; Steele, L. P.; van der Schoot, M.; Weiss, R. F.

    2013-06-01

    We use an ensemble Kalman filter (EnKF), together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH4) fluxes for the period June 2009-December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4) from GOSAT (Greenhouse gases Observing SATellite) and/or NOAA ESRL (Earth System Research Laboratory) and CSIRO GASLAB (Global Atmospheric Sampling Laboratory) CH4 surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510-516 Tg yr-1, which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr-1. We find larger differences between regional prior and posterior fluxes, with the largest changes in monthly emissions (75 Tg yr-1) occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45%) than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO2 model output to investigate model error on quantifying proxy GOSAT XCH4 (involving model XCO2) and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs) we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 15% of true fluxes. We evaluate our posterior methane fluxes by incorporating them into GEOS-Chem and sampling the model at the location and time of surface CH4 measurements from the AGAGE (Advanced Global Atmospheric Gases Experiment) network and column XCH4 measurements from TCCON (Total Carbon Column Observing Network). The posterior fluxes modestly improve the model agreement with AGAGE and TCCON data relative to prior fluxes, with the correlation coefficients (r2) increasing by a mean of 0.04 (range: -0.17 to 0.23) and the biases decreasing by a mean of 0.4 ppb (range: -8.9 to 8.4 ppb).

  1. Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements

    NASA Astrophysics Data System (ADS)

    Fraser, A.; Palmer, P. I.; Feng, L.; Boesch, H.; Cogan, A.; Parker, R.; Dlugokencky, E. J.; Fraser, P. J.; Krummel, P. B.; Langenfelds, R. L.; O'Doherty, S.; Prinn, R. G.; Steele, L. P.; van der Schoot, M.; Weiss, R. F.

    2012-12-01

    We use an ensemble Kalman filter (EnKF), together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH4) fluxes for the period June 2009-December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4) from GOSAT (Greenhouse gases Observing SATellite) and/or NOAA ESRL (Earth System Research Laboratory) and CSIRO GASLAB (Global Atmospheric Sampling Laboratory) CH4 surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510-516 Tg yr-1, which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr-1. We find larger differences between regional prior and posterior fluxes, with the largest changes (75 Tg yr-1) occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45%) than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes > 60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO2 model output to investigate model error on quantifying proxy GOSAT XCH4 (involving model XCO2) and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs) we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 5% of true values, with the exception of South Africa and Tropical South America where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 17% and 19% of true fluxes, respectively. We evaluate our posterior methane fluxes by incorporating them into GEOS-Chem and sampling the model at the location and time of independent surface CH4 measurements from the AGAGE (Advanced Global Atmospheric Gases Experiment) network and column XCH4 measurements from TCCON (Total Carbon Column Observing Network). The posterior fluxes modestly improve the model agreement with AGAGE and TCCON data relative to prior fluxes, with the correlation coefficients (r2) increasing by a mean of 0.04 (range: -0.17, 0.23) and the biases decreasing by a mean of 0.4 ppb (range: -8.9, 8.4 ppb).

  2. Landsat and Sentinel-2A Surface Albedo Estimation and Evaluation Against In Situ Measurements Across the US SURFRAD Network

    NASA Astrophysics Data System (ADS)

    Franch, B.; Skakun, S.; Vermote, E.; Roger, J. C.

    2017-12-01

    Surface albedo is an essential parameter not only for developing climate models, but also for most energy balance studies. While climate models are usually applied at coarse resolution, the energy balance studies, which are mainly focused on agricultural applications, require a high spatial resolution. The albedo, estimated through the angular integration of the BRDF, requires an appropriate angular sampling of the surface. However, Sentinel-2A sampling characteristics, with nearly constant observation geometry and low illumination variation, prevent from deriving a surface albedo product. In this work, we apply an algorithm developed to derive a Landsat surface albedo to Sentinel-2A. It is based on the BRDF parameters estimated from the MODerate Resolution Imaging Spectroradiometer (MODIS) CMG surface reflectance product (M{O,Y}D09) using the VJB method (Vermote et al., 2009). Sentinel-2A unsupervised classification images are used to disaggregate the BRDF parameters to the Sentinel-2 spatial resolution. We test the results over five different sites of the US SURFRAD network and plot the results versus albedo field measurements. Additionally, we also test this methodology using Landsat-8 images.

  3. Reconstruction of sub-surface archaeological remains from magnetic data using neural computing.

    NASA Astrophysics Data System (ADS)

    Bescoby, D. J.; Cawley, G. C.; Chroston, P. N.

    2003-04-01

    The remains of a former Roman colonial settlement, once part of the classical city of Butrint in southern Albania have been the subject of a high resolution magnetic survey using a caesium-vapour magnetometer. The survey revealed the surviving remains of an extensive planned settlement and a number of outlying buildings, today buried beneath over 0.5 m of alluvial deposits. The aim of the current research is to derive a sub-surface model from the magnetic survey measurements, allowing an enhanced archaeological interpretation of the data. Neural computing techniques are used to perform the non-linear mapping between magnetic data and corresponding sub-surface model parameters. The adoption of neural computing paradigms potentially holds several advantages over other modelling techniques, allowing fast solutions for complex data, while having a high tolerance to noise. A multi-layer perceptron network with a feed-forward architecture is trained to estimate the shape and burial depth of wall foundations using a series of representative models as training data. Parameters used to forward model the training data sets are derived from a number of trial trench excavations targeted over features identified by the magnetic survey. The training of the network was optimized by first applying it to synthetic test data of known source parameters. Pre-processing of the network input data, including the use of a rotationally invariant transform, enhanced network performance and the efficiency of the training data. The approach provides good results when applied to real magnetic data, accurately predicting the depths and layout of wall foundations within the former settlement, verified by subsequent excavation. The resulting sub-surface model is derived from the averaged outputs of a ‘committee’ of five networks, trained with individualized training sets. Fuzzy logic inference has also been used to combine individual network outputs through correlation with data from a second geophysical technique, allowing the integration of data from a separate series of measurements.

  4. Why is SMOS Drier than the South Fork In-situ Soil Moisture Network?

    NASA Astrophysics Data System (ADS)

    Walker, V. A.; Hornbuckle, B. K.; Cosh, M. H.

    2014-12-01

    Global maps of near-surface soil moisture are currently being produced by the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite mission at 40 km. Within the next few months NASA's Soil Moisture Active Passive (SMAP) satellite mission will begin producing observations of near-surface soil moisture at 10 km. Near-surface soil moisture is the water content of the first 3 to 5 cm of the soil. Observations of near-surface soil moisture are expected to improve weather and climate forecasts. These satellite observations must be validated. We define validation as determining the space/time statistical characteristics of the uncertainty. A standard that has been used for satellite validation is in-situ measurements of near-surface soil moisture made with a network of sensors spanning the extent of a satellite footprint. Such a network of sensors has been established in the South Fork of the Iowa River in Central Iowa by the USDA ARS. Our analysis of data in 2013 indicates that SMOS has a dry bias: SMOS near-surface soil moisture is between 0.05 to 0.10 m^3m^{-3} lower than what is observed by the South Fork network. A dry bias in SMOS observations has also been observed in other regions of North America. There are many possible explanations for this difference: underestimation of vegetation, or soil surface roughness; undetected radio frequency interference (RFI); a retrieval model that is not appropriate for agricultural areas; or the use of an incorrect surface temperature in the retrieval process. We will begin our investigation by testing this last possibility: that SMOS is using a surface temperature that is too low which results in a drier soil moisture that compensates for this error. We will present a comparison of surface temperatures from the European Center for Medium-range Weather Forecasting (ECMWF) used to retrieve near-surface soil moisture from SMOS measurements of brightness temperature, and surface temperatures in the South Fork obtained from both tower and in-situ sensors. We will also use a long-term data set of tower and in-situ sensors collected in agricultural fields to develop a relationship between air temperature and the surface temperature relevant to the terrestrial microwave emission that is detected by SMOS.

  5. Identifying the Critical Links in Road Transportation Networks: Centrality-based approach utilizing structural properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinthavali, Supriya

    Surface transportation road networks share structural properties similar to other complex networks (e.g., social networks, information networks, biological networks, and so on). This research investigates the structural properties of road networks for any possible correlation with the traffic characteristics such as link flows those determined independently. Additionally, we define a criticality index for the links of the road network that identifies the relative importance in the network. We tested our hypotheses with two sample road networks. Results show that, correlation exists between the link flows and centrality measures of a link of the road (dual graph approach is followed) andmore » the criticality index is found to be effective for one test network to identify the vulnerable nodes.« less

  6. Kinetic signature of fractal-like filament networks formed by orientational linear epitaxy.

    PubMed

    Hwang, Wonmuk; Eryilmaz, Esma

    2014-07-11

    We study a broad class of epitaxial assembly of filament networks on lattice surfaces. Over time, a scale-free behavior emerges with a 2.5-3 power-law exponent in filament length distribution. Partitioning between the power-law and exponential behaviors in a network can be used to find the stage and kinetic parameters of the assembly process. To analyze real-world networks, we develop a computer program that measures the network architecture in experimental images. Application to triaxial networks of collagen fibrils shows quantitative agreement with our model. Our unifying approach can be used for characterizing and controlling the network formation that is observed across biological and nonbiological systems.

  7. Airport Surface Network Architecture Definition

    NASA Technical Reports Server (NTRS)

    Nguyen, Thanh C.; Eddy, Wesley M.; Bretmersky, Steven C.; Lawas-Grodek, Fran; Ellis, Brenda L.

    2006-01-01

    Currently, airport surface communications are fragmented across multiple types of systems. These communication systems for airport operations at most airports today are based dedicated and separate architectures that cannot support system-wide interoperability and information sharing. The requirements placed upon the Communications, Navigation, and Surveillance (CNS) systems in airports are rapidly growing and integration is urgently needed if the future vision of the National Airspace System (NAS) and the Next Generation Air Transportation System (NGATS) 2025 concept are to be realized. To address this and other problems such as airport surface congestion, the Space Based Technologies Project s Surface ICNS Network Architecture team at NASA Glenn Research Center has assessed airport surface communications requirements, analyzed existing and future surface applications, and defined a set of architecture functions that will help design a scalable, reliable and flexible surface network architecture to meet the current and future needs of airport operations. This paper describes the systems approach or methodology to networking that was employed to assess airport surface communications requirements, analyze applications, and to define the surface network architecture functions as the building blocks or components of the network. The systems approach used for defining these functions is relatively new to networking. It is viewing the surface network, along with its environment (everything that the surface network interacts with or impacts), as a system. Associated with this system are sets of services that are offered by the network to the rest of the system. Therefore, the surface network is considered as part of the larger system (such as the NAS), with interactions and dependencies between the surface network and its users, applications, and devices. The surface network architecture includes components such as addressing/routing, network management, network performance and security.

  8. Extending Resolution of Fault Slip With Geodetic Networks Through Optimal Network Design

    NASA Astrophysics Data System (ADS)

    Sathiakumar, Sharadha; Barbot, Sylvain Denis; Agram, Piyush

    2017-12-01

    Geodetic networks consisting of high precision and high rate Global Navigation Satellite Systems (GNSS) stations continuously monitor seismically active regions of the world. These networks measure surface displacements and the amount of geodetic strain accumulated in the region and give insight into the seismic potential. SuGar (Sumatra GPS Array) in Sumatra, GEONET (GNSS Earth Observation Network System) in Japan, and PBO (Plate Boundary Observatory) in California are some examples of established networks around the world that are constantly expanding with the addition of new stations to improve the quality of measurements. However, installing new stations to existing networks is tedious and expensive. Therefore, it is important to choose suitable locations for new stations to increase the precision obtained in measuring the geophysical parameters of interest. Here we describe a methodology to design optimal geodetic networks that augment the existing system and use it to investigate seismo-tectonics at convergent and transform boundaries considering land-based and seafloor geodesy. The proposed network design optimization would be pivotal to better understand seismic and tsunami hazards around the world. Land-based and seafloor networks can monitor fault slip around subduction zones with significant resolution, but transform faults are more challenging to monitor due to their near-vertical geometry.

  9. "Time-dependent flow-networks"

    NASA Astrophysics Data System (ADS)

    Tupikina, Liubov; Molkentin, Nora; Lopez, Cristobal; Hernandez-Garcia, Emilio; Marwan, Norbert; Kurths, Jürgen

    2015-04-01

    Complex networks have been successfully applied to various systems such as society, technology, and recently climate. Links in a climate network are defined between two geographical locations if the correlation between the time series of some climate variable is higher than a threshold. Therefore, network links are considered to imply information or heat exchange. However, the relationship between the oceanic and atmospheric flows and the climate network's structure is still unclear. Recently, a theoretical approach verifying the correlation between ocean currents and surface air temperature networks has been introduced, where the Pearson correlation networks were constructed from advection-diffusion dynamics on an underlying flow. Since the continuous approach has its limitations, i.e. high computational complexity and fixed variety of the flows in the underlying system, we introduce a new, method of flow-networks for changing in time velocity fields including external forcing in the system, noise and temperature-decay. Method of the flow-network construction can be divided into several steps: first we obtain the linear recursive equation for the temperature time-series. Then we compute the correlation matrix for time-series averaging the tensor product over all realizations of the noise, which we interpret as a weighted adjacency matrix of the flow-network and analyze using network measures. We apply the method to different types of moving flows with geographical relevance such as meandering flow. Analyzing the flow-networks using network measures we find that our approach can highlight zones of high velocity by degree and transition zones by betweenness, while the combination of these network measures can uncover how the flow propagates within time. Flow-networks can be powerful tool to understand the connection between system's dynamics and network's topology analyzed using network measures in order to shed light on different climatic phenomena.

  10. Country-wide rainfall maps from cellular communication networks

    PubMed Central

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2013-01-01

    Accurate and timely surface precipitation measurements are crucial for water resources management, agriculture, weather prediction, climate research, as well as ground validation of satellite-based precipitation estimates. However, the majority of the land surface of the earth lacks such data, and in many parts of the world the density of surface precipitation gauging networks is even rapidly declining. This development can potentially be counteracted by using received signal level data from the enormous number of microwave links used worldwide in commercial cellular communication networks. Along such links, radio signals propagate from a transmitting antenna at one base station to a receiving antenna at another base station. Rain-induced attenuation and, subsequently, path-averaged rainfall intensity can be retrieved from the signal’s attenuation between transmitter and receiver. Here, we show how one such a network can be used to retrieve the space–time dynamics of rainfall for an entire country (The Netherlands, ∼35,500 km2), based on an unprecedented number of links (∼2,400) and a rainfall retrieval algorithm that can be applied in real time. This demonstrates the potential of such networks for real-time rainfall monitoring, in particular in those parts of the world where networks of dedicated ground-based rainfall sensors are often virtually absent. PMID:23382210

  11. A model to assess the Mars Telecommunications Network relay robustness

    NASA Technical Reports Server (NTRS)

    Girerd, Andre R.; Meshkat, Leila; Edwards, Charles D., Jr.; Lee, Charles H.

    2005-01-01

    The relatively long mission durations and compatible radio protocols of current and projected Mars orbiters have enabled the gradual development of a heterogeneous constellation providing proximity communication services for surface assets. The current and forecasted capability of this evolving network has reached the point that designers of future surface missions consider complete dependence on it. Such designers, along with those architecting network requirements, have a need to understand the robustness of projected communication service. A model has been created to identify the robustness of the Mars Network as a function of surface location and time. Due to the decade-plus time horizon considered, the network will evolve, with emerging productive nodes and nodes that cease or fail to contribute. The model is a flexible framework to holistically process node information into measures of capability robustness that can be visualized for maximum understanding. Outputs from JPL's Telecom Orbit Analysis Simulation Tool (TOAST) provide global telecom performance parameters for current and projected orbiters. Probabilistic estimates of orbiter fuel life are derived from orbit keeping burn rates, forecasted maneuver tasking, and anomaly resolution budgets. Orbiter reliability is estimated probabilistically. A flexible scheduling framework accommodates the projected mission queue as well as potential alterations.

  12. Surface deformation and elasticity studies in the Virgin Islands

    NASA Technical Reports Server (NTRS)

    Bilham, R.; Scholz, C. H.

    1979-01-01

    The report consists of four sections. The first section describes tilt and leveling measurements on Anegada, the most northerly of the British Virgin Islands; the second section contains a discussion of sea-level measurements that were initiated in the region and which played a significant role in the development of a network of sea-level monitors now telemetered via satellite from the Alaskan Shumagin Islands. The third part of the report is a brief description of surface deformation measurements in Iceland using equipment and techniques developed by the subject grant. The final part of the report describes the predicted effects of block surface fragmentation in tectonic areas on the measurement of tilt and strain.

  13. Combined neural network/Phillips-Tikhonov approach to aerosol retrievals over land from the NASA Research Scanning Polarimeter

    NASA Astrophysics Data System (ADS)

    Di Noia, Antonio; Hasekamp, Otto P.; Wu, Lianghai; van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John E.

    2017-11-01

    In this paper, an algorithm for the retrieval of aerosol and land surface properties from airborne spectropolarimetric measurements - combining neural networks and an iterative scheme based on Phillips-Tikhonov regularization - is described. The algorithm - which is an extension of a scheme previously designed for ground-based retrievals - is applied to measurements from the Research Scanning Polarimeter (RSP) on board the NASA ER-2 aircraft. A neural network, trained on a large data set of synthetic measurements, is applied to perform aerosol retrievals from real RSP data, and the neural network retrievals are subsequently used as a first guess for the Phillips-Tikhonov retrieval. The resulting algorithm appears capable of accurately retrieving aerosol optical thickness, fine-mode effective radius and aerosol layer height from RSP data. Among the advantages of using a neural network as initial guess for an iterative algorithm are a decrease in processing time and an increase in the number of converging retrievals.

  14. Bayou Corne sinkhole : control measurements of State Highway 70 in Assumption Parish, Louisiana.

    DOT National Transportation Integrated Search

    2014-01-01

    This project measured and assessed the surface stability of the portion of LA Highway 70 that is : potentially vulnerable to the Assumption Parish sinkhole. Using Global Positioning Systems (GPS) : enhanced by a real-time network (RTN) of continuousl...

  15. Effect of Atmospheric Plasma Treatment to Titanium Surface on Initial Osteoblast-Like Cell Spreading. .

    PubMed

    Kim, In-Hye; Son, Jun-Sik; Kwon, Tae-Yub; Kim, Kyo-Han

    2015-01-01

    Plasma treatments are becoming a popular method for modifying the characteristics of a range of substrate surfaces. Atmospheric pressure plasma is cost-efficient, safe and simple compared to high-pressure plasma. This study examined the effects of atmospheric pressure plasma to a titanium (Ti) surface on osteoblast-like cell (osteoblast) spreading and cellular networks. The characteristics of the Ti surface before and after the atmospheric plasma treatment were analyzed by X-ray photoemission spectroscopy (XPS), scanning electron microscopy (SEM), contact angle measurements, and an optical 3D profiling system. The morphology of osteoblasts attached to the Ti surfaces was observed by SEM and confocal laser scanning microscopy. The atmospheric pressure plasma made the Ti surfaces more hydrophilic. The osteoblasts that adhered to the untreated surface were round and spherical, whereas the cells covered a larger surface area on the plasma-treated surface. The plasma-treated Ti surface showed enhanced cell spreading and migration with more developed cellular networks. In conclusion, an atmospheric plasma treatment is a potential surface modifying method that can enhance the initial the cell affinity at the early stages in vitro.

  16. Experimental damage detection of wind turbine blade using thin film sensor array

    NASA Astrophysics Data System (ADS)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo; Sarkar, Partha

    2017-04-01

    Damage detection of wind turbine blades is difficult due to their large sizes and complex geometries. Additionally, economic restraints limit the viability of high-cost monitoring methods. While it is possible to monitor certain global signatures through modal analysis, obtaining useful measurements over a blade's surface using off-the-shelf sensing technologies is difficult and typically not economical. A solution is to deploy dedicated sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel large-area electronic sensor measuring strain over very large surfaces. The sensing system is analogous to a biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization of a hybrid dense sensor network of soft elastomeric capacitors to detect, localize, and quantify damage, and resistive strain gauges to augment such dense sensor network with high accuracy data at key locations. The proposed hybrid dense sensor network is installed inside a wind turbine blade model and tested in a wind tunnel to simulate an operational environment. Damage in the form of changing boundary conditions is introduced into the monitored section of the blade. Results demonstrate the ability of the hybrid dense sensor network, and associated algorithms, to detect, localize, and quantify damage.

  17. Coordinated profiling of stratospheric intrusions and transported pollution by the Tropospheric Ozone Lidar Network (TOLNet) and NASA Alpha Jet experiment (AJAX): Observations and comparison to HYSPLIT, RAQMS, and FLEXPART

    NASA Astrophysics Data System (ADS)

    Langford, A. O.; Alvarez, R. J.; Brioude, J.; Evan, S.; Iraci, L. T.; Kirgis, G.; Kuang, S.; Leblanc, T.; Newchurch, M. J.; Pierce, R. B.; Senff, C. J.; Yates, E. L.

    2018-02-01

    Ground-based lidars and ozonesondes belonging to the NASA-supported Tropospheric Ozone Lidar Network (TOLNet) are used in conjunction with the NASA Alpha Jet Atmospheric eXperiment (AJAX) to investigate the transport of stratospheric ozone and entrained pollution into the lower troposphere above the United States on May 24-25, 2013. TOLNet and AJAX measurements made in California, Nevada, and Alabama are compared to tropospheric ozone retrievals from the Atmospheric Infrared Sounder (AIRS), to back trajectories from the NOAA Air Resources Laboratory (ARL) Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, and to analyses from the NOAA/NESDIS Real-time Air Quality Modeling System (RAQMS) and FLEXPART particle dispersion model. The measurements and model analyses show much deeper descent of ozone-rich upper tropospheric/lower stratospheric air above the Desert Southwest than above the Southeast, and comparisons to surface measurements from regulatory monitors reporting to the U.S. EPA Air Quality System (AQS) suggest that there was a much greater surface impact in the Southwest including exceedances of the 2008 National Ambient Air Quality Standard (NAAQS) of 0.075 ppm in both Southern California and Nevada. Our analysis demonstrates the potential benefits to be gained by supplementing the existing surface ozone network with coordinated upper air observations by TOLNet.

  18. The 3D Mesonet Concept: Extending Networked Surface Meteorological Tower Observations Through Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Chilson, P. B.; Fiebrich, C. A.; Huck, R.; Grimsley, J.; Salazar-Cerreno, J.; Carson, K.; Jacob, J.

    2017-12-01

    Fixed monitoring sites, such as those in the US National Weather Service Automated Surface Observing System (ASOS) and the Oklahoma Mesonet provide valuable, high temporal resolution information about the atmosphere to forecasters and the general public. The Oklahoma Mesonet is comprised of a network of 120 surface sites providing a wide array of atmospheric measurements up to a height of 10 m with an update time of five minutes. The deployment of small unmanned aircraft to collect in-situ vertical measurements of the atmospheric state in conjunction with surface conditions has potential to significantly expand weather observation capabilities. This concept can enhance the safety of individuals and support commerce through improved observations and short-term forecasts of the weather and other environmental variables in the lower atmosphere. We report on a concept of adding the capability of collecting vertical atmospheric measurements (profiles) through the use of unmanned aerial systems (UAS) at remote Oklahoma sites deemed suitable for this application. While there are a number of other technologies currently available that can provide measurements of one or a few variables, the proposed UAS concept will be expandable and modular to accommodate several different sensor packages and provide accurate in-situ measurements in virtually all weather conditions. Such a system would facilitate off-site maintenance and calibration and would provide the ability to add new sensors as they are developed or as new requirements are identified. The small UAS must be capable of accommodating the weight of all sensor packages and have lighting, communication, and aircraft avoidance systems necessary to meet existing or future FAA regulations. The system must be able to operate unattended, which necessitates the inclusion of risk mitigation measures such as a detect and avoid radar and the ability to transmit and receive transponder signals. Moreover, the system should be able to assess local weather conditions (visibility, surface winds, and cloud height) and the integrity of the vehicle (system diagnostics, fuel level) before takeoff. We provide a notional concept of operations for a 3D Mesonet being considered, describe the technical configuration for one station in the network, and discuss plans for future development.

  19. Using machine learning to produce near surface soil moisture estimates from deeper in situ records at U.S. Climate Reference Network (USCRN) locations: Analysis and applications to AMSR-E satellite validation

    USDA-ARS?s Scientific Manuscript database

    Surface soil moisture is critical parameter for understanding the energy flux at the land atmosphere boundary. Weather modeling, climate prediction, and remote sensing validation are some of the applications for surface soil moisture information. The most common in situ measurement for these purpo...

  20. Smoke over haze: Comparative analysis of satellite, surface radiometer, and airborne in situ measurements of aerosol optical properties and radiative forcing over the eastern United States

    NASA Astrophysics Data System (ADS)

    Vant-Hull, Brian; Li, Zhanqing; Taubman, Brett F.; Levy, Robert; Marufu, Lackson; Chang, Fu-Lung; Doddridge, Bruce G.; Dickerson, Russell R.

    2005-05-01

    In July 2002 Canadian forest fires produced a major smoke episode that blanketed the east coast of the United States. Properties of the smoke aerosol were measured in situ from aircraft, complementing operational Aerosol Robotic Network (AERONET), and Moderate Resolution Imaging Spectroradiometer (MODIS) remotely sensed aerosol retrievals. This study compares single scattering albedo and phase function derived from the in situ measurements and AERONET retrievals in order to evaluate their consistency for application to satellite retrievals of optical depth and radiative forcing. These optical properties were combined with MODIS reflectance observations to calculate optical depth. The use of AERONET optical properties yielded optical depths 2-16% lower than those directly measured by AERONET. The use of in situ-derived optical properties resulted in optical depths 22-43% higher than AERONET measurements. These higher optical depths are attributed primarily to the higher absorption measured in situ, which is roughly twice that retrieved by AERONET. The resulting satellite retrieved optical depths were in turn used to calculate integrated radiative forcing at both the surface and top of atmosphere. Comparisons to surface (Surface Radiation Budget Network (SURFRAD) and ISIS) and to satellite (Clouds and Earth Radiant Energy System CERES) broadband radiometer measurements demonstrate that the use of optical properties derived from the aircraft measurements provided a better broadband forcing estimate (21% error) than those derived from AERONET (33% error). Thus AERONET-derived optical properties produced better fits to optical depth measurements, while in situ properties resulted in better fits to forcing measurements. These apparent inconsistencies underline the significant challenges facing the aerosol community in achieving column closure between narrow and broadband measurements and calculations.

  1. Dual-modality endoscopic probe for tissue surface shape reconstruction and hyperspectral imaging enabled by deep neural networks.

    PubMed

    Lin, Jianyu; Clancy, Neil T; Qi, Ji; Hu, Yang; Tatla, Taran; Stoyanov, Danail; Maier-Hein, Lena; Elson, Daniel S

    2018-06-15

    Surgical guidance and decision making could be improved with accurate and real-time measurement of intra-operative data including shape and spectral information of the tissue surface. In this work, a dual-modality endoscopic system has been proposed to enable tissue surface shape reconstruction and hyperspectral imaging (HSI). This system centers around a probe comprised of an incoherent fiber bundle, whose fiber arrangement is different at the two ends, and miniature imaging optics. For 3D reconstruction with structured light (SL), a light pattern formed of randomly distributed spots with different colors is projected onto the tissue surface, creating artificial texture. Pattern decoding with a Convolutional Neural Network (CNN) model and a customized feature descriptor enables real-time 3D surface reconstruction at approximately 12 frames per second (FPS). In HSI mode, spatially sparse hyperspectral signals from the tissue surface can be captured with a slit hyperspectral imager in a single snapshot. A CNN based super-resolution model, namely "super-spectral-resolution" network (SSRNet), has also been developed to estimate pixel-level dense hypercubes from the endoscope cameras standard RGB images and the sparse hyperspectral signals, at approximately 2 FPS. The probe, with a 2.1 mm diameter, enables the system to be used with endoscope working channels. Furthermore, since data acquisition in both modes can be accomplished in one snapshot, operation of this system in clinical applications is minimally affected by tissue surface movement and deformation. The whole apparatus has been validated on phantoms and tissue (ex vivo and in vivo), while initial measurements on patients during laryngeal surgery show its potential in real-world clinical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Sol-Gel assembly of CdSe nanoparticles to form porous aerogel networks.

    PubMed

    Arachchige, Indika U; Brock, Stephanie L

    2006-06-21

    A detailed study of CdSe aerogels prepared by oxidative aggregation of primary nanoparticles (prepared at room temperature and high temperature conditions, >250 degrees C), followed by CO2 supercritical drying, is described. The resultant materials are mesoporous, with an interconnected network of colloidal nanoparticles, and exhibit BET surface areas up to 224 m2/g and BJH average pore diameters in the range of 16-32 nm. Powder X-ray diffraction studies indicate that these materials retain the crystal structure of the primary nanoparticles, with a slight increase in primary particle size upon gelation and aerogel formation. Optical band gap measurements and photoluminescence studies show that the as-prepared aerogels retain the quantum-confined optical properties of the nanoparticle building blocks despite being connected into a 3-D network. The specific optical characteristics of the aerogel can be further modified by surface ligand exchange at the wet-gel stage, without destroying the gel network.

  3. The international soil moisture network: A data hosting facility for global in situ soil moisture measurements

    USDA-ARS?s Scientific Manuscript database

    In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land co...

  4. Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu

    PubMed Central

    Liu, Chien-Min; Lin, Han-Wen; Huang, Yi-Sa; Chu, Yi-Cheng; Chen, Chih; Lyu, Dian-Rong; Chen, Kuan-Neng; Tu, King-Ning

    2015-01-01

    Direct Cu-to-Cu bonding was achieved at temperatures of 150–250 °C using a compressive stress of 100 psi (0.69 MPa) held for 10–60 min at 10−3 torr. The key controlling parameter for direct bonding is rapid surface diffusion on (111) surface of Cu. Instead of using (111) oriented single crystal of Cu, oriented (111) texture of extremely high degree, exceeding 90%, was fabricated using the oriented nano-twin Cu. The bonded interface between two (111) surfaces forms a twist-type grain boundary. If the grain boundary has a low angle, it has a hexagonal network of screw dislocations. Such network image was obtained by plan-view transmission electron microscopy. A simple kinetic model of surface creep is presented; and the calculated and measured time of bonding is in reasonable agreement. PMID:25962757

  5. High-resolution surface connectivity measurements and runoff dynamics in five urban watersheds in Knoxville, TN

    NASA Astrophysics Data System (ADS)

    Epps, T.

    2015-12-01

    Impervious surfaces and stormwater drainage networks transmit rainfall quickly to urban stream systems with greater frequency, volume, energy, and pollutant loadings than in predevelopment conditions. This has a well-established negative impact on stream ecology, channel morphology, and water quality. Green infrastructure retrofits for urban drainage systems promote more natural hydrologic pathways by disconnecting concentrated flows. However, they are expensive due to high land costs and physical constraints. If a systematic strategy for siting green infrastructure is sought to restore natural flows throughout an urban catchment, greater knowledge of the drainage patterns and areas contributing frequent surface runoff is necessary. Five diverse urban watersheds in Knoxville, TN, were assessed using high-resolution topography, land cover, and artificial drainage network data to identify how surface connectivity differs among watersheds and contributes to altered flow regimes. Rainfall-runoff patterns were determined from continuous rainfall and streamflow monitoring over the previous ten years. Fine-scale flowpath connectivity of impervious surfaces was measured by both a binary approach and by a method incorporating runoff potential by saturation excess. The effect of the spatial distribution of connected surfaces was investigated by incorporating several distance-weighting schema along established urban drainage flowpaths. Statistical relationships between runoff generation and connectivity were measured to determine the ability of these different measures of connectivity to predict runoff thresholds, frequency, volumes, and peak flows. Initial results suggest that rapid assessment of connected surficial flowpaths can be used to identify known green infrastructure assets and highly connected impervious areas and that the differences in connectivity measured between watersheds reflects differing runoff patterns observed in monitored data.

  6. Clear-sky shortwave radiative closure for the Cabauw Baseline Surface Radiation Network site, the Netherlands

    NASA Astrophysics Data System (ADS)

    Wang, P.; Knap, W. H.; Kuipers Munneke, P.; Stammes, P.

    2009-04-01

    During the last two decades, several attempts have been made to achieve agreement between clear-sky shortwave broadband irradiance models and surface measurements of direct and diffuse irradiance. In general, models and measurements agreed well for the direct component but closing the gap for diffuse irradiances remained problematic. The number of studies reporting a satisfactory degree of closure for both direct and diffuse irradiance is still limited, which motivated us to perform the study presented here. In this paper a clear-sky shortwave closure analysis is presented for the Baseline Surface Radiation Network (BSRN) site of Cabauw, the Netherlands (51.97 °N, 4.93 °E). The analysis is based on an exceptional period of fine weather in the first half of May 2008 during the Intensive Measurement Period At the Cabauw Tower (IMPACT), an activity of the European Integrated project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI). Although IMPACT produced a wealth of data, it was decided to conduct the closure analysis using routine measurements only, provided by BSRN and the Aerosol Robotic Network (AERONET), completed with radiosonde obervations. The rationale for this pragmatic approach is the possibility of applying the method presented here to other periods and (BSRN) sites, where routine measurements are readily available, without having to deal with the investments and restrictions of an intensive observation period. The analysis is based on a selection of 72 comparisons on 6 days between BSRN measurements and Doubling Adding KNMI (DAK) model simulations of direct, diffuse, and global irradiance. The data span a wide range of aerosol properties, water vapour columns, and solar zenith angles. The model input consisted of operational Aerosol Robotic Network (AERONET) aerosol products and radiosonde data. On the basis of these data excellent closure was obtained: the mean differences between model and measurements are 2 W/m2 (+0.2%) for direct irradiance, 1 W/m2 (+0.8%) for diffuse irradiance, and 2 W/m2 (+0.3%) for global irradiance.

  7. Integrated Verification Experiment data collected as part of the Los Alamos National Laboratory`s Source Region Program. Appendix D: Ionospheric measurements for IVEs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, T.J.; Carlos, R.C.; Argo, P.E.

    As part of the integrated verification experiment (IVE), we deployed a network of hf ionospheric sounders to detect the effects of acoustic waves generated by surface ground motion following underground nuclear tests at the Nevada Test Site. The network sampled up to four geographic locations in the ionosphere from almost directly overhead of the surface ground zero out to a horizontal range of 60 km. We present sample results for four of the IVEs: Misty Echo, Texarkana, Mineral Quarry, and Bexar.

  8. Micro weather stations for in situ measurements in the Martian planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Crisp, D.; Kaiser, W. J.; Kenny, T. W.; Vanzandt, T. R.; Tillman, J. E.

    1992-01-01

    Viking Lander meteorology measurements show that the Martian planetary boundary layer (PBL) has large diurnal and seasonal variations in pressure, wind velocity, relative humidity, and airborne dust loading. An even larger range of conditions was inferred from remote sensing observations acquired by the Mariner 9 and Viking orbiters. Numerical models indicate that these changes may be accompanied by dramatic vertical and horizontal wind shears (100 m/s/km) and rapid changes in the static stability. In-situ measurements from a relatively small number surface stations could yield global constraints on the Martian climate and atmospheric general circulation by providing ground truth for remote sensing instruments on orbiters. A more complete understanding of the meteorology of the PBL is an essential precursor to manned missions to Mars because this will be their working environment. In-situ measurements are needed for these studies because the spatial and temporal scales that characterize the important meteorological processes near the surface cannot be resolved from orbit. The Mars Environmental Survey (MESUR) Program will provide the first opportunity to deploy a network of surface weather stations for a comprehensive investigation of the Martian PBL. The feasibility and utility of a network of micro-weather stations for making in-situ meteorological measurements in the Martian PBL are assessed.

  9. Putting the Capital 'A' in CoCoRAHS: A Pilot Program to Measure Albedo using the Community Collaborative Rain, Hail, and Snow (CoCoRaHS) Network

    NASA Astrophysics Data System (ADS)

    Burakowski, E. A.; Stampone, M. D.; Wake, C. P.; Dibb, J. E.

    2012-12-01

    The Community Collaborative Rain, Hail, and Snow (CoCoRaHS) Network, started in 1998 as a community-based network of volunteer weather observer in Colorado, is the single largest provider of daily precipitation observations in the United States. We embrace the CoCoRaHS mission to use low-cost measurement tools, provide training and education, and utilize an interactive website to collect high quality albedo data for research and education applications. We trained a select sub-set of CoCoRaHS's eighteen most enthusiastic, self-proclaimed 'weather nuts' in the state of New Hampshire to collect surface albedo, snow depth, and snow density measurements between 23-Nov-2011 and 15-Mar-2012. At less than 700 per observer, the low-cost albedo data falls within ±0.05 of albedo values collected from a First Class Kipp and Zonen Albedometer (CMA6) at local solar noon. CoCoRaHS albedo values range from 0.99 for fresh snow to 0.34 for shallow, aged snow. Snow-free albedo ranges from 0.09 to 0.39, depending on ground cover. Albedo is found to increase logarithmically with snow depth and decrease linearly with snow density. The latter relationship with snow density is inferred to be a proxy for increasing snow grain size as snowpack ages and compacts, supported by spectral albedo measurements collected with an ASD FieldSpec4 spectrometer. The newly established albedo network also serves as a development test bed for interactive online mapping and graphing applications for CoCoRaHS observers to investigate spatial and temporal patterns in albedo, snow depth, and snow density (www.cocorahs-albedo.org). The 2012-2013 field season will include low-cost infrared temperature guns (<40 each) to investigate the relationship between surface albedo and skin temperature. We have also recruited middle- and high-schools as volunteer observers and are working with the teachers to develop curriculum and lesson plans that utilize the low-cost measurement tools provided by CoCoRAHS. CoCoRAHS data will provide critical spatially distributed measurements of surface data that will be used to validate and improve land surface modeling of New Hampshire climate under different land cover scenarios. Building on the success of the first season, the newly established albedo network shows promise to put the capital 'A' in CoCoRAHS.Figure 1. (a) Map of Community Collaborative Rain, Hail, and Snow (CoCoRAHS) volunteers participating in the pilot albedo project, and (b) CoCoRAHS snow measurement kit.

  10. Network based approaches reveal clustering in protein point patterns

    NASA Astrophysics Data System (ADS)

    Parker, Joshua; Barr, Valarie; Aldridge, Joshua; Samelson, Lawrence E.; Losert, Wolfgang

    2014-03-01

    Recent advances in super-resolution imaging have allowed for the sub-diffraction measurement of the spatial location of proteins on the surfaces of T-cells. The challenge is to connect these complex point patterns to the internal processes and interactions, both protein-protein and protein-membrane. We begin analyzing these patterns by forming a geometric network amongst the proteins and looking at network measures, such the degree distribution. This allows us to compare experimentally observed patterns to models. Specifically, we find that the experimental patterns differ from heterogeneous Poisson processes, highlighting an internal clustering structure. Further work will be to compare our results to simulated protein-protein interactions to determine clustering mechanisms.

  11. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks.

    PubMed

    Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-02-16

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  12. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks

    PubMed Central

    Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-01-01

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths. PMID:29462929

  13. Learning spatially coherent properties of the visual world in connectionist networks

    NASA Astrophysics Data System (ADS)

    Becker, Suzanna; Hinton, Geoffrey E.

    1991-10-01

    In the unsupervised learning paradigm, a network of neuron-like units is presented with an ensemble of input patterns from a structured environment, such as the visual world, and learns to represent the regularities in that input. The major goal in developing unsupervised learning algorithms is to find objective functions that characterize the quality of the network's representation without explicitly specifying the desired outputs of any of the units. The sort of objective functions considered cause a unit to become tuned to spatially coherent features of visual images (such as texture, depth, shading, and surface orientation), by learning to predict the outputs of other units which have spatially adjacent receptive fields. Simulations show that using an information-theoretic algorithm called IMAX, a network can be trained to represent depth by observing random dot stereograms of surfaces with continuously varying disparities. Once a layer of depth-tuned units has developed, subsequent layers are trained to perform surface interpolation of curved surfaces, by learning to predict the depth of one image region based on depth measurements in surrounding regions. An extension of the basic model allows a population of competing neurons to learn a distributed code for disparity, which naturally gives rise to a representation of discontinuities.

  14. A water-resources data-network evaluation for Monterey County, California; Phase 3, Northern Salinas River drainage basin

    USGS Publications Warehouse

    Templin, W.E.; Schluter, R.C.

    1990-01-01

    This report evaluates existing data collection networks and possible additional data collection to monitor quantity and quality of precipitation, surface water, and groundwater in the northern Salinas River drainage basin, California. Of the 34 precipitation stations identified, 20 were active and are concentrated in the northwestern part of the study area. No precipitation quality networks were identified, but possible data collection efforts include monitoring for acid rain and pesticides. Six of ten stream-gaging stations are active. Two surface water quality sites are sampled for suspended sediment, specific conductance, and chloride; one U.S. Geological Survey NASOAN site and one site operated by California Department of Water Resources make up the four active sampling locations; reactivation of 45 inactive surface water quality sites might help to achieve objectives described in the report. Three local networks measure water levels in 318 wells monthly, during peak irrigation, and at the end of the irrigation season. Water quality conditions are monitored in 379 wells; samples are collected in summer to monitor saltwater intrusion near Castroville and are also collected annually throughout the study area for analysis of chloride, specific conductance, and nitrate. An ideal baseline network would be an evenly spaced grid of index wells with a density of one per section. When baseline conditions are established, representative wells within the network could be monitored periodically according to specific data needs. (USGS)

  15. Constraining methane emissions from the Indo-Gangetic Plains and South Asia using combined surface and satellite data

    NASA Astrophysics Data System (ADS)

    Ganesan, A.; Lunt, M. F.; Rigby, M. L.; Chatterjee, A.; Boesch, H.; Parker, R.; Prinn, R. G.; van der Schoot, M. V.; Krummel, P. B.; Tiwari, Y. K.; Mukai, H.; Machida, T.; Terao, Y.; Nomura, S.; Patra, P. K.

    2015-12-01

    We present an analysis of the regional methane (CH4) budget from South Asia, using new measurements and new modelling techniques. South Asia contains some of the largest anthropogenic CH4 sources in the world, mainly from rice agriculture and ruminants. However, emissions from this region have been highly uncertain largely due to insufficient constraints from atmospheric measurements. Compared to parts of the developed world, which have well-developed monitoring networks, South Asia is very under-sampled, particularly given its importance to the global CH4 budget. Over the past few years, data have been collected from a variety of surface sites around the region, ranging from in situ to flask-based sampling. We have used these data, in conjunction with column methane data from the GOSAT satellite, to quantify emissions at a regional scale. Using the Met Office's Lagrangian NAME model, we calculated sensitivities to surface fluxes at 12 km resolution, allowing us to simulate the high-resolution impacts of emissions on concentrations. In addition, we used a newly developed hierarchical Bayesian inverse estimation scheme to estimate regional fluxes over the period of 2012-2014 in addition to ancillary "hyper-parameters" that characterize uncertainties in the system. Through this novel approach, we have characterized the effect of "aggregation" errors, model uncertainties as well as the effects of correlated errors when using regional measurement networks. We have also assessed the effects of biases on the GOSAT CH4 retrievals, which has been made possible for the first time for this region through the expanded surface measurements. In this talk, we will discuss a) regional CH4 fluxes from South Asia, with a particular focus on the densely populated Indo-Gangetic Plains b) derived model uncertainties, including the effects of correlated errors c) the impacts of combining surface and satellite data for emissions estimation in regions where poor satellite validation exists and d) the challenges in estimating emissions for regions of the world with a sparse measurement network.

  16. Learning strategies, study habits and social networking activity of undergraduate medical students.

    PubMed

    Bickerdike, Andrea; O'Deasmhunaigh, Conall; O'Flynn, Siun; O'Tuathaigh, Colm

    2016-07-17

    To determine learning strategies, study habits, and online social networking use of undergraduates at an Irish medical school, and their relationship with academic performance. A cross-sectional study was conducted in Year 2 and final year undergraduate-entry and graduate-entry students at an Irish medical school. Data about participants' demographics and educational background, study habits (including time management), and use of online media was collected using a self-report questionnaire. Participants' learning strategies were measured using the 18-item Approaches to Learning and Studying Inventory (ALSI). Year score percentage was the measure of academic achievement. The association between demographic/educational factors, learning strategies, study habits, and academic achievement was statistically analysed using regression analysis. Forty-two percent of students were included in this analysis (n=376). A last-minute "cramming" time management study strategy was associated with increased use of online social networks. Learning strategies differed between undergraduate- and graduate-entrants, with the latter less likely to adopt a 'surface approach' and more likely adopt a 'study monitoring' approach. Year score percentage was positively correlated with the 'effort management/organised studying' learning style. Poorer academic performance was associated with a poor time management approach to studying ("cramming") and increased use of the 'surface learning' strategy. Our study demonstrates that effort management and organised studying should be promoted, and surface learning discouraged, as part of any effort to optimise academic performance in medical school. Excessive use of social networking contributes to poor study habits, which are associated with reduced academic achievement.

  17. Spatial Estimation of Soil Moisture Using Synthetic Aperture Radar in Alaska

    NASA Astrophysics Data System (ADS)

    Meade, N. G.; Hinzman, L. D.; Kane, D. L.

    1999-01-01

    A spatially distributed Model of Arctic Thermal and Hydrologic processes (MATH) has been developed. One of the attributes of this model is the spatial and temporal prediction of soil moisture in the active layer. The spatially distributed output from this model required verification data obtained through remote sensing to assess performance at the watershed scale independently. Therefore, a neural network was trained to predict soil moisture contents near the ground surface. The input to train the neural network is synthetic aperture radar (SAR) pixel value, and field measurements of soil moisture, and vegetation, which were used as a surrogate for surface roughness. Once the network was trained, soil moisture predictions were made based on SAR pixel value and vegetation. These results were then used for comparison with results from the hydrologic model. The quality of neural network input was less than anticipated. Our digital elevation model (DEM) was not of high enough resolution to allow exact co-registration with soil moisture measurements; therefore, the statistical correlations were not as good as hoped. However, the spatial pattern of the SAR derived soil moisture contents compares favorably with the hydrologic MATH model results. Primary surface parameters that effect SAR include topography, surface roughness, vegetation cover and soil texture. Single parameters that are considered to influence SAR include incident angle of the radar, polarization of the radiation, signal strength and returning signal integration, to name a few. These factors influence the reflectance, but if one adequately quantifies the influences of terrain and roughness, it is considered possible to extract information on soil moisture from SAR imagery analysis and in turn use SAR imagery to validate hydrologic models

  18. Comparison of Aerosol Volume Size Distributions between Surface and Ground-based Remote Sensing Measurements Downwind of Seoul, Korea during MAPS-Seoul

    NASA Astrophysics Data System (ADS)

    Kim, P.; Choi, Y.; Ghim, Y. S.

    2016-12-01

    Both sunphotometer (Cimel, CE-318) and skyradiometer (Prede, POM-02) were operated in May, 2015 as a part of the Megacity Air Pollution Studies-Seoul (MAPS-Seoul) campaign. These instruments were collocated at the Hankuk University of Foreign Studies (Hankuk_UFS) site of AErosol RObotic NETwork (AERONET) and the Yongin (YGN) site of SKYradiometer NETwork (SKYNET). The aerosol volume size distribution at the surface was measured using a wide range aerosol spectrometer (WRAS) system consisting of a scanning mobility particle sizer (Grimm, Model 5.416; 45 bins, 0.01-1.09 μm) and an optical particle counter (Grimm, Model 1.109; 31 bins, 0.27-34 μm). The measurement site (37.34oN, 127.27oE, 167 m above sea level) is located about 35 km southeast of downtown Seoul. To investigate the discrepancies in volume concentrations, effective diameters and fine mode volume fractions, we compared the volume size distributions from sunphotometer, skyradiometer, and WRAS system when the measurement time coincided within 5 minutes considering that the measurement intervals were different between instruments.

  19. Citizen-Enabled Aerosol Measurements for Satellites (CEAMS): A Network for High-Resolution Measurements of PM2.5 and Aerosol Optical Depth

    NASA Astrophysics Data System (ADS)

    Pierce, J. R.; Volckens, J.; Ford, B.; Jathar, S.; Long, M.; Quinn, C.; Van Zyl, L.; Wendt, E.

    2017-12-01

    Atmospheric particulate matter with diameter smaller than 2.5 μm (PM2.5) is a pollutant that contributes to the development of human disease. Satellite-derived estimates of surface-level PM2.5 concentrations have the potential to contribute greatly to our understanding of how particulate matter affects health globally. However, these satellite-derived PM2.5 estimates are often uncertain due to a lack of information about the ratio of surface PM2.5 to aerosol optical depth (AOD), which is the primary aerosol retrieval made by satellite instruments. While modelling and statistical analyses have improved estimates of PM2.5:AOD, large uncertainties remain in situations of high PM2.5 exposure (such as urban areas and in wildfire-smoke plumes) where the health impacts of PM2.5 may be the greatest. Surface monitoring networks for co-incident PM2.5 and AOD measurements are extremely rare, even in the North America. To provide constraints for the PM2.5:AOD relationship, we have developed a relatively low-cost (<$1000) monitor for citizen use that provides sun-photometer AOD measurements and filter-based PM2.5 measurements. The instrument is solar-powered, lightweight (< 1kg), and operated wirelessly via smartphone application (iOS and Android). Sun photometry is performed across 4 discrete wavelengths that match those reported by the Aerosol Robotic Network (AERONET). Aerosol concentration is reported using both time-integrated filter mass (analyzed in an academic laboratory and reported as a 24-48hr average) and a continuous PM sensor within the instrument. Citizen scientists use the device to report daily AOD and PM2.5 measurements made in their backyards to a central server for data display and download. In this presentation, we provide an overview of (1) AOD and PM2.5 measurement calibration; (2) citizen recruiting and training efforts; and (3) results from our pilot citizen-science measurement campaign.

  20. Heterogeneous Wireless Mesh Network Technology Evaluation for Space Proximity and Surface Applications

    NASA Technical Reports Server (NTRS)

    DeCristofaro, Michael A.; Lansdowne, Chatwin A.; Schlesinger, Adam M.

    2014-01-01

    NASA has identified standardized wireless mesh networking as a key technology for future human and robotic space exploration. Wireless mesh networks enable rapid deployment, provide coverage in undeveloped regions. Mesh networks are also self-healing, resilient, and extensible, qualities not found in traditional infrastructure-based networks. Mesh networks can offer lower size, weight, and power (SWaP) than overlapped infrastructure-perapplication. To better understand the maturity, characteristics and capability of the technology, we developed an 802.11 mesh network consisting of a combination of heterogeneous commercial off-the-shelf devices and opensource firmware and software packages. Various streaming applications were operated over the mesh network, including voice and video, and performance measurements were made under different operating scenarios. During the testing several issues with the currently implemented mesh network technology were identified and outlined for future work.

  1. Reconstruction of in-plane strain maps using hybrid dense sensor network composed of sensing skin

    NASA Astrophysics Data System (ADS)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo

    2016-12-01

    The authors have recently developed a soft-elastomeric capacitive (SEC)-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. Under plane stress conditions, the sensor output contains the additive measurement of the two principal strain components over the monitored surface. In applications where the evaluation of strain maps is useful, in structural health monitoring for instance, such signal must be decomposed into linear strain components along orthogonal directions. Previous work has led to an algorithm that enabled such decomposition by leveraging a dense sensor network configuration with the addition of assumed boundary conditions. Here, we significantly improve the algorithm’s accuracy by leveraging mature off-the-shelf solutions to create a hybrid dense sensor network (HDSN) to improve on the boundary condition assumptions. The system’s boundary conditions are enforced using unidirectional RSGs and assumed virtual sensors. Results from an extensive experimental investigation demonstrate the good performance of the proposed algorithm and its robustness with respect to sensors’ layout. Overall, the proposed algorithm is seen to effectively leverage the advantages of a hybrid dense network for application of the thin film sensor to reconstruct surface strain fields over large surfaces.

  2. Influence of ambient meteorology on the accuracy of radiation measurements: insights from field and laboratory experiments

    NASA Astrophysics Data System (ADS)

    Oswald, Sandro M.; Pietsch, Helga; Baumgartner, Dietmar J.; Rieder, Harald E.

    2016-04-01

    A precise knowledge of the surface energy budget, which includes the solar and terrestrial radiation fluxes, is needed to accurately characterize the global energy balance which is largely determining Earth's climate. To this aim national and global monitoring networks for surface radiative fluxes have been established in recent decades. The most prominent among these networks is the so-called Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Programme (WCRP) (Ohmura et al., 1998). National monitoring networks such as the Austrian RADiation Monitoring Network (ARAD), which has been established in 2010 by a consortium of the Central Agency of Meteorology and Geodynamics (ZAMG), the University of Graz, the University of Innsbruck, and the University of Natural Resources and Applied Sciences, Vienna (BOKU), orient themselves on BSRN standards (McArthur, 2005). ARAD comprises to date five sites (Wien Hohe Warte, Graz/University, Innsbruck/University, Kanzelhöhe Observatory and Sonnblick (which is also a BSRN site)) and aims to provide long-term monitoring of radiation budget components at highest accuracy and to capture the spatial patterns of radiation climate in Austria (Olefs et al., 2015). Given the accuracy requirement for the local monitoring of radiative fluxes instrument offsets, triggered by meteorological factors and/or instrumentation, pose a major challenge in radiation monitoring. Within this study we investigate effects of ambient meteorology on the accuracy of radiation measurements performed with pyranometers contained in various heating/ventilation systems (HV-systems), all of which used in regular operation within the ARAD network. We focus particularly on instrument offsets observed following precipitation events. To quantify pyranometer responses to precipitation we performed a series of controlled laboratory experiments as well as targeted field campaigns in 2015 and 2016. Our results indicate that precipitation (as simulated by spray-tests or observed under ambient conditions) significantly affects the thermal environment of the instruments and thus their stability. Statistical analyses during nighttime conditions showed that precipitation triggers zero offsets of 4 W/m2 or more, depending on the HV-system and prevailing ambient conditions (i.e., air temperature, wind), indicating a clear exceedance of BSRN targets. References: McArthur L. J. B.: World Climate Research Programme-Baseline Surface Radiation Network (BSRN) - Operations Manual Version 2.1, Experimental Studies Division, Atmospheric Environment Service, Downsview, Ontario, Canada, 2005. Olefs M., Baumgartner D. J., Obleitner F., Bichler C., Foelsche U., Pietsch H., Rieder H. E., Weihs P., Geyer F., Haiden T., Schöner W.: The Austrian radiation monitoring network ARAD - best practice and added value, Atmospheric Measurement Techniques Discussions, 8: 10663-10710, 2015. Ohmura A., Dutton E. G., Forgan B., Frohlich C., Gilgen H., Hegner H., Heimo A., Stephens G. L., König-Langlo G., McArthur B., Müller G., Philipona R., Pinker R., Whitlock C. H., Dehne K., Wild M.: Baseline surface radiation network (bsrn/wcrp): new precision radiometry for climate research, Bulletin of the American Meteorological Society, 79(10): 2115-2136, 1998.

  3. Field-scale moisture estimates using COSMOS sensors: a validation study with temporary networks and leaf-area-indices

    USDA-ARS?s Scientific Manuscript database

    The Cosmic-ray Soil Moisture Observing System (COSMOS) is a new and innovative method for estimating surface and near surface soil moisture at large (~700 m) scales. This system accounts for liquid water within its measurement volume. Many of the sites used in the early validation of the system had...

  4. The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network: The example of 2-butanol

    NASA Astrophysics Data System (ADS)

    Liriano, Melissa L.; Carrasco, Javier; Lewis, Emily A.; Murphy, Colin J.; Lawton, Timothy J.; Marcinkowski, Matthew D.; Therrien, Andrew J.; Michaelides, Angelos; Sykes, E. Charles H.

    2016-03-01

    The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule's intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our data reveal that the chirality of a simple alcohol can be transferred to its surface binding geometry, drive the directionality of hydrogen-bonded networks and ultimately extended structure. Furthermore, this study provides the first microscopic insight into the surface properties of this important chiral modifier and provides a well-defined system for studying the network's enantioselective interaction with other molecules.

  5. CentNet—A deployable 100-station network for surface exchange research

    NASA Astrophysics Data System (ADS)

    Oncley, S.; Horst, T. W.; Semmer, S.; Militzer, J.; Maclean, G.; Knudson, K.

    2014-12-01

    Climate, air quality, atmospheric composition, surface hydrology, and ecological processes are directly affected by the Earth's surface. Complexity of this surface exists at multiple spatial scales, which complicates the understanding of these processes. NCAR/EOL currently provides a facility to the research community to make direct eddy-covariance flux observations to quantify surface-atmosphere interactions. However, just as model resolution has continued to increase, there is a need to increase the spatial density of flux measurements to capture the wide variety of scales that contribute to exchange processes close to the surface. NCAR/EOL now has developed the CentNet facility, that is envisioned to have on the order of 100 surface flux stations deployable for periods of months to years. Each station would measure standard meteorological variables, all components of the surface energy balance (including turbulence fluxes and radiation), atmospheric composition, and other quantities to characterize the surface. Thus, CentNet can support observational research in the biogeosciences, hydrology, urban meteorology, basic meteorology, and turbulence. CentNet has been designed to be adaptable to a wide variety of research problems while keeping operations manageable. Tower infrastructure has been designed to be lightweight, easily deployed, and with a minimal set-up footprint. CentNet uses sensor networks to increase spatial sampling at each station. The data system saves every sample on site to retain flexibility in data analysis. We welcome guidance on development and funding priorities as we build CentNet.

  6. Multisource Estimation of Long-term Global Terrestrial Surface Radiation

    NASA Astrophysics Data System (ADS)

    Peng, L.; Sheffield, J.

    2017-12-01

    Land surface net radiation is the essential energy source at the earth's surface. It determines the surface energy budget and its partitioning, drives the hydrological cycle by providing available energy, and offers heat, light, and energy for biological processes. Individual components in net radiation have changed historically due to natural and anthropogenic climate change and land use change. Decadal variations in radiation such as global dimming or brightening have important implications for hydrological and carbon cycles. In order to assess the trends and variability of net radiation and evapotranspiration, there is a need for accurate estimates of long-term terrestrial surface radiation. While large progress in measuring top of atmosphere energy budget has been made, huge discrepancies exist among ground observations, satellite retrievals, and reanalysis fields of surface radiation, due to the lack of observational networks, the difficulty in measuring from space, and the uncertainty in algorithm parameters. To overcome the weakness of single source datasets, we propose a multi-source merging approach to fully utilize and combine multiple datasets of radiation components separately, as they are complementary in space and time. First, we conduct diagnostic analysis of multiple satellite and reanalysis datasets based on in-situ measurements such as Global Energy Balance Archive (GEBA), existing validation studies, and other information such as network density and consistency with other meteorological variables. Then, we calculate the optimal weighted average of multiple datasets by minimizing the variance of error between in-situ measurements and other observations. Finally, we quantify the uncertainties in the estimates of surface net radiation and employ physical constraints based on the surface energy balance to reduce these uncertainties. The final dataset is evaluated in terms of the long-term variability and its attribution to changes in individual components. The goal of this study is to provide a merged observational benchmark for large-scale diagnostic analyses, remote sensing and land surface modeling.

  7. Micro Weather Stations for Mars

    NASA Technical Reports Server (NTRS)

    Crisp, David; Kaiser, William J.; VanZandt, Thomas R.; Hoenk, Michael E.; Tillman, James E.

    1995-01-01

    A global network of weather stations will be needed to characterize the near-surface environment on Mars. Here, we review the scientific and measurement objectives of this network. We also show how these objectives can be met within the cost-constrained Mars Surveyor Program by augmenting the Mars Pathfinder-derived landers with large numbers of very small (less than 5 liter), low-mass (less than 5 kg), low-power, low-cost Mini-meteorological stations. Each station would include instruments for measuring atmospheric. pressures, temperatures, wind velocities, humidity, and airborne dust abundance. They would also include a data handling, telemetry, power, atmospheric entry, and deployment systems in a rugged package capable of direct entry and a high-impact landing. In this paper, we describe these systems and summarize the data-taking strategies and data volumes needed to achieve the surface meteorology objectives for Mars.

  8. Surface daytime net radiation estimation using artificial neural networks

    DOE PAGES

    Jiang, Bo; Zhang, Yi; Liang, Shunlin; ...

    2014-11-11

    Net all-wave surface radiation (R n) is one of the most important fundamental parameters in various applications. However, conventional R n measurements are difficult to collect because of the high cost and ongoing maintenance of recording instruments. Therefore, various empirical R n estimation models have been developed. This study presents the results of two artificial neural network (ANN) models (general regression neural networks (GRNN) and Neuroet) to estimate R n globally from multi-source data, including remotely sensed products, surface measurements, and meteorological reanalysis products. R n estimates provided by the two ANNs were tested against in-situ radiation measurements obtained frommore » 251 global sites between 1991–2010 both in global mode (all data were used to fit the models) and in conditional mode (the data were divided into four subsets and the models were fitted separately). Based on the results obtained from extensive experiments, it has been proved that the two ANNs were superior to linear-based empirical models in both global and conditional modes and that the GRNN performed better and was more stable than Neuroet. The GRNN estimates had a determination coefficient (R 2) of 0.92, a root mean square error (RMSE) of 34.27 W·m –2 , and a bias of –0.61 W·m –2 in global mode based on the validation dataset. In conclusion, ANN methods are a potentially powerful tool for global R n estimation.« less

  9. An Emergent Bifurcation Angle on River Deltas

    NASA Astrophysics Data System (ADS)

    Shaw, J.; Coffey, T.

    2017-12-01

    Distributary channel bifurcations on river deltas are important features that control water, sediment, and nutrient routing and can dictate large-scale stratigraphic heterogeneity. We use theory originally developed for a special case of tributary networks to understand the dynamics of distributary channel bifurcations. Interestingly, bifurcations in groundwater-fed tributary networks have been shown to evolve dependent on the diffusive flow field outside the network. These networks possess a characteristic bifurcation angle of 72°, due to Laplacian flow in the groundwater flow field near tributary channel tips (gradient2h2=0, where h is water surface elevation). We develop and test the hypothesis that bifurcation angles in distributary channel networks are likewise dictated by the external flow field, in this case the shallow surface water surrounding the subaqueous portion of distributary channel bifurcations in a deltaic setting. We measured 130 unique distributary channel bifurcations in a single experimental delta and in 10 natural deltas, yielding a mean angle of 70.35°±2.59° (95% confidence interval), in line with the theoretical prediction. These data and hydrodynamic scaling arguments convince us that distributary network formation can result simply from the coupling of (Laplacian) extra-channel flow to channels along subaqueous channel networks. The simplicity of this model provides new insight into distributary network formation and its geomorphic and stratigraphic consequences.

  10. Surface and Tropospheric Ozone Profile Variability (1999-2014) at the TOLNet Site of Table Mountain, California

    NASA Astrophysics Data System (ADS)

    Granados-Muñoz, M. J.; Leblanc, T.

    2015-12-01

    Ozone in the lower troposphere acts as an air pollutant affecting human health and vegetation. Tropospheric ozone sources and variability are not yet fully identified or understood and recent studies reveal the importance of increasing the number of tropospheric ozone profiling stations and long term measurements. As part of the international monitoring network NDACC, and the U.S.-based network TOLNet, a differential absorption lidar has been performing tropospheric ozone measurements (3-20 km) at the JPL Table Mountain Facility (TMF, California) since 1999, and surface measurements have been performed since 2013 with a UV photometric analyzer. Because of the site's geolocation and high elevation, background tropospheric ozone, unaffected by the boundary layer dynamics and local anthropogenic emissions of ozone precursors, is usually expected. However, transboundary ozone contributions such as stratospheric intrusions and Asian pollution episodes are frequently detected. In this study, a statistical analysis of the 14-year lidar profiles and the 2.5-year surface data is presented. Seasonal, interannual and diurnal variability and its possible causes (e.g. El Nino/La Nina events, North American Monsoon) are investigated. Together with the high elevation surface data gathered at TMF, surface data from ARB stations nearby are analyzed to understand the lowermost tropospheric ozone variability component. The frequency of stratospheric intrusions and Asian pollution episodes reaching the Western U.S. is also examined in an attempt to understand the relative contribution of each process to the observed variability throughout the troposphere. The Table Mountain surface and lidar measurements are expected to contribute significantly to the emerging system of global air quality observations, and to the improvement of global and regional data assimilation and modeling.

  11. Real-time surface-water monitoring in New Jersey, 2003

    USGS Publications Warehouse

    Schopp, Robert D.; Stedfast, David A.; Navoy, Anthony S.

    2003-01-01

    A network of 93 gaging stations that provide surface-water stage, flow (discharge), and tide-level data on a “realtime” basis through satellite, radio, and telephone telemetry is operating (May 2003) in New Jersey through a cooperative effort of the U.S. Geological Survey (USGS) and other agencies. The stream data from these stations are transmitted every 1 to 4 hours and then are immediately posted for viewing on the Internet. This fact sheet describes the “real-time” monitoring network, and the equipment used to measure stage and flow and to transmit the data for viewing on the Internet. Instructions for viewing the data are included.

  12. The 2014-2015 warming anomaly in the Southern California Current System observed by underwater gliders

    NASA Astrophysics Data System (ADS)

    Zaba, Katherine D.; Rudnick, Daniel L.

    2016-02-01

    Large-scale patterns of positive temperature anomalies persisted throughout the surface waters of the North Pacific Ocean during 2014-2015. In the Southern California Current System, measurements by our sustained network of underwater gliders reveal the coastal effects of the recent warming. Regional upper ocean temperature anomalies were greatest since the initiation of the glider network in 2006. Additional observed physical anomalies included a depressed thermocline, high stratification, and freshening; induced biological consequences included changes in the vertical distribution of chlorophyll fluorescence. Contemporaneous surface heat flux and wind strength perturbations suggest that local anomalous atmospheric forcing caused the unusual oceanic conditions.

  13. Comparison between analog and digital neural network implementations for range-finding applications.

    PubMed

    Gatet, Laurent; Tap-Béteille, Hélène; Bony, Francis

    2009-03-01

    A neural network (NN) was developed in order to increase the distance range of a phase-shift laser range finder and to achieve surface recognition, by using two photoelectrical signals issued from the measurement system. The NN architecture consists of a multilayer perceptron (MLP) with two inputs, three neurons in the hidden layer, and one output. Depending on the application, the NN output has to resolve the ambiguity due to phase-shift measurement by linearizing the inverse of the square law, or to indicate an output voltage corresponding to the tested surface. This embedded system dedicated to optoelectronic measurements was successfully tested with an analog NN, implemented in 0.35- microm complimentary metal-oxide-semiconductor (CMOS) technology, resulting in a threefold increase in the distance range with respect to the one limited by the phase-shift measurement, and by discriminating four types of surfaces (a plastic surface, glossy paper, a painted wall, and a porous surface), at a remote distance between the range finder and the target varying from 0.5 m up to 1.25 m and with a laser beam angle varying between -pi/6 and pi/6 with respect to the target. In this type of application, NN analog implementation provides many advantages, notably use of a small silicon area, low power consumption and no analog-to-digital conversions (ADCs). Nevertheless, digital implementation allows ease of conception and reconfigurability and an embedded weight and bias update. This paper presents the complete measurement system and a comparison between both types of implementation, by developing the advantages and drawbacks relative to each method. An optimized mixed architecture, using both techniques, is then proposed and discussed at the end of the paper.

  14. Contributions of Precipitation and Soil Moisture Observations to the Skill of Soil Moisture Estimates in a Land Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Liu, Qing; Bindlish, Rajat; Cosh, Michael H.; Crow, Wade T.; deJeu, Richard; DeLannoy, Gabrielle J. M.; Huffman, George J.; Jackson, Thomas J.

    2011-01-01

    The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates from a land data assimilation system are assessed. Relative to baseline estimates from the Modern Era Retrospective-analysis for Research and Applications (MERRA), the study investigates soil moisture skill derived from (i) model forcing corrections based on large-scale, gauge- and satellite-based precipitation observations and (ii) assimilation of surface soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). Soil moisture skill is measured against in situ observations in the continental United States at 44 single-profile sites within the Soil Climate Analysis Network (SCAN) for which skillful AMSR-E retrievals are available and at four CalVal watersheds with high-quality distributed sensor networks that measure soil moisture at the scale of land model and satellite estimates. The average skill (in terms of the anomaly time series correlation coefficient R) of AMSR-E retrievals is R=0.39 versus SCAN and R=0.53 versus CalVal measurements. The skill of MERRA surface and root-zone soil moisture is R=0.42 and R=0.46, respectively, versus SCAN measurements, and MERRA surface moisture skill is R=0.56 versus CalVal measurements. Adding information from either precipitation observations or soil moisture retrievals increases surface soil moisture skill levels by IDDeltaR=0.06-0.08, and root zone soil moisture skill levels by DeltaR=0.05-0.07. Adding information from both sources increases surface soil moisture skill levels by DeltaR=0.13, and root zone soil moisture skill by DeltaR=0.11, demonstrating that precipitation corrections and assimilation of satellite soil moisture retrievals contribute similar and largely independent amounts of information.

  15. BOREAS AFM-07 SRC Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Osborne, Heather; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Young, Kim; Wittrock, Virginia; Shewchuck, Stan; Smith, David E. (Technical Monitor)

    2000-01-01

    The Saskatchewan Research Council (SRC) collected surface meteorological and radiation data from December 1993 until December 1996. The data set comprises Suite A (meteorological and energy balance measurements) and Suite B (diffuse solar and longwave measurements) components. Suite A measurements were taken at each of ten sites, and Suite B measurements were made at five of the Suite A sites. The data cover an approximate area of 500 km (North-South) by 1000 km (East-West) (a large portion of northern Manitoba and northern Saskatchewan). The measurement network was designed to provide researchers with a sufficient record of near-surface meteorological and radiation measurements. The data are provided in tabular ASCII files, and were collected by Aircraft Flux and Meteorology (AFM)-7. The surface meteorological and radiation data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  16. A neural network model for predicting weighted mean temperature

    NASA Astrophysics Data System (ADS)

    Ding, Maohua

    2018-02-01

    Water vapor is an important element of the Earth's atmosphere, and most of it concentrates at the bottom of the troposphere. Knowledge of the water vapor measured by Global Navigation Satellite Systems (GNSS) is an important direction of GNSS research. In particular, when the zenith wet delay is converted to precipitable water vapor, the weighted mean temperature T_m is a variable parameter to be determined in this conversion. The purpose of the study is getting a more accurate T_m model for global users by a combination of two different characteristics of T_m (i.e., the T_m seasonal variations and the relationships between T_m and surface meteorological elements). The modeling process was carried out by using the neural network technology. A multilayer feedforward neural network model (the NN) was established. The NN model is used with measurements of only surface temperature T_S . The NN was validated and compared with four other published global T_m models. The results show that the NN performed better than any of the four compared models on the global scale.

  17. Improvement of proteolytic efficiency towards low-level proteins by an antifouling surface of alumina gel in a microchannel.

    PubMed

    Liu, Yun; Wang, Huixiang; Liu, Qingping; Qu, Haiyun; Liu, Baohong; Yang, Pengyuan

    2010-11-07

    A microfluidic reactor has been developed for rapid enhancement of protein digestion by constructing an alumina network within a poly(ethylene terephthalate) (PET) microchannel. Trypsin is stably immobilized in a sol-gel network on the PET channel surface after pretreatment, which produces a protein-resistant interface to reduce memory effects, as characterized by X-ray fluorescence spectrometry and electroosmotic flow. The gel-derived network within a microchannel provides a large surface-to-volume ratio stationary phase for highly efficient proteolysis of proteins existing both at a low level and in complex extracts. The maximum reaction rate of the encapsulated trypsin reactor, measured by kinetic analysis, is much faster than in bulk solution. Due to the microscopic confinement effect, high levels of enzyme entrapment and the biocompatible microenvironment provided by the alumina gel network, the low-level proteins can be efficiently digested using such a microreactor within a very short residence time of a few seconds. The on-chip microreactor is further applied to the identification of a mixture of proteins extracted from normal mouse liver cytoplasm sample via integration with 2D-LC-ESI-MS/MS to show its potential application for large-scale protein identification.

  18. The advanced qualtiy control techniques planned for the Internation Soil Moisture Network

    NASA Astrophysics Data System (ADS)

    Xaver, A.; Gruber, A.; Hegiova, A.; Sanchis-Dufau, A. D.; Dorigo, W. A.

    2012-04-01

    In situ soil moisture observations are essential to evaluate and calibrate modeled and remotely sensed soil moisture products. Although a number of meteorological networks and field campaigns measuring soil moisture exist on a global and long-term scale, their observations are not easily accessible and lack standardization of both technique and protocol. Thus, handling and especially comparing these datasets with satellite products or land surface models is a demanding issue. To overcome these limitations the International Soil Moisture Network (ISMN; http://www.ipf.tuwien.ac.at/insitu/) has been initiated to act as a centralized data hosting facility. One advantage of the ISMN is that users are able to access the harmonized datasets easily through a web portal. Another advantage is the fully automated processing chain including the data harmonization in terms of units and sampling interval, but even more important is the advanced quality control system each measurement has to run through. The quality of in situ soil moisture measurements is crucial for the validation of satellite- and model-based soil moisture retrievals; therefore a sophisticated quality control system was developed. After a check for plausibility and geophysical limits a quality flag is added to each measurement. An enhanced flagging mechanism was recently defined using a spectrum based approach to detect spurious spikes, jumps and plateaus. The International Soil Moisture Network has already evolved to one of the most important distribution platforms for in situ soil moisture observations and is still growing. Currently, data from 27 networks in total covering more than 800 stations in Europe, North America, Australia, Asia and Africa is hosted by the ISMN. Available datasets also include historical datasets as well as near real-time measurements. The improved quality control system will provide important information for satellite-based as well as land surface model-based validation studies.

  19. A hydrologic network supporting spatially referenced regression modeling in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Brakebill, J.W.; Preston, S.D.

    2003-01-01

    The U.S. Geological Survey has developed a methodology for statistically relating nutrient sources and land-surface characteristics to nutrient loads of streams. The methodology is referred to as SPAtially Referenced Regressions On Watershed attributes (SPARROW), and relates measured stream nutrient loads to nutrient sources using nonlinear statistical regression models. A spatially detailed digital hydrologic network of stream reaches, stream-reach characteristics such as mean streamflow, water velocity, reach length, and travel time, and their associated watersheds supports the regression models. This network serves as the primary framework for spatially referencing potential nutrient source information such as atmospheric deposition, septic systems, point-sources, land use, land cover, and agricultural sources and land-surface characteristics such as land use, land cover, average-annual precipitation and temperature, slope, and soil permeability. In the Chesapeake Bay watershed that covers parts of Delaware, Maryland, Pennsylvania, New York, Virginia, West Virginia, and Washington D.C., SPARROW was used to generate models estimating loads of total nitrogen and total phosphorus representing 1987 and 1992 land-surface conditions. The 1987 models used a hydrologic network derived from an enhanced version of the U.S. Environmental Protection Agency's digital River Reach File, and course resolution Digital Elevation Models (DEMs). A new hydrologic network was created to support the 1992 models by generating stream reaches representing surface-water pathways defined by flow direction and flow accumulation algorithms from higher resolution DEMs. On a reach-by-reach basis, stream reach characteristics essential to the modeling were transferred to the newly generated pathways or reaches from the enhanced River Reach File used to support the 1987 models. To complete the new network, watersheds for each reach were generated using the direction of surface-water flow derived from the DEMs. This network improves upon existing digital stream data by increasing the level of spatial detail and providing consistency between the reach locations and topography. The hydrologic network also aids in illustrating the spatial patterns of predicted nutrient loads and sources contributed locally to each stream, and the percentages of nutrient load that reach Chesapeake Bay.

  20. Application of Particle Swarm Optimization Algorithm for Optimizing ANN Model in Recognizing Ripeness of Citrus

    NASA Astrophysics Data System (ADS)

    Diyana Rosli, Anis; Adenan, Nur Sabrina; Hashim, Hadzli; Ezan Abdullah, Noor; Sulaiman, Suhaimi; Baharudin, Rohaiza

    2018-03-01

    This paper shows findings of the application of Particle Swarm Optimization (PSO) algorithm in optimizing an Artificial Neural Network that could categorize between ripeness and unripeness stage of citrus suhuensis. The algorithm would adjust the network connections weights and adapt its values during training for best results at the output. Initially, citrus suhuensis fruit’s skin is measured using optically non-destructive method via spectrometer. The spectrometer would transmit VIS (visible spectrum) photonic light radiation to the surface (skin of citrus) of the sample. The reflected light from the sample’s surface would be received and measured by the same spectrometer in terms of reflectance percentage based on VIS range. These measured data are used to train and test the best optimized ANN model. The accuracy is based on receiver operating characteristic (ROC) performance. The result outcomes from this investigation have shown that the achieved accuracy for the optimized is 70.5% with a sensitivity and specificity of 60.1% and 80.0% respectively.

  1. Impact of polymer surface characteristics on the microrheological measurement quality of protein solutions - A tracer particle screening.

    PubMed

    Bauer, Katharina Christin; Schermeyer, Marie-Therese; Seidel, Jonathan; Hubbuch, Jürgen

    2016-05-30

    Microrheological measurements prove to be suitable to identify rheological parameters of biopharmaceutical solutions. These give information about the flow characteristics but also about the interactions and network structures in protein solutions. For the microrheological measurement tracer particles are required. Due to their specific surface characteristic not all are suitable for reliable measurement results in biopharmaceutical systems. In the present work a screening of melamine, PMMA, polystyrene and surface modified polystyrene as tracer particles were investigated at various protein solution conditions. The surface characteristics of the screened tracer particles were evaluated by zeta potential measurements. Furthermore each tracer particle was used to determine the dynamic viscosity of lysozyme solutions by microrheology and compared to a standard. The results indicate that the selection of the tracer particle had a strong impact on the quality of the microrheological measurement dependent on pH and additive type. Surface modified polystyrene was the only tracer particle that yielded good microrheological results for all tested conditions. The study indicated that the electrostatic surface charge of the tracer particle had a minor impact than its hydrophobicity. This characteristic was the crucial surface property that needs to be considered for the selection of a suitable tracer particle to achieve high measurement accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Towards more Global Coordination of Atmospheric Electricity Measurements (GloCAEM)

    NASA Astrophysics Data System (ADS)

    Nicoll, Keri; Harrison, Giles

    2017-04-01

    Earth's atmospheric electrical environment has been studied since the 1750s but its more recent applications to science questions around clouds and climate highlight the incompleteness of our understanding, in part due to lack of suitable global measurements. The Global Electric Circuit (GEC) sustains the near-surface fair weather (FW) electric field, which is present globally in regions which are not strongly electrically disturbed by weather or pollution. It can be measured routinely at the surface using well established instrumentation such as electric field mills. Despite the central role of lightning as a weather hazard and the potentially widespread importance of charge for atmospheric processes, research is hampered by the fragmented nature of surface atmospheric electricity measurements. This makes anything other than local studies in fortuitous fair weather conditions difficult. In contrast to detection of global lightning using satellite measurements and ground-based radio networks, the FW electric field and GEC cannot be measured by remote sensing and no similar measurement networks exist for its study. This presents an opportunity as many researchers worldwide now make high temporal resolution measurements of the FW electric field routinely, which is neither coordinated nor exploited. The GLOCAEM (Global Coordination of Atmospheric Electricity Measurements) project is currently bringing some of these experts together to make the first steps towards an effective global network for FW atmospheric electricity monitoring. A specific objective of the project is to establish the first modern archive of international FW atmospheric electric field data in close to real time to allow global studies of atmospheric electricity to be straightforwardly and robustly performed. Data will be archived through the UK Centre for Environmental Data Analysis (CEDA) and will be available for download by users from early 2018. Both 1 second and 1 minute electric field data will be archived, along with meteorological measurements (if available) for ease of interpretation of electrical measurements. Although the primary aim of the project is to provide a close to real time electric field database, archiving of existing historical electric field datasets is also planned to extend the range of studies possible. This presentation will provide a summary of progress with the GLOCAEM project.

  3. Virtual sensors for on-line wheel wear and part roughness measurement in the grinding process.

    PubMed

    Arriandiaga, Ander; Portillo, Eva; Sánchez, Jose A; Cabanes, Itziar; Pombo, Iñigo

    2014-05-19

    Grinding is an advanced machining process for the manufacturing of valuable complex and accurate parts for high added value sectors such as aerospace, wind generation, etc. Due to the extremely severe conditions inside grinding machines, critical process variables such as part surface finish or grinding wheel wear cannot be easily and cheaply measured on-line. In this paper a virtual sensor for on-line monitoring of those variables is presented. The sensor is based on the modelling ability of Artificial Neural Networks (ANNs) for stochastic and non-linear processes such as grinding; the selected architecture is the Layer-Recurrent neural network. The sensor makes use of the relation between the variables to be measured and power consumption in the wheel spindle, which can be easily measured. A sensor calibration methodology is presented, and the levels of error that can be expected are discussed. Validation of the new sensor is carried out by comparing the sensor's results with actual measurements carried out in an industrial grinding machine. Results show excellent estimation performance for both wheel wear and surface roughness. In the case of wheel wear, the absolute error is within the range of microns (average value 32 μm). In the case of surface finish, the absolute error is well below Ra 1 μm (average value 0.32 μm). The present approach can be easily generalized to other grinding operations.

  4. The Benefits of Using Dense Temperature Sensor Networks to Monitor Urban Warming

    NASA Astrophysics Data System (ADS)

    Twine, T. E.; Snyder, P. K.; Kucharik, C. J.; Schatz, J.

    2015-12-01

    Urban heat islands (UHIs) occur when urban and suburban areas experience temperatures that are elevated relative to their rural surroundings because of differences in the fraction of gray and green infrastructure. Studies have shown that communities most at risk for impacts from climate-related disasters (i.e., lower median incomes, higher poverty, lower education, and minorities) tend to live in the hottest areas of cities. Development of adequate climate adaptation tools for cities relies on knowledge of how temperature varies across space and time. Traditionally, a city's urban heat island has been quantified using near-surface air temperature measurements from a few sites. This methodology assumes (1) that the UHI can be characterized by the difference in air temperature from a small number of points, and (2) that these few points represent the urban and rural signatures of the region. This methodology ignores the rich information that could be gained from measurements across the urban to rural transect. This transect could traverse elevations, water bodies, vegetation fraction, and other land surface properties. Two temperature sensor networks were designed and implemented in the Minneapolis-Saint Paul, MN and Madison, WI metropolitan areas beginning in 2011 and 2012, respectively. Both networks use the same model sensor and record temperature every 15 minutes from ~150 sensors. Data from each network has produced new knowledge of how temperature varies diurnally and seasonally across the cities and how the UHI magnitude is influenced by weather phenomena (e.g., wind, snow cover, heat waves) and land surface characteristics such as proximity to inland lakes. However, the two metropolitan areas differ in size, population, structure, and orientation to water bodies. In addition, the sensor networks were established in very different manners. We describe these differences and present lessons learned from the design and ongoing efforts of these two dense networks located in the Midwest USA.

  5. Initial Everglades Depth Estimation Network (EDEN) Digital Elevation Model Research and Development

    USGS Publications Warehouse

    Jones, John W.; Price, Susan D.

    2007-01-01

    Introduction The Everglades Depth Estimation Network (EDEN) offers a consistent and documented dataset that can be used to guide large-scale field operations, to integrate hydrologic and ecological responses, and to support biological and ecological assessments that measure ecosystem responses to the Comprehensive Everglades Restoration Plan (Telis, 2006). To produce historic and near-real time maps of water depths, the EDEN requires a system-wide digital elevation model (DEM) of the ground surface. Accurate Everglades wetland ground surface elevation data were non-existent before the U.S. Geological Survey (USGS) undertook the collection of highly accurate surface elevations at the regional scale. These form the foundation for EDEN DEM development. This development process is iterative as additional high accuracy elevation data (HAED) are collected, water surfacing algorithms improve, and additional ground-based ancillary data become available. Models are tested using withheld HAED and independently measured water depth data, and by using DEM data in EDEN adaptive management applications. Here the collection of HAED is briefly described before the approach to DEM development and the current EDEN DEM are detailed. Finally future research directions for continued model development, testing, and refinement are provided.

  6. To address surface reaction network complexity using scaling relations machine learning and DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas

    Surface reaction networks involving hydrocarbons exhibit enormous complexity with thousands of species and reactions for all but the very simplest of chemistries. We present a framework for optimization under uncertainty for heterogeneous catalysis reaction networks using surrogate models that are trained on the fly. The surrogate model is constructed by teaching a Gaussian process adsorption energies based on group additivity fingerprints, combined with transition-state scaling relations and a simple classifier for determining the rate-limiting step. The surrogate model is iteratively used to predict the most important reaction step to be calculated explicitly with computationally demanding electronic structure theory. Applying thesemore » methods to the reaction of syngas on rhodium(111), we identify the most likely reaction mechanism. Lastly, propagating uncertainty throughout this process yields the likelihood that the final mechanism is complete given measurements on only a subset of the entire network and uncertainty in the underlying density functional theory calculations.« less

  7. To address surface reaction network complexity using scaling relations machine learning and DFT calculations

    DOE PAGES

    Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas; ...

    2017-03-06

    Surface reaction networks involving hydrocarbons exhibit enormous complexity with thousands of species and reactions for all but the very simplest of chemistries. We present a framework for optimization under uncertainty for heterogeneous catalysis reaction networks using surrogate models that are trained on the fly. The surrogate model is constructed by teaching a Gaussian process adsorption energies based on group additivity fingerprints, combined with transition-state scaling relations and a simple classifier for determining the rate-limiting step. The surrogate model is iteratively used to predict the most important reaction step to be calculated explicitly with computationally demanding electronic structure theory. Applying thesemore » methods to the reaction of syngas on rhodium(111), we identify the most likely reaction mechanism. Lastly, propagating uncertainty throughout this process yields the likelihood that the final mechanism is complete given measurements on only a subset of the entire network and uncertainty in the underlying density functional theory calculations.« less

  8. Drought-induced uplift in the western United States as observed by the EarthScope Plate Boundary Observatory GPS network

    NASA Astrophysics Data System (ADS)

    Borsa, A. A.; Agnew, D. C.; Cayan, D. R.

    2014-12-01

    The western United States (WUS) has been experiencing severe drought since 2013. The solid earth response to the accompanying loss of surface and near-surface water mass should be a broad region of uplift. We use seasonally-adjusted time series from continuously operating GPS stations in the EarthScope Plate Boundary Observatory and several smaller networks to measure this uplift, which reaches 15 mm in the California Coastal Ranges and Sierra Nevada and has a median value of 4 mm over the entire WUS. The pattern of mass loss due to the drought, which we recover from an inversion of uplift observations, ranges up to 50 cm of water equivalent and is consistent with observed decreases in precipitation and streamflow. We estimate the total deficit to be 240 Gt, equivalent to a uniform 10 cm layer of water over the entire region, or the magnitude of the current annual mass loss from the Greenland Ice Sheet. In the WUS, interannual changes in crustal loading are driven by changes in cool-season precipitation, which cause variations in surface water, snowpack, soil moisture, and groundwater. The results here demonstrate that the existing network of continuous GPS stations can be used to recover loading changes due to both wet and dry climate patterns. This suggests a new role for GPS networks such as that of the Plate Boundary Observatory. The exceptional stability of the GPS monumentation means that this network is also capable of monitoring the long-term effects of regional climate change. Surface displacement observations from GPS have the potential to expand the capabilities of the current hydrological observing network for monitoring current and future hydrological changes, with obvious social and economic benefits.

  9. Was There a Significantly Negative Anomaly of Global Land Surface Net Radiation from 2001-2006?

    NASA Astrophysics Data System (ADS)

    Liang, S.; Jia, A.; Jiang, B.

    2016-12-01

    Surface net radiation, which characterizes surface energy budget, can be estimated from in-situ measurements, satellite products, model simulations, and reanalysis. Satellite products are usually validated using ground measurements to characterize their uncertainties. The surface net radiation product from the CERES (Clouds and the Earth's Radiant Energy System) has been widely used. After validating it using extensive ground measurements, we also verified that the CERES surface net radiation product is highly accurate. When we evaluated the temporal variations of the averaged global land surface net radiation from the CERES product, we found a significantly negative anomaly starting from 2001, reaching the maximum in 2004, and gradually coming back to normal in 2006. The valley has the magnitude of approximately 3 Wm-2 centered at 2004. After comparing with the high-resolution GLASS (Global LAnd Surface Satellite) net radiation product developed at Beijing Normal University, the CMIP5 model simulations, and the ERA-Interim reanalysis dataset, we concluded that the significant decreasing pattern of land surface net radiation from 2001-2006 is an artifact mainly due to inaccurate longwave net radiation of the CERES surface net radiation product. The current ground measurement networks are not spatially dense enough to capture the false negative anomaly from the CERES product, which calls for more ground measurements.

  10. Gaseous Oxidized Mercury Dry Deposition Measurements in the FourCorners Area and Eastern Oklahoma, U.S.A.

    EPA Science Inventory

    Gaseous oxidized mercury (GOM) dry deposition measurements using surrogate surface passive samplers were collected in the Four Corners area and eastern Oklahoma from August, 2009–August, 2011. Using data from a six site area network, a characterization of the magnitude and spatia...

  11. Assessing the Increase in Specific Surface Area for Electrospun Fibrous Network due to Pore Induction.

    PubMed

    Katsogiannis, Konstantinos Alexandros G; Vladisavljević, Goran T; Georgiadou, Stella; Rahmani, Ramin

    2016-10-26

    The effect of pore induction on increasing electrospun fibrous network specific surface area was investigated in this study. Theoretical models based on the available surface area of the fibrous network and exclusion of the surface area lost due to fiber-to-fiber contacts were developed. The models for calculation of the excluded area are based on Hertzian, Derjaguin-Muller-Toporov (DMT), and Johnson-Kendall-Roberts (JKR) contact models. Overall, the theoretical models correlated the network specific surface area to the material properties including density, surface tension, Young's modulus, Poisson's ratio, as well as network physical properties, such as density and geometrical characteristics including fiber radius, fiber aspect ratio and network thickness. Pore induction proved to increase the network specific surface area up to 52%, compared to the maximum surface area that could be achieved by nonporous fiber network with the same physical properties and geometrical characteristics. The model based on Johnson-Kendall-Roberts contact model describes accurately the fiber-to-fiber contact area under the experimental conditions used for pore generation. The experimental results and the theoretical model based on Johnson-Kendall-Roberts contact model show that the increase in network surface area due to pore induction can reach to up to 58%.

  12. Anatomy of triply-periodic network assemblies: characterizing skeletal and inter-domain surface geometry of block copolymer gyroids.

    PubMed

    Prasad, Ishan; Jinnai, Hiroshi; Ho, Rong-Ming; Thomas, Edwin L; Grason, Gregory M

    2018-05-09

    Triply-periodic networks (TPNs), like the well-known gyroid and diamond network phases, abound in soft matter assemblies, from block copolymers (BCPs), lyotropic liquid crystals and surfactants to functional architectures in biology. While TPNs are, in reality, volume-filling patterns of spatially-varying molecular composition, physical and structural models most often reduce their structure to lower-dimensional geometric objects: the 2D interfaces between chemical domains; and the 1D skeletons that thread through inter-connected, tubular domains. These lower-dimensional structures provide a useful basis of comparison to idealized geometries based on triply-periodic minimal, or constant-mean curvature surfaces, and shed important light on the spatially heterogeneous packing of molecular constituents that form the networks. Here, we propose a simple, efficient and flexible method to extract a 1D skeleton from 3D volume composition data of self-assembled networks. We apply this method to both self-consistent field theory predictions as well as experimental electron microtomography reconstructions of the double-gyroid phase of an ABA triblock copolymer. We further demonstrate how the analysis of 1D skeleton, 2D inter-domain surfaces, and combinations therefore, provide physical and structural insight into TPNs, across multiple length scales. Specifically, we propose and compare simple measures of network chirality as well as domain thickness, and analyze their spatial and statistical distributions in both ideal (theoretical) and non-ideal (experimental) double gyroid assemblies.

  13. Estimating surface soil moisture from SMAP observations using a Neural Network technique.

    PubMed

    Kolassa, J; Reichle, R H; Liu, Q; Alemohammad, S H; Gentine, P; Aida, K; Asanuma, J; Bircher, S; Caldwell, T; Colliander, A; Cosh, M; Collins, C Holifield; Jackson, T J; Martínez-Fernández, J; McNairn, H; Pacheco, A; Thibeault, M; Walker, J P

    2018-01-01

    A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to March 2017 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 m 3 m -3 , 0.70 and 0.66, respectively, against SMAP core validation site measurements and 0.026 m 3 m -3 , 0.58 and 0.48, respectively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition zones.

  14. Microclimate Exposures of Surface-Based Weather Stations: Implications For The Assessment of Long-Term Temperature Trends.

    NASA Astrophysics Data System (ADS)

    Davey, Christopher A.; Pielke, Roger A., Sr.

    2005-04-01

    The U.S. Historical Climate Network is a subset of surface weather observation stations selected from the National Weather Service cooperative station network. The criteria used to select these stations do not sufficiently address station exposure characteristics. In addition, the current metadata available for cooperative network stations generally do not describe site exposure characteristics in sufficient detail. This paper focuses on site exposures with respect to air temperature measurements. A total of 57 stations were photographically surveyed in eastern Colorado, comparing existing exposures to the standards endorsed by the World Meteorological Organization. The exposures of most sites surveyed, including U.S. Historical Climate Network sites, were observed to fall short of these standards. This raises a critical question about the use of many Historical Climate Network sites in the development of long-term climate records and the detection of climate trends. Some of these sites clearly have poor exposures and therefore should be considered for removal from the Historical Climate Network. Candidate replacement sites do exist and should be considered for addition into the network to replace the removed sites. Documentation as performed for this study should be conducted worldwide in order to determine the extent of spatially nonrepresentative exposures and possible temperature biases.


  15. 3-D kinematics analysis of surface ruptures on an active creeping fault at Chihshang, Eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, J.; Angelier, J.; Chen, H.; Chu, H.; Hu, J.

    2003-12-01

    The Chihshang fault is one of the most active segments of the Longitudinal Valley Fault, the plate suture between the converging Philippine and Eurasian plates. A destructive earthquake of M 7.1 with substantial surface scarps resulted from rupturing of the Chihshang fault in 1951. From that on, no big earthquake greater than M 5.5 occurred in this area. Instead, the Chihshang fault reveals a creeping behavior at a rapid rate of about 20 mm/yr at least during the past 20 years. The surface breaks of the creeping Chihshang fault can be observed at the several places. A typical feature is reverse-fault-like fractures on the retaining wall. We deployed small geodetic networks across the fault zone at five sites. Each network comprises of 5 to 15 benchmarks. Trilateration measurements including angles and distances as well as leveling among the benchmarks have been carried out on an annual basis or twice a year since 1998. Compared to previous other measurements which have shown the first order creep rate for the entire fault zone, the present geodetic data provides the detailed information of the surface movements across the fault zone which usually composed of more than one fault strands and folds structures. According to our data from the local geodetic networks, we are able to reconstruct the 3-D kinematics of surface deformation across the Chihshang fault zone. Multiple fault strands are common along the Chihshang fault. Oblique shortening occurred at all sites and was characterized by a combination of thrusts, backthrust and surface warps. Strike-slip motion can also be distinguished on some fault strands. It is worth to note that the cultural feature, such as concrete basement of strong resistance, sometimes acted as deflection of surface ruptures. It should be taken into consideration for mitigation against seismic hazards.

  16. Detecting surface runoff location in a small catchment using distributed and simple observation method

    NASA Astrophysics Data System (ADS)

    Dehotin, Judicaël; Breil, Pascal; Braud, Isabelle; de Lavenne, Alban; Lagouy, Mickaël; Sarrazin, Benoît

    2015-06-01

    Surface runoff is one of the hydrological processes involved in floods, pollution transfer, soil erosion and mudslide. Many models allow the simulation and the mapping of surface runoff and erosion hazards. Field observations of this hydrological process are not common although they are crucial to evaluate surface runoff models and to investigate or assess different kinds of hazards linked to this process. In this study, a simple field monitoring network is implemented to assess the relevance of a surface runoff susceptibility mapping method. The network is based on spatially distributed observations (nine different locations in the catchment) of soil water content and rainfall events. These data are analyzed to determine if surface runoff occurs. Two surface runoff mechanisms are considered: surface runoff by saturation of the soil surface horizon and surface runoff by infiltration excess (also called hortonian runoff). The monitoring strategy includes continuous records of soil surface water content and rainfall with a 5 min time step. Soil infiltration capacity time series are calculated using field soil water content and in situ measurements of soil hydraulic conductivity. Comparison of soil infiltration capacity and rainfall intensity time series allows detecting the occurrence of surface runoff by infiltration-excess. Comparison of surface soil water content with saturated water content values allows detecting the occurrence of surface runoff by saturation of the soil surface horizon. Automatic records were complemented with direct field observations of surface runoff in the experimental catchment after each significant rainfall event. The presented observation method allows the identification of fast and short-lived surface runoff processes at a small spatial and temporal resolution in natural conditions. The results also highlight the relationship between surface runoff and factors usually integrated in surface runoff mapping such as topography, rainfall parameters, soil or land cover. This study opens interesting prospects for the use of spatially distributed measurement for surface runoff detection, spatially distributed hydrological models implementation and validation at a reasonable cost.

  17. A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes

    Treesearch

    Andrew D. Richardson; David Y. Hollinger; George G. Burba; Kenneth J. Davis; Lawrence B. Flanagan; Gabriel G. Katul; J. William Munger; Daniel M. Ricciuto; Paul C. Stoy; Andrew E. Suyker; Shashi B. Verma; Steven C. Wofsy; Steven C. Wofsy

    2006-01-01

    Measured surface-atmosphere fluxes of energy (sensible heat, H, and latent heat, LE) and CO2 (FCO2) represent the ``true?? flux plus or minus potential random and systematic measurement errors. Here, we use data from seven sites in the AmeriFlux network, including five forested sites (two of which include ``tall tower?? instrumentation), one grassland site, and one...

  18. Real-time controller for foot-drop correction by using surface electromyography sensor.

    PubMed

    Al Mashhadany, Yousif I; Abd Rahim, Nasrudin

    2013-04-01

    Foot drop is a disease caused mainly by muscle paralysis, which incapacitates the nerves generating the impulses that control feet in a heel strike. The incapacity may stem from lesions that affect the brain, the spinal cord, or peripheral nerves. The foot becomes dorsiflexed, affecting normal walking. A design and analysis of a controller for such legs is the subject of this article. Surface electromyography electrodes are connected to the skin surface of the human muscle and work on the mechanics of human muscle contraction. The design uses real surface electromyography signals for estimation of the joint angles. Various-speed flexions and extensions of the leg were analyzed. The two phases of the design began with surface electromyography of real human leg electromyography signal, which was subsequently filtered, amplified, and normalized to the maximum amplitude. Parameters extracted from the surface electromyography signal were then used to train an artificial neural network for prediction of the joint angle. The artificial neural network design included various-speed identification of the electromyography signal and estimation of the angles of the knee and ankle joints by a recognition process that depended on the parameters of the real surface electromyography signal measured through real movements. The second phase used artificial neural network estimation of the control signal, for calculation of the electromyography signal to be stimulated for the leg muscle to move the ankle joint. Satisfactory simulation (MATLAB/Simulink version 2012a) and implementation results verified the design feasibility.

  19. Method for the thermal characterization, visualization, and integrity evaluation of conducting material samples or complex structures

    DOEpatents

    Ortiz, Marcos G.

    1992-01-01

    A method for modeling a conducting material sample or structure (herein called a system) as at least two regions which comprise an electrical network of resistances, for measuring electric resistance between at least two selected pairs of external leads attached to the surface of the system, wherein at least one external lead is attached to the surface of each of the regions, and, using basic circuit theory, for translating measured resistances into temperatures or thermophysical properties in corresponding regions of the system.

  20. Method for the thermal characterization, visualization, and integrity evaluation of conducting material samples or complex structures

    DOEpatents

    Ortiz, M.G.

    1992-11-24

    Disclosed is a method for modeling a conducting material sample or structure (herein called a system) as at least two regions which comprise an electrical network of resistances, for measuring electric resistance between at least two selected pairs of external leads attached to the surface of the system, wherein at least one external lead is attached to the surface of each of the regions, and, using basic circuit theory, for translating measured resistances into temperatures or thermophysical properties in corresponding regions of the system. 16 figs.

  1. Using machine learning to produce near surface soil moisture estimates from deeper in situ records at U.S. Climate Reference Network (USCRN) locations: Analysis and applications to AMSR-E satellite validation

    NASA Astrophysics Data System (ADS)

    Coopersmith, Evan J.; Cosh, Michael H.; Bell, Jesse E.; Boyles, Ryan

    2016-12-01

    Surface soil moisture is a critical parameter for understanding the energy flux at the land atmosphere boundary. Weather modeling, climate prediction, and remote sensing validation are some of the applications for surface soil moisture information. The most common in situ measurement for these purposes are sensors that are installed at depths of approximately 5 cm. There are however, sensor technologies and network designs that do not provide an estimate at this depth. If soil moisture estimates at deeper depths could be extrapolated to the near surface, in situ networks providing estimates at other depths would see their values enhanced. Soil moisture sensors from the U.S. Climate Reference Network (USCRN) were used to generate models of 5 cm soil moisture, with 10 cm soil moisture measurements and antecedent precipitation as inputs, via machine learning techniques. Validation was conducted with the available, in situ, 5 cm resources. It was shown that a 5 cm estimate, which was extrapolated from a 10 cm sensor and antecedent local precipitation, produced a root-mean-squared-error (RMSE) of 0.0215 m3/m3. Next, these machine-learning-generated 5 cm estimates were also compared to AMSR-E estimates at these locations. These results were then compared with the performance of the actual in situ readings against the AMSR-E data. The machine learning estimates at 5 cm produced an RMSE of approximately 0.03 m3/m3 when an optimized gain and offset were applied. This is necessary considering the performance of AMSR-E in locations characterized by high vegetation water contents, which are present across North Carolina. Lastly, the application of this extrapolation technique is applied to the ECONet in North Carolina, which provides a 10 cm depth measurement as its shallowest soil moisture estimate. A raw RMSE of 0.028 m3/m3 was achieved, and with a linear gain and offset applied at each ECONet site, an RMSE of 0.013 m3/m3 was possible.

  2. Gridding Cloud and Irradiance to Quantify Variability at the ARM Southern Great Plains Site

    NASA Astrophysics Data System (ADS)

    Riihimaki, L.; Long, C. N.; Gaustad, K.

    2017-12-01

    Ground-based radiometers provide the most accurate measurements of surface irradiance. However, geometry differences between surface point measurements and large area climate model grid boxes or satellite-based footprints can cause systematic differences in surface irradiance comparisons. In this work, irradiance measurements from a network of ground stations around Kansas and Oklahoma at the US Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains facility are examined. Upwelling and downwelling broadband shortwave and longwave radiometer measurements are available at each site as well as surface meteorological measurements. In addition to the measured irradiances, clear sky irradiance and cloud fraction estimates are analyzed using well established methods based on empirical fits to measured clear sky irradiances. Measurements are interpolated onto a 0.25 degree latitude and longitude grid using a Gaussian weight scheme in order to provide a more accurate statistical comparison between ground measurements and a larger area such as that used in climate models, plane parallel radiative transfer calculations, and other statistical and climatological research. Validation of the gridded product will be shown, as well as analysis that quantifies the impact of site location, cloud type, and other factors on the resulting surface irradiance estimates. The results of this work are being incorporated into the Surface Cloud Grid operational data product produced by ARM, and will be made publicly available for use by others.

  3. Prediction of near-surface soil moisture at large scale by digital terrain modeling and neural networks.

    PubMed

    Lavado Contador, J F; Maneta, M; Schnabel, S

    2006-10-01

    The capability of Artificial Neural Network models to forecast near-surface soil moisture at fine spatial scale resolution has been tested for a 99.5 ha watershed located in SW Spain using several easy to achieve digital models of topographic and land cover variables as inputs and a series of soil moisture measurements as training data set. The study methods were designed in order to determining the potentials of the neural network model as a tool to gain insight into soil moisture distribution factors and also in order to optimize the data sampling scheme finding the optimum size of the training data set. Results suggest the efficiency of the methods in forecasting soil moisture, as a tool to assess the optimum number of field samples, and the importance of the variables selected in explaining the final map obtained.

  4. Influence of Landscape Coverage on Measuring Spatial and Length Properties of Rock Fracture Networks: Insights from Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Cao, Wenzhuo; Lei, Qinghua

    2018-01-01

    Natural fractures are ubiquitous in the Earth's crust and often deeply buried in the subsurface. Due to the difficulty in accessing to their three-dimensional structures, the study of fracture network geometry is usually achieved by sampling two-dimensional (2D) exposures at the Earth's surface through outcrop mapping or aerial photograph techniques. However, the measurement results can be considerably affected by the coverage of forests and other plant species over the exposed fracture patterns. We quantitatively study such effects using numerical simulation. We consider the scenario of nominally isotropic natural fracture systems and represent them using 2D discrete fracture network models governed by fractal and length scaling parameters. The groundcover is modelled as random patches superimposing onto the 2D fracture patterns. The effects of localisation and total coverage of landscape patches are further investigated. The fractal dimension and length exponent of the covered fracture networks are measured and compared with those of the original non-covered patterns. The results show that the measured length exponent increases with the reduced localisation and increased coverage of landscape patches, which is more evident for networks dominated by very large fractures (i.e. small underlying length exponent). However, the landscape coverage seems to have a minor impact on the fractal dimension measurement. The research findings of this paper have important implications for field survey and statistical analysis of geological systems.

  5. An innovative and comprehensive technique to evaluate different measures of medication adherence: The network meta-analysis.

    PubMed

    Tonin, Fernanda S; Wiecek, Elyssa; Torres-Robles, Andrea; Pontarolo, Roberto; Benrimoj, Shalom Charlie I; Fernandez-Llimos, Fernando; Garcia-Cardenas, Victoria

    2018-05-19

    Poor medication adherence is associated with adverse health outcomes and higher costs of care. However, inconsistencies in the assessment of adherence are found in the literature. To evaluate the effect of different measures of adherence in the comparative effectiveness of complex interventions to enhance patients' adherence to prescribed medications. A systematic review with network meta-analysis was performed. Electronic searches for relevant pairwise meta-analysis including trials of interventions that aimed to improve medication adherence were performed in PubMed. Data extraction was conducted with eligible trials evaluating short-period adherence follow-up (until 3 months) using any measure of adherence: self-report, pill count, or MEMS (medication event monitoring system). To standardize the results obtained with these different measures, an overall composite measure and an objective composite measure were also calculated. Network meta-analyses for each measure of adherence were built. Rank order and surface under the cumulative ranking curve analyses (SUCRA) were performed. Ninety-one trials were included in the network meta-analyses. The five network meta-analyses demonstrated robustness and reliability. Results obtained for all measures of adherence were similar across them and to both composite measures. For both composite measures, interventions comprising economic + technical components were the best option (90% of probability in SUCRA analysis) with statistical superiority against almost all other interventions and against standard care (odds ratio with 95% credibility interval ranging from 0.09 to 0.25 [0.02, 0.98]). The use of network meta-analysis was reliable to compare different measures of adherence of complex interventions in short-periods follow-up. Analyses with longer follow-up periods are needed to confirm these results. Different measures of adherence produced similar results. The use of composite measures revealed reliable alternatives to establish a broader and more detailed picture of adherence. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Network traffic intelligence using a low interaction honeypot

    NASA Astrophysics Data System (ADS)

    Nyamugudza, Tendai; Rajasekar, Venkatesh; Sen, Prasad; Nirmala, M.; Madhu Viswanatham, V.

    2017-11-01

    Advancements in networking technology have seen more and more devices becoming connected day by day. This has given organizations capacity to extend their networks beyond their boundaries to remote offices and remote employees. However as the network grows security becomes a major challenge since the attack surface also increases. There is need to guard the network against different types of attacks like intrusion and malware through using different tools at different networking levels. This paper describes how network intelligence can be acquired through implementing a low-interaction honeypot which detects and track network intrusion. Honeypot allows an organization to interact and gather information about an attack earlier before it compromises the network. This process is important because it allows the organization to learn about future attacks of the same nature and allows them to develop counter measures. The paper further shows how honeypot-honey net based model for interruption detection system (IDS) can be used to get the best valuable information about the attacker and prevent unexpected harm to the network.

  7. An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks

    NASA Astrophysics Data System (ADS)

    Holben, Brent N.; Kim, Jhoon; Sano, Itaru; Mukai, Sonoyo; Eck, Thomas F.; Giles, David M.; Schafer, Joel S.; Sinyuk, Aliaksandr; Slutsker, Ilya; Smirnov, Alexander; Sorokin, Mikhail; Anderson, Bruce E.; Che, Huizheng; Choi, Myungje; Crawford, James H.; Ferrare, Richard A.; Garay, Michael J.; Jeong, Ukkyo; Kim, Mijin; Kim, Woogyung; Knox, Nichola; Li, Zhengqiang; Lim, Hwee S.; Liu, Yang; Maring, Hal; Nakata, Makiko; Pickering, Kenneth E.; Piketh, Stuart; Redemann, Jens; Reid, Jeffrey S.; Salinas, Santo; Seo, Sora; Tan, Fuyi; Tripathi, Sachchida N.; Toon, Owen B.; Xiao, Qingyang

    2018-01-01

    Over the past 24 years, the AErosol RObotic NETwork (AERONET) program has provided highly accurate remote-sensing characterization of aerosol optical and physical properties for an increasingly extensive geographic distribution including all continents and many oceanic island and coastal sites. The measurements and retrievals from the AERONET global network have addressed satellite and model validation needs very well, but there have been challenges in making comparisons to similar parameters from in situ surface and airborne measurements. Additionally, with improved spatial and temporal satellite remote sensing of aerosols, there is a need for higher spatial-resolution ground-based remote-sensing networks. An effort to address these needs resulted in a number of field campaign networks called Distributed Regional Aerosol Gridded Observation Networks (DRAGONs) that were designed to provide a database for in situ and remote-sensing comparison and analysis of local to mesoscale variability in aerosol properties. This paper describes the DRAGON deployments that will continue to contribute to the growing body of research related to meso- and microscale aerosol features and processes. The research presented in this special issue illustrates the diversity of topics that has resulted from the application of data from these networks.

  8. Design of surface-water data networks for regional information

    USGS Publications Warehouse

    Moss, Marshall E.; Gilroy, E.J.; Tasker, Gary D.; Karlinger, M.R.

    1982-01-01

    This report describes a technique, Network Analysis of Regional Information (NARI), and the existing computer procedures that have been developed for the specification of the regional information-cost relation for several statistical parameters of streamflow. The measure of information used is the true standard error of estimate of a regional logarithmic regression. The cost is a function of the number of stations at which hydrologic data are collected and the number of years for which the data are collected. The technique can be used to obtain either (1) a minimum cost network that will attain a prespecified accuracy and reliability or (2) a network that maximizes information given a set of budgetary and time constraints.

  9. The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network: The example of 2-butanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liriano, Melissa L.; Lewis, Emily A.; Murphy, Colin J.

    The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopicmore » understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule’s intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our data reveal that the chirality of a simple alcohol can be transferred to its surface binding geometry, drive the directionality of hydrogen-bonded networks and ultimately extended structure. Furthermore, this study provides the first microscopic insight into the surface properties of this important chiral modifier and provides a well-defined system for studying the network’s enantioselective interaction with other molecules.« less

  10. Pattern classification and recognition of invertebrate functional groups using self-organizing neural networks.

    PubMed

    Zhang, WenJun

    2007-07-01

    Self-organizing neural networks can be used to mimic non-linear systems. The main objective of this study is to make pattern classification and recognition on sampling information using two self-organizing neural network models. Invertebrate functional groups sampled in the irrigated rice field were classified and recognized using one-dimensional self-organizing map and self-organizing competitive learning neural networks. Comparisons between neural network models, distance (similarity) measures, and number of neurons were conducted. The results showed that self-organizing map and self-organizing competitive learning neural network models were effective in pattern classification and recognition of sampling information. Overall the performance of one-dimensional self-organizing map neural network was better than self-organizing competitive learning neural network. The number of neurons could determine the number of classes in the classification. Different neural network models with various distance (similarity) measures yielded similar classifications. Some differences, dependent upon the specific network structure, would be found. The pattern of an unrecognized functional group was recognized with the self-organizing neural network. A relative consistent classification indicated that the following invertebrate functional groups, terrestrial blood sucker; terrestrial flyer; tourist (nonpredatory species with no known functional role other than as prey in ecosystem); gall former; collector (gather, deposit feeder); predator and parasitoid; leaf miner; idiobiont (acarine ectoparasitoid), were classified into the same group, and the following invertebrate functional groups, external plant feeder; terrestrial crawler, walker, jumper or hunter; neustonic (water surface) swimmer (semi-aquatic), were classified into another group. It was concluded that reliable conclusions could be drawn from comparisons of different neural network models that use different distance (similarity) measures. Results with the larger consistency will be more reliable.

  11. Atmospheric boundary layer effects induced by the 20 March 2015 solar eclipse

    NASA Astrophysics Data System (ADS)

    Gray, Suzanne L.; Harrison, R. Giles

    2016-04-01

    The British Isles benefits from dense meteorological observation networks, enabling insights into the still-unresolved effects of solar eclipse events on the near-surface wind field. The near-surface effects of the solar eclipse of 20 March 2015 are derived through comparison of output from the Met Office's operational weather forecast model (which is ignorant of the eclipse) with data from two meteorological networks: the Met Office's land surface station (MIDAS) network and a roadside measurement network operated by Vaisala. Synoptic-evolution relative calculations reveal the cooling and increase in relative humidity almost universally attributed to eclipse events. In addition, a slackening of wind speeds by up to about 2 knots in already weak winds and backing in wind direction of about 20 degrees under clear skies across middle England are attributed to the eclipse event. The slackening of wind speed is consistent with the previously reported boundary layer stabilisation during eclipse events. Wind direction changes have previously been attributed to a large-scale `eclipse-induced cold-cored cyclone', mountain slope flows, and changes in the strength of sea breezes. A new explanation is proposed here by analogy with nocturnal wind changes at sunset and shown to predict direction changes consistent with those observed.

  12. Impact of SMOS soil moisture data assimilation on NCEP-GFS forecasts

    NASA Astrophysics Data System (ADS)

    Zhan, X.; Zheng, W.; Meng, J.; Dong, J.; Ek, M.

    2012-04-01

    Soil moisture is one of the few critical land surface state variables that have long memory to impact the exchanges of water, energy and carbon between the land surface and atmosphere. Accurate information about soil moisture status is thus required for numerical weather, seasonal climate and hydrological forecast as well as for agricultural production forecasts, water management and many other water related economic or social activities. Since the successful launch of ESA's soil moisture ocean salinity (SMOS) mission in November 2009, about 2 years of soil moisture retrievals has been collected. SMOS is believed to be the currently best satellite sensors for soil moisture remote sensing. Therefore, it becomes interesting to examine how the collected SMOS soil moisture data are compared with other satellite-sensed soil moisture retrievals (such as NASA's Advanced Microwave Scanning Radiometer -AMSR-E and EUMETSAT's Advanced Scatterometer - ASCAT)), in situ soil moisture measurements, and how these data sets impact numerical weather prediction models such as the Global Forecast System of NOAA-NCEP. This study implements the Ensemble Kalman filter in GFS to assimilate the AMSR-E, ASCAT and SMOS soil moisture observations after a quantitative assessment of their error rate based on in situ measurements from ground networks around contiguous United States. in situ soil moisture measurements from ground networks (such as USDA Soil Climate Analysis network - SCAN and NOAA's U.S. Climate Reference Network -USCRN) are used to evaluate the GFS soil moisture simulations (analysis). The benefits and uncertainties of assimilating the satellite data products in GFS are examined by comparing the GFS forecasts of surface temperature and rainfall with and without the assimilations. From these examinations, the advantages of SMOS soil moisture data products over other satellite soil moisture data sets will be evaluated. The next step toward operationally assimilating soil moisture and other land observations into GFS will also be discussed.

  13. A High Space-Time Resolution Dataset Linking Meteorological Forcing and Hydro-Sedimentary Response in a Mesoscale Mediterranean Catchment (Auzon) of the Ardèche Region, France

    NASA Astrophysics Data System (ADS)

    Nord, G.; Braud, I.; Boudevillain, B.; Gérard, S.; Molinié, G.; Vandervaere, J. P.; Huza, J.; Le Coz, J.; Dramais, G.; Legout, C.; Berne, A.; Grazioli, J.; Raupach, T.; Van Baelen, J.; Wijbrans, A.; Delrieu, G.; Andrieu, J.; Caliano, M.; Aubert, C.; Teuling, R.; Le Boursicaud, R.; Branger, F.; Vincendon, B.; Horner, I.

    2014-12-01

    A comprehensive hydrometeorological dataset is presented spanning the period 1 Jan 2011-31 Dec 2014 to improve the understanding and simulation of the hydrological processes leading to flash floods in a mesoscale catchment (Auzon, 116 km2) of the Mediterranean region. The specificity of the dataset is its high space-time resolution, especially concerning rainfall and the hydrological response which is particularly adapted to the highly spatially variable rainfall events that may occur in this region. This type of dataset is rare in scientific literature because of the quantity and type of sensors for meteorology and surface hydrology. Rainfall data include continuous precipitation measured by rain-gages (5 min time step for the research network of 21 rain-gages and 1h time step for the operational network of 9 rain-gages), S-band Doppler dual-polarization radar (1 km2, 5 min resolution), and disdrometers (11 sensors working at 1 min time step). During the special observation period (SOP-1) and enhanced observation period (Sep-Dec 2012, Sep-Dec 2013) of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, two X-band radars provided precipitation measurements at very fine spatial and temporal scales (1 ha, 5 min). Meteorological data are taken from the operational surface weather observation stations of Meteo France at the hourly time resolution (6 stations in the region of interest). The monitoring of surface hydrology and suspended sediment is multi-scale and based on nested catchments. Three hydrometric stations measure water discharge and additional physico-chemical variables at a 2-10 min time resolution. Two experimental plots monitor overland flow and erosion at 1 min time resolution on a hillslope with vineyard. A network of 11 gauges continuously measures water level and temperature in headwater subcatchments at a time resolution of 2-5 min. A network of soil moisture sensors enable the continuous measurement of soil volumetric water content at 20 min time resolution at 9 sites. Additionally, opportunistic observations (soil moisture measurements and stream gauging) were performed during floods between 2012 and 2014. The data are appropriate for understanding rainfall variability, improving areal rainfall estimations and progress in distributed hydrological modelling.

  14. A High Space-Time Resolution Dataset Linking Meteorological Forcing and Hydro-Sedimentary Response in a Mesoscale Mediterranean Catchment (Auzon) of the Ardèche Region, France

    NASA Astrophysics Data System (ADS)

    Nord, G.; Braud, I.; Boudevillain, B.; Gérard, S.; Molinié, G.; Vandervaere, J. P.; Huza, J.; Le Coz, J.; Dramais, G.; Legout, C.; Berne, A.; Grazioli, J.; Raupach, T.; Van Baelen, J.; Wijbrans, A.; Delrieu, G.; Andrieu, J.; Caliano, M.; Aubert, C.; Teuling, R.; Le Boursicaud, R.; Branger, F.; Vincendon, B.; Horner, I.

    2015-12-01

    A comprehensive hydrometeorological dataset is presented spanning the period 1 Jan 2011-31 Dec 2014 to improve the understanding and simulation of the hydrological processes leading to flash floods in a mesoscale catchment (Auzon, 116 km2) of the Mediterranean region. The specificity of the dataset is its high space-time resolution, especially concerning rainfall and the hydrological response which is particularly adapted to the highly spatially variable rainfall events that may occur in this region. This type of dataset is rare in scientific literature because of the quantity and type of sensors for meteorology and surface hydrology. Rainfall data include continuous precipitation measured by rain-gages (5 min time step for the research network of 21 rain-gages and 1h time step for the operational network of 9 rain-gages), S-band Doppler dual-polarization radar (1 km2, 5 min resolution), and disdrometers (11 sensors working at 1 min time step). During the special observation period (SOP-1) and enhanced observation period (Sep-Dec 2012, Sep-Dec 2013) of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, two X-band radars provided precipitation measurements at very fine spatial and temporal scales (1 ha, 5 min). Meteorological data are taken from the operational surface weather observation stations of Meteo France at the hourly time resolution (6 stations in the region of interest). The monitoring of surface hydrology and suspended sediment is multi-scale and based on nested catchments. Three hydrometric stations measure water discharge and additional physico-chemical variables at a 2-10 min time resolution. Two experimental plots monitor overland flow and erosion at 1 min time resolution on a hillslope with vineyard. A network of 11 gauges continuously measures water level and temperature in headwater subcatchments at a time resolution of 2-5 min. A network of soil moisture sensors enable the continuous measurement of soil volumetric water content at 20 min time resolution at 9 sites. Additionally, opportunistic observations (soil moisture measurements and stream gauging) were performed during floods between 2012 and 2014. The data are appropriate for understanding rainfall variability, improving areal rainfall estimations and progress in distributed hydrological modelling.

  15. Highly accurate pulse-per-second timing distribution over optical fibre network using VCSEL side-mode injection

    NASA Astrophysics Data System (ADS)

    Wassin, Shukree; Isoe, George M.; Gamatham, Romeo R. G.; Leitch, Andrew W. R.; Gibbon, Tim B.

    2017-01-01

    Precise and accurate timing signals distributed between a centralized location and several end-users are widely used in both metro-access and speciality networks for Coordinated Universal Time (UTC), GPS satellite systems, banking, very long baseline interferometry and science projects such as SKA radio telescope. Such systems utilize time and frequency technology to ensure phase coherence among data signals distributed across an optical fibre network. For accurate timing requirements, precise time intervals should be measured between successive pulses. In this paper we describe a novel, all optical method for quantifying one-way propagation times and phase perturbations in the fibre length, using pulse-persecond (PPS) signals. The approach utilizes side mode injection of a 1550nm 10Gbps vertical cavity surface emitting laser (VCSEL) at the remote end. A 125 μs one-way time of flight was accurately measured for 25 km G655 fibre. Since the approach is all-optical, it avoids measurement inaccuracies introduced by electro-optical conversion phase delays. Furthermore, the implementation uses cost effective VCSEL technology and suited to a flexible range of network architectures, supporting a number of end-users conducting measurements at the remote end.

  16. PRECP: the Department of Energy's program on the nonlinearity of acid precipitation processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanner, R.L.; Tichler, J.; Brown, R.

    During the period of 1 April to 3 May 1985, staff from Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), and Pacific Northwest Laboratory (PNL), participated in a multifaceted, coordinated set of field studies from an aircraft logistical base in Columbus, OH, and a surface precipitation and air chemistry network in the Philadelphia area. The general goals of these activities, conducted within the DOE-sponsored PRocessing of Emissions by Clouds and Precipitation (PRECP) program were to obtain information concerning scavenging ratios and the vertical distribution of cloud and precipitation chemistry for sulfur and nitrogen oxides and oxyacids, and for oxidant speciesmore » in the vicinity of precipitating and nonprecipitating clouds. Profiling of pollutant concentrations and phase distributions, and studies of scavenging processes were accomplished principally by airborne measurements of aerosol and gaseous species in pre-cloud and below-cloud air and of aqueous-phase species in clouds and precipitation, accompanied by documentation of meteorological and cloud physics parameters in the sampled regimes. Studies in the Midwest utilized only limited surface precipitation collection and chemical measurements, whereas a more extensive ground precipitation network was deployed in the Philadelphia area studies together with surface air chemistry measurements at a single nonurban site.« less

  17. Flow networks for Ocean currents

    NASA Astrophysics Data System (ADS)

    Tupikina, Liubov; Molkenthin, Nora; Marwan, Norbert; Kurths, Jürgen

    2014-05-01

    Complex networks have been successfully applied to various systems such as society, technology, and recently climate. Links in a climate network are defined between two geographical locations if the correlation between the time series of some climate variable is higher than a threshold. Therefore, network links are considered to imply heat exchange. However, the relationship between the oceanic and atmospheric flows and the climate network's structure is still unclear. Recently, a theoretical approach verifying the correlation between ocean currents and surface air temperature networks has been introduced, where the Pearson correlation networks were constructed from advection-diffusion dynamics on an underlying flow. Since the continuous approach has its limitations, i.e., by its high computational complexity, we here introduce a new, discrete construction of flow-networks, which is then applied to static and dynamic velocity fields. Analyzing the flow-networks of prototypical flows we find that our approach can highlight the zones of high velocity by degree and transition zones by betweenness, while the combination of these network measures can uncover how the flow propagates within time. We also apply the method to time series data of the Equatorial Pacific Ocean Current and the Gulf Stream ocean current for the changing velocity fields, which could not been done before, and analyse the properties of the dynamical system. Flow-networks can be powerful tools to theoretically understand the step from system's dynamics to network's topology that can be analyzed using network measures and is used for shading light on different climatic phenomena.

  18. Satellite skill in detecting extreme episodes in near-surface air quality

    NASA Astrophysics Data System (ADS)

    Ruiz, D. J.; Prather, M. J.

    2017-12-01

    Ozone (O3) contributes to ambient air pollution, adversely affecting public health, agriculture, and ecosystems. Reliable, long-term, densely distributed surface networks are required to establish the scale, intensity and repeatability of major pollution events (designated here in a climatological sense as air quality extremes, AQX as defined in Schnell's work). Regrettably, such networks are only available for North America (NA) and Europe (EU), which does not include many populated regions where the deaths associated with air pollution exposure are alarmingly high. Directly measuring surface pollutants from space without lidar is extremely difficult. Mapping of daily pollution events requires cross-track nadir scanners and these have limited sensitivity to surface O3 levels. This work examines several years of coincident surface and OMI satellite measurements over NA-EU, in combination with a chemistry-transport model (CTM) hindcast of that period to understand how the large-scale AQX episodes may extend into the free troposphere and thus be more amenable to satellite mapping. We show how extreme NA-EU episodes are measured from OMI and then look for such patterns over other polluted regions of the globe. We gather individual high-quality O3 surface site measurements from these other regions, to check on our satellite detection. Our approach with global satellite detection would avoid issues associated with regional variations in seasonality, chemical regime, data product biases; and it does not require defining a separate absolute threshold for each data product (surface site and satellite). This also enables coherent linking of the extreme events into large-scale pollution episodes whose magnitude evolves over 100's of km for several days. Tools used here include the UC Irvine CTM, which shows that much of the O3 surface variability is lost at heights above 2 km, but AQX local events are readily seen in a 0-3 km column average. The OMI data are taken from X. Liu's dataset using an improved algorithm for detection of tropospheric O3. Surface site observations outside NA and EU are taken from research stations where possible.

  19. Rainfall estimation from microwave links in São Paulo, Brazil.

    NASA Astrophysics Data System (ADS)

    Rios Gaona, Manuel Felipe; Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2017-04-01

    Rainfall estimation from microwave link networks has been successfully demonstrated in countries such as the Netherlands, Israel and Germany. The path-averaged rainfall intensity can be computed from the signal attenuation between cell phone towers. Although this technique is still in development, it offers great opportunities to retrieve rainfall rates at high spatiotemporal resolutions very close to the ground surface. High spatiotemporal resolutions and closer-to-ground measurements are highly appreciated, especially in urban catchments where high-impact events such as flash-floods develop in short time scales. We evaluate here this rainfall measurement technique for a tropical climate, something that has hardly been done previously. This is highly relevant since many countries with few surface rainfall observations are located in the tropics. The test-bed is the Brazilian city of São Paulo. The performance of 16 microwave links was evaluated, from a network of 200 links, for the last 3 months of 2014. The open software package RAINLINK was employed to obtain link rainfall estimates. The evaluation was done through a dense automatic gauge network. Results are promising and encouraging, especially for short links for which a high correlation (> 0.9) and a low bias (< 5%) were obtained.

  20. Virtual Sensors for On-line Wheel Wear and Part Roughness Measurement in the Grinding Process

    PubMed Central

    Arriandiaga, Ander; Portillo, Eva; Sánchez, Jose A.; Cabanes, Itziar; Pombo, Iñigo

    2014-01-01

    Grinding is an advanced machining process for the manufacturing of valuable complex and accurate parts for high added value sectors such as aerospace, wind generation, etc. Due to the extremely severe conditions inside grinding machines, critical process variables such as part surface finish or grinding wheel wear cannot be easily and cheaply measured on-line. In this paper a virtual sensor for on-line monitoring of those variables is presented. The sensor is based on the modelling ability of Artificial Neural Networks (ANNs) for stochastic and non-linear processes such as grinding; the selected architecture is the Layer-Recurrent neural network. The sensor makes use of the relation between the variables to be measured and power consumption in the wheel spindle, which can be easily measured. A sensor calibration methodology is presented, and the levels of error that can be expected are discussed. Validation of the new sensor is carried out by comparing the sensor's results with actual measurements carried out in an industrial grinding machine. Results show excellent estimation performance for both wheel wear and surface roughness. In the case of wheel wear, the absolute error is within the range of microns (average value 32 μm). In the case of surface finish, the absolute error is well below Ra 1 μm (average value 0.32 μm). The present approach can be easily generalized to other grinding operations. PMID:24854055

  1. Atmospheric ammonia and particulate inorganic nitrogen over the United States

    EPA Science Inventory

    We use in situ observations from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network, the Midwest Ammonia Monitoring Project, 11 surface site campaigns as well as Infrared Atmospheric Sounding Interferometer (IASI) satellite measurements with the GEOS-Ch...

  2. Lung mass density analysis using deep neural network and lung ultrasound surface wave elastography.

    PubMed

    Zhou, Boran; Zhang, Xiaoming

    2018-05-23

    Lung mass density is directly associated with lung pathology. Computed Tomography (CT) evaluates lung pathology using the Hounsfield unit (HU) but not lung density directly. We have developed a lung ultrasound surface wave elastography (LUSWE) technique to measure the surface wave speed of superficial lung tissue. The objective of this study was to develop a method for analyzing lung mass density of superficial lung tissue using a deep neural network (DNN) and synthetic data of wave speed measurements with LUSWE. The synthetic training dataset of surface wave speed, excitation frequency, lung mass density, and viscoelasticity from LUSWE (788,000 in total) was used to train the DNN model. The DNN was composed of 3 hidden layers of 1024 neurons for each layer and trained for 10 epochs with a batch size of 4096 and a learning rate of 0.001 with three types of optimizers. The test dataset (4000) of wave speeds at three excitation frequencies (100, 150, and 200 Hz) and shear elasticity of superficial lung tissue was used to predict the lung density and evaluate its accuracy compared with predefined lung mass densities. This technique was then validated on a sponge phantom experiment. The obtained results showed that predictions matched well with test dataset (validation accuracy is 0.992) and experimental data in the sponge phantom experiment. This method may be useful to analyze lung mass density by using the DNN model together with the surface wave speed and lung stiffness measurements. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Toward Continental-scale Rainfall Monitoring Using Commercial Microwave Links From Cellular Communication Networks

    NASA Astrophysics Data System (ADS)

    Uijlenhoet, R.; Leijnse, H.; Overeem, A.

    2017-12-01

    Accurate and timely surface precipitation measurements are crucial for water resources management, agriculture, weather prediction, climate research, as well as ground validation of satellite-based precipitation estimates. However, the majority of the land surface of the earth lacks such data, and in many parts of the world the density of surface precipitation gauging networks is even rapidly declining. This development can potentially be counteracted by using received signal level data from the enormous number of microwave links used worldwide in commercial cellular communication networks. Along such links, radio signals propagate from a transmitting antenna at one base station to a receiving antenna at another base station. Rain-induced attenuation and, subsequently, path-averaged rainfall intensity can be retrieved from the signal's attenuation between transmitter and receiver. We have previously shown how one such a network can be used to retrieve the space-time dynamics of rainfall for an entire country (The Netherlands, ˜35,500 km2), based on an unprecedented number of links (˜2,400) and a rainfall retrieval algorithm that can be applied in real time. This demonstrated the potential of such networks for real-time rainfall monitoring, in particular in those parts of the world where networks of dedicated ground-based rainfall sensors are often virtually absent. The presentation will focus on the potential for upscaling this technique to continental-scale rainfall monitoring in Europe. In addition, several examples of recent applications of this technique on other continents (South America, Africa, Asia and Australia) will be given.

  4. A Deep Space Network Portable Radio Science Receiver

    NASA Technical Reports Server (NTRS)

    Jongeling, Andre P.; Sigman, Elliott H.; Chandra, Kumar; Trinh, Joseph T.; Navarro, Robert; Rogstad, Stephen P.; Goodhart, Charles E.; Proctor, Robert C.; Finley, Susan G.; White, Leslie A.

    2009-01-01

    The Radio Science Receiver (RSR) is an open-loop receiver installed in NASA s Deep Space Network (DSN), which digitally filters and records intermediate-frequency (IF) analog signals. The RSR is an important tool for the Cassini Project, which uses it to measure perturbations of the radio-frequency wave as it travels between the spacecraft and the ground stations, allowing highly detailed study of the composition of the rings, atmosphere, and surface of Saturn and its satellites.

  5. Kansas ground-water observation-well network, 1985

    USGS Publications Warehouse

    Dague, B.J.; Stullken, L.E.

    1986-01-01

    Water level measurements are made in 1,892 selected wells in 73 counties, which currently (1985) comprise the Kansas groundwater observation-well network. These measurements are made on a continuous, monthly, quarterly, or annual basis. Water level measurements have been made in observation wells since 1937 as part of a cooperative program among the Kansas Geological Survey , the Kansas State Board of Agriculture, the city of Wichita, and the U.S. Geological Survey. The objectives of the observation-well cooperative program are: (1) to provide long-term records of water level fluctuations in representative wells, (2) to facilitate the determination of possible water level trends that may indicate future availability of groundwater supplies, (3) to aid in the determination of possible changes in the base flow of streams, and (4) to provide information for use in water-resources research. This report lists for each well in the network the location, the first year of recorded water level measurement, the frequency and number of measurements, the land-surface altitude, hexagon-grid identifiers for wells in the High Plains aquifer, and the principal geologic unit(s) in which the well is completed. (USGS)

  6. Greenhouse gas network design using backward Lagrangian particle dispersion modelling - Part 1: Methodology and Australian test case

    NASA Astrophysics Data System (ADS)

    Ziehn, T.; Nickless, A.; Rayner, P. J.; Law, R. M.; Roff, G.; Fraser, P.

    2014-03-01

    This paper describes the generation of optimal atmospheric measurement networks for determining carbon dioxide fluxes over Australia using inverse methods. A Lagrangian particle dispersion model is used in reverse mode together with a Bayesian inverse modelling framework to calculate the relationship between weekly surface fluxes and hourly concentration observations for the Australian continent. Meteorological driving fields are provided by the regional version of the Australian Community Climate and Earth System Simulator (ACCESS) at 12 km resolution at an hourly time scale. Prior uncertainties are derived on a weekly time scale for biosphere fluxes and fossil fuel emissions from high resolution BIOS2 model runs and from the Fossil Fuel Data Assimilation System (FFDAS), respectively. The influence from outside the modelled domain is investigated, but proves to be negligible for the network design. Existing ground based measurement stations in Australia are assessed in terms of their ability to constrain local flux estimates from the land. We find that the six stations that are currently operational are already able to reduce the uncertainties on surface flux estimates by about 30%. A candidate list of 59 stations is generated based on logistic constraints and an incremental optimization scheme is used to extend the network of existing stations. In order to achieve an uncertainty reduction of about 50% we need to double the number of measurement stations in Australia. Assuming equal data uncertainties for all sites, new stations would be mainly located in the northern and eastern part of the continent.

  7. Greenhouse gas network design using backward Lagrangian particle dispersion modelling - Part 1: Methodology and Australian test case

    NASA Astrophysics Data System (ADS)

    Ziehn, T.; Nickless, A.; Rayner, P. J.; Law, R. M.; Roff, G.; Fraser, P.

    2014-09-01

    This paper describes the generation of optimal atmospheric measurement networks for determining carbon dioxide fluxes over Australia using inverse methods. A Lagrangian particle dispersion model is used in reverse mode together with a Bayesian inverse modelling framework to calculate the relationship between weekly surface fluxes, comprising contributions from the biosphere and fossil fuel combustion, and hourly concentration observations for the Australian continent. Meteorological driving fields are provided by the regional version of the Australian Community Climate and Earth System Simulator (ACCESS) at 12 km resolution at an hourly timescale. Prior uncertainties are derived on a weekly timescale for biosphere fluxes and fossil fuel emissions from high-resolution model runs using the Community Atmosphere Biosphere Land Exchange (CABLE) model and the Fossil Fuel Data Assimilation System (FFDAS) respectively. The influence from outside the modelled domain is investigated, but proves to be negligible for the network design. Existing ground-based measurement stations in Australia are assessed in terms of their ability to constrain local flux estimates from the land. We find that the six stations that are currently operational are already able to reduce the uncertainties on surface flux estimates by about 30%. A candidate list of 59 stations is generated based on logistic constraints and an incremental optimisation scheme is used to extend the network of existing stations. In order to achieve an uncertainty reduction of about 50%, we need to double the number of measurement stations in Australia. Assuming equal data uncertainties for all sites, new stations would be mainly located in the northern and eastern part of the continent.

  8. Map showing the potentiometric surface of the Magothy Aquifer in southern Maryland, August 1980

    USGS Publications Warehouse

    Mack, Frederick K.; Wheeler, Judith C.; Curtin, Stephen E.

    1981-01-01

    This map is based on measurements made in a network of 77 observation wells. Highest levels of the potentiometric surface, 61 to 64 feet above sea level, were near the outcrop or subcrop of the aquifer in topographically high areas of Anne Arundel and northern Prince Georges Counties. The potentiometric surface slopes toward centers of pumpage near Annapolis, in northern Charles County, and southern Prince Georges County. Two separate , distinct, and extensive cones of depression have developed in the surface around the well fields of Waldorf, in northern Charles County, and the Chalk Point power plant, in southern Prince Georges County. The cone of depression in the Annapolis area has coalesced with a more shallow cone that includes the Broadneck Peninsula. The network of wells was developed and is operated and maintained as part of the cooperative program between the U.S. Geological Survey and agencies of the Maryland Department of Natural Resources. (USGS)

  9. Using Neural Networks to Improve the Performance of Radiative Transfer Modeling Used for Geometry Dependent Surface Lambertian-Equivalent Reflectivity Calculations

    NASA Technical Reports Server (NTRS)

    Fasnacht, Zachary; Qin, Wenhan; Haffner, David P.; Loyola, Diego; Joiner, Joanna; Krotkov, Nickolay; Vasilkov, Alexander; Spurr, Robert

    2017-01-01

    Surface Lambertian-equivalent reflectivity (LER) is important for trace gas retrievals in the direct calculation of cloud fractions and indirect calculation of the air mass factor. Current trace gas retrievals use climatological surface LER's. Surface properties that impact the bidirectional reflectance distribution function (BRDF) as well as varying satellite viewing geometry can be important for retrieval of trace gases. Geometry Dependent LER (GLER) captures these effects with its calculation of sun normalized radiances (I/F) and can be used in current LER algorithms (Vasilkov et al. 2016). Pixel by pixel radiative transfer calculations are computationally expensive for large datasets. Modern satellite missions such as the Tropospheric Monitoring Instrument (TROPOMI) produce very large datasets as they take measurements at much higher spatial and spectral resolutions. Look up table (LUT) interpolation improves the speed of radiative transfer calculations but complexity increases for non-linear functions. Neural networks perform fast calculations and can accurately predict both non-linear and linear functions with little effort.

  10. Solutions Network Formulation Report. Integrating Salinity Measurements from Aquarius into the Harmful Algal Blooms Observing System

    NASA Technical Reports Server (NTRS)

    Anderson, Daniel; Lewis, David; Hilbert, Kent

    2007-01-01

    This Candidate Solution suggests the use of Aquarius sea surface salinity measurements to improve the NOAA/NCDDC (National Oceanic and Atmospheric Administration s National Coastal Data Development Center) HABSOS (Harmful Algal Blooms Observing System) DST (decision support tool) by enhancing development and movement forecasts of HAB events as well as potential species identification. In the proposed configuration, recurring salinity measurements from the Aquarius mission would augment HABSOS sea surface temperature and in situ ocean current measurements. Thermohaline circulation observations combined with in situ measurements increase the precision of HAB event movement forecasting. These forecasts allow coastal managers and public health officials to make more accurate and timely warnings to the public and to better direct science teams to event sites for collection and further measurements.

  11. Verification of satellite radar remote sensing based estimates of boreal and subalpine growing seasons using an ecosystem process model and surface biophysical measurement network information

    NASA Technical Reports Server (NTRS)

    McDonald, K. C.; Kimball, J. S.; Zimmerman, R.

    2002-01-01

    We employ daily surface Radar backscatter data from the SeaWinds Ku-band Scatterometer onboard Quikscat to estimate landscape freeze-thaw state and associated length of the seasonal non-frozen period as a surrogate for determining the annual growing season across boreal and subalpine regions of North America for 2000 and 2001.

  12. Increased Functional MEG Connectivity as a Hallmark of MRI-Negative Focal and Generalized Epilepsy.

    PubMed

    Li Hegner, Yiwen; Marquetand, Justus; Elshahabi, Adham; Klamer, Silke; Lerche, Holger; Braun, Christoph; Focke, Niels K

    2018-05-15

    Epilepsy is one of the most prevalent neurological diseases with a high morbidity. Accumulating evidence has shown that epilepsy is an archetypical neural network disorder. Here we developed a non-invasive cortical functional connectivity analysis based on magnetoencephalography (MEG) to assess commonalities and differences in the network phenotype in different epilepsy syndromes (non-lesional/cryptogenic focal and idiopathic/genetic generalized epilepsy). Thirty-seven epilepsy patients with normal structural brain anatomy underwent a 30-min resting state MEG measurement with eyes closed. We only analyzed interictal epochs without epileptiform discharges. The imaginary part of coherency was calculated as an indicator of cortical functional connectivity in five classical frequency bands. This connectivity measure was computed between all sources on individually reconstructed cortical surfaces that were surface-aligned to a common template. In comparison to healthy controls, both focal and generalized epilepsy patients showed widespread increased functional connectivity in several frequency bands, demonstrating the potential of elevated functional connectivity as a common pathophysiological hallmark in different epilepsy types. Furthermore, the comparison between focal and generalized epilepsies revealed increased network connectivity in bilateral mesio-frontal and motor regions specifically for the generalized epilepsy patients. Our study indicated that the surface-based normalization of MEG sources of individual brains enables the comparison of imaging findings across subjects and groups on a united platform, which leads to a straightforward and effective disclosure of pathological network characteristics in epilepsy. This approach may allow for the definition of more specific markers of different epilepsy syndromes, and increased MEG-based resting-state functional connectivity seems to be a common feature in MRI-negative epilepsy syndromes.

  13. TOLNet ozone lidar intercomparison during the discover-aq and frappé campaigns

    NASA Astrophysics Data System (ADS)

    Newchurch, Michael J.; Alvarez, Raul J.; Berkoff, Timothy A.; Carrion, William; DeYoung, Russell J.; Ganoe, Rene; Gronoff, Guillaume; Kirgis, Guillaume; Kuang, Shi; Langford, Andy O.; Leblanc, Thierry; McGee, Thomas J.; Pliutau, Denis; Senff, Christoph; Sullivan, John T.; Sumnicht, Grant; Twigg, Laurence W.; Wang, Lihua

    2018-04-01

    The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure atmospheric profiles of ozone and aerosols, to contribute to air-quality studies, atmospheric modeling, and satellite validation efforts. The accurate characterization of these lidars is of critical interest, and is necessary to determine cross-instrument calibration uniformity. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the "Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality" (DISCOVER-AQ) mission and the "Front Range Air Pollution and Photochemistry Éxperiment" (FRAPPÉ) to measure sub-hourly ozone variations from near the surface to the top of the troposphere. Although large differences occur at few individual altitudes in the near field and far field range, the TOLNet lidars agree with each other within ±4%. These results indicate excellent measurement accuracy for the TOLNet lidars that is suitable for use in air-quality and ozone modeling efforts.

  14. Are Geotehrmal Reservoirs Stressed Out?

    NASA Astrophysics Data System (ADS)

    Davatzes, N. C.; Laboso, R. C.; Layland-Bachmann, C. E.; Feigl, K. L.; Foxall, W.; Tabrez, A. R.; Mellors, R. J.; Templeton, D. C.; Akerley, J.

    2017-12-01

    Crustal permeability can be strongly influenced by developing connected networks of open fractures. However, the detailed evolution of a fracture network, its extent, and the persistence of fracture porosity are difficult to analyze. Even in fault-hosted geothermal systems, where heat is brought to the surface from depth along a fault, hydrothermal flow is heterogeneously distributed. This is presumably due to variations in fracture density, connectivity, and attitude, as well as variations in fracture permeability caused by sealing of fractures by precipitated cements or compaction. At the Brady Geothermal field in Nevada, we test the relationship between the modeled local stress state perturbed by dislocations representing fault slip or volume changes in the geothermal reservoir inferred from surface deformation measured by InSAR and the location of successful geothermal wells, hydrothermal activity, and seismicity. We postulate that permeability is favored in volumes that experience positive Coulomb stress changes and reduced compression, which together promote high densities of dilatant fractures. Conversely, permeability can be inhibited in locations where Coulomb stress is reduced, compression promotes compaction, or where the faults are poorly oriented in the stress field and consequently slip infrequently. Over geologic time scales spanning the development of the fault system, these local stress states are strongly influenced by the geometry of the fault network relative to the remote stress driving slip. At shorter time scales, changes in fluid pressure within the fracture network constituting the reservoir cause elastic dilations and contractions. We integrate: (1) direct observations of stress state and fractures in boreholes and the mapped geometry of the fault network; (2) evidence of permeability from surface hydrothermal features, production/injection wells and surface deformations related to pumping history; and (3) seismicity to test the correlation between the reservoir geometry and models of the local stress state.

  15. Role of Unchannelized Flow in Determining Bifurcation Angle in Distributary Channel Networks

    NASA Astrophysics Data System (ADS)

    Coffey, T.

    2016-12-01

    Distributary channel bifurcations on river deltas are important features in both modern systems, where the channels control water, sediment, and nutrient routing, and in ancient deltas, where the channel networks can dictate large-scale stratigraphic heterogeneity. Geometric features of distributary channels, such as channel dimensions and network structure, have long been thought to be defined by factors such as flow velocity, grain size, or channel aspect ratio where the channel enters the basin. We use theory originally developed for tributary networks fed by groundwater seepage to understand the dynamics of distributary channel bifurcations. Interestingly, bifurcations in groundwater-fed tributary networks have been shown to evolve dependent on the diffusive flow patterns around the channel network. These networks possess a characteristic bifurcation angle of 72°, due to Laplacian flow (gradient2h2=0, where h is water surface elevation) in the groundwater flow field near tributary channel tips. We develop and test the hypothesis that bifurcation angles in distributary channel networks are likewise dictated by the external flow field, in this case the shallow surface water surrounding the subaqueous portion of distributary channel bifurcations in a deltaic setting. We measured 130 unique distributary channel bifurcations in a single experimental delta and in 10 natural deltas, yielding a mean angle of 70.35°±2.59° (95% confidence interval), in line with the theoretical prediction. This similarity implies that flow outside of the distributary channel network is also Laplacian, which we use scaling arguments to justify. We conclude that the dynamics of the unchannelized flow control bifurcation formation in distributary networks.

  16. Application of neural network technique to determine a corrector surface for global geopotential model using GPS/levelling measurements in Egypt

    NASA Astrophysics Data System (ADS)

    Elshambaky, Hossam Talaat

    2018-01-01

    Owing to the appearance of many global geopotential models, it is necessary to determine the most appropriate model for use in Egyptian territory. In this study, we aim to investigate three global models, namely EGM2008, EIGEN-6c4, and GECO. We use five mathematical transformation techniques, i.e., polynomial expression, exponential regression, least-squares collocation, multilayer feed forward neural network, and radial basis neural networks to make the conversion from regional geometrical geoid to global geoid models and vice versa. From a statistical comparison study based on quality indexes between previous transformation techniques, we confirm that the multilayer feed forward neural network with two neurons is the most accurate of the examined transformation technique, and based on the mean tide condition, EGM2008 represents the most suitable global geopotential model for use in Egyptian territory to date. The final product gained from this study was the corrector surface that was used to facilitate the transformation process between regional geometrical geoid model and the global geoid model.

  17. NASA GISS Surface Temperature (GISTEMP) Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, G.; Ruedy, R.; Persin, A

    The NASA GISS Surface Temperature (GISTEMP) analysis provides a measure of the changing global surface temperature with monthly resolution for the period since 1880, when a reasonably global distribution of meteorological stations was established. The input data that the GISTEMP Team use for the analysis, collected by many national meteorological services around the world, are the adjusted data of the Global Historical Climatology Network (GHCN) Vs. 3 (this represents a change from prior use of unadjusted Vs. 2 data) (Peterson and Vose, 1997 and 1998), United States Historical Climatology Network (USHCN) data, and SCAR (Scientific Committee on Antarctic Research) datamore » from Antarctic stations. Documentation of the basic analysis method is provided by Hansen et al. (1999), with several modifications described by Hansen et al. (2001). The GISS analysis is updated monthly, however CDIAC's presentation of the data here is updated annually.« less

  18. Modelling local GPS/levelling geoid undulations using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Kavzoglu, T.; Saka, M. H.

    2005-04-01

    The use of GPS for establishing height control in an area where levelling data are available can involve the so-called GPS/levelling technique. Modelling of the GPS/levelling geoid undulations has usually been carried out using polynomial surface fitting, least-squares collocation (LSC) and finite-element methods. Artificial neural networks (ANNs) have recently been used for many investigations, and proven to be effective in solving complex problems represented by noisy and missing data. In this study, a feed-forward ANN structure, learning the characteristics of the training data through the back-propagation algorithm, is employed to model the local GPS/levelling geoid surface. The GPS/levelling geoid undulations for Istanbul, Turkey, were estimated from GPS and precise levelling measurements obtained during a field study in the period 1998-99. The results are compared to those produced by two well-known conventional methods, namely polynomial fitting and LSC, in terms of root mean square error (RMSE) that ranged from 3.97 to 5.73 cm. The results show that ANNs can produce results that are comparable to polynomial fitting and LSC. The main advantage of the ANN-based surfaces seems to be the low deviations from the GPS/levelling data surface, which is particularly important for distorted levelling networks.

  19. South Central Coast Cooperative Aerometric Monitoring Program (SCCCAMP).

    NASA Astrophysics Data System (ADS)

    Dabberdt, Waiter F.; Viezee, William

    1987-09-01

    The SCCCAMP field measurement program, conducted 3 September to 7 October 1985, is the most comprehensive mesoscale photochemical study of its type ever undertaken. The study area encompasses 2 × 104 km2 of coastal and interior south-central California including the Santa Barbara Channel. A review of earlier experimental and analytical studies in the area is followed by the organizational framework and planning for this cooperative program. The experimental design and measurement systems are described. Existing ground-based meteorological and air pollution networks were supplemented by additional surface aerometric stations, dual Doppler radars, rawinsondes, and a network of Doppler acoustic profilers. Airborne measurement platforms included one dual-channel lidar, three aerometric sampling aircraft, and a meteorological research aircraft. Gas tracer tests included 4-h releases of three perfluorocarbon gas tracers. Tracer measurements were made over two-day periods at 50 surface locations and aloft by aircraft with a near-realtime two-trap chromatographic system. Four multi-day intensive operational periods (IOP) are described, and illustrative results from one IOP are presented when extremely high ozone concentrations were observed at ground level (230 ppb) and aloft (290 ppb). The availability of the composite data base is indicated.

  20. Evaluation of MODIS and VIIRS Albedo Products Using Ground and Airborne Measurements and Development of Ceos/Wgcv/Lpv Albedo Ecv Protocols

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Roman, M. O.; Schaaf, C.; Sun, Q.; Liu, Y.; Saenz, E. J.; Gatebe, C. K.

    2014-12-01

    Surface albedo, defined as the ratio of the hemispheric reflected solar radiation flux to the incident flux upon the surface, is one of the essential climate variables and quantifies the radiation interaction between the atmosphere and the land surface. An absolute accuracy of 0.02-0.05 for global surface albedo is required by climate models. The MODerate resolution Imaging Spectroradiometer (MODIS) standard BRDF/albedo product makes use of a linear "kernel-driven" RossThick-LiSparse Reciprocal (RTLSR) BRDF model to describe the reflectance anisotropy. The surface albedo is calculated by integrating the BRDF over the above ground hemisphere. While MODIS Terra was launched in Dec 1999 and MODIS Aqua in 2002, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi-NPP satellite was launched more recently on October 28, 2011. Thus a long term record of BRDF, albedo and Nadir BRDF-Adjusted Reflectance (NBAR) products from VIIRS can be generated through MODIS heritage algorithms. Several investigations have evaluated the MODIS albedo products during the growing season, as well as during dormant and snow covered periods. The Land Product Validation (LPV) sub-group of the Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV) aims to address the challenges associated with the validation of global land products. The validation of global surface radiation/albedo products is one of the LPV subgroup activities. In this research, a reference dataset covering various land surface types and vegetation structure is assembled to assess the accuracy of satellite albedo products. This dataset includes in situ data (Baseline Surface Radiation Network (BSRN), FLUXNET and Long Term Ecological Research network (LTER) etc.) and airborne measurements (e.g. Cloud Absorption Radiometer (CAR)). Spatially representative analysis is applied to each site to establish whether the ground measurements can adequately represent moderate spatial resolution remotely sensed albedo products.

  1. Evaluation of a cosmic-ray neutron sensor network for improved land surface model prediction

    NASA Astrophysics Data System (ADS)

    Baatz, Roland; Hendricks Franssen, Harrie-Jan; Han, Xujun; Hoar, Tim; Reemt Bogena, Heye; Vereecken, Harry

    2017-05-01

    In situ soil moisture sensors provide highly accurate but very local soil moisture measurements, while remotely sensed soil moisture is strongly affected by vegetation and surface roughness. In contrast, cosmic-ray neutron sensors (CRNSs) allow highly accurate soil moisture estimation on the field scale which could be valuable to improve land surface model predictions. In this study, the potential of a network of CRNSs installed in the 2354 km2 Rur catchment (Germany) for estimating soil hydraulic parameters and improving soil moisture states was tested. Data measured by the CRNSs were assimilated with the local ensemble transform Kalman filter in the Community Land Model version 4.5. Data of four, eight and nine CRNSs were assimilated for the years 2011 and 2012 (with and without soil hydraulic parameter estimation), followed by a verification year 2013 without data assimilation. This was done using (i) a regional high-resolution soil map, (ii) the FAO soil map and (iii) an erroneous, biased soil map as input information for the simulations. For the regional soil map, soil moisture characterization was only improved in the assimilation period but not in the verification period. For the FAO soil map and the biased soil map, soil moisture predictions improved strongly to a root mean square error of 0.03 cm3 cm-3 for the assimilation period and 0.05 cm3 cm-3 for the evaluation period. Improvements were limited by the measurement error of CRNSs (0.03 cm3 cm-3). The positive results obtained with data assimilation of nine CRNSs were confirmed by the jackknife experiments with four and eight CRNSs used for assimilation. The results demonstrate that assimilated data of a CRNS network can improve the characterization of soil moisture content on the catchment scale by updating spatially distributed soil hydraulic parameters of a land surface model.

  2. Piezocomposite Actuator Arrays for Correcting and Controlling Wavefront Error in Reflectors

    NASA Technical Reports Server (NTRS)

    Bradford, Samuel Case; Peterson, Lee D.; Ohara, Catherine M.; Shi, Fang; Agnes, Greg S.; Hoffman, Samuel M.; Wilkie, William Keats

    2012-01-01

    Three reflectors have been developed and tested to assess the performance of a distributed network of piezocomposite actuators for correcting thermal deformations and total wave-front error. The primary testbed article is an active composite reflector, composed of a spherically curved panel with a graphite face sheet and aluminum honeycomb core composite, and then augmented with a network of 90 distributed piezoelectric composite actuators. The piezoelectric actuator system may be used for correcting as-built residual shape errors, and for controlling low-order, thermally-induced quasi-static distortions of the panel. In this study, thermally-induced surface deformations of 1 to 5 microns were deliberately introduced onto the reflector, then measured using a speckle holography interferometer system. The reflector surface figure was subsequently corrected to a tolerance of 50 nm using the actuators embedded in the reflector's back face sheet. Two additional test articles were constructed: a borosilicate at window at 150 mm diameter with 18 actuators bonded to the back surface; and a direct metal laser sintered reflector with spherical curvature, 230 mm diameter, and 12 actuators bonded to the back surface. In the case of the glass reflector, absolute measurements were performed with an interferometer and the absolute surface was corrected. These test articles were evaluated to determine their absolute surface control capabilities, as well as to assess a multiphysics modeling effort developed under this program for the prediction of active reflector response. This paper will describe the design, construction, and testing of active reflector systems under thermal loads, and subsequent correction of surface shape via distributed peizeoelctric actuation.

  3. Bridging the Global Precipitation and Soil Moisture Active Passive Missions: Variability of Microwave Surface Emissivity from In situ and Remote Sensing Perspectives

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Kirstetter, P.; Hong, Y.; Turk, J.

    2016-12-01

    The overland precipitation retrievals from satellite passive microwave (PMW) sensors such as the Global Precipitation Mission (GPM) microwave imager (GMI) are impacted by the land surface emissivity. The estimation of PMW emissivity faces challenges because it is highly variable under the influence of surface properties such as soil moisture, surface roughness and vegetation. This study proposes an improved quantitative understanding of the relationship between the emissivity and surface parameters. Surface parameter information is obtained through (i) in-situ measurements from the International Soil Moisture Network and (ii) satellite measurements from the Soil Moisture Active and Passive mission (SMAP) which provides global scale soil moisture estimates. The variation of emissivity is quantified with soil moisture, surface temperature and vegetation at various frequencies/polarization and over different types of land surfaces to sheds light into the processes governing the emission of the land. This analysis is used to estimate the emissivity under rainy conditions. The framework built with in-situ measurements serves as a benchmark for satellite-based analyses, which paves a way toward global scale emissivity estimates using SMAP.

  4. In Situ Carbon Dioxide and Methane Measurements from a Tower Network in Los Angeles

    NASA Astrophysics Data System (ADS)

    Verhulst, K. R.; Karion, A.; Kim, J.; Sloop, C.; Salameh, P.; Yadav, V.; Mueller, K.; Pongetti, T.; Newman, S.; Wong, C.; Hopkins, F. M.; Rao, P.; Miller, J. B.; Keeling, R. F.; Weiss, R. F.; Miller, C. E.; Duren, R. M.; Andrews, A. E.

    2016-12-01

    Urbanization has concentrated a significant fraction of the world's anthropogenic greenhouse gas (GHG) emissions into a relatively small fraction of the earth's land surface. Concern about rising GHG levels has motivated many nations to begin regulating and/or mitigating emissions, motivating the need for robust, consistent, traceable GHG observation methods in complex urban domains. The Los Angeles Megacity Carbon Project involves continuous and flask sampling of GHGs, trace gases, and isotopes at surface sites situated throughout the greater Los Angeles (LA) area. There are three signals of interest for utilizing urban GHG measurements in local or regional inverse modeling studies: (1) changes in the measured mole fraction at one location within a 24-hour period, (2) gradients in the measured mole fraction between locations within the surface measurement network, (3) local enhancements, or the difference between a measurement at one location and an inferred local "background" mole fraction. We report CO2 and CH4 measurements collected from eleven wavelength-scanned cavity ring-down analyzers (Picarro, Inc.). All sites use an internally consistent sampling protocol and calibration strategy. We show that the LA observation sites exhibit significant GHG enhancements relative to background, with evidence of systematic diurnal, weekly, and monthly variability. In Los Angeles, the "ideal" background sampling location could vary substantially depending on the time of year and local meteorology. Use of a single site for background determination may not be sufficient for reliable determination of GHG enhancements. We estimate the total uncertainty in the enhancement and examine how the choice of background influences the GHG enhancement signal. Uncertainty in GHG enhancements will ultimately translate into uncertainty in the fluxes derived from inverse modeling studies. In future work, the LA surface observations will be incorporated into an inverse-modeling framework to provide "top down," spatially-resolved GHG flux estimates, constrained by observations, for comparison with inventory-based ("bottom-up") estimates.

  5. Direct determination of geocenter motion by combining SLR, VLBI, GNSS, and DORIS time series

    NASA Astrophysics Data System (ADS)

    Wu, X.; Abbondanza, C.; Altamimi, Z.; Chin, T. M.; Collilieux, X.; Gross, R. S.; Heflin, M. B.; Jiang, Y.; Parker, J. W.

    2013-12-01

    The longest-wavelength surface mass transport includes three degree-one spherical harmonic components involving hemispherical mass exchanges. The mass load causes geocenter motion between the center-of-mass of the total Earth system (CM) and the center-of-figure of the solid Earth surface (CF), and deforms the solid Earth. Estimation of the degree-1 surface mass changes through CM-CF and degree-1 deformation signatures from space geodetic techniques can thus complement GRACE's time-variable gravity data to form a complete change spectrum up to a high resolution. Currently, SLR is considered the most accurate technique for direct geocenter motion determination. By tracking satellite motion from ground stations, SLR determines the motion between CM and the geometric center of its ground network (CN). This motion is then used to approximate CM-CF and subsequently for deriving degree-1 mass changes. However, the SLR network is very sparse and uneven in global distribution. The average number of operational tracking stations is about 20 in recent years. The poor network geometry can have a large CN-CF motion and is not ideal for the determination of CM-CF motion and degree-1 mass changes. We recently realized an experimental Terrestrial Reference Frame (TRF) through station time series using the Kalman filter and the RTS smoother. The TRF has its origin defined at nearly instantaneous CM using weekly SLR measurement time series. VLBI, GNSS and DORIS time series are combined weekly with those of SLR and tied to the geocentric (CM) reference frame through local tie measurements and co-motion constraints on co-located geodetic stations. The unified geocentric time series of the four geodetic techniques provide a much better network geometry for direct geodetic determination of geocenter motion. Results from this direct approach using a 90-station network compares favorably with those obtained from joint inversions of GPS/GRACE data and ocean bottom pressure models. We will also show that a previously identified discrepancy in X-component between direct SLR orbit-tracking and inverse determined geocenter motions is largely reconciled with the new unified network.

  6. Development of gridded solar radiation data over Belgium based on Meteosat and in-situ observations

    NASA Astrophysics Data System (ADS)

    Journée, Michel; Vanderveken, Gilles; Bertrand, Cédric

    2013-04-01

    Knowledge on solar resources is highly important for all forms of solar energy applications. With the recent development in solar-based technologies national meteorological services are faced with increasing demands for high-quality and reliable site-time specific solar resource information. Traditionally, solar radiation is observed by means of networks of meteorological stations. Costs for installation and maintenance of such networks are very high and national networks comprise only few stations. Consequently the availability of ground-based solar radiation measurements has proven to be spatially and temporally inadequate for many applications. To overcome such a limitation, a major effort has been undertaken at the Royal Meteorological Institute of Belgium (RMI) to provide the solar energy industry, the electricity sector, governments, and renewable energy organizations and institutions with the most suitable and accurate information on the solar radiation resources at the Earth's surface over the Belgian territory. Only space-based observations can deliver a global coverage of the solar irradiation impinging on horizontal surface at the ground level. Because only geostationary data allow to capture the diurnal cycle of the solar irradiance at the Earth's surface, a method that combines information from Meteosat Second Generation satellites and ground-measurement has been implemented at RMI to generate high resolution solar products over Belgium on an operational basis. Besides these new products, the annual and seasonal variability of solar energy resource was evaluated, solar radiation climate zones were defined and the recent trend in solar radiation was characterized.

  7. The Unified Lunar Control Network 2005

    USGS Publications Warehouse

    Archinal, Brent A.; Rosiek, Mark R.; Kirk, Randolph L.; Redding, Bonnie L.

    2006-01-01

    This report documents a new general unified lunar control network and lunar topographic model based on a combination of Clementine images and a previous network derived from Earth-based & Apollo photographs, and Mariner 10, & Galileo images. This photogrammetric network solution is the largest planetary control network ever completed. It includes the determination of the 3-D positions of 272,931 points on the lunar surface and the correction of the camera angles for 43,866 Clementine images, using 546,126 tie point measurements. The solution RMS is 20 ?m (= 0.9 pixels) in the image plane, with the largest residual of 6.4 pixels. The explanation given here, along with the accompanying files, comprises the release of the network information and of global lunar digital elevation models (DEMs) derived from the network. A paper that will describe the solution and network in further detail will be submitted to a refereed journal, and will include additional background information, solution details, discussion of accuracy and precision, and explanatory figures.

  8. Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells.

    PubMed

    Xie, Shouyi; Ouyang, Zi; Jia, Baohua; Gu, Min

    2013-05-06

    Metal nanowire networks are emerging as next generation transparent electrodes for photovoltaic devices. We demonstrate the application of random silver nanowire networks as the top electrode on crystalline silicon wafer solar cells. The dependence of transmittance and sheet resistance on the surface coverage is measured. Superior optical and electrical properties are observed due to the large-size, highly-uniform nature of these networks. When applying the nanowire networks on the solar cells with an optimized two-step annealing process, we achieved as large as 19% enhancement on the energy conversion efficiency. The detailed analysis reveals that the enhancement is mainly caused by the improved electrical properties of the solar cells due to the silver nanowire networks. Our result reveals that this technology is a promising alternative transparent electrode technology for crystalline silicon wafer solar cells.

  9. How to most effectively expand the global surface ozone observing network

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.

    2016-02-01

    Surface ozone observations with modern instrumentation have been made around the world for more than 40 years. Some of these observations have been made as one-off activities with short-term, specific science objectives and some have been made as part of wider networks which have provided a foundational infrastructure of data collection, calibration, quality control, and dissemination. These observations provide a fundamental underpinning to our understanding of tropospheric chemistry, air quality policy, atmosphere-biosphere interactions, etc. brought together eight of these networks to provide a single data set of surface ozone observations. We investigate how representative this combined data set is of global surface ozone using the output from a global atmospheric chemistry model. We estimate that on an area basis, 25 % of the globe is observed (34 % land, 21 % ocean). Whereas Europe and North America have almost complete coverage, other continents, Africa, South America, Australia, and Asia (12-17 %) show significant gaps. Antarctica is surprisingly well observed (78 %). Little monitoring occurs over the oceans, with the tropical and southern oceans particularly poorly represented. The surface ozone over key biomes such as tropical forests and savanna is almost completely unmonitored. A chemical cluster analysis suggests that a significant number of observations are made of polluted air masses, but cleaner air masses whether over the land or ocean (especially again in the tropics) are significantly under-observed. The current network is unlikely to see the impact of the El Niño-Southern Oscillation (ENSO) but may be capable of detecting other planetary-scale signals. Model assessment and validation activities are hampered by a lack of observations in regions where the models differ substantially, as is the ability to monitor likely changes in surface ozone over the next century. Using our methodology we are able to suggest new sites which would help to close the gap in our ability to measure global surface ozone. An additional 20 surface ozone monitoring sites (a 20 % increase in the World Meteorological Organization Global Atmosphere Watch (WMO GAW) ozone sites or a 1 % increase in the total background network) located on 10 islands and in 10 continental regions would almost double the area observed. The cost of this addition to the network is small compared to other expenditure on atmospheric composition research infrastructure and would provide a significant long-term benefit to our understanding of the composition of the atmosphere, information which will also be available for consideration by air quality control managers and policy makers.

  10. Intercomparison of MODIS Albedo Retrievals and In Situ Measurements Across the Global FLUXNET Network

    NASA Technical Reports Server (NTRS)

    Cescatti, Alessandro; Marcolla, Barbara; Vannan, Suresh K. Santhana; Pan, Jerry Yun; Roman, Miguel O.; Yang, Xiaoyuan; Ciais, Philippe; Cook, Robert B.; Law, Beverly E.; Matteucci, Girogio; hide

    2012-01-01

    Surface albedo is a key parameter in the Earth's energy balance since it affects the amount of solar radiation directly absorbed at the planet surface. Its variability in time and space can be globally retrieved through the use of remote sensing products. To evaluate and improve the quality of satellite retrievals, careful intercomparisons with in situ measurements of surface albedo are crucial. For this purpose we compared MODIS albedo retrievals with surface measurements taken at 53 FLUXNET sites that met strict conditions of land cover homogeneity. A good agreement between mean yearly values of satellite retrievals and in situ measurements was found (R(exp 2)= 0.82). The mismatch is correlated to the spatial heterogeneity of surface albedo, stressing the relevance of land cover homogeneity when comparing point to pixel data. When the seasonal patterns of MODIS albedo is considered for different plant functional types, the match with surface observation is extremely good at all forest sites. On the contrary, in non-forest sites satellite retrievals underestimate in situ measurements across the seasonal cycle. The mismatch observed at grasslands and croplands sites is likely due to the extreme fragmentation of these landscapes, as confirmed by geostatistical attributes derived from high resolution scenes.

  11. Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth

    NASA Astrophysics Data System (ADS)

    Brantley, Susan L.; McDowell, William H.; Dietrich, William E.; White, Timothy S.; Kumar, Praveen; Anderson, Suzanne P.; Chorover, Jon; Lohse, Kathleen Ann; Bales, Roger C.; Richter, Daniel D.; Grant, Gordon; Gaillardet, Jérôme

    2017-12-01

    The critical zone (CZ), the dynamic living skin of the Earth, extends from the top of the vegetative canopy through the soil and down to fresh bedrock and the bottom of the groundwater. All humans live in and depend on the CZ. This zone has three co-evolving surfaces: the top of the vegetative canopy, the ground surface, and a deep subsurface below which Earth's materials are unweathered. The network of nine CZ observatories supported by the US National Science Foundation has made advances in three broad areas of CZ research relating to the co-evolving surfaces. First, monitoring has revealed how natural and anthropogenic inputs at the vegetation canopy and ground surface cause subsurface responses in water, regolith structure, minerals, and biotic activity to considerable depths. This response, in turn, impacts aboveground biota and climate. Second, drilling and geophysical imaging now reveal how the deep subsurface of the CZ varies across landscapes, which in turn influences aboveground ecosystems. Third, several new mechanistic models now provide quantitative predictions of the spatial structure of the subsurface of the CZ.Many countries fund critical zone observatories (CZOs) to measure the fluxes of solutes, water, energy, gases, and sediments in the CZ and some relate these observations to the histories of those fluxes recorded in landforms, biota, soils, sediments, and rocks. Each US observatory has succeeded in (i) synthesizing research across disciplines into convergent approaches; (ii) providing long-term measurements to compare across sites; (iii) testing and developing models; (iv) collecting and measuring baseline data for comparison to catastrophic events; (v) stimulating new process-based hypotheses; (vi) catalyzing development of new techniques and instrumentation; (vii) informing the public about the CZ; (viii) mentoring students and teaching about emerging multidisciplinary CZ science; and (ix) discovering new insights about the CZ. Many of these activities can only be accomplished with observatories. Here we review the CZO enterprise in the United States and identify how such observatories could operate in the future as a network designed to generate critical scientific insights. Specifically, we recognize the need for the network to study network-level questions, expand the environments under investigation, accommodate both hypothesis testing and monitoring, and involve more stakeholders. We propose a driving question for future CZ science and a hubs-and-campaigns model to address that question and target the CZ as one unit. Only with such integrative efforts will we learn to steward the life-sustaining critical zone now and into the future.

  12. The Everglades Depth Estimation Network (EDEN) for Support of Ecological and Biological Assessments

    USGS Publications Warehouse

    Telis, Pamela A.

    2006-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level monitoring, ground-elevation modeling, and water-surface modeling that provides scientists and managers with current (1999-present), online water-depth information for the entire freshwater portion of the Greater Everglades. Presented on a 400-square-meter grid spacing, EDEN offers a consistent and documented dataset that can be used by scientists and managers to (1) guide large-scale field operations, (2) integrate hydrologic and ecological responses, and (3) support biological and ecological assessments that measure ecosystem responses to the implementation of the Comprehensive Everglades Restoration Plan.

  13. Support surfaces for pressure ulcer prevention: A network meta-analysis

    PubMed Central

    Dumville, Jo C.; Cullum, Nicky

    2018-01-01

    Background Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult. Objectives To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness. Methods We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence. Main results We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR) 0.42, 95% confidence intervals (CI) 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively). The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence). Conclusions This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was of low or very low certainty, and more research is required to reduce these uncertainties. PMID:29474359

  14. Support surfaces for pressure ulcer prevention: A network meta-analysis.

    PubMed

    Shi, Chunhu; Dumville, Jo C; Cullum, Nicky

    2018-01-01

    Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult. To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness. We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence. We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR) 0.42, 95% confidence intervals (CI) 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively). The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence). This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was of low or very low certainty, and more research is required to reduce these uncertainties.

  15. Wireless Channel Characterization in the Airport Surface Environment

    NASA Technical Reports Server (NTRS)

    Neville, Joshua T.

    2004-01-01

    Given the anticipated increase in air traffic in the coming years, modernization of the National Airspace System (NAS) is a necessity. Part of this modernization effort will include updating current communication, navigation, and surveillance (CNS) systems to deal with the increased traffic as well as developing advanced CNS technologies for the systems. An example of such technology is the integrated CNS (ICNS) network being developed by the Advanced CNS Architecture and Systems Technology (ACAST) group for use in the airport surface environment. The ICNS network would be used to convey voice/data between users in a secure and reliable manner. The current surface system only supports voice and does so through an obsolete physical infrastructure. The old system is vulnerable to outages and costly to maintain. The proposed ICNS network will include a wireless radio link. To ensure optimal performance, a thorough and accurate characterization of the channel across which the link would operate is necessary. The channel is the path the signal takes from the transmitter to the receiver and is prone to various forms of interference. Channel characterization involves a combination of analysis, simulation, and measurement. My work this summer was divided into four tasks. The first task required compiling and reviewing reference material that dealt with the characterization and modeling of aeronautical channels. The second task involved developing a systematic approach that could be used to group airports into classes, e.g. small airfields, medium airports, large open airports, large cluttered airports, etc. The third task consisted of implementing computer simulations of existing channel models. The fourth task entailed measuring possible interference sources in the airport surface environment via a spectrum analyzer.

  16. Detection of regional air pollution episodes utilizing satellite data in the visual range

    NASA Technical Reports Server (NTRS)

    Bowley, C. J.; Burke, H. K.; Barnes, J. C.

    1981-01-01

    A comparative analysis of satellite-observed haze patterns and ground-based aerosol measurements is carried out for July 20-23, 1978. During this period, a significant regional air pollution episode existed across the northeastern United States, accompanied by widespread haze, reduced surface visibility, and elevated sulfate levels measured by the Sulfate Regional Experiment (SURE) network. The results show that the satellite-observed haze patterns correlate closely with the area of reported low surface visibility (less than 4 mi) and high sulfate levels. Quantitative information on total aerosol loading derived from the satellite-digitized data, using an atmospheric radiative transfer model, agrees well with the results obtained from the ground-based measurements.

  17. Targeted Proteomics and Absolute Protein Quantification for the Construction of a Stoichiometric Host-Pathogen Surface Density Model*

    PubMed Central

    Sjöholm, Kristoffer; Kilsgård, Ola; Teleman, Johan; Happonen, Lotta; Malmström, Lars; Malmström, Johan

    2017-01-01

    Sepsis is a systemic immune response responsible for considerable morbidity and mortality. Molecular modeling of host-pathogen interactions in the disease state represents a promising strategy to define molecular events of importance for the transition from superficial to invasive infectious diseases. Here we used the Gram-positive bacterium Streptococcus pyogenes as a model system to establish a mass spectrometry based workflow for the construction of a stoichiometric surface density model between the S. pyogenes surface, the surface virulence factor M-protein, and adhered human blood plasma proteins. The workflow relies on stable isotope labeled reference peptides and selected reaction monitoring mass spectrometry analysis of a wild-type strain and an M-protein deficient mutant strain, to generate absolutely quantified protein stoichiometry ratios between S. pyogenes and interacting plasma proteins. The stoichiometry ratios in combination with a novel targeted mass spectrometry method to measure cell numbers enabled the construction of a stoichiometric surface density model using protein structures available from the protein data bank. The model outlines the topology and density of the host-pathogen protein interaction network on the S. pyogenes bacterial surface, revealing a dense and highly organized protein interaction network. Removal of the M-protein from S. pyogenes introduces a drastic change in the network topology, validated by electron microscopy. We propose that the stoichiometric surface density model of S. pyogenes in human blood plasma represents a scalable framework that can continuously be refined with the emergence of new results. Future integration of new results will improve the understanding of protein-protein interactions and their importance for bacterial virulence. Furthermore, we anticipate that the general properties of the developed workflow will facilitate the production of stoichiometric surface density models for other types of host-pathogen interactions. PMID:28183813

  18. Detecting higher-order wavefront errors with an astigmatic hybrid wavefront sensor.

    PubMed

    Barwick, Shane

    2009-06-01

    The reconstruction of wavefront errors from measurements over subapertures can be made more accurate if a fully characterized quadratic surface can be fitted to the local wavefront surface. An astigmatic hybrid wavefront sensor with added neural network postprocessing is shown to have this capability, provided that the focal image of each subaperture is sufficiently sampled. Furthermore, complete local curvature information is obtained with a single image without splitting beam power.

  19. Research on the Wire Network Signal Prediction Based on the Improved NNARX Model

    NASA Astrophysics Data System (ADS)

    Zhang, Zipeng; Fan, Tao; Wang, Shuqing

    It is difficult to obtain accurately the wire net signal of power system's high voltage power transmission lines in the process of monitoring and repairing. In order to solve this problem, the signal measured in remote substation or laboratory is employed to make multipoint prediction to gain the needed data. But, the obtained power grid frequency signal is delay. In order to solve the problem, an improved NNARX network which can predict frequency signal based on multi-point data collected by remote substation PMU is describes in this paper. As the error curved surface of the NNARX network is more complicated, this paper uses L-M algorithm to train the network. The result of the simulation shows that the NNARX network has preferable predication performance which provides accurate real time data for field testing and maintenance.

  20. Eclipse-induced wind changes over the British Isles on the 20 March 2015

    PubMed Central

    2016-01-01

    The British Isles benefits from dense meteorological observation networks, enabling insights into the still-unresolved effects of solar eclipse events on the near-surface wind field. The near-surface effects of the solar eclipse of 20 March 2015 are derived through comparison of output from the Met Office’s operational weather forecast model (which is ignorant of the eclipse) with data from two meteorological networks: the Met Office’s land surface station (MIDAS) network and a roadside measurement network operated by Vaisala. Synoptic-evolution relative calculations reveal the cooling and increase in relative humidity almost universally attributed to eclipse events. In addition, a slackening of wind speeds by up to about 2 knots in already weak winds and backing in wind direction of about 20° under clear skies across middle England are attributed to the eclipse event. The slackening of wind speed is consistent with the previously reported boundary layer stabilization during eclipse events. Wind direction changes have previously been attributed to a large-scale ‘eclipse-induced cold-cored cyclone’, mountain slope flows, and changes in the strength of sea breezes. A new explanation is proposed here by analogy with nocturnal wind changes at sunset and shown to predict direction changes consistent with those observed. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550759

  1. Supervised artificial neural network-based method for conversion of solar radiation data (case study: Algeria)

    NASA Astrophysics Data System (ADS)

    Laidi, Maamar; Hanini, Salah; Rezrazi, Ahmed; Yaiche, Mohamed Redha; El Hadj, Abdallah Abdallah; Chellali, Farouk

    2017-04-01

    In this study, a backpropagation artificial neural network (BP-ANN) model is used as an alternative approach to predict solar radiation on tilted surfaces (SRT) using a number of variables involved in physical process. These variables are namely the latitude of the site, mean temperature and relative humidity, Linke turbidity factor and Angstrom coefficient, extraterrestrial solar radiation, solar radiation data measured on horizontal surfaces (SRH), and solar zenith angle. Experimental solar radiation data from 13 stations spread all over Algeria around the year (2004) were used for training/validation and testing the artificial neural networks (ANNs), and one station was used to make the interpolation of the designed ANN. The ANN model was trained, validated, and tested using 60, 20, and 20 % of all data, respectively. The configuration 8-35-1 (8 inputs, 35 hidden, and 1 output neurons) presented an excellent agreement between the prediction and the experimental data during the test stage with determination coefficient of 0.99 and root meat squared error of 5.75 Wh/m2, considering a three-layer feedforward backpropagation neural network with Levenberg-Marquardt training algorithm, a hyperbolic tangent sigmoid and linear transfer function at the hidden and the output layer, respectively. This novel model could be used by researchers or scientists to design high-efficiency solar devices that are usually tilted at an optimum angle to increase the solar incident on the surface.

  2. Research on two-port network of wavelet transform processor using surface acoustic wavelet devices and its application.

    PubMed

    Liu, Shoubing; Lu, Wenke; Zhu, Changchun

    2017-11-01

    The goal of this research is to study two-port network of wavelet transform processor (WTP) using surface acoustic wave (SAW) devices and its application. The motive was prompted by the inconvenience of the long research and design cycle and the huge research funding involved with traditional method in this field, which were caused by the lack of the simulation and emulation method of WTP using SAW devices. For this reason, we introduce the two-port network analysis tool, which has been widely used in the design and analysis of SAW devices with uniform interdigital transducers (IDTs). Because the admittance parameters calculation formula of the two-port network can only be used for the SAW devices with uniform IDTs, this analysis tool cannot be directly applied into the design and analysis of the processor using SAW devices, whose input interdigital transducer (IDT) is apodized weighting. Therefore, in this paper, we propose the channel segmentation method, which can convert the WTP using SAW devices into parallel channels, and also provide with the calculation formula of the number of channels, the number of finger pairs and the static capacitance of an interdigital period in each parallel channel firstly. From the parameters given above, we can calculate the admittance parameters of the two port network for each channel, so that we can obtain the admittance parameter of the two-port network of the WTP using SAW devices on the basis of the simplification rule of parallel two-port network. Through this analysis tool, not only can we get the impulse response function of the WTP using SAW devices but we can also get the matching circuit of it. Large numbers of studies show that the parameters of the two-port network obtained by this paper are consistent with those measured by network analyzer E5061A, and the impulse response function obtained by the two-port network analysis tool is also consistent with that measured by network analyzer E5061A, which can meet the accuracy requirements of the analysis of the WTP using SAW devices. Therefore the two-port network analysis tool discussed in this paper has comparatively higher theoretical and practical value. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Seismic anisotropy and its precursory change before eruptions at Piton de la Fournaise volcano, La Réunion

    NASA Astrophysics Data System (ADS)

    Savage, M. K.; Ferrazzini, V.; Peltier, A.; Rivemale, E.; Mayor, J.; Schmid, A.; Brenguier, F.; Massin, F.; Got, J.-L.; Battaglia, J.; DiMuro, A.; Staudacher, T.; Rivet, D.; Taisne, B.; Shelley, A.

    2015-05-01

    The Piton de la Fournaise volcano exhibits frequent eruptions preceded by seismic swarms and is a good target to test hypotheses about magmatically induced variations in seismic wave properties. We use a permanent station network and a portable broadband network to compare seismic anisotropy measured via shear wave splitting with geodetic displacements, ratios of compressional to shear velocity (Vp/Vs), earthquake focal mechanisms, and ambient noise correlation analysis of surface wave velocities and to examine velocity and stress changes from 2000 through 2012. Fast directions align radially to the central cone and parallel to surface cracks and fissures, suggesting stress-controlled cracks. High Vp/Vs ratios under the summit compared with low ratios under the flank suggest spatial variations in the proportion of fluid-filled versus gas-filled cracks. Secular variations of fast directions (ϕ) and delay times (dt) between split shear waves are interpreted to sense changing crack densities and pressure. Delay times tend to increase while surface wave velocity decreases before eruptions. Rotations of ϕ may be caused by changes in either stress direction or fluid pressure. These changes usually correlate with GPS baseline changes. Changes in shear wave splitting measurements made on multiplets yield several populations with characteristic delay times, measured incoming polarizations, and fast directions, which change their proportion as a function of time. An eruption sequence on 14 October 2010 yielded over 2000 shear wave splitting measurements in a 14 h period, allowing high time resolution measurements to characterize the sequence. Stress directions from a propagating dike model qualitatively fit the temporal change in splitting.

  4. Evaluation of radiative fluxes over the north Indian Ocean

    NASA Astrophysics Data System (ADS)

    Ramesh Kumar, M. R.; Pinker, Rachel T.; Mathew, Simi; Venkatesan, R.; Chen, W.

    2018-05-01

    Radiative fluxes are a key component of the surface heat budget of the oceans. Yet, observations over oceanic region are sparse due to the complexity of radiation measurements; moreover, certain oceanic regions are substantially under-sampled, such as the north Indian Ocean. The National Institute of Ocean Technology, Chennai, India, under its Ocean Observation Program has deployed an Ocean Moored Network for the Northern Indian Ocean (OMNI) both in the Arabian Sea and the Bay of Bengal. These buoys are equipped with sensors to measure radiation and rainfall, in addition to other basic meteorological parameters. They are also equipped with sensors to measure sub-surface currents, temperature, and conductivity from the surface up to a depth of 500 m. Observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the National Aeronautics and Space Administration (NASA) AQUA and TERRA satellites have been used to infer surface radiation over the north Indian Ocean. In this study, we focus only on the shortwave (SW↓) fluxes. The evaluations of the MODIS-based SW↓ fluxes against the RAMA observing network have shown a very good agreement between them, and therefore, we use the MODIS-derived fluxes as a reference for the evaluation of the OMNI observations. In an early deployment of the OMNI buoys, the radiation sensors were placed at 2 m above the sea surface; subsequently, the height of the sensors was raised to 3 m. In this study, we show that there was a substantial improvement in the agreement between the buoy observations and the satellite estimates, once the sensors were raised to higher levels. The correlation coefficient increased from 0.87 to 0.93, and both the bias and standard deviations decreased substantially.

  5. Statistical relationship between surface PM10 concentration and aerosol optical depth over the Sahel as a function of weather type, using neural network methodology

    NASA Astrophysics Data System (ADS)

    Yahi, H.; Marticorena, B.; Thiria, S.; Chatenet, B.; Schmechtig, C.; Rajot, J. L.; Crepon, M.

    2013-12-01

    work aims at assessing the capability of passive remote-sensed measurements such as aerosol optical depth (AOD) to monitor the surface dust concentration during the dry season in the Sahel region (West Africa). We processed continuous measurements of AODs and surface concentrations for the period (2006-2010) in Banizoumbou (Niger) and Cinzana (Mali). In order to account for the influence of meteorological condition on the relationship between PM10 surface concentration and AOD, we decomposed the mesoscale meteorological fields surrounding the stations into five weather types having similar 3-dimensional atmospheric characteristics. This classification was obtained by a clustering method based on nonlinear artificial neural networks, the so-called self-organizing map. The weather types were identified by processing tridimensional fields of meridional and zonal winds and air temperature obtained from European Centre for Medium-Range Weather Forecasts (ECMWF) model output centered on each measurement station. Five similar weather types have been identified at the two stations. Three of them are associated with the Harmattan flux; the other two correspond to northward inflow of the monsoon flow at the beginning or the end of the dry season. An improved relationship has been found between the surface PM10 concentrations and the AOD by using a dedicated statistical relationship for each weather type. The performances of the statistical inversion computed on the test data sets show satisfactory skills for most of the classes, much better than a linear regression. This should permit the inversion of the mineral dust concentration from AODs derived from satellite observations over the Sahel.

  6. Relations between macropore network characteristics and the degree of preferential solute transport

    NASA Astrophysics Data System (ADS)

    Larsbo, M.; Koestel, J.; Jarvis, N.

    2014-12-01

    The characteristics of the soil macropore network determine the potential for fast transport of agrochemicals and contaminants through the soil. The objective of this study was to examine the relationships between macropore network characteristics, hydraulic properties and state variables and measures of preferential transport. Experiments were carried out under near-saturated conditions on undisturbed columns sampled from four agricultural topsoils of contrasting texture and structure. Macropore network characteristics were computed from 3-D X-ray tomography images of the soil pore system. Non-reactive solute transport experiments were carried out at five steady-state water flow rates from 2 to 12 mm h-1. The degree of preferential transport was evaluated by the normalised 5% solute arrival time and the apparent dispersivity calculated from the resulting breakthrough curves. Near-saturated hydraulic conductivities were measured on the same samples using a tension disc infiltrometer placed on top of the columns. Results showed that many of the macropore network characteristics were inter-correlated. For example, large macroporosities were associated with larger specific macropore surface areas and better local connectivity of the macropore network. Generally, an increased flow rate resulted in earlier solute breakthrough and a shifting of the arrival of peak concentration towards smaller drained volumes. Columns with smaller macroporosities, poorer local connectivity of the macropore network and smaller near-saturated hydraulic conductivities exhibited a greater degree of preferential transport. This can be explained by the fact that, with only two exceptions, global (i.e. sample scale) continuity of the macropore network was still preserved at low macroporosities. Thus, for any given flow rate, pores of larger diameter were actively conducting solute in soils of smaller near-saturated hydraulic conductivity. This was associated with larger local transport velocities and, hence, less time for equilibration between the macropores and the surrounding matrix which made the transport more preferential. Conversely, the large specific macropore surface area and well-connected macropore networks associated with columns with large macroporosities limit the degree of preferential transport because they increase the diffusive flux between macropores and the soil matrix and they increase the near-saturated hydraulic conductivity. The normalised 5% arrival times were most strongly correlated with the estimated hydraulic state variables (e.g. with the degree of saturation in the macropores R2 = 0.589), since these combine into one measure the effects of irrigation rate and the near-saturated hydraulic conductivity function, which in turn implicitly depends on the volume, size distribution, global continuity, local connectivity and tortuosity of the macropore network.

  7. Crystal surface analysis using matrix textural features classified by a probabilistic neural network

    NASA Astrophysics Data System (ADS)

    Sawyer, Curry R.; Quach, Viet; Nason, Donald; van den Berg, Lodewijk

    1991-12-01

    A system is under development in which surface quality of a growing bulk mercuric iodide crystal is monitored by video camera at regular intervals for early detection of growth irregularities. Mercuric iodide single crystals are employed in radiation detectors. A microcomputer system is used for image capture and processing. The digitized image is divided into multiple overlapping sub-images and features are extracted from each sub-image based on statistical measures of the gray tone distribution, according to the method of Haralick. Twenty parameters are derived from each sub-image and presented to a probabilistic neural network (PNN) for classification. This number of parameters was found to be optimal for the system. The PNN is a hierarchical, feed-forward network that can be rapidly reconfigured as additional training data become available. Training data is gathered by reviewing digital images of many crystals during their growth cycle and compiling two sets of images, those with and without irregularities.

  8. Role of Unchannelized Flow in Determining Bifurcation Angle in Distributary Channel Networks

    NASA Astrophysics Data System (ADS)

    Coffey, T.

    2016-02-01

    Distributary channel bifurcations on river deltas are important features in both actively prograding river deltas and in lithified deltas within the stratigraphic record. Attributes of distributary channels have long been thought to be defined by flow velocity, grain size and channel aspect ratio where the channel enters the basin. Interestingly, bifurcations in groundwater-fed tributary networks have been shown to grow and bifurcate independent of flow within the exposed channel network. These networks possess a characteristic bifurcation angle of 72°, based on Laplacian flow (water surface concavity equals zero) in the groundwater flow field near tributary channel tips. Based on the tributary channel model, we develop and test the hypothesis that bifurcation angles in distributary channels are likewise dictated by the external flow field, in this case the surface water surrounding the subaqueous portion of distributary channel tips in a deltaic setting. We measured 64 unique distributary bifurcations in an experimental delta, yielding a characteristic angle of 70.2°±2.2° (95% confidence interval), in line with the theoretical prediction for tributary channels. This similarity between bifurcation angles suggests that (A) flow directly outside of the distributary network is Laplacian, (B) the external flow field controls the bifurcation dynamics of distributary channels, and (C) that flow within the channel plays a secondary role in network dynamics.

  9. Underwater Electromagnetic Sensor Networks-Part I: Link Characterization.

    PubMed

    Quintana-Díaz, Gara; Mena-Rodríguez, Pablo; Pérez-Álvarez, Iván; Jiménez, Eugenio; Dorta-Naranjo, Blas-Pablo; Zazo, Santiago; Pérez, Marina; Quevedo, Eduardo; Cardona, Laura; Hernández, J Joaquín

    2017-01-19

    Underwater Wireless Sensor Networks (UWSNs) using electromagnetic (EM) technology in marine shallow waters are examined, not just for environmental monitoring but for further interesting applications. Particularly, the use of EM waves is reconsidered in shallow waters due to the benefits offered in this context, where acoustic and optical technologies have serious disadvantages. Sea water scenario is a harsh environment for radiocommunications, and there is no standard model for the underwater EM channel. The high conductivity of sea water, the effect of seabed and the surface make the behaviour of the channel hard to predict. This justifies the need of link characterization as the first step to approach the development of EM underwater sensor networks. To obtain a reliable link model, measurements and simulations are required. The measuring setup for this purpose is explained and described, as well as the procedures used. Several antennas have been designed and tested in low frequency bands. Agreement between attenuation measurements and simulations at different distances was analysed and made possible the validation of simulation setups and the design of different communications layers of the system. This leads to the second step of this work, where data and routing protocols for the sensor network are examined.

  10. Global distribution of surface NO2 inferred from Ozone Monitoring Instrument measurements: Relationship between NO2 and population

    NASA Astrophysics Data System (ADS)

    Lamsal, L.; Martin, R. V.; Parrish, D. D.

    2011-12-01

    Nitrogen dioxide (NO2) is a short-lived atmospheric pollutant released from combustion processes and is an indicator of air quality. We derive a global distribution of ground-level NO2 concentrations by applying local scaling factors from a global three-dimensional model to tropospheric NO2 columns retrieved from the Ozone Monitoring Instrument. The OMI-derived surface NO2 data are compared with in situ surface NO2 data obtained from the SEARCH, AQS/EPA, and NAPS networks. The correlation between the OMI-derived surface NO2 and the ground-based measurements is generally > 0.5. We examine how NO2 columns measured by satellite, ground-level NO2 derived from satellite, and NOx emissions obtained from bottom-up inventories relate to city population in North America, Europe, and Asia. NO2 increases proportional to population raised to an exponent that is in the range 0.25-0.55. This relationship provides insights into per capita emissions and the quality of air people breathe.

  11. Extending the Confrontation of Weather and Climate Models from Soil Moisture to Surface Flux Data

    NASA Astrophysics Data System (ADS)

    Dirmeyer, P.; Chen, L.; Wu, J.

    2016-12-01

    The atmosphere and land components of weather and climate models are typically developed separately and coupled as a last step before new model versions are released. Separate testing of land surface models (LSMs) and atmospheric models is often quite extensive in the development phase, but validation of coupled land-atmosphere behavior is often minimal if performed at all. This is partly because of this piecemeal model development approach and partly because the necessary in situ data to confront coupled land-atmosphere models (LAMs) has been meager until quite recently. Over the past 10-20 years there has been a growing number of networks of measurements of land surface states, surface fluxes, radiation and near-surface meteorology, although they have been largely uncoordinated and frequently incomplete across the range of variables necessary to validate LAMs. We extend recent work "confronting" a variety of LSMs and LAMs with in situ observations of soil moisture from cross-standardized networks to comparisons with measurements of surface latent and sensible heat fluxes at FLUXNET sites in a variety of climate regimes around the world. The motivation is to determine how well LSMs represent observed statistics of variability and co-variability, how much models differ from one another, and how those statistics change when the LSMs are coupled to atmospheric models. Furthermore, comparisons are made to several LAMs in both open-loop (free running) and reanalysis configurations. This shows to what extent data assimilation can constrain the processes involved in flux variability, and helps illuminate model development pathways to improve coupled land-atmosphere interactions in weather and climate models.

  12. Experimental and Computational Studies of Sound Transmission in a Branching Airway Network Embedded in a Compliant Viscoelastic Medium

    PubMed Central

    Dai, Zoujun; Peng, Ying; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas J.

    2015-01-01

    Breath sounds are often used to aid in the diagnosis of pulmonary disease. Mechanical and numerical models could be used to enhance our understanding of relevant sound transmission phenomena. Sound transmission in an airway mimicking phantom was investigated using a mechanical model with a branching airway network embedded in a compliant viscoelastic medium. The Horsfield self-consistent model for the bronchial tree was adopted to topologically couple the individual airway segments into the branching airway network. The acoustics of the bifurcating airway segments were measured by microphones and calculated analytically. Airway phantom surface motion was measured using scanning laser Doppler vibrometry. Finite element simulations of sound transmission in the airway phantom were performed. Good agreement was achieved between experiments and simulations. The validated computational approach can provide insight into sound transmission simulations in real lungs. PMID:26097256

  13. Experimental and computational studies of sound transmission in a branching airway network embedded in a compliant viscoelastic medium

    NASA Astrophysics Data System (ADS)

    Dai, Zoujun; Peng, Ying; Mansy, Hansen A.; Sandler, Richard H.; Royston, Thomas J.

    2015-03-01

    Breath sounds are often used to aid in the diagnosis of pulmonary disease. Mechanical and numerical models could be used to enhance our understanding of relevant sound transmission phenomena. Sound transmission in an airway mimicking phantom was investigated using a mechanical model with a branching airway network embedded in a compliant viscoelastic medium. The Horsfield self-consistent model for the bronchial tree was adopted to topologically couple the individual airway segments into the branching airway network. The acoustics of the bifurcating airway segments were measured by microphones and calculated analytically. Airway phantom surface motion was measured using scanning laser Doppler vibrometry. Finite element simulations of sound transmission in the airway phantom were performed. Good agreement was achieved between experiments and simulations. The validated computational approach can provide insight into sound transmission simulations in real lungs.

  14. Ability of the current global observing network to constrain N2O sources and sinks

    NASA Astrophysics Data System (ADS)

    Millet, D. B.; Wells, K. C.; Chaliyakunnel, S.; Griffis, T. J.; Henze, D. K.; Bousserez, N.

    2014-12-01

    The global observing network for atmospheric N2O combines flask and in-situ measurements at ground stations with sustained and campaign-based aircraft observations. In this talk we apply a new global model of N2O (based on GEOS-Chem) and its adjoint to assess the strengths and weaknesses of this network for quantifying N2O emissions. We employ an ensemble of pseudo-observation analyses to evaluate the relative constraints provided by ground-based (surface, tall tower) and airborne (HIPPO, CARIBIC) observations, and the extent to which variability (e.g. associated with pulsing or seasonality of emissions) not captured by the a priori inventory can bias the inferred fluxes. We find that the ground-based and HIPPO datasets each provide a stronger constraint on the distribution of global emissions than does the CARIBIC dataset on its own. Given appropriate initial conditions, we find that our inferred surface fluxes are insensitive to model errors in the stratospheric loss rate of N2O over the timescale of our analysis (2 years); however, the same is not necessarily true for model errors in stratosphere-troposphere exchange. Finally, we examine the a posteriori error reduction distribution to identify priority locations for future N2O measurements.

  15. Global shape estimates and GIS cartography of Io and Enceladus using new control point network

    NASA Astrophysics Data System (ADS)

    Nadezhdina, I.; Patraty, V.; Shishkina, L.; Zhukov, D.; Zubarev, A.; Karachevtseva, I.; Oberst, J.

    2012-04-01

    We have analyzed a total of 53 Galileo and Voyager images of Io and 54 Cassini images of Enceladus to derive new geodetic control point networks for the two satellites. In order to derive the network for Io we used a subset of 66 images from those used in previous control point network studies [1, 2]. Additionally we have carried out new point measurements. We used recently reconstructed Galileo spacecraft trajectory data, supplied by the spacecraft navigation team of JPL. A total of 1956 tie point measurements for Io and 4392 ones for Enceladus have been carried out, which were processed by performing photogrammetric bundle block adjustments. Measurements and block adjustments were performed by means of the «PHOTOMOD» software [3] which was especially adapted for this study to accommodate global networks of small bodies, such as Io and Enceladus. As a result, two catalogs with the Cartesian three-dimensional coordinates of 197 and 351 control points were obtained for Io and Enceladus, respectively. The control points for Io have a mean overall accuracy of 4985.7 m (RMS). The individual accuracy of the control points for Enceladus differ substantially over the surface (the range is from 0.1 to 36.0 km) because images lack coverage and resolutions. We also determine best-fit spheres, spheroids, and tri-axial ellipsoids. The centers of the models were found to be shifted from the coordinate system origin attesting to possible errors in the ephemeris of Io. Conclusion and Future work: A comparison of our results for Io with the most recent control point network analysis [2] has revealed that we managed to derive the same accuracy of the control points using a smaller number of images and measurements (This study: 1956 measurements, DLR study: 4392). This probably attests to the fact that the now available new navigation data are internally more consistent. At present an analysis of the data is in progress. We report that control point measurements and global network analysis for small planetary bodies by means of the software «PHOTOMOD» is fast and efficient. Using the new control points and shape models of the satellites we are currently preparing new maps of Io and Enceladus using GIS tools. For parts of the surface for which we have quality stereo-images we will produce DEMs and orthoimages, which will be shown at the conference. Acknowledgments: This research was funded by the Ministry of Education and Science of the Russian Federation (MEGA-GRANT, Project name: "Geodesy, cartography and the study of planets and satellites", contract No. 11.G34.31.0021).

  16. Radio Occultation Measurements of Pluto's Atmosphere with New Horizons

    NASA Astrophysics Data System (ADS)

    Hinson, D. P.; Linscott, I.; Tyler, G. L.; Bird, M. K.; Paetzold, M.; Strobel, D. F.; Summers, M. E.; Woods, W. W.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Young, L. A.; Ennico Smith, K.; Gladstone, R.; Greathouse, T.; Kammer, J.; Parker, A. H.; Parker, J. W.; Retherford, K. D.; Schindhelm, E.; Singer, K. N.; Steffl, A.; Tsang, C.; Versteeg, M.

    2015-12-01

    The reconnaissance of the Pluto System by New Horizons included radio occultations at both Pluto and Charon. This talk will present the latest results from the Pluto occultation. The REX instrument onboard New Horizons received and recorded uplink signals from two 70-m antennas and two 34-m antennas of the NASA Deep Space Network - each transmitting 20 kW at 4.2-cm wavelength - during a diametric occultation by Pluto. At the time this was written only a short segment of data at occultation entry (193°E, 17°S) was available for analysis. The REX measurements extend unequivocally to the surface, providing the first direct measure of the surface pressure and the temperature structure in Pluto's lower atmosphere. Preliminary analysis yields a surface pressure of about 10 microbars, smaller than expected. Data from occultation exit (16°E, 15°N) are scheduled to arrive on the ground in late August 2015. Those observations will yield an improved estimate of the surface pressure, a second temperature profile, and a measure of the diameter of Pluto with a precision of a few hundred meters.

  17. National High Frequency Radar Network (hfrnet) and Pacific Research Efforts

    NASA Astrophysics Data System (ADS)

    Hazard, L.; Terrill, E. J.; Cook, T.; de Paolo, T.; Otero, M. P.; Rogowski, P.; Schramek, T. A.

    2016-12-01

    The U.S. High Frequency Radar Network (HFRNet) has been in operation for over ten years with representation from 31 organizations spanning academic institutions, state and local government agencies, and private organizations. HFRNet currently holds a collection from over 130 radar installations totaling over 10 million records of surface ocean velocity measurements. HFRNet is a primary example of inter-agency and inter-institutional partnerships for improving oceanographic research and operations. HF radar derived surface currents have been used in several societal applications including coastal search and rescue, oil spill response, water quality monitoring and marine navigation. Central to the operational success of the large scale network is an efficient data management, storage, access, and delivery system. The networking of surface current mapping systems is characterized by a tiered structure that extends from the individual field installations to local regional operations maintaining multiple sites and on to centralized locations aggregating data from all regions. The data system development effort focuses on building robust data communications from remote field locations (sites) for ingestion into the data system via data on-ramps (Portals or Site Aggregators) to centralized data repositories (Nodes). Centralized surface current data enables the aggregation of national surface current grids and allows for ingestion into displays, management tools, and models. The Coastal Observing Research and Development Center has been involved in international relationships and research in the Philippines, Palau, and Vietnam. CORDC extends this IT architecture of surface current mapping data systems leveraging existing developments and furthering standardization of data services for seamless integration of higher level applications. Collaborations include the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA), The Coral Reef Research Foundation (CRRF), and the Center for Oceanography/Vietnamese Administration of Seas and Islands (CFO/VASI). These collaborations and data sharing improve our abilities to respond to regional, national, and global environmental and management issues.

  18. Estimating surface longwave radiative fluxes from satellites utilizing artificial neural networks

    NASA Astrophysics Data System (ADS)

    Nussbaumer, Eric A.; Pinker, Rachel T.

    2012-04-01

    A novel approach for calculating downwelling surface longwave (DSLW) radiation under all sky conditions is presented. The DSLW model (hereafter, DSLW/UMD v2) similarly to its predecessor, DSLW/UMD v1, is driven with a combination of Moderate Resolution Imaging Spectroradiometer (MODIS) level-3 cloud parameters and information from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim model. To compute the clear sky component of DSLW a two layer feed-forward artificial neural network with sigmoid hidden neurons and linear output neurons is implemented; it is trained with simulations derived from runs of the Rapid Radiative Transfer Model (RRTM). When computing the cloud contribution to DSLW, the cloud base temperature is estimated by using an independent artificial neural network approach of similar architecture as previously mentioned, and parameterizations. The cloud base temperature neural network is trained using spatially and temporally co-located MODIS and CloudSat Cloud Profiling Radar (CPR) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. Daily average estimates of DSLW from 2003 to 2009 are compared against ground measurements from the Baseline Surface Radiation Network (BSRN) giving an overall correlation coefficient of 0.98, root mean square error (rmse) of 15.84 W m-2, and a bias of -0.39 W m-2. This is an improvement over an earlier version of the model (DSLW/UMD v1) which for the same time period has an overall correlation coefficient 0.97 rmse of 17.27 W m-2, and bias of 0.73 W m-2.

  19. Comparison of ScaRaB, GOES 8, Aircraft, and Surface Observations of the Absorption of Solar Radiation by Clouds

    NASA Technical Reports Server (NTRS)

    Pope, Shelly K.; Valero, Francisco P. J.; Collins, William D.; Minnis, Patrick

    2002-01-01

    Data obtained by the Scanner for Radiation Budget (ScaRaB) instrument on the Meteor 3 satellite have been analyzed and compared to satellite (GOES 8), aircraft (Radiation Measurement System, RAMS), and surface (Baseline Solar Radiation Network (BSRN), Solar and Infrared Observations System (SIROS), and RAMS) measurements of irradiance obtained during the Atmospheric Radiation Measurements Enhanced Shortwave Experiment (ARESE). It is found that the ScaRaB data covering the period from March 1994 to February 1995 (the instrument's operational lifetime) indicate excess absorption of solar radiation by the cloudy atmosphere in agreement with previous aircraft, surface, and GOES 8 results. The full ScaRaB data set combined with BSRN and SIROS surface observations gives an average all-sky absorptance of 0.28. The GOES 8 data set combined with RAMS surface observations gives an average all-sky absorptance of 0.26. The aircraft data set (RAMS) gives a mean all-sky absorptance of 0.24 (for the column between 0.5 and 13 km).

  20. Evaluation of improved operational standard tropospheric NO2 retrievals from Ozone Monitoring Instrument using in situ and surface-based NO2 observations

    NASA Astrophysics Data System (ADS)

    Celarier, E. A.; Lamsal, L.; Krotkov, N. A.; Bucsela, E. J.; Herman, J. R.; Dickerson, R. R.; He, H.; Brent, L. C.; Retscher, C.; Swartz, W. H.; Gleason, J. F.

    2011-12-01

    Nitrogen oxides are key actors in air quality and climate change. Column observations of tropospheric NO2 from the nadir-veiwing satellite sensors have been widely used to understand sources and chemistry of NOx. We have implemented several improvements to the operational algorithm developed at NASA GSFC and retrieved tropospheric NO2. Here we evaluate the new product using in situ surface measurements at the SEARCH, AQS/EPA, and NAPS networks, in situ aircraft (DISCOVER-AQ and RAMMPP), and ground-based PANDORA and DOAS measurements. The agreement among these data is within the uncertainty of measurements. The new OMI tropospheric NO2 product available at high spatial resolution is valuable to evaluate chemical transport models, to examine spatial and temporal pattern of NOx emissions, to provide top-down constraints to surface NOx emissions, and to estimate NOx lifetimes.

  1. Integrating wireless sensor network for monitoring subsidence phenomena

    NASA Astrophysics Data System (ADS)

    Marturià, Jordi; Lopez, Ferran; Gigli, Giovanni; Intrieri, Emanuele; Mucchi, Lorenzo; Fornaciai, Alessandro

    2016-04-01

    An innovative wireless sensor network (WSN) for the 3D superficial monitoring of deformations (such as landslides and subsidence) is being developed in the frame of the Wi-GIM project (Wireless sensor network for Ground Instability Monitoring - LIFE12 ENV/IT/001033). The surface movement is detected acquiring the position (x, y and z) by integrating large bandwidth technology able to detect the 3D coordinates of the sensor with a sub-meter error, with continuous wave radar, which allows decreasing the error down to sub-cm. The Estació neighborhood in Sallent is located over the old potassium mine Enrique. This zone has been affected by a subsidence process over more than twenty years. The implementation of a wide network for ground auscultation has allowed monitoring the process of subsidence since 1997. This network consists of: i) a high-precision topographic leveling network to control the subsidence in surface; ii) a rod extensometers network to monitor subsurface deformation; iii) an automatic Leica TCA Total Station to monitor building movements; iv) an inclinometers network to measure the horizontal displacements on subsurface and v) a piezometer to measure the water level. Those networks were implemented within an alert system for an organized an efficient response of the civil protection authorities in case of an emergency. On 23rd December 2008, an acceleration of subsoil movements (of approx. 12-18 cm/year) provoked the activation of the emergency plan by the Catalan Civil Protection. This implied the preventive and scheduled evacuation of the neighbours (January 2009) located in the area with a higher risk of collapse: around 120 residents of 43 homes. As a consequence, the administration implemented a compensation plan for the evacuation of the whole neighbourhood residents and the demolition of 405 properties. In this work, the adaptation and integration process of Wi-GIM system with those conventional monitoring network are presented for its testing and evaluation. The knowledge gained in the subsidence process, complemented by the huge availability of data from existing networks constitutes a solid foundation for achieving those objectives. New monitoring points have been identified, constructed, prepared to integrate the conventional monitoring system with Wi-GIM system to build a robust system compatible with WI-GIM requirements.

  2. Comparisons of Spectral Aerosol Single Scattering Albedo in Seoul, South Korea

    NASA Technical Reports Server (NTRS)

    Mok, Jungbin; Krotkov, Nickolay A.; Torres, Omar; Jethva, Hiren; Loughman, Robert P.; Spinei, Elena; Campanelli, Monica; Li, Zhanqing; Go, Sujung; Labow, Gordon; hide

    2018-01-01

    Quantifying aerosol absorption at ultraviolet (UV) wavelengths is important for monitoring air pollution and aerosol amounts using current (e.g., Aura/OMI (Ozone Monitoring Instrument)) and future (e.g., TROPOMI (TROPOspheric Monitoring Instrument), TEMPO (Tropospheric Emissions: Monitoring of POllution), GEMS (Geostationary Environment Monitoring Spectrometer) and Sentinel-4) satellite measurements. Measurements of column average atmospheric aerosol single scattering albedo (SSA) are performed on the ground by the NASA AERONET (AEROsol robotic NETwork) in the visible (VIS) and near-infrared (NIR) wavelengths and in the UV-VIS-NIR by the SKYNET (SKY radiometer NETwork) networks. Previous comparison studies have focused on VIS and NIR wavelengths due to the lack of co-incident measurements of aerosol and gaseous absorption properties in the UV. This study compares the SKYNET-retrieved SSA in the UV with the SSA derived from a combination of AERONET, MFRSR (MultiFilter Rotating Shadowband Radiometer), and Pandora (AMP) retrievals in Seoul, South Korea, in spring and summer 2016. The results show that the spectrally invariant surface albedo assumed in the SKYNET SSA retrievals leads to underestimated SSA compared to AMP values at near UV wavelengths. Re-processed SKYNET inversions using spectrally varying surface albedo, consistent with the AERONET retrieval improve agreement with AMP SSA. The combined AMP inversions allow for separating aerosol and gaseous (NO2 and O3) absorption and provide aerosol retrievals from the shortest UVB (305 nanometers) through VIS to NIR wavelengths (870 nanometers).

  3. Initial validation of the Soil Moisture Active Passive mission using USDA-ARS watersheds

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) Mission was launched in January 2015 to measure global surface soil moisture. The calibration and validation program of SMAP relies upon an international cooperative of in situ networks to provide ground truth references across a variety of landscapes. The U...

  4. Application of Lidar Data to the Performance Evaluations of CMAQ Model

    EPA Science Inventory

    The Tropospheric Ozone (O3) Lidar Network (TOLNet) provides time/height O3 measurements from near the surface to the top of the troposphere to describe in high-fidelity spatial-temporal distributions, which is uniquely useful to evaluate the temporal evolution of O3 profiles in a...

  5. ASSESSMENT OF ETA-CMAQ FORECASTS OF PARTICULATE MATTER DISTRIBUTIONS THROUGH COMPARISONS WITH SURFACE NETWORK AND SPECIALIZED MEASUREMENTS

    EPA Science Inventory

    An air-quality forecasting (AQF) system based on the National Weather Service (NWS) National Centers for Environmental Prediction's (NCEP's) Eta model and the U.S. EPA's Community Multiscale Air Quality (CMAQ) Modeling System is used to simulate the distributions of tropospheric ...

  6. NREL: Renewable Resource Data Center - Solar Resource Related Links

    Science.gov Websites

    the world. Baseline Surface Radiation Network (BSRN) Measures solar and atmospheric radiation at change. EnergyPlus Weather Data Offers weather data, arranged by World Meteorological Organization region and country, for more than 1,300 locations throughout the world. NASA Langley Distributed Active

  7. Time-Lapse 3D Inversion of Complex Conductivity Data Using an Active Time Constrained (ATC) Approach

    EPA Science Inventory

    Induced polarization (more precisely the magnitude and the phase of the impedance of the subsurface) is measured using a network of electrodes located at the ground surface or in boreholes. This method yields important information related to the distribution of permeability and ...

  8. Asp-Gly based peptides confined at the surface of cationic gemini surfactant aggregates.

    PubMed

    Brizard, Aurélie; Dolain, Christel; Huc, Ivan; Oda, Reiko

    2006-04-11

    Cationic gemini surfactants complexed with anionic oligoglycine-aspartate (called gemini peptides hereafter) were synthesized, and their aggregation behaviors were studied. The effects of the hydrophobic chain length (C10-C22) and the length of the oligoglycine (0-4) were investigated, and it was clearly shown by critical micellar concentration, Krafft temperature, and isothermal surface pressure measurements that the hydrophobic effect and interpeptidic interaction influence the aggregation behavior in a cooperative manner. Below their Krafft temperatures, some of them formed both hydro- and organogels with three-dimensional networks and the Fourier transform infrared measurements show the presence of interpeptidic hydrogen bonds.

  9. Local Adaptive Calibration of the GLASS Surface Incident Shortwave Radiation Product Using Smoothing Spline

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Liang, S.; Wang, G.

    2015-12-01

    Incident solar radiation (ISR) over the Earth's surface plays an important role in determining the Earth's climate and environment. Generally, can be obtained from direct measurements, remotely sensed data, or reanalysis and general circulation models (GCMs) data. Each type of product has advantages and limitations: the surface direct measurements provide accurate but sparse spatial coverage, whereas other global products may have large uncertainties. Ground measurements have been normally used for validation and occasionally calibration, but transforming their "true values" spatially to improve the satellite products is still a new and challenging topic. In this study, an improved thin-plate smoothing spline approach is presented to locally "calibrate" the Global LAnd Surface Satellite (GLASS) ISR product using the reconstructed ISR data from surface meteorological measurements. The influences of surface elevation on ISR estimation was also considered in the proposed method. The point-based surface reconstructed ISR was used as the response variable, and the GLASS ISR product and the surface elevation data at the corresponding locations as explanatory variables to train the thin plate spline model. We evaluated the performance of the approach using the cross-validation method at both daily and monthly time scales over China. We also evaluated estimated ISR based on the thin-plate spline method using independent ground measurements at 10 sites from the Coordinated Enhanced Observation Network (CEON). These validation results indicated that the thin plate smoothing spline method can be effectively used for calibrating satellite derived ISR products using ground measurements to achieve better accuracy.

  10. Walking peptide on Au(110) surface: Origin and nature of interfacial process

    NASA Astrophysics Data System (ADS)

    Humblot, V.; Tejeda, A.; Landoulsi, J.; Vallée, A.; Naitabdi, A.; Taleb, A.; Pradier, C.-M.

    2014-10-01

    IGF tri-peptide adsorption on Au(110)-(1 × 2) under Ultra High Vacuum (UHV) conditions has been investigated using surface science techniques such as synchrotron based Angle Resolved X-ray Photoemission Spectroscopy (AR-PES or AR-XPS), Low Energy Electron Diffraction (LEED) and Scanning Tunnelling Microscopy (STM). The behaviour of IGF molecules has been revealed to be coverage dependent; at low coverage, there is formation of islands presenting a chiral self-organised molecular network with a (4 2, - 3 2) symmetry as shown by Low Energy Electron Diffraction (LEED) and Scanning Tunnelling Microscopy (STM) on the unaltered Au(110)-(1 × 2) reconstruction, suggesting significant intermolecular interactions. When the coverage is increased, the islands grow bigger, and one can observe the disappearance of the self-organised network, along with a remarkable destruction of the (1 × 2) substrate reconstruction, as shown by STM. The effect of IGF on the surface gold atoms has been further confirmed by angle-resolved photoemission measurements which suggest a modification of the electronic states with the (1 × 2) symmetry. The resulting molecular organisation, and overall the gold surface disorganisation, prove a strong surface-molecule interaction, which may be probably be explained by a covalent bonding.

  11. Connections of intermediate filaments with the nuclear lamina and the cell periphery.

    PubMed

    Katsuma, Y; Swierenga, S H; Marceau, N; French, S W

    1987-01-01

    We investigated the relationship between intermediate filaments (IFs) and other detergent- and nuclease-resistant filamentous structures of cultured liver epithelial cells (T51B cell line) using whole mount unembedded preparations which were sequentially extracted with Triton X-100 and nucleases. Immunogold labelling and stereoscopic observation facilitated the examination of each filamentous structure and their three-dimensional relationships to each other. After solubilizing phospholipid, nucleic acid and soluble cellular protein, the resulting cytoskeleton preparation consisted of a network of cytokeratin and vimentin IFs linked by 3 nm filaments. The IFs were anchored to and determined the position of the nuclear lamina filaments (NLF) network and the centrioles. The NLF was composed of the nuclear lamina filaments measuring 3-6 nm in diameter which radiated from and anchored to the skeleton of the nuclear pores. The IFs located in the nuclear region appeared to be interwoven with the NLF. At the cell surface, the IFs seemed to be attached to the putative actin filament network. They formed a focally interrupted plexus-like structure at the cell periphery. Fragments of vimentin filaments were found among the filamentous network located at the cell surface, and some filaments terminated blindly there.

  12. Identifying Hydrologic Flowpaths on Arctic Hillslopes Using Electrical Resistivity and Self Potential

    NASA Astrophysics Data System (ADS)

    Voytek, E.; Rushlow, C. R.; Godsey, S.; Singha, K.

    2015-12-01

    Shallow subsurface flow is a dominant process controlling hillslope runoff generation, soil development, and solute reaction and transport. Despite their importance, the location and geometry of flowpaths are difficult to determine. In arctic environments, shallow subsurface flowpaths are limited to a thin zone of seasonal thaw above continuous permafrost, which is traditionally assumed to mimic to surface topography. Here we use a combined approach of electrical resistivity imaging (ERI) and self-potential measurements (SP) to map shallow subsurface flowpaths in and around water tracks, drainage features common to arctic hillslopes. ERI measurements delineate thawed zones in the subsurface that control flowpaths, while SP is sensitive to groundwater flow. We find that areas of low electrical resistivity in the water tracks are deeper than manual thaw depth estimates and variations from surface topography. This finding suggests that traditional techniques significantly underestimate active layer thaw and the extent of the flowpath network on arctic hillslopes. SP measurements identify complex 3-D flowpaths in the thawed zone. Our results lay the groundwork for investigations into the seasonal dynamics, hydrologic connectivity, and climate sensitivity of spatially distributed flowpath networks on arctic hillslopes.

  13. An Extended Kriging Method to Interpolate Near-Surface Soil Moisture Data Measured by Wireless Sensor Networks

    PubMed Central

    Zhang, Jialin; Li, Xiuhong; Yang, Rongjin; Liu, Qiang; Zhao, Long; Dou, Baocheng

    2017-01-01

    In the practice of interpolating near-surface soil moisture measured by a wireless sensor network (WSN) grid, traditional Kriging methods with auxiliary variables, such as Co-kriging and Kriging with external drift (KED), cannot achieve satisfactory results because of the heterogeneity of soil moisture and its low correlation with the auxiliary variables. This study developed an Extended Kriging method to interpolate with the aid of remote sensing images. The underlying idea is to extend the traditional Kriging by introducing spectral variables, and operating on spatial and spectral combined space. The algorithm has been applied to WSN-measured soil moisture data in HiWATER campaign to generate daily maps from 10 June to 15 July 2012. For comparison, three traditional Kriging methods are applied: Ordinary Kriging (OK), which used WSN data only, Co-kriging and KED, both of which integrated remote sensing data as covariate. Visual inspections indicate that the result from Extended Kriging shows more spatial details than that of OK, Co-kriging, and KED. The Root Mean Square Error (RMSE) of Extended Kriging was found to be the smallest among the four interpolation results. This indicates that the proposed method has advantages in combining remote sensing information and ground measurements in soil moisture interpolation. PMID:28617351

  14. Radiation Climatology of the Greenland Ice Sheet Derived from Greenland Climate Network Data

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Box, Jason

    2003-01-01

    The magnitude of shortwave and longwave dative fluxes are critical to surface energy balance variations over the Greenland ice sheet, affecting many aspects of its climate, including melt rates, the nature of low-level temperature inversions, the katabatic wind regime and buoyant stability of the atmosphere. Nevertheless, reliable measurements of the radiative fluxes over the ice sheet are few in number, and have been of limited duration and areal distribution (e.g. Ambach, 1960; 1963, Konzelmann et al., 1994, Harding et al., 1995, Van den Broeke, 1996). Hourly GC-Net radiation flux measurements spanning 1995-2001 period have been used to produce a monthly dataset of surface radiation balance components. The measurements are distributed widely across Greenland and incorporate multiple sensors

  15. Network science landers for Mars

    NASA Astrophysics Data System (ADS)

    Harri, A.-M.; Marsal, O.; Lognonne, P.; Leppelmeier, G. W.; Spohn, T.; Glassmeier, K.-H.; Angrilli, F.; Banerdt, W. B.; Barriot, J. P.; Bertaux, J.-L.; Berthelier, J. J.; Calcutt, S.; Cerisier, J. C.; Crisp, D.; Dehant, V.; Giardini, D.; Jaumann, R.; Langevin, Y.; Menvielle, M.; Musmann, G.; Pommereau, J. P.; di Pippo, S.; Guerrier, D.; Kumpulainen, K.; Larsen, S.; Mocquet, A.; Polkko, J.; Runavot, J.; Schumacher, W.; Siili, T.; Simola, J.; Tillman, J. E.

    1999-01-01

    The NetLander Mission will deploy four landers to the Martian surface. Each lander includes a network science payload with instrumentation for studying the interior of Mars, the atmosphere and the subsurface, as well as the ionospheric structure and geodesy. The NetLander Mission is the first planetary mission focusing on investigations of the interior of the planet and the large-scale circulation of the atmosphere. A broad consortium of national space agencies and research laboratories will implement the mission. It is managed by CNES (the French Space Agency), with other major players being FMI (the Finnish Meteorological Institute), DLR (the German Space Agency), and other research institutes. According to current plans, the NetLander Mission will be launched in 2005 by means of an Ariane V launch, together with the Mars Sample Return mission. The landers will be separated from the spacecraft and targeted to their locations on the Martian surface several days prior to the spacecraft's arrival at Mars. The landing system employs parachutes and airbags. During the baseline mission of one Martian year, the network payloads will conduct simultaneous seismological, atmospheric, magnetic, ionospheric, geodetic measurements and ground penetrating radar mapping supported by panoramic images. The payloads also include entry phase measurements of the atmospheric vertical structure. The scientific data could be combined with simultaneous observations of the atmosphere and surface of Mars by the Mars Express Orbiter that is expected to be functional during the NetLander Mission's operational phase. Communication between the landers and the Earth would take place via a data relay onboard the Mars Express Orbiter.

  16. Scaling relationships and concavity of small valley networks on Mars

    NASA Astrophysics Data System (ADS)

    Penido, Julita C.; Fassett, Caleb I.; Som, Sanjoy M.

    2013-01-01

    Valley networks are widely interpreted as the preserved erosional record of water flowing across the martian surface. The manner in which valley morphometric properties scale with drainage area has been widely examined on Earth. Earlier studies assessing these properties on Mars have suggested that martian valleys are morphometrically distinct from those on Earth. However, these earlier measurements were generally made on large valley systems because of the limited topographic data available. In this study, we determine the scaling properties of valley networks at smaller scales than have been previously assessed, using digital elevation models from the High Resolution Stereo Camera (HRSC). We find a Hack's law exponent of 0.74, larger than on Earth, and our measurements also reveal that individual small valleys have concave up, concave down, and quasi-linear longitudinal profiles, consistent with earlier studies of dissected terrain on Mars. However, for many valleys, widths are observed to increase downstream similarly to how they scale in terrestrial channels. The similarities and differences between valley networks on Mars and Earth are consistent with the idea that valleys on Mars are comparatively immature, and precipitation was a likely mechanism for delivering water to these networks.

  17. 3-D density imaging with muon flux measurements from underground galleries

    NASA Astrophysics Data System (ADS)

    Lesparre, N.; Cabrera, J.; Marteau, J.

    2017-03-01

    Atmospheric muon flux measurements provide information on subsurface density distribution. In this study, muon flux was measured underground, in the Tournemire experimental platform (France). The objective was to image the medium between the galleries and the surface and evaluate the feasibility to detect the presence of discontinuities, for example, produced by secondary subvertical faults or by karstic networks. Measurements were performed from three different sites with a partial overlap of muon trajectories, offering the possibility to seek density variations at different depths. The conversion of the measured muon flux to average density values showed global variations further analysed through a 3-D nonlinear inversion procedure. Main results are the presence of a very low density region at the level of the upper aquifer, compatible with the presence of a karstic network hosting local cavities, and the absence of secondary faults. We discuss the validity of the present results and propose different strategies to improve the accuracy of such measurements and analysis.

  18. Controllability of Surface Water Networks

    NASA Astrophysics Data System (ADS)

    Riasi, M. Sadegh; Yeghiazarian, Lilit

    2017-12-01

    To sustainably manage water resources, we must understand how to control complex networked systems. In this paper, we study surface water networks from the perspective of structural controllability, a concept that integrates classical control theory with graph-theoretic formalism. We present structural controllability theory and compute four metrics: full and target controllability, control centrality and control profile (FTCP) that collectively determine the structural boundaries of the system's control space. We use these metrics to answer the following questions: How does the structure of a surface water network affect its controllability? How to efficiently control a preselected subset of the network? Which nodes have the highest control power? What types of topological structures dominate controllability? Finally, we demonstrate the structural controllability theory in the analysis of a wide range of surface water networks, such as tributary, deltaic, and braided river systems.

  19. Real-Time Alpine Measurement System Using Wireless Sensor Networks

    PubMed Central

    2017-01-01

    Monitoring the snow pack is crucial for many stakeholders, whether for hydro-power optimization, water management or flood control. Traditional forecasting relies on regression methods, which often results in snow melt runoff predictions of low accuracy in non-average years. Existing ground-based real-time measurement systems do not cover enough physiographic variability and are mostly installed at low elevations. We present the hardware and software design of a state-of-the-art distributed Wireless Sensor Network (WSN)-based autonomous measurement system with real-time remote data transmission that gathers data of snow depth, air temperature, air relative humidity, soil moisture, soil temperature, and solar radiation in physiographically representative locations. Elevation, aspect, slope and vegetation are used to select network locations, and distribute sensors throughout a given network location, since they govern snow pack variability at various scales. Three WSNs were installed in the Sierra Nevada of Northern California throughout the North Fork of the Feather River, upstream of the Oroville dam and multiple powerhouses along the river. The WSNs gathered hydrologic variables and network health statistics throughout the 2017 water year, one of northern Sierra’s wettest years on record. These networks leverage an ultra-low-power wireless technology to interconnect their components and offer recovery features, resilience to data loss due to weather and wildlife disturbances and real-time topological visualizations of the network health. Data show considerable spatial variability of snow depth, even within a 1 km2 network location. Combined with existing systems, these WSNs can better detect precipitation timing and phase in, monitor sub-daily dynamics of infiltration and surface runoff during precipitation or snow melt, and inform hydro power managers about actual ablation and end-of-season date across the landscape. PMID:29120376

  20. Tower-Based Greenhouse Gas Measurement Network Design---The National Institute of Standards and Technology North East Corridor Testbed.

    PubMed

    Lopez-Coto, Israel; Ghosh, Subhomoy; Prasad, Kuldeep; Whetstone, James

    2017-09-01

    The North-East Corridor (NEC) Testbed project is the 3rd of three NIST (National Institute of Standards and Technology) greenhouse gas emissions testbeds designed to advance greenhouse gas measurements capabilities. A design approach for a dense observing network combined with atmospheric inversion methodologies is described. The Advanced Research Weather Research and Forecasting Model with the Stochastic Time-Inverted Lagrangian Transport model were used to derive the sensitivity of hypothetical observations to surface greenhouse gas emissions (footprints). Unlike other network design algorithms, an iterative selection algorithm, based on a k -means clustering method, was applied to minimize the similarities between the temporal response of each site and maximize sensitivity to the urban emissions contribution. Once a network was selected, a synthetic inversion Bayesian Kalman filter was used to evaluate observing system performance. We present the performances of various measurement network configurations consisting of differing numbers of towers and tower locations. Results show that an overly spatially compact network has decreased spatial coverage, as the spatial information added per site is then suboptimal as to cover the largest possible area, whilst networks dispersed too broadly lose capabilities of constraining flux uncertainties. In addition, we explore the possibility of using a very high density network of lower cost and performance sensors characterized by larger uncertainties and temporal drift. Analysis convergence is faster with a large number of observing locations, reducing the response time of the filter. Larger uncertainties in the observations implies lower values of uncertainty reduction. On the other hand, the drift is a bias in nature, which is added to the observations and, therefore, biasing the retrieved fluxes.

  1. Real-Time Alpine Measurement System Using Wireless Sensor Networks.

    PubMed

    Malek, Sami A; Avanzi, Francesco; Brun-Laguna, Keoma; Maurer, Tessa; Oroza, Carlos A; Hartsough, Peter C; Watteyne, Thomas; Glaser, Steven D

    2017-11-09

    Monitoring the snow pack is crucial for many stakeholders, whether for hydro-power optimization, water management or flood control. Traditional forecasting relies on regression methods, which often results in snow melt runoff predictions of low accuracy in non-average years. Existing ground-based real-time measurement systems do not cover enough physiographic variability and are mostly installed at low elevations. We present the hardware and software design of a state-of-the-art distributed Wireless Sensor Network (WSN)-based autonomous measurement system with real-time remote data transmission that gathers data of snow depth, air temperature, air relative humidity, soil moisture, soil temperature, and solar radiation in physiographically representative locations. Elevation, aspect, slope and vegetation are used to select network locations, and distribute sensors throughout a given network location, since they govern snow pack variability at various scales. Three WSNs were installed in the Sierra Nevada of Northern California throughout the North Fork of the Feather River, upstream of the Oroville dam and multiple powerhouses along the river. The WSNs gathered hydrologic variables and network health statistics throughout the 2017 water year, one of northern Sierra's wettest years on record. These networks leverage an ultra-low-power wireless technology to interconnect their components and offer recovery features, resilience to data loss due to weather and wildlife disturbances and real-time topological visualizations of the network health. Data show considerable spatial variability of snow depth, even within a 1 km 2 network location. Combined with existing systems, these WSNs can better detect precipitation timing and phase in, monitor sub-daily dynamics of infiltration and surface runoff during precipitation or snow melt, and inform hydro power managers about actual ablation and end-of-season date across the landscape.

  2. Tower-based greenhouse gas measurement network design—The National Institute of Standards and Technology North East Corridor Testbed

    NASA Astrophysics Data System (ADS)

    Lopez-Coto, Israel; Ghosh, Subhomoy; Prasad, Kuldeep; Whetstone, James

    2017-09-01

    The North-East Corridor (NEC) Testbed project is the 3rd of three NIST (National Institute of Standards and Technology) greenhouse gas emissions testbeds designed to advance greenhouse gas measurements capabilities. A design approach for a dense observing network combined with atmospheric inversion methodologies is described. The Advanced Research Weather Research and Forecasting Model with the Stochastic Time-Inverted Lagrangian Transport model were used to derive the sensitivity of hypothetical observations to surface greenhouse gas emissions (footprints). Unlike other network design algorithms, an iterative selection algorithm, based on a k-means clustering method, was applied to minimize the similarities between the temporal response of each site and maximize sensitivity to the urban emissions contribution. Once a network was selected, a synthetic inversion Bayesian Kalman filter was used to evaluate observing system performance. We present the performances of various measurement network configurations consisting of differing numbers of towers and tower locations. Results show that an overly spatially compact network has decreased spatial coverage, as the spatial information added per site is then suboptimal as to cover the largest possible area, whilst networks dispersed too broadly lose capabilities of constraining flux uncertainties. In addition, we explore the possibility of using a very high density network of lower cost and performance sensors characterized by larger uncertainties and temporal drift. Analysis convergence is faster with a large number of observing locations, reducing the response time of the filter. Larger uncertainties in the observations implies lower values of uncertainty reduction. On the other hand, the drift is a bias in nature, which is added to the observations and, therefore, biasing the retrieved fluxes.

  3. Bio-inspired patterned networks (BIPS) for development of wearable/disposable biosensors

    NASA Astrophysics Data System (ADS)

    McLamore, E. S.; Convertino, M.; Hondred, John; Das, Suprem; Claussen, J. C.; Vanegas, D. C.; Gomes, C.

    2016-05-01

    Here we demonstrate a novel approach for fabricating point of care (POC) wearable electrochemical biosensors based on 3D patterning of bionanocomposite networks. To create Bio-Inspired Patterned network (BIPS) electrodes, we first generate fractal network in silico models that optimize transport of network fluxes according to an energy function. Network patterns are then inkjet printed onto flexible substrate using conductive graphene ink. We then deposit fractal nanometal structures onto the graphene to create a 3D nanocomposite network. Finally, we biofunctionalize the surface with biorecognition agents using covalent bonding. In this paper, BIPS are used to develop high efficiency, low cost biosensors for measuring glucose as a proof of concept. Our results on the fundamental performance of BIPS sensors show that the biomimetic nanostructures significantly enhance biosensor sensitivity, accuracy, response time, limit of detection, and hysteresis compared to conventional POC non fractal electrodes (serpentine, interdigitated, and screen printed electrodes). BIPs, in particular Apollonian patterned BIPS, represent a new generation of POC biosensors based on nanoscale and microscale fractal networks that significantly improve electrical connectivity, leading to enhanced sensor performance.

  4. Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, S. M.; Xiao, X.; Faber, K. T.

    Alumina ceramics were freeze-cast from water- and camphene-based slurries under varying freezing conditions and examined using X-ray computed tomography (XCT). Pore network characteristics, i.e., porosity, pore size, geometric surface area, and tortuosity, were measured from XCT reconstructions and the data were used to develop a model to predict feature size from processing conditions. Classical solidification theory was used to examine relationships between pore size, temperature gradients, and freezing front velocity. Freezing front velocity was subsequently predicted from casting conditions via the two-phase Stefan problem. Resulting models for water-based samples agreed with solidification-based theories predicting lamellar spacing of binary eutectic alloys,more » and models for camphene-based samples concurred with those for dendritic growth. Relationships between freezing conditions and geometric surface area were also modeled by considering the inverse relationship between pore size and surface area. Tortuosity was determined to be dependent primarily on the type of dispersion medium. (C) 2015 Elsevier Ltd. All rights reserved.« less

  5. Assessment of Scanning Tunneling Spectroscopy Modes Inspecting Electron Confinement in Surface-Confined Supramolecular Networks

    PubMed Central

    Krenner, Wolfgang; Kühne, Dirk; Klappenberger, Florian; Barth, Johannes V.

    2013-01-01

    Scanning tunneling spectroscopy (STS) enables the local, energy-resolved investigation of a samples surface density of states (DOS) by measuring the differential conductance (dI/dV) being approximately proportional to the DOS. It is popular to examine the electronic structure of elementary samples by acquiring dI/dV maps under constant current conditions. Here we demonstrate the intricacy of STS mapping of samples exhibiting a strong corrugation originating from electronic density and local work function changes. The confinement of the Ag(111) surface state by a porous organic network is studied with maps obtained under constant-current (CC) as well as open-feedback-loop (OFL) conditions. We show how the CC maps deviate markedly from the physically more meaningful OFL maps. By applying a renormalization procedure to the OFL data we can mimic the spurious effects of the CC mode and thereby rationalize the physical effects evoking the artefacts in the CC maps. PMID:23503526

  6. Soil moisture from ground-based networks and the North American Land Data Assimilation System Phase 2 Model: Are the right values somewhere in between?

    NASA Astrophysics Data System (ADS)

    Caldwell, T. G.; Scanlon, B. R.; Long, D.; Young, M.

    2013-12-01

    Soil moisture is the most enigmatic component of the water balance; nonetheless, it is inherently tied to every component of the hydrologic cycle, affecting the partitioning of both water and energy at the land surface. However, our ability to assess soil water storage capacity and status through measurement or modeling is challenged by error and scale. Soil moisture is as difficult to measure as it is to model, yet land surface models and remote sensing products require some means of validation. Here we compare the three major soil moisture monitoring networks across the US, including the USDA Soil Climate Assessment Network (SCAN), NOAA Climate Reference Network (USCRN), and Cosmic Ray Soil Moisture Observing System (COSMOS) to the soil moisture simulated using the North American Land Data Assimilation System (NLDAS) Phase 2. NLDAS runs in near real-time on a 0.125° (12 km) grid over the US, producing ensemble model outputs of surface fluxes and storage. We focus primarily on soil water storage (SWS) in the upper 0-0.1 m zone from the Noah Land Surface Model and secondarily on the effects of error propagation from atmospheric forcing and soil parameterization. No scaling of the observational data was attempted. We simply compared the extracted time series at the nearest grid center from NLDAS and assessed the results by standard model statistics including root mean square error (RMSE) and mean bias estimate (MBE) of the collocated ground station. Observed and modeled data were compared at both hourly and daily mean coordinated universal time steps. In all, ~300 stations were used for 2012. SCAN sites were found to be particularly troublesome at 5- and 10-cm depths. SWS at 163 SCAN sites departed significantly from Noah with a mean R2 of 0.38 × 0.0.23, a mean RMSE of 14.9 mm with a MBE of -13.5 mm. SWS at 111 USCRN sites has a mean R2 of 0.53 × 0.20, a mean RMSE of 8.2 mm with a MBE of -3.7 mm relative to Noah. Finally, 62 COSMOS sites, the instrument with the largest measurement footprint (0.03 km2), we calculated a mean R2 of 0.53 × 0.21, a mean RMSE of 9.7 mm with a MBE of -0.3 mm. Forcing errors and textural misclassifications correlate well with model biases, indicating that scale and structural errors are equally present in NLDAS. Scaling issues aside, these confounding errors make cal/val missions, such as NASA's upcoming Soil Moisture Active Passive (SMAP) mission, problematic without significant quality control and maintenance of for our monitoring networks. Land surface models, such as NLDAS-2, may provide valuable insight into our soil moisture data and somewhere in between the real values likely exist.

  7. The GCOS Reference Upper-Air Network (GRUAN)

    NASA Astrophysics Data System (ADS)

    Vömel, H.; Berger, F. H.; Immler, F. J.; Seidel, D.; Thorne, P.

    2009-04-01

    While the global upper-air observing network has provided useful observations for operational weather forecasting for decades, its measurements lack the accuracy and long-term continuity needed for understanding climate change. Consequently, the scientific community faces uncertainty on such key issues as the trends of temperature in the upper troposphere and stratosphere or the variability and trends of stratospheric water vapour. To address these shortcomings, and to ensure that future climate records will be more useful than the records to date, the Global Climate Observing System (GCOS) program initiated the GCOS Reference Upper Air Network (GRUAN). GRUAN will be a network of about 30-40 observatories with a representative sampling of geographic regions and surface types. These stations will provide upper-air reference observations of the essential climate variables, i.e. temperature, geopotential, humidity, wind, radiation and cloud properties using specialized radiosondes and complementary remote sensing profiling instrumentation. Long-term stability, quality assurance / quality control, and a detailed assessment of measurement uncertainties will be the key aspects of GRUAN observations. The network will not be globally complete but will serve to constrain and adjust data from more spatially comprehensive global observing systems including satellites and the current radiosonde networks. This paper outlines the scientific rationale for GRUAN, its role in the Global Earth Observation System of Systems, network requirements and likely instrumentation, management structure, current status and future plans.

  8. Ozone measurements from a global network of surface sites

    NASA Technical Reports Server (NTRS)

    Oltmans, Samuel J.; Levy, Hiram, II

    1994-01-01

    From a network of surface ozone monitoring sites distributed primarily over the Atlantic and Pacific Oceans, the seasonal, day-to-day, and diurnal patterns are delineated. At most of the NH (Northern Hemisphere) sites there is a spring maximum and late summer or autumn minimum. At Barrow, AK (70 deg N) and Barbados (14 deg N), however, there is a winter maximum, but the mechanisms producing the maximum are quite different. All the sites in the SH (Southern Hemisphere) show winter maxima and summer minima. At the subtropical and tropical sites, there are large day-to-day variations that reflect the changes in flow patterns. Air of tropical origin has much lower ozone concentrations than air from higher latitudes. At the two tropical sites (Barbados and Samoa), there is a marked diurnal ozone variation with highest amounts in the early morning and lowest values in the afternoon. At four of the locations (Barrow, AK; Mauna Loa, HI; American Samoa; and South Pole), there are 15- through 20-year records which allow us to look at longer term changes. At Barrow there has been a large summer increase over the 20 years of measurements. At South Pole, on the other hand, summer decreases have led to an overall decline in surface ozone amounts.

  9. Eco-hydrological Wireless Sensor Network and upscaling method research in the Heihe River Basin, China

    NASA Astrophysics Data System (ADS)

    Jin, Rui; kang, Jian

    2017-04-01

    Wireless Sensor Networks are recognized as one of most important near-surface components of GEOSS (Global Earth Observation System of Systems), with flourish development of low-cost, robust and integrated data loggers and sensors. A nested eco-hydrological wireless sensor network (EHWSN) was installed in the up- and middle-reaches of the Heihe River Basin, operated to obtain multi-scale observation of soil moisture, soil temperature and land surface temperature from 2012 till now. The spatial distribution of EHWSN was optimally designed based on the geo-statistical theory, with the aim to capture the spatial variations and temporal dynamics of soil moisture and soil temperature, and to produce ground truth at grid scale for validating the related remote sensing products and model simulation in the heterogeneous land surface. In terms of upscaling research, we have developed a set of method to aggregate multi-point WSN observations to grid scale ( 1km), including regression kriging estimation to utilize multi-resource remote sensing auxiliary information, block kriging with homogeneous measurement errors, and bayesian-based upscaling algorithm that utilizes MODIS-derived apparent thermal inertia. All the EHWSN observation are organized as datasets to be freely published at http://westdc.westgis.ac.cn/hiwater. EHWSN integrates distributed observation nodes to achieve an automated, intelligent and remote-controllable network that provides superior integrated, standardized and automated observation capabilities for hydrological and ecological processes research at the basin scale.

  10. Channel Model on Various Frequency Bands for Wearable Body Area Network

    NASA Astrophysics Data System (ADS)

    Katayama, Norihiko; Takizawa, Kenichi; Aoyagi, Takahiro; Takada, Jun-Ichi; Li, Huan-Bang; Kohno, Ryuji

    Body Area Network (BAN) is considered as a promising technology in supporting medical and healthcare services by combining with various biological sensors. In this paper, we look at wearable BAN, which provides communication links among sensors on body surface. In order to design a BAN that manages biological information with high efficiency and high reliability, the propagation characteristics of BAN must be thoroughly investigated. As a preliminary effort, we measured the propagation characteristics of BAN at frequency bands of 400MHz, 600MHz, 900MHz and 2400MHz respectively. Channel models for wearable BAN based on the measurement were derived. Our results show that the channel model can be described by using a path loss model for all frequency bands investigated.

  11. Towards 1D nanolines on a monolayered supramolecular network adsorbed on a silicon surface.

    PubMed

    Makoudi, Younes; Beyer, Matthieu; Lamare, Simon; Jeannoutot, Judicael; Palmino, Frank; Chérioux, Frédéric

    2016-06-16

    The growth of 3D extended periodic networks made up of π-conjugated molecules on semi-conductor surfaces is of interest for the integration of nano-components in the future generations of smart devices. In the work presented in this article, we successfully achieved the formation of bilayered networks on a silicon surface including 1D-isolated nanolines in the second layer. Firstly, we observed the formation of a 2D large-scale supramolecular network in the plane of a silicon surface through the deposition of tailored molecules. Then using the same molecules, a second-layer, based on 1D nanolines, grew above the first layer, thanks to a template effect. Mono- or bi-layered networks were found to be stable from 100 K up to room temperature. These networks were investigated by scanning tunnel microscopy imaging under an ultra-high vacuum (UHV-STM).

  12. Method for Constructing Composite Response Surfaces by Combining Neural Networks with other Interpolation or Estimation Techniques

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan (Inventor); Madavan, Nateri K. (Inventor)

    2003-01-01

    A method and system for design optimization that incorporates the advantages of both traditional response surface methodology (RSM) and neural networks is disclosed. The present invention employs a unique strategy called parameter-based partitioning of the given design space. In the design procedure, a sequence of composite response surfaces based on both neural networks and polynomial fits is used to traverse the design space to identify an optimal solution. The composite response surface has both the power of neural networks and the economy of low-order polynomials (in terms of the number of simulations needed and the network training requirements). The present invention handles design problems with many more parameters than would be possible using neural networks alone and permits a designer to rapidly perform a variety of trade-off studies before arriving at the final design.

  13. Arctic Observing Experiment (AOX) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigor, Ignatius; Johnson, Jim; Motz, Emily

    Our ability to understand and predict weather and climate requires an accurate observing network. One of the pillars of this network is the observation of the fundamental meteorological parameters: temperature, air pressure, and wind. We plan to assess our ability to measure these parameters for the polar regions during the Arctic Observing Experiment (AOX, Figure 1) to support the International Arctic Buoy Programme (IABP), Arctic Observing Network (AON), International Program for Antarctic Buoys (IPAB), and Southern Ocean Observing System (SOOS). Accurate temperature measurements are also necessary to validate and improve satellite measurements of surface temperature across the Arctic. Support formore » research associated with the campaign is provided by the National Science Foundation, and by other US agencies contributing to the US Interagency Arctic Buoy Program. In addition to the support provided by the U.S Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s North Slope of Alaska (NSA) site at Barrow and the National Science Foundation (NSF), the U.S. IABP is supported by the U.S. Coast Guard (USCG), the National Aeronautics and Space Administration (NASA), the National Ice Center (NIC), the National Oceanic and Atmospheric Administration (NOAA), and the Office of Naval Research (ONR).« less

  14. On the Development of Models for Height Profiles of the Wind Speed in the Atmospheric Surface Layer

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. G.; Ganaga, S. V.; Kudryashov, Yu. I.; Nikolaev, V. V.

    2018-03-01

    The reliability of the known models of a height profile of the wind speed V( h) in the atmospheric boundary layer (ABL) and near-surface layer (NSL) is analyzed using the data of long-term ABL measurements accumulated in Russia in the state network of meteorological and aerological stations and the data of multilevel measurements at mast wind-measuring complexes. A new multilayer semiempirical model of V( h) is proposed which is based on aerodynamic and physical representations of the ABL vertical structure and relies on the hypothesis that wind-speed profiles providing the minimum wind friction on the ground and satisfying the conditions of profile smoothness are feasible in the ABL. This model ensures the best agreement with the data of meteorological, aerological, and mast wind measurements.

  15. Spatially continuous interpolation of water stage and water depths using the Everglades depth estimation network (EDEN)

    USGS Publications Warehouse

    Pearlstine, Leonard; Higer, Aaron; Palaseanu, Monica; Fujisaki, Ikuko; Mazzotti, Frank

    2007-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level monitoring, ground-elevation modeling, and water-surface modeling that provides scientists and managers with current (2000-present), online water-stage and water-depth information for the entire freshwater portion of the Greater Everglades. Continuous daily spatial interpolations of the EDEN network stage data are presented on a 400-square-meter grid spacing. EDEN offers a consistent and documented dataset that can be used by scientists and managers to (1) guide large-scale field operations, (2) integrate hydrologic and ecological responses, and (3) support biological and ecological assessments that measure ecosystem responses to the implementation of the Comprehensive Everglades Restoration Plan (CERP) The target users are biologists and ecologists examining trophic level responses to hydrodynamic changes in the Everglades.

  16. Using Sentinel-1 and Landsat 8 satellite images to estimate surface soil moisture content.

    NASA Astrophysics Data System (ADS)

    Mexis, Philippos-Dimitrios; Alexakis, Dimitrios D.; Daliakopoulos, Ioannis N.; Tsanis, Ioannis K.

    2016-04-01

    Nowadays, the potential for more accurate assessment of Soil Moisture (SM) content exploiting Earth Observation (EO) technology, by exploring the use of synergistic approaches among a variety of EO instruments has emerged. This study is the first to investigate the potential of Synthetic Aperture Radar (SAR) (Sentinel-1) and optical (Landsat 8) images in combination with ground measurements to estimate volumetric SM content in support of water management and agricultural practices. SAR and optical data are downloaded and corrected in terms of atmospheric, geometric and radiometric corrections. SAR images are also corrected in terms of roughness and vegetation with the synergistic use of Oh and Topp models using a dataset consisting of backscattering coefficients and corresponding direct measurements of ground parameters (moisture, roughness). Following, various vegetation indices (NDVI, SAVI, MSAVI, EVI, etc.) are estimated to record diachronically the vegetation regime within the study area and as auxiliary data in the final modeling. Furthermore, thermal images from optical data are corrected and incorporated to the overall approach. The basic principle of Thermal InfraRed (TIR) method is that Land Surface Temperature (LST) is sensitive to surface SM content due to its impact on surface heating process (heat capacity and thermal conductivity) under bare soil or sparse vegetation cover conditions. Ground truth data are collected from a Time-domain reflectometer (TRD) gauge network established in western Crete, Greece, during 2015. Sophisticated algorithms based on Artificial Neural Networks (ANNs) and Multiple Linear Regression (MLR) approaches are used to explore the statistical relationship between backscattering measurements and SM content. Results highlight the potential of SAR and optical satellite images to contribute to effective SM content detection in support of water resources management and precision agriculture. Keywords: Sentinel-1, Landsat 8, Soil moisture content, Artificial Neural Network, Multiple Linear Regression The study was fully supported by the CASCADE project. The CASCADE Project is financed by the European Commission FP7 program, ENV.2011.2.1.4-2 - 'Behaviour of ecosystems, thresholds and tipping points', EU Grant agreement: 283068.

  17. Wide-Area Soil Moisture Estimation Using the Propagation of Lightning Generated Low-Frequency Electromagnetic Signals 1977

    USDA-ARS?s Scientific Manuscript database

    Land surface moisture measurements are central to our understanding of the earth’s water system, and are needed to produce accurate model-based weather/climate predictions. Currently, there exists no in-situ network capable of estimating wide-area soil moisture. In this paper, we explore an alterna...

  18. Multi-time scale analysis of the spatial representativeness of in situ soil moisture data within satellite footprints

    USDA-ARS?s Scientific Manuscript database

    We conduct a novel comprehensive investigation that seeks to prove the connection between spatial and time scales in surface soil moisture (SM) within the satellite footprint (~50 km). Modeled and measured point series at Yanco and Little Washita in situ networks are first decomposed into anomalies ...

  19. Anthropogenic fugitive, combustion and industrial dust is a significant, underrepresented fine particulate matter source in global atmospheric models

    NASA Astrophysics Data System (ADS)

    Philip, Sajeev; Martin, Randall V.; Snider, Graydon; Weagle, Crystal L.; van Donkelaar, Aaron; Brauer, Michael; Henze, Daven K.; Klimont, Zbigniew; Venkataraman, Chandra; Guttikunda, Sarath K.; Zhang, Qiang

    2017-04-01

    Global measurements of the elemental composition of fine particulate matter across several urban locations by the Surface Particulate Matter Network reveal an enhanced fraction of anthropogenic dust compared to natural dust sources, especially over Asia. We develop a global simulation of anthropogenic fugitive, combustion, and industrial dust which, to our knowledge, is partially missing or strongly underrepresented in global models. We estimate 2-16 μg m-3 increase in fine particulate mass concentration across East and South Asia by including anthropogenic fugitive, combustion, and industrial dust emissions. A simulation including anthropogenic fugitive, combustion, and industrial dust emissions increases the correlation from 0.06 to 0.66 of simulated fine dust in comparison with Surface Particulate Matter Network measurements at 13 globally dispersed locations, and reduces the low bias by 10% in total fine particulate mass in comparison with global in situ observations. Global population-weighted PM2.5 increases by 2.9 μg m-3 (10%). Our assessment ascertains the urgent need of including this underrepresented fine anthropogenic dust source into global bottom-up emission inventories and global models.

  20. Using GNSS-R techniques to investigate the near sub-surface of Mars with the Deep Space Network

    NASA Astrophysics Data System (ADS)

    Elliott, H. M.; Bell, D. J.; Jin, C.; Decrossas, E.; Asmar, S.; Lazio, J.; Preston, R. A.; Ruf, C. S.; Renno, N. O.

    2017-12-01

    Global Navigation Satellite Systems Reflectometry (GNSS-R) has shown that passive measurements using separate active sources can infer the soil moisture, snow pack depth and other quantities of scientific interest. Here, we expand upon this method and propose that a passive measurement of the sub-surface dielectric profile of Mars can be made by using multipath interference between reflections off the surface and subsurface dielectric discontinuities. This measurement has the ability to reveal changes in the soil water content, the depth of a layer of sand, thickness of a layer of ice, and even identify centimeter-scale layering which may indicate the presence of a sedimentary bed. We have created a numerical ray tracing model to understand the potential of using multipath interference techniques to investigate the sub-surface dielectric properties and structure of Mars. We have further verified this model using layered beds of sand and concrete in laboratory experiments and then used the model to extrapolate how this technique may be applied to future Mars missions. We will present new results demonstrating how to characterize a multipath interference patterns as a function of frequency and/or incidence angle to measure the thickness of a dielectric layer of sand or ice. Our results demonstrate that dielectric discontinuities in the subsurface can be measured using this passive sensing technique and it could be used to effectively measure the thickness of a dielectric layer in the proximity of a landed spacecraft. In the case of an orbiter, we believe this technique would be effective at measuring the seasonal thickness of CO2 ice in the Polar Regions. This is exciting because our method can produce similar results to traditional ground penetrating radars without the need to have an active radar transmitter in-situ. Therefore, it is possible that future telecommunications systems can serve as both a radio and a scientific instrument when used in conjunction with the Deep Space Network, a huge potential cost-savings for interplanetary missions.

  1. Black Carbon Concentration from Worldwide Aerosol Robotic Network (AERONET)

    NASA Technical Reports Server (NTRS)

    Schuster, Greg; Dubovik, Oleg; Holben, Brent; Clothiaux, Eugene

    2008-01-01

    Worldwide black carbon concentration measurements are needed to assess the efficacy of the carbon emissions inventory and transport model output. This requires long-term measurements in many regions, as model success in one region or season does not apply to all regions and seasons. AERONET is an automated network of more than 180 surface radiometers located throughout the world. The sky radiance measurements obtained by AERONET are inverted to provide column-averaged aerosol refractive indices and size distributions for the AERONET database, which we use to derive column-averaged black carbon concentrations and specific absorptions that are constrained by the measured radiation field. This provides a link between AERONET sky radiance measurements and the elemental carbon concentration of transport models without the need for an optics module in the transport model. Knowledge of both the black carbon concentration and aerosol absorption optical depth (i.e., input and output of the optics module) will enable improvements to the transport model optics module.

  2. Measurement of the properties of lossy materials inside a finite conducting cylinder

    NASA Technical Reports Server (NTRS)

    Dominek, A.; Park, A.; Caldecott, R.

    1988-01-01

    Broadband, swept frequency measurement techniques were investigated for the evaluation of the electrical performance of thin, high temperature material coatings. Reflections and transmission measurements using an HP8510B Network Analyzer were developed for an existing high temperature test rig at NASA Lewis Research Center. Reflection measurements will be the initial approach used due to fixture simplicity even though surface wave transmission measurements would be more sensitive. The minimum goal is to monitor the electrical change of the material's performance as a function of temperature. If possible, the materials constitutive parameters, epsilon and muon will be found.

  3. Global terrestrial water storage connectivity revealed using complex climate network analyses

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.; Chen, J.; Donges, J.

    2015-07-01

    Terrestrial water storage (TWS) exerts a key control in global water, energy, and biogeochemical cycles. Although certain causal relationship exists between precipitation and TWS, the latter quantity also reflects impacts of anthropogenic activities. Thus, quantification of the spatial patterns of TWS will not only help to understand feedbacks between climate dynamics and the hydrologic cycle, but also provide new insights and model calibration constraints for improving the current land surface models. This work is the first attempt to quantify the spatial connectivity of TWS using the complex network theory, which has received broad attention in the climate modeling community in recent years. Complex networks of TWS anomalies are built using two global TWS data sets, a remote sensing product that is obtained from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, and a model-generated data set from the global land data assimilation system's NOAH model (GLDAS-NOAH). Both data sets have 1° × 1° grid resolutions and cover most global land areas except for permafrost regions. TWS networks are built by first quantifying pairwise correlation among all valid TWS anomaly time series, and then applying a cutoff threshold derived from the edge-density function to retain only the most important features in the network. Basinwise network connectivity maps are used to illuminate connectivity of individual river basins with other regions. The constructed network degree centrality maps show the TWS anomaly hotspots around the globe and the patterns are consistent with recent GRACE studies. Parallel analyses of networks constructed using the two data sets reveal that the GLDAS-NOAH model captures many of the spatial patterns shown by GRACE, although significant discrepancies exist in some regions. Thus, our results provide further measures for constraining the current land surface models, especially in data sparse regions.

  4. Comparison of the orogenic displacement of sodium caseinate with the caseins from the air-water interface by nonionic surfactants.

    PubMed

    Woodward, N C; Gunning, A P; Mackie, A R; Wilde, P J; Morris, V J

    2009-06-16

    Displacement of sodium caseinate from the air-water interface by nonionic surfactants Tween 20 and Tween 60 was observed by atomic force microscopy (AFM). The interfacial structure was sampled by Langmuir-Blodgett deposition onto freshly cleaved mica substrates. Protein displacement occurred through an orogenic mechanism: it involved the nucleation and growth of surfactant domains within the protein network, followed by failure of the protein network. The surface pressure at which failure of the protein network occurred was essentially independent of the type of surfactant. The major component of sodium caseinate is beta-casein, and previous studies at the air-water interface have shown that beta-casein networks are weak, failing at surface pressures below that observed for sodium caseinate. The other components of sodium caseinate are alpha(s)- and kappa-caseins. Studies of the displacement of alpha(s)-caseins from air-water interfaces show that these proteins also form weak networks that fail at surface pressures below that observed for sodium caseinate. However, kappa-casein was found to form strong networks that resisted displacement and failed at surface pressures comparable to those observed for sodium caseinate. The AFM images of the displacement suggest that, despite kappa-casein being a minor component, it dominates the failure of sodium caseinate networks: alpha(s)-casein and beta-casein are preferentially desorbed at lower surface pressures, allowing the residual kappa-casein to control the breakdown of the sodium caseinate network at higher surface pressures.

  5. TLALOCNet continuous GPS-Met Array in Mexico supporting the 2017 NAM GPS Hydrometeorological Network.

    NASA Astrophysics Data System (ADS)

    Cabral-Cano, E.; Salazar-Tlaczani, L.; Adams, D. K.; Vivoni, E. R.; Grutter, M.; Serra, Y. L.; DeMets, C.; Galetzka, J.; Feaux, K.; Mattioli, G. S.; Miller, M. M.

    2017-12-01

    TLALOCNet is a network of continuous GPS and meteorology stations in Mexico to study atmospheric and solid earth processes. This recently completed network spans most of Mexico with a strong coverage emphasis on southern and western Mexico. This network, funded by NSF, CONACyT and UNAM, recently built 40 cGPS-Met sites to EarthScope Plate Boundary Observatory standards and upgraded 25 additional GPS stations. TLALOCNet provides open and freely available raw GPS data, and high frequency surface meteorology measurements, and time series of daily positions. This is accomplished through the development of the TLALOCNet data center (http://tlalocnet.udg.mx) that serves as a collection and distribution point. This data center is based on UNAVCO's Dataworks-GSAC software and also works as part of UNAVCO's seamless archive for discovery, sharing, and access to GPS data. The TLALOCNet data center also contains contributed data from several regional GPS networks in Mexico for a total of 100+ stations. By using the same protocols and structure as the UNAVCO and other COCONet regional data centers, the scientific community has the capability of accessing data from the largest Mexican GPS network. This archive provides a fully queryable and scriptable GPS and Meteorological data retrieval point. In addition, real-time 1Hz streams from selected TLALOCNet stations are available in BINEX, RTCM 2.3 and RTCM 3.1 formats via the Networked Transport of RTCM via Internet Protocol (NTRIP) for real-time seismic and weather forecasting applications. TLALOCNet served as a GPS-Met backbone for the binational Mexico-US North American Monsoon GPS Hydrometeorological Network 2017 campaign experiment. This innovative experiment attempts to address water vapor source regions and land-surface water vapor flux contributions to precipitation (i.e., moisture recycling) during the 2017 North American Monsoon in Baja California, Sonora, Chihuahua, and Arizona. Models suggest that moisture recycling is a large contributor to summer rainfall. This experiment represents a first attempt to quantify the surface water vapor flux contribution to GPS-derived precipitable water vapor. Preliminary results from this campaign are presented.

  6. Construction of a fluorescent nanostructured chitosan-hydroxyapatite scaffold by nanocrystallon induced biomimetic mineralization and its cell biocompatibility.

    PubMed

    Wang, Guancong; Zheng, Lin; Zhao, Hongshi; Miao, Junying; Sun, Chunhui; Liu, Hong; Huang, Zhen; Yu, Xiaoqiang; Wang, Jiyang; Tao, Xutang

    2011-05-01

    Biomaterial surfaces and their nanostructures can significantly influence cell growth and viability. Thus, manipulating surface characteristics of scaffolds can be a potential strategy to control cell functions for stem cell tissue engineering. In this study, in order to construct a hydroxyapatite (HAp) coated genipin-chitosan conjugation scaffold (HGCCS) with a well-defined HAp nanostructured surface, we have developed a simple and controllable approach that allows construction of a two-level, three-dimensional (3D) networked structure to provide sufficient calcium source and achieve desired mechanical function and mass transport (permeability and diffusion) properties. Using a nontoxic cross-linker (genipin) and a nanocrystallon induced biomimetic mineralization method, we first assembled a layer of HAp network-like nanostructure on a 3D porous chitosan-based framework. X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analysis confirm that the continuous network-like nanostructure on the channel surface of the HGCCS is composed of crystalline HAp. Compressive testing demonstrated that the strength of the HGCCS is apparently enhanced because of the strong cross-linking of genipin and the resulting reinforcement of the HAp nanonetwork. The fluorescence properties of genipin-chitosan conjugation for convenient monitoring of the 3D porous scaffold biodegradability and cell localization in the scaffold was specifically explored using confocal laser scanning microscopy (CLSM). Furthermore, through scanning electron microscope (SEM) observation and immunofluorescence measurements of F-actin, we found that the HAp network-like nanostructure on the surface of the HGCCS can influence the morphology and integrin-mediated cytoskeleton organization of rat bone marrow-derived mesenchymal stem cells (BMSCs). Based on cell proliferation assays, rat BMSCs tend to have higher viability on HGCCS in vitro. The results of this study suggest that the fluorescent two-level 3D nanostructured chitosan-HAp scaffold will be a promising scaffold for bone tissue engineering application.

  7. Targeted Proteomics and Absolute Protein Quantification for the Construction of a Stoichiometric Host-Pathogen Surface Density Model.

    PubMed

    Sjöholm, Kristoffer; Kilsgård, Ola; Teleman, Johan; Happonen, Lotta; Malmström, Lars; Malmström, Johan

    2017-04-01

    Sepsis is a systemic immune response responsible for considerable morbidity and mortality. Molecular modeling of host-pathogen interactions in the disease state represents a promising strategy to define molecular events of importance for the transition from superficial to invasive infectious diseases. Here we used the Gram-positive bacterium Streptococcus pyogenes as a model system to establish a mass spectrometry based workflow for the construction of a stoichiometric surface density model between the S. pyogenes surface, the surface virulence factor M-protein, and adhered human blood plasma proteins. The workflow relies on stable isotope labeled reference peptides and selected reaction monitoring mass spectrometry analysis of a wild-type strain and an M-protein deficient mutant strain, to generate absolutely quantified protein stoichiometry ratios between S. pyogenes and interacting plasma proteins. The stoichiometry ratios in combination with a novel targeted mass spectrometry method to measure cell numbers enabled the construction of a stoichiometric surface density model using protein structures available from the protein data bank. The model outlines the topology and density of the host-pathogen protein interaction network on the S. pyogenes bacterial surface, revealing a dense and highly organized protein interaction network. Removal of the M-protein from S. pyogenes introduces a drastic change in the network topology, validated by electron microscopy. We propose that the stoichiometric surface density model of S. pyogenes in human blood plasma represents a scalable framework that can continuously be refined with the emergence of new results. Future integration of new results will improve the understanding of protein-protein interactions and their importance for bacterial virulence. Furthermore, we anticipate that the general properties of the developed workflow will facilitate the production of stoichiometric surface density models for other types of host-pathogen interactions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Robustness surfaces of complex networks

    NASA Astrophysics Data System (ADS)

    Manzano, Marc; Sahneh, Faryad; Scoglio, Caterina; Calle, Eusebi; Marzo, Jose Luis

    2014-09-01

    Despite the robustness of complex networks has been extensively studied in the last decade, there still lacks a unifying framework able to embrace all the proposed metrics. In the literature there are two open issues related to this gap: (a) how to dimension several metrics to allow their summation and (b) how to weight each of the metrics. In this work we propose a solution for the two aforementioned problems by defining the R*-value and introducing the concept of robustness surface (Ω). The rationale of our proposal is to make use of Principal Component Analysis (PCA). We firstly adjust to 1 the initial robustness of a network. Secondly, we find the most informative robustness metric under a specific failure scenario. Then, we repeat the process for several percentage of failures and different realizations of the failure process. Lastly, we join these values to form the robustness surface, which allows the visual assessment of network robustness variability. Results show that a network presents different robustness surfaces (i.e., dissimilar shapes) depending on the failure scenario and the set of metrics. In addition, the robustness surface allows the robustness of different networks to be compared.

  9. Robustness surfaces of complex networks.

    PubMed

    Manzano, Marc; Sahneh, Faryad; Scoglio, Caterina; Calle, Eusebi; Marzo, Jose Luis

    2014-09-02

    Despite the robustness of complex networks has been extensively studied in the last decade, there still lacks a unifying framework able to embrace all the proposed metrics. In the literature there are two open issues related to this gap: (a) how to dimension several metrics to allow their summation and (b) how to weight each of the metrics. In this work we propose a solution for the two aforementioned problems by defining the R*-value and introducing the concept of robustness surface (Ω). The rationale of our proposal is to make use of Principal Component Analysis (PCA). We firstly adjust to 1 the initial robustness of a network. Secondly, we find the most informative robustness metric under a specific failure scenario. Then, we repeat the process for several percentage of failures and different realizations of the failure process. Lastly, we join these values to form the robustness surface, which allows the visual assessment of network robustness variability. Results show that a network presents different robustness surfaces (i.e., dissimilar shapes) depending on the failure scenario and the set of metrics. In addition, the robustness surface allows the robustness of different networks to be compared.

  10. Mapping thalamocortical network pathology in temporal lobe epilepsy.

    PubMed

    Bernhardt, Boris C; Bernasconi, Neda; Kim, Hosung; Bernasconi, Andrea

    2012-01-10

    Although experimental work has provided evidence that the thalamus is a crucial relay structure in temporal lobe epilepsy (TLE), the relation of the thalamus to neocortical pathology remains unclear. To assess thalamocortical network pathology in TLE, we mapped pointwise patterns of thalamic atrophy and statistically related them to neocortical thinning. We studied cross-sectionally 36 patients with drug-resistant TLE and 19 age- and sex-matched healthy control subjects using high-resolution MRI. To localize thalamic pathology, we converted manual labels into surface meshes using the spherical harmonic description and calculated local deformations relative to a template. In addition, we measured cortical thickness by means of the constrained Laplacian anatomic segmentation using proximity algorithm. Compared with control subjects, patients with TLE showed ipsilateral thalamic atrophy that was located along the medial surface, encompassing anterior, medial, and posterior divisions. Unbiased analysis correlating the degree of medial thalamic atrophy with cortical thickness measurements mapped bilateral frontocentral, lateral temporal, and mesiotemporal cortices. These areas overlapped with those of cortical thinning found when patients were compared with control subjects. Thalamic atrophy intensified with a longer duration of epilepsy and was more severe in patients with a history of febrile convulsions. The degree and distribution of thalamic pathology relates to the topography and extent of neocortical atrophy, lending support to the concept that the thalamus is an important hub in the pathologic network of TLE.

  11. Scalable Lunar Surface Networks and Adaptive Orbit Access

    NASA Technical Reports Server (NTRS)

    Wang, Xudong

    2015-01-01

    Teranovi Technologies, Inc., has developed innovative network architecture, protocols, and algorithms for both lunar surface and orbit access networks. A key component of the overall architecture is a medium access control (MAC) protocol that includes a novel mechanism of overlaying time division multiple access (TDMA) and carrier sense multiple access with collision avoidance (CSMA/CA), ensuring scalable throughput and quality of service. The new MAC protocol is compatible with legacy Institute of Electrical and Electronics Engineers (IEEE) 802.11 networks. Advanced features include efficiency power management, adaptive channel width adjustment, and error control capability. A hybrid routing protocol combines the advantages of ad hoc on-demand distance vector (AODV) routing and disruption/delay-tolerant network (DTN) routing. Performance is significantly better than AODV or DTN and will be particularly effective for wireless networks with intermittent links, such as lunar and planetary surface networks and orbit access networks.

  12. Lunar surface magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Sonett, C. P.

    1972-01-01

    The Apollo 15 lunar-surface magnetometer (LSM) is one of a network of magnetometers that have been deployed on the moon to study intrinsic remanent magnetic fields and global magnetic response of the moon to large-scale solar and terrestrial magnetic fields. From these field measurements, properties of the lunar interior such as magnetic permeability, electrical conductivity, and temperature can be calculated. In addition, correlation with solar-wind-spectrometer data allows study of the the solar-wind plasma interaction with the moon and, in turn, investigation of the resulting absorption of gases and accretion of an ionosphere. These physical parameters and processes determined from magnetometer measurements must be accounted for by comprehensive theories of origin and evolution of the moon and solar system.

  13. Development and validation of satellite-based estimates of surface visibility

    NASA Astrophysics Data System (ADS)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2016-02-01

    A satellite-based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5 % for classifying clear (V ≥ 30 km), moderate (10 km ≤ V < 30 km), low (2 km ≤ V < 10 km), and poor (V < 2 km) visibilities and shows the most skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear-sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  14. Development and validation of satellite based estimates of surface visibility

    NASA Astrophysics Data System (ADS)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2015-10-01

    A satellite based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5% for classifying Clear (V ≥ 30 km), Moderate (10 km ≤ V < 30 km), Low (2 km ≤ V < 10 km) and Poor (V < 2 km) visibilities and shows the most skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network, and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  15. Hydrologic Record Extension of Water-Level Data in the Everglades Depth Estimation Network (EDEN) Using Artificial Neural Network Models, 2000-2006

    USGS Publications Warehouse

    Conrads, Paul; Roehl, Edwin A.

    2007-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level gaging stations, ground-elevation models, and water-surface models designed to provide scientists, engineers, and water-resource managers with current (2000-present) water-depth information for the entire freshwater portion of the greater Everglades. The U.S. Geological Survey Greater Everglades Priority Ecosystem Science provides support for EDEN and the goal of providing quality assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. To increase the accuracy of the water-surface models, 25 real-time water-level gaging stations were added to the network of 253 established water-level gaging stations. To incorporate the data from the newly added stations to the 7-year EDEN database in the greater Everglades, the short-term water-level records (generally less than 1 year) needed to be simulated back in time (hindcasted) to be concurrent with data from the established gaging stations in the database. A three-step modeling approach using artificial neural network models was used to estimate the water levels at the new stations. The artificial neural network models used static variables that represent the gaging station location and percent vegetation in addition to dynamic variables that represent water-level data from the established EDEN gaging stations. The final step of the modeling approach was to simulate the computed error of the initial estimate to increase the accuracy of the final water-level estimate. The three-step modeling approach for estimating water levels at the new EDEN gaging stations produced satisfactory results. The coefficients of determination (R2) for 21 of the 25 estimates were greater than 0.95, and all of the estimates (25 of 25) were greater than 0.82. The model estimates showed good agreement with the measured data. For some new EDEN stations with limited measured data, the record extension (hindcasts) included periods beyond the range of the data used to train the artificial neural network models. The comparison of the hindcasts with long-term water-level data proximal to the new EDEN gaging stations indicated that the water-level estimates were reasonable. The percent model error (root mean square error divided by the range of the measured data) was less than 6 percent, and for the majority of stations (20 of 25), the percent model error was less than 1 percent.

  16. "Nickel Nanoflowers" with Surface-Attached Fluoropolymer Networks by C,H Insertion for the Generation of Metallic Superhydrophobic Surfaces.

    PubMed

    Hönes, Roland; Rühe, Jürgen

    2018-05-08

    Metallic superhydrophobic surfaces (SHSs) combine the attractive properties of metals, such as ductility, hardness, and conductivity, with the favorable wetting properties of nanostructured surfaces. Moreover, they promise additional benefits with respect to corrosion protection. For the modification of the intrinsically polar and hydrophilic surfaces of metals, a new method has been developed to deposit a long-term stable, highly hydrophobic coating, using nanostructured Ni surfaces as an example. Such substrates were chosen because the deposition of a thin Ni layer is a common choice for enhancing corrosion resistance of other metals. As the hydrophobic coating, we propose a thin film of an extremely hydrophobic fluoropolymer network. To form this network, a thin layer of a fluoropolymer precursor is deposited on the Ni substrate which includes a comonomer that is capable of C,H insertion cross-linking (CHic). Upon UV irradiation or heating, the cross-linker units become activated and the thin glassy film of the precursor is transformed into a polymer network that coats the surface conformally and permanently, as shown by extensive extraction experiments. To achieve an even higher stability, the same precursor film can also be transformed into a chemically surface-attached network by depositing a self-assembled monolayer of an alkane phosphonic acid on the Ni before coating with the precursor. During cross-linking, by the same chemical process, the growing polymer network will simultaneously attach to the alkane phosphonic acid layer at the surface of the metal. This strategy has been used to turn fractal Ni "nanoflower" surfaces grown by anisotropic electroplating into SHSs. The wetting characteristics of the obtained nanostructured metallic surfaces are studied. Additionally, the corrosion protection effect and the significant mechanical durability are demonstrated.

  17. A strategic outlook for coordination of ground-based measurement networks of atmospheric state variables and atmospheric composition

    NASA Astrophysics Data System (ADS)

    Bodeker, G. E.; Thorne, P.; Braathen, G.; De Maziere, M.; Thompson, A. M.; Kurylo, M. J., III

    2016-12-01

    There are a number of ground-based global observing networks that collectively aim to make key measurements of atmospheric state variables and atmospheric chemical composition. These networks include, but are not limited to:NDACC: Network for the Detection of Atmospheric Composition Change GUAN: GCOS Upper Air Network GRUAN: GCOS Reference Upper Air Network EARLINET: the European Aerosol Research Lidar Network GAW: Global Atmosphere Watch SHADOZ: Southern Hemisphere ADditional OZonesondes TCCON: Total Carbon Column Observing Network BSRN: Baseline Surface Radiation Network While each network brings unique capabilities to the global observing system, there are many instances where the activities and capabilities of the networks overlap. These commonalities across multiple networks can confound funding agencies when allocating scarce financial resources. Overlaps between networks may also result in some duplication of effort and a resultant sub-optimal use of funding resource for the global observing system. While some degree of overlap is useful for quality assurance, it is essential to identify the degree to which one network can take on a specific responsibility on behalf of all other networks to avoid unnecessary duplication, to identify where expertise in any one network may serve other networks, and to develop a long-term strategy for the evolution of these networks that clarifies to funding agencies where new investment is required. This presentation will briefly summarise the key characteristics of each network listed above, adopt a matrix approach to identify commonalities and, in particular, where there may be a danger of duplication of effort, and where gaps between the networks may be compromising the services that these networks are expected to collectively deliver to the global atmospheric and climate science research communities. The presentation will also examine where sharing of data and tools between networks may result in a more efficient delivery of records of essential climate variables to the global research community. There are aspects of underpinning research that are needed across all of these networks, such as laboratory spectroscopy, that often do not receive the attention they deserve. The presentation will also seek to identify where that underpinning research is lacking.

  18. Statistical approaches used to assess and redesign surface water-quality-monitoring networks.

    PubMed

    Khalil, B; Ouarda, T B M J

    2009-11-01

    An up-to-date review of the statistical approaches utilized for the assessment and redesign of surface water quality monitoring (WQM) networks is presented. The main technical aspects of network design are covered in four sections, addressing monitoring objectives, water quality variables, sampling frequency and spatial distribution of sampling locations. This paper discusses various monitoring objectives and related procedures used for the assessment and redesign of long-term surface WQM networks. The appropriateness of each approach for the design, contraction or expansion of monitoring networks is also discussed. For each statistical approach, its advantages and disadvantages are examined from a network design perspective. Possible methods to overcome disadvantages and deficiencies in the statistical approaches that are currently in use are recommended.

  19. Weak bedrock allows north-south elongation of channels in semi-arid landscapes

    NASA Astrophysics Data System (ADS)

    Johnstone, Samuel A.; Finnegan, Noah J.; Hilley, George E.

    2017-11-01

    Differences in the lengths of pole- and equator-facing slopes are observed in a variety of landscapes. These differences are generally attributed to relative variations in the intensity of mass-transport processes on slopes receiving different magnitudes of solar radiation. By measuring anomalies in the planform characteristics of drainage networks, we demonstrate that in the most asymmetric landscapes this asymmetry primarily arises from the equator-ward alignment of low-order valley networks. Valley network asymmetry is more severe in rocks expected to offer little resistance to erosion than in more resistant rocks when controlling for climate. This suggests that aspect-driven differences in surface processes that drive differences in landscape evolution are also sensitive to underlying rock type.

  20. Interpreting Lidar Measurements to Better Estimate Surface PM2.S in Study Regions of DISCOVER-AQ

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Ferrare, Richard; Welton, Judd; Hostetler, Chris; Hair, John; Szykman, James; Al-Saadi, Jay; Tsai, Tzuchin

    2011-01-01

    The use of satellite AOD data to estimate surface PM2.5 has been broadly studied in various regions. Some showed good results while some showed relatively poor with the simple relationship between AOD and PM2.5. The key factor is the aerosol vertical distribution. Lidar extinction profiles provide insights into the aerosol mixing not only in the boundary layer but also quantifying residual aerosol abundance above boundary layer with e-folding scale height. The normalizing AOD by hazy layer height is proven better in correlating with PM2.5. In other words, extinction measurements near the surface can be a proxy for surface PM2.5. In this study, we will use NASA airborne HSRL (High Spectral Resolution Lidar) during SJV2007 (San Joaquin Valley, February 2007) and surface MPLNet (Micropulse Lidar Network) at GSFC between 2007 and 2010 to characterize the relationship for the DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality) field experiments; the first over Baltimore-Washington was conducted in July 2011.

  1. Synchrotron X-ray measurement of residual strain within the nose of a worn manganese steel railway crossing

    NASA Astrophysics Data System (ADS)

    Dhar, S.; Zhang, Y.; Xu, R.; Danielsen, HK; Jensen, D. Juul

    2017-07-01

    Switches and crossings are an integral part of any railway network. Plastic deformation associated with wear and rolling contact fatigue due to repeated passage of trains cause severe damage leading to the formation of surface and sub-surface cracks which ultimately may result in rail failure. Knowledge of the internal stress distribution adds to the understanding of crack propagation and may thus help to prevent catastrophic rail failures. In this work, the residual strains inside the bulk of a damaged nose of a manganese railway crossing that was in service for five years has been investigated by using differential aperture synchrotron X-ray diffraction. The main purpose of this paper is to describe how this method allows non-destructive measurement of residual strains in selected local volumes in the bulk of the rail. Measurements were conducted on the transverse surface at a position about 6.5 mm from the rail running surface of a crossing nose. The results revealed the presence of significant compressive residual strains along the running direction of the rail.

  2. Comparing land surface phenology derived from satellite and GPS network microwave remote sensing.

    PubMed

    Jones, Matthew O; Kimball, John S; Small, Eric E; Larson, Kristine M

    2014-08-01

    The land surface phenology (LSP) start of season (SOS) metric signals the seasonal onset of vegetation activity, including canopy growth and associated increases in land-atmosphere water, energy and carbon (CO2) exchanges influencing weather and climate variability. The vegetation optical depth (VOD) parameter determined from satellite passive microwave remote sensing provides for global LSP monitoring that is sensitive to changes in vegetation canopy water content and biomass, and insensitive to atmosphere and solar illumination constraints. Direct field measures of canopy water content and biomass changes desired for LSP validation are generally lacking due to the prohibitive costs of maintaining regional monitoring networks. Alternatively, a normalized microwave reflectance index (NMRI) derived from GPS base station measurements is sensitive to daily vegetation water content changes and may provide for effective microwave LSP validation. We compared multiyear (2007-2011) NMRI and satellite VOD records at over 300 GPS sites in North America, and their derived SOS metrics for a subset of 24 homogenous land cover sites to investigate VOD and NMRI correspondence, and potential NMRI utility for LSP validation. Significant correlations (P<0.05) were found at 276 of 305 sites (90.5 %), with generally favorable correspondence in the resulting SOS metrics (r (2)=0.73, P<0.001, RMSE=36.8 days). This study is the first attempt to compare satellite microwave LSP metrics to a GPS network derived reflectance index and highlights both the utility and limitations of the NMRI data for LSP validation, including spatial scale discrepancies between local NMRI measurements and relatively coarse satellite VOD retrievals.

  3. An aerosol optical depth climatology for NOAA's national surface radiation budget network (SURFRAD)

    NASA Astrophysics Data System (ADS)

    Augustine, John A.; Hodges, Gary B.; Dutton, Ellsworth G.; Michalsky, Joseph J.; Cornwall, Christopher R.

    2008-06-01

    A series of algorithms developed to process spectral solar measurements for aerosol optical depth (AOD) for the National Oceanic and Atmospheric Administration's (NOAA) national surface radiation budget network (SURFRAD) is summarized, and decadal results are presented. AOD is a measure of the extinction of the Sun's beam due to aerosols. Daily files of AOD for five spectral measurements in the visible and near-infrared have been produced for 1997-2006. Comparisons of SURFRAD daily AOD averages to NASA's Aerosol Robotic Network product at two of the stations were generally good. An AOD climatology for each SURFRAD station is presented as an annual time series of composite monthly means that represents a typical intra-annual AOD variation. Results are similar to previous U.S. climatologies in that the highest AOD magnitude and greatest variability occur in summer, the lowest AOD levels are in winter, and geographically, the highest-magnitude AOD is in the eastern United States. Springtime Asian dust intrusions show up as a secondary maximum at the western stations. A time series of nationwide annual means shows that 500-nm AOD has decreased over the United States by about 0.02 AOD units over the 10-year period. However, this decline is not statistically significant nor geographically consistent within the country. The eastern U.S. stations and westernmost station at Desert Rock, Nevada, show decreasing AOD, whereas the other two western stations show an increase that is attributed to an upsurge in wildfire activity in the last half of the decade.

  4. Development of Integration Framework for Sensor Network and Satellite Image based on OGC Web Services

    NASA Astrophysics Data System (ADS)

    Ninsawat, Sarawut; Yamamoto, Hirokazu; Kamei, Akihide; Nakamura, Ryosuke; Tsuchida, Satoshi; Maeda, Takahisa

    2010-05-01

    With the availability of network enabled sensing devices, the volume of information being collected by networked sensors has increased dramatically in recent years. Over 100 physical, chemical and biological properties can be sensed using in-situ or remote sensing technology. A collection of these sensor nodes forms a sensor network, which is easily deployable to provide a high degree of visibility into real-world physical processes as events unfold. The sensor observation network could allow gathering of diverse types of data at greater spatial and temporal resolution, through the use of wired or wireless network infrastructure, thus real-time or near-real time data from sensor observation network allow researchers and decision-makers to respond speedily to events. However, in the case of environmental monitoring, only a capability to acquire in-situ data periodically is not sufficient but also the management and proper utilization of data also need to be careful consideration. It requires the implementation of database and IT solutions that are robust, scalable and able to interoperate between difference and distributed stakeholders to provide lucid, timely and accurate update to researchers, planners and citizens. The GEO (Global Earth Observation) Grid is primarily aiming at providing an e-Science infrastructure for the earth science community. The GEO Grid is designed to integrate various kinds of data related to the earth observation using the grid technology, which is developed for sharing data, storage, and computational powers of high performance computing, and is accessible as a set of services. A comprehensive web-based system for integrating field sensor and data satellite image based on various open standards of OGC (Open Geospatial Consortium) specifications has been developed. Web Processing Service (WPS), which is most likely the future direction of Web-GIS, performs the computation of spatial data from distributed data sources and returns the outcome in a standard format. The interoperability capabilities and Service Oriented Architecture (SOA) of web services allow incorporating between sensor network measurement available from Sensor Observation Service (SOS) and satellite remote sensing data from Web Mapping Service (WMS) as distributed data sources for WPS. Various applications have been developed to demonstrate the efficacy of integrating heterogeneous data source. For example, the validation of the MODIS aerosol products (MOD08_D3, the Level-3 MODIS Atmosphere Daily Global Product) by ground-based measurements using the sunphotometer (skyradiometer, Prede POM-02) installed at Phenological Eyes Network (PEN) sites in Japan. Furthermore, the web-based framework system for studying a relationship between calculated Vegetation Index from MODIS satellite image surface reflectance (MOD09GA, the Surface Reflectance Daily L2G Global 1km and 500m Product) and Gross Primary Production (GPP) field measurement at flux tower site in Thailand and Japan has been also developed. The success of both applications will contribute to maximize data utilization and improve accuracy of information by validate MODIS satellite products using high degree of accuracy and temporal measurement of field measurement data.

  5. Monitoring of Thermal Protection Systems Using Robust Self-Organizing Optical Fiber Sensing Networks

    NASA Technical Reports Server (NTRS)

    Richards, Lance

    2013-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, and an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during re-entry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry

  6. Web-Enabled Optoelectronic Particle-Fallout Monitor

    NASA Technical Reports Server (NTRS)

    Lineberger, Lewis P.

    2008-01-01

    A Web-enabled optoelectronic particle- fallout monitor has been developed as a prototype of future such instruments that (l) would be installed in multiple locations for which assurance of cleanliness is required and (2) could be interrogated and controlled in nearly real time by multiple remote users. Like prior particle-fallout monitors, this instrument provides a measure of particles that accumulate on a surface as an indication of the quantity of airborne particulate contaminants. The design of this instrument reflects requirements to: Reduce the cost and complexity of its optoelectronic sensory subsystem relative to those of prior optoelectronic particle fallout monitors while maintaining or improving capabilities; Use existing network and office computers for distributed display and control; Derive electric power for the instrument from a computer network, a wall outlet, or a battery; Provide for Web-based retrieval and analysis of measurement data and of a file containing such ancillary data as a log of command attempts at remote units; and Use the User Datagram Protocol (UDP) for maximum performance and minimal network overhead.

  7. Single Cell Mass Cytometry for Analysis of Immune System Functional States

    PubMed Central

    Bjornson, Zach B.; Nolan, Garry P.; Fantl, Wendy J.

    2013-01-01

    Single cell mass cytometry facilitates high-dimensional, quantitative analysis of the effects of bioactive molecules on cell populations at single-cell resolution. Datasets are generated with antibody panels (upwards of 40) in which each antibody is conjugated to a polymer chelated with a stable metal isotope, usually in the Lanthanide series of the periodic table. Isotope labelled antibodies recognize surface markers to delineate cell types and intracellular signaling molecules to provide a measure of the network state—and thereby demarcating multiple cell state functions such as apoptosis, DNA damage and cell cycle. By measuring all these parameters simultaneously, the signaling state of an individual cell can be measured at its network state. This review will cover the basics of mass cytometry as well as outline steps already taken to allow it to stand aside traditional fluorescence based cytometry in the immunologist’s analytical arsenal in their study of immune states during infection. PMID:23999316

  8. Gelation And Mechanical Response of Patchy Rods

    NASA Astrophysics Data System (ADS)

    Kazem, Navid; Majidi, Carmel; Maloney, Craig

    We perform Brownian Dynamics simulations to study the gelation of suspensions of attractive, rod-like particles. We show that details of the particle-particle interactions can dramatically affect the dynamics of gelation and the structure and mechanics of the networks that form. If the attraction between the rods is perfectly smooth along their length, they will collapse into compact bundles. If the attraction is sufficiently corrugated or patchy, over time, a rigid space spanning network forms. We study the structure and mechanical properties of the networks that form as a function of the fraction of the surface that is allowed to bind. Surprisingly, the structural and mechanical properties are non-monotonic in the surface coverage. At low coverage, there are not a sufficient number of cross-linking sites to form networks. At high coverage, rods bundle and form disconnected clusters. At intermediate coverage, robust networks form. The elastic modulus and yield stress are both non-monotonic in the surface coverage. The stiffest and strongest networks show an essentially homogeneous deformation under strain with rods re-orienting along the extensional axis. Weaker, clumpy networks at high surface coverage exhibit relatively little re-orienting with strong non-affine deformation. These results suggest design strategies for tailoring surface interactions between rods to yield rigid networks with optimal properties. National Science Foundation and the Air Force Office of Scientific Research.

  9. Modelling landscape evolution at the flume scale

    NASA Astrophysics Data System (ADS)

    Cheraghi, Mohsen; Rinaldo, Andrea; Sander, Graham C.; Barry, D. Andrew

    2017-04-01

    The ability of a large-scale Landscape Evolution Model (LEM) to simulate the soil surface morphological evolution as observed in a laboratory flume (1-m × 2-m surface area) was investigated. The soil surface was initially smooth, and was subjected to heterogeneous rainfall in an experiment designed to avoid rill formation. Low-cohesive fine sand was placed in the flume while the slope and relief height were 5 % and 20 cm, respectively. Non-uniform rainfall with an average intensity of 85 mm h-1 and a standard deviation of 26 % was applied to the sediment surface for 16 h. We hypothesized that the complex overland water flow can be represented by a drainage discharge network, which was calculated via the micro-morphology and the rainfall distribution. Measurements included high resolution Digital Elevation Models that were captured at intervals during the experiment. The calibrated LEM captured the migration of the main flow path from the low precipitation area into the high precipitation area. Furthermore, both model and experiment showed a steep transition zone in soil elevation that moved upstream during the experiment. We conclude that the LEM is applicable under non-uniform rainfall and in the absence of surface incisions, thereby extending its applicability beyond that shown in previous applications. Keywords: Numerical simulation, Flume experiment, Particle Swarm Optimization, Sediment transport, River network evolution model.

  10. Hierarchical and Well-Ordered Porous Copper for Liquid Transport Properties Control.

    PubMed

    Pham, Quang N; Shao, Bowen; Kim, Yongsung; Won, Yoonjin

    2018-05-09

    Liquid delivery through interconnected pore network is essential for various interfacial transport applications ranging from energy storage to evaporative cooling. The liquid transport performance in porous media can be significantly improved through the use of hierarchical morphology that leverages transport phenomena at different length scales. Traditional surface engineering techniques using chemical or thermal reactions often show nonuniform surface nanostructuring within three-dimensional pore network due to uncontrollable diffusion and reactivity in geometrically complex porous structures. Here, we demonstrate hierarchical architectures on the basis of crystalline copper inverse opals using an electrochemistry approach, which offers volumetric controllability of structural and surface properties within the complex porous metal. The electrochemical process sequentially combines subtractive and additive steps-electrochemical polishing and electrochemical oxidation-to improve surface wetting properties without sacrificing structural permeability. We report the transport performance of the hierarchical inverse opals by measuring the capillary-driven liquid rise. The capillary performance parameter of hierarchically engineered inverse opal ( K/ R eff = ∼5 × 10 -3 μm) is shown to be higher than that of a typical crystalline inverse opal ( K/ R eff = ∼1 × 10 -3 μm) owing to the enhancement in fluid permeable and hydrophilic pathways. The new surface engineering method presented in this work provides a rational approach in designing hierarchical porous copper for transport performance enhancements.

  11. Upper Crustal Structure of Taiwan Constrained by the Ellipticity of the Noise-derived Rayleigh Waves

    NASA Astrophysics Data System (ADS)

    Chien, C. C.; Chen, Y. N.; Gung, Y.; Liang, W. T.

    2016-12-01

    In the last decade, the noise interferometry has been a popular technique, and widely applied to constraint the crust and uppermost mantle structure, bringing in revolutionary resolution in area with dense seismic network, including Taiwan. However, limited by the available frequency band of the noise-derived surface waves, the near surface (<5km) structure is much less resolved as compared to the rest of the crust in Taiwan. Such limitation may be lifted by using the ZH ratio of Rayleigh waves, because, for the same period, the ZH ratio of Rayleigh waves is much more sensitive to the shallower structure than those provided by the corresponding phase or group velocities. In this study, aiming to better constraint the seismic structure of the shallow crust of Taiwan, we measure the ZH ratios of the Rayleigh waves derived by noise interferometry. Continuous records from two major seismic networks in Taiwan are used. In total, data from 63 short period stations and 48 broadband stations are used to derived the four combinations (ZZ, ZR, RZ, RR) of cross-correlation functions (CCF). We then measure the ZH ratios of the derived Rayleigh waves. We present the measured results, invert for the local 1-D structure for sites with stable measurements. We then compare the results with the published tomographic models and discuss their geological implications.

  12. CdSe/ZnS quantum dot fluorescence spectra shape-based thermometry via neural network reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munro, Troy; Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee; Liu, Liwang

    As a system of interest gets small, due to the influence of the sensor mass and heat leaks through the sensor contacts, thermal characterization by means of contact temperature measurements becomes cumbersome. Non-contact temperature measurement offers a suitable alternative, provided a reliable relationship between the temperature and the detected signal is available. In this work, exploiting the temperature dependence of their fluorescence spectrum, the use of quantum dots as thermomarkers on the surface of a fiber of interest is demonstrated. The performance is assessed of a series of neural networks that use different spectral shape characteristics as inputs (peak-based—peak intensity,more » peak wavelength; shape-based—integrated intensity, their ratio, full-width half maximum, peak normalized intensity at certain wavelengths, and summation of intensity over several spectral bands) and that yield at their output the fiber temperature in the optically probed area on a spider silk fiber. Starting from neural networks trained on fluorescence spectra acquired in steady state temperature conditions, numerical simulations are performed to assess the quality of the reconstruction of dynamical temperature changes that are photothermally induced by illuminating the fiber with periodically intensity-modulated light. Comparison of the five neural networks investigated to multiple types of curve fits showed that using neural networks trained on a combination of the spectral characteristics improves the accuracy over use of a single independent input, with the greatest accuracy observed for inputs that included both intensity-based measurements (peak intensity) and shape-based measurements (normalized intensity at multiple wavelengths), with an ultimate accuracy of 0.29 K via numerical simulation based on experimental observations. The implications are that quantum dots can be used as a more stable and accurate fluorescence thermometer for solid materials and that use of neural networks for temperature reconstruction improves the accuracy of the measurement.« less

  13. EEGNET: An Open Source Tool for Analyzing and Visualizing M/EEG Connectome.

    PubMed

    Hassan, Mahmoud; Shamas, Mohamad; Khalil, Mohamad; El Falou, Wassim; Wendling, Fabrice

    2015-01-01

    The brain is a large-scale complex network often referred to as the "connectome". Exploring the dynamic behavior of the connectome is a challenging issue as both excellent time and space resolution is required. In this context Magneto/Electroencephalography (M/EEG) are effective neuroimaging techniques allowing for analysis of the dynamics of functional brain networks at scalp level and/or at reconstructed sources. However, a tool that can cover all the processing steps of identifying brain networks from M/EEG data is still missing. In this paper, we report a novel software package, called EEGNET, running under MATLAB (Math works, inc), and allowing for analysis and visualization of functional brain networks from M/EEG recordings. EEGNET is developed to analyze networks either at the level of scalp electrodes or at the level of reconstructed cortical sources. It includes i) Basic steps in preprocessing M/EEG signals, ii) the solution of the inverse problem to localize / reconstruct the cortical sources, iii) the computation of functional connectivity among signals collected at surface electrodes or/and time courses of reconstructed sources and iv) the computation of the network measures based on graph theory analysis. EEGNET is the unique tool that combines the M/EEG functional connectivity analysis and the computation of network measures derived from the graph theory. The first version of EEGNET is easy to use, flexible and user friendly. EEGNET is an open source tool and can be freely downloaded from this webpage: https://sites.google.com/site/eegnetworks/.

  14. EEGNET: An Open Source Tool for Analyzing and Visualizing M/EEG Connectome

    PubMed Central

    Hassan, Mahmoud; Shamas, Mohamad; Khalil, Mohamad; El Falou, Wassim; Wendling, Fabrice

    2015-01-01

    The brain is a large-scale complex network often referred to as the “connectome”. Exploring the dynamic behavior of the connectome is a challenging issue as both excellent time and space resolution is required. In this context Magneto/Electroencephalography (M/EEG) are effective neuroimaging techniques allowing for analysis of the dynamics of functional brain networks at scalp level and/or at reconstructed sources. However, a tool that can cover all the processing steps of identifying brain networks from M/EEG data is still missing. In this paper, we report a novel software package, called EEGNET, running under MATLAB (Math works, inc), and allowing for analysis and visualization of functional brain networks from M/EEG recordings. EEGNET is developed to analyze networks either at the level of scalp electrodes or at the level of reconstructed cortical sources. It includes i) Basic steps in preprocessing M/EEG signals, ii) the solution of the inverse problem to localize / reconstruct the cortical sources, iii) the computation of functional connectivity among signals collected at surface electrodes or/and time courses of reconstructed sources and iv) the computation of the network measures based on graph theory analysis. EEGNET is the unique tool that combines the M/EEG functional connectivity analysis and the computation of network measures derived from the graph theory. The first version of EEGNET is easy to use, flexible and user friendly. EEGNET is an open source tool and can be freely downloaded from this webpage: https://sites.google.com/site/eegnetworks/. PMID:26379232

  15. A 14-year dataset of in situ glacier surface velocities for a tidewater and a land-terminating glacier in Livingston Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Machío, Francisco; Rodríguez-Cielos, Ricardo; Navarro, Francisco; Lapazaran, Javier; Otero, Jaime

    2017-10-01

    We present a 14-year record of in situ glacier surface velocities determined by repeated global navigation satellite system (GNSS) measurements in a dense network of 52 stakes distributed across two glaciers, Johnsons (tidewater) and Hurd (land-terminating), located on Livingston Island, South Shetland Islands, Antarctica. The measurements cover the time period 2000-2013 and were collected at the beginning and end of each austral summer season. A second-degree polynomial approximation is fitted to each stake position, which allows estimating the approximate positions and associated velocities at intermediate times. This dataset is useful as input data for numerical models of glacier dynamics or for the calibration and validation of remotely sensed velocities for a region where very scarce in situ glacier surface velocity measurements have been available so far. The link to the data repository is as follows: http://doi.pangaea.de/10.1594/PANGAEA.846791.

  16. The Role of Surface Water for the Branching Geometry of Mars' Channel Networks

    NASA Astrophysics Data System (ADS)

    Seybold, H. F.; Rothman, D.; Kirchner, J. W.

    2016-12-01

    The controversy over the origin of Mars' channel networks is almost as old as their discovery 150 years ago. In recent decades, new Mars probe missions have revealed detailed network structures, and new studies suggest that Mars once had an active hydrologic cycle. But how this water flowed and how it could have carved these huge channel networks remains unclear. A recent analysis of high-resolution data for the Continental United States suggests that climate leaves a characteristic imprint in the branching geometry of stream networks: arid regions dominated by overland or near-surface flows have much narrower branching angles than humid regions with greater groundwater recharge. Based on this result we analyze the channel networks of Mars, and find that their geometry resembles those created by near-surface and overland flows on Earth. This result gives additional support to the hypothesis that Mars once had a more active hydrologic cycle, with liquid water flowing over its surface.

  17. Evaluation of the Surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States

    NASA Technical Reports Server (NTRS)

    Buchard, V.; da Silva, A. M.; Randles, C. A.; Colarco, P.; Ferrare, R.; Hair, J.; Hostetler, C.; Tackett, J.; Winker, D.

    2015-01-01

    We use surface fine particulate matter (PM2.5) measurements collected by the United States Environmental Protection Agency (US EPA) and the Interagency Monitoring of Protected Visual Environments (IMPROVE) networks as independent validation for Version 1 of the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero) developed by the Global Modeling Assimilation Office (GMAO). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on both Terra and Aqua satellites. By combining the spatial and temporal coverage of GEOS-5 with observational constraints on AOD, MERRAero has the potential to provide improved estimates of PM2.5 compared to the model alone and with greater coverage than available observations.Importantly, assimilation of AOD data constrains the total column aerosol mass in MERRAero subject to assumptions about optical properties for each of the species represented in GOGART. However, single visible wavelength AOD data does not contain sufficient information content to correct errors in either aerosol vertical placement or composition, critical elements for a proper characterization of surface PM2.5. Despite this, we find that the data-assimilation equipped version of GEOS-5 better represents observed PM2.5 between 2003 and 2012 compared to the same version of the model without AOD assimilation. Compared to measurements from the EPA-AQS network, MERRAero shows better PM2.5 agreement with the IMPROVE network measurements, which are composed essentially of rural stations. Regardless the data network, MERRAero PM2.5 are closer to observation values during the summer while larger discrepancies are observed during the winter. Comparing MERRAero to PM2.5 data collected by the Chemical Speciation Network (CSN) offers greater insight on the species MERRAero predicts well and those for which there are biases relative to the EPA observations. Analysis of this speciated data indicates that the lack of nitrate emissions in MERRAero and an underestimation of carbonaceous emissions in the Western US explains much of the reanalysis bias during the winter. To further understand discrepancies between the reanalysis and observations, we use complimentary data to assess two important aspects of MERRAero that are of relevance to the diagnosis of PM2.5, in particular AOD and vertical structure

  18. Evaluation of the surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Randles, C. A.; Colarco, P.; Ferrare, R.; Hair, J.; Hostetler, C.; Tackett, J.; Winker, D.

    2016-01-01

    We use surface fine particulate matter (PM2.5) measurements collected by the United States Environmental Protection Agency (US EPA) and the Interagency Monitoring of Protected Visual Environments (IMPROVE) networks as independent validation for Version 1 of the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero) developed by the Global Modeling Assimilation Office (GMAO). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on both Terra and Aqua satellites. By combining the spatial and temporal coverage of GEOS-5 with observational constraints on AOD, MERRAero has the potential to provide improved estimates of PM2.5 compared to the model alone and with greater coverage than available observations. Importantly, assimilation of AOD data constrains the total column aerosol mass in MERRAero subject to assumptions about optical properties for each of the species represented in GOGART. However, single visible wavelength AOD data does not contain sufficient information content to correct errors in either aerosol vertical placement or composition, critical elements for a proper characterization of surface PM2.5. Despite this, we find that the data-assimilation equipped version of GEOS-5 better represents observed PM2.5 between 2003 and 2012 compared to the same version of the model without AOD assimilation. Compared to measurements from the EPA-AQS network, MERRAero shows better PM2.5 agreement with the IMPROVE network measurements, which are composed essentially of rural stations. Regardless the data network, MERRAero PM2.5 are closer to observation values during the summer while larger discrepancies are observed during the winter. Comparing MERRAero to PM2.5 data collected by the Chemical Speciation Network (CSN) offers greater insight on the species MERRAero predicts well and those for which there are biases relative to the EPA observations. Analysis of this speciated data indicates that the lack of nitrate emissions in MERRAero and an underestimation of carbonaceous emissions in the Western US explains much of the reanalysis bias during the winter. To further understand discrepancies between the reanalysis and observations, we use complimentary data to assess two important aspects of MERRAero that are of relevance to the diagnosis of PM2.5, in particular AOD and vertical structure.

  19. Modeling Aircraft Wing Loads from Flight Data Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.; Dibley, Ryan P.

    2003-01-01

    Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.

  20. Application of Modified Particle Swarm Optimization Method for Parameter Extraction of 2-D TEC Mapping

    NASA Astrophysics Data System (ADS)

    Toker, C.; Gokdag, Y. E.; Arikan, F.; Arikan, O.

    2012-04-01

    Ionosphere is a very important part of Space Weather. Modeling and monitoring of ionospheric variability is a major part of satellite communication, navigation and positioning systems. Total Electron Content (TEC), which is defined as the line integral of the electron density along a ray path, is one of the parameters to investigate the ionospheric variability. Dual-frequency GPS receivers, with their world wide availability and efficiency in TEC estimation, have become a major source of global and regional TEC modeling. When Global Ionospheric Maps (GIM) of International GPS Service (IGS) centers (http://iono.jpl.nasa.gov/gim.html) are investigated, it can be observed that regional ionosphere along the midlatitude regions can be modeled as a constant, linear or a quadratic surface. Globally, especially around the magnetic equator, the TEC surfaces resemble twisted and dispersed single centered or double centered Gaussian functions. Particle Swarm Optimization (PSO) proved itself as a fast converging and an effective optimization tool in various diverse fields. Yet, in order to apply this optimization technique into TEC modeling, the method has to be modified for higher efficiency and accuracy in extraction of geophysical parameters such as model parameters of TEC surfaces. In this study, a modified PSO (mPSO) method is applied to regional and global synthetic TEC surfaces. The synthetic surfaces that represent the trend and small scale variability of various ionospheric states are necessary to compare the performance of mPSO over number of iterations, accuracy in parameter estimation and overall surface reconstruction. The Cramer-Rao bounds for each surface type and model are also investigated and performance of mPSO are tested with respect to these bounds. For global models, the sample points that are used in optimization are obtained using IGS receiver network. For regional TEC models, regional networks such as Turkish National Permanent GPS Network (TNPGN-Active) receiver sites are used. The regional TEC models are grouped into constant (one parameter), linear (two parameters), and quadratic (six parameters) surfaces which are functions of latitude and longitude. Global models require seven parameters for single centered Gaussian and 13 parameters for double centered Gaussian function. The error criterion is the normalized percentage error for both the surface and the parameters. It is observed that mPSO is very successful in parameter extraction of various regional and global models. The normalized reconstruction error varies from 10-4 for constant surfaces to 10-3 for quadratic surfaces in regional models, sampled with regional networks. Even for the cases of a severe geomagnetic storm that affects measurements globally, with IGS network, the reconstruction error is on the order of 10-1 even though individual parameters have higher normalized errors. The modified PSO technique proved itself to be a useful tool for parameter extraction of more complicated TEC models. This study is supported by TUBITAK EEEAG under Grant No: 109E055.

  1. Microseismic Monitoring Using Sparse Surface Network of Broadband Instruments: Western Canada Shale Play Case Study

    NASA Astrophysics Data System (ADS)

    Yenier, E.; Baturan, D.; Karimi, S.

    2016-12-01

    Monitoring of seismicity related to oil and gas operations is routinely performed nowadays using a number of different surface and downhole seismic array configurations and technologies. Here, we provide a hydraulic fracture (HF) monitoring case study that compares the data set generated by a sparse local surface network of broadband seismometers to a data set generated by a single downhole geophone string. Our data was collected during a 5-day single-well HF operation, by a temporary surface network consisting of 10 stations deployed within 5 km of the production well. The downhole data was recorded by a 20 geophone string deployed in an observation well located 15 m from the production well. Surface network data processing included standard STA/LTA event triggering enhanced by template-matching subspace detection, grid search locations which was improved using the double-differencing re-location technique, as well as Richter (ML) and moment (Mw) magnitude computations for all detected events. In addition, moment tensors were computed from first motion polarities and amplitudes for the subset of highest SNR events. The resulting surface event catalog shows a very weak spatio-temporal correlation to HF operations with only 43% of recorded seismicity occurring during HF stages times. This along with source mechanisms shows that the surface-recorded seismicity delineates the activation of several pre-existing structures striking NNE-SSW and consistent with regional stress conditions as indicated by the orientation of SHmax. Comparison of the sparse-surface and single downhole string datasets allows us to perform a cost-benefit analysis of the two monitoring methods. Our findings show that although the downhole array recorded ten times as many events, the surface network provides a more coherent delineation of the underlying structure and more accurate magnitudes for larger magnitude events. We attribute this to the enhanced focal coverage provided by the surface network and the use of broadband instrumentation. The results indicate that sparse surface networks of high quality instruments can provide rich and reliable datasets for evaluation of the impact and effectiveness of hydraulic fracture operations in regions with favorable surface noise, local stress and attenuation characteristics.

  2. Experimental study of thin film sensor networks for wind turbine blade damage detection

    NASA Astrophysics Data System (ADS)

    Downey, A.; Laflamme, S.; Ubertini, F.; Sauder, H.; Sarkar, P.

    2017-02-01

    Damage detection of wind turbine blades is difficult due to their complex geometry and large size, for which large deployment of sensing systems is typically not economical. A solution is to develop and deploy dedicated sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel skin-type strain gauge for measuring strain over very large surfaces. The skin, a type of large-area electronics, is constituted from a network of soft elastomeric capacitors. The sensing system is analogous to a biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization of a dense network of soft elastomeric capacitors to detect, localize, and quantify damage on wind turbine blades. We also leverage mature off-the-shelf technologies, in particular resistive strain gauges, to augment such dense sensor network with high accuracy data at key locations, therefore constituting a hybrid dense sensor network. The proposed hybrid dense sensor network is installed inside a wind turbine blade model, and tested in a wind tunnel to simulate an operational environment. Results demonstrate the ability of the hybrid dense sensor network to detect, localize, and quantify damage.

  3. Surface area estimates of streams and rivers occupied by nonnative fish and amphibians in the Western USA

    EPA Science Inventory

    Statistically robust, broad-scale measures of the portion of an aquatic resource (e.g., a stream and river network) occupied by nonnative fish and amphibian species should be useful to resource managers but with a few exceptions have not been available. We used data from the west...

  4. Increased rate of solvent diffusion in a prototypical supramolecular gel measured on the picosecond timescale.

    PubMed

    Seydel, Tilo; Edkins, Robert M; Jones, Christopher D; Foster, Jonathan A; Bewley, Robert; Aguilar, Juan A; Edkins, Katharina

    2018-06-14

    Solvent diffusion in a prototypical supramolecular gel probed by quasi-elastic neutron scattering on the picosecond timescale is faster than that in the respective bulk solvent. This phenomenon is hypothesized to be due to disruption of the hydrogen bonding of the solvent by the large hydrophobic surface of the gel network.

  5. Efficient wetland surface water detection and monitoring via Landsat: Comparison with in situ data from the Everglades Depth Estimation Network

    USGS Publications Warehouse

    Jones, John W.

    2015-01-01

    The U.S. Geological Survey is developing new Landsat science products. One, named Dynamic Surface Water Extent (DSWE), is focused on the representation of ground surface inundation as detected in cloud-/shadow-/snow-free pixels for scenes collected over the U.S. and its territories. Characterization of DSWE uncertainty to facilitate its appropriate use in science and resource management is a primary objective. A unique evaluation dataset developed from data made publicly available through the Everglades Depth Estimation Network (EDEN) was used to evaluate one candidate DSWE algorithm that is relatively simple, requires no scene-based calibration data, and is intended to detect inundation in the presence of marshland vegetation. A conceptual model of expected algorithm performance in vegetated wetland environments was postulated, tested and revised. Agreement scores were calculated at the level of scenes and vegetation communities, vegetation index classes, water depths, and individual EDEN gage sites for a variety of temporal aggregations. Landsat Archive cloud cover attribution errors were documented. Cloud cover had some effect on model performance. Error rates increased with vegetation cover. Relatively low error rates for locations of little/no vegetation were unexpectedly dominated by omission errors due to variable substrates and mixed pixel effects. Examined discrepancies between satellite and in situ modeled inundation demonstrated the utility of such comparisons for EDEN database improvement. Importantly, there seems no trend or bias in candidate algorithm performance as a function of time or general hydrologic conditions, an important finding for long-term monitoring. The developed database and knowledge gained from this analysis will be used for improved evaluation of candidate DSWE algorithms as well as other measurements made on Everglades surface inundation, surface water heights and vegetation using radar, lidar and hyperspectral instruments. Although no other sites have such an extensive in situ network or long-term records, the broader applicability of this and other candidate DSWE algorithms is being evaluated in other wetlands using this work as a guide. Continued interaction among DSWE producers and potential users will help determine whether the measured accuracies are adequate for practical utility in resource management.

  6. Potentials and Limitations of Wireless Sensor Networks for Environmental

    NASA Astrophysics Data System (ADS)

    Bumberger, J.; Remmler, P.; Hutschenreuther, T.; Toepfer, H.; Dietrich, P.

    2013-12-01

    Understanding and dealing with environmental challenges worldwide requires suitable interdisciplinary methods and a level of expertise to be able to implement these solutions, so that the lifestyles of future generations can be secured in the years to come. To characterize environmental systems it is necessary to identify and describe processes with suitable methods. Environmental systems are often characterized by their high heterogeneity, so individual measurements for their complete representation are often not sufficient. The application of wireless sensor networks in terrestrial and aquatic ecosystems offer significant benefits as a better consideration of the local test conditions becomes possible. This can be essential for the monitoring of heterogeneous environmental systems. Significant advantages in the application of wireless sensor networks are their self-organizing behaviour, resulting in a major reduction in installation and operation costs and time. In addition, a point measurement with a sensor is significantly improved by measuring at several points. It is also possible to perform analog and digital signal processing and computation on the basis of the measured data close to the sensor. Hence, a significant reduction of the data to be transmitted can be achieved which leads to a better energy management of sensor nodes. Furthermore, their localization via satellite, the miniaturization of the nodes and long-term energy self-sufficiency are current topics under investigation. In this presentation, the possibilities and limitations of the applicability of wireless sensor networks for long-term environmental monitoring are presented. To underline the importance of this future technology, example concepts are given in the field of near-surface geothermics, groundwater observation, measurement of spatial radiation intensity and air humidity on soils, measurement of matter fluxes, greenhouse gas measurement, and landslide monitoring.

  7. Topographic Controls on Southern California Ecosystem Function and Post-fire Recovery: a Satellite and Near-surface Remote Sensing Approach

    NASA Astrophysics Data System (ADS)

    Azzari, George

    Southern Californian wildfires can influence climate in a variety of ways, including changes in surface albedo, emission of greenhouse gases and aerosols, and the production of tropospheric ozone. Ecosystem post-fire recovery plays a key role in determining the strength, duration, and relative importance of these climate forcing agents. Southern California's ecosystems vary markedly with topography, creating sharp transitions with elevation, aspect, and slope. Little is known about the ways topography influences ecosystem properties and function, particularly in the context of post-fire recovery. We combined images from the USGS satellite Landsat 5 with flux tower measurements to analyze pre- and post-fire albedo and carbon exchanged by Southern California's ecosystems in the Santa Ana Mountains. We reduced the sources of external variability in Landsat images using several correction methods for topographic and bidirectional effects. We used time series of corrected images to infer the Net Ecosystem Exchange and surface albedo, and calculated the radiative forcing due to CO2 emissions and albedo changes. We analyzed the patterns of recovery and radiative forcing on north- and south-facing slopes, stratified by vegetation classes including grassland, coastal sage scrub, chaparral, and evergreen oak forest. We found that topography strongly influenced post-fire recovery and radiative forcing. Field observations are often limited by the difficulty of collecting ground validation data. Current instrumentation networks do not provide adequate spatial resolution for landscape-level analysis. The deployment of consumer-market technology could reduce the cost of near-surface measurements, allowing the installation of finer-scale instrument networks. We tested the performance of the Microsoft Kinect sensor for measuring vegetation structure. We used Kinect to acquire 3D vegetation point clouds in the field, and used these data to compute plant height, crown diameter, and volume. We found good agreement between Kinect-derived and manual measurements.

  8. Inverting near-surface models from virtual-source gathers (SM Division Outstanding ECS Award Lecture)

    NASA Astrophysics Data System (ADS)

    Ruigrok, Elmer; Vossen, Caron; Paulssen, Hanneke

    2017-04-01

    The Groningen gas field is a massive natural gas accumulation in the north-east of the Netherlands. Decades of production have led to significant compaction of the reservoir rock. The (differential) compaction is thought to have reactivated existing faults and to be the main driver of induced seismicity. The potential damage at the surface is largely affected by the state of the near surface. Thin and soft sedimentary layers can lead to large amplifications. By measuring the wavefield at different depth levels, near-surface properties can directly be estimated from the recordings. Seismicity in the Groningen area is monitored primarily with an array of vertical arrays. In the nineties a network of 8 boreholes was deployed. Since 2015, this network has been expanded with 70 new boreholes. Each new borehole consists of an accelerometer at the surface and four downhole geophones with a vertical spacing of 50 m. We apply seismic interferometry to local seismicity, for each borehole individually. Doing so, we obtain the responses as if there were virtual sources at the lowest geophones and receivers at the other depth levels. From the retrieved direct waves and reflections, we invert for P- & S- velocity and Q models. We discuss different implementations of seismic interferometry and the subsequent inversion. The inverted near-surface properties are used to improve both the source location and the hazard assessment.

  9. The Passive Microwave Neural Network Precipitation Retrieval (PNPR) for AMSU/MHS and ATMS cross-track scanning radiometers

    NASA Astrophysics Data System (ADS)

    Sano', Paolo; Casella, Daniele; Panegrossi, Giulia; Cinzia Marra, Anna; Dietrich, Stefano

    2016-04-01

    Spaceborne microwave cross-track scanning radiometers, originally developed for temperature and humidity sounding, have shown great capabilities to provide a significant contribution in precipitation monitoring both in terms of measurement quality and spatial/temporal coverage. The Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for cross-track scanning radiometers, originally developed for the Advanced Microwave Sounding Unit/Microwave Humidity Sounder (AMSU-A/MHS) radiometers (on board the European MetOp and U.S. NOAA satellites), was recently newly designed to exploit the Advanced Technology Microwave Sounder (ATMS) on board the Suomi-NPP satellite and the future JPSS satellites. The PNPR algorithm is based on the Artificial Neural Network (ANN) approach. The main PNPR-ATMS algorithm changes with respect to PNPR-AMSU/MHS are the design and implementation of a new ANN able to manage the information derived from the additional ATMS channels (respect to the AMSU-A/MHS radiometer) and a new screening procedure for not-precipitating pixels. In order to achieve maximum consistency of the retrieved surface precipitation, both PNPR algorithms are based on the same physical foundation. The PNPR is optimized for the European and the African area. The neural network was trained using a cloud-radiation database built upon 94 cloud-resolving simulations over Europe and the Mediterranean and over the African area and radiative transfer model simulations of TB vectors consistent with the AMSU-A/MHS and ATMS channel frequencies, viewing angles, and view-angle dependent IFOV sizes along the scan projections. As opposed to other ANN precipitation retrieval algorithms, PNPR uses a unique ANN that retrieves the surface precipitation rate for all types of surface backgrounds represented in the training database, i.e., land (vegetated or arid), ocean, snow/ice or coast. This approach prevents different precipitation estimates from being inconsistent with one another when an observed precipitation system extends over two or more types of surfaces. As input data, the PNPR algorithm incorporates the TBs from selected channels, and various additional TBs-derived variables. Ancillary geographical/geophysical inputs (i.e., latitude, terrain height, surface type, season) are also considered during the training phase. The PNPR algorithm outputs consist of both the surface precipitation rate (along with the information on precipitation phase: liquid, mixed, solid) and a pixel-based quality index. We will illustrate the main features of the PNPR algorithm and will show results of a verification study over Europe and Africa. The study is based on the available ground-based radar and/or rain gauge network observations over the European area. In addition, results of the comparison with rainfall products available from the NASA/JAXA Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) (over the African area) and Global Precipitation Measurement (GPM) Dual frequency Precipitation Radar (DPR) will be shown. The analysis is built upon a two-years coincidence dataset of AMSU/MHS and ATMS observations with PR (2013-2014) and DPR (2014-2015). The PNPR is developed within the EUMETSAT H/SAF program (Satellite Application Facility for Operational Hydrology and Water Management), where it is used operationally towards the full exploitation of all microwave radiometers available in the GPM era. The algorithm will be tailored to the future European Microwave Sounder (MWS) onboard the MetOp-Second Generation (MetOp-SG) satellites.

  10. Pore networks and polymer rearrangement on a drug-eluting stent as revealed by correlated confocal Raman and atomic force microscopy.

    PubMed

    Biggs, Kevin B; Balss, Karin M; Maryanoff, Cynthia A

    2012-05-29

    Drug release from and coating morphology on a CYPHER sirolimus-eluting coronary stent (SES) during in vitro elution were studied by correlated confocal Raman and atomic force microscopy (CRM and AFM, respectively). Chemical surface and subsurface maps of the SES were generated in the same region of interest by CRM and were correlated with surface topography measured by AFM at different elution times. For the first time, a direct correlation between drug-rich regions and the coating morphology was made on a drug-eluting medical device, linking drug release with pore formation, pore throats, and pore networks. Drug release was studied on a drug-eluting stent (DES) system with a multicomponent carrier matrix (poly(n-butyl methacrylate) [PBMA] and poly(ethylene-co-vinyl acetate) [PEVA]). The polymer was found to rearrange postelution because confluence of the carrier polymer matrix reconstituted the voids created by drug release.

  11. Distinguishability of black hole microstates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Ning; Ooguri, Hirosi

    We use the Holevo information to estimate distinguishability of microstates of a black hole in anti-de Sitter space by measurements one can perform on a subregion of a Cauchy surface of the dual conformal field theory. We find that microstates are not distinguishable at all until the subregion reaches a certain size and that perfect distinguishability can be achieved before the subregion covers the entire Cauchy surface. We will then compare our results with expectations from the entanglement wedge reconstruction, tensor network models, and the bit threads interpretation of the Ryu-Takayanagi formula.

  12. Surface energy fluxes in complex terrain

    NASA Technical Reports Server (NTRS)

    Reiter, E. R.; Sheaffer, J. D.; Bossert, J. E.

    1986-01-01

    The emphasis of the 1985 NASA project activity was on field measurements of wind data and heat balance data. Initiatives included a 19 station mountaintop monitoring program, testing and refining the surface flux monitoring systems and packing and shipping equipment to the People's Republic of China in preparation for the 1986 Tibet Experiment. Other work included more extensive analyses of the 1984 Gobi Desert and Rocky Mountain observations plus some preliminary analyses of the 1985 mountaintop network data. Details of our field efforts are summarized and results of our data analyses are presented.

  13. Distinguishability of black hole microstates

    DOE PAGES

    Bao, Ning; Ooguri, Hirosi

    2017-09-01

    We use the Holevo information to estimate distinguishability of microstates of a black hole in anti-de Sitter space by measurements one can perform on a subregion of a Cauchy surface of the dual conformal field theory. We find that microstates are not distinguishable at all until the subregion reaches a certain size and that perfect distinguishability can be achieved before the subregion covers the entire Cauchy surface. We will then compare our results with expectations from the entanglement wedge reconstruction, tensor network models, and the bit threads interpretation of the Ryu-Takayanagi formula.

  14. Infrared Algorithm Development for Ocean Observations with EOS/MODIS

    NASA Technical Reports Server (NTRS)

    Brown, Otis B.

    1997-01-01

    Efforts continue under this contract to develop algorithms for the computation of sea surface temperature (SST) from MODIS infrared measurements. This effort includes radiative transfer modeling, comparison of in situ and satellite observations, development and evaluation of processing and networking methodologies for algorithm computation and data accession, evaluation of surface validation approaches for IR radiances, development of experimental instrumentation, and participation in MODIS (project) related activities. Activities in this contract period have focused on radiative transfer modeling, evaluation of atmospheric correction methodologies, undertake field campaigns, analysis of field data, and participation in MODIS meetings.

  15. Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks.

    PubMed

    León-Roque, Noemí; Abderrahim, Mohamed; Nuñez-Alejos, Luis; Arribas, Silvia M; Condezo-Hoyos, Luis

    2016-12-01

    Several procedures are currently used to assess fermentation index (FI) of cocoa beans (Theobroma cacao L.) for quality control. However, all of them present several drawbacks. The aim of the present work was to develop and validate a simple image based quantitative procedure, using color measurement and artificial neural network (ANNs). ANN models based on color measurements were tested to predict fermentation index (FI) of fermented cocoa beans. The RGB values were measured from surface and center region of fermented beans in images obtained by camera and desktop scanner. The FI was defined as the ratio of total free amino acids in fermented versus non-fermented samples. The ANN model that included RGB color measurement of fermented cocoa surface and R/G ratio in cocoa bean of alkaline extracts was able to predict FI with no statistical difference compared with the experimental values. Performance of the ANN model was evaluated by the coefficient of determination, Bland-Altman plot and Passing-Bablok regression analyses. Moreover, in fermented beans, total sugar content and titratable acidity showed a similar pattern to the total free amino acid predicted through the color based ANN model. The results of the present work demonstrate that the proposed ANN model can be adopted as a low-cost and in situ procedure to predict FI in fermented cocoa beans through apps developed for mobile device. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Developing a Global Network of River Reaches in Preparation of SWOT

    NASA Astrophysics Data System (ADS)

    Lion, C.; Pavelsky, T.; Allen, G. H.; Beighley, E.; Schumann, G.; Durand, M. T.

    2016-12-01

    In 2020, the Surface Water and Ocean Topography satellite (SWOT), a joint mission of NASA/CNES/CSA/UK will be launched. One of its major products will be the measurements of continental water surfaces, including the width, height, and slope of rivers and the surface area and elevations of lakes. The mission will improve the monitoring of continental water and also our understanding of the interactions between different hydrologic reservoirs. For rivers, SWOT measurements of slope will be carried out over predefined river reaches. As such, an a priori dataset for rivers is needed in order to facilitate analysis of the raw SWOT data. The information required to produce this dataset includes measurements of river width, elevation, slope, planform, river network topology, and flow accumulation. To produce this product, we have linked two existing global datasets: the Global River Widths from Landsat (GRWL) database, which contains river centerline locations, widths, and a braiding index derived from Landsat imagery, and a modified version of the HydroSHEDS hydrologically corrected digital elevation product, which contains heights and flow accumulation measurements for streams at 3 arcseconds spatial resolution. Merging these two datasets requires considerable care. The difficulties, among others, lie in the difference of resolution: 30m versus 3 arseconds, and the age of the datasets: 2000 versus 2010 (some rivers have moved, the braided sections are different). As such, we have developed custom software to merge the two datasets, taking into account the spatial proximity of river channels in the two datasets and ensuring that flow accumulation in the final dataset always increases downstream. Here, we present our results for the globe.

  17. Radio Occultation Measurements of Pluto’s Atmosphere with New Horizons

    NASA Astrophysics Data System (ADS)

    Hinson, David P.; Linscott, Ivan; Tyler, Len; Bird, Mike; Paetzold, Martin; Strobel, Darrell; Summers, Mike; Woods, Will; Stern, Alan; Weaver, Hal; Olkin, Cathy; Young, Leslie; Ennico, Kimberly; Gladstone, Randy; Greathouse, Tommy; Kammer, Josh; Parker, Alex; Parker, Joel; Retherford, Kurt; Schindhelm, Eric; Singer, Kelsi; Steffl, Andrew; Tsang, Con; Versteeg, Maarten

    2015-11-01

    The reconnaissance of the Pluto System by New Horizons included radio occultations at both Pluto and Charon. This talk will present the latest results from the Pluto occultation. The REX instrument onboard New Horizons received and recorded uplink signals from two 70-m antennas and two 34-m antennas of the NASA Deep Space Network - each transmitting 20 kW at 4.2-cm wavelength - during a diametric occultation by Pluto. At the time this was written only a short segment of data at occultation entry (193°E, 17°S) was available for analysis. The REX measurements extend unequivocally to the surface, providing the first direct measure of the surface pressure and the temperature structure in Pluto’s lower atmosphere. Data from occultation exit (16°E, 15°N) are scheduled to arrive on the ground in late August 2015. Those observations will yield an improved estimate of the surface pressure, a second temperature profile, and a measure of the diameter of Pluto with a precision of a few hundred meters. This work is supported by the NASA New Horizons Mission.

  18. Improve observation-based ground-level ozone spatial distribution by compositing satellite and surface observations: A simulation experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhong; Wang, Yuhang; Crawford, James; Cheng, Ye; Li, Jianfeng

    2018-05-01

    Obtaining the full spatial coverage of daily surface ozone fields is challenging because of the sparsity of the surface monitoring network and the difficulty in direct satellite retrievals of surface ozone. We propose an indirect satellite retrieval framework to utilize the information from satellite-measured column densities of tropospheric NO2 and CH2O, which are sensitive to the lower troposphere, to derive surface ozone fields. The method is applicable to upcoming geostationary satellites with high-quality NO2 and CH2O measurements. To prove the concept, we conduct a simulation experiment using a 3-D chemical transport model for July 2011 over the eastern US. The results show that a second order regression using both NO2 and CH2O column densities can be an effective predictor for daily maximum 8-h average ozone. Furthermore, this indirect retrieval approach is shown to be complementary to spatial interpolation of surface observations, especially in regions where the surface sites are sparse. Combining column observations of NO2 and CH2O with surface site measurements leads to an improved representation of surface ozone over simple kriging, increasing the R2 value from 0.53 to 0.64 at a surface site distance of 252 km. The improvements are even more significant with larger surface site distances. The simulation experiment suggests that the indirect satellite retrieval technique can potentially be a useful tool to derive the full spatial coverage of daily surface ozone fields if satellite observation uncertainty is moderate.

  19. Water-Surface Elevations, Discharge, and Water-Quality Data for Selected Sites in the Warm Springs Area near Moapa, Nevada

    USGS Publications Warehouse

    Beck, David A.; Ryan, Roslyn; Veley, Ronald J.; Harper, Donald P.; Tanko, Daron J.

    2006-01-01

    The U.S. Geological Survey, in cooperation with Southern Nevada Water Authority and the Nevada Division of Water Resources, operates and maintains a surface-water monitoring network of 6 continuous-record stream-flow gaging stations and 11 partial-record stations in the Warm Springs area near Moapa, Nevada. Permanent land-surface bench marks were installed within the Warm Springs area by the Las Vegas Valley Water District, the Southern Nevada Water Authority, and the U.S. Geological Survey to determine water-surface elevations at all network monitoring sites. Vertical datum elevation and horizontal coordinates were established for all bench marks through a series of Differential Global Positioning System surveys. Optical theodolite surveys were made to transfer Differential Global Positioning System vertical datums to reference marks installed at each monitoring site. The surveys were completed in June 2004 and water-surface elevations were measured on August 17, 2004. Water-surface elevations ranged from 1,810.33 feet above North American Vertical Datum of 1988 at a stream-gaging station in the Pederson Springs area to 1,706.31 feet at a station on the Muddy River near Moapa. Discharge and water-quality data were compiled for the Warm Springs area and include data provided by the U.S. Geological Survey, Nevada Division of Water Resources, U.S. Fish and Wildlife Service, Moapa Valley Water District, Desert Research Institute, and Converse Consultants. Historical and current hydrologic data-collection networks primarily are related to changes in land- and water-use activities in the Warm Springs area. These changes include declines in ranching and agricultural use, the exportation of water to other areas of Moapa Valley, and the creation of a national wildlife refuge. Water-surface elevations, discharge, and water-quality data compiled for the Warm Springs area will help identify (1) effects of changing vegetation within the former agricultural lands, (2) effects of restoration activities in the wildlife refuge, and (3) potential impacts of ground-water withdrawals.

  20. Reconfigurable Control with Neural Network Augmentation for a Modified F-15 Aircraft

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Williams-Hayes, Peggy; Kaneshige, John T.; Stachowiak, Susan J.

    2006-01-01

    Description of the performance of a simplified dynamic inversion controller with neural network augmentation follows. Simulation studies focus on the results with and without neural network adaptation through the use of an F-15 aircraft simulator that has been modified to include canards. Simulated control law performance with a surface failure, in addition to an aerodynamic failure, is presented. The aircraft, with adaptation, attempts to minimize the inertial cross-coupling effect of the failure (a control derivative anomaly associated with a jammed control surface). The dynamic inversion controller calculates necessary surface commands to achieve desired rates. The dynamic inversion controller uses approximate short period and roll axis dynamics. The yaw axis controller is a sideslip rate command system. Methods are described to reduce the cross-coupling effect and maintain adequate tracking errors for control surface failures. The aerodynamic failure destabilizes the pitching moment due to angle of attack. The results show that control of the aircraft with the neural networks is easier (more damped) than without the neural networks. Simulation results show neural network augmentation of the controller improves performance with aerodynamic and control surface failures in terms of tracking error and cross-coupling reduction.

  1. Adaptive Control Using Neural Network Augmentation for a Modified F-15 Aircraft

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Williams-Hayes, Peggy; Karneshige, J. T.; Stachowiak, Susan J.

    2006-01-01

    Description of the performance of a simplified dynamic inversion controller with neural network augmentation follows. Simulation studies focus on the results with and without neural network adaptation through the use of an F-15 aircraft simulator that has been modified to include canards. Simulated control law performance with a surface failure, in addition to an aerodynamic failure, is presented. The aircraft, with adaptation, attempts to minimize the inertial cross-coupling effect of the failure (a control derivative anomaly associated with a jammed control surface). The dynamic inversion controller calculates necessary surface commands to achieve desired rates. The dynamic inversion controller uses approximate short period and roll axis dynamics. The yaw axis controller is a sideslip rate command system. Methods are described to reduce the cross-coupling effect and maintain adequate tracking errors for control surface failures. The aerodynamic failure destabilizes the pitching moment due to angle of attack. The results show that control of the aircraft with the neural networks is easier (more damped) than without the neural networks. Simulation results show neural network augmentation of the controller improves performance with aerodynamic and control surface failures in terms of tracking error and cross-coupling reduction.

  2. Robustness surfaces of complex networks

    PubMed Central

    Manzano, Marc; Sahneh, Faryad; Scoglio, Caterina; Calle, Eusebi; Marzo, Jose Luis

    2014-01-01

    Despite the robustness of complex networks has been extensively studied in the last decade, there still lacks a unifying framework able to embrace all the proposed metrics. In the literature there are two open issues related to this gap: (a) how to dimension several metrics to allow their summation and (b) how to weight each of the metrics. In this work we propose a solution for the two aforementioned problems by defining the R*-value and introducing the concept of robustness surface (Ω). The rationale of our proposal is to make use of Principal Component Analysis (PCA). We firstly adjust to 1 the initial robustness of a network. Secondly, we find the most informative robustness metric under a specific failure scenario. Then, we repeat the process for several percentage of failures and different realizations of the failure process. Lastly, we join these values to form the robustness surface, which allows the visual assessment of network robustness variability. Results show that a network presents different robustness surfaces (i.e., dissimilar shapes) depending on the failure scenario and the set of metrics. In addition, the robustness surface allows the robustness of different networks to be compared. PMID:25178402

  3. Simulation of Lunar Surface Communications Network Exploration Scenarios

    NASA Technical Reports Server (NTRS)

    Linsky, Thomas W.; Bhasin, Kul B.; White, Alex; Palangala, Srihari

    2006-01-01

    Simulations and modeling of surface-based communications networks provides a rapid and cost effective means of requirement analysis, protocol assessments, and tradeoff studies. Robust testing in especially important for exploration systems, where the cost of deployment is high and systems cannot be easily replaced or repaired. However, simulation of the envisioned exploration networks cannot be achieved using commercial off the shelf network simulation software. Models for the nonstandard, non-COTS protocols used aboard space systems are not readily available. This paper will address the simulation of realistic scenarios representative of the activities which will take place on the surface of the Moon, including selection of candidate network architectures, and the development of an integrated simulation tool using OPNET modeler capable of faithfully modeling those communications scenarios in the variable delay, dynamic surface environments. Scenarios for exploration missions, OPNET development, limitations, and simulations results will be provided and discussed.

  4. fMRI evidence for areas that process surface gloss in the human visual cortex

    PubMed Central

    Sun, Hua-Chun; Ban, Hiroshi; Di Luca, Massimiliano; Welchman, Andrew E.

    2015-01-01

    Surface gloss is an important cue to the material properties of objects. Recent progress in the study of macaque’s brain has increased our understating of the areas involved in processing information about gloss, however the homologies with the human brain are not yet fully understood. Here we used human functional magnetic resonance imaging (fMRI) measurements to localize brain areas preferentially responding to glossy objects. We measured cortical activity for thirty-two rendered three-dimensional objects that had either Lambertian or specular surface properties. To control for differences in image structure, we overlaid a grid on the images and scrambled its cells. We found activations related to gloss in the posterior fusiform sulcus (pFs) and in area V3B/KO. Subsequent analysis with Granger causality mapping indicated that V3B/KO processes gloss information differently than pFs. Our results identify a small network of mid-level visual areas whose activity may be important in supporting the perception of surface gloss. PMID:25490434

  5. Map showing how the potentiometric surface of the Magothy Aquifer of August 1980 differed from the potentiometric surface of September 1977, in southern Maryland

    USGS Publications Warehouse

    Mack, Frederick K.; Wheeler, J.C.; Curtin, Stephen E.

    1982-01-01

    The map is based on the differences between two sets of water-level measurements made in 65 observation wells. One set was made in 1977, a relatively dry year, and the other set was made in 1980, another relatively dry year. The map shows that the potentiometric surface was higher in 1980, by as much as 9 feet, than it was in 1977, in a band a few miles wide near the outcrop and subcrop areas of the aquifer in northern Prince Georges County and central Anne Arundel County. In the remainder of the map area, the 1980 potentiometric surface was lower than it had been in 1977, with declines as great as 20 feet measured in well fields at Waldorf and Chalk Point. The network of observation wells was developed and is operated and maintained as part of the cooperative program between the U.S. Geological Survey and agencies of the Maryland Department of Natural Resources. (USGS)

  6. Surface deformations as indicators of deep ebullition fluxes in a large northern peatland

    USGS Publications Warehouse

    Glaser, P.H.; Chanton, J.P.; Morin, P.; Rosenberry, D.O.; Siegel, D.I.; Ruud, O.; Chasar, L.I.; Reeve, A.S.

    2004-01-01

    Peatlands deform elastically during precipitation cycles by small (??3 cm) oscillations in surface elevation. In contrast, we used a Global Positioning System network to measure larger oscillations that exceeded 20 cm over periods of 4-12 hours during two seasonal droughts at a bog and fen site in northern Minnesota. The second summer drought also triggered 19 depressuring cycles in an overpressured stratum under the bog site. The synchronicity between the largest surface deformations and the depressuring cycles indicates that both phenomena are produced by the episodic release of large volumes of gas from deep semi-elastic compartments confined by dense wood layers. We calculate that the three largest surface deformations were associated with the release of 136 g CH4 m-2, which exceeds by an order of magnitude the annual average chamber fluxes measured at this site. Ebullition of gas from the deep peat may therefore be a large and previously unrecognized source of radiocarbon depleted methane emissions from northern peatlands. Copyright 2004 by the American Geophysical Union.

  7. Evaluation on surface current observing network of high frequency ground wave radars in the Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Yin, Xunqiang; Shi, Junqiang; Qiao, Fangli

    2018-05-01

    Due to the high cost of ocean observation system, the scientific design of observation network becomes much important. The current network of the high frequency radar system in the Gulf of Thailand has been studied using a three-dimensional coastal ocean model. At first, the observations from current radars have been assimilated into this coastal model and the forecast results have improved due to the data assimilation. But the results also show that further optimization of the observing network is necessary. And then, a series of experiments were carried out to assess the performance of the existing high frequency ground wave radar surface current observation system. The simulated surface current data in three regions were assimilated sequentially using an efficient ensemble Kalman filter data assimilation scheme. The experimental results showed that the coastal surface current observation system plays a positive role in improving the numerical simulation of the currents. Compared with the control experiment without assimilation, the simulation precision of surface and subsurface current had been improved after assimilated the surface currents observed at current networks. However, the improvement for three observing regions was quite different and current observing network in the Gulf of Thailand is not effective and a further optimization is required. Based on these evaluations, a manual scheme has been designed by discarding the redundant and inefficient locations and adding new stations where the performance after data assimilation is still low. For comparison, an objective scheme based on the idea of data assimilation has been obtained. Results show that all the two schemes of observing network perform better than the original network and optimal scheme-based data assimilation is much superior to the manual scheme that based on the evaluation of original observing network in the Gulf of Thailand. The distributions of the optimal network of radars could be a useful guidance for future design of observing system in this region.

  8. Mining induced seismic event on an inactive fault in view of local surface and in mine underground networksS

    NASA Astrophysics Data System (ADS)

    Rudzinski, Lukasz; Lizurek, Grzegorz; Plesiewicz, Beata

    2014-05-01

    On 19th March 2013 tremor shook the surface of Polkowice town were "Rudna" mine is located. This event of ML=4.2 was third most powerful seismic event recorded in Legnica Głogów Copper District (LGCD). Citizens of the area reported that felt tremors were bigger and last longer than any other ones felt in last couple years. The event was studied with use of two different networks: underground network of "Rudna" mine and surface local network run by IGF PAS (LUMINEOS network). The first one is composed of 32 vertical seismometers at mining level, except 5 sensors placed in elevator shafts, seismometers location depth varies from 300 down to 1000 meters below surface. The seismometers used in this network are vertical short period Willmore MkII and MkIII sensors, with the frequency band from 1Hz to 100Hz. At the beginning of 2013th the local surface network of the Institute of Geophysics Polish Academy of Sciences (IGF PAS) with acronym LUMINEOS was installed under agreement with KGHM SA and "Rudna" mine officials. This network at the moment of the March 19th 2013 event was composed of 4 short-period one-second triaxial seismometers LE-3D/1s manufactured by Lenartz Electronics. Analysis of spectral parameters of the records from in mine seismic system and surface LUMINEOS network along with broadband station KSP record were carried out. Location of the event was close to the Rudna Główna fault zone, the nodal planes orientations determined with two different approaches were almost parallel to the strike of the fault. The mechanism solutions were also obtained in form of Full Moment Tensor inversion from P wave amplitude pulses of underground records and waveform inversion of surface network seismograms. Final results of the seismic analysis along with macroseismic survey and observed effects from the destroyed part of the mining panel indicate that the mechanism of the event was thrust faulting on inactive tectonic fault. The results confirm that the fault zones are the areas of higher risk, even in case of carefully taken mining operations.

  9. Evaluation of the Reanalysis Surface Incident Shortwave Radiation Products from NCEP, ECMWF, GSFC, and JMA using Satellite and Surface Observations

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Liang, S.; Wang, G.; Yao, Y.; Jiang, B.; Cheng, J.

    2016-12-01

    Solar radiation incident at the Earth's surface (Rs) is an essential component of the total energy exchange between the atmosphere and the surface. Reanalysis data have been widely used, but a comprehensive validation using surface measurements is still highly needed. In this study, we evaluated the Rs estimates from six current representative global reanalyses [NCEP-NCAR, NCEP-DOE; CFSR; ERA-Interim; MERRA; and JRA-55] using surface measurements from different observation networks [GEBA; BSRN; GC-NET; Buoy; and CMA] (674 sites in total) and the Earth's Radiant Energy System (CERES) EBAF product from 2001 to 2009. The global mean biases between the reanalysis Rs and surface measurements at all sites ranged from 11.25 W/m2 to 49.80 W/m2. Comparing with the CERES-EBAF Rs product, all the reanalyses overestimate Rs, except for ERA-Interim, with the biases ranging from -2.98 W/m2 to 21.97 W/m2 over the globe. It was also found that the biases of cloud fraction (CF) in the reanalyses caused the overestimation of Rs. After removing the averaged bias of CERES-EBAF, weighted by the area of the latitudinal band, a global annual mean Rs values of 184.6 W/m2, 180.0 W/m2, and 182.9 W/m2 was obtained over land, ocean, and the globe, respectively.

  10. Engine classification using vibrations measured by Laser Doppler Vibrometer on different surfaces

    NASA Astrophysics Data System (ADS)

    Wei, J.; Liu, Chi-Him; Zhu, Zhigang; Vongsy, Karmon; Mendoza-Schrock, Olga

    2015-05-01

    In our previous studies, vehicle surfaces' vibrations caused by operating engines measured by Laser Doppler Vibrometer (LDV) have been effectively exploited in order to classify vehicles of different types, e.g., vans, 2-door sedans, 4-door sedans, trucks, and buses, as well as different types of engines, such as Inline-four engines, V-6 engines, 1-axle diesel engines, and 2-axle diesel engines. The results are achieved by employing methods based on an array of machine learning classifiers such as AdaBoost, random forests, neural network, and support vector machines. To achieve effective classification performance, we seek to find a more reliable approach to pick authentic vibrations of vehicle engines from a trustworthy surface. Compared with vibrations directly taken from the uncooperative vehicle surfaces that are rigidly connected to the engines, these vibrations are much weaker in magnitudes. In this work we conducted a systematic study on different types of objects. We tested different types of engines ranging from electric shavers, electric fans, and coffee machines among different surfaces such as a white board, cement wall, and steel case to investigate the characteristics of the LDV signals of these surfaces, in both the time and spectral domains. Preliminary results in engine classification using several machine learning algorithms point to the right direction on the choice of type of object surfaces to be planted for LDV measurements.

  11. An Algorithm for the Retrieval of 30-m Snow-Free Albedo from Landsat Surface Reflectance and MODIS BRDF

    NASA Technical Reports Server (NTRS)

    Shuai, Yanmin; Masek, Jeffrey G.; Gao, Feng; Schaaf, Crystal B.

    2011-01-01

    We present a new methodology to generate 30-m resolution land surface albedo using Landsat surface reflectance and anisotropy information from concurrent MODIS 500-m observations. Albedo information at fine spatial resolution is particularly useful for quantifying climate impacts associated with land use change and ecosystem disturbance. The derived white-sky and black-sky spectral albedos maybe used to estimate actual spectral albedos by taking into account the proportion of direct and diffuse solar radiation arriving at the ground. A further spectral-to-broadband conversion based on extensive radiative transfer simulations is applied to produce the broadband albedos at visible, near infrared, and shortwave regimes. The accuracy of this approach has been evaluated using 270 Landsat scenes covering six field stations supported by the SURFace RADiation Budget Network (SURFRAD) and Atmospheric Radiation Measurement Southern Great Plains (ARM/SGP) network. Comparison with field measurements shows that Landsat 30-m snow-free shortwave albedos from all seasons generally achieve an absolute accuracy of +/-0.02 - 0.05 for these validation sites during available clear days in 2003-2005,with a root mean square error less than 0.03 and a bias less than 0.02. This level of accuracy has been regarded as sufficient for driving global and regional climate models. The Landsat-based retrievals have also been compared to the operational 16-day MODIS albedo produced every 8-days from MODIS on Terra and Aqua (MCD43A). The Landsat albedo provides more detailed landscape texture, and achieves better agreement (correlation and dynamic range) with in-situ data at the validation stations, particularly when the stations include a heterogeneous mix of surface covers.

  12. neoPASCAL: A Cubesat-based approach to validate Mars GCMs using a network of landed sensors

    NASA Astrophysics Data System (ADS)

    Moores, John; Podmore, Hugh; Lee, Regina S. K.; Haberle, Robert

    2017-10-01

    Beginning in the 1990s, concepts for a network of 15-20 small (12.8 kg) landers to measure surface pressure across Mars were proposed (Merrihew et al., 1996). Such distributed measurements were seen as particularly valuable as they held the promise of validating Mars Global Circulation Models (GCMs), for which the diurnal and seasonal variations in surface pressure may be diagnostically related to atmospheric parameters (Haberle et al., 1996). MicroMET, later renamed PASCAL, was a Discovery contender, however, the total mass required for the 20 landers and a support orbiter presented a challenge compared to the delivered science.In the 20 years since this concept originated, miniaturization of spacecraft systems, sensors and components has made substantial progress. Several small planetary science spacecraft based on the CubeSat design approach will launch in the next few years. Yet, only one meteorological station (REMS) currently operates on the surface of Mars. Meanwhile, the output from atmospheric models have become ever more critical for understanding key Martian geological processes including volatile transport, identifying the extent and persistence of surface brines, understanding the sources and sinks of methane and investigating the past climate of Mars, to name only a few areas.As such, it is time to reconsider the PASCAL concept. We find that modern equipment opens up payload space in the original 12.8 kg entry-vehicles from 23 g to nearly 1 kg, sufficient for adding small imagers, spectrometers and other additional or alternate payloads to examine atmosphere and surface over a wide geographic range of settings. If, instead, we seek the minimum solution for spacecraft mass, we find that a pressure-sensing vehicle would mass < 250 g at entry making these spacecraft appealing secondary payloads for future Mars missions.

  13. Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach.

    PubMed

    Yoo, Sung Jin; Park, Jin Bae; Choi, Yoon Ho

    2008-10-01

    In this paper, we propose a new robust output feedback control approach for flexible-joint electrically driven (FJED) robots via the observer dynamic surface design technique. The proposed method only requires position measurements of the FJED robots. To estimate the link and actuator velocity information of the FJED robots with model uncertainties, we develop an adaptive observer using self-recurrent wavelet neural networks (SRWNNs). The SRWNNs are used to approximate model uncertainties in both robot (link) dynamics and actuator dynamics, and all their weights are trained online. Based on the designed observer, the link position tracking controller using the estimated states is induced from the dynamic surface design procedure. Therefore, the proposed controller can be designed more simply than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop adaptive system are uniformly ultimately bounded. Finally, the simulation results on a three-link FJED robot are presented to validate the good position tracking performance and robustness of the proposed control system against payload uncertainties and external disturbances.

  14. Topographic expression of active faults in the foothills of the Northern Apennines

    NASA Astrophysics Data System (ADS)

    Picotti, Vincenzo; Ponza, Alessio; Pazzaglia, Frank J.

    2009-09-01

    Active faults that rupture the earth's surface leave an imprint on the topography that is recognized using a combination of geomorphic and geologic metrics including triangular facets, the shape of mountain fronts, the drainage network, and incised river valleys with inset terraces. We document the presence of a network of active, high-angle extensional faults, collectively embedded in the actively shortening mountain front of the Northern Apennines, that possess unique geomorphic expressions. We measure the strain rate for these structures and find that they have a constant throw-to-length ratio. We demonstrate the necessary and sufficient conditions for triangular facet development in the footwalls of these faults and argue that rock-type exerts the strongest control. The slip rates of these faults range from 0.1 to 0.3 mm/yr, which is similar to the average rate of river incision and mountain front unroofing determined by corollary studies. The faults are a near-surface manifestation of deeper crustal processes that are actively uplifting rocks and growing topography at a rate commensurate with surface processes that are eroding the mountain front to base level.

  15. Lavoisier: A Low Altitude Balloon Network for Probing the Deep Atmosphere and Surface of Venus

    NASA Technical Reports Server (NTRS)

    Chaasefiere, E.; Berthelier, J. J.; Bertaux, J.-L.; Quemerais, E.; Pommereau, J.-P.; Rannou, P.; Raulin, F.; Coll, P.; Coscia, D.; Jambon, A.; hide

    2005-01-01

    The in-situ exploration of the low atmosphere and surface of Venus is clearly the next step of Venus exploration. Understanding the geochemistry of the low atmosphere, interacting with rocks, and the way the integrated Venus system evolved, under the combined effects of inner planet cooling and intense atmospheric greenhouse, is a major challenge of modern planetology. Due to the dense atmosphere (95 bars at the surface), balloon platforms offer an interesting means to transport and land in-situ measurement instruments. Due to the large Archimede force, a 2 cubic meter He-pressurized balloon floating at 10 km altitude may carry up to 60 kg of payload. LAVOISIER is a project submitted to ESA in 2000, in the follow up and spirit of the balloon deployed at cloud level by the Russian Vega mission in 1986. It is composed of a descent probe, for detailed noble gas and atmosphere composition analysis, and of a network of 3 balloons for geochemical and geophysical investigations at local, regional and global scales.

  16. [Evolution pattern of impervious surface in the Yuqiao Reservoir Watershed, Tianjin, China during the process of urbanization.

    PubMed

    Xie, Hui Jun; Li, Chong Wei; Zhang, Ya Juan; Song, Ai Yun

    2016-04-22

    Imperviousness in watershed is a key index to measure urbanization status which exerts an important impact on both eco-hydrological process and spatio-temporal pattern. Taking Yuqiao Reservoir Watershed as a case study area, based on the ENVI 5.1 software, the basic impervious surface information was extracted from remote sensing images taken in 1984, 1994, 2004 and 2013. The linear spectral mixture analysis (LSMA) model was applied to extract the impervious surface area (ISA) in nine coverage classes of watershed in order to analyze its spatio-temporal varying trend in terms of the landscape pattern metrics. Results showed that the RMSE and IS pixel accuracy of all samples were 0.005 and 85.4% respectively, which indicated that the method of extracting impervious surface on a basin scale was feasible. The average of ISA showed a linear growth, from 0.16 to 0.23, the impervious surface area increased by 4.9% in the whole watershed, and the total impervious surface area increased by 1 time. In the sub-basin road network, the impervious surface area increased gradually with the density of the road network, and its expansion pattern was of infilling growth. The patch shape of the middle coverage degree was irregular, and its fragmentation degree was the highest. The fragmentation degree and diversity of the landscape in the whole river basin increased year by year due to increasing human disturbance.

  17. Reverse switching of surface roughness in a self-organized polydomain liquid crystal coating.

    PubMed

    Liu, Danqing; Liu, Ling; Onck, Patrick R; Broer, Dirk J

    2015-03-31

    In this work we propose randomly ordered polydomain nematic liquid crystal polymer networks to reversibly generate notable jagged relief patterns at a polymer coating surface by light illumination. The domain size is controlled by the addition of traces of partly insoluble fluorinated acrylate. The photoresponse of the coating is induced by a small amount of copolymerized azobenzene monomers. Upon exposure to UV light, azobenzene undergoes trans to cis isomerization, resulting in a change in molecular order and packing within each domain. The extent of this effect and its directionality depends on the domain orientation. Localized to domain level, this morphological change forms large 3D spikes at the surface with a modulation amplitude of more than 20% of the initial thickness. The process is reversible; the surface topographical patterns erase within 10 s by stopping the light exposure. A finite element model is applied to simulate the surface topography changes of the polydomain coating. The simulations describe the formation of the topographic features in terms of light absorption and isomerization process as a function of the director orientation. The random director distribution leads to surface structures which were found to be in close agreement with the ones measured by interference microscopy. The effect of domain size on surface roughness and depth modulation was explored and related to the internal mechanical constraints. The use of nematic liquid crystal polydomains confined in a polymer network largely simplifies the fabrication of smart coatings with a prominent triggered topographic response.

  18. Optical fiber sensors for damage analysis in aerospace materials

    NASA Technical Reports Server (NTRS)

    Schindler, Paul; May, Russell; Claus, Richard

    1995-01-01

    Under this grant, fiber optic sensors were investigated for use in the nondestructive evaluation of aging aircraft. Specifically, optical fiber sensors for detection and location of impacts on a surface, and for detection of corrosion in metals were developed. The use of neural networks was investigated for determining impact location by processing the output of a network of fiberoptic strain sensors distributed on a surface. This approach employs triangulation to determine location by comparing the arrival times at several sensors, of the acoustic signal generated by the impact. For this study, a neural network simulator running on a personal computer was used to train a network using a back-propagation algorithm. Fiber optic extrinsic Fabry-Perot interferometer (EFPI) strain sensors are attached to or embedded in the surface, so that stress waves emanating from an impact can be detected. The ability of the network to determine impact location by time-or-arrival of acoustic signals was assessed by comparing network outputs with actual experimental results using impacts on a panel instrumented with optical fiber sensors. Using the neural network to process the sensor outputs, the impact location can be inferred to centimeter range accuracy directly from the arrival time data. In addition, the network can be trained to determine impact location, regardless of material anisotropy. Results demonstrate that a back-propagation network identifies impact location for an anisotropic graphite/bismaleimide plate with the same accuracy as that for an isotropic aluminum plate. Two different approaches were investigated for the development of fiber optic sensors for corrosion detection in metals, both utilizing optical fiber sensors with metal coatings. In the first approach, an extrinsic Fabry-Perot interferometric fiber optic strain sensor was placed under tensile stress, and while in the resulting strained position, a thick coating of metal was applied. Due to an increase in the quantity of material, the sensor does not return to its original position upon removal of the applied stress, and some residual strain is maintained within the sensor element. As the metal thickness decreases due to corrosion, this strain is released, providing the sensing mechanism for corrosion detection. In the second approach, photosensitive optical fibers with long period Bragg gratings in the core were coated with metal. The Bragg gratings serve to couple core modes at discrete wavelengths to cladding modes. Since cladding modes interact with the metal coating surrounding the fiber cladding, the specific wavelengths coupled from core to cladding depend on the refractive index of the metal coating. Therefore, as the metal corrodes, the resulting change in index of the coating may be measured by measuring the change in wavelength of the coupled mode. Results demonstrate that both approaches can be successfully used to track the loss in metal coating on the optical fiber sensors due to corrosion.

  19. Reverse Engineering of Oxygen Transport in the Lung: Adaptation to Changing Demands and Resources through Space-Filling Networks

    PubMed Central

    Hou, Chen; Gheorghiu, Stefan; Huxley, Virginia H.; Pfeifer, Peter

    2010-01-01

    The space-filling fractal network in the human lung creates a remarkable distribution system for gas exchange. Landmark studies have illuminated how the fractal network guarantees minimum energy dissipation, slows air down with minimum hardware, maximizes the gas- exchange surface area, and creates respiratory flexibility between rest and exercise. In this paper, we investigate how the fractal architecture affects oxygen transport and exchange under varying physiological conditions, with respect to performance metrics not previously studied. We present a renormalization treatment of the diffusion-reaction equation which describes how oxygen concentrations drop in the airways as oxygen crosses the alveolar membrane system. The treatment predicts oxygen currents across the lung at different levels of exercise which agree with measured values within a few percent. The results exhibit wide-ranging adaptation to changing process parameters, including maximum oxygen uptake rate at minimum alveolar membrane permeability, the ability to rapidly switch from a low oxygen uptake rate at rest to high rates at exercise, and the ability to maintain a constant oxygen uptake rate in the event of a change in permeability or surface area. We show that alternative, less than space-filling architectures perform sub-optimally and that optimal performance of the space-filling architecture results from a competition between underexploration and overexploration of the surface by oxygen molecules. PMID:20865052

  20. Surface-induced polymerization of actin.

    PubMed Central

    Renault, A; Lenne, P F; Zakri, C; Aradian, A; Vénien-Bryan, C; Amblard, F

    1999-01-01

    Living cells contain a very large amount of membrane surface area, which potentially influences the direction, the kinetics, and the localization of biochemical reactions. This paper quantitatively evaluates the possibility that a lipid monolayer can adsorb actin from a nonpolymerizing solution, induce its polymerization, and form a 2D network of individual actin filaments, in conditions that forbid bulk polymerization. G- and F-actin solutions were studied beneath saturated Langmuir monolayers containing phosphatidylcholine (PC, neutral) and stearylamine (SA, a positively charged surfactant) at PC:SA = 3:1 molar ratio. Ellipsometry, tensiometry, shear elastic measurements, electron microscopy, and dark-field light microscopy were used to characterize the adsorption kinetics and the interfacial polymerization of actin. In all cases studied, actin follows a monoexponential reaction-limited adsorption with similar time constants (approximately 10(3) s). At a longer time scale the shear elasticity of the monomeric actin adsorbate increases only in the presence of lipids, to a 2D shear elastic modulus of mu approximately 30 mN/m, indicating the formation of a structure coupled to the monolayer. Electron microscopy shows the formation of a 2D network of actin filaments at the PC:SA surface, and several arguments strongly suggest that this network is indeed causing the observed elasticity. Adsorption of F-actin to PC:SA leads more quickly to a slightly more rigid interface with a modulus of mu approximately 50 mN/m. PMID:10049338

  1. Installation of a seafloor geodetic network offshore northern Chile (GeoSEA)

    NASA Astrophysics Data System (ADS)

    Kopp, Heidrun; Lange, Dietrich; Hannemann, Katrin; Petersen, Florian; Contreras-Reyes, Eduardo

    2016-04-01

    The seafloor stores crucial information on sub-seafloor processes, including stress, elastic strain, and earthquake and tsunami generation. This information may be extracted through the nascent scientific field of seafloor geodesy. The target of the recently installed GeoSEA array (Geodetic Earthquake Observatory on the SEAfloor) is to measure crustal deformation in mm-scale on the marine forearc and outer rise of the South American subduction system around 21°S. This segment of the Nazca-South American plate boundary has last ruptured in an earthquake in 1877 and was identified as a seismic gap prior to the 2014 Iquique/Pisagua earthquake (Mw=8.1). The southern portion of the segment remains unbroken by a recent earthquake. Seafloor geodetic measurements provide a way to monitor crustal deformation at high resolution comparable to the satellite-based GPS technique upon which terrestrial geodesy is largely based. The GeoSEA Network consists of autonomous seafloor transponders installed on 4 m high tripods, which were lowered to the seabed on the deep-sea cable of RV SONNE in December 2015. The transponders within an array intercommunicate via acoustic signals for a period of up to 3.5 years and measure acoustic distance, tilt and pressure. An additional component of the network is GeoSURF, a self-steering autonomous surface vehicle (Wave Glider), which monitors system health and is capable to upload the seafloor data to the sea surface and to transfer it via satellite. We have chosen three areas on the middle and lower slope and the outer rise for the set-up of three sub-arrays. The array in Area 1 on the middle continental slope consists of 8 transponders located in pairs on four topographic ridges, which are surface expressions of faults at depth. Area 2 is located on the outer rise seaward of the trench where 5 stations monitor extension across plate-bending related normal faults. The third area is located at water depth >5000 m on the lower continental slope where an array of 10 stations measures diffuse strain build-up. Data from all networks and all stations were successfully uploaded to GeoSURF and/or a high performance USBL transceiver lowered into the water from RV SONNE. The seabed installation of a total of 23 transponders records pressure, temperature, water sound velocity, salinity, and baselines between stations. Baselines cover distances of up to 2600 m with a precision of ±2 mm.

  2. CarbonTracker-Lagrange: A Framework for Greenhouse Gas Flux Estimation at Regional to Continental Scales

    NASA Astrophysics Data System (ADS)

    Andrews, A. E.

    2016-12-01

    CarbonTracker-Lagrange (CT-L) is a flexible modeling framework developed to take advantage of newly available atmospheric data for CO2 and other long-lived gases such as CH4 and N2O. The North American atmospheric CO2 measurement network has grown from three sites in 2004 to >100 sites in 2015. The US network includes tall tower, mountaintop, surface, and aircraft sites in the NOAA Global Greenhouse Gas Reference Network along with sites maintained by university, government and private sector researchers. The Canadian network is operated by Environment and Climate Change Canada. This unprecedented dataset can provide spatially and temporally resolved CO2 emissions and uptake flux estimates and quantitative information about drivers of variability, such as drought and temperature. CT-L is a platform for systematic comparison of data assimilation techniques and evaluation of assumed prior, model and observation errors. A novel feature of CT-L is the optimization of boundary values along with surface fluxes, leveraging vertically resolved data available from NOAA's aircraft sampling program. CT-L uses observation footprints (influence functions) from the Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) modeling system to relate atmospheric measurements to upwind fluxes and boundary values. Footprints are pre-computed and the optimization algorithms are efficient, so many variants of the calculation can be performed. Fluxes are adjusted using Bayesian or Geostatistical methods to provide optimal agreement with observations. Satellite measurements of CO2 and CH4 from GOSAT are available starting in July 2009 and from OCO-2 since September 2014. With support from the NASA Carbon Monitoring System, we are developing flux estimation strategies that use remote sensing and in situ data together, including geostatistical inversions using satellite retrievals of solar-induced chlorophyll fluorescence. CT-L enables quantitative investigation of what new measurements would best complement the existing carbon observing system. We are also working to implement multi-species inversions for CO2 flux estimation using CO2 data along with CO, δ13CO2, COS and radiocarbon observations and for CH4 flux estimation using data for various hydrocarbons.

  3. Assessment of Gaseous Oxidized Mercury Measurement Accuracy at an Atmospheric Mercury Network (AMNet) Site

    NASA Astrophysics Data System (ADS)

    Luke, W. T.

    2016-12-01

    Recent laboratory and field research has documented and explored the biases and inaccuracies of the measurement of gaseous oxidized mercury (GOM) compounds using KCl-coated denuders. We report on the development of a simple, automated GOM calibration source and its deployment at NOAA/Air Resources Laboratory's Atmospheric Mercury Network (AMNet) site at the Mauna Loa Observatory (MLO) on the island of Hawaii. NOAA/ARL has developed a permeation-tube based calibration source with an extremely simple flow path that minimizes surface adsorptive effects and losses. The source was used to inject HgBr2 into one of two side-by-side Tekran® mercury speciation systems at MLO to characterize GOM measurement accuracy under a variety of atmospheric conditions. Due to its unique topography and meteorology, MLO experiences katabatic (upslope/downslope) mesoscale flow superimposed on the synoptic trade wind circulation of the tropics. Water vapor, ozone, and other trace atmospheric constituents often display pronounced diurnal variations at the site, which frequently encounters air characteristic of the middle free troposphere at night, and of the tropical marine boundary layer during the day. Results presented here will assist in the better understanding of the biases underlying GOM measurements in global mercury monitoring networks and may allow the development of correction factors for ambient data.

  4. Temporal Information Partitioning Networks (TIPNets): A process network approach to infer ecohydrologic shifts

    NASA Astrophysics Data System (ADS)

    Goodwell, Allison E.; Kumar, Praveen

    2017-07-01

    In an ecohydrologic system, components of atmospheric, vegetation, and root-soil subsystems participate in forcing and feedback interactions at varying time scales and intensities. The structure of this network of complex interactions varies in terms of connectivity, strength, and time scale due to perturbations or changing conditions such as rainfall, drought, or land use. However, characterization of these interactions is difficult due to multivariate and weak dependencies in the presence of noise, nonlinearities, and limited data. We introduce a framework for Temporal Information Partitioning Networks (TIPNets), in which time-series variables are viewed as nodes, and lagged multivariate mutual information measures are links. These links are partitioned into synergistic, unique, and redundant information components, where synergy is information provided only jointly, unique information is only provided by a single source, and redundancy is overlapping information. We construct TIPNets from 1 min weather station data over several hour time windows. From a comparison of dry, wet, and rainy conditions, we find that information strengths increase when solar radiation and surface moisture are present, and surface moisture and wind variability are redundant and synergistic influences, respectively. Over a growing season, network trends reveal patterns that vary with vegetation and rainfall patterns. The framework presented here enables us to interpret process connectivity in a multivariate context, which can lead to better inference of behavioral shifts due to perturbations in ecohydrologic systems. This work contributes to more holistic characterizations of system behavior, and can benefit a wide variety of studies of complex systems.

  5. Assessment of VIIRS daily BRDF/Albedo product using in situ measurement of SURFRAD sites and MODIS V006 daily BRDF/Albedo product

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wang, Z.; Sun, Q.; Schaaf, C.; Roman, M. O.

    2014-12-01

    Surface albedo is defined as the ratio of upwelling to downwelling radiative flux. It's important for understanding the global energy budget. Remote sensing albedo products provide global time continuous coverage to help capture global energy variability and change. The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi-NPP satellite, launched on October 28, 2011, is aiming to provide continues data record with the MODerate resolution Imaging Spectroradiometer (MODIS), which has been providing Bidirectional Reflectance Distribution Function (BRDF)/Albedo product since 2000. By utilizing the same approach that was used for the most recently V006 daily MODIS BRDF/Albedo product, VIIRS has the ability to keep providing products for research and operational users. Validating albedo product of VIIRS using in situmeasured albedo can assure the quality for land surface climate and biosphere models, and comparing with MODIS product can assure time continues of BRDF/albedo product. The daily BRDF/Albedo product still uses 16-day period multispectral, cloud-cleared, atmospherically-corrected surface reflectances to fit the Ross-Thick/Li-Sparse-Reciprocal semi-empirical BRDF model. But the multiday observations are also weighted based on proximity to the production date in order to emphasis on that individual day. Surface Radiation Budget Network (SURFRAD) was established in 1993 through the support of NOAA's Office of Global Programs. In situ albedo was driven from downwelling and upwelling radiative flux measured from the towers. Fraction of diffuse sky light was calculated using the direct and diffuse solar recorded in the data. It was further used to translate VIIRS, MODIS black sky and white sky albedos into actual albedo at local solar noon. Results show that VIIRS, MODIS and in situ albedo agree well at SURFARD spatially representative sites. While the VIIRS surface reflectance, snow, and cloud algorithms are still undergoing revision, the result shows that VIIRS can provide comparable albedo products with MODIS. The accuracy of both products can meet the requirement for climate and biosphere models. In situ albedo also can be gained from Baseline Surface Radiation Network (BSRN), FLUXNET and Long Term Ecological Research network (LTER) etc., which will be used in future validation work.

  6. Underwater Electromagnetic Sensor Networks—Part I: Link Characterization †

    PubMed Central

    Quintana-Díaz, Gara; Mena-Rodríguez, Pablo; Pérez-Álvarez, Iván; Jiménez, Eugenio; Dorta-Naranjo, Blas-Pablo; Zazo, Santiago; Pérez, Marina; Quevedo, Eduardo; Cardona, Laura; Hernández, J. Joaquín

    2017-01-01

    Underwater Wireless Sensor Networks (UWSNs) using electromagnetic (EM) technology in marine shallow waters are examined, not just for environmental monitoring but for further interesting applications. Particularly, the use of EM waves is reconsidered in shallow waters due to the benefits offered in this context, where acoustic and optical technologies have serious disadvantages. Sea water scenario is a harsh environment for radiocommunications, and there is no standard model for the underwater EM channel. The high conductivity of sea water, the effect of seabed and the surface make the behaviour of the channel hard to predict. This justifies the need of link characterization as the first step to approach the development of EM underwater sensor networks. To obtain a reliable link model, measurements and simulations are required. The measuring setup for this purpose is explained and described, as well as the procedures used. Several antennas have been designed and tested in low frequency bands. Agreement between attenuation measurements and simulations at different distances was analysed and made possible the validation of simulation setups and the design of different communications layers of the system. This leads to the second step of this work, where data and routing protocols for the sensor network are examined. PMID:28106843

  7. Influence of Bulk PDMS Network Properties on Water Wettability

    NASA Astrophysics Data System (ADS)

    Melillo, Matthew; Walker, Edwin; Klein, Zoe; Efimenko, Kirill; Genzer, Jan

    Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from sealants and marine antifouling coatings to absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into PDMS networks is of critical importance for the design and use of another application - medical devices. We have systematically studied the effects of polymer molecular weight, loading of tetra-functional crosslinker, and end-group chemical functionality on the mechanical and surface properties of end-linked PDMS networks. Wettability was investigated through the sessile drop technique, wherein a DI water droplet was placed on the bulk network surface and droplet volume, shape, surface area, and contact angle were monitored as a function of time. Various silicone substrates ranging from incredibly soft and flexible materials (E' 50 kPa) to highly rigid networks (E' 5 MPa) were tested. The dynamic behavior of the droplet on the surfaces demonstrated equilibration times between the droplet and surface on the order of 5 minutes. Similar trends were observed for the commercial PDMS material, Sylgard-184. Our results have provided new evidence for the strong influence that substrate modulus and molecular network structure have on the wettability of PDMS elastomers. These findings will aid in the design and implementation of efficient, accurate, and safe PDMS-based medical devices and microfluidic materials that involve aqueous media.

  8. [Construction and optimization of ecological network for nature reserves in Fujian Province, China].

    PubMed

    Gu, Fan; Huang, Yi Xiong; Chen, Chuan Ming; Cheng, Dong Liang; Guo, Jia Lei

    2017-03-18

    The nature reserve is very important to biodiversity maintenance. However, due to the urbanization, the nature reserve has been fragmented with reduction in area, leading to the loss of species diversity. Establishing ecological network can effectively connect the fragmented habitats and plays an important role in species conversation. In this paper, based on deciding habitat patches and the landscape cost surface in ArcGIS, a minimum cumulative resistance model was used to simulate the potential ecological network of Fujian provincial nature reserves. The connectivity and importance of network were analyzed and evaluated based on comparison of connectivity indices (including the integral index of connectivity and probability of connectivity) and gravity model both before and after the potential ecological network construction. The optimum ecological network optimization measures were proposed. The result demonstrated that woodlands, grasslands and wetlands together made up the important part of the nature reserve ecological network. The habitats with large area had a higher degree of importance in the network. After constructing the network, the connectivity level was significantly improved. Although interaction strength between different patches va-ried greatly, the corridors between patches with large interaction were very important. The research could provide scientific reference and basis for nature protection and planning in Fujian Province.

  9. The DRAGON scale concept and results for remote sensing of aerosol properties

    NASA Astrophysics Data System (ADS)

    Holben, B. N.; Eck, T. F.; Schafer, J.; Giles, D. M.; Kim, J.; Sano, I.; Mukai, S.; Kim, Y. J.; Reid, J. S.; Pickering, K. E.; Crawford, J. H.; Smirnov, A.; Sinyuk, A.; Slutsker, I.; Sorokin, M.; Rodriguez, J.; Liew, S.; Trevino, N.; Lim, H.; Lefer, B. L.; Nadkarni, R.; Macke, A.; Kinne, S. A.; Anderson, B. E.; Russell, P. B.; Maring, H. B.; Welton, E. J.; da Silva, A.; Toon, O. B.; Redemann, J.

    2013-12-01

    Aerosol processes occur at microscales but are typically observed and reported at continental to global scales. Often observable aerosol processes that have significant anthropogenic impact occur on spatial scales of tens to a few hundred km, representative of convective cloud processing, urban/megacity sources, anthropogenic burning and natural wildfires, dry lakebed dust sources etc. Historically remote sensing of aerosols has relied on relatively coarse temporal and spatial resolution satellite observations or high temporal resolution point observations from ground-based monitoring sites from networks such as AERONET, SKYNET, MPLNET and many other surface observation platforms. Airborne remote and in situ observations combined with assimilation models were/are to be the mesoscale link between the ground- and space-based RS scales. However clearly the in situ and ground-based RS characterizations of aerosols require a convergence of thought, parameterization and actual scale measurements in order to advance this goal. This has been served by periodic multidisciplinary field campaigns yet only recently has a concerted effort been made to establish these ground-based networks in an effort to capture the mesoscale processes through measurement programs such as DISCOVER AQ and NASA AERONET's effort to foster such measurements and analysis through the Distributed Regional Aerosol Gridded Observation Networks (DRAGON), short term meso-networks, with partners in Asia and Europe and N. America. This talk will review the historical need for such networks and discuss some of the results and in some cases unexpected findings from the eight DRAGON campaigns conducted the last several years. Emphasis will be placed on the most recent DISCOVER AQ campaign conducted in Houston TX and the synergism with a regional to global network plan through the SEAC4RS US campaign.

  10. The Validation of the GEWEX SRB Surface Shortwave Flux Data Products Using BSRN Measurements: A Systematic Quality Control, Production and Application Approach

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Cox, Stephen J.; Mikovitz, J. Colleen; Hinkelman, Laura M.

    2013-01-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project has produced a 24.5-year continuous record of global shortwave and longwave radiation fluxes at TOA and the Earth's surface from satellite measurements. The time span of the data is from July 1983 to December 2007, and the spatial resolution is 11 latitude11 longitude. The inputs of the latest version (Release 3.0) include the GEOS Version 4.0.3 meteorological information and cloud properties derived from ISCCP DX data. The SRB products are available on 3-hourly, 3-hourly-monthly, daily and monthly time scales. To assess the quality of the product, we extensively validated the SRB data against 5969 site-months of groundbased measurements from 52 Baseline Surface Radiation Network (BSRN) stations. This paper describes first the characteristics of the BSRN data and the GEWEX SRB data, the methodology for quality control and processing of the shortwave BSRN data, and then the systematic SRB-BSRN comparisons. It is found that, except for occasional extreme outliers as seen in scatter plots, the satellite-based surface radiation data generally agree very well with BSRN measurements. Specifically, the bias/RMS for the daily and monthly mean shortwave fluxes are, respectively, -3.6/35.5 and -5.2/23.3W1 m2 under all-sky conditions.

  11. Hemocompatibility of poly(vinylidene fluoride) membrane grafted with network-like and brush-like antifouling layer controlled via plasma-induced surface PEGylation.

    PubMed

    Chang, Yung; Shih, Yu-Ju; Ko, Chao-Yin; Jhong, Jheng-Fong; Liu, Ying-Ling; Wei, Ta-Chin

    2011-05-03

    In this work, the hemocompatibility of PEGylated poly(vinylidene fluoride) (PVDF) microporous membranes with varying grafting coverage and structures via plasma-induced surface PEGylation was studied. Network-like and brush-like PEGylated layers on PVDF membrane surfaces were achieved by low-pressure and atmospheric plasma treatment. The chemical composition, physical morphology, grafting structure, surface hydrophilicity, and hydration capability of prepared membranes were determined to illustrate the correlations between grafting qualities and hemocompatibility of PEGylated PVDF membranes in contact with human blood. Plasma protein adsorption onto different PEGylated PVDF membranes from single-protein solutions and the complex medium of 100% human plasma were measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. Hemocompatibility of the PEGylated membranes was evaluated by the antifouling property of platelet adhesion observed by scanning electron microscopy (SEM) and the anticoagulant activity of the blood coagulant determined by testing plasma-clotting time. The control of grafting structures of PEGylated layers highly regulates the PVDF membrane to resist the adsorption of plasma proteins, the adhesion of platelets, and the coagulation of human plasma. It was found that PVDF membranes grafted with brush-like PEGylated layers presented higher hydration capability with binding water molecules than with network-like PEGylated layers to improve the hemocompatible character of plasma protein and blood platelet resistance in human blood. This work suggests that the hemocompatible nature of grafted PEGylated polymers by controlling grafting structures gives them great potential in the molecular design of antithrombogenic membranes for use in human blood.

  12. Earthquakes and Volcanic Processes at San Miguel Volcano, El Salvador, Determined from a Small, Temporary Seismic Network

    NASA Astrophysics Data System (ADS)

    Hernandez, S.; Schiek, C. G.; Zeiler, C. P.; Velasco, A. A.; Hurtado, J. M.

    2008-12-01

    The San Miguel volcano lies within the Central American volcanic chain in eastern El Salvador. The volcano has experienced at least 29 eruptions with Volcano Explosivity Index (VEI) of 2. Since 1970, however, eruptions have decreased in intensity to an average of VEI 1, with the most recent eruption occurring in 2002. Eruptions at San Miguel volcano consist mostly of central vent and phreatic eruptions. A critical challenge related to the explosive nature of this volcano is to understand the relationships between precursory surface deformation, earthquake activity, and volcanic activity. In this project, we seek to determine sub-surface structures within and near the volcano, relate the local deformation to these structures, and better understand the hazard that the volcano presents in the region. To accomplish these goals, we deployed a six station, broadband seismic network around San Miguel volcano in collaboration with researchers from Servicio Nacional de Estudios Territoriales (SNET). This network operated continuously from 23 March 2007 to 15 January 2008 and had a high data recovery rate. The data were processed to determine earthquake locations, magnitudes, and, for some of the larger events, focal mechanisms. We obtained high precision locations using a double-difference approach and identified at least 25 events near the volcano. Ongoing analysis will seek to identify earthquake types (e.g., long period, tectonic, and hybrid events) that occurred in the vicinity of San Miguel volcano. These results will be combined with radar interferometric measurements of surface deformation in order to determine the relationship between surface and subsurface processes at the volcano.

  13. The surface climatology of the Ross Ice Shelf Antarctica.

    PubMed

    Costanza, Carol A; Lazzara, Matthew A; Keller, Linda M; Cassano, John J

    2016-12-01

    The University of Wisconsin-Madison Antarctic Automatic Weather Station (AWS) project has been making meteorological surface observations on the Ross Ice Shelf (RIS) for approximately 30 years. This network offers the most continuous set of routine measurements of surface meteorological variables in this region. The Ross Island area is excluded from this study. The surface climate of the RIS is described using the AWS measurements. Temperature, pressure, and wind data are analysed on daily, monthly, seasonal, and annual time periods for 13 AWS across the RIS. The AWS are separated into three representative regions - central, coastal, and the area along the Transantarctic Mountains - in order to describe specific characteristics of sections of the RIS. The climatology describes general characteristics of the region and significant changes over time. The central AWS experiences the coldest mean temperature, and the lowest resultant wind speed. These AWSs also experience the coldest potential temperatures with a minimum of 209.3 K at Gill AWS. The AWS along the Transantarctic Mountains experiences the warmest mean temperature, the highest mean sea-level pressure, and the highest mean resultant wind speed. Finally, the coastal AWS experiences the lowest mean pressure. Climate indices (MEI, SAM, and SAO) are compared to temperature and pressure data of four of the AWS with the longest observation periods, and significant correlation is found for most AWS in sea-level pressure and temperature. This climatology study highlights characteristics that influence the climate of the RIS, and the challenges of maintaining a long-term Antarctic AWS network. Results from this effort are essential for the broader Antarctic meteorology community for future research.

  14. Reconfigurable Robust Routing for Mobile Outreach Network

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang

    2010-01-01

    The Reconfigurable Robust Routing for Mobile Outreach Network (R3MOO N) provides advanced communications networking technologies suitable for the lunar surface environment and applications. The R3MOON techn ology is based on a detailed concept of operations tailored for luna r surface networks, and includes intelligent routing algorithms and wireless mesh network implementation on AGNC's Coremicro Robots. The product's features include an integrated communication solution inco rporating energy efficiency and disruption-tolerance in a mobile ad h oc network, and a real-time control module to provide researchers an d engineers a convenient tool for reconfiguration, investigation, an d management.

  15. Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations

    DOE PAGES

    Schultz, Martin G.; Schroder, Sabine; Lyapina, Olga; ...

    2017-11-27

    In support of the first Tropospheric Ozone Assessment Report (TOAR) a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature. Cooperation among many data centers and individual researchers worldwide made it possible to buildmore » the world's largest collection of in-situ hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of a posteriori data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface observation network both in terms of regions without monitoring, and in terms of regions that have monitoring programs but no public access to the data archive. Therefore future improvements to the database will require not only improved data harmonization, but also expanded data sharing and increased monitoring in data-sparse regions.« less

  16. Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Martin G.; Schroder, Sabine; Lyapina, Olga

    In support of the first Tropospheric Ozone Assessment Report (TOAR) a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature. Cooperation among many data centers and individual researchers worldwide made it possible to buildmore » the world's largest collection of in-situ hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of a posteriori data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface observation network both in terms of regions without monitoring, and in terms of regions that have monitoring programs but no public access to the data archive. Therefore future improvements to the database will require not only improved data harmonization, but also expanded data sharing and increased monitoring in data-sparse regions.« less

  17. Hydrogeologic data for the Big River-Mishnock River stream-aquifer system, central Rhode Island

    USGS Publications Warehouse

    Craft, P.A.

    2001-01-01

    Hydrogeology, ground-water development alternatives, and water quality in the BigMishnock stream-aquifer system in central Rhode Island are being investigated as part of a long-term cooperative program between the Rhode Island Water Resources Board and the U.S. Geological Survey to evaluate the ground-water resources throughout Rhode Island. The study area includes the Big River drainage basin and that portion of the Mishnock River drainage basin upstream from the Mishnock River at State Route 3. This report presents geologic data and hydrologic and water-quality data for ground and surface water. Ground-water data were collected from July 1996 through September 1998 from a network of observation wells consisting of existing wells and wells installed for this study, which provided a broad distribution of data-collection sites throughout the study area. Streambed piezometers were used to obtain differences in head data between surface-water levels and ground-water levels to help evaluate stream-aquifer interactions throughout the study area. The types of data presented include monthly ground-water levels, average daily ground-water withdrawals, drawdown data from aquifer tests, and water-quality data. Historical water-level data from other wells within the study area also are presented in this report. Surface-water data were obtained from a network consisting of surface-water impoundments, such as ponds and reservoirs, existing and newly established partial-record stream-discharge sites, and synoptic surface-water-quality sites. Water levels were collected monthly from the surface-water impoundments. Stream-discharge measurements were made at partial-record sites to provide measurements of inflow, outflow, and internal flow throughout the study area. Specific conductance was measured monthly at partial-record sites during the study, and also during the fall and spring of 1997 and 1998 at 41 synoptic sites throughout the study area. General geologic data, such as estimates of depth to bedrock and depth to water table, as well as indications of underlying geologic structure, were obtained from geophysical surveys. Site-specific geologic data were collected during the drilling of observation wells and test holes. These data include depth to bedrock or refusal, depth to water table, and lithologic information.

  18. Water's Interfacial Hydrogen Bonding Structure Reveals the Effective Strength of Surface-Water Interactions.

    PubMed

    Shin, Sucheol; Willard, Adam P

    2018-06-05

    We combine all-atom molecular dynamics simulations with a mean field model of interfacial hydrogen bonding to analyze the effect of surface-water interactions on the structural and energetic properties of the liquid water interface. We show that the molecular structure of water at a weakly interacting ( i.e., hydrophobic) surface is resistant to change unless the strength of surface-water interactions are above a certain threshold. We find that below this threshold water's interfacial structure is homogeneous and insensitive to the details of the disordered surface, however, above this threshold water's interfacial structure is heterogeneous. Despite this heterogeneity, we demonstrate that the equilibrium distribution of molecular orientations can be used to quantify the energetic component of the surface-water interactions that contribute specifically to modifying the interfacial hydrogen bonding network. We identify this specific energetic component as a new measure of hydrophilicity, which we refer to as the intrinsic hydropathy.

  19. Identifying apple surface defects using principal components analysis and artifical neural networks

    USDA-ARS?s Scientific Manuscript database

    Artificial neural networks and principal components were used to detect surface defects on apples in near-infrared images. Neural networks were trained and tested on sets of principal components derived from columns of pixels from images of apples acquired at two wavelengths (740 nm and 950 nm). I...

  20. Rivited panel surface measurement using photogrammetry

    NASA Technical Reports Server (NTRS)

    Merrick, W. D.; Lobb, V. B.; Lansing, F. L.; Stoller, F. W.

    1986-01-01

    Two riveted antenna panels on rings number 3 and 9 were removed from the 34m antenna at DSS-15, fixed in the leveled position and the surface was photographed indoors. The results from this pilot photogrammetric demonstration and diagnostics of panel surface contours, are presented. The photogrammetric network for each panel incorporated eight photographs, two from each of four camera stations and observed over 200 targets. The accuracy (1 sigma) of the XYZ coordinates for the error ellipsoids was + or - 0.013 mm (0.0005 inch). This level of precision relative to the object size corresponds roughly to 1 part in 250,000 which is superior to conventional dial sweep-arm template techniques by at least a factor of 4.

  1. A Global comparison of surface soil characteristics across five cities: A test of the urban ecosystem convergence hypothesis.

    Treesearch

    Richard V. Pouyat; Ian D. Yesilonis; Miklos Dombos; Katalin Szlavecz; Heikki Setala; Sarel Cilliers; Erzsebet Hornung; D. Johan Kotze; Stephanie Yarwood

    2015-01-01

    As part of the Global Urban Soil Ecology and Education Network and to test the urban ecosystem convergence hypothesis, we report on soil pH, organic carbon (OC), total nitrogen (TN), phosphorus (P), and potassium (K) measured in four soil habitat types (turfgrass, ruderal, remnant, and reference) in five metropolitan areas (Baltimore, Budapest,...

  2. GPS Monitoring of Surface Change During and Following the Fortuitous Occurrence of the M(sub w) = 7.3 Landers Earthquake in our Network

    NASA Technical Reports Server (NTRS)

    Miller, M. Meghan

    1998-01-01

    Accomplishments: (1) Continues GPS monitoring of surface change during and following the fortuitous occurrence of the M(sub w) = 7.3 Landers earthquake in our network, in order to characterize earthquake dynamics and accelerated activity of related faults as far as 100's of kilometers along strike. (2) Integrates the geodetic constraints into consistent kinematic descriptions of the deformation field that can in turn be used to characterize the processes that drive geodynamics, including seismic cycle dynamics. In 1991, we installed and occupied a high precision GPS geodetic network to measure transform-related deformation that is partitioned from the Pacific - North America plate boundary northeastward through the Mojave Desert, via the Eastern California shear zone to the Walker Lane. The onset of the M(sub w) = 7.3 June 28, 1992, Landers, California, earthquake sequence within this network poses unique opportunities for continued monitoring of regional surface deformation related to the culmination of a major seismic cycle, characterization of the dynamic behavior of continental lithosphere during the seismic sequence, and post-seismic transient deformation. During the last year, we have reprocessed all three previous epochs for which JPL fiducial free point positioning products available and are queued for the remaining needed products, completed two field campaigns monitoring approx. 20 sites (October 1995 and September 1996), begun modeling by development of a finite element mesh based on network station locations, and developed manuscripts dealing with both the Landers-related transient deformation at the latitude of Lone Pine and the velocity field of the whole experiment. We are currently deploying a 1997 observation campaign (June 1997). We use GPS geodetic studies to characterize deformation in the Mojave Desert region and related structural domains to the north, and geophysical modeling of lithospheric behavior. The modeling is constrained by our existing and continued GPS measurements, which will provide much needed data on far-field strain accumulation across the region and on the deformational response of continental lithosphere during and following a large earthquake, forming the basis for kinematic and dynamic modeling of secular and seismic-cycle deformation. GPS geodesy affords both regional coverage and high precision that uniquely bear on these problems.

  3. Effect of Wind Speed on Aerosol Optical Depth over Remote Oceans, Based on Data from the Maritime Aerosol Network

    NASA Technical Reports Server (NTRS)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; hide

    2012-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (approx. 0.004 - 0.005), even for strong winds over 10m/s. The relationships show significant scatter (correlation coefficients typically in the range 0.3 - 0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used

  4. Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; Quinn, P. K.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S.; Radionov, V. F.

    2011-12-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (∼0.004-0.005), even for strong winds over 10 m s-1. The relationships show significant scatter (correlation coefficients typically in the range 0.3-0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used.

  5. Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; Quinn, P. K.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S.; Radionov, V. F.

    2012-02-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (~0.004-0.005), even for strong winds over 10 m s-1. The relationships show significant scatter (correlation coefficients typically in the range 0.3-0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used.

  6. Aerodynamic parameters from distributed heterogeneous CNT hair sensors with a feedforward neural network.

    PubMed

    Magar, Kaman Thapa; Reich, Gregory W; Kondash, Corey; Slinker, Keith; Pankonien, Alexander M; Baur, Jeffery W; Smyers, Brian

    2016-11-10

    Distributed arrays of artificial hair sensors have bio-like sensing capabilities to obtain spatial and temporal surface flow information which is an important aspect of an effective fly-by-feel system. The spatiotemporal surface flow measurement enables further exploration of additional flow features such as flow stagnation, separation, and reattachment points. Due to their inherent robustness and fault tolerant capability, distributed arrays of hair sensors are well equipped to assess the aerodynamic and flow states in adverse conditions. In this paper, a local flow measurement from an array of artificial hair sensors in a wind tunnel experiment is used with a feedforward artificial neural network to predict aerodynamic parameters such as lift coefficient, moment coefficient, free-stream velocity, and angle of attack on an airfoil. We find the prediction error within 6% and 10% for lift and moment coefficients. The error for free-stream velocity and angle of attack were within 0.12 mph and 0.37 degrees. Knowledge of these parameters are key to finding the real time forces and moments which paves the way for effective control design to increase flight agility, stability, and maneuverability.

  7. Gust prediction via artificial hair sensor array and neural network

    NASA Astrophysics Data System (ADS)

    Pankonien, Alexander M.; Thapa Magar, Kaman S.; Beblo, Richard V.; Reich, Gregory W.

    2017-04-01

    Gust Load Alleviation (GLA) is an important aspect of flight dynamics and control that reduces structural loadings and enhances ride quality. In conventional GLA systems, the structural response to aerodynamic excitation informs the control scheme. A phase lag, imposed by inertia, between the excitation and the measurement inherently limits the effectiveness of these systems. Hence, direct measurement of the aerodynamic loading can eliminate this lag, providing valuable information for effective GLA system design. Distributed arrays of Artificial Hair Sensors (AHS) are ideal for surface flow measurements that can be used to predict other necessary parameters such as aerodynamic forces, moments, and turbulence. In previous work, the spatially distributed surface flow velocities obtained from an array of artificial hair sensors using a Single-State (or feedforward) Neural Network were found to be effective in estimating the steady aerodynamic parameters such as air speed, angle of attack, lift and moment coefficient. This paper extends the investigation of the same configuration to unsteady force and moment estimation, which is important for active GLA control design. Implementing a Recurrent Neural Network that includes previous-timestep sensor information, the hair sensor array is shown to be capable of capturing gust disturbances with a wide range of periods, reducing predictive error in lift and moment by 68% and 52% respectively. The L2 norms of the first layer of the weight matrices were compared showing a 23% emphasis on prior versus current information. The Recurrent architecture also improves robustness, exhibiting only a 30% increase in predictive error when undertrained as compared to a 170% increase by the Single-State NN. This diverse, localized information can thus be directly implemented into a control scheme that alleviates the gusts without waiting for a structural response or requiring user-intensive sensor calibration.

  8. CALYPSO: a new HF RADAR network to monitor sea surface currents in the Malta-Sicily channel (Mediterranean sea)

    NASA Astrophysics Data System (ADS)

    Cosoli, S.; Ciraolo, G.; Drago, A.; Capodici, F.; Maltese, A.; Gauci, A.; Galea, A.; Azzopardi, J.; Buscaino, G.; Raffa, F.; Mazzola, S.; Sinatra, R.

    2016-12-01

    Located in one of the main shipping lanes in the Mediterranean Sea, and in a strategic region for oil extraction platforms, the Malta-Sicily channel is exposed to significant oil spill risks. Shipping and extraction activities constitute a major threat for marine areas of relevant ecological value in the area, and impacts of oil spills on the local ecosystems and the economic activities, including tourism and fisheries, can be dramatic. Damages would be even more devastating for the Maltese archipelago, where marine resources represent important economic assets. Additionally, North Africa coastal areas are also under threat, due to their proximity to the Malta-Sicily Channel. Prevention and mitigation measures, together with rapid-response and decision-making in case of emergency situations, are fundamental steps that help accomplishing the tasks of minimizing risks and reducing impacts to the various compartments. Thanks to state-of-art technology for the monitoring of sea-surface currents in real-time under all sea-state conditions, the CALYPSO network of High-Frequency Radars represents an essential and invaluable tool for the specific purpose. HF radars technology provide a unique tool to track surface currents in near-real time, and as such the dispersion of pollutants can be monitored and forecasted and their origin backtracked, for instance through data assimilation into ocean circulation models or through short-term data-driven statistical forecasts of ocean currents. The network is constituted of four SeaSonde systems that work in the 13.5MHz frequency band. The network is operative since August 2012 and has been extensively validated using a variety of independent platforms and devices, including current meter data and drifting buoys. The latter provided clear evidences of the reliability of the collected data as for tracking the drifting objects. Additionally, data have provided a new insight into the oceanographic characteristics of the region, documenting the presence of a number of previously unreported features. The observing network represents an unique opportunity that exploit HF radar in coastal seas to meet Europe's needs for operational mapping of the surface ocean. Additionally, it provides expertise and support for a new generation of scientists and technical staff.

  9. Imposing strong constraints on tropical terrestrial CO2 fluxes using passenger aircraft based measurements

    NASA Astrophysics Data System (ADS)

    Niwa, Y.; Machida, T.; Sawa, Y.; Matsueda, H.; Schuck, T. J.; Brenninkmeijer, C. A.; Imasu, R.; Satoh, M.

    2011-12-01

    Better understanding of the global and regional carbon budget is needed to perform a reliable prediction of future climate with an earth system model. However, the reliability of CO2 source/sink estimation by inverse modeling, which is one of the promising methods to estimate regional carbon budget, is limited because of sparse observational data coverage. Very few observational data are available in tropics. Therefore, especially the reconstruction of tropical terrestrial fluxes has considerable uncertainties. In this study, regional CO2 fluxes for 2006-2008 are estimated by inverse modeling using the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) in addition to the surface measurement dataset of GLOBALVIEW-CO2. CONTRAIL is a recently established CO2 measurement network using in-situ measurement instruments on board commercial aircraft. Five CONTRAIL aircraft travel back and forth between Japan and many areas: Europe, North America, Southeast Asia, South Asia, and Australia. The Bayesian synthesis approach is used to estimate monthly fluxes for 42 regions using NICAM-TM simulations with existing CO2 flux datasets and monthly mean observational data. It is demonstrated that the aircraft data have great impact on estimated tropical terrestrial fluxes. By adding the aircraft data to the surface data, the analyzed uncertainty of tropical fluxes has been reduced by 15 % and more than 30 % uncertainty reduction rate is found in Southeast and South Asia. Specifically, for annual net CO2 fluxes, nearly neutral fluxes of Indonesia, which is estimated using the surface dataset alone, turn to positive fluxes, i.e. carbon sources. In Indonesia, a remarkable carbon release during the severe drought period of October-December in 2006 is estimated, which suggests that biosphere respiration or biomass burning was larger than the prior fluxes. Comparison of the optimized atmospheric CO2 with independent aircraft measurements of CARIBIC tends to validate results of the inversion system. It is expected that the use of instantaneous observational data with more sophisticated inversion methods will provide more accurate estimation of surface CO2 fluxes.

  10. Synthesis and characterization of high-surface-area millimeter-sized silica beads with hierarchical multi-modal pore structure by the addition of agar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yosep; Choi, Junhyun; Tong, Meiping, E-mail: tongmeiping@iee.pku.edu.cn

    2014-04-01

    Millimeter-sized spherical silica foams (SSFs) with hierarchical multi-modal pore structure featuring high specific surface area and ordered mesoporous frameworks were successfully prepared using aqueous agar addition, foaming and drop-in-oil processes. The pore-related properties of the prepared spherical silica (SSs) and SSFs were systematically characterized by field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), small-angle X-ray diffraction (SAXRD), Hg intrusion porosimetry, and N{sub 2} adsorption–desorption isotherm measurements. Improvements in the BET surface area and total pore volume were observed at 504 m{sup 2} g{sup −1} and 5.45 cm{sup 3} g{sup −1}, respectively, after an agar addition and foaming process. Despitemore » the increase in the BET surface area, the mesopore wall thickness and the pore size of the mesopores generated from the block copolymer with agar addition were unchanged based on the SAXRD, TEM, and BJH methods. The SSFs prepared in the present study were confirmed to have improved BET surface area and micropore volume through the agar loading, and to exhibit interconnected 3-dimensional network macropore structure leading to the enhancement of total porosity and BET surface area via the foaming process. - Highlights: • Millimeter-sized spherical silica foams (SSFs) are successfully prepared. • SSFs exhibit high BET surface area and ordered hierarchical pore structure. • Agar addition improves BET surface area and micropore volume of SSFs. • Foaming process generates interconnected 3-D network macropore structure of SSFs.« less

  11. Description of the CERES Ocean Validation Experiment (COVE), A Dedicated EOS Validation Test Site

    NASA Astrophysics Data System (ADS)

    Rutledge, K.; Charlock, T.; Smith, B.; Jin, Z.; Rose, F.; Denn, F.; Rutan, D.; Haeffelin, M.; Su, W.; Xhang, T.; Jay, M.

    2001-12-01

    A unique test site located in the mid-Atlantic coastal marine waters has been used by several EOS projects for validation measurements. A common theme across these projects is the need for a stable measurement site within the marine environment for long-term, high quality radiation measurements. The site was initiated by NASA's Clouds and the Earths Radiant Energy System (CERES) project. One of CERES's challenging goals is to provide upwelling and downwelling shortwave fluxes at several pressure altitudes within the atmosphere and at the surface. Operationally the radiative transfer model of Fu and Liou (1996, 1998), the CERES instrument measured radiances and various other EOS platform data are being used to accomplish this goal. We present here, a component of the CERES/EOS validation effort that is focused to verify and optimize the prediction algorithms for radiation parameters associated with the marine coastal and oceanic surface types of the planet. For this validation work, the CERES Ocean Validation Experiment (COVE) was developed to provide detailed high-frequency and long-duration measurements for radiation and their associated dependent variables. The CERES validations also include analytical efforts which will not be described here (but see Charlock et.al, Su et.al., Smith et.al-Fall 2001 AGU Meeting) The COVE activity is based on a rigid ocean platform which is located approximately twenty kilometers off of the coast of Virginia Beach, Virginia. The once-manned US Coast Guard facility rises 35 meters from the ocean surface allowing the radiation instruments to be well above the splash zone. The depth of the sea is eleven meters at the site. A power and communications system has been installed for present and future requirements. Scientific measurements at the site have primarily been developed within the framework of established national and international monitoring programs. These include the Baseline Surface Radiation Network of the World Meteorological Organization, NASA's robotic aerosol measurement program - AERONET, NOAA's GPS Water Vapor Demonstration Network, NOAA's National Buoy Data Center and GEWEX's Global Aerosol Climate Program. Other EOS projects have utilized the COVE platform for validation measurements (short term: MODIS, MISR intermediate term: SEAWIFS). A longer term measurement program for the AIRS instrument to be deployed on the AQUA satellite is underway. The poster will detail the unique measurement and infrastructure assets of the COVE site and present example 1.5 year time series of the major radiometric parameters. Lastly, the near term measurement augmentations that are anticipated at COVE will be discussed.

  12. Spatio-temporal representativeness of ground-based downward solar radiation measurements

    NASA Astrophysics Data System (ADS)

    Schwarz, Matthias; Wild, Martin; Folini, Doris

    2017-04-01

    Surface solar radiation (SSR) is most directly observed with ground based pyranometer measurements. Besides measurement uncertainties, which arise from the pyranometer instrument itself, also errors attributed to the limited spatial representativeness of observations from single sites for their large-scale surrounding have to be taken into account when using such measurements for energy balance studies. In this study the spatial representativeness of 157 homogeneous European downward surface solar radiation time series from the Global Energy Balance Archive (GEBA) and the Baseline Surface Radiation Network (BSRN) were examined for the period 1983-2015 by using the high resolution (0.05°) surface solar radiation data set from the Satellite Application Facility on Climate Monitoring (CM-SAF SARAH) as a proxy for the spatiotemporal variability of SSR. By correlating deseasonalized monthly SSR time series form surface observations against single collocated satellite derived SSR time series, a mean spatial correlation pattern was calculated and validated against purely observational based patterns. Generally decreasing correlations with increasing distance from station, with high correlations (R2 = 0.7) in proximity to the observational sites (±0.5°), was found. When correlating surface observations against time series from spatially averaged satellite derived SSR data (and thereby simulating coarser and coarser grids), very high correspondence between sites and the collocated pixels has been found for pixel sizes up to several degrees. Moreover, special focus was put on the quantification of errors which arise in conjunction to spatial sampling when estimating the temporal variability and trends for a larger region from a single surface observation site. For 15-year trends on a 1° grid, errors due to spatial sampling in the order of half of the measurement uncertainty for monthly mean values were found.

  13. Estimation of Chinese surface NO2 concentrations combining satellite data and Land Use Regression

    NASA Astrophysics Data System (ADS)

    Anand, J.; Monks, P.

    2016-12-01

    Monitoring surface-level air quality is often limited by in-situ instrument placement and issues arising from harmonisation over long timescales. Satellite instruments can offer a synoptic view of regional pollution sources, but in many cases only a total or tropospheric column can be measured. In this work a new technique of estimating surface NO2 combining both satellite and in-situ data is presented, in which a Land Use Regression (LUR) model is used to create high resolution pollution maps based on known predictor variables such as population density, road networks, and land cover. By employing a mixed effects approach, it is possible to take advantage of the spatiotemporal variability in the satellite-derived column densities to account for daily and regional variations in surface NO2 caused by factors such as temperature, elevation, and wind advection. In this work, surface NO2 maps are modelled over the North China Plain and Pearl River Delta during high-pollution episodes by combining in-situ measurements and tropospheric columns from the Ozone Monitoring Instrument (OMI). The modelled concentrations show good agreement with in-situ data and surface NO2 concentrations derived from the MACC-II global reanalysis.

  14. The Influence of Climate Change on Irrigated Water Demands and Surface Water Availability of the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Troy, T. J.; Zhang, J.

    2017-12-01

    Balancing irrigated water demands and surface water availability is critical for sustainable water resources management. In China, irrigation is the largest water user, and there is concern that irrigated water demands will be affected by climate change. If the relationship between climate change, irrigated water demands and surface water availability is quantified, then effective measures can be developed to maintain food production while ensuring water sustainability. This research focuses on the Yellow River, the second longest in China, and analyzes the impact of historical and projected climate change on agricultural water demands and surface water availability. Corn and wheat are selected as representative crops to estimate the effect of temperature and precipitin changes on irrigated water demands. The VIC model is used to simulate daily streamflow throughout the Yellow River, providing estimates of surface water availability. Overall, results indicate the irrigated water need and surface water availability are impacted by climate change, with spatially varying impacts depending on spatial patterns of climate trends and river network position. This research provides insight into water security in the Yellow River basin, indicating where water efficiency measures are needed and where they are not.

  15. Estimating surface soil moisture from SMAP observations using a neural network technique

    USDA-ARS?s Scientific Manuscript database

    A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to June 2016 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observ...

  16. Can We Control Contaminant Transport In Hydrologic Networks? Application Of Control Theory Concepts To Watershed Management

    NASA Astrophysics Data System (ADS)

    Yeghiazarian, L.; Riasi, M. S.

    2016-12-01

    Although controlling the level of contamination everywhere in the surface water network may not be feasible, it is vital to maintain safe water quality levels in specific areas, e.g. recreational waters. The question then is "what is the most efficient way to fully/partially control water quality in surface water networks?". This can be posed as a control problem where the goal is to efficiently drive the system to a desired state by manipulating few input variables. Such problems reduce to (1) finding the best control locations in the network to influence the state of the system; and (2) choosing the time-variant inputs at the control locations to achieve the desired state of the system with minimum effort. We demonstrate that the optimal solution to control the level of contamination in the network can be found through application of control theory concepts to transport in dendritic surface water networks.

  17. Assembly, Structure, and Functionality of Metal-Organic Networks and Organic Semiconductor Layers at Surfaces

    NASA Astrophysics Data System (ADS)

    Tempas, Christopher D.

    Self-assembled nanostructures at surfaces show promise for the development of next generation technologies including organic electronic devices and heterogeneous catalysis. In many cases, the functionality of these nanostructures is not well understood. This thesis presents strategies for the structural design of new on-surface metal-organic networks and probes their chemical reactivity. It is shown that creating uniform metal sites greatly increases selectivity when compared to ligand-free metal islands. When O2 reacts with single-site vanadium centers, in redox-active self-assembled coordination networks on the Au(100) surface, it forms one product. When O2 reacts with vanadium metal islands on the same surface, multiple products are formed. Other metal-organic networks described in this thesis include a mixed valence network containing Pt0 and PtII and a network where two Fe centers reside in close proximity. This structure is stable to temperatures >450 °C. These new on-surface assemblies may offer the ability to perform reactions of increasing complexity as future heterogeneous catalysts. The functionalization of organic semiconductor molecules is also shown. When a few molecular layers are grown on the surface, it is seen that the addition of functional groups changes both the film's structure and charge transport properties. This is due to changes in both first layer packing structure and the pi-electron distribution in the functionalized molecules compared to the original molecule. The systems described in this thesis were studied using high-resolution scanning tunneling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy. Overall, this work provides strategies for the creation of new, well-defined on-surface nanostructures and adds additional chemical insight into their properties.

  18. Suborbital Science Program

    NASA Technical Reports Server (NTRS)

    Vachon, Jacques; Curry, Robert E.

    2010-01-01

    Program Objectives: 1) Satellite Calibration and Validation: Provide methods to perform the cal/val requirements for Earth Observing System satellites. 2) New Sensor Development: Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations. 3) Process Studies: Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects. 4) Airborne Networking: Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden Capabilities include: a) Aeronautics history of aircraft developments and milestones. b) Extensive history and experience in instrument integration. c) Extensive history and experience in aircraft modifications. d) Strong background in international deployments. e) Long history of reliable and dependable execution of projects. f) Varied aircraft types providing different capabilities, performance and duration.

  19. Total Column Greenhouse Gas Monitoring in Central Munich: Automation and Measurements

    NASA Astrophysics Data System (ADS)

    Chen, Jia; Heinle, Ludwig; Paetzold, Johannes C.; Le, Long

    2016-04-01

    It is challenging to use in-situ surface measurements of CO2 and CH4 to derive emission fluxes in urban regions. Surface concentrations typically have high variance due to the influence of nearby sources, and they are strongly modulated by mesoscale transport phenomena that are difficult to simulate in atmospheric models. The integrated amount of a tracer through the whole atmosphere is a direct measure of the mass loading of the atmosphere given by emissions. Column measurements are insensitive to vertical redistribution of tracer mass, e.g. due to growth of the planetary boundary layer, and are also less influenced by nearby point sources, whose emissions are concentrated in a thin layer near the surface. Column observations are more compatible with the scale of atmospheric models and hence provide stronger constraints for inverse modeling. In Munich we are aiming at establishing a regional sensor network with differential column measurements, i.e. total column measurements of CO2 and CH4 inside and outside of the city. The inner-city station is equipped with a compact solar-tracking Fourier transform spectrometer (Bruker EM27/SUN) in the campus of Technische Universität München, and our measurements started in Aug. 2015. The measurements over seasons will be shown, as well as preliminary emission studies using these observations. To deploy the compact spectrometers for stationary monitoring of the urban emissions, an automatic protection and control system is mandatory and a challenging task. It will allow solar measurements whenever the sun is out and reliable protection of the instrument when it starts to rain. We have developed a simplified and highly reliable concept for the enclosure, aiming for a fully automated data collection station without the need of local human interactions. Furthermore, we are validating and combining the OCO-2 satellite-based measurements with our ground-based measurements. For this purpose, we have developed a software tool that permits spatial, temporal and quality data filtering and selection from the OCO-2 database. We observed inconsistencies between nadir and glint measurements nearby Munich on consecutive days with similar weather conditions in August 2015. To visualize our regional sensor network, we have developed software to generate KML-Files, which enables us to display and browse the results of our measurement site, OCO-2 measurements as well as future satellite tracks.

  20. Polar cloud and surface classification using AVHRR imagery - An intercomparison of methods

    NASA Technical Reports Server (NTRS)

    Welch, R. M.; Sengupta, S. K.; Goroch, A. K.; Rabindra, P.; Rangaraj, N.; Navar, M. S.

    1992-01-01

    Six Advanced Very High-Resolution Radiometer local area coverage (AVHRR LAC) arctic scenes are classified into ten classes. Three different classifiers are examined: (1) the traditional stepwise discriminant analysis (SDA) method; (2) the feed-forward back-propagation (FFBP) neural network; and (3) the probabilistic neural network (PNN). More than 200 spectral and textural measures are computed. These are reduced to 20 features using sequential forward selection. Theoretical accuracy of the classifiers is determined using the bootstrap approach. Overall accuracy is 85.6 percent, 87.6 percent, and 87.0 percent for the SDA, FFBP, and PNN classifiers, respectively, with standard deviations of approximately 1 percent.

  1. Titan's Thermal Emission: Analysis Of Near-surface Temperatures Via Mid-infrared Measurements

    NASA Astrophysics Data System (ADS)

    Sadino, Jeff; Parrish, P. D.; Orton, G. S.; Burl, M. C.; Davies, A. G.; Irwin, P. G.; Teanby, N. A.; Flasar, F. M.; Cassini/CIRS investigation Team

    2006-09-01

    After Courtin and Kim 2002, tropospheric and near-surface temperatures of Titan may be obtained by examining mid-infrared radiances at 300 and 500 wavenumbers (33 and 20 microns). Here, the measured radiance is (respectively) sensitive to the temperature near the tropopause and sufficient to discern variations in surface topography and emissivity. Our search, as a function of location and time, compares brightness temperatures derived from measurements by the Cassini Composite Infrared Spectrometer (CIRS) and variations of radiance as a function of Titan's rotation derived from ground-based measurements at NASA's Infrared Telescope Facility. Although the variation of the tropopause and zonal near-surface temperatures are fairly homogenous, similar to Courtin and Kim 2002, the meridional distribution of near-surface temperatures varies symmetrically from Equator to pole. While no significant thermal variations suggestive of localized hotspots have yet been observed, such diversity is suggestive of active surface geology, in support of other optical and near-infrared investigations. Although the spatial coverage of the CIRS dataset is severely limited, the approximately 10 degrees field of view (450km at the Equator) is de-convolved somewhat to extract meaningful, sub-pixel maps of Titan's surface. Courtin, R. and Kim, S. (2002). Planet. and Sp. Sci., 50: 309-321. The acquisition of data described here was accomplished through the coordinated effort of Cassini-Huygens project staff, Deep Space Network personnel and the CIRS instrument and science-planning teams with funding provided by the National Research Council, NASA/JPL and NASA/GSFC and the UK Particle Physics and Astronomy council.

  2. Artificial neural network based particle size prediction of polymeric nanoparticles.

    PubMed

    Youshia, John; Ali, Mohamed Ehab; Lamprecht, Alf

    2017-10-01

    Particle size of nanoparticles and the respective polydispersity are key factors influencing their biopharmaceutical behavior in a large variety of therapeutic applications. Predicting these attributes would skip many preliminary studies usually required to optimize formulations. The aim was to build a mathematical model capable of predicting the particle size of polymeric nanoparticles produced by a pharmaceutical polymer of choice. Polymer properties controlling the particle size were identified as molecular weight, hydrophobicity and surface activity, and were quantified by measuring polymer viscosity, contact angle and interfacial tension, respectively. A model was built using artificial neural network including these properties as input with particle size and polydispersity index as output. The established model successfully predicted particle size of nanoparticles covering a range of 70-400nm prepared from other polymers. The percentage bias for particle prediction was 2%, 4% and 6%, for the training, validation and testing data, respectively. Polymer surface activity was found to have the highest impact on the particle size followed by viscosity and finally hydrophobicity. Results of this study successfully highlighted polymer properties affecting particle size and confirmed the usefulness of artificial neural networks in predicting the particle size and polydispersity of polymeric nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Surface pressure affects B-hordein network formation at the air-water interface in relation to gastric digestibility.

    PubMed

    Yang, Jingqi; Huang, Jun; Zeng, Hongbo; Chen, Lingyun

    2015-11-01

    Protein interfacial network formation under mechanical pressure and its influence on degradation was investigated at molecular level using Langmuir-Blodgett B-hordein monolayer as a 2D model. Surface properties, such as surface pressure, dilatational and shear rheology and the surface pressure--area (π-A) isotherm, of B-hordein at air-water interface were analyzed by tensiometer, rheometer and a Langmuir-Blodgett trough respectively. B-Hordein conformation and orientation under different surface pressures were determined by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The interfacial network morphology was observed by atomic force microscopy (AFM). B-Hordein could reduce the air-water surface tension rapidly to ∼ 45 mN/m and form a solid-like network with high rheological elasticity and compressibility at interface, which could be a result of interactions developed by intermolecular β-sheets. The results also revealed that B-hordein interfacial network switched from an expanded liquid phase to a solid-like film with increasing compression pressure. The orientation of B-hordein was parallel to the surface when in expended liquid phase, whereas upon compression, the hydrophobic repetitive region tilted away from water phase. When compressed to 30 mN/m, a strong elastic network was formed at the interface, and it was resistant to a harsh gastric-like environment of low pH and pepsin. This work generated fundamental knowledge, which suggested the potential to design B-hordein stabilized emulsions and encapsulations with controllable digestibility for small intestine targeted delivery of bioactive compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Satellite-Surface Perspectives of Air Quality and Aerosol-Cloud Effects on the Environment: An Overview of 7-SEAS BASELInE

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Maring, Hal B.; Lin, Neng-Huei; Buntoung, Sumaman; Chantara, Somporn; Chuang, Hsiao-Chi; Gabriel, Philip M.; Goodloe, Colby S.; Holben, Brent N.; Hsiao, Ta-Chih; hide

    2016-01-01

    The objectives of 7-SEASBASELInE (Seven SouthEast Asian Studies Biomass-burning Aerosols and Stratocumulus Environment: Lifecycles and Interactions Experiment) campaigns in spring 2013-2015 were to synergize measurements from uniquely distributed ground-based networks (e.g., AERONET (AErosol RObotic NETwork)), MPLNET ( NASA Micro-Pulse Lidar Network)) and sophisticated platforms (e.g.,SMARTLabs (Surface-based Mobile Atmospheric Research and Testbed Laboratories), regional contributing instruments), along with satellite observations retrievals and regional atmospheric transport chemical models to establish a critically needed database, and to advance our understanding of biomass-burning aerosols and trace gases in Southeast Asia (SEA). We present a satellite-surface perspective of 7-SEASBASELInE and highlight scientific findings concerning: (1) regional meteorology of moisture fields conducive to the production and maintenance of low-level stratiform clouds over land; (2) atmospheric composition in a biomass-burning environment, particularly tracers-markers to serve as important indicators for assessing the state and evolution of atmospheric constituents; (3) applications of remote sensing to air quality and impact on radiative energetics, examining the effect of diurnal variability of boundary-layer height on aerosol loading; (4) aerosol hygroscopicity and ground-based cloud radar measurements in aerosol-cloud processes by advanced cloud ensemble models; and (5) implications of air quality, in terms of toxicity of nanoparticles and trace gases, to human health. This volume is the third 7-SEAS special issue (after Atmospheric Research, vol. 122, 2013; and Atmospheric Environment, vol. 78, 2013) and includes 27 papers published, with emphasis on air quality and aerosol-cloud effects on the environment. BASELInE observations of stratiform clouds over SEA are unique, such clouds are embedded in a heavy aerosol-laden environment and feature characteristically greater stability over land than over ocean, with minimal radar surface clutter at a high vertical spatial resolution. To facilitate an improved understanding of regional aerosol-cloud effects, we envision that future BASELInE-like measurement modeling needs fall into two categories: (1) efficient yet critical in-situ profiling of the boundary layer for validating remote-sensing retrievals and for initializing regional transport chemical and cloud ensemble models; and (2) fully utilizing the high observing frequencies of geostationary satellites for resolving the diurnal cycle of the boundary layerheight as it affects the loading of biomass-burning aerosols, air quality and radiative energetics.

  5. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements

    NASA Astrophysics Data System (ADS)

    Dorigo, W. A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; Robock, A.; Jackson, T.

    2011-02-01

    In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land cover change. Nevertheless, on a worldwide basis the number of meteorological networks and stations measuring soil moisture, in particular on a continuous basis, is still limited and the data they provide lack standardization of technique and protocol. To overcome many of these limitations, the International Soil Moisture Network (ISMN; http://www.ipf.tuwien.ac.at/insitu) was initiated to serve as a centralized data hosting facility where globally available in situ soil moisture measurements from operational networks and validation campaigns are collected, harmonized, and made available to users. Data collecting networks share their soil moisture datasets with the ISMN on a voluntary and no-cost basis. Incoming soil moisture data are automatically transformed into common volumetric soil moisture units and checked for outliers and implausible values. Apart from soil water measurements from different depths, important metadata and meteorological variables (e.g., precipitation and soil temperature) are stored in the database. These will assist the user in correctly interpreting the soil moisture data. The database is queried through a graphical user interface while output of data selected for download is provided according to common standards for data and metadata. Currently (status January 2011), the ISMN contains data of 16 networks and more than 500 stations located in the North America, Europe, Asia, and Australia. The time period spanned by the entire database runs from 1952 until the present, although most datasets have originated during the last decade. The database is rapidly expanding, which means that both the number of stations and the time period covered by the existing stations are still growing. Hence, it will become an increasingly important resource for validating and improving satellite-derived soil moisture products and studying climate related trends. As the ISMN is animated by the scientific community itself, we invite potential networks to enrich the collection by sharing their in situ soil moisture data.

  6. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements

    NASA Astrophysics Data System (ADS)

    Dorigo, W. A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; Robock, A.; Jackson, T.

    2011-05-01

    In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land cover change. Nevertheless, on a worldwide basis the number of meteorological networks and stations measuring soil moisture, in particular on a continuous basis, is still limited and the data they provide lack standardization of technique and protocol. To overcome many of these limitations, the International Soil Moisture Network (ISMN; http://www.ipf.tuwien.ac.at/insitu) was initiated to serve as a centralized data hosting facility where globally available in situ soil moisture measurements from operational networks and validation campaigns are collected, harmonized, and made available to users. Data collecting networks share their soil moisture datasets with the ISMN on a voluntary and no-cost basis. Incoming soil moisture data are automatically transformed into common volumetric soil moisture units and checked for outliers and implausible values. Apart from soil water measurements from different depths, important metadata and meteorological variables (e.g., precipitation and soil temperature) are stored in the database. These will assist the user in correctly interpreting the soil moisture data. The database is queried through a graphical user interface while output of data selected for download is provided according to common standards for data and metadata. Currently (status May 2011), the ISMN contains data of 19 networks and more than 500 stations located in North America, Europe, Asia, and Australia. The time period spanned by the entire database runs from 1952 until the present, although most datasets have originated during the last decade. The database is rapidly expanding, which means that both the number of stations and the time period covered by the existing stations are still growing. Hence, it will become an increasingly important resource for validating and improving satellite-derived soil moisture products and studying climate related trends. As the ISMN is animated by the scientific community itself, we invite potential networks to enrich the collection by sharing their in situ soil moisture data.

  7. Multi-Spacecraft Autonomous Positioning System

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan

    2015-01-01

    As the number of spacecraft in simultaneous operation continues to grow, there is an increased dependency on ground-based navigation support. The current baseline system for deep space navigation utilizes Earth-based radiometric tracking, requiring long-duration observations to perform orbit determination and generate a state update. The age, complexity, and high utilization of the ground assets pose a risk to spacecraft navigation performance. In order to perform complex operations at large distances from Earth, such as extraterrestrial landing and proximity operations, autonomous systems are required. With increasingly complex mission operations, the need for frequent and Earth-independent navigation capabilities is further reinforced. The Multi-spacecraft Autonomous Positioning System (MAPS) takes advantage of the growing interspacecraft communication network and infrastructure to allow for Earth-autonomous state measurements to enable network-based space navigation. A notional concept of operations is given in figure 1. This network is already being implemented and routinely used in Martian communications through the use of the Mars Reconnaissance Orbiter and Mars Odyssey spacecraft as relays for surface assets. The growth of this communications architecture is continued through MAVEN, and future potential commercial Mars telecom orbiters. This growing network provides an initial Marslocal capability for inter-spacecraft communication and navigation. These navigation updates are enabled by cross-communication between assets in the network, coupled with onboard navigation estimation routines to integrate packet travel time to generate ranging measurements. Inter-spacecraft communication allows for frequent state broadcasts and time updates from trusted references. The architecture is a software-based solution, enabling its implementation on a wide variety of current assets, with the operational constraints and measurement accuracy determined by onboard systems.

  8. An Autonomous Instrument Package for Providing 'Pathfinder' Network Measurements on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; Lognonne, Ph.

    2003-01-01

    The investigations of the interior and atmosphere of Mars have been identified as high scientific priorities in most planetary exploration strategy document since the time of Viking. Most recently, the National Academy of Sciences has recommended a long-lived Mars network mission as its second highest scientific priority for Mars (after sample return) for the purpose of performing seismological investigations of the interior and studying the activity and composition of the atmosphere. Despite consistent recommendations by advisory groups, Mars network missions (MESUR, Marsnet, InterMarsnet, NetLander/MSR 05, NetLander/Premier 07, NetLander/?? 09) have undergone a strikingly consistent 'Phoenix' cycle of death and rebirth over the past 15 years, and there are still no confirmed plans to address the interior and atmosphere of Mars. The latest attempt is the NetLander mission. The objective of NetLander is to place a network of four landers on Mars to perform detailed measurements of the seismicity and atmospheric pressure, temperature, wind, humidity, and opacity (as well as provide images, subsurface radar sounding profiles, and electric/magnetic field measurements). However, this mission has recently encountered major programmatic difficulties within CNES and NASA. NASA has already cancelled its participation and the mission itself is facing imminent cancellation if CNES cannot solve programmatic issues associated with launching the mission in 2009. In this presentation we will describe an approach that could move us closer to realizing the goals of a Mars network mission and will secure at least one geophysical and meteorological observatory in 2009.

  9. A dynamic aerodynamic resistance approach to calculate high resolution sensible heat fluxes in urban areas

    NASA Astrophysics Data System (ADS)

    Crawford, Ben; Grimmond, Sue; Kent, Christoph; Gabey, Andrew; Ward, Helen; Sun, Ting; Morrison, William

    2017-04-01

    Remotely sensed data from satellites have potential to enable high-resolution, automated calculation of urban surface energy balance terms and inform decisions about urban adaptations to environmental change. However, aerodynamic resistance methods to estimate sensible heat flux (QH) in cities using satellite-derived observations of surface temperature are difficult in part due to spatial and temporal variability of the thermal aerodynamic resistance term (rah). In this work, we extend an empirical function to estimate rah using observational data from several cities with a broad range of surface vegetation land cover properties. We then use this function to calculate spatially and temporally variable rah in London based on high-resolution (100 m) land cover datasets and in situ meteorological observations. In order to calculate high-resolution QH based on satellite-observed land surface temperatures, we also develop and employ novel methods to i) apply source area-weighted averaging of surface and meteorological variables across the study spatial domain, ii) calculate spatially variable, high-resolution meteorological variables (wind speed, friction velocity, and Obukhov length), iii) incorporate spatially interpolated urban air temperatures from a distributed sensor network, and iv) apply a modified Monte Carlo approach to assess uncertainties with our results, methods, and input variables. Modeled QH using the aerodynamic resistance method is then compared to in situ observations in central London from a unique network of scintillometers and eddy-covariance measurements.

  10. Imposing strong constraints on tropical terrestrial CO2 fluxes using passenger aircraft based measurements

    NASA Astrophysics Data System (ADS)

    Niwa, Yosuke; Machida, Toshinobu; Sawa, Yousuke; Matsueda, Hidekazu; Schuck, Tanja J.; Brenninkmeijer, Carl A. M.; Imasu, Ryoichi; Satoh, Masaki

    2012-06-01

    Because very few measurements of atmospheric carbon dioxide (CO2) are available in the tropics, estimates of surface CO2 fluxes in tropical regions are beset with considerable uncertainties. To improve estimates of tropical terrestrial fluxes, atmospheric CO2 inversion was performed using passenger aircraft based measurements of the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project in addition to the surface measurement data set of GLOBALVIEW-CO2. Regional monthly fluxes at the earth's surface were estimated using the Bayesian synthesis approach focusing on the period 2006-2008 using the Nonhydrostatic Icosahedral Atmospheric Model-based Transport Model (NICAM-TM). By adding the aircraft to the surface data, the posterior flux errors were greatly reduced; specifically, error reductions of up to 64% were found for tropical Asia regions. This strong impact is closely related to efficient vertical transport in the tropics. The optimized surface fluxes using the CONTRAIL data were evaluated by comparing the simulated atmospheric CO2 distributions with independent aircraft measurements of the Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container (CARIBIC) project. The inversion with the CONTRAIL data yields the global carbon sequestration rates of 2.22 ± 0.28 Pg C yr-1 for the terrestrial biosphere and 2.24 ± 0.27 Pg C yr-1 for the oceans (the both are adjusted by riverine input of CO2). For the first time the CONTRAIL CO2 measurements were used in an inversion system to identify the areas of greatest impact in terms of reducing flux uncertainties.

  11. Online aptitude automatic surface quality inspection system for hot rolled strips steel

    NASA Astrophysics Data System (ADS)

    Lin, Jin; Xie, Zhi-jiang; Wang, Xue; Sun, Nan-Nan

    2005-12-01

    Defects on the surface of hot rolled steel strips are main factors to evaluate quality of steel strips, an improved image recognition algorithm are used to extract the feature of Defects on the surface of steel strips. Base on the Machine vision and Artificial Neural Networks, establish a defect recognition method to select defect on the surface of steel strips. Base on these research. A surface inspection system and advanced algorithms for image processing to hot rolled strips is developed. Preparing two different fashion to lighting, adopting line blast vidicon of CCD on the surface steel strips on-line. Opening up capacity-diagnose-system with level the surface of steel strips on line, toward the above and undersurface of steel strips with ferric oxide, injure, stamp etc of defects on the surface to analyze and estimate. Miscarriage of justice and alternate of justice rate not preponderate over 5%.Geting hold of applications on some big enterprises of steel at home. Experiment proved that this measure is feasible and effective.

  12. The Measurement and modeling of the contribution of ...

    EPA Pesticide Factsheets

    In North America, ammonia (NH3) is increasingly being recognized not only for its role in atmospheric aerosol formation but also as an important component of atmospheric nitrogen deposition. This has been driven by the evolution of policies to protect ecosystems from nitrogen over-enrichment, an expansion of research underpinning these policy efforts, and technological advances in measurement and modeling tools applied to these research needs. Ammonia measurements from satellites, nitrogen focused field campaigns, and the National Atmospheric Deposition Program’s Ammonia Monitoring Network (AMoN) have advanced understanding of the processes controlling NH3 air-surface exchange and the spatio-temporal behavior of NH3 in the atmosphere. These datasets have subsequently lead to improvements in NH3 air-surface exchange models and therefore more accurate estimates of NH3 deposition. From a process standpoint, NH3 differs from other nitrogen compounds such as nitric acid in that NH3 is exchanged bi-directionally between the surface and atmosphere as regulated by a “compensation point”. Because natural surfaces may be sources or sinks of atmospheric NH3, and may alternate between emission and deposition on a timescale as short as hours, the deposition velocity concept does not accurately describe NH3 air surface exchange. Instead, a more mechanistic treatment of the nitrogen status and acidity of the surface must be employed, typically as a bi-directional fr

  13. Are atmospheric surface layer flows ergodic?

    NASA Astrophysics Data System (ADS)

    Higgins, Chad W.; Katul, Gabriel G.; Froidevaux, Martin; Simeonov, Valentin; Parlange, Marc B.

    2013-06-01

    The transposition of atmospheric turbulence statistics from the time domain, as conventionally sampled in field experiments, is explained by the so-called ergodic hypothesis. In micrometeorology, this hypothesis assumes that the time average of a measured flow variable represents an ensemble of independent realizations from similar meteorological states and boundary conditions. That is, the averaging duration must be sufficiently long to include a large number of independent realizations of the sampled flow variable so as to represent the ensemble. While the validity of the ergodic hypothesis for turbulence has been confirmed in laboratory experiments, and numerical simulations for idealized conditions, evidence for its validity in the atmospheric surface layer (ASL), especially for nonideal conditions, continues to defy experimental efforts. There is some urgency to make progress on this problem given the proliferation of tall tower scalar concentration networks aimed at constraining climate models yet are impacted by nonideal conditions at the land surface. Recent advancements in water vapor concentration lidar measurements that simultaneously sample spatial and temporal series in the ASL are used to investigate the validity of the ergodic hypothesis for the first time. It is shown that ergodicity is valid in a strict sense above uniform surfaces away from abrupt surface transitions. Surprisingly, ergodicity may be used to infer the ensemble concentration statistics of a composite grass-lake system using only water vapor concentration measurements collected above the sharp transition delineating the lake from the grass surface.

  14. An Artificial Turf-Based Surrogate Surface Collector for the ...

    EPA Pesticide Factsheets

    This paper describes the development of a new artificial turf surrogate surface (ATSS) sampler for use in the measurement of mercury (Hg) dry deposition. In contrast to many existing surrogate surface designs, the ATSS utilizes a three-dimensional deposition surface that may more closely mimic the physical structure of many natural surfaces than traditional flat surrogate surface designs (water, filter, greased Mylar film). The ATSS has been designed to overcome several complicating factors that can impact the integrity of samples with other direct measurement approaches by providing a passive system which can be deployed for both short and extended periods of time (days to weeks), and is not contaminated by precipitation and/or invalidated by strong winds. Performance characteristics including collocated precision, in-field procedural and laboratory blanks were evaluated. The results of these performance evaluations included a mean collocated precision of 9%, low blanks (0.8 ng), high extraction efficiency (97%–103%), and a quantitative matrix spike recovery (100%). In recent years, a growing number of intensive field campaigns and routine measurement networks have provided valuable information on the rates of total mercury (Hg) wet deposition in North America (Guentzel et al., 1995; Rea et al., 1996; Dvonch et al., 1999; Landis and Keeler, 2002; Dvonch et al., 2005; Hall et al., 2005; Keeler et al., 2005; Keeler et al., 2006; Butler et al., 2008; Prestbo an

  15. Connectionist model-based stereo vision for telerobotics

    NASA Technical Reports Server (NTRS)

    Hoff, William; Mathis, Donald

    1989-01-01

    Autonomous stereo vision for range measurement could greatly enhance the performance of telerobotic systems. Stereo vision could be a key component for autonomous object recognition and localization, thus enabling the system to perform low-level tasks, and allowing a human operator to perform a supervisory role. The central difficulty in stereo vision is the ambiguity in matching corresponding points in the left and right images. However, if one has a priori knowledge of the characteristics of the objects in the scene, as is often the case in telerobotics, a model-based approach can be taken. Researchers describe how matching ambiguities can be resolved by ensuring that the resulting three-dimensional points are consistent with surface models of the expected objects. A four-layer neural network hierarchy is used in which surface models of increasing complexity are represented in successive layers. These models are represented using a connectionist scheme called parameter networks, in which a parametrized object (for example, a planar patch p=f(h,m sub x, m sub y) is represented by a collection of processing units, each of which corresponds to a distinct combination of parameter values. The activity level of each unit in the parameter network can be thought of as representing the confidence with which the hypothesis represented by that unit is believed. Weights in the network are set so as to implement gradient descent in an energy function.

  16. Efficient room temperature hydrogen sensor based on UV-activated ZnO nano-network

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit; Kumar, Rahul; Rajamani, Saravanan; Ranwa, Sapana; Fanetti, Mattia; Valant, Matjaz; Kumar, Mahesh

    2017-09-01

    Room temperature hydrogen sensors were fabricated from Au embedded ZnO nano-networks using a 30 mW GaN ultraviolet LED. The Au-decorated ZnO nano-networks were deposited on a SiO2/Si substrate by a chemical vapour deposition process. X-ray diffraction (XRD) spectrum analysis revealed a hexagonal wurtzite structure of ZnO and presence of Au. The ZnO nanoparticles were interconnected, forming nano-network structures. Au nanoparticles were uniformly distributed on ZnO surfaces, as confirmed by FESEM imaging. Interdigitated electrodes (IDEs) were fabricated on the ZnO nano-networks using optical lithography. Sensor performances were measured with and without UV illumination, at room temperate, with concentrations of hydrogen varying from 5 ppm to 1%. The sensor response was found to be ˜21.5% under UV illumination and 0% without UV at room temperature for low hydrogen concentration of 5 ppm. The UV-photoactivated mode enhanced the adsorption of photo-induced O- and O2- ions, and the d-band electron transition from the Au nanoparticles to ZnO—which increased the chemisorbed reaction between hydrogen and oxygen. The sensor response was also measured at 150 °C (without UV illumination) and found to be ˜18% at 5 ppm. Energy efficient low cost hydrogen sensors can be designed and fabricated with the combination of GaN UV LEDs and ZnO nanostructures.

  17. Assessment of the effect of air pollution controls on trends in shortwave radiation over the United States from 1995 through 2010 from multiple observation networks

    EPA Science Inventory

    Long-term data sets of all-sky and clear-sky downwelling shortwave (SW) radiation, cloud cover fraction, and aerosol optical depth (AOD) were analyzed together with surface concentrations from several networks (e.g., Surface Radiation Budget Network (SURFRAD), Clean Air Status an...

  18. Use of a cable-based system for observing the heterogeneity of vegetation communities in arctic tundra

    NASA Astrophysics Data System (ADS)

    Ahrends, H. E.; Oberbauer, S. F.; Tweedie, C.; Hollister, R. D.

    2010-12-01

    Knowledge of changing tundra vegetation and its response to climate variability is critical for understanding the land-atmosphere-interactions for the Arctic and the global system. However, vegetation characteristics, such as phenology, structure and species composition, are characterized by an extreme heterogeneity at a small scale. Manual observations of these variables are highly time-consuming, labor intensive, subjective, and disturbing to the vegetation. In contrast, recently developed robotic systems (networked infomechanical systems, NIMS) allow for performing non-intrusive spatially integrated measurements of vegetation communities. Within the ITEX (International Tundra Experiment) AON (Arctic Observation Network) project we installed a cable-based sensor system, running over a transect of approximately 50 m length and 2 m width, at two long-term arctic research sites in Alaska. The trolley was initially equipped with instruments recording the distance to vegetation canopy, up- and downwelling short- and longwave radiation, air and surface temperature and spectral reflection. We aim to study the thermal and spectral response of the vegetation communities over a wide range of ecosystem types. We expect that automated observations, covering the spatial heterogeneity of vegetation and surface characteristics, can give a deeper insight in ecosystem functioning and vegetation response to climate. The data can be used for scaling up vegetation characteristics derived from manual measurements and for linking them to aircraft and satellite data and to carbon, water and surface energy budgets measured at the ecosystem scale. Sampling errors due to cable sag are correctable and effects of wind-driven movements can be offset by repeat measurements. First hand-pulled test measurements during summer 2010 show strong heterogeneity of the observation parameters and a variable spectral and thermal response of the plants within the transects. Differences support the importance of our approach for upscaling purposes and for a comprehensive understanding of the arctic biome.

  19. Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water

    USGS Publications Warehouse

    Rosenberry, Donald O.; LaBaugh, James W.

    2008-01-01

    This report focuses on measuring the flow of water across the interface between surface water and ground water, rather than the hydrogeological or geochemical processes that occur at or near this interface. The methods, however, that use hydrogeological and geochemical evidence to quantify water fluxes are described herein. This material is presented as a guide for those who have to examine the interaction of surface water and ground water. The intent here is that both the overview of the many available methods and the in-depth presentation of specific methods will enable the reader to choose those study approaches that will best meet the requirements of the environments and processes they are investigating, as well as to recognize the merits of using more than one approach. This report is designed to make the reader aware of the breadth of approaches available for the study of the exchange between surface and ground water. To accomplish this, the report is divided into four chapters. Chapter 1 describes many well-documented approaches for defining the flow between surface and ground waters. Subsequent chapters provide an in-depth presentation of particular methods. Chapter 2 focuses on three of the most commonly used methods to either calculate or directly measure flow of water between surface-water bodies and the ground-water domain: (1) measurement of water levels in well networks in combination with measurement of water level in nearby surface water to determine water-level gradients and flow; (2) use of portable piezometers (wells) or hydraulic potentiomanometers to measure hydraulic gradients; and (3) use of seepage meters to measure flow directly. Chapter 3 focuses on describing the techniques involved in conducting water-tracer tests using fluorescent dyes, a method commonly used in the hydrogeologic investigation and characterization of karst aquifers, and in the study of water fluxes in karst terranes. Chapter 4 focuses on heat as a tracer in hydrological investigations of the near-surface environment.

  20. Interfacial friction and adhesion of cross-linked polymer thin films swollen with linear chains.

    PubMed

    Zhang, Qing; Archer, Lynden A

    2007-07-03

    The preparation and interfacial properties of a new type of tethered, thin-film lubricant coating are presented. These coatings are composed of three components: a dense self-assembled monolayer (SAM) underlayer that presents reactive vinyl groups at its surface; a cross-linked polydimethylsiloxane (PDMS) overlayer that is covalently tethered to the SAM; and free, mobile linear PDMS chains dispersed in the network. We investigate the influence of the molecular weight (Ms) and concentration of the free PDMS chains on the structure and equilibrium swelling properties of the cross-linked films. Using a bead-probe lateral force microscopy measurement technique, we also quantify the interfacial friction and adhesion characteristics of surfaces functionalized with these coatings. We find that both the volume fraction and the molecular weight of free PDMS molecules in the coatings influence their interfacial friction and adhesion properties. For example, the addition of short PDMS chains in dry, cross-linked PDMS thin films yields tethered surface coatings with ultralow friction coefficients (mu = 5.2 x 10(-3)). An analysis based on classical lubrication theory suggests that the reduction in friction force produced by free polymer is a consequence of the gradual separation of asperities on opposing surfaces and the consequent substitution of solid-solid friction by viscous drag of the free polymer chains in the network.

  1. Mapping the distribution of packing topologies within protein interiors shows predominant preference for specific packing motifs

    PubMed Central

    2011-01-01

    Background Mapping protein primary sequences to their three dimensional folds referred to as the 'second genetic code' remains an unsolved scientific problem. A crucial part of the problem concerns the geometrical specificity in side chain association leading to densely packed protein cores, a hallmark of correctly folded native structures. Thus, any model of packing within proteins should constitute an indispensable component of protein folding and design. Results In this study an attempt has been made to find, characterize and classify recurring patterns in the packing of side chain atoms within a protein which sustains its native fold. The interaction of side chain atoms within the protein core has been represented as a contact network based on the surface complementarity and overlap between associating side chain surfaces. Some network topologies definitely appear to be preferred and they have been termed 'packing motifs', analogous to super secondary structures in proteins. Study of the distribution of these motifs reveals the ubiquitous presence of typical smaller graphs, which appear to get linked or coalesce to give larger graphs, reminiscent of the nucleation-condensation model in protein folding. One such frequently occurring motif, also envisaged as the unit of clustering, the three residue clique was invariably found in regions of dense packing. Finally, topological measures based on surface contact networks appeared to be effective in discriminating sequences native to a specific fold amongst a set of decoys. Conclusions Out of innumerable topological possibilities, only a finite number of specific packing motifs are actually realized in proteins. This small number of motifs could serve as a basis set in the construction of larger networks. Of these, the triplet clique exhibits distinct preference both in terms of composition and geometry. PMID:21605466

  2. A climatology of the California Current System from a network of underwater gliders

    NASA Astrophysics Data System (ADS)

    Rudnick, Daniel L.; Zaba, Katherine D.; Todd, Robert E.; Davis, Russ E.

    2017-05-01

    Autonomous underwater gliders offer the possibility of sustained observation of the coastal ocean. Since 2006 Spray underwater gliders in the California Underwater Glider Network (CUGN) have surveyed along California Cooperative Oceanic Fisheries Investigations (CalCOFI) lines 66.7, 80.0, and 90.0, constituting the world's longest sustained glider network, to our knowledge. In this network, gliders dive between the surface and 500 m, completing a cycle in 3 h and covering 3 km in that time. Sections extend 350-500 km offshore and take 2-3 weeks to occupy. Measured variables include pressure, temperature, salinity, and depth-average velocity. The CUGN has amassed over 10,000 glider-days, covering over 210,000 km with over 95,000 dives. These data are used to produce a climatology whose products are for each variable a mean field, an annual cycle, and the anomaly from the annual cycle. The analysis includes a weighted least-squares fit to derive the mean and annual cycle, and an objective map to produce the anomaly. The final results are variables on rectangular grids in depth, distance offshore, and time. The mean fields are finely resolved sections across the main flows in the California Current System, including the poleward California Undercurrent and the equatorward California Current. The annual cycle shows a phase change from the surface to the thermocline, reflecting the effects of air/sea fluxes at the surface and upwelling in the thermocline. The interannual anomalies are examined with an emphasis on climate events of the last ten years including the 2009-2010 El Niño, the 2010-2011 La Niña, the warm anomaly of 2014-2015, and the 2015-2016 El Niño.

  3. Step patterns on vicinal reconstructed surfaces

    NASA Astrophysics Data System (ADS)

    Vilfan, Igor

    1996-04-01

    Step patterns on vicinal (2 × 1) reconstructed surfaces of noble metals Au(110) and Pt(110), miscut towards the (100) orientation, are investigated. The free energy of the reconstructed surface with a network of crossing opposite steps is calculated in the strong chirality regime when the steps cannot make overhangs. It is explained why the steps are not perpendicular to the direction of the miscut but form in equilibrium a network of crossing steps which make the surface to look like a fish skin. The network formation is the consequence of competition between the — predominantly elastic — energy loss and entropy gain. It is in agreement with recent scanning tunnelling microscopy observations on vicinal Au(110) and Pt(110) surfaces.

  4. United States Air Force Summer Research Program 1991. Graduate Student Research Program (GSRP) Reports. Volume 8. Rome Laboratory, Arnold Engineering Development Center, F. J. Seiler Research Laboratory

    DTIC Science & Technology

    1992-01-09

    and reliability and it concludes with a discussion of possible applications to the IMS prototype design. 1-2 AcknowledQements I would like to thank the...technologies and procedures such as cut-vertex set analysis, the results of which may lead to future applications of this work in network management. 1... mathematically as follows. If the distance between the atoms of the surface is d and the wave is scattered it an angle 9 (measured from the surface

  5. Monitoring of Thermal Protection Systems and MMOD using Robust Self-Organizing Optical Fiber Sensing Networks

    NASA Technical Reports Server (NTRS)

    Richards, Lance

    2014-01-01

    The general aim of this work is to develop and demonstrate a prototype structural health monitoring system for thermal protection systems that incorporates piezoelectric acoustic emission (AE) sensors to detect the occurrence and location of damaging impacts, such as those from Micrometeoroid Orbital Debris (MMOD). The approach uses an optical fiber Bragg grating (FBG) sensor network to evaluate the effect of detected damage on the thermal conductivity of the TPS material. Following detection of an impact, the TPS would be exposed to a heat source, possibly the sun, and the temperature distribution on the inner surface in the vicinity of the impact measured by the FBG network. A similar procedure could also be carried out as a screening test immediately prior to re-entry. The implications of any detected anomalies in the measured temperature distribution will be evaluated for their significance in relation to the performance of the TPS during reentry. Such a robust TPS health monitoring system would ensure overall crew safety throughout the mission, especially during reentry.

  6. Concentrations and annual fluxes for selected water-quality constituents from the USGS National Stream Quality Accounting Network (NASQAN) 1996-2000

    USGS Publications Warehouse

    Kelly, Valerie J.; Hooper, Richard P.; Aulenbach, Brent T.; Janet, Mary

    2001-01-01

    This report contains concentrations and annual mass fluxes (loadings) for a broad range of water-quality constituents measured during 1996-2000 as part of the U.S. Geological Survey National Stream Quality Accounting Network (NASQAN). During this period, NASQAN operated a network of 40-42 stations in four of the largest river basins of the USA: the Colorado, the Columbia, the Mississippi (including the Missouri and Ohio), and the Rio Grande. The report contains surface-water quality data, streamflow data, field measurements (e.g. water temperature and pH), sediment-chemistry data, and quality-assurance data; interpretive products include annual and average loads, regression parameters for models used to estimate loads, sub-basin yield maps, maps depicting percent detections for censored constituents, and diagrams depicting flow-weighted average concentrations. Where possible, a regression model relating concentration to discharge and season was used for flux estimation. The interpretive context provided by annual loads includes identifying source and sink areas for constituents and estimating the loadings to receiving waters, such as reservoirs or the ocean.

  7. A New Neural Network Approach Including First-Guess for Retrieval of Atmospheric Water Vapor, Cloud Liquid Water Path, Surface Temperature and Emissivities Over Land From Satellite Microwave Observations

    NASA Technical Reports Server (NTRS)

    Aires, F.; Prigent, C.; Rossow, W. B.; Rothstein, M.; Hansen, James E. (Technical Monitor)

    2000-01-01

    The analysis of microwave observations over land to determine atmospheric and surface parameters is still limited due to the complexity of the inverse problem. Neural network techniques have already proved successful as the basis of efficient retrieval methods for non-linear cases, however, first-guess estimates, which are used in variational methods to avoid problems of solution non-uniqueness or other forms of solution irregularity, have up to now not been used with neural network methods. In this study, a neural network approach is developed that uses a first-guess. Conceptual bridges are established between the neural network and variational methods. The new neural method retrieves the surface skin temperature, the integrated water vapor content, the cloud liquid water path and the microwave surface emissivities between 19 and 85 GHz over land from SSM/I observations. The retrieval, in parallel, of all these quantities improves the results for consistency reasons. A data base to train the neural network is calculated with a radiative transfer model and a a global collection of coincident surface and atmospheric parameters extracted from the National Center for Environmental Prediction reanalysis, from the International Satellite Cloud Climatology Project data and from microwave emissivity atlases previously calculated. The results of the neural network inversion are very encouraging. The r.m.s. error of the surface temperature retrieval over the globe is 1.3 K in clear sky conditions and 1.6 K in cloudy scenes. Water vapor is retrieved with a r.m.s. error of 3.8 kg/sq m in clear conditions and 4.9 kg/sq m in cloudy situations. The r.m.s. error in cloud liquid water path is 0.08 kg/sq m . The surface emissivities are retrieved with an accuracy of better than 0.008 in clear conditions and 0.010 in cloudy conditions. Microwave land surface temperature retrieval presents a very attractive complement to the infrared estimates in cloudy areas: time record of land surface temperature will be produced.

  8. Estimates of CO2 traffic emissions from mobile concentration measurements

    NASA Astrophysics Data System (ADS)

    Maness, H. L.; Thurlow, M. E.; McDonald, B. C.; Harley, R. A.

    2015-03-01

    We present data from a new mobile system intended to aid in the design of upcoming urban CO2-monitoring networks. Our collected data include GPS probe data, video-derived traffic density, and accurate CO2 concentration measurements. The method described here is economical, scalable, and self-contained, allowing for potential future deployment in locations without existing traffic infrastructure or vehicle fleet information. Using a test data set collected on California Highway 24 over a 2 week period, we observe that on-road CO2 concentrations are elevated by a factor of 2 in congestion compared to free-flow conditions. This result is found to be consistent with a model including vehicle-induced turbulence and standard engine physics. In contrast to surface concentrations, surface emissions are found to be relatively insensitive to congestion. We next use our model for CO2 concentration together with our data to independently derive vehicle emission rate parameters. Parameters scaling the leading four emission rate terms are found to be within 25% of those expected for a typical passenger car fleet, enabling us to derive instantaneous emission rates directly from our data that compare generally favorably to predictive models presented in the literature. The present results highlight the importance of high spatial and temporal resolution traffic data for interpreting on- and near-road concentration measurements. Future work will focus on transport and the integration of mobile platforms into existing stationary network designs.

  9. Calibration of GOES-derived solar radiation data using a distributed network of surface measurements in Florida, USA

    USGS Publications Warehouse

    Sumner, David M.; Pathak, Chandra S.; Mecikalski, John R.; Paech, Simon J.; Wu, Qinglong; Sangoyomi, Taiye; Babcock, Roger W.; Walton, Raymond

    2008-01-01

    Solar radiation data are critically important for the estimation of evapotranspiration. Analysis of visible-channel data derived from Geostationary Operational Environmental Satellites (GOES) using radiative transfer modeling has been used to produce spatially- and temporally-distributed datasets of solar radiation. An extensive network of (pyranometer) surface measurements of solar radiation in the State of Florida has allowed refined calibration of a GOES-derived daily integrated radiation data product. This refinement of radiation data allowed for corrections of satellite sensor drift, satellite generational change, and consideration of the highly-variable cloudy conditions that are typical of Florida. To aid in calibration of a GOES-derived radiation product, solar radiation data for the period 1995–2004 from 58 field stations that are located throughout the State were compiled. The GOES radiation product was calibrated by way of a three-step process: 1) comparison with ground-based pyranometer measurements on clear reference days, 2) correcting for a bias related to cloud cover, and 3) deriving month-by-month bias correction factors. Pre-calibration results indicated good model performance, with a station-averaged model error of 2.2 MJ m–2 day–1 (13 percent). Calibration reduced errors to 1.7 MJ m–2 day–1 (10 percent) and also removed time- and cloudiness-related biases. The final dataset has been used to produce Statewide evapotranspiration estimates.

  10. Evaporation loss and evaporation/transpiration partitioning from isotope-based monitoring of Canada's provincial and national river networks

    NASA Astrophysics Data System (ADS)

    Gibson, J. J.; Birks, S. J.; Stadnyk, T.; Delavau, C. J.

    2017-12-01

    Stable isotopes of water have been measured since the 1990's as part of hydrometric monitoring programs within Canada's Water Survey of Canada gauging network and Alberta's Long-Term River Network. These datasets are being applied for hydrograph separation of streamflow sources, including rain, snow, groundwater, and surface water, as well as for estimation of watershed evaporation losses and evaporation/transpiration partitioning. Here we describe an innovative isotope mass balance approach, discuss benefits and limitations of the method, and present selected results that illustrate important regional trends in the contemporary hydrology of Canada. Overall, isotopes are shown to be useful for constraining water balance variations across regions with low monitoring density. Recommendations for future activities are identified, including regional comparisons with outputs from isotope-capable distributed hydrologic models.

  11. A mobile sensing system for structural health monitoring: design and validation

    NASA Astrophysics Data System (ADS)

    Zhu, Dapeng; Yi, Xiaohua; Wang, Yang; Lee, Kok-Meng; Guo, Jiajie

    2010-05-01

    This paper describes a new approach using mobile sensor networks for structural health monitoring. Compared with static sensors, mobile sensor networks offer flexible system architectures with adaptive spatial resolutions. The paper first describes the design of a mobile sensing node that is capable of maneuvering on structures built with ferromagnetic materials. The mobile sensing node can also attach/detach an accelerometer onto/from the structural surface. The performance of the prototype mobile sensor network has been validated through laboratory experiments. Two mobile sensing nodes are adopted for navigating on a steel portal frame and providing dense acceleration measurements. Transmissibility function analysis is conducted to identify structural damage using data collected by the mobile sensing nodes. This preliminary work is expected to spawn transformative changes in the use of mobile sensors for future structural health monitoring.

  12. NEON: High Frequency Monitoring Network for Watershed-Scale Processes and Aquatic Ecology

    NASA Astrophysics Data System (ADS)

    Vance, J. M.; Fitzgerald, M.; Parker, S. M.; Roehm, C. L.; Goodman, K. J.; Bohall, C.; Utz, R.

    2014-12-01

    Networked high frequency hydrologic and water quality measurements needed to investigate physical and biogeochemical processes at the watershed scale and create robust models are limited and lacking standardization. Determining the drivers and mechanisms of ecological changes in aquatic systems in response to natural and anthropogenic pressures is challenging due to the large amounts of terrestrial, aquatic, atmospheric, biological, chemical, and physical data it requires at varied spatiotemporal scales. The National Ecological Observatory Network (NEON) is a continental-scale infrastructure project designed to provide data to address the impacts of climate change, land-use, and invasive species on ecosystem structure and function. Using a combination of standardized continuous in situ measurements and observational sampling, the NEON Aquatic array will produce over 200 data products across its spatially-distributed field sites for 30 years to facilitate spatiotemporal analysis of the drivers of ecosystem change. Three NEON sites in Alabama were chosen to address linkages between watershed-scale processes and ecosystem changes along an eco-hydrological gradient within the Tombigbee River Basin. The NEON Aquatic design, once deployed, will include continuous measurements of surface water physical, chemical, and biological parameters, groundwater level, temperature and conductivity and local meteorology. Observational sampling will include bathymetry, water chemistry and isotopes, and a suite of organismal sampling from microbes to macroinvertebrates to vertebrates. NEON deployed a buoy to measure the temperature profile of the Black Warrior River from July - November, 2013 to determine the spatiotemporal variability across the water column from a daily to seasonal scale. In July 2014 a series of water quality profiles were performed to assess the contribution of physical and biogeochemical drivers over a diurnal cycle. Additional river transects were performed across our site reach to capture the spatial variability of surface water parameters. Our preliminary data show differing response times to precipitation events and diurnal processes informing our infrastructure designs and sampling protocols aimed at providing data to address the eco-hydrological gradient.

  13. Constructing Ecological Networks Based on Habitat Quality Assessment: A Case Study of Changzhou, China

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Ma, Lei; Liu, Jiaxun; Zhuang, Zhuzhou; Huang, Qiuhao; Li, Manchun

    2017-04-01

    Fragmentation and reduced continuity of habitat patches threaten the environment and biodiversity. Recently, ecological networks are increasingly attracting the attention of researchers as they provide fundamental frameworks for environmental protection. This study suggests a set of procedures to construct an ecological network. First, we proposed a method to construct a landscape resistance surface based on the assessment of habitat quality. Second, to analyze the effect of the resistance surface on corridor simulations, we used three methods to construct resistance surfaces: (1) the method proposed in this paper, (2) the entropy coefficient method, and (3) the expert scoring method. Then, we integrated habitat patches and resistance surfaces to identify potential corridors using graph theory. These procedures were tested in Changzhou, China. Comparing the outputs of using different resistance surfaces demonstrated that: (1) different landscape resistance surfaces contribute to how corridors are identified, but only slightly affect the assessment of the importance of habitat patches and potential corridors; (2) the resistance surface, which is constructed based on habitat quality, is more applicable to corridor simulations; and (3) the assessment of the importance of habitat patches is fundamental for ecological network optimization in the conservation of critical habitat patches and corridors.

  14. Constructing Ecological Networks Based on Habitat Quality Assessment: A Case Study of Changzhou, China

    PubMed Central

    Gao, Yu; Ma, Lei; Liu, Jiaxun; Zhuang, Zhuzhou; Huang, Qiuhao; Li, Manchun

    2017-01-01

    Fragmentation and reduced continuity of habitat patches threaten the environment and biodiversity. Recently, ecological networks are increasingly attracting the attention of researchers as they provide fundamental frameworks for environmental protection. This study suggests a set of procedures to construct an ecological network. First, we proposed a method to construct a landscape resistance surface based on the assessment of habitat quality. Second, to analyze the effect of the resistance surface on corridor simulations, we used three methods to construct resistance surfaces: (1) the method proposed in this paper, (2) the entropy coefficient method, and (3) the expert scoring method. Then, we integrated habitat patches and resistance surfaces to identify potential corridors using graph theory. These procedures were tested in Changzhou, China. Comparing the outputs of using different resistance surfaces demonstrated that: (1) different landscape resistance surfaces contribute to how corridors are identified, but only slightly affect the assessment of the importance of habitat patches and potential corridors; (2) the resistance surface, which is constructed based on habitat quality, is more applicable to corridor simulations; and (3) the assessment of the importance of habitat patches is fundamental for ecological network optimization in the conservation of critical habitat patches and corridors. PMID:28393879

  15. The influence of open fracture anisotropy on CO2 movement within geological storage complexes

    NASA Astrophysics Data System (ADS)

    Bond, C. E.; Wightman, R.; Ringrose, P. S.

    2012-12-01

    Carbon mitigation through the geological storage of carbon dioxide is dependent on the ability of geological formations to store CO2 trapping it within a geological storage complex. Secure long-term containment needs to be demonstrated, due to both political and social drivers, meaning that this containment must be verifiable over periods of 100-105 years. The effectiveness of sub-surface geological storage systems is dependent on trapping CO2 within a volume of rock and is reliant on the integrity of the surrounding rocks, including their chemical and physical properties, to inhibit migration to the surface. Oil and gas reservoir production data, and field evidence show that fracture networks have the potential to act as focused pathways for fluid movement. Fracture networks can allow large volumes of fluid to migrate to the surface within the time scales of interest. In this paper we demonstrate the importance of predicting the effects of fracture networks in storage, using a case study from the In Salah CO2 storage site, and show how the fracture permeability is closely controlled by the stress regime that determines the open fracture network. Our workflow combines well data of imaged fractures, with a discrete fracture network (DFN) model of tectonically induced fractures, within the horizon of interest. The modelled and observed fractures have been compared and combined with present day stress data to predict the open fracture network and its implications for anisotropic movement of CO2 in the sub-surface. The created fracture network model has been used to calculate the 2D permeability tensor for the reservoir for two scenarios: 1) a model in which all fractures are permeable, based on the whole DFN model and 2) those fractures determined to be in dilatational failure under the present day stress regime, a sub-set of the DFN. The resulting permeability anisotropy tensors show distinct anisotropies for the predicted CO2 movement within the reservoir. These predictions have been compared with InSAR imagery of surface uplift, used as an indicator of fluid pressure and movement in the sub-surface, around the CO2 injection wells. The analysis shows that the permeability tensor with the greatest anisotropy, that for the DFN sub-set of open fractures, matches well with the anisotropy in surface uplift imaged by InSAR. We demonstrate that predicting fracture networks alone does not predict fluid movement in the sub-surface, and that fracture permeability is closely controlled by the stress regime that determines the open fracture network. Our results show that a workflow of fracture network prediction combined with present day stress analysis can be used to successfully predict CO2 movement in the sub-surface at an active injection site.

  16. Machine learning to classify and predict objective and subjective assessments of vehicle dynamics: the case of steering feel

    NASA Astrophysics Data System (ADS)

    Gil Gómez, Gaspar L.; Nybacka, Mikael; Drugge, Lars; Bakker, Egbert

    2018-01-01

    Objective measurements and computer-aided engineering simulations cannot be exploited to their full potential because of the high importance of driver feel in vehicle development. Furthermore, despite many studies, it is not easy to identify the relationship between objective metrics (OM) and subjective assessments (SA), a task further complicated by the fact that SA change between drivers and geographical locations or with time. This paper presents a method which uses two artificial neural networks built on top of each other that helps to close this gap. The first network, based solely on OM, generates a map that groups together similar vehicles, thus allowing a classification of measured vehicles to be visualised. This map objectively demonstrates that there exist brand and vehicle class identities. It also foresees the subjective characteristics of a new vehicle, based on its requirements, simulations and measurements. These characteristics are described by the neighbourhood of the new vehicle in the map, which is made up of known vehicles that are accompanied by word-clouds that enhance this description. This forecast is also extended to perform a sensitivity analysis of the tolerances in the requirements, as well as to validate previously published preferred range of steering feel metrics. The results suggest a few new modifications. Finally, the qualitative information given by this measurement-based classification is complemented with a second superimposed network. This network describes a regression surface that enables quantitative predictions, for example the SA of the steering feel of a new vehicle from its OM.

  17. The Global Energy Balance Archive (GEBA): A database for the worldwide measured surface energy fluxes

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo

    2017-02-01

    The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.

  18. Hyperspectral radiometer for automated measurement of global and diffuse sky irradiance

    NASA Astrophysics Data System (ADS)

    Kuusk, Joel; Kuusk, Andres

    2018-01-01

    An automated hyperspectral radiometer for the measurement of global and diffuse sky irradiance, SkySpec, has been designed for providing the SMEAR-Estonia research station with spectrally-resolved solar radiation data. The spectroradiometer has been carefully studied in the optical radiometry laboratory of Tartu Observatory, Estonia. Recorded signals are corrected for spectral stray light as well as for changes in dark signal and spectroradiometer spectral responsivity due to temperature effects. Comparisons with measurements of shortwave radiation fluxes made at the Baseline Surface Radiation Network (BSRN) station at Tõravere, Estonia, and with fluxes simulated using the atmospheric radiative transfer model 6S and Aerosol Robotic Network (AERONET) data showed that the spectroradiometer is a reliable instrument that provides accurate estimates of integrated fluxes and of their spectral distribution. The recorded spectra can be used to estimate the amount of atmospheric constituents such as aerosol and column water vapor, which are needed for the atmospheric correction of spectral satellite images.

  19. Winter crop CO2 uptake inferred from CONTRAIL measurements over Delhi, India

    NASA Astrophysics Data System (ADS)

    Umezawa, Taku; Niwa, Yosuke; Sawa, Yousuke; Machida, Toshinobu; Matsueda, Hidekazu

    2016-11-01

    Recent studies have shown the impact of expanding agricultural activities on atmospheric CO2 variations and the global carbon cycle. In this study, we show clear evidence of the measureable impact of Indian wintertime crops (mainly wheat) on the regional carbon budget using high-frequency atmospheric CO2 measurements by Comprehensive Observation Network for Trace gases by Airliners (CONTRAIL) over Delhi; this phenomenon is not detected by the existing network of surface CO2 sites. While a general increase in the vertical profiles of CO2 toward the ground in the boundary layer was observed throughout December-April, we frequently observed sharp decreases below 2 km during January-March. Seasonal circulations during these 3 months indicated influences from neighboring croplands (with patchy urban areas) located upwind. We conclude that the observed CO2 decrease is attributable to active uptake by the crops grown in winter and that the uptake exceeds in magnitude the urban CO2 emissions from the Delhi metropolitan area.

  20. Two-dimensional network stability of nucleobases and amino acids on graphite under ambient conditions: adenine, L-serine and L-tyrosine.

    PubMed

    Bald, Ilko; Weigelt, Sigrid; Ma, Xiaojing; Xie, Pengyang; Subramani, Ramesh; Dong, Mingdong; Wang, Chen; Mamdouh, Wael; Wang, Jianguo; Besenbacher, Flemming

    2010-04-14

    We have investigated the stability of two-dimensional self-assembled molecular networks formed upon co-adsorption of the DNA base, adenine, with each of the amino acids, L-serine and L-tyrosine, on a highly oriented pyrolytic graphite (HOPG) surface by drop-casting from a water solution. L-serine and L-tyrosine were chosen as model systems due to their different interaction with the solvent molecules and the graphite substrate, which is reflected in a high and low solubility in water, respectively, compared with adenine. Combined scanning tunneling microscopy (STM) measurements and density functional theory (DFT) calculations show that the self-assembly process is mainly driven by the formation of strong adenine-adenine hydrogen bonds. We find that pure adenine networks are energetically more stable than networks built up of either pure L-serine, pure L-tyrosine or combinations of adenine with L-serine or L-tyrosine, and that only pure adenine networks are stable enough to be observable by STM under ambient conditions.

  1. Profile and Remote Sensing Observation Datasets (Trace Gases and Aerosols) for Regional- Scale Model Evaluation under the Air Quality Model Evaluation International Initiative (AQMEII)- North American and European Perspectives

    EPA Science Inventory

    While the vast majority of operational air-pollution networks across the world are designed to measure relevant metrics at the surface, the air pollution problem is a three-dimensional phenomenon. The lack of adequate observations aloft to routinely characterize the nature of ai...

  2. Patterns in stream longitudinal profiles and implications for hyporheic exchange flow at the H.J. Andrews Experimental Forest, Oregon, USA.

    Treesearch

    Justin K. Anderson; Steven M. Wondzell; Michael N. Gooseff; Roy Haggerty

    2005-01-01

    There is a need to identify measurable characteristics of stream channel morphology that vary predictably throughout stream networks and that influence patterns of hyporheic exchange flow in mountain streams. In this paper we characterize stream longitudinal profiles according to channel unit spacing and the concavity of the water surface profile. We demonstrate that...

  3. Fragmentation, rings and coarsening: structure and transformations of nanocrystal aggregate networks on a liquid surface

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Scheidtmann, Jens; Mayer, Joachim; Wuttig, Matthias; Michely, Thomas

    2002-01-01

    Deposition of Ag on a silicon oil surface leads to the formation of nm-sized Ag crystals floating on the oil surface. These nanocrystals mutually attract each other, forming strongly branched nanocrystal aggregates and continuous aggregate networks. Transformation processes of such nanocrystal aggregate networks are imaged in situ by optical microscopy. The observations are explained on the basis of a simple model involving diffusion of nanocrystals along aggregate edges and the rupture of branches resulting from branch width fluctuations due to edge diffusion.

  4. Linking Fine-Scale Observations and Model Output with Imagery at Multiple Scales

    NASA Astrophysics Data System (ADS)

    Sadler, J.; Walthall, C. L.

    2014-12-01

    The development and implementation of a system for seasonal worldwide agricultural yield estimates is underway with the international Group on Earth Observations GeoGLAM project. GeoGLAM includes a research component to continually improve and validate its algorithms. There is a history of field measurement campaigns going back decades to draw upon for ways of linking surface measurements and model results with satellite observations. Ground-based, in-situ measurements collected by interdisciplinary teams include yields, model inputs and factors affecting scene radiation. Data that is comparable across space and time with careful attention to calibration is essential for the development and validation of agricultural applications of remote sensing. Data management to ensure stewardship, availability and accessibility of the data are best accomplished when considered an integral part of the research. The expense and logistical challenges of field measurement campaigns can be cost-prohibitive and because of short funding cycles for research, access to consistent, stable study sites can be lost. The use of a dedicated staff for baseline data needed by multiple investigators, and conducting measurement campaigns using existing measurement networks such as the USDA Long Term Agroecosystem Research network can fulfill these needs and ensure long-term access to study sites.

  5. Characterizing heterogeneous dynamics at hydrated electrode surfaces.

    PubMed

    Willard, Adam P; Limmer, David T; Madden, Paul A; Chandler, David

    2013-05-14

    In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this ad-layer dynamic heterogeneity responds asymmetrically to applied voltage.

  6. Characterizing heterogeneous dynamics at hydrated electrode surfaces

    NASA Astrophysics Data System (ADS)

    Willard, Adam P.; Limmer, David T.; Madden, Paul A.; Chandler, David

    2013-05-01

    In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this ad-layer dynamic heterogeneity responds asymmetrically to applied voltage.

  7. Lithographically fabricated gold nanowire waveguides for plasmonic routers and logic gates.

    PubMed

    Gao, Long; Chen, Li; Wei, Hong; Xu, Hongxing

    2018-06-14

    Fabricating plasmonic nanowire waveguides and circuits by lithographic fabrication methods is highly desired for nanophotonic circuitry applications. Here we report an approach for fabricating metal nanowire networks by using electron beam lithography and metal film deposition techniques. The gold nanowire structures are fabricated on quartz substrates without using any adhesion layer but coated with a thin layer of Al2O3 film for immobilization. The thermal annealing during the Al2O3 deposition process decreases the surface plasmon loss. In a Y-shaped gold nanowire network, the surface plasmons can be routed to different branches by controlling the polarization of the excitation light, and the routing behavior is dependent on the length of the main nanowire. Simulated electric field distributions show that the zigzag distribution of the electric field in the nanowire network determines the surface plasmon routing. By using two laser beams to excite surface plasmons in a Y-shaped nanowire network, the output intensity can be modulated by the interference of surface plasmons, which can be used to design Boolean logic gates. We experimentally demonstrate that AND, OR, XOR and NOT gates can be realized in three-terminal nanowire networks, and NAND, NOR and XNOR gates can be realized in four-terminal nanowire networks. This work takes a step toward the fabrication of on-chip integrated plasmonic circuits.

  8. Integrated design of multivariable hydrometric networks using entropy theory with a multiobjective optimization approach

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Hwang, T.; Vose, J. M.; Martin, K. L.; Band, L. E.

    2016-12-01

    Obtaining quality hydrologic observations is the first step towards a successful water resources management. While remote sensing techniques have enabled to convert satellite images of the Earth's surface to hydrologic data, the importance of ground-based observations has never been diminished because in-situ data are often highly accurate and can be used to validate remote measurements. The existence of efficient hydrometric networks is becoming more important to obtain as much as information with minimum redundancy. The World Meteorological Organization (WMO) has recommended a guideline for the minimum hydrometric network density based on physiography; however, this guideline is not for the optimum network design but for avoiding serious deficiency from a network. Moreover, all hydrologic variables are interconnected within the hydrologic cycle, while monitoring networks have been designed individually. This study proposes an integrated network design method using entropy theory with a multiobjective optimization approach. In specific, a precipitation and a streamflow networks in a semi-urban watershed in Ontario, Canada were designed simultaneously by maximizing joint entropy, minimizing total correlation, and maximizing conditional entropy of streamflow network given precipitation network. After comparing with the typical individual network designs, the proposed design method would be able to determine more efficient optimal networks by avoiding the redundant stations, in which hydrologic information is transferable. Additionally, four quantization cases were applied in entropy calculations to assess their implications on the station rankings and the optimal networks. The results showed that the selection of quantization method should be considered carefully because the rankings and optimal networks are subject to change accordingly.

  9. Integrated design of multivariable hydrometric networks using entropy theory with a multiobjective optimization approach

    NASA Astrophysics Data System (ADS)

    Keum, J.; Coulibaly, P. D.

    2017-12-01

    Obtaining quality hydrologic observations is the first step towards a successful water resources management. While remote sensing techniques have enabled to convert satellite images of the Earth's surface to hydrologic data, the importance of ground-based observations has never been diminished because in-situ data are often highly accurate and can be used to validate remote measurements. The existence of efficient hydrometric networks is becoming more important to obtain as much as information with minimum redundancy. The World Meteorological Organization (WMO) has recommended a guideline for the minimum hydrometric network density based on physiography; however, this guideline is not for the optimum network design but for avoiding serious deficiency from a network. Moreover, all hydrologic variables are interconnected within the hydrologic cycle, while monitoring networks have been designed individually. This study proposes an integrated network design method using entropy theory with a multiobjective optimization approach. In specific, a precipitation and a streamflow networks in a semi-urban watershed in Ontario, Canada were designed simultaneously by maximizing joint entropy, minimizing total correlation, and maximizing conditional entropy of streamflow network given precipitation network. After comparing with the typical individual network designs, the proposed design method would be able to determine more efficient optimal networks by avoiding the redundant stations, in which hydrologic information is transferable. Additionally, four quantization cases were applied in entropy calculations to assess their implications on the station rankings and the optimal networks. The results showed that the selection of quantization method should be considered carefully because the rankings and optimal networks are subject to change accordingly.

  10. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2005

    USGS Publications Warehouse

    Kinnaman, Sandra L.

    2006-01-01

    INTRODUCTION This map depicts the potentiometric surface of the upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2005. Potentiometric contours are based on water level measurements collected at 598 wens during the period May 5 - 31, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate upper Floridan aquifer responds mainly to rainfall, and more locally, to ground water withdrawals. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground water withdrawals locally have lowered the potentiometric surface. Ground water in the upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  11. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2009

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2009. Potentiometric contours are based on water-level measurements collected at 625 wells during the period May 14 - May 29, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to groundwater withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Groundwater withdrawals locally have lowered the potentiometric surface. Groundwater in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  12. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, May 2006

    USGS Publications Warehouse

    Kinnaman, Sandra L.

    2006-01-01

    Introduction: This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 2006. Potentiometric contours are based on water-level measurements collected at 599 wells during the period May 14-31, near the end of the dry season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and springflow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  13. Potentiometric surface of the Upper Floridan aquifer in the St. Johns River water management district and vicinity, Florida, September 2005

    USGS Publications Warehouse

    Kinnaman, Sandra L.

    2006-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2005. Potentiometric contours are based on water-level measurements collected at 643 wells during the period September 12-28, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and springflow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  14. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2006

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2007-01-01

    Introduction This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2006. Potentiometric contours are based on water-level measurements collected at 571 wells during the period September 11-29, near the end of the wet season. Some contours are inferred from previouspotentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  15. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2008

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2009-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2008. Potentiometric contours are based on water-level measurements collected at 589 wells during the period September 15-25, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  16. Potentiometric Surface of the Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida, September 2007

    USGS Publications Warehouse

    Kinnaman, Sandra L.; Dixon, Joann F.

    2008-01-01

    This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for September 2007. Potentiometric contours are based on water-level measurements collected at 554 wells during the period September 15-27, near the end of the wet season. Some contours are inferred from previous potentiometric-surface maps with larger well networks. The potentiometric surface of the carbonate Upper Floridan aquifer responds mainly to rainfall, and more locally, to ground-water withdrawals and spring flow. Potentiometric-surface highs generally correspond to topographic highs where the aquifer is recharged. Springs and areas of diffuse upward leakage naturally discharge water from the aquifer and are most prevalent along the St. Johns River. Areas of discharge are reflected by depressions in the potentiometric surface. Ground-water withdrawals locally have lowered the potentiometric surface. Ground water in the Upper Floridan aquifer generally flows from potentiometric highs to potentiometric lows in a direction perpendicular to the contours.

  17. Quality assessment and artificial neural networks modeling for characterization of chemical and physical parameters of potable water.

    PubMed

    Salari, Marjan; Salami Shahid, Esmaeel; Afzali, Seied Hosein; Ehteshami, Majid; Conti, Gea Oliveri; Derakhshan, Zahra; Sheibani, Solmaz Nikbakht

    2018-04-22

    Today, due to the increase in the population, the growth of industry and the variety of chemical compounds, the quality of drinking water has decreased. Five important river water quality properties such as: dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (ALK) and turbidity (TU) were estimated by parameters such as: electric conductivity (EC), temperature (T), and pH that could be measured easily with almost no costs. Simulate water quality parameters were examined with two methods of modeling include mathematical and Artificial Neural Networks (ANN). Mathematical methods are based on polynomial fitting with least square method and ANN modeling algorithms are feed-forward networks. All conditions/circumstances covered by neural network modeling were tested for all parameters in this study, except for Alkalinity. All optimum ANN models developed to simulate water quality parameters had precision value as R-value close to 0.99. The ANN model extended to simulate alkalinity with R-value equals to 0.82. Moreover, Surface fitting techniques were used to refine data sets. Presented models and equations are reliable/useable tools for studying water quality parameters at similar rivers, as a proper replacement for traditional water quality measuring equipment's. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. A Decadal Inversion of CO2 Using the Global Eulerian-Lagrangian Coupled Atmospheric Model (GELCA): Sensitivity to the Ground-Based Observation Network

    NASA Technical Reports Server (NTRS)

    Shirai, T.; Ishizawa, M.; Zhuravlev, R.; Ganshin, A.; Belikov, D.; Saito, M.; Oda, T.; Valsala, V.; Gomez-Pelaez, A. J.; Langenfelds, R.; hide

    2017-01-01

    We present an assimilation system for atmospheric carbon dioxide (CO2) using a Global Eulerian-Lagrangian Coupled Atmospheric model (GELCA), and demonstrate its capability to capture the observed atmospheric CO2 mixing ratios and to estimate CO2 fluxes. With the efficient data handling scheme in GELCA, our system assimilates non-smoothed CO2 data from observational data products such as the Observation Package (ObsPack) data products as constraints on surface fluxes. We conducted sensitivity tests to examine the impact of the site selections and the prior uncertainty settings of observation on the inversion results. For these sensitivity tests, we made five different sitedata selections from the ObsPack product. In all cases, the time series of the global net CO2 flux to the atmosphere stayed close to values calculated from the growth rate of the observed global mean atmospheric CO2 mixing ratio. At regional scales, estimated seasonal CO2 fluxes were altered, depending on the CO2 data selected for assimilation. Uncertainty reductions (URs) were determined at the regional scale and compared among cases. As measures of the model-data mismatch, we used the model-data bias, root-mean-square error, and the linear correlation. For most observation sites, the model-data mismatch was reasonably small. Regarding regional flux estimates, tropical Asia was one of the regions that showed a significant impact from the observation network settings. We found that the surface fluxes in tropical Asia were the most sensitive to the use of aircraft measurements over the Pacific, and the seasonal cycle agreed better with the results of bottom-up studies when the aircraft measurements were assimilated. These results confirm the importance of these aircraft observations, especially for constraining surface fluxes in the tropics.

  19. Spatiotemporal dynamics of surface water networks across a global biodiversity hotspot—implications for conservation

    NASA Astrophysics Data System (ADS)

    Tulbure, Mirela G.; Kininmonth, Stuart; Broich, Mark

    2014-11-01

    The concept of habitat networks represents an important tool for landscape conservation and management at regional scales. Previous studies simulated degradation of temporally fixed networks but few quantified the change in network connectivity from disintegration of key features that undergo naturally occurring spatiotemporal dynamics. This is particularly of concern for aquatic systems, which typically show high natural spatiotemporal variability. Here we focused on the Swan Coastal Plain, a bioregion that encompasses a global biodiversity hotspot in Australia with over 1500 water bodies of high biodiversity. Using graph theory, we conducted a temporal analysis of water body connectivity over 13 years of variable climate. We derived large networks of surface water bodies using Landsat data (1999-2011). We generated an ensemble of 278 potential networks at three dispersal distances approximating the maximum dispersal distance of different water dependent organisms. We assessed network connectivity through several network topology metrics and quantified the resilience of the network topology during wet and dry phases. We identified ‘stepping stone’ water bodies across time and compared our networks with theoretical network models with known properties. Results showed a highly dynamic seasonal pattern of variability in network topology metrics. A decline in connectivity over the 13 years was noted with potential negative consequences for species with limited dispersal capacity. The networks described here resemble theoretical scale-free models, also known as ‘rich get richer’ algorithm. The ‘stepping stone’ water bodies are located in the area around the Peel-Harvey Estuary, a Ramsar listed site, and some are located in a national park. Our results describe a powerful approach that can be implemented when assessing the connectivity for a particular organism with known dispersal distance. The approach of identifying the surface water bodies that act as ‘stepping stone’ over time may help prioritize surface water bodies that are essential for maintaining regional scale connectivity.

  20. A three-dimensional microelectrode array composed of vertically aligned ultra-dense carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Nick, C.; Yadav, S.; Joshi, R.; Schneider, J. J.; Thielemann, C.

    2015-07-01

    Electrodes based on carbon nanotubes are a promising approach to manufacture highly sensitive sensors with a low limit of signal detection and a high signal-to-noise ratio. This is achieved by dramatically increasing the electrochemical active surface area without increasing the overall geometrical dimensions. Typically, carbon nanotube electrodes are nearly planar and composed of randomly distributed carbon nanotube networks having a limited surface gain for a specific geometrical surface area. To overcome this limitation, we have introduced vertically aligned carbon nanotube (VACNT) networks as electrodes, which are arranged in a microelectrode pattern of 60 single electrodes. Each microelectrode features a very high aspect ratio of more than 300 and thus a dramatically increased surface area. These microelectrodes composed of VACNT networks display dramatically decreased impedance over the entire frequency range compared to planar microelectrodes caused by the enormous capacity increase. This is experimentally verified by electrochemical impedance spectroscopy and cyclic voltammetry.

  1. Soil Moisture and Temperature Measuring Networks in the Tibetan Plateau and Their Hydrological Applications

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Chen, Yingying; Qin, Jun; Lu, Hui

    2017-04-01

    Multi-sphere interactions over the Tibetan Plateau directly impact its surrounding climate and environment at a variety of spatiotemporal scales. Remote sensing and modeling are expected to provide hydro-meteorological data needed for these process studies, but in situ observations are required to support their calibration and validation. For this purpose, we have established two networks on the Tibetan Plateau to measure densely two state variables (soil moisture and temperature) and four soil depths (0 5, 10, 20, and 40 cm). The experimental area is characterized by low biomass, high soil moisture dynamic range, and typical freeze-thaw cycle. As auxiliary parameters of these networks, soil texture and soil organic carbon content are measured at each station to support further studies. In order to guarantee continuous and high-quality data, tremendous efforts have been made to protect the data logger from soil water intrusion, to calibrate soil moisture sensors, and to upscale the point measurements. One soil moisture network is located in a semi-humid area in central Tibetan Plateau (Naqu), which consists of 56 stations with their elevation varying over 4470 4950 m and covers three spatial scales (1.0, 0.3, 0.1 degree). The other is located in a semi-arid area in southern Tibetan Plateau (Pali), which consists of 25 stations and covers an area of 0.25 degree. The spatiotemporal characteristics of the former network were analyzed, and a new spatial upscaling method was developed to obtain the regional mean soil moisture truth from the point measurements. Our networks meet the requirement for evaluating a variety of soil moisture products, developing new algorithms, and analyzing soil moisture scaling. Three applications with the network data are presented in this paper. 1. Evaluation of Current remote sensing and LSM products. The in situ data have been used to evaluate AMSR-E, AMSR2, SMOS and SMAP products and four modeled outputs by the Global Land Data Assimilation System (GLDAS). 2. Development of New Products. We developed a dual-pass land data assimilation system. The essential idea of the system is to calibrate a land data assimilation system before a normal data assimilation. The calibration is based on satellite data rather than in situ data. Through this way, we may alleviate the impact of uncertainties in determining the error covariance of both observation operator and model operation, as it is always tough to determine the covariance. The performance of the data assimilation system is presented through comparison against the Tibetan Plateau soil moisture measuring networks. And the results are encouraging. 3. Estimation of Soil Parameter Values in a Land Surface Model. We explored the possibility to estimate soil parameter values by assimilating AMSR-E brightness temperature (TB) data. In the assimilation system, the TB is simulated by the coupled system of a land surface model (LSM) and a radiative transfer model (RTM), and the simulation errors highly depend on parameters in both the LSM and the RTM. Thus, sensitive soil parameters may be inversely estimated through minimizing the TB errors. The effectiveness of the estimated parameter values is evaluated against intensive measurements of soil parameters and soil moisture in three grasslands of the Tibetan Plateau and the Mongolian Plateau. The results indicate that this satellite data-based approach can improve the data quality of soil porosity, a key parameter for soil moisture modeling, and LSM simulations with the estimated parameter values reasonably reproduce the measured soil moisture. This demonstrates it is feasible to calibrate LSMs for soil moisture simulations at grid scale by assimilating microwave satellite data, although more efforts are expected to improve the robustness of the model calibration.

  2. Electrophysiologic studies of neronal activities under ischemia condition.

    PubMed

    Huang, Shun-Ho; Wang, Ping-Hsien; Chen, Jia-Jin Jason

    2008-01-01

    Substrate with integrated microelectrode arrays (MEAs) provides an alternative electrophysiological method. With MEAS, one can measure the impedance and elicit electrical stimulation from multiple sites of MEAs to determine the electrophysiological conditions of cells. The aims of this research were to construct an impedance and action potential measurement system for neurons cultured on MEAs for observing the electrophysiological signal transmission in neuronal network during glucose and oxygen deprivation (OGD). An extracellular stimulator producing the biphasic micro-current pulse for neuron stimulation was built in this study. From the time-course recording of impedance, OGD condition effectively induced damage in neurons in vitro. It is known that the results of cell stimulation are affected by electrode impedance, so does the result of neuron cells covered on the electrode can measure the sealing resistance. For extracellular stimulation study, cortical neuronal activity was recorded and the suitable stimulation window was determined. However, the stimulation results were affected by electrode impedance as well as sealing impedance resulting from neuron cells covering the electrode. Further development of surface modification for cultured neuron network should provide a better way for in vitro impedance and electrophysiological measurements.

  3. Mass balances of dissolved gases at river network scales across biomes.

    NASA Astrophysics Data System (ADS)

    Wollheim, W. M.; Stewart, R. J.; Sheehan, K.

    2016-12-01

    Estimating aquatic metabolism and gas fluxes at broad spatial scales is needed to evaluate the role of aquatic ecosystems in continental carbon cycles. We applied a river network model, FrAMES, to quantify the mass balances of dissolved oxygen at river network scales across five river networks in different biomes. The model accounts for hydrology; spatially varying re-aeration rates due to flow, slope, and water temperature; gas inputs via terrestrial runoff; variation in light due to canopy cover and water depth; benthic gross primary production; and benthic respiration. The model was parameterized using existing groundwater information and empirical relationships of GPP, R, and re-aeration, and was tested using dissolved oxygen patterns measured throughout river networks. We found that during summers, internal aquatic production dominates the river network mass balance of Kings Cr., Konza Prairie, KS (16.3 km2), whereas terrestrial inputs and aeration dominate the network mass balance at Coweeta Cr., Coweeta Forest, NC (15.7 km2). At network scales, both river networks are net heterotrophic, with Coweeta more so than Kings Cr. (P:R 0.6 vs. 0.7, respectively). The river network of Kings Creek showed higher network-scale GPP and R compared to Coweeta, despite having a lower drainage density because streams are on average wider so cumulative benthic surface areas are similar. Our findings suggest that the role of aquatic systems in watershed carbon balances will depend on interactions of drainage density, channel hydraulics, terrestrial vegetation, and biological activity.

  4. Drifters for New Measurements Along River Networks

    NASA Astrophysics Data System (ADS)

    Davies, J. L.; Niemeier, J. J.; Kruger, A.; Mantilla, R. G.; Ceynar, D. L.

    2008-12-01

    Inexpensive floating devices and techniques have been developed for a variety of river measurements, including surface flow velocity, water temperature, and light measurements, which serve as a proxy for turbidity. These devices, called Drifters, provide measurements in a Lagrangian reference frame. A Drifter consists of an inexpensive microcontroller, sensors, on-board data storage, a temperature-controlled clock, low-power radio transceiver, two AA batteries, all housed in a small plastic boat hull. As a Drifter floats down a river, the microcontroller periodically awakens and performs a series of measurements. Radio beacons placed on the riverbank transmit location information to the Drifters for georeferencing. Drifters are collected downstream where the data are downloaded for analysis. Drifters can also transmit collected data to the beacons in real time, but at the cost of higher power consumption. The design of the Drifters recognizes the need for accurate determination of travel times along the river network to an outlet of interest. Drifters have the potential to provide a full picture of the spatial distribution of travel times in a basin, opening the door to new understanding of the runoff transport phenomena, and removing the need of calibrated parameters in runoff transport equations of hydrological models. Acquired measurements are overlaid on maps, which provide a new perspective of the spatial distribution of water quality, temperature and velocity in large regions. Drifters have been used to make measurements over a 3-mile stretch of the Iowa River in Iowa City, Iowa, as preparation for a large-scale experiment on the river network of the Clear Creek basin in Iowa.

  5. Covalently bonded networks through surface-confined polymerization

    NASA Astrophysics Data System (ADS)

    El Garah, Mohamed; MacLeod, Jennifer M.; Rosei, Federico

    2013-07-01

    The prospect of synthesizing ordered, covalently bonded structures directly on a surface has recently attracted considerable attention due to its fundamental interest and for potential applications in electronics and photonics. This prospective article focuses on efforts to synthesize and characterize epitaxial one- and two-dimensional (1D and 2D, respectively) polymeric networks on single crystal surfaces. Recent studies, mostly performed using scanning tunneling microscopy (STM), demonstrate the ability to induce polymerization based on Ullmann coupling, thermal dehalogenation and dehydration reactions. The 2D polymer networks synthesized to date have exhibited structural limitations and have been shown to form only small domains on the surface. We discuss different approaches to control 1D and 2D polymerization, with particular emphasis on the surface phenomena that are critical to the formation of larger ordered domains.

  6. Modeling of Carbon Mortar Color Expression Using Artificial Neural Network.

    PubMed

    Jang, Hong-Seok; Kim, Ju-Hee; Shuli, Xing; So, Seung-Young

    2018-09-01

    Colored concrete uses pigments and white Portland cement (WPC) to perform decorative functions together with structural function. Pigments are used in permanent coloring of concrete with colors different from the natural color of the cement or the aggregates with mixing WPC. In this study, an artificial neural networks study was carried out to predict the color evaluation of black mortar using pigment and carbon black. A data set of a laboratory work, in which a total of 9 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were nine different pigment and carbon black ratios. Each mortar was measured at ten locations on the surface and averaged. Color can be evaluated by measurements of tristimulus values L* , a* and b* , represented in the chromatic space CIELAB. The L* value is a measure of luminosity (0 darkness), from completely opaque (0) to completely transparent (100); a* is a measure of redness (-a* greenness) and b* of yellowness (-b* blueness). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of three input parameters that cover the pigment, carbon black and WPC and, an output parameter which is the color parameters of the black colored mortar. The results showed that ANN can be an alternative approach for the predicting the color parameters using mortar ingredients as input parameters.

  7. Engine having a variable valve actuation system

    DOEpatents

    Hefler, Gregory W [Chillicothe, IL

    2004-10-12

    An engine has a cylinder head having a first surface and a second surface spaced from the first surface. A valve is moveably connected to the cylinder head. A rocker arm is connected to the valve, and a rocker shaft having a first location spaced a maximum distance from the cylinder head is connected to the rocker arm. A support member has and an actuator fluid passage network. The actuator fluid passage network defines a volume. The support member is connected to the cylinder head and is positioned such that a majority of the volume of the actuator fluid passage network is between the first location of the rocker shaft and the second surface of the cylinder head.

  8. Engine having a variable valve actuation system

    DOEpatents

    Hefler, Gregory W.

    2005-10-12

    An engine has a cylinder head having a first surface and a second surface spaced from the first surface. A valve is moveably connected to the cylinder head. A rocker arm is connected to the valve, and a rocker shaft having a first location spaced a maximum distance from the cylinder head is connected to the rocker arm. A support member has and an actuator fluid passage network. The actuator fluid passage network defines a volume. The support member is connected to the cylinder head and is positioned such that a majority of the volume of the actuator fluid passage network is between the first location of the rocker shaft and the second surface of the cylinder head.

  9. Constrained Surface-Level Gateway Placement for Underwater Acoustic Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Li, Deying; Li, Zheng; Ma, Wenkai; Chen, Hong

    One approach to guarantee the performance of underwater acoustic sensor networks is to deploy multiple Surface-level Gateways (SGs) at the surface. This paper addresses the connected (or survivable) Constrained Surface-level Gateway Placement (C-SGP) problem for 3-D underwater acoustic sensor networks. Given a set of candidate locations where SGs can be placed, our objective is to place minimum number of SGs at a subset of candidate locations such that it is connected (or 2-connected) from any USN to the base station. We propose a polynomial time approximation algorithm for the connected C-SGP problem and survivable C-SGP problem, respectively. Simulations are conducted to verify our algorithms' efficiency.

  10. Cross-scale modeling of surface temperature and tree seedling establishment inmountain landscapes

    USGS Publications Warehouse

    Dingman, John; Sweet, Lynn C.; McCullough, Ian M.; Davis, Frank W.; Flint, Alan L.; Franklin, Janet; Flint, Lorraine E.

    2013-01-01

    Abstract: Introduction: Estimating surface temperature from above-ground field measurements is important for understanding the complex landscape patterns of plant seedling survival and establishment, processes which occur at heights of only several centimeters. Currently, future climate models predict temperature at 2 m above ground, leaving ground-surface microclimate not well characterized. Methods: Using a network of field temperature sensors and climate models, a ground-surface temperature method was used to estimate microclimate variability of minimum and maximum temperature. Temperature lapse rates were derived from field temperature sensors and distributed across the landscape capturing differences in solar radiation and cold air drainages modeled at a 30-m spatial resolution. Results: The surface temperature estimation method used for this analysis successfully estimated minimum surface temperatures on north-facing, south-facing, valley, and ridgeline topographic settings, and when compared to measured temperatures yielded an R2 of 0.88, 0.80, 0.88, and 0.80, respectively. Maximum surface temperatures generally had slightly more spatial variability than minimum surface temperatures, resulting in R2 values of 0.86, 0.77, 0.72, and 0.79 for north-facing, south-facing, valley, and ridgeline topographic settings. Quasi-Poisson regressions predicting recruitment of Quercus kelloggii (black oak) seedlings from temperature variables were significantly improved using these estimates of surface temperature compared to air temperature modeled at 2 m. Conclusion: Predicting minimum and maximum ground-surface temperatures using a downscaled climate model coupled with temperature lapse rates estimated from field measurements provides a method for modeling temperature effects on plant recruitment. Such methods could be applied to improve projections of species’ range shifts under climate change. Areas of complex topography can provide intricate microclimates that may allow species to redistribute locally as climate changes.

  11. Earth's gravity field to the eighteenth degree and geocentric coordinates for 104 stations from satellite and terrestrial data

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.

    1973-01-01

    Geodetic parameters describing the earth's gravity field and the positions of satellite-tracking stations in a geocentric reference frame were computed. These parameters were estimated by means of a combination of five different types of data: routine and simultaneous satellite observations, observations of deep-space probes, measurements of terrestrial gravity, and surface-triangulation data. The combination gives better parameters than does any subset of data types. The dynamic solution used precision-reduced Baker-Nunn observations and laser range data of 25 satellites. Data from the 49-station National Oceanic and Atmospheric Administration BC-4 network, the 19-station Smithsonian Astrophysical Observatory Baker-Nunn network, and independent camera stations were employed in the geometrical solution. Data from the tracking of deep-space probes were converted to relative longitudes and distances to the earth's axis of rotation of the tracking stations. Surface-gravity data in the form of 550-km squares were derived from 19,328 1 deg X 1 deg mean gravity anomalies.

  12. Levelling Profiles and a GPS Network to Monitor the Active Folding and Faulting Deformation in the Campo de Dalias (Betic Cordillera, Southeastern Spain)

    PubMed Central

    Marín-Lechado, Carlos; Galindo-Zaldívar, Jesús; Gil, Antonio José; Borque, María Jesús; de Lacy, María Clara; Pedrera, Antonio; López-Garrido, Angel Carlos; Alfaro, Pedro; García-Tortosa, Francisco; Ramos, Maria Isabel; Rodríguez-Caderot, Gracia; Rodríguez-Fernández, José; Ruiz-Constán, Ana; de Galdeano-Equiza, Carlos Sanz

    2010-01-01

    The Campo de Dalias is an area with relevant seismicity associated to the active tectonic deformations of the southern boundary of the Betic Cordillera. A non-permanent GPS network was installed to monitor, for the first time, the fault- and fold-related activity. In addition, two high precision levelling profiles were measured twice over a one-year period across the Balanegra Fault, one of the most active faults recognized in the area. The absence of significant movement of the main fault surface suggests seismogenic behaviour. The possible recurrence interval may be between 100 and 300 y. The repetitive GPS and high precision levelling monitoring of the fault surface during a long time period may help us to determine future fault behaviour with regard to the existence (or not) of a creep component, the accumulation of elastic deformation before faulting, and implications of the fold-fault relationship. PMID:22319309

  13. Self-organized nano-structuring of CoO islands on Fe(001)

    NASA Astrophysics Data System (ADS)

    Brambilla, A.; Picone, A.; Giannotti, D.; Riva, M.; Bussetti, G.; Berti, G.; Calloni, A.; Finazzi, M.; Ciccacci, F.; Duò, L.

    2016-01-01

    The realization of nanometer-scale structures through bottom-up strategies can be accomplished by exploiting a buried network of dislocations. We show that, by following appropriate growth steps in ultra-high vacuum molecular beam epitaxy, it is possible to grow nano-structured films of CoO coupled to Fe(001) substrates, with tunable sizes (both the lateral size and the maximum height scale linearly with coverage). The growth mode is discussed in terms of the evolution of surface morphology and chemical interactions as a function of the CoO thickness. Scanning tunneling microscopy measurements reveal that square mounds of CoO with lateral dimensions of less than 25 nm and heights below 10 atomic layers are obtained by growing few-nanometers-thick CoO films on a pre-oxidized Fe(001) surface covered by an ultra-thin Co buffer layer. In the early stages of growth, a network of misfit dislocations develops, which works as a template for the CoO nano-structuring. From a chemical point of view, at variance with typical CoO/Fe interfaces, neither Fe segregation at the surface nor Fe oxidation at the buried interface are observed, as seen by Auger electron spectroscopy and X-ray Photoemission Spectroscopy, respectively.

  14. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  15. Suborbital Science Program: Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  16. The surface climatology of the Ross Ice Shelf Antarctica

    PubMed Central

    Lazzara, Matthew A.; Keller, Linda M.; Cassano, John J.

    2016-01-01

    ABSTRACT The University of Wisconsin‐Madison Antarctic Automatic Weather Station (AWS) project has been making meteorological surface observations on the Ross Ice Shelf (RIS) for approximately 30 years. This network offers the most continuous set of routine measurements of surface meteorological variables in this region. The Ross Island area is excluded from this study. The surface climate of the RIS is described using the AWS measurements. Temperature, pressure, and wind data are analysed on daily, monthly, seasonal, and annual time periods for 13 AWS across the RIS. The AWS are separated into three representative regions – central, coastal, and the area along the Transantarctic Mountains – in order to describe specific characteristics of sections of the RIS. The climatology describes general characteristics of the region and significant changes over time. The central AWS experiences the coldest mean temperature, and the lowest resultant wind speed. These AWSs also experience the coldest potential temperatures with a minimum of 209.3 K at Gill AWS. The AWS along the Transantarctic Mountains experiences the warmest mean temperature, the highest mean sea‐level pressure, and the highest mean resultant wind speed. Finally, the coastal AWS experiences the lowest mean pressure. Climate indices (MEI, SAM, and SAO) are compared to temperature and pressure data of four of the AWS with the longest observation periods, and significant correlation is found for most AWS in sea‐level pressure and temperature. This climatology study highlights characteristics that influence the climate of the RIS, and the challenges of maintaining a long‐term Antarctic AWS network. Results from this effort are essential for the broader Antarctic meteorology community for future research. PMID:28008213

  17. Post-depositional fracturing and subsidence of pumice flow deposits: Lascar Volcano, Chile.

    PubMed

    Whelley, Patrick L; Jay, J; Calder, E S; Pritchard, M E; Cassidy, N J; Alcaraz, S; Pavez, A

    Unconsolidated pyroclastic flow deposits of the 1993 eruption of Lascar Volcano, Chile, have, with time, become increasingly dissected by a network of deeply penetrating fractures. The fracture network comprises orthogonal sets of decimeter-wide linear voids that form a pseudo-polygonal grid visible on the deposit surface. In this work, we combine shallow surface geophysical imaging tools with remote sensing observations and direct field measurements of the deposit to investigate these fractures and their underlying causal mechanisms. Based on ground penetrating radar images, the fractures are observed to have propagated to depths of up to 10 m. In addition, orbiting radar interferometry shows that deposit subsidence of up to 1 cm/year -1 occurred between 1993 and 1996 with continued subsidence occurring at a slower rate thereafter. In situ measurements show that 1 m below the surface, the 1993 deposits remain 5°C to 15°C hotter, 18 years after emplacement, than adjacent deposits. Based on the observed subsidence as well as estimated cooling rates, the fractures are inferred to be the combined result of deaeration, thermal contraction, and sedimentary compaction in the months to years following deposition. Significant environmental factors, including regional earthquakes in 1995 and 2007, accelerated settling at punctuated moments in time. The spatially variable fracture pattern relates to surface slope and lithofacies variations as well as substrate lithology. Similar fractures have been reported in other ignimbrites but are generally exposed only in cross section and are often attributed to formation by external forces. Here we suggest that such interpretations should be invoked with caution, and deformation including post-emplacement subsidence and fracturing of loosely packed ash-rich deposits in the months to years post-emplacement is a process inherent in the settling of pyroclastic material.

  18. Retrieval of aerosol optical properties using MERIS observations: Algorithm and some first results.

    PubMed

    Mei, Linlu; Rozanov, Vladimir; Vountas, Marco; Burrows, John P; Levy, Robert C; Lotz, Wolfhardt

    2017-08-01

    The MEdium Resolution Imaging Spectrometer (MERIS) instrument on board ESA Envisat made measurements from 2002 to 2012. Although MERIS was limited in spectral coverage, accurate Aerosol Optical Thickness (AOT) from MERIS data are retrieved by using appropriate additional information. We introduce a new AOT retrieval algorithm for MERIS over land surfaces, referred to as eXtensible Bremen AErosol Retrieval (XBAER). XBAER is similar to the "dark-target" (DT) retrieval algorithm used for Moderate-resolution Imaging Spectroradiometer (MODIS), in that it uses a lookup table (LUT) to match to satellite-observed reflectance and derive the AOT. Instead of a global parameterization of surface spectral reflectance, XBAER uses a set of spectral coefficients to prescribe surface properties. In this manner, XBAER is not limited to dark surfaces (vegetation) and retrieves AOT over bright surface (desert, semiarid, and urban areas). Preliminary validation of the MERIS-derived AOT and the ground-based Aerosol Robotic Network (AERONET) measurements yield good agreement, the resulting regression equation is y = (0.92 × ± 0.07) + (0.05 ± 0.01) and Pearson correlation coefficient of R = 0.78. Global monthly means of AOT have been compared from XBAER, MODIS and other satellite-derived datasets.

  19. Development of a remote sensing algorithm to retrieve atmospheric aerosol properties using multiwavelength and multipixel information

    NASA Astrophysics Data System (ADS)

    Hashimoto, Makiko; Nakajima, Teruyuki

    2017-06-01

    We developed a satellite remote sensing algorithm to retrieve the aerosol optical properties using satellite-received radiances for multiple wavelengths and pixels. Our algorithm utilizes spatial inhomogeneity of surface reflectance to retrieve aerosol properties, and the main target is urban aerosols. This algorithm can simultaneously retrieve aerosol optical thicknesses (AOT) for fine- and coarse-mode aerosols, soot volume fraction in fine-mode aerosols (SF), and surface reflectance over heterogeneous surfaces such as urban areas that are difficult to obtain by conventional pixel-by-pixel methods. We applied this algorithm to radiances measured by the Greenhouse Gases Observing Satellite/Thermal and Near Infrared Sensor for Carbon Observations-Cloud and Aerosol Image (GOSAT/TANSO-CAI) at four wavelengths and were able to retrieve the aerosol parameters in several urban regions and other surface types. A comparison of the retrieved AOTs with those from the Aerosol Robotic Network (AERONET) indicated retrieval accuracy within ±0.077 on average. It was also found that the column-averaged SF and the aerosol single scattering albedo (SSA) underwent seasonal changes as consistent with the ground surface measurements of SSA and black carbon at Beijing, China.

  20. Delay/Disruption Tolerant Networks (DTN): Testing and Demonstration for Lunar Surface Applications

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This slide presentation reviews the testing of the Delay/Disruption Tolerant Network (DTN) designed for use with Lunar Surface applications. This is being done through the DTN experimental Network (DEN), that permit access and testing by other NASA centers, DTN team members and protocol developers. The objective of this work is to demonstrate DTN for high return applications in lunar scenarios, provide DEN connectivity with analogs of Constellation elements, emulators, and other resources from DTN Team Members, serve as a wireless communications staging ground for remote analog excursions and enable testing of detailed communication scenarios and evaluation of network performance. Three scenarios for DTN on the Lunar surface are reviewed: Motion imagery, Voice and sensor telemetry, and Navigation telemetry.

  1. Surface Hold Advisor Using Critical Sections

    NASA Technical Reports Server (NTRS)

    Law, Caleb Hoi Kei (Inventor); Hsiao, Thomas Kun-Lung (Inventor); Mittler, Nathan C. (Inventor); Couluris, George J. (Inventor)

    2013-01-01

    The Surface Hold Advisor Using Critical Sections is a system and method for providing hold advisories to surface controllers to prevent gridlock and resolve crossing and merging conflicts among vehicles traversing a vertex-edge graph representing a surface traffic network on an airport surface. The Advisor performs pair-wise comparisons of current position and projected path of each vehicle with other surface vehicles to detect conflicts, determine critical sections, and provide hold advisories to traffic controllers recommending vehicles stop at entry points to protected zones around identified critical sections. A critical section defines a segment of the vertex-edge graph where vehicles are in crossing or merging or opposite direction gridlock contention. The Advisor detects critical sections without reference to scheduled, projected or required times along assigned vehicle paths, and generates hold advisories to prevent conflicts without requiring network path direction-of-movement rules and without requiring rerouting, rescheduling or other network optimization solutions.

  2. Application of Neural Networks to Wind tunnel Data Response Surface Methods

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Zhao, J. L.; DeLoach, Richard

    2000-01-01

    The integration of nonlinear neural network methods with conventional linear regression techniques is demonstrated for representative wind tunnel force balance data modeling. This work was motivated by a desire to formulate precision intervals for response surfaces produced by neural networks. Applications are demonstrated for representative wind tunnel data acquired at NASA Langley Research Center and the Arnold Engineering Development Center in Tullahoma, TN.

  3. Towards ultrahydrophobic surfaces: a biomimetic approach

    NASA Astrophysics Data System (ADS)

    Mock, Ulrike; Förster, Ralf; Menz, Wolfgang; Rühe, Jürgen

    2005-03-01

    We report on efforts to mimic the wetting behaviour of surfaces or leaves of certain plants, which are rendered ultrahydrophobic through a dense layer of hairs grown on top of the leaf. We use a simple moulding approach to obtain elastic hydrophilic hydrogel networks with pillar structures that may serve as model systems for such hairy surfaces. In order to generate such structures, we first generate either a steel master or directly use a lady's mantle leaf. Second, the master is moulded against a silicone to yield an elastomer, which is a negative of the hairy surface. A subsequent radical polymerization in the negative leads to the formation of an elastic hydrogel even for the very high aspect ratios characteristic of the natural system. The results of some preliminary contact angle measurements on the obtained structures are discussed.

  4. Stormwater management network effectiveness and implications for urban watershed function: A critical review

    USGS Publications Warehouse

    Jefferson, Anne J.; Bhaskar, Aditi S.; Hopkins, Kristina G.; Fanelli, Rosemary; Avellaneda, Pedro M.; McMillan, Sara K.

    2017-01-01

    Deleterious effects of urban stormwater are widely recognized. In several countries, regulations have been put into place to improve the conditions of receiving water bodies, but planning and engineering of stormwater control is typically carried out at smaller scales. Quantifying cumulative effectiveness of many stormwater control measures on a watershed scale is critical to understanding how small-scale practices translate to urban river health. We review 100 empirical and modelling studies of stormwater management effectiveness at the watershed scale in diverse physiographic settings. Effects of networks with stormwater control measures (SCMs) that promote infiltration and harvest have been more intensively studied than have detention-based SCM networks. Studies of peak flows and flow volumes are common, whereas baseflow, groundwater recharge, and evapotranspiration have received comparatively little attention. Export of nutrients and suspended sediments have been the primary water quality focus in the United States, whereas metals, particularly those associated with sediments, have received greater attention in Europe and Australia. Often, quantifying cumulative effects of stormwater management is complicated by needing to separate its signal from the signal of urbanization itself, innate watershed characteristics that lead to a range of hydrologic and water quality responses, and the varying functions of multiple types of SCMs. Biases in geographic distribution of study areas, and size and impervious surface cover of watersheds studied also limit our understanding of responses. We propose hysteretic trajectories for how watershed function responds to increasing imperviousness and stormwater management. Even where impervious area is treated with SCMs, watershed function may not be restored to its predevelopment condition because of the lack of treatment of all stormwater generated from impervious surfaces; non-additive effects of individual SCMs; and persistence of urban effects beyond impervious surfaces. In most cases, pollutant load decreases largely result from run-off reductions rather than lowered solute or particulate concentrations. Understanding interactions between natural and built landscapes, including stormwater management strategies, is critical for successfully managing detrimental impacts of stormwater at the watershed scale.

  5. Structure and energetics of hydrogen-bonded networks of methanol on close packed transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Murphy, Colin J.; Carrasco, Javier; Lawton, Timothy J.; Liriano, Melissa L.; Baber, Ashleigh E.; Lewis, Emily A.; Michaelides, Angelos; Sykes, E. Charles H.

    2014-07-01

    Methanol is a versatile chemical feedstock, fuel source, and energy storage material. Many reactions involving methanol are catalyzed by transition metal surfaces, on which hydrogen-bonded methanol overlayers form. As with water, the structure of these overlayers is expected to depend on a delicate balance of hydrogen bonding and adsorbate-substrate bonding. In contrast to water, however, relatively little is known about the structures methanol overlayers form and how these vary from one substrate to another. To address this issue, herein we analyze the hydrogen bonded networks that methanol forms as a function of coverage on three catalytically important surfaces, Au(111), Cu(111), and Pt(111), using a combination of scanning tunneling microscopy and density functional theory. We investigate the effect of intermolecular interactions, surface coverage, and adsorption energies on molecular assembly and compare the results to more widely studied water networks on the same surfaces. Two main factors are shown to direct the structure of methanol on the surfaces studied: the surface coverage and the competition between the methanol-methanol and methanol-surface interactions. Additionally, we report a new chiral form of buckled hexamer formed by surface bound methanol that maximizes the interactions between methanol monomers by sacrificing interactions with the surface. These results serve as a direct comparison of interaction strength, assembly, and chirality of methanol networks on Au(111), Cu(111), and Pt(111) which are catalytically relevant for methanol oxidation, steam reforming, and direct methanol fuel cells.

  6. PREFACE: Nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Palmer, Richard E.

    2003-10-01

    We can define nanostructured surfaces as well-defined surfaces which contain lateral features of size 1-100 nm. This length range lies well below the micron regime but equally above the Ångstrom regime, which corresponds to the interatomic distances on single-crystal surfaces. This special issue of Journal of Physics: Condensed Matter presents a collection of twelve papers which together address the fabrication, characterization, properties and applications of such nanostructured surfaces. Taken together they represent, in effect, a status report on the rapid progress taking place in this burgeoning area. The first four papers in this special issue have been contributed by members of the European Research Training Network ‘NanoCluster’, which is concerned with the deposition, growth and characterization of nanometre-scale clusters on solid surfaces—prototypical examples of nanoscale surface features. The paper by Vandamme is concerned with the fundamentals of the cluster-surface interaction; the papers by Gonzalo and Moisala address, respectively, the optical and catalytic properties of deposited clusters; and the paper by van Tendeloo reports the application of transmission electron microscopy (TEM) to elucidate the surface structure of spherical particles in a catalyst support. The fifth paper, by Mendes, is also the fruit of a European Research Training Network (‘Micro-Nano’) and is jointly contributed by three research groups; it reviews the creation of nanostructured surface architectures from chemically-synthesized nanoparticles. The next five papers in this special issue are all concerned with the characterization of nanostructured surfaces with scanning tunnelling microscopy (STM) and atomic force microscopy (AFM). The papers by Bolotov, Hamilton and Dunstan demonstrate that the STM can be employed for local electrical measurements as well as imaging, as illustrated by the examples of deposited clusters, model semiconductor structures and real devices, respectively, while the papers by Ledieu and Guo report the structural characterization of novel surface systems—quasicrystal surfaces and supramolecular monolayers, respectively. The final two papers, by Bennett and Smith, demonstrate the positive interplay between experimental measurements and theoretical modelling in the investigation of nanostructured surfaces. The examples discussed include, respectively, the growth of metal clusters on oxide surfaces and the deposition of fullerenes and energetic clusters from the gas phase. We note finally that the last six papers in this special issue have been contributed by members of the Committee of the newly-formed Nanoscale Physics and Technology Group of the Institute of Physics. The Group shares with this special issue the aim of promoting and disseminating exciting advances in the flourishing field of nanoscale physics.

  7. Hydrogeologic and water-quality data for the main site, Naval Surface Warfare Center, Dahlgren Laboratory, Dahlgren, Virginia

    USGS Publications Warehouse

    Bell, Clifton F.; Bolles, Thomas P.; Harlow, George E.

    1994-01-01

    Hydrogeologic and water-quality data were collected at the Naval Surface Warfare Center, Dahlgren Laboratory at Dahlgren, Virginia, as part of a hydrogeologic assessment of the shallow aquifer system begun in 1992. The U.S. Geological Survey conducted this study to provide the Navy with hydrogeologic data to meet the requirements of a Spill Contingency Plan. This report describes the ground-water observation-well network, hydro- geologic, and water-quality data collected between August 1992 and September 1993. The report includes a description of the locations and con- struction of 35 observation wells on the Main Site. Hydrologic data include lithologic core samples, geophysical logs, and vertical hydraulic conductivity measurements of selected core intervals. Hydrologic data include synoptic and hourly measurements of ground-water levels, observation-well slug tests to determine horizontal hydraulic conductivity, and tide data. Water-quality data include analyses of major dissolved constituents in ground water and surface water.

  8. Classification of boreal forest by satellite and inventory data using neural network approach

    NASA Astrophysics Data System (ADS)

    Romanov, A. A.

    2012-12-01

    The main objective of this research was to develop methodology for boreal (Siberian Taiga) land cover classification in a high accuracy level. The study area covers the territories of Central Siberian several parts along the Yenisei River (60-62 degrees North Latitude): the right bank includes mixed forest and dark taiga, the left - pine forests; so were taken as a high heterogeneity and statistically equal surfaces concerning spectral characteristics. Two main types of data were used: time series of middle spatial resolution satellite images (Landsat 5, 7 and SPOT4) and inventory datasets from the nature fieldworks (used for training samples sets preparation). Method of collecting field datasets included a short botany description (type/species of vegetation, density, compactness of the crowns, individual height and max/min diameters representative of each type, surface altitude of the plot), at the same time the geometric characteristic of each training sample unit corresponded to the spatial resolution of satellite images and geo-referenced (prepared datasets both of the preliminary processing and verification). The network of test plots was planned as irregular and determined by the landscape oriented approach. The main focus of the thematic data processing has been allocated for the use of neural networks (fuzzy logic inc.); therefore, the results of field studies have been converting input parameter of type / species of vegetation cover of each unit and the degree of variability. Proposed approach involves the processing of time series separately for each image mainly for the verification: shooting parameters taken into consideration (time, albedo) and thus expected to assess the quality of mapping. So the input variables for the networks were sensor bands, surface altitude, solar angels and land surface temperature (for a few experiments); also given attention to the formation of the formula class on the basis of statistical pre-processing of results of field research (prevalence type). Besides some statistical methods of supervised classification has been used (minimal distance, maximum likelihood, Mahalanobis). During the study received various types of neural classifiers suitable for the mapping, and even for the high heterogenic areas neural network approach has shown better results in precision despite the validity of the assumption of Gaussian distribution (Table). Experimentally chosen optimum network structure consisting of three layers of ten neuron in each, but it should be clarified that such configuration requires larges computational resources in comparison the statistical methods presented above; necessary to increase the number of iteration in network learning process for RMS errors minimization. It should also be emphasized that the key issues of accuracy estimation of the classification results is lack of completeness of the training sets, this is especially true with summer image processing of mixed forest. However seems that proposed methodology can be used also for measure local dynamic of boreal land surface by the type of vegetation.Comparison of classification accuracyt;

  9. Mechanics and control of the cytoskeleton in Amoeba proteus.

    PubMed Central

    Dembo, M

    1989-01-01

    Many models of the cytoskeletal motility of Amoeba proteus can be formulated in terms of the theory of reactive interpenetrating flow (Dembo and Harlow, 1986). We have devised numerical methodology for testing such models against the phenomenon of steady axisymmetric fountain flow. The simplest workable scheme revealed by such tests (the minimal model) is the main preoccupation of this study. All parameters of the minimal model are determined from available data. Using these parameters the model quantitatively accounts for the self assembly of the cytoskeleton of A. proteus: for the formation and detailed morphology of the endoplasmic channel, the ectoplasmic tube, the uropod, the plasma gel sheet, and the hyaline cap. The model accounts for the kinematics of the cytoskeleton: the detailed velocity field of the forward flow of the endoplasm, the contraction of the ectoplasmic tube, and the inversion of the flow in the fountain zone. The model also gives a satisfactory account of measurements of pressure gradients, measurements of heat dissipation, and measurements of the output of useful work by amoeba. Finally, the model suggests a very promising (but still hypothetical) continuum formulation of the free boundary problem of amoeboid motion. by balancing normal forces on the plasma membrane as closely as possible, the minimal model is able to predict the turgor pressure and surface tension of A. proteus. Several dynamical factors are crucial to the success of the minimal model and are likely to be general features of cytoskeletal mechanics and control in amoeboid cells. These are: a constitutive law for the viscosity of the contractile network that includes an automatic process of gelation as the network density gets large; a very vigorous cycle of network polymerization and depolymerization (in the case of A. proteus, the time constant for this reaction is approximately 12 s); control of network contractility by a diffusible factor (probably calcium ion); and control of the adhesive interaction between the cytoskeleton and the inner surface of the plasma membrane. Images FIGURE 1 FIGURE 2 FIGURE 7 PMID:2765645

  10. A feedback model of figure-ground assignment.

    PubMed

    Domijan, Drazen; Setić, Mia

    2008-05-30

    A computational model is proposed in order to explain how bottom-up and top-down signals are combined into a unified perception of figure and background. The model is based on the interaction between the ventral and the dorsal stream. The dorsal stream computes saliency based on boundary signals provided by the simple and the complex cortical cells. Output from the dorsal stream is projected to the surface network which serves as a blackboard on which the surface representation is formed. The surface network is a recurrent network which segregates different surfaces by assigning different firing rates to them. The figure is labeled by the maximal firing rate. Computer simulations showed that the model correctly assigns figural status to the surface with a smaller size, a greater contrast, convexity, surroundedness, horizontal-vertical orientation and a higher spatial frequency content. The simple gradient of activity in the dorsal stream enables the simulation of the new principles of the lower region and the top-bottom polarity. The model also explains how the exogenous attention and the endogenous attention may reverse the figural assignment. Due to the local excitation in the surface network, neural activity at the cued region will spread over the whole surface representation. Therefore, the model implements the object-based attentional selection.

  11. Progress on the Development of Future Airport Surface Wireless Communications Network

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Budinger, James M.; Brooks, David E.; Franklin, Morgan; DeHart, Steve; Dimond, Robert P.; Borden, Michael

    2009-01-01

    Continuing advances in airport surface management and improvements in airport surface safety are required to enable future growth in air traffic throughout the airspace, as airport arrival and departure delays create a major system bottleneck. These airport management and safety advances will be built upon improved communications, navigation, surveillance, and weather sensing, creating an information environment supporting system automation. The efficient movement of the digital data generated from these systems requires an underlying communications network infrastructure to connect data sources with the intended users with the required quality of service. Current airport surface communications consists primarily of buried copper or fiber cable. Safety related communications with mobile airport surface assets occurs over 25 kHz VHF voice and data channels. The available VHF spectrum, already congested in many areas, will be insufficient to support future data traffic requirements. Therefore, a broadband wireless airport surface communications network is considered a requirement for the future airport component of the air transportation system. Progress has been made on defining the technology and frequency spectrum for the airport surface wireless communications network. The development of a test and demonstration facility and the definition of required testing and standards development are now underway. This paper will review the progress and planned future work.

  12. Precision Interval Estimation of the Response Surface by Means of an Integrated Algorithm of Neural Network and Linear Regression

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.

    1999-01-01

    The integration of Radial Basis Function Networks and Back Propagation Neural Networks with the Multiple Linear Regression has been accomplished to map nonlinear response surfaces over a wide range of independent variables in the process of the Modem Design of Experiments. The integrated method is capable to estimate the precision intervals including confidence and predicted intervals. The power of the innovative method has been demonstrated by applying to a set of wind tunnel test data in construction of response surface and estimation of precision interval.

  13. Decoding small surface codes with feedforward neural networks

    NASA Astrophysics Data System (ADS)

    Varsamopoulos, Savvas; Criger, Ben; Bertels, Koen

    2018-01-01

    Surface codes reach high error thresholds when decoded with known algorithms, but the decoding time will likely exceed the available time budget, especially for near-term implementations. To decrease the decoding time, we reduce the decoding problem to a classification problem that a feedforward neural network can solve. We investigate quantum error correction and fault tolerance at small code distances using neural network-based decoders, demonstrating that the neural network can generalize to inputs that were not provided during training and that they can reach similar or better decoding performance compared to previous algorithms. We conclude by discussing the time required by a feedforward neural network decoder in hardware.

  14. Accurate Measurement of Absolute Terahertz Power Using Broadband Calorimeter

    NASA Astrophysics Data System (ADS)

    Iida, Hitoshi; Kinoshita, Moto; Amemiya, Kuniaki

    2018-03-01

    This paper presents a highly sensitive terahertz (THz) calorimeter developed using a magnetically loaded epoxy as a broadband absorber. The reflection loss of the absorber, which has a pyramidally textured surface, is less than 0.04, as determined using a THz time-domain spectrometer and a vector network analyzer. The THz calorimeter successfully enabled the measurement of the absolute THz power from a photomixer at microwatt levels at room temperature. The measurement uncertainties at a 95% confidence level were 6.2% for 13 μW at 300 GHz and 5.6% for 1.5 μW at 1 THz, respectively. Details of the evaluation and uncertainty analyses are also presented.

  15. Optimizing Observation Networks Combining Ships of Opportunity, Gliders, Moored Buoys and FerryBox in the Bay of Biscay and English Channel

    NASA Astrophysics Data System (ADS)

    Charria, G.; Lamouroux, J.; De Mey, P. J.; Raynaud, S.; Heyraud, C.; Craneguy, P.; Dumas, F.; Le Henaff, M.

    2016-02-01

    Designing optimal observation networks in coastal oceans remains one of the major challenges towards the implementation of future Integrated Ocean Observing Systems to monitor the coastal environment. In the Bay of Biscay and the English Channel, the diversity of involved processes requires to adapt observing systems to the specific targeted environments. Also important is the requirement for those systems to sustain coastal applications. An efficient way to measure the hydrological content of the water column over the continental shelf is to consider ships of opportunity. In the French observation strategy, the RECOPESCA program, as a component of the High frequency Observation network for the environment in coastal SEAs (HOSEA), aims to collect environmental observations from sensors attached to fishing nets. In the present study, we assess that network performances using the ArM method (Le Hénaff et al., 2009). A reference network, based on fishing vessels observations in 2008, is assessed using that method. Moreover, three scenarios, based on the reference network, a denser network in 2010 and a fictive network aggregated from a pluri-annual collection of profiles, are also analyzed. Two other observational network design experiments have been implemented for the spring season in two regions: 1) the Loire River plume (northern part of the Bay of Biscay) to explore different possible glider endurance lines combined with a fixed mooring to monitor temperature and salinity and 2) the Western English Channel using a glider below FerryBox measurements. These experiments combining existing and future observing systems, as well as numerical ensemble simulations, highlight the key issue of monitoring the whole water column in and close to river plumes (e.g. using gliders), the efficiency of the surface high frequency sampling from FerryBoxes in macrotidal regions and the importance of sampling key regions instead of increasing the number of Voluntary Observing Ships.

  16. A Concept for the Development of Spatially Resolved Measurements for Soil Moisture with TEM Waveguides

    NASA Astrophysics Data System (ADS)

    Lapteva, Yulia; Schmidt, Felix; Bumberger, Jan

    2014-05-01

    Soil water content plays a leading role in delimitating water and energy fluxes at the land surface and controlling groundwater recharging. The information about water content in the soil would be very useful in overcoming the challenge of managing water resources under conditions of increasing scarcity in Southern Europe and the Mediterranean region.For collecting data about the water content in soil, it is possible to use remote sensing and groundwater monitoring, built wireless sensor networks for water monitoring. Remote sensing provides a unique capability to get the information of soil moisture at global and regional scales. Wireless environmental sensor networks enable to connect local and regional-scale soil water content observations. There exist different ground based soil moisture measurement methods such as TDR, FDR, electromagnetic waves (EW), electrical and acoustic methods. Among these methods, the time domain reflectometry (TDR) is considered to be the most important and widely used electromagnetic approach. The special techniques for the reconstruction of the layered soil with TDR are based on differential equations in the time domain and numerical optimization algorithms. However, these techniques are time- consuming and suffering from some problems, like multiple reflections at the boundary surfaces. To overcome these limitations, frequency domain measurement (FDM) techniques could be used. With devices like vector network analyzers (VNA) the accuracy of the measurement itself and of the calibration can be improved. For field applicable methods the reflection coefficient is mathematically transformed in the time domain, which can be treated like TDR-data and the same information can be obtained. There are already existed some experiments using the frequency domain data directly as an input for inversion algorithms to find the spatial distribution of the soil parameters. The model that is used represents an exact solution of the Maxwell's equations. It describes the one-dimensional wave propagation in a multi-layered medium, assuming the wave to be transverse electromagnetic (TEM). In the particular case of transmission lines with perpendicularly arranged layer transitions this assumption is very close to reality. Such waveguides and their frequency domain measurements in layered media are promising concerning a development ways working with soil moisture detection.

  17. A Micro-delivery Approach for Studying Microvascular Responses to Localized Oxygen Delivery

    PubMed Central

    Ghonaim, Nour W.; Lau, Leo W. M.; Goldman, Daniel; Ellis, Christopher G.; Yang, Jun

    2011-01-01

    In vivo video microscopy has been used to study blood flow regulation as a function of varying oxygen concentration in microcirculatory networks. However, previous studies have measured the collective response of stimulating large areas of the microvascular network at the tissue surface. Objective We aim to limit the area being stimulated by controlling oxygen availability to highly localized regions of the microvascular bed within intact muscle. Design and Method Gas of varying O2 levels was delivered to specific locations on the surface of the Extensor Digitorum Longus muscle of rat through a set of micro-outlets (100 μm diameter) patterned in ultrathin glass using state-of-the-art microfabrication techniques. O2 levels were oscillated and digitized video sequences were processed for changes in capillary hemodynamics and erythrocyte O2 saturation. Results and Conclusions Oxygen saturations in capillaries positioned directly above the micro-outlets were closely associated with the controlled local O2 oscillations. Radial diffusion from the micro-outlet is limited to ~75 μm from the center as predicted by computational modelling and as measured in vivo. These results delineate a key step in the design of a novel micro-delivery device for controlled oxygen delivery to the microvasculature to understand fundamental mechanisms of microvascular regulation of O2 supply. PMID:21914035

  18. Microstructural dependence on relevant physical-mechanical properties on SiO2-Na2O-CaO-P2O5 biological glasses.

    PubMed

    Rajendran, V; Begum, A Nishara; Azooz, M A; el Batal, F H

    2002-11-01

    Bioactive glasses of the system SiO2-Na2O-CaO-P2O5 have been prepared by the normal melting and annealing technique. The elastic moduli, attenuation, Vickers hardness, fracture toughness and fracture surface energy have been obtained using the known method at room temperature. The temperature dependence of elastic moduli and attenuation measurements have been extended over a wide range of temperature from 150 to 500 K. The SiO2 content dependence of velocities, attenuation, elastic moduli, and other parameters show an interesting observation at 45 wt% of SiO2 by exhibiting an anomalous behaviour. A linear relation is developed for Tg, which explores the influence of Na2O on SiO2-Na2O-CaO-P2O5 bioactive glasses. The measured hardness, fracture toughness and fracture surface energy show a linear relation with Young's modulus. It is also interesting to note that the observed results are functions of polymerisation and the number of non-bridging oxygens (NBO) prevailing in the network with change in SiO2 content. The temperature dependence of velocities, attenuation and elastic moduli show the existence of softening in the glass network structure as temperature increases.

  19. Towards identification of relevant variables in the observed aerosol optical depth bias between MODIS and AERONET observations

    NASA Astrophysics Data System (ADS)

    Malakar, N. K.; Lary, D. J.; Gencaga, D.; Albayrak, A.; Wei, J.

    2013-08-01

    Measurements made by satellite remote sensing, Moderate Resolution Imaging Spectroradiometer (MODIS), and globally distributed Aerosol Robotic Network (AERONET) are compared. Comparison of the two datasets measurements for aerosol optical depth values show that there are biases between the two data products. In this paper, we present a general framework towards identifying relevant set of variables responsible for the observed bias. We present a general framework to identify the possible factors influencing the bias, which might be associated with the measurement conditions such as the solar and sensor zenith angles, the solar and sensor azimuth, scattering angles, and surface reflectivity at the various measured wavelengths, etc. Specifically, we performed analysis for remote sensing Aqua-Land data set, and used machine learning technique, neural network in this case, to perform multivariate regression between the ground-truth and the training data sets. Finally, we used mutual information between the observed and the predicted values as the measure of similarity to identify the most relevant set of variables. The search is brute force method as we have to consider all possible combinations. The computations involves a huge number crunching exercise, and we implemented it by writing a job-parallel program.

  20. Supramolecular self-assembly on the B-Si(111)-(√3x√3) R30° surface: From single molecules to multicomponent networks

    NASA Astrophysics Data System (ADS)

    Makoudi, Younes; Jeannoutot, Judicaël; Palmino, Frank; Chérioux, Frédéric; Copie, Guillaume; Krzeminski, Christophe; Cleri, Fabrizio; Grandidier, Bruno

    2017-09-01

    Understanding the physical and chemical processes in which local interactions lead to ordered structures is of particular relevance to the realization of supramolecular architectures on surfaces. While spectacular patterns have been demonstrated on metal surfaces, there have been fewer studies of the spontaneous organization of supramolecular networks on semiconductor surfaces, where the formation of covalent bonds between organics and adatoms usually hamper the diffusion of molecules and their subsequent interactions with each other. However, the saturation of the dangling bonds at a semiconductor surface is known to make them inert and offers a unique way for the engineering of molecular patterns on these surfaces. This review describes the physicochemical properties of the passivated B-Si(111)-(√3x√3) R30° surface, that enable the self-assembly of molecules into a rich variety of extended and regular structures on silicon. Particular attention is given to computational methods based on multi-scale simulations that allow to rationalize the relative contribution of the dispersion forces involved in the self-assembled networks observed with scanning tunneling microscopy. A summary of state of the art studies, where a fine tuning of the molecular network topology has been achieved, sheds light on new frontiers for exploiting the construction of supramolecular structures on semiconductor surfaces.

Top