Sample records for surface meteorological parameters

  1. SSE Data and Information

    Atmospheric Science Data Center

    2018-04-03

    Surface meteorology and Solar Energy (SSE) Data and Information The Release 6.0 Surface meteorology and Solar Energy ( SSE ) data set contains parameters formulated for assessing and designing renewable energy systems. This latest release contains new parameters based on ...

  2. SSE Data and Information Page

    Atmospheric Science Data Center

    2018-04-04

    Surface meteorology and Solar Energy (SSE) Data and Information A new POWER home page ... The Release 6.0 Surface meteorology and Solar Energy (SSE) data set contains parameters formulated for assessing and designing renewable energy systems. This latest release contains new parameters based on ...

  3. Impact of Uncertainties in Meteorological Forcing Data and Land Surface Parameters on Global Estimates of Terrestrial Water Balance Components

    NASA Astrophysics Data System (ADS)

    Nasonova, O. N.; Gusev, Ye. M.; Kovalev, Ye. E.

    2009-04-01

    Global estimates of the components of terrestrial water balance depend on a technique of estimation and on the global observational data sets used for this purpose. Land surface modelling is an up-to-date and powerful tool for such estimates. However, the results of modelling are affected by the quality of both a model and input information (including meteorological forcing data and model parameters). The latter is based on available global data sets containing meteorological data, land-use information, and soil and vegetation characteristics. Now there are a lot of global data sets, which differ in spatial and temporal resolution, as well as in accuracy and reliability. Evidently, uncertainties in global data sets will influence the results of model simulations, but to which extent? The present work is an attempt to investigate this issue. The work is based on the land surface model SWAP (Soil Water - Atmosphere - Plants) and global 1-degree data sets on meteorological forcing data and the land surface parameters, provided within the framework of the Second Global Soil Wetness Project (GSWP-2). The 3-hourly near-surface meteorological data (for the period from 1 July 1982 to 31 December 1995) are based on reanalyses and gridded observational data used in the International Satellite Land-Surface Climatology Project (ISLSCP) Initiative II. Following the GSWP-2 strategy, we used a number of alternative global forcing data sets to perform different sensitivity experiments (with six alternative versions of precipitation, four versions of radiation, two pure reanalysis products and two fully hybridized products of meteorological data). To reveal the influence of model parameters on simulations, in addition to GSWP-2 parameter data sets, we produced two alternative global data sets with soil parameters on the basis of their relationships with the content of clay and sand in a soil. After this the sensitivity experiments with three different sets of parameters were performed. As a result, 16 variants of global annual estimates of water balance components were obtained. Application of alternative data sets on radiation, precipitation, and soil parameters allowed us to reveal the influence of uncertainties in input data on global estimates of water balance components.

  4. Meteorological satellite accomplishments

    NASA Technical Reports Server (NTRS)

    Allison, L. J.; Arking, A.; Bandeen, W. R.; Shenk, W. E.; Wexler, R.

    1974-01-01

    The various types of meteorological satellites are enumerated. Vertical sounding, parameter extraction technique, and both macroscale and mesoscale meteorological phenomena are discussed. The heat budget of the earth-atmosphere system is considered, along with ocean surface and hydrology.

  5. The effect of changes in space shuttle parameters on the NASA/MSFC multilayer diffusion model predictions of surface HCl concentrations

    NASA Technical Reports Server (NTRS)

    Glasser, M. E.; Rundel, R. D.

    1978-01-01

    A method for formulating these changes into the model input parameters using a preprocessor program run on a programed data processor was implemented. The results indicate that any changes in the input parameters are small enough to be negligible in comparison to meteorological inputs and the limitations of the model and that such changes will not substantially increase the number of meteorological cases for which the model will predict surface hydrogen chloride concentrations exceeding public safety levels.

  6. Saskatchewan Forest Fire Control Centre Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Funk, Barry; Strub, Richard

    2000-01-01

    The Saskatchewan Forest Fire Control Centre (SFFCC) provided surface meteorological data to BOREAS from its archive. This data set contains hourly surface meteorological data from 18 of the Meteorological stations located across Saskatchewan. Included in these data are parameters of date, time, temperature, relative humidity, wind direction, wind speed, and precipitation. Temporally, the data cover the period of May through September of 1994 and 1995. The data are provided in comma-delimited ASCII files, and are classified as AFM-Staff data. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  7. BOREAS AES MARSII Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Atkinson, G. Barrie; Funk, Barry; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    Canadian AES personnel collected several data sets related to surface and atmospheric meteorological conditions over the BOREAS region. This data set contains 15-minute meteorological data from six MARSII meteorology stations in the BOREAS region in Canada. Parameters include site, time, temperature, dewpoint, visibility, wind speed, wind gust, wind direction, two cloud groups, precipitation, and station pressure. Temporally, the data cover the period of May to September 1994. Geo-graphically, the stations are spread across the provinces of Saskatchewan and Manitoba. The data are provided in tabular ASCII files, and are classified as AFM-Staff data.

  8. A program and data base for evaluating SMMR algorithms

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A program (PARAM) is described which enables a user to compare the values of meteorological parameters derived from data obtained by the scanning multichannel microwave radiometer (SMMR) instrument on NIMBUS 7 with surface observations made over the ocean. The input to this program is a data base, also described, which contains the surface observations and coincident SMMR data. The evaluation of meteorological parameters using SMMR data is done by a user supplied subroutine. Instruments are given for executing the program and writing the subroutine.

  9. BOREAS AES READAC Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Atkinson, G. Barrie; Funk, Barry; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    Canadian AES personnel collected and processed data related to surface atmospheric meteorological conditions over the BOREAS region. This data set contains 15-minute meteorological data from one READAC meteorology station in Hudson Bay, Saskatchewan. Parameters include day, time, type of report, sky condition, visibility, mean sea level pressure, temperature, dewpoint, wind, altimeter, opacity, minimum and maximum visibility, station pressure, minimum and maximum air temperature, a wind group, precipitation, and precipitation in the last hour. The data were collected non-continuously from 24-May-1994 to 20-Sep-1994. The data are provided in tabular ASCII files, and are classified as AFM-Staff data.

  10. BOREAS AES Five-Day Averaged Surface Meteorological and Upper Air Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Strub, Richard; Newcomer, Jeffrey A.

    2000-01-01

    The Canadian Atmospheric Environment Service (AES) provided BOREAS with hourly and daily surface meteorological data from 23 of the AES meteorological stations located across Canada and upper air data from 1 station at The Pas, Manitoba. Due to copyright restrictions on the full resolution surface meteorological data, this data set contains 5-day average values for the surface parameters. The upper air data are provided in their full resolution form. The 5-day averaging was performed in order to create a data set that could be publicly distributed at no cost. Temporally, the surface meteorological data cover the period of January 1975 to December 1996 and the upper air data cover the period of January 1961 to November 1996. The data are provided in tabular ASCII files, and are classified as AFM-staff data. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  11. NASA Cold Land Processes Experiment (CLPX 2002/03): Ground-based and near-surface meteorological observations

    Treesearch

    Kelly Elder; Don Cline; Angus Goodbody; Paul Houser; Glen E. Liston; Larry Mahrt; Nick Rutter

    2009-01-01

    A short-term meteorological database has been developed for the Cold Land Processes Experiment (CLPX). This database includes meteorological observations from stations designed and deployed exclusively for CLPXas well as observations available from other sources located in the small regional study area (SRSA) in north-central Colorado. The measured weather parameters...

  12. BOREAS AES Campbell Scientific Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Atkinson, G. Barrie; Funk, Barrie; Knapp. David E. (Editor); Hall, Forrest G. (Editor)

    2000-01-01

    Canadian AES personnel collected data related to surface and atmospheric meteorological conditions over the BOREAS region. This data set contains 15-minute meteorological data from 14 automated meteorology stations located across the BOREAS region. Included in this data are parameters of date, time, mean sea level pressure, station pressure, temperature, dew point, wind speed, resultant wind speed, resultant wind direction, peak wind, precipitation, maximum temperature in the last hour, minimum temperature in the last hour, pressure tendency, liquid precipitation in the last hour, relative humidity, precipitation from a weighing gauge, and snow depth. Temporally, the data cover the period of August 1993 to December 1996. The data are provided in tabular ASCII files, and are classified as AFM-Staff data.

  13. Surface meteorology and Solar Energy

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  14. SSE Transition to POWER

    Atmospheric Science Data Center

    2018-06-13

    ... web portal at https://power.larc.nasa.gov with improved solar and meteorology data and greatly enhanced capabilities to facilitate ... Agroclimatology communities.    The surface solar energy parameters have been customized and validated from NASA/GEWEX Surface ...

  15. Integration of Ground, Buoys, Satellite and Model data to map the Changes in Meteorological Parameters Associated with Harvey Hurricane

    NASA Astrophysics Data System (ADS)

    Chauhan, A.; Sarkar, S.; Singh, R. P.

    2017-12-01

    The coastal areas have dense onshore and marine observation network and are also routinely monitored by constellation of satellites. The monitoring of ocean, land and atmosphere through a range of meteorological parameters, provides information about the land and ocean surface. Satellite data also provide information at different pressure levels that help to access the development of tropical storms and formation of hurricanes at different categories. Integration of ground, buoys, satellite and model data showing the changes in meteorological parameters during the landfall stages of hurricane Harvey will be discussed. Hurricane Harvey was one of the deadliest hurricanes at the Gulf coast which caused intense flooding from the precipitation. The various observation networks helped city administrators to evacuate the coastal areas, that minimized the loss of lives compared to the Galveston hurricane of 1900 which took 10,000 lives. Comparison of meteorological parameters derived from buoys, ground stations and satellites associated with Harvey and 2005 Katrina hurricane present some of the interesting features of the two hurricanes.

  16. Space Shuttle Pad Exposure Period Meteorological Parameters STS-1 Through STS-107

    NASA Technical Reports Server (NTRS)

    Overbey, B. G.; Roberts, B. C.

    2005-01-01

    During the 113 missions of the Space Transportation System (STS) to date, the Space Shuttle fleet has been exposed to the elements on the launch pad for approx. 4,195 days. The Natural Environments Branch at Marshall Space Flight Center archives atmospheric environments to which the Space Shuttle vehicles are exposed. This Technical Memorandum (TM) provides a summary of the historical record of the meteorological conditions encountered by the Space Shuttle fleet during the pad exposure period. Parameters included in this TM are temperature, relative humidity, wind speed, wind direction, sea level pressure, and precipitation. Extremes for each of these parameters for each mission are also summarized. Sources for the data include meteorological towers and hourly surface observations. Data are provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.

  17. Surface Meteorology and Solar Energy (SSE) Data Release 5.1

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W. (Principal Investigator)

    The Surface meteorology and Solar Energy (SSE) data set contains over 200 parameters formulated for assessing and designing renewable energy systems.The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree].

  18. Additional applications and related topics, chapter 4, part B

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Satellite mounted microwave instruments and their use to measure surface pressure are investigated. Data cover instrument accuracy, atmospheric transmission, and meteorological parameter determinations.

  19. The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model

    NASA Astrophysics Data System (ADS)

    Thober, S.; Cuntz, M.; Mai, J.; Samaniego, L. E.; Clark, M. P.; Branch, O.; Wulfmeyer, V.; Attinger, S.

    2016-12-01

    Land surface models incorporate a large number of processes, described by physical, chemical and empirical equations. The agility of the models to react to different meteorological conditions is artificially constrained by having hard-coded parameters in their equations. Here we searched for hard-coded parameters in the computer code of the land surface model Noah with multiple process options (Noah-MP) to assess the model's agility during parameter estimation. We found 139 hard-coded values in all Noah-MP process options in addition to the 71 standard parameters. We performed a Sobol' global sensitivity analysis to variations of the standard and hard-coded parameters. The sensitivities of the hydrologic output fluxes latent heat and total runoff, their component fluxes, as well as photosynthesis and sensible heat were evaluated at twelve catchments of the Eastern United States with very different hydro-meteorological regimes. Noah-MP's output fluxes are sensitive to two thirds of its standard parameters. The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for evaporation, which proved to be oversensitive in other land surface models as well. Latent heat and total runoff show very similar sensitivities towards standard and hard-coded parameters. They are sensitive to both soil and plant parameters, which means that model calibrations of hydrologic or land surface models should take both soil and plant parameters into account. Sensible and latent heat exhibit almost the same sensitivities so that calibration or sensitivity analysis can be performed with either of the two. Photosynthesis has almost the same sensitivities as transpiration, which are different from the sensitivities of latent heat. Including photosynthesis and latent heat in model calibration might therefore be beneficial. Surface runoff is sensitive to almost all hard-coded snow parameters. These sensitivities get, however, diminished in total runoff. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.

  20. NARSTO EPA SS BALTIMORE JHU MET DATA

    Atmospheric Science Data Center

    2018-04-09

    ... Meteorological Station Instrument:  Temperature Probe Humidity Probe Cup Anemometer Rain Gauge Sonic ...   E arthdata Search Parameters:  Air Temperature Humidity Surface Winds Precipitation Amount Heat Flux ...

  1. Quantitative Estimation of Land Surface Characteristic Parameters and Actual Evapotranspiration in the Nagqu River Basin over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Ma, Y.; Ma, W.; Zou, M.; Hu, Y.

    2016-12-01

    Actual evapotranspiration (ETa) is an important component of the water cycle in the Tibetan Plateau. It is controlled by many hydrological and meteorological factors. Therefore, it is of great significance to estimate ETa accurately and continuously. It is also drawing much attention of scientific community to understand land surface parameters and land-atmosphere water exchange processes in small watershed-scale areas. Based on in-situ meteorological data in the Nagqu river basin and surrounding regions, the main meteorological factors affecting the evaporation process were quantitatively analyzed and the point-scale ETa estimation models in the study area were successfully built. On the other hand, multi-source satellite data (such as SPOT, MODIS, FY-2C) were used to derive the surface characteristics in the river basin. A time series processing technique was applied to remove cloud cover and reconstruct data series. Then improved land surface albedo, improved downward shortwave radiation flux and reconstructed normalized difference vegetation index (NDVI) were coupled into the topographical enhanced surface energy balance system to estimate ETa. The model-estimated results were compared with those ETa values determined by combinatory method. The results indicated that the model-estimated ETa agreed well with in-situ measurements with correlation coefficient, mean bias error and root mean square error of 0.836, 0.087 and 0.140 mm/h respectively.

  2. Analysis of the surface heat balance over the world ocean

    NASA Technical Reports Server (NTRS)

    Esbenson, S. K.

    1981-01-01

    The net surface heat fluxes over the global ocean for all calendar months were evaluated. To obtain a formula in the form Qs = Q2(T*A - Ts), where Qs is the net surface heat flux, Ts is the sea surface temperature, T*A is the apparent atmospheric equilibrium temperature, and Q2 is the proportionality constant. Here T*A and Q2, derived from the original heat flux formulas, are functions of the surface meteorological parameters (e.g., surface wind speed, air temperature, dew point, etc.) and the surface radiation parameters. This formulation of the net surface heat flux together with climatological atmospheric parameters provides a realistic and computationally efficient upper boundary condition for oceanic climate modeling.

  3. INDIRECT ESTIMATION OF CONVECTIVE BOUNDARY LAYER STRUCTURE FOR USE IN ROUTINE DISPERSION MODELS

    EPA Science Inventory

    Dispersion models of the convectively driven atmospheric boundary layer (ABL) often require as input meteorological parameters that are not routinely measured. These parameters usually include (but are not limited to) the surface heat and momentum fluxes, the height of the cappin...

  4. Atmospheric environment for Space Shuttle (STS-3) launch

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Brown, S. C.; Batts, G. W.

    1982-01-01

    Selected atmospheric conditions observed near Space Shuttle STS-3 launch time on March 22, 1982, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prlaunch Jimsphere measured vertical wind profiles and the wind and thermodynamic parameters measured at the surface and aloft in the SRB descent/impact ocean area are presented. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-3 vehicle ascent and SRB descent were constructed. The STS-3 ascent meteorological data tape is constructed.

  5. Quasi-decadal variations in total ozone content, wind velocity, temperature, and geopotential height over the Arosa station (Switzerland)

    NASA Astrophysics Data System (ADS)

    Visheratin, K. N.

    2016-01-01

    We present the results of the analysis of the phase relationships between the quasi-decadal variations (QDVs) (in the range from 8 to 13 years) in the total ozone content (TOC) at the Arosa station for 1932-2012 and a number of meteorological parameters: monthly mean values of temperature, meridional and zonal components of wind velocity, and geopotential heights for isobaric surfaces in the layer of 10-925 hPa over the Arosa station using the Fourier methods and composite and cross-wavelet analysis. It has been shown that the phase relationships of the QDVs in the TOC and meteorological parameters with an 11-year cycle of solar activity change in time and height; starting with cycle 24 of solar activity (2008-2010), the variations in the TOC and a number of meteorological parameters occur in almost counter phase with the variations in solar activity. The periods of the maximum growth rate of the temperature at isobaric surfaces 50-100 hPa nearly correspond to the TOC's maximum periods, and the periods of the maximum temperature correspond the periods of the decrease of the peak TOC rate. The highest correlation coefficients between the meridional wind velocity and temperature are observed at 50 hPa at positive and negative delays of ~27 months. The times of the maxima (minima) of the QDVs in the meridional wind velocity nearly correspond to the periods of the maximum amplification (attenuation) rate of the temperature of the QDVs. The QDVs in the geopotential heights of isobaric surfaces fall behind the variations in the TOC by an average of 1.5 years everywhere except in the lower troposphere. In general, the periods of variations in the TOC and meteorological parameters in the range of 8-13 years are smaller than the period of variations in the level of solar activity.

  6. Effect of horizontal resolution on meteorology and air-quality prediction with a regional scale model

    NASA Astrophysics Data System (ADS)

    Varghese, Saji; Langmann, Baerbel; Ceburnis, Darius; O'Dowd, Colin D.

    2011-08-01

    Horizontal resolution sensitivity can significantly contribute to the uncertainty in predictions of meteorology and air-quality from a regional climate model. In the study presented here, a state-of-the-art regional scale atmospheric climate-chemistry-aerosol model REMOTE is used to understand the influence of spatial model resolutions of 1.0°, 0.5° and 0.25° on predicted meteorological and aerosol parameters for June 2003 for the European domain comprising North-east Atlantic and Western Europe. Model precipitation appears to improve with resolution while wind speed has shown best results for 0.25° resolution for most of the stations compared with ECAD data. Low root mean square error and spatial bias for surface pressure, precipitation and surface temperature show that the model is very reliable. Spatial and temporal variation in black carbon, primary organic carbon, sea-salt and sulphate concentrations and their burden are presented. In most cases, chemical species concentrations at the surface show no particular trend or improvement with increase in resolution. There has been a pronounced influence of horizontal resolution on the vertical distribution pattern of some aerosol species. Some of these effects are due to the improvement in topographical details, flow characteristics and associated vertical and horizontal dynamic processes. The different sink processes have contributed very differently to the various aerosol species in terms of deposition (wet and dry) and sedimentation which are strongly linked to the meteorological processes. Overall, considering the performance of meteorological parameters and chemical species concentrations, a horizontal model resolution of 0.5° is suggested to achieve reasonable results within the limitations of this model.

  7. Atmospheric aerosols parameters behavior and its association with meteorological activities variables over western Indian tropical semi-urban site i.e., Udaipur

    NASA Astrophysics Data System (ADS)

    Vyas, B. M.; Saxenna, Abhishek; Panwar, Chhagan

    2016-05-01

    The present study has been focused to the identify the role of meteorological processes on changing the monthly variation of AOD at 550nm, Angstrom Exponent Coefficient (AEC, 440/670nm) and Cloud Effective Radius (CER, μm) measured during January, 2005 to December 2013 over western Indian location i.e., Udaipur (24.6° N, 73.7° E, 560 m amsl). The monthly variation of AOD 550nm, AEC and during entire study period have shown the strong combined influence of different local surface meteorological parameters in varying amplitude with different nature. The higher values of wind speed, ambient surface temperature, planetary boundary layer, and favorable wind direction coming from desert and oceanic region (W and SW) may be recognize as some of possible factor to exhibit the higher aerosols loading of bigger aerosol size particles in pre-monsoon. These meteorological factors seem also to be plausible responsible factors for drastically reducing the cloud effective radius in pre-monsoon season. In contrary to this, in winter, lower atmospheric aerosols burden and more abundance of fine size particles along with increasing the CER sizes also seem to be influenced and governed by the adverse nature of meteorological conditions such lowering the PBL, T, WS as well as with air pollutants transportation by wind from the N and NE region, of high aerosols loading of fine size particles as anthropogenic aerosols located far away to the observing site.

  8. Simulation of Urban Heat Island Mitigation Strategies in Atlanta, GA Using High-Resolution Land Use/Land Cover Data Set to Enhance Meteorological Modeling

    NASA Technical Reports Server (NTRS)

    Crosson, William L.; Dembek, Scott; Estes, Maurice G., Jr.; Limaye, Ashutosh S.; Lapenta, William; Quattrochi, Dale A.; Johnson, Hoyt; Khan, Maudood

    2006-01-01

    The specification of land use/land cover (LULC) and associated land surface parameters in meteorological models at all scales has a major influence on modeled surface energy fluxes and boundary layer states. In urban areas, accurate representation of the land surface may be even more important than in undeveloped regions due to the large heterogeneity within the urban area. Deficiencies in the characterization of the land surface related to the spatial or temporal resolution of the data, the number of LULC classes defined, the accuracy with which they are defined, or the degree of heterogeneity of the land surface properties within each class may degrade the performance of the models. In this study, an experiment was conducted to test a new high-resolution LULC data set for meteorological simulations for the Atlanta, Georgia metropolitan area using a mesoscale meteorological model and to evaluate the effects of urban heat island (UHI) mitigation strategies on modeled meteorology for 2030. Simulation results showed that use of the new LULC data set reduced a major deficiency of the land use data used previously, specifically the poor representation of urban and suburban land use. Performance of the meteorological model improved substantially, with the overall daytime cold bias reduced by over 30%. UHI mitigation strategies were projected to offset much of a predicted urban warming between 2000 and 2030. In fact, for the urban core, the cooling due to UHI mitigation strategies was slightly greater than the warming associated with urbanization over this period. For the larger metropolitan area, cooling only partially offset the projected warming trend.

  9. What Level 2 Products are available?

    Atmospheric Science Data Center

    2014-12-08

    The Aerosol data (MIL2ASAE) contains aerosol optical depth, aerosol compositional model, ancillary meteorological data, and related parameters on a 17.6 km grid. The Land Surface data (MIL2ASLS) includes bihemispherical and...

  10. Photochemical modeling and analysis of meteorological parameters during ozone episodes in Kaohsiung, Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, K. S.; Ho, Y. T.; Lai, C. H.; Chou, Youn-Min

    The events of high ozone concentrations and meteorological conditions covering the Kaohsiung metropolitan area were investigated based on data analysis and model simulation. A photochemical grid model was employed to analyze two ozone episodes in autumn (2000) and winter (2001) seasons, each covering three consecutive days (or 72 h) in the Kaohsiung City. The potential influence of the initial and boundary conditions on model performance was assessed. Model performance can be improved by separately considering the daytime and nighttime ozone concentrations on the lateral boundary conditions of the model domain. The sensitivity analyses of ozone concentrations to the emission reductions in volatile organic compounds (VOC) and nitrogen oxides (NO x) show a VOC-sensitive regime for emission reductions to lower than 30-40% VOC and 30-50% NO x and a NO x-sensitive regime for larger percentage reductions. Meteorological parameters show that warm temperature, sufficient sunlight, low wind, and high surface pressure are distinct parameters that tend to trigger ozone episodes in polluted urban areas, like Kaohsiung.

  11. Assessing the impact of local meteorological variables on surface ozone in Hong Kong during 2000-2015 using quantile and multiple line regression models

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Fan, Shaojia; Guo, Hai; Gao, Bo; Sun, Jiaren; Chen, Laiguo

    2016-11-01

    The quantile regression (QR) method has been increasingly introduced to atmospheric environmental studies to explore the non-linear relationship between local meteorological conditions and ozone mixing ratios. In this study, we applied QR for the first time, together with multiple linear regression (MLR), to analyze the dominant meteorological parameters influencing the mean, 10th percentile, 90th percentile and 99th percentile of maximum daily 8-h average (MDA8) ozone concentrations in 2000-2015 in Hong Kong. The dominance analysis (DA) was used to assess the relative importance of meteorological variables in the regression models. Results showed that the MLR models worked better at suburban and rural sites than at urban sites, and worked better in winter than in summer. QR models performed better in summer for 99th and 90th percentiles and performed better in autumn and winter for 10th percentile. And QR models also performed better in suburban and rural areas for 10th percentile. The top 3 dominant variables associated with MDA8 ozone concentrations, changing with seasons and regions, were frequently associated with the six meteorological parameters: boundary layer height, humidity, wind direction, surface solar radiation, total cloud cover and sea level pressure. Temperature rarely became a significant variable in any season, which could partly explain the peak of monthly average ozone concentrations in October in Hong Kong. And we found the effect of solar radiation would be enhanced during extremely ozone pollution episodes (i.e., the 99th percentile). Finally, meteorological effects on MDA8 ozone had no significant changes before and after the 2010 Asian Games.

  12. Synoptic meteorological conditions associated with high spring and summer ozone levels at a rural site in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kalabokas, Pavlos; Repapis, Christos; Mihalopoulos, Nikos; Zerefos, Christos

    2017-04-01

    For the identification of the nature of spring and summertime ozone episodes, rural ozone measurements from the Eastern Mediterranean station of Finokalia-Crete, Greece during the first 4-year period of its record (1998-2001) have been analyzed with emphasis on periods of high ozone concentrations, according to the daily variation of the afternoon (12:00 - 18:00) ozone values. For the 7% highest spring and summertime ozone episodes composite NOAA/ESRL reanalysis maps of various meteorological parameters and/or their anomalies (geopotential height, specific humidity, vertical wind velocity omega, vector wind speed and temperature) have been examined together with their corresponding HYSPLIT back trajectories. This work is a continuation of a previous first approach regarding summer highest and lowest surface ozone episodes in Finokalia and other Central and Eastern Mediterranean stations (Kalabokas et al., 2008), which is now extended to more meteorological parameters and higher pressure levels. The results show that the examined synoptic meteorological condition during springtime ozone episodes over the Eastern Mediterranean station of Finokalia are quite similar with those conditions during high ozone springtime episodes observed at rural stations over the Western Mediterranean (Kalabokas et al., 2016). On the other hand the summer time synoptic conditions corresponding to highest surface ozone episodes at Finokalia are comparable with the conditions encountered during highest ozone episodes in the lower troposphere following analysis of MOZAIC vertical profiles over the Aegean Sea and the Eastern Mediterranean (Kalabokas et al., 2015 and references therein). During the highest ozone episodes, for both examined seasons, the transport of tropospheric ozone-rich air masses through atmospheric subsidence influences significantly the boundary layer and surface ozone concentrations. In particular, the geographic areas with observed tropospheric subsidence seem to be the transition regions between high and low pressure synoptic meteorological systems. References Kalabokas, P. D., Mihalopoulos, N., Ellul, R., Kleanthous, S., and Repapis, C. C., 2008. An investigation of the meteorological and photochemical factors influencing the background rural and marine surface ozone levels in the Central and Eastern Mediterranean, Atmos. Environ., 42, 7894-7906. Kalabokas P. D., Thouret V., Cammas J.-P., Volz-Τhomas A., Boulanger D., Repapis C.C., 2015. The geographical distribution of meteorological parameters associated with high and low summer ozone levels in the lower troposphere and the boundary layer over the eastern Mediterranean (Cairo case), Tellus B, 67, 27853, http://dx.doi.org/10.3402/tellusb.v67.27853. Kalabokas P., J. Hjorth, G. Foret, G. Dufour, M. Eremenko, G. Siour, J. Cuesta, M. Beekmann, 2016. An investigation on the origin of regional spring time ozone episodes in the Western Mediterranean and Central Europe. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-615.

  13. Application and Evaluation of MODIS LAI, fPAR, and Albedo Products in the WRFCMAQ System

    EPA Science Inventory

    Leaf area index (LAI), vegetation fraction (VF), and surface albedo are important parameters in the land surface model (LSM) for meteorology and air quality modeling systems such as WRF/CMAQ. LAI and VF control not only leaf to canopy level evapotranspiration flux scaling but al...

  14. The impacts of urban surface characteristics on radiation balance and meteorological variables in the boundary layer around Beijing in summertime

    NASA Astrophysics Data System (ADS)

    Liu, Ruiting; Han, Zhiwei; Wu, Jian; Hu, Yonghong; Li, Jiawei

    2017-11-01

    In this study, some key geometric and thermal parameters derived from recent field and satellite observations in Beijing were collected and incorporated into WRF-UCM (Weather Research and Forecasting) model instead of previous default ones. A series of sensitivity model simulations were conducted to investigate the influences of these parameters on radiation balance, meteorological variables, turbulence kinetic energy (TKE), as well as planetary boundary layer height (PBLH) in regions around Beijing in summer 2014. Model validation demonstrated that the updated parameters represented urban surface characteristics more realistically and the simulations of meteorological variables were evidently improved to be closer to observations than the default parameters. The increase in building height tended to increase and slightly decrease surface air temperature at 2 m (T2) at night and around noon, respectively, and to reduce wind speed at 10 m (WS10) through a day. The increase in road width led to significant decreases in T2 and WS10 through the whole day, with the maximum changes in early morning and in evening, respectively. Both lower surface albedo and inclusion of anthropogenic heat (AH) resulted in increases in T2 and WS10 over the day, with stronger influence from AH. The vertical extension of the impact of urban surface parameters was mainly confined within 300 m at night and reached as high as 1600 m during daytime. The increase in building height tended to increase TKE and PBLH and the TKE increase was larger at night than during daytime due to enhancements of both mechanical and buoyant productions. The increase in road width generally reduced TKE and PBLH except for a few hours in the afternoon. The lower surface albedo and the presence of AH consistently resulted in increases of TKE and PBLH through both day and night. The increase in building height induced a slight divergence by day and a notable convergence at night, whereas the increase in road width led to a remarkable divergence through the entire day. Both AH and lower surface albedo induced a wind convergence over the day, which tended to strengthen nighttime mountain downslope wind and daytime southerly wind to the south of Beijing, but to weaken daytime upslope wind in mountain areas.

  15. Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions: INCREASE IN WINTER HAZE IN EASTERN CHINA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yang; Liao, Hong; Lou, Sijia

    The increase in winter haze over eastern China in recent decades due to variations in meteorological parameters and anthropogenic emissions was quantified using observed atmospheric visibility from the National Climatic Data Center Global Summary of Day database for 1980–2014 and simulated PM2.5 concentrations for 1985–2005 from the Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem). Observed winter haze days averaged over eastern China (105–122.5°E, 20–45°N) increased from 21 d in 1980 to 42 d in 2014, and from 22 to 30 d between 1985 and 2005. The GEOS-Chem model captured the increasing trend of winter PM2.5 concentrations for 1985–2005,more » with concentrations averaged over eastern China increasing from 16.1 μg m -3 in 1985 to 38.4 μg m -3 in 2005. Considering variations in both anthropogenic emissions and meteorological parameters, the model simulated an increase in winter surface-layer PM2.5 concentrations of 10.5 (±6.2) μg m -3 decade -1 over eastern China. The increasing trend was only 1.8 (±1.5) μg m -3 decade -1 when variations in meteorological parameters alone were considered. Among the meteorological parameters, the weakening of winds by -0.09 m s -1 decade -1 over 1985–2005 was found to be the dominant factor leading to the decadal increase in winter aerosol concentrations and haze days over eastern China during recent decades.« less

  16. Error determination of a successive correction type objective analysis scheme. [for surface meteorological data

    NASA Technical Reports Server (NTRS)

    Smith, D. R.; Leslie, F. W.

    1984-01-01

    The Purdue Regional Objective Analysis of the Mesoscale (PROAM) is a successive correction type scheme for the analysis of surface meteorological data. The scheme is subjected to a series of experiments to evaluate its performance under a variety of analysis conditions. The tests include use of a known analytic temperature distribution to quantify error bounds for the scheme. Similar experiments were conducted using actual atmospheric data. Results indicate that the multiple pass technique increases the accuracy of the analysis. Furthermore, the tests suggest appropriate values for the analysis parameters in resolving disturbances for the data set used in this investigation.

  17. Effects of strong earthquakes in variations of electrical and meteorological parameters of the near-surface atmosphere in Kamchatka region

    NASA Astrophysics Data System (ADS)

    Smirnov, S. E.; Mikhailova, G. A.; Mikhailov, Yu. M.; Kapustina, O. V.

    2017-09-01

    The diurnal variations in electrical (quasistatic electric field and electrical conductivity) and meteorological (temperature, pressure, relative humidity of the atmosphere, and wind speed) parameters, measured simultaneously before strong earthquakes in Kamchatka region (November 15, 2006, M = 8.3; January 13, 2007, M = 8.1; January 30, 2016, M = 7.2), are studied for the first time in detail. It is found that a successively anomalous increase in temperature, despite the negative regular trend in these winter months, was observed in the period of six-seven days before the occurrences of earthquakes. An anomalous temperature increase led to the formation of "winter thunderstorm" conditions in the near-surface atmosphere of Kamchatka region, which was manifested in the appearance of an anomalous, type 2 electrical signal, the amplification of and intensive variations in electrical conductivity, heavy precipitation (snow showers), high relative humidity of air, storm winds, and pressure changes. With the weak flow of natural heat radiation in this season, the observed dynamics of electric and meteorological processes can likely be explained by the appearance of an additional heat source of seismic nature.

  18. Application of stepwise multiple regression techniques to inversion of Nimbus 'IRIS' observations.

    NASA Technical Reports Server (NTRS)

    Ohring, G.

    1972-01-01

    Exploratory studies with Nimbus-3 infrared interferometer-spectrometer (IRIS) data indicate that, in addition to temperature, such meteorological parameters as geopotential heights of pressure surfaces, tropopause pressure, and tropopause temperature can be inferred from the observed spectra with the use of simple regression equations. The technique of screening the IRIS spectral data by means of stepwise regression to obtain the best radiation predictors of meteorological parameters is validated. The simplicity of application of the technique and the simplicity of the derived linear regression equations - which contain only a few terms - suggest usefulness for this approach. Based upon the results obtained, suggestions are made for further development and exploitation of the stepwise regression analysis technique.

  19. Selection of meteorological conditions to apply in an Ecotron facility

    NASA Astrophysics Data System (ADS)

    Leemans, Vincent; De Cruz, Lesley; Dumont, Benjamin; Hamdi, Rafiq; Delaplace, Pierre; Heinesh, Bernard; Garré, Sarah; Verheggen, François; Theodorakopoulos, Nicolas; Longdoz, Bernard

    2017-04-01

    This presentation aims to propose a generic method to produce meteorological input data that is useful for climate research infrastructures such as an Ecotron, where researchers will face the need to generate representative actual or future climatic conditions. Depending on the experimental objectives and the research purposes, typical conditions or more extreme values such as dry or wet climatic scenarios might be requested. Four variables were considered here, the near-surface air temperature, the near-surface relative humidity, the cloud cover and precipitation. The meteorological datasets, among which a specific meteorological year can be picked up, are produced by the ALARO-0 model from the RMIB (Royal Meteorological Institute of Belgium). Two future climate scenarios (RCP 4.5 and 8.5) and two time periods (2041-2070 and 2071-2100) were used as well as a historical run of the model (1981-2010) which is used as a reference. When the data from a historical run were compared to the observed historical data, biases were noticed. A linear correction was proposed for all the variables except for precipitation, for which a non-linear correction (using a power function) was chosen to maintain a zero-precipitation occurrences. These transformations were able to remove most of the differences between the observed and historical run of the model for the means and for the standard deviations. For the relative humidity, because of non-linearities, only one half of the average bias was corrected and a different path might have to be chosen. For the selection of a meteorological year, a position and a dispersion parameter have been proposed to characterise each meteorological year for each variable. For precipitation, a third parameter quantifying the importance of dry and wet periods has been defined. In order to select a specific climate, for each of these nine parameters the experimenter should provide a percentile and a weight to prioritize the importance of each variable in the process of a global climate selection. The proposed algorithm computed the weighted distance for each year between the parameters and the point representing the position of the percentile in the nine-dimensional space. The five closest values were then selected and represented in different graphs. The proposed method is able to provide a decision aid in the selection of the meteorological conditions to be generated within an Ecotron. However, with a limited number of years available in each case (thirty years for each RCP and each time period), there is no perfect match and the ultimate trade-off will be the responsibility of the researcher. For typical years, close to the median, the relative frequency is higher and the trade-off is more easy than for more extreme years where the relative frequency is low.

  20. Introduction of the Mobile Platform for the Meteorological Observations in Seoul Metropolitan City of Korea

    NASA Astrophysics Data System (ADS)

    Baek, K. T.; Lee, S.; Kang, M.; Lee, G.

    2016-12-01

    Traffic accidents due to adverse weather such as fog, heavy rainfall, flooding and road surface freezing have been increasing in Korea. To reduce damages caused by the severe weather on the road, a forecast service of combined real-time road-wise weather and the traffic situation is required. Conventional stationary meteorological observations in sparse location system are limited to observe the detailed road environment. For this reason, a mobile meteorological observation platform has been coupled in Weather Information Service Engine (WISE) which is the prototype of urban-scale high resolution weather prediction system in Seoul metropolitan area of Korea in early August 2016. The instruments onboard are designed to measure 15 meteorological parameters; pressure, temperature, relative humidity, precipitation, up/down net radiation, up/down longwave radiation, up/down shortwave radiation, road surface condition, friction coefficient, water depth, wind direction and speed. The observations from mobile platform show a distinctive advantage of data collection in need for road conditions and inputs for the numerical forecast model. In this study, we introduce and examine the feasibility of mobile observations in urban weather prediction and applications.

  1. Impact of the hard-coded parameters on the hydrologic fluxes of the land surface model Noah-MP

    NASA Astrophysics Data System (ADS)

    Cuntz, Matthias; Mai, Juliane; Samaniego, Luis; Clark, Martyn; Wulfmeyer, Volker; Attinger, Sabine; Thober, Stephan

    2016-04-01

    Land surface models incorporate a large number of processes, described by physical, chemical and empirical equations. The process descriptions contain a number of parameters that can be soil or plant type dependent and are typically read from tabulated input files. Land surface models may have, however, process descriptions that contain fixed, hard-coded numbers in the computer code, which are not identified as model parameters. Here we searched for hard-coded parameters in the computer code of the land surface model Noah with multiple process options (Noah-MP) to assess the importance of the fixed values on restricting the model's agility during parameter estimation. We found 139 hard-coded values in all Noah-MP process options, which are mostly spatially constant values. This is in addition to the 71 standard parameters of Noah-MP, which mostly get distributed spatially by given vegetation and soil input maps. We performed a Sobol' global sensitivity analysis of Noah-MP to variations of the standard and hard-coded parameters for a specific set of process options. 42 standard parameters and 75 hard-coded parameters were active with the chosen process options. The sensitivities of the hydrologic output fluxes latent heat and total runoff as well as their component fluxes were evaluated. These sensitivities were evaluated at twelve catchments of the Eastern United States with very different hydro-meteorological regimes. Noah-MP's hydrologic output fluxes are sensitive to two thirds of its standard parameters. The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for evaporation, which proved to be oversensitive in other land surface models as well. Surface runoff is sensitive to almost all hard-coded parameters of the snow processes and the meteorological inputs. These parameter sensitivities diminish in total runoff. Assessing these parameters in model calibration would require detailed snow observations or the calculation of hydrologic signatures of the runoff data. Latent heat and total runoff exhibit very similar sensitivities towards standard and hard-coded parameters in Noah-MP because of their tight coupling via the water balance. It should therefore be comparable to calibrate Noah-MP either against latent heat observations or against river runoff data. Latent heat and total runoff are sensitive to both, plant and soil parameters. Calibrating only a parameter sub-set of only soil parameters, for example, thus limits the ability to derive realistic model parameters. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.

  2. The prediction of zenith range refraction from surface measurements of meteorological parameters. [mathematical models of atmospheric refraction used to improve spacecraft tracking space navigation

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1976-01-01

    In the last two decades, increasingly sophisticated deep space missions have placed correspondingly stringent requirements on navigational accuracy. As part of the effort to increase navigational accuracy, and hence the quality of radiometric data, much effort has been expended in an attempt to understand and compute the tropospheric effect on range (and hence range rate) data. The general approach adopted has been that of computing a zenith range refraction, and then mapping this refraction to any arbitrary elevation angle via an empirically derived function of elevation. The prediction of zenith range refraction derived from surface measurements of meteorological parameters is presented. Refractivity is separated into wet (water vapor pressure) and dry (atmospheric pressure) components. The integration of dry refractivity is shown to be exact. Attempts to integrate wet refractivity directly prove ineffective; however, several empirical models developed by the author and other researchers at JPL are discussed. The best current wet refraction model is here considered to be a separate day/night model, which is proportional to surface water vapor pressure and inversely proportional to surface temperature. Methods are suggested that might improve the accuracy of the wet range refraction model.

  3. A Summary of Meteorological Parameters During Space Shuttle Pad Exposure Periods

    NASA Technical Reports Server (NTRS)

    Overbey, Glenn; Roberts, Barry C.

    2005-01-01

    During the 113 missions of the Space Transportation System (STS), the Space Shuffle fleet has been exposed to the elements on the launch pad for a total of 4195 days. The Natural Environments Branch at Marshall Space Flight Center archives atmospheric environments to which the Space Shuttle vehicles are exposed. This paper provides a summary of the historical record of the meteorological conditions encountered by the Space Shuttle fleet during the pad exposure period. Sources of the surface parameters, including temperature, dew point temperature, relative humidity, wind speed, wind direction, sea level pressure and precipitation are presented. Data is provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.

  4. File Specification for the MERRA Aerosol Reanalysis (MERRAero): MODIS AOD Assimilation based on a MERRA Replay

    NASA Technical Reports Server (NTRS)

    Da Silva, A. M.; Randles, C. A.; Buchard, V.; Darmenov, A.; Colarco, P. R.; Govindaraju, R.

    2015-01-01

    This document describes the gridded output files produced by the Goddard Earth Observing System version 5 (GEOS-5) Goddard Aerosol Assimilation System (GAAS) from July 2002 through December 2014. The MERRA Aerosol Reanalysis (MERRAero) is produced with the hydrostatic version of the GEOS-5 Atmospheric Global Climate Model (AGCM). In addition to standard meteorological parameters (wind, temperature, moisture, surface pressure), this simulation includes 15 aerosol tracers (dust, sea-salt, sulfate, black and organic carbon), ozone, carbon monoxide and carbon dioxide. This model simulation is driven by prescribed sea-surface temperature and sea-ice, daily volcanic and biomass burning emissions, as well as high-resolution inventories of anthropogenic emission sources. Meteorology is replayed from the MERRA Reanalysis.

  5. Synoptic and meteorological drivers of extreme ozone concentrations over Europe

    NASA Astrophysics Data System (ADS)

    Otero, Noelia Felipe; Sillmann, Jana; Schnell, Jordan L.; Rust, Henning W.; Butler, Tim

    2016-04-01

    The present work assesses the relationship between local and synoptic meteorological conditions and surface ozone concentration over Europe in spring and summer months, during the period 1998-2012 using a new interpolated data set of observed surface ozone concentrations over the European domain. Along with local meteorological conditions, the influence of large-scale atmospheric circulation on surface ozone is addressed through a set of airflow indices computed with a novel implementation of a grid-by-grid weather type classification across Europe. Drivers of surface ozone over the full distribution of maximum daily 8-hour average values are investigated, along with drivers of the extreme high percentiles and exceedances or air quality guideline thresholds. Three different regression techniques are applied: multiple linear regression to assess the drivers of maximum daily ozone, logistic regression to assess the probability of threshold exceedances and quantile regression to estimate the meteorological influence on extreme values, as represented by the 95th percentile. The relative importance of the input parameters (predictors) is assessed by a backward stepwise regression procedure that allows the identification of the most important predictors in each model. Spatial patterns of model performance exhibit distinct variations between regions. The inclusion of the ozone persistence is particularly relevant over Southern Europe. In general, the best model performance is found over Central Europe, where the maximum temperature plays an important role as a driver of maximum daily ozone as well as its extreme values, especially during warmer months.

  6. Water Quality Response to Changes in Agricultural Land Use Practices at Headwater Streams in Georgia

    EPA Science Inventory

    Poorly managed agricultural watersheds may be one of the most important contributors to high levels of bacterial and sediment loadings in surface waters. We investigated two cattle farms with differing management schemes to compare how physicochemical and meteorological parameter...

  7. Development of Gridded Fields of Urban Canopy Parameters for Advanced Urban Meteorological and Air Quality Models

    EPA Science Inventory

    Urban dispersion and air quality simulation models applied at various horizontal scales require different levels of fidelity for specifying the characteristics of the underlying surfaces. As the modeling scales approach the neighborhood level (~1 km horizontal grid spacing), the...

  8. Atmospheric environment for Space Shuttle (STS-5) launch

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Hill, C. K.; Batts, G. W.

    1983-01-01

    This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-5 launch time on November 11, 1982, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. Also presented are the wind and thermodynamic parameters measured at the surface and aloft in he SRB descent/impact ocean area. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-5 vehicle ascent and SRB descent have been constructed. The STS-5 ascent meteorological data tape has been constructed by Marshall Space Flight Center in response to Shuttle task agreement No. 936-53-22-368 with Johnson Space Center.

  9. Temperature Calculations in the Coastal Modeling System

    DTIC Science & Technology

    2017-04-01

    tide) and river discharge at model boundaries, wave radiation stress, and wind forcing over a model computational domain. Physical processes calculated...calculated in the CMS using the following meteorological parameters: solar radiation, cloud cover, air temperature, wind speed, and surface water temperature...during a clear (i.e., cloudless) sky (Wm-2); CLDC is the cloud cover fraction (0-1.0); SWR is the surface reflection coefficient; and SHDf is the

  10. Spatially Complete Surface Albedo Data Sets: Value-Added Products Derived from Terra MODIS Land Products

    NASA Technical Reports Server (NTRS)

    Moody, Eric G.; King, Michael D.; Platnick, Steven; Schaaf, Crystal B.; Gao, Feng

    2004-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent observations of diffuse bihemispherical (white-sky) and direct beam directional hemispherical (black-sky ) land surface albedo included in the MOD43B3 product from MODIS instruments aboard NASA's Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal characteristics. Cloud and seasonal snow cover, however, curtail retrievals to approximately half the global land surfaces on an annual equal-angle basis, precluding MOD43B3 albedo products from direct inclusion in some research projects and production environments.

  11. Surveillance and Control of Malaria Transmission Using Remotely Sensed Meteorological and Environmental Parameters

    NASA Technical Reports Server (NTRS)

    Kiang, R.; Adimi, F.; Nigro, J.

    2007-01-01

    Meteorological and environmental parameters important to malaria transmission include temperature, relative humidity, precipitation, and vegetation conditions. These parameters can most conveniently be obtained using remote sensing. Selected provinces and districts in Thailand and Indonesia are used to illustrate how remotely sensed meteorological and environmental parameters may enhance the capabilities for malaria surveillance and control. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records.

  12. Assessing factors that influence deviations between measured and calculated reference evapotranspiration

    NASA Astrophysics Data System (ADS)

    Rodny, Marek; Nolz, Reinhard

    2017-04-01

    Evapotranspiration (ET) is a fundamental component of the hydrological cycle, but challenging to be quantified. Lysimeter facilities, for example, can be installed and operated to determine ET, but they are costly and represent only point measurements. Therefore, lysimeter data are traditionally used to develop, calibrate, and validate models that allow calculating reference evapotranspiration (ET0) based on meteorological data, which can be measured more easily. The standardized form of the well-known FAO Penman-Monteith equation (ASCE-EWRI) is recommended as a standard procedure for estimating ET0 and subsequently plant water requirements. Applied and validated under different climatic conditions, the Penman-Monteith equation is generally known to deliver proper results. On the other hand, several studies documented deviations between measured and calculated ET0 depending on environmental conditions. Potential reasons are, for example, differing or varying surface characteristics of the lysimeter and the location where the weather instruments are placed. Advection of sensible heat (transport of dry and hot air from surrounding areas) might be another reason for deviating ET-values. However, elaborating causal processes is complex and requires comprehensive data of high quality and specific analysis techniques. In order to assess influencing factors, we correlated differences between measured and calculated ET0 with pre-selected meteorological parameters and related system parameters. Basic data were hourly ET0-values from a weighing lysimeter (ET0_lys) with a surface area of 2.85 m2 (reference crop: frequently irrigated grass), weather data (air and soil temperature, relative humidity, air pressure, wind velocity, and solar radiation), and soil water content in different depths. ET0_ref was calculated in hourly time steps according to the standardized procedure after ASCE-EWRI (2005). Deviations between both datasets were calculated as ET0_lys-ET0_ref and separated into positive and negative values. For further interpretation, we calculated daily sums of these values. The respective daily difference (positive or negative) served as independent variable (x) in linear correlation with a selected parameter as dependent variable (y). Quality of correlation was evaluated by means of coefficients of determination (R2). When ET0_lys > ET0_ref, the differences were only weakly correlated with the selected parameters. Hence, the evaluation of the causal processes leading to underestimation of measured hourly ET0 seems to require a more rigorous approach. On the other hand, when ET0_lys < ET0_ref, the differences correlated considerably with the meteorological parameters and related system parameters. Interpreting the particular correlations in detail indicated different (or varying) surface characteristics between the irrigated lysimeter and the nearby (non-irrigated) meteorological station.

  13. Exploiting diurnal variations to evaluate the ISCCP-FD flux calculations and radiative-flux-analysis-processed surface observations from BSRN, ARM, and SURFRAD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanchong; Long, Charles N.; Rossow, William B.

    2010-01-01

    Based on monthly-3-hourly and 3-hourly mean surface radiative fluxes and their associated meteorological parameters for 2004 from the International Satellite Cloud Climatology Project-FD (ISCCP-FD) and the Radiative Flux Analysis method-Produced Surface Observations (RFA-PSO) for 15 high-quality-controlled surface stations, operated by the Baseline Surface Radiation Network (BSRN), the Atmospheric Radiation Measurement (ARM) and the National Oceanic and Atmospheric Administration's Surface Radiation budget network (SURFRAD), this work, goes beyond the previous validation for FD against surface observation by introducing the Meteorological Similarity Comparison Method (MSCM) to make a more precise, mutual evaluation of both FD and PSO products. The comparison results inmore » substantial uncertainty reduction and provides reasonable physical explanations for the flux differences. This approach compares fluxes for cases where the atmospheric and surface physical properties (specifically, the input parameters for radiative transfer model) are as close as possible to the values determined at the observational sites by matching the RFA-produced cloud fraction (CF) and/or optical thickness (Tau), etc., or alternatively, by directly changing the model input variables for FD to match PSO values, and using such-produced matched sub-datasets to make more accurate comparisons based on more similar meteorological environments between FD and PSO. The crucial part is the availability of flux-associated meteorological parameters from RFA-PSO, which was only recently made available that makes this work possible. For surface downwelling shortwave(SW) flux (SWdn) and its two components, diffuse (Dif) and direct (Dir), uncertainty for monthly mean is 15, 15 and 17 W/m 2, respectively, smaller than the separately estimated uncertainty values from both FD and PSO. When applying MSCM by reducing their CF difference, the differences can be reduced by a factor of 2. The strength of MSCM is particularly shown in the comparisons of diurnal variations. For clear sky, reducing the FD values of aerosol optical depth (AOD) by 50% to approximately match the PSO values brings all downward SW flux components into substantial agreement. For cloudy scenes, when both CF and Tau are matched to within 0.1 – 0.25 and ~10, respectively, the majority of the SW flux components have nearly-perfect agreement between FD and PSO. The best restriction differences are not zero indicates the influence of other parameters that are not accounted for yet. For longwave (LW) fluxes, general evaluation also confirms uncertainty values for FD and PSO less than separately estimated. When applying MSCM to CF and surface air temperature, the agreement is substantially improved. For downwelling LW diurnal variation comparison, FD shows good agreement with PSO for both RFA-defined or true clear sky but overestimates the amplitude for cloudy sky by 3-7 W/m 2, which may be caused by different sensitivities to cirrus clouds. For upwelling LW diurnal cycle, the situation is reversed; FD now underestimates the diurnal amplitude for all and clear sky but generally agrees for overcast (CF > 0.7). The combined effect of downwelling and upwelling LW fluxes results in FD's underestimates of the diurnal variation of the net-LW-loss for all the scenes by up to 10 W/m 2, although the daily mean net loss is more accurate. Therefore, in terms of amplitude and phase, both FD and PSO seem to have caught correct diurnal variations.« less

  14. Evaluation and uncertainty analysis of regional-scale CLM4.5 net carbon flux estimates

    NASA Astrophysics Data System (ADS)

    Post, Hanna; Hendricks Franssen, Harrie-Jan; Han, Xujun; Baatz, Roland; Montzka, Carsten; Schmidt, Marius; Vereecken, Harry

    2018-01-01

    Modeling net ecosystem exchange (NEE) at the regional scale with land surface models (LSMs) is relevant for the estimation of regional carbon balances, but studies on it are very limited. Furthermore, it is essential to better understand and quantify the uncertainty of LSMs in order to improve them. An important key variable in this respect is the prognostic leaf area index (LAI), which is very sensitive to forcing data and strongly affects the modeled NEE. We applied the Community Land Model (CLM4.5-BGC) to the Rur catchment in western Germany and compared estimated and default ecological key parameters for modeling carbon fluxes and LAI. The parameter estimates were previously estimated with the Markov chain Monte Carlo (MCMC) approach DREAM(zs) for four of the most widespread plant functional types in the catchment. It was found that the catchment-scale annual NEE was strongly positive with default parameter values but negative (and closer to observations) with the estimated values. Thus, the estimation of CLM parameters with local NEE observations can be highly relevant when determining regional carbon balances. To obtain a more comprehensive picture of model uncertainty, CLM ensembles were set up with perturbed meteorological input and uncertain initial states in addition to uncertain parameters. C3 grass and C3 crops were particularly sensitive to the perturbed meteorological input, which resulted in a strong increase in the standard deviation of the annual NEE sum (σ NEE) for the different ensemble members from ˜ 2 to 3 g C m-2 yr-1 (with uncertain parameters) to ˜ 45 g C m-2 yr-1 (C3 grass) and ˜ 75 g C m-2 yr-1 (C3 crops) with perturbed forcings. This increase in uncertainty is related to the impact of the meteorological forcings on leaf onset and senescence, and enhanced/reduced drought stress related to perturbation of precipitation. The NEE uncertainty for the forest plant functional type (PFT) was considerably lower (σ NEE ˜ 4.0-13.5 g C m-2 yr-1 with perturbed parameters, meteorological forcings and initial states). We conclude that LAI and NEE uncertainty with CLM is clearly underestimated if uncertain meteorological forcings and initial states are not taken into account.

  15. Land-Sea-Atmosphere Interaction and Their Association with Drought Conditions

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Nath, A.

    2017-12-01

    Detailed analysis of satellite data for the period 2002-2016 provides an understanding of the land-sea interaction and its association with the vegetation conditions over the Indian continent. The Indian Ocean dipole (IOD) phenomenon is also considered to understand the atmospheric dynamics and meteorological parameters. GPS water vapor and meteorological parameters (relative humidity and water vapor) from the Indian Institute of Science (IISC) Bangalore have been considered for meteorological data for the period 2008-2016. Atmospheric parameters (water vapor, precipitation rate, land temperature, total ozone column) have been considered using through NASA Giovanni portal and GPS water vapor through SoumiNet data to study relation between Sea Surface temperature (SST) from Indian Ocean, Bay of Bengal and Arabian Sea. Our detailed analysis shows that SST has strong impact on the NDVI at different locations, the maximum impact of SST is observed at lower latitudes. The NDVI over the central and northern India (Indo-Gangetic plains (IGP) is not affected. The SST and NDVI shows high correlation in the central and northern parts, whereas the correlation is poor in the southern parts i.e. close to the ocean. The detailed analysis of NDVI data provides progression of the drought conditions especially in the southern parts of India and also shows impact of the El Nino during 2015-2016.

  16. Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Moody, Eric G.; Platnick, Steven; Schaaf, Crystal B.

    2005-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent production of land surface anisotropy, diffuse bihemispherical (white-sky) albedo and direct beam directional hemispherical (black-sky) albedo from observations acquired by the MODIS instruments aboard NASA's Terra and &la satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface's radiative characteristics. Cloud cover, which curtails retrievals, and the presence of ephemeral and seasonal snow limit the snow-free data to approximately half the global land surfaces on an annual equal-angle basis. This precludes the MOD43B3 albedo products from being used in some remote sensing and ground-based applications, &mate models, and global change research projects.

  17. Study of meteorological parameters over the central Himalayan region using balloon-borne sensor

    NASA Astrophysics Data System (ADS)

    Shrivastava, Rahul; Naja, Manish; Gwal, A. K.

    2013-06-01

    In the present paper we accumulate the recent advances in atmospheric research by analyzing meteorological data. We have calculated meteorological parameters over the central Himalayan region at Nainital (longitude 79.45□ E, latitude 29.35□N). It is a high altitude place (1951 meters) which is very useful for such type of measurement. We have done our work on meteorological parameters in GVAX (Ganges Valley Aerosol Experiment) project. It was an American-Indo project which was use to capture pre-monsoon to post-monsoon conditions to establish a comprehensive baseline for advancements in the study of the effects of Atmospheric conditions of the Ganges Valley. The Balloon Borne Sounding System (BBSS) technique was also used for in-situ measurements of meteorological parameters.

  18. GEMPAK5 user's guide, version 5.0

    NASA Technical Reports Server (NTRS)

    Desjardins, Mary L.; Brill, Keith F.; Schotz, Steven S.

    1991-01-01

    GEMPAK is a general meteorological software package used to analyze and display conventional meteorological data as well as satellite derived parameters. The User's Guide describes the GEMPAK5 programs and input parameters and details the algorithms used for the meteorological computations.

  19. Mapping Surface Cover Parameters Using Aggregation Rules and Remotely Sensed Cover Classes. Version 1.9

    NASA Technical Reports Server (NTRS)

    Arain, Altaf M.; Shuttleworth, W. James; Yang, Z-Liang; Michaud, Jene; Dolman, Johannes

    1997-01-01

    A coupled model, which combines the Biosphere-Atmosphere Transfer Scheme (BATS) with an advanced atmospheric boundary-layer model, was used to validate hypothetical aggregation rules for BATS-specific surface cover parameters. The model was initialized and tested with observations from the Anglo-Brazilian Amazonian Climate Observational Study and used to simulate surface fluxes for rain forest and pasture mixes at a site near Manaus in Brazil. The aggregation rules are shown to estimate parameters which give area-average surface fluxes similar to those calculated with explicit representation of forest and pasture patches for a range of meteorological and surface conditions relevant to this site, but the agreement deteriorates somewhat when there are large patch-to-patch differences in soil moisture. The aggregation rules, validated as above, were then applied to remotely sensed 1 km land cover data set to obtain grid-average values of BATS vegetation parameters for 2.8 deg x 2.8 deg and 1 deg x 1 deg grids within the conterminous United States. There are significant differences in key vegetation parameters (aerodynamic roughness length, albedo, leaf area index, and stomatal resistance) when aggregate parameters are compared to parameters for the single, dominant cover within the grid. However, the surface energy fluxes calculated by stand-alone BATS with the 2-year forcing, data from the International Satellite Land Surface Climatology Project (ISLSCP) CDROM were reasonably similar using aggregate-vegetation parameters and dominant-cover parameters, but there were some significant differences, particularly in the western USA.

  20. Meteorologically-adjusted trend analysis of surface observed ozone at three monitoring sites in Delhi, India: 2007-2011

    NASA Astrophysics Data System (ADS)

    Biswas, J.; Farooqui, Z.; Guttikunda, S. K.

    2012-12-01

    It is well known that meteorological parameters have significant impact on surface ozone concentrations. Therefore it is important to remove the effects of meteorology on ozone concentrations to correctly estimate long-term trends in ozone levels due to the alterations in precursor emissions. This is important for the development of effectual control strategies. In this study surface observed ozone trends in New Delhi are analyzed using Komogorov-Zurbenko (KZ) filter, US EPA ozone adjustment due to weather approach and the classification and regression tree method. The statistical models are applied to the ozone data at three observational sites in New Delhi metropolitan areas, 1) Income Tax Office (ITO) 2) Sirifort and 3) Delhi College of Engineering (DCE). The ITO site is located adjacent to a traffic crossing, Sirifort is an urban site and the DCE site is located in a residential area. The ITO site is also influenced by local industrial emissions. DCE has higher ozone levels than the other two sites. It was found that ITO has lowest ozone concentrations amongst the three sites due to ozone titrating due to industrial and on-road mobile NOx emissions. The statistical methods employed can assess ozone trends at these sites with a high degree of confidence and the results can be used to gauge the effectiveness of control strategies on surface ozone levels in New Delhi.

  1. The Aggregate Description of Semi-Arid Vegetation with Precipitation-Generated Soil Moisture Heterogeneity

    NASA Technical Reports Server (NTRS)

    White, Cary B.; Houser, Paul R.; Arain, Altaf M.; Yang, Zong-Liang; Syed, Kamran; Shuttleworth, W. James

    1997-01-01

    Meteorological measurements in the Walnut Gulch catchment in Arizona were used to synthesize a distributed, hourly-average time series of data across a 26.9 by 12.5 km area with a grid resolution of 480 m for a continuous 18-month period which included two seasons of monsoonal rainfall. Coupled surface-atmosphere model runs established the acceptability (for modelling purposes) of assuming uniformity in all meteorological variables other than rainfall. Rainfall was interpolated onto the grid from an array of 82 recording rain gauges. These meteorological data were used as forcing variables for an equivalent array of stand-alone Biosphere-Atmosphere Transfer Scheme (BATS) models to describe the evolution of soil moisture and surface energy fluxes in response to the prevalent, heterogeneous pattern of convective precipitation. The calculated area-average behaviour was compared with that given by a single aggregate BATS simulation forced with area-average meteorological data. Heterogeneous rainfall gives rise to significant but partly compensating differences in the transpiration and the intercepted rainfall components of total evaporation during rain storms. However, the calculated area-average surface energy fluxes given by the two simulations in rain-free conditions with strong heterogeneity in soil moisture were always close to identical, a result which is independent of whether default or site-specific vegetation and soil parameters were used. Because the spatial variability in soil moisture throughout the catchment has the same order of magnitude as the amount of rain failing in a typical convective storm (commonly 10% of the vegetation's root zone saturation) in a semi-arid environment, non-linearitv in the relationship between transpiration and the soil moisture available to the vegetation has limited influence on area-average surface fluxes.

  2. Automated source term and wind parameter estimation for atmospheric transport and dispersion applications

    NASA Astrophysics Data System (ADS)

    Bieringer, Paul E.; Rodriguez, Luna M.; Vandenberghe, Francois; Hurst, Jonathan G.; Bieberbach, George; Sykes, Ian; Hannan, John R.; Zaragoza, Jake; Fry, Richard N.

    2015-12-01

    Accurate simulations of the atmospheric transport and dispersion (AT&D) of hazardous airborne materials rely heavily on the source term parameters necessary to characterize the initial release and meteorological conditions that drive the downwind dispersion. In many cases the source parameters are not known and consequently based on rudimentary assumptions. This is particularly true of accidental releases and the intentional releases associated with terrorist incidents. When available, meteorological observations are often not representative of the conditions at the location of the release and the use of these non-representative meteorological conditions can result in significant errors in the hazard assessments downwind of the sensors, even when the other source parameters are accurately characterized. Here, we describe a computationally efficient methodology to characterize both the release source parameters and the low-level winds (eg. winds near the surface) required to produce a refined downwind hazard. This methodology, known as the Variational Iterative Refinement Source Term Estimation (STE) Algorithm (VIRSA), consists of a combination of modeling systems. These systems include a back-trajectory based source inversion method, a forward Gaussian puff dispersion model, a variational refinement algorithm that uses both a simple forward AT&D model that is a surrogate for the more complex Gaussian puff model and a formal adjoint of this surrogate model. The back-trajectory based method is used to calculate a ;first guess; source estimate based on the available observations of the airborne contaminant plume and atmospheric conditions. The variational refinement algorithm is then used to iteratively refine the first guess STE parameters and meteorological variables. The algorithm has been evaluated across a wide range of scenarios of varying complexity. It has been shown to improve the source parameters for location by several hundred percent (normalized by the distance from source to the closest sampler), and improve mass estimates by several orders of magnitude. Furthermore, it also has the ability to operate in scenarios with inconsistencies between the wind and airborne contaminant sensor observations and adjust the wind to provide a better match between the hazard prediction and the observations.

  3. Remote Sensing of Urban Land Cover/Land Use Change, Surface Thermal Responses, and Potential Meteorological and Climate Change Impacts

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Jedlovec, Gary; Meyer, Paul

    2011-01-01

    City growth influences the development of the urban heat island (UHI), but the effect that local meteorology has on the UHI is less well known. This paper presents some preliminary findings from a study that uses multitemporal Landsat TM and ASTER data to evaluate land cover/land use change (LULCC) over the NASA Marshall Space Flight Center (MFSC) and its Huntsville, AL metropolitan area. Landsat NLCD data for 1992 and 2001 have been used to evaluate LULCC for MSFC and the surrounding urban area. Land surface temperature (LST) and emissivity derived from NLCD data have also been analyzed to assess changes in these parameters in relation to LULCC. Additionally, LULCC, LST, and emissivity have been identified from ASTER data from 2001 and 2011 to provide a comparison with the 2001 NLCD and as a measure of current conditions within the study area. As anticipated, the multi-temporal NLCD and ASTER data show that significant changes have occurred in land covers, LST, and emissivity within and around MSFC. The patterns and arrangement of these changes, however, is significant because the juxtaposition of urban land covers within and outside of MSFC provides insight on what impacts at a local to regional scale, the inter-linkage of these changes potentially have on meteorology. To further analyze these interactions between LULCC, LST, and emissivity with the lower atmosphere, a network of eleven weather stations has been established across the MSFC property. These weather stations provide data at a 10 minute interval, and these data are uplinked for use by MSFC facilities operations and the National Weather Service. The weather data are also integrated within a larger network of meteorological stations across north Alabama. Given that the MSFC weather stations will operate for an extended period of time, they can be used to evaluate how the building of new structures, and changes in roadways, and green spaces as identified in the MSFC master plan for the future, will potentially affect land cover LSTs across the Center. Moreover, the weather stations will also provide baseline data for developing a better understanding of how localized weather factors, such as extreme rainfall and heat events, affect micrometeorology. These data can also be used to model the interrelationships between LSTs and meteorology on a longer term basis to help evaluate how changes in these parameters can be quantified from satellite data collected in the future. In turn, the overall integration of multi-temporal meteorological information with LULCC, and LST data for MSFC proper and the surrounding Huntsville urbanized area can provide a perspective on how urban land surface types affect the meteorology in the boundary layer and ultimately, the UHI. Additionally, data such as this can be used as a foundation for modeling how climate change will potentially impact local and regional meteorology and conversely, how urban LULCC can or will influence changes on climate over the north Alabama area.

  4. Processing TES Level-2 Data

    NASA Technical Reports Server (NTRS)

    Poosti, Sassaneh; Akopyan, Sirvard; Sakurai, Regina; Yun, Hyejung; Saha, Pranjit; Strickland, Irina; Croft, Kevin; Smith, Weldon; Hoffman, Rodney; Koffend, John; hide

    2006-01-01

    TES Level 2 Subsystem is a set of computer programs that performs functions complementary to those of the program summarized in the immediately preceding article. TES Level-2 data pertain to retrieved species (or temperature) profiles, and errors thereof. Geolocation, quality, and other data (e.g., surface characteristics for nadir observations) are also included. The subsystem processes gridded meteorological information and extracts parameters that can be interpolated to the appropriate latitude, longitude, and pressure level based on the date and time. Radiances are simulated using the aforementioned meteorological information for initial guesses, and spectroscopic-parameter tables are generated. At each step of the retrieval, a nonlinear-least-squares- solving routine is run over multiple iterations, retrieving a subset of atmospheric constituents, and error analysis is performed. Scientific TES Level-2 data products are written in a format known as Hierarchical Data Format Earth Observing System 5 (HDF-EOS 5) for public distribution.

  5. Determinants of Low Cloud Properties - An Artificial Neural Network Approach Using Observation Data Sets

    NASA Astrophysics Data System (ADS)

    Andersen, Hendrik; Cermak, Jan

    2015-04-01

    This contribution studies the determinants of low cloud properties based on the application of various global observation data sets in machine learning algorithms. Clouds play a crucial role in the climate system as their radiative properties and precipitation patterns significantly impact the Earth's energy balance. Cloud properties are determined by environmental conditions, as cloud formation requires the availability of water vapour ("precipitable water") and condensation nuclei in sufficiently saturated conditions. A main challenge in the research of aerosol-cloud interactions is the separation of aerosol effects from meteorological influence. To gain understanding of the processes that govern low cloud properties in order to increase accuracy of climate models and predictions of future changes in the climate system is thus of great importance. In this study, artificial neural networks are used to relate a selection of predictors (meteorological parameters, aerosol loading) to a set of predictands (cloud microphysical and optical properties). As meteorological parameters, wind direction and velocity, sea level pressure, static stability of the lower troposphere, atmospheric water vapour and temperature at the surface are used (re-analysis data by the European Centre for Medium-Range Weather Forecasts). In addition to meteorological conditions, aerosol loading is used as a predictor of cloud properties (MODIS collection 6 aerosol optical depth). The statistical model reveals significant relationships between predictors and predictands and is able to represent the aerosol-cloud-meteorology system better than frequently used bivariate relationships. The most important predictors can be identified by the additional error when excluding one predictor at a time. The sensitivity of each predictand to each of the predictors is analyzed.

  6. Physical Processes in Coastal Stratocumulus Clouds from Aircraft Measurements During UPPEF 2012

    DTIC Science & Technology

    2013-09-01

    pressure, dew point, water vapor, absolute humidity, and carbon dioxide concentration. There were various upward and downward looking pyranometers ...Meteorological parameters IR Temperature -50 to +20 °C Up-looking modified Kipp & Zonen CM-22 pyranometer (CIRPAS/NRL) Meteorological parameters Down...welling Solar Irradiance 0-1400 W m -2 Down-looking modified Kipp & Zonen CM-22 pyranometer (CIRPAS/NRL) Meteorological parameters Up-welling Solar

  7. Current status of validating operational model forecasts at the DWD site Lindenberg

    NASA Astrophysics Data System (ADS)

    Beyrich, F.; Heret, C.; Vogel, G.

    2009-09-01

    Based on long experience in the measurement of atmospheric boundary layer parameters, the Meteorological Observatory Lindenberg / Richard - Aßmann-Observatory is well qualified to validate operational NWP results for this location. The validation activities cover a large range of time periods from single days or months up to several years and include much more quantities than generally used in areal verification techniques. They mainly focus on land surface and boundary layer processes which play an important role in the atmospheric forc-ing from the surface. Versatility and continuity of the database enable a comprehensive evaluation of the model behaviour under different meteorological conditions in order to esti-mate the accuracy of the physical parameterisations and to detect possible deficiencies in the predicted processes. The measurements from the boundary layer field site Falkenberg serve as reference data for various types of validation studies: 1. The operational boundary-layer measurements are used to identify and to document weather situations with large forecast errors which can then be analysed in more de-tail. Results from a case study will be presented where model deficiencies in the cor-rect simulation of the diurnal evolution of near-surface temperature under winter con-ditions over a closed snow cover where diagnosed. 2. Due to the synopsis of the boundary layer quantities based on monthly averaged di-urnal cycles systematic model deficiencies can be detected more clearly. Some dis-tinctive features found in the annual cycle (e.g. near-surface temperatures, turbulent heat fluxes and soil moisture) will be outlined. Further aspects are their different ap-pearance in the COSMO-EU and COSMO-DE models as well as the effects of start-ing time (00 or 12 UTC) on the prediction accuracy. 3. The evaluation of the model behaviour over several years provides additional insight into the impact of changes in the physical parameterisations, data assimilation or nu-merics on the meteorological quantities. The temporal development of the error char-acteristics of some near-surface weather parameters (temperature, dewpoint tem-perature, wind velocity) and of the energy fluxes at the surface will be discussed.

  8. Improving the estimation of zenith dry tropospheric delays using regional surface meteorological data

    NASA Astrophysics Data System (ADS)

    Luo, X.; Heck, B.; Awange, J. L.

    2013-12-01

    Global Navigation Satellite Systems (GNSS) are emerging as possible tools for remote sensing high-resolution atmospheric water vapour that improves weather forecasting through numerical weather prediction models. Nowadays, the GNSS-derived tropospheric zenith total delay (ZTD), comprising zenith dry delay (ZDD) and zenith wet delay (ZWD), is achievable with sub-centimetre accuracy. However, if no representative near-site meteorological information is available, the quality of the ZDD derived from tropospheric models is degraded, leading to inaccurate estimation of the water vapour component ZWD as difference between ZTD and ZDD. On the basis of freely accessible regional surface meteorological data, this paper proposes a height-dependent linear correction model for a priori ZDD. By applying the ordinary least-squares estimation (OLSE), bootstrapping (BOOT), and leave-one-out cross-validation (CROS) methods, the model parameters are estimated and analysed with respect to outlier detection. The model validation is carried out using GNSS stations with near-site meteorological measurements. The results verify the efficiency of the proposed ZDD correction model, showing a significant reduction in the mean bias from several centimetres to about 5 mm. The OLSE method enables a fast computation, while the CROS procedure allows for outlier detection. All the three methods produce consistent results after outlier elimination, which improves the regression quality by about 20% and the model accuracy by up to 30%.

  9. Modification and evaluation of a Barnes-type objective analysis scheme for surface meteorological data

    NASA Technical Reports Server (NTRS)

    Smith, D. R.

    1982-01-01

    The Purdue Regional Objective Analysis of the Mesoscale (PROAM) is a Barness-type scheme for the analysis of surface meteorological data. Modifications are introduced to the original version in order to increase its flexibility and to permit greater ease of usage. The code was rewritten for an interactive computer environment. Furthermore, a multiple iteration technique suggested by Barnes was implemented for greater accuracy. PROAM was subjected to a series of experiments in order to evaluate its performance under a variety of analysis conditions. The tests include use of a known analytic temperature distribution in order to quantify error bounds for the scheme. Similar experiments were conducted using actual atmospheric data. Results indicate that the multiple iteration technique increases the accuracy of the analysis. Furthermore, the tests verify appropriate values for the analysis parameters in resolving meso-beta scale phenomena.

  10. Influence of local climate and climate change on aeroterrestrial phototrophic biofilms.

    PubMed

    Gladis-Schmacka, Franziska; Glatzel, Stephan; Karsten, Ulf; Böttcher, Heidrun; Schumann, Rhena

    2014-01-01

    Aeroterrestrial phototrophic biofilms colonize natural and man-made surfaces and may damage the material they settle on. The occurrence of biofilms varies between regions with different climatic conditions. The aim of this study was to evaluate the influence of meteorological factors on the growth of aeroterrestrial phototrophs. Phototrophic biomass was recorded on roof tiles at six sites within Germany five times over a period of five years and compared to climatic parameters from neighboring weather stations. All correlating meteorological factors influenced water availability on the surface of the roof tiles. The results indicate that the frequency of rainy days and not the mean precipitation per season is more important for biofilm proliferation. It is also inferred that the macroclimate is more important than the microclimate. In conclusion, changed (regional) climatic conditions may determine where in central Europe global change will promote or inhibit phototrophic growth in the future.

  11. Monitoring Building Energy Systems at NASA Centers Using NASA Earth Science data, CMIP5 climate data products and RETScreen Expert Clean Energy Tool

    NASA Astrophysics Data System (ADS)

    Stackhouse, P. W., Jr.; Ganoe, R. E.; Westberg, D. J.; Leng, G. J.; Teets, E.; Hughes, J. M.; De Young, R.; Carroll, M.; Liou, L. C.; Iraci, L. T.; Podolske, J. R.; Stefanov, W. L.; Chandler, W.

    2016-12-01

    The NASA Climate Adaptation Science Investigator team is devoted to building linkages between NASA Earth Science and those within NASA responsible for infrastructure assessment, upgrades and planning. One of the focus areas is assessing NASA center infrastructure for energy efficiency, planning to meet new energy portfolio standards, and assessing future energy needs. These topics intersect at the provision of current and predicted future weather and climate data. This presentation provides an overview of the multi-center effort to access current building energy usage using Earth science observations, including those from in situ measurements, satellite measurement analysis, and global model data products as inputs to the RETScreen Expert, a clean energy decision support tool. RETScreen® Expert, sponsored by Natural Resources Canada (NRCan), is a tool dedicated to developing and providing clean energy project analysis software for the feasibility design and assessment of a wide range of building projects that incorporate renewable energy technologies. RETScreen Expert requires daily average meteorological and solar parameters that are available within less than a month of real-time. A special temporal collection of meteorological parameters was compiled from near-by surface in situ measurements. These together with NASA data from the NASA CERES (Clouds and Earth's Radiance Energy System)/FLASHFlux (Fast Longwave and SHortwave radiative Fluxes) provides solar fluxes and the NASA GMAO (Global Modeling and Assimilation Office) GEOS (Goddard Earth Observing System) operational meteorological analysis are directly used for meteorological input parameters. Examples of energy analysis for a few select buildings at various NASA centers are presented in terms of the energy usage relationship that these buildings have with changes in their meteorological environment. The energy requirements of potential future climates are then surveyed for a range of changes using the most recent CMIP5 global climate model data output.

  12. Airline meteorological requirements

    NASA Technical Reports Server (NTRS)

    Chandler, C. L.; Pappas, J.

    1985-01-01

    A brief review of airline meteorological/flight planning is presented. The effects of variations in meteorological parameters upon flight and operational costs are reviewed. Flight path planning through the use of meteorological information is briefly discussed.

  13. AICE Survey of USSR Air Pollution Literature, Volume 13: Technical Papers from the Leningrad International Symposium on the Meteorological Aspects of Atmospheric Pollution, Part 2.

    ERIC Educational Resources Information Center

    Nuttonson, M. Y., Ed.

    Twelve papers were translated from Russian: Automation of Information Processing Involved in Experimental Studies of Atmospheric Diffusion, Micrometeorological Characteristics of Atmospheric Pollution Conditions, Study of theInfluence of Irregularities of the Earth's Surface on the Air Flow Characteristics in a Wind Tunnel, Use of Parameters of…

  14. Meteorology and GNSS? What is the benefit?

    NASA Astrophysics Data System (ADS)

    Drummond, P.; Grünig, S.

    2010-12-01

    Due to the strong correlation between water vapor in the atmosphere and GNSS tropospheric propagation delays, we can estimate the Integrated Precipitable Water Vapor (IPWV) in the atmosphere through GNSS measurements. This parameter is crucial for meteorologists as the water content in the atmosphere is a key parameter in the weather models. The Total Electron Content (TEC) in the ionosphere has a huge impact on the ionospheric propagation delay in GNSS signals. By computing the ionospheric delay from GNSS measurements it is possible to predict the TEC which is an excellent indicator for ionospheric activity. The benefit is that we can estimate the influence on the RTK performance from TEC values. The atmospheric feature in the Trimble Atmosphere App (as well as in VRSNet software) allows computing both IPWV and TEC values from a CORS network. IPWV is computed using surface meteorological data such as temperature and pressure as well as radiosonde data. The results are shown in a table like form as well as in numerous graphical forms such as contour and surface plots, station and condition charts. The computed values can be animated in a movie over the last 24 hours.

  15. A review of the meteorological parameters which affect aerial application

    NASA Technical Reports Server (NTRS)

    Christensen, L. S.; Frost, W.

    1979-01-01

    The ambient wind field and temperature gradient were found to be the most important parameters. Investigation results indicated that the majority of meteorological parameters affecting dispersion were interdependent and the exact mechanism by which these factors influence the particle dispersion was largely unknown. The types and approximately ranges of instrumented capabilities for a systematic study of the significant meteorological parameters influencing aerial applications were defined. Current mathematical dispersion models were also briefly reviewed. Unfortunately, a rigorous dispersion model which could be applied to aerial application was not available.

  16. Surface Meteorological Station - Astoria, OR (AST) - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    A variety of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  17. Surface Meteorological Station - ESRL Short Tower, Bonneville - Raw Data

    DOE Data Explorer

    McCaffrey, Katherine

    2017-10-23

    A diversity of instruments are used to measure various quantities related to meteorology and precipitation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  18. Surface Meteorological Station - ESRL Short Tower, Condon - Reviewed Data

    DOE Data Explorer

    McCaffrey, Katherine

    2017-10-23

    A diversity of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  19. Surface Meteorological Station - ESRL Short Tower, Troutdale - Reviewed Data

    DOE Data Explorer

    Gottas, Daniel

    2017-12-11

    A diversity of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  20. Surface Meteorological Station - ESRL Short Tower, Prineville - Raw Data

    DOE Data Explorer

    McCaffrey, Katherine

    2017-10-23

    A diversity of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  1. Surface Meteorological Station - ESRL Short Tower, Troutdale - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-12-11

    A diversity of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  2. Surface Meteorological Station - ESRL Short Tower, Prineville - Reviewed Data

    DOE Data Explorer

    McCaffrey, Katherine

    2017-10-23

    A diversity of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  3. Surface Meteorological Station - ESRL Short Tower, Bonneville - Reviewed Data

    DOE Data Explorer

    McCaffrey, Katherine

    2017-10-23

    A diversity of instruments are used to measure various quantities related to meteorology and precipitation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  4. Surface Meteorological Station - North Bend, OR (OTH) - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    A variety of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  5. Surface Meteorological Station - ESRL Short Tower, Condon - Raw Data

    DOE Data Explorer

    McCaffrey, Katherine

    2017-10-23

    A diversity of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  6. Surface Meteorological Station - Forks, WA (FKS) - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottas, Daniel

    A variety of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  7. Surface Meteorological Station - Forks, WA (FKS) - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottas, Daniel

    A variety of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  8. Measurement of Ambient Ammonia and Surface-level Meteorological Forcing Variables near an Agricultural Emission Source

    NASA Astrophysics Data System (ADS)

    Myles, L.; Heuer, M. W.

    2012-12-01

    Atmospheric ammonia (NH3) is a reduced form of reactive nitrogen that is primarily emitted from agricultural activities. NH3 volatilizes from animal waste and fertilized land directly into the atmosphere where it can either react with other gases to form fine particulate matter or deposit on surfaces through air-surface exchange processes. Field measurements in different ecosystems and under various conditions are necessary to improve the understanding of the complex relationships between ambient NH3 and meteorological parameters, such as temperature and relative humidity, which influence volatilization rates and ultimately, ambient concentrations near emission sources. However, the measurement of ambient NH3 is challenging. NH3 is hydroscopic and reactive, and measurement techniques are subject to errors caused by sampling artifacts and other interferences. Recent advancements have led to improved techniques that allow real-time measurement of ambient NH3. A cavity ring-down spectrometer was deployed at a cattle research facility in Knoxville, TN during spring 2012 to measure ambient NH3, and meteorological instrumentation was collocated to measure 3-D winds, temperature, relative humidity, precipitation and other parameters (z = 2 m). The study site was rolling pasture typical of the eastern Tennessee Valley and included two large barns and approximately 30-40 cattle. Daytime ambient NH3 averaged 15-20 ppb most days with lows of approximately 7 ppb at night. Higher concentrations (greater than 50 ppb) seemed to correlate with higher temperatures (greater than 27 C), although the data are not consistent. Several instances of 100 ppb concentrations were measured when temperatures were high and winds were from the direction of the barns. Overall, the study shows that ambient NH3 levels near agricultural emission sources may vary greatly with time and a variety of factors, including meteorological conditions. The data support the need for real-time measurements of NH3 to determine how environmental conditions can affect ambient concentrations and therefore, the amount of NH3 available in the atmosphere to form particulate matter or participate in deposition processes.

  9. Atmospheric Effect on Remote Sensing of the Earth's Surface

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.; Kaufman, Y. J. (Principal Investigator)

    1985-01-01

    Radiative transfer theory (RT) for an atmosphere with a nonuniform surface is the basis for understanding and correcting for the atmospheric effect on remote sensing of surface properties. In the present work the theory is generalized and tested successfully against laboratory and field measurements. There is still a need to generalize the RT approximation for off-nadir directions and to take into account anisotropic reflectance at the surface. The reflectance at the surface. The adjacency effect results in a significant modification of spectral signatures of the surface, and therefore results in modification of classifications, of separability of field classes, and of spatial resolution. For example, the 30 m resolution of the Thematic Mapper is reduced to 100 m by a hazy atmosphere. The adjacency effect depends on several optical parameters of aerosols: optical thickness, depth of aerosol layer, scattering phase function, and absorption. Remote sensing in general depends on these parameter, not just adjacency effects, but they are not known well enough for making accurate atmospheric corrections. It is important to establish methods for estimating these parameters in order to develop correction methods for atmospheric effects. Such estimations can be based on climatological data, which are not available yet, correlations between the optical parameters and meteorological data, and the same satellite measurements of radiances that are used for estimating surface properties. Knowledge about the atmospheric parameters important for remote sensing is being enlarged with current measurements of them.

  10. Surface Meteorological Station - ESRL Short Tower, Wasco Airport - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-12-11

    A diversity of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  11. Surface Meteorological Station - ESRL Short Tower, Wasco Airport - Reviewed Data

    DOE Data Explorer

    Gottas, Daniel

    2017-12-11

    A diversity of instruments are used to measure various quantities related to meteorology, precipitation, and radiation near the Earth’s surface. Typically, a standard suite of instruments is deployed to monitor meteorological state variables.

  12. Data on the effect of geological and meteorological parameters on indoor radon and thoron level- case study: Kermanshah, Iran.

    PubMed

    Pirsaheb, Meghdad; Najafi, Farid; Hemati, Lida; Khosravi, Touba; Sharafi, Hooshmand

    2018-06-01

    The present study was aimed to evaluate the relationship between indoor radon and thoron concentrations, geological and meteorological parameters. The radon and thoron concentrations were determined in three hospitals in Kermanshah, the west part of Iran, using the RTM-1688-2 radon meter. Also, the type and porosity of the underlying soil and the meteorological parameters such as temperature, humidity, atmospheric pressure, rainfall and wind speed were studied and the obtained results analyzed using STATA-Ver.8. In this study the obtained radon concentration was furthered in buildings which constructed on the soil with clayey gravel and sand feature than the soil with clay characteristic and little pasty with a significant difference ( P < 0.05). While the lower coefficient about 1.3 was obtained in measured the thoron concentration and a significant difference was not observed. So the soil porosity can extremely effect on the indoor radon amount. Among all studied meteorological parameters, temperature has been determined as the most important meteorological parameter, influence the indoor radon and thoron concentrations.

  13. Distinct wind convergence patterns in the Mexico City basin due to the interaction of the gap winds with the synoptic flow

    NASA Astrophysics Data System (ADS)

    de Foy, B.; Clappier, A.; Molina, L. T.; Molina, M. J.

    2006-04-01

    Mexico City lies in a high altitude basin where air quality and pollutant fate is strongly influenced by local winds. The combination of high terrain with weak synoptic forcing leads to weak and variable winds with complex circulation patterns. A gap wind entering the basin in the afternoon leads to very different wind convergence lines over the city depending on the meteorological conditions. Surface and upper-air meteorological observations are analysed during the MCMA-2003 field campaign to establish the meteorological conditions and obtain an index of the strength and timing of the gap wind. A mesoscale meteorological model (MM5) is used in combination with high-resolution satellite data for the land surface parameters and soil moisture maps derived from diurnal ground temperature range. A simple method to map the lines of wind convergence both in the basin and on the regional scale is used to show the different convergence patterns according to episode types. The gap wind is found to occur on most days of the campaign and is the result of a temperature gradient across the southern basin rim which is very similar from day to day. Momentum mixing from winds aloft into the surface layer is much more variable and can determine both the strength of the flow and the pattern of the convergence zones. Northerly flows aloft lead to a weak jet with an east-west convergence line that progresses northwards in the late afternoon and early evening. Westerlies aloft lead to both stronger gap flows due to channelling and winds over the southern and western basin rim. This results in a north-south convergence line through the middle of the basin starting in the early afternoon. Improved understanding of basin meteorology will lead to better air quality forecasts for the city and better understanding of the chemical regimes in the urban atmosphere.

  14. The ISLSCP initiative I global datasets: Surface boundary conditions and atmospheric forcings for land-atmosphere studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellers, P.J.; Collatz, J.; Koster, R.

    1996-09-01

    A comprehensive series of global datasets for land-atmosphere models has been collected, formatted to a common grid, and released on a set of CD-ROMs. This paper describes the motivation for and the contents of the dataset. In June of 1992, an interdisciplinary earth science workshop was convened in Columbia, Maryland, to assess progress in land-atmosphere research, specifically in the areas of models, satellite data algorithms, and field experiments. At the workshop, representatives of the land-atmosphere modeling community defined a need for global datasets to prescribe boundary conditions, initialize state variables, and provide near-surface meteorological and radiative forcings for their models.more » The International Satellite Land Surface Climatology Project (ISLSCP), a part of the Global Energy and Water Cycle Experiment, worked with the Distributed Active Archive Center of the National Aeronautics and Space Administration Goddard Space Flight Center to bring the required datasets together in a usable format. The data have since been released on a collection of CD-ROMs. The datasets on the CD-ROMs are grouped under the following headings: vegetation; hydrology and soils; snow, ice, and oceans; radiation and clouds; and near-surface meteorology. All datasets cover the period 1987-88, and all but a few are spatially continuous over the earth`s land surface. All have been mapped to a common 1{degree} x 1{degree} equal-angle grid. The temporal frequency for most of the datasets is monthly. A few of the near-surface meteorological parameters are available both as six-hourly values and as monthly means. 26 refs., 8 figs., 2 tabs.« less

  15. Atmospheric environment for Space Shuttle (STS-11) launch

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Hill, C. K.; Batts, G. W.

    1984-01-01

    Atmospheric conditions observed near Space Shuttle STS-11 launch time on February 3, 1984, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles are reported. Wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area are presented. Meteorological tapes, which consist of wind and thermodynamic parameters vesus altitude, for STS-11 vehicle ascent and SRB descent/impact were constructed.

  16. Improvement of Meteorological Inputs for TexAQS-II Air Quality Simulations

    NASA Astrophysics Data System (ADS)

    Ngan, F.; Byun, D.; Kim, H.; Cheng, F.; Kim, S.; Lee, D.

    2008-12-01

    An air quality forecasting system (UH-AQF) for Eastern Texas, which is in operation by the Institute for Multidimensional Air Quality Studies (IMAQS) at the University of Houston, uses the Fifth-Generation PSU/NCAR Mesoscale Model MM5 model as the meteorological driver for modeling air quality with the Community Multiscale Air Quality (CMAQ) model. While the forecasting system was successfully used for the planning and implementation of various measurement activities, evaluations of the forecasting results revealed a few systematic problems in the numerical simulations. From comparison with observations, we observe some times over-prediction of northerly winds caused by inaccurate synoptic inputs and other times too strong southerly winds caused by local sea breeze development. Discrepancies in maximum and minimum temperature are also seen for certain days. Precipitation events, as well as clouds, are simulated at the incorrect locations and times occasionally. Model simulatednrealistic thunderstorms are simulated, causing sometimes cause unrealistically strong outflows. To understand physical and chemical processes influencing air quality measures, a proper description of real world meteorological conditions is essential. The objective of this study is to generate better meteorological inputs than the AQF results to support the chemistry modeling. We utilized existing objective analysis and nudging tools in the MM5 system to develop the MUltiscale Nest-down Data Assimilation System (MUNDAS), which incorporates extensive meteorological observations available in the simulated domain for the retrospective simulation of the TexAQS-II period. With the re-simulated meteorological input, we are able to better predict ozone events during TexAQS-II period. In addition, base datasets in MM5 such as land use/land cover, vegetation fraction, soil type and sea surface temperature are updated by satellite data to represent the surface features more accurately. They are key physical parameters inputs affecting transfer of heat, momentum and soil moisture in land-surface process in MM5. Using base the accurate input datasets, we are able to have improved see the differences of predictions of ground temperatures, winds and even thunderstorm activities within boundary layer.

  17. Performance Evaluation of PBL Schemes of ARW Model in Simulating Thermo-Dynamical Structure of Pre-Monsoon Convective Episodes over Kharagpur Using STORM Data Sets

    NASA Astrophysics Data System (ADS)

    Madala, Srikanth; Satyanarayana, A. N. V.; Srinivas, C. V.; Tyagi, Bhishma

    2016-05-01

    In the present study, advanced research WRF (ARW) model is employed to simulate convective thunderstorm episodes over Kharagpur (22°30'N, 87°20'E) region of Gangetic West Bengal, India. High-resolution simulations are conducted using 1 × 1 degree NCEP final analysis meteorological fields for initial and boundary conditions for events. The performance of two non-local [Yonsei University (YSU), Asymmetric Convective Model version 2 (ACM2)] and two local turbulence kinetic energy closures [Mellor-Yamada-Janjic (MYJ), Bougeault-Lacarrere (BouLac)] are evaluated in simulating planetary boundary layer (PBL) parameters and thermodynamic structure of the atmosphere. The model-simulated parameters are validated with available in situ meteorological observations obtained from micro-meteorological tower as well has high-resolution DigiCORA radiosonde ascents during STORM-2007 field experiment at the study location and Doppler Weather Radar (DWR) imageries. It has been found that the PBL structure simulated with the TKE closures MYJ and BouLac are in better agreement with observations than the non-local closures. The model simulations with these schemes also captured the reflectivity, surface pressure patterns such as wake-low, meso-high, pre-squall low and the convective updrafts and downdrafts reasonably well. Qualitative and quantitative comparisons reveal that the MYJ followed by BouLac schemes better simulated various features of the thunderstorm events over Kharagpur region. The better performance of MYJ followed by BouLac is evident in the lesser mean bias, mean absolute error, root mean square error and good correlation coefficient for various surface meteorological variables as well as thermo-dynamical structure of the atmosphere relative to other PBL schemes. The better performance of the TKE closures may be attributed to their higher mixing efficiency, larger convective energy and better simulation of humidity promoting moist convection relative to non-local schemes.

  18. Astronomical, physical, and meteorological parameters for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Travis, Larry D.

    1986-01-01

    A newly compiled table of astronomical, physical, and meteorological parameters for planetary atmospheres is presented. Formulae and explanatory notes for their application and a complete listing of sources are also given.

  19. Oceanic influence on seasonal malaria outbreaks over Senegal and Sahel

    NASA Astrophysics Data System (ADS)

    Diouf, Ibrahima; Rodríguez de Fonseca, Belen; Deme, Abdoulaye; Cisse Cisse, Moustapha; Ndione Ndione, Jaques-Andre; Gaye, Amadou T.; Suarez, Roberto

    2015-04-01

    Beyond assessment and analysis of observed and simulated malaria parameters, this study is furthermore undertaken in the framework of predictability of malaria outbreaks in Senegal and remote regions in Sahel, which are found to take place two months after the rainy season. The predictors are the sea surface temperature anomalous patterns at different ocean basins mainly over the Pacific and Atlantic as they are related to changes in air temperature, humidity, rainfall and wind. A relationship between El Niño and anomalous malaria parameters is found. The malaria parameters are calculated with the Liverpool Malaria Model (LMM) using meteorological datasets from different reanalysis products. A hindcast of these parameters is performed using the Sea Surface temperature based Statistical Seasonal ForeCAST (S4CAST) model developed at UCM in order to predict malaria parameters some months in advance. The results of this work will be useful for decision makers to better access to climate forecasts and application on malaria transmission risk.

  20. BOREAS Derived Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Twine, Tracy; Rinker, Donald; Knapp, David

    2000-01-01

    In 1995, the BOREAS science teams identified the need for a continuous surface meteorological and radiation data set to support flux and surface process modeling efforts. This data set contains actual, substituted, and interpolated 15-minute meteorological and radiation data compiled from several surface measurements sites over the BOREAS SSA and NSA. Temporally, the data cover 01-Jan-1994 to 31-Dec-1996. The data are stored in tabular ASCII files, and are classified as AFM-Staff data.

  1. Spatial interpolation of GPS PWV and meteorological variables over the west coast of Peninsular Malaysia during 2013 Klang Valley Flash Flood

    NASA Astrophysics Data System (ADS)

    Suparta, Wayan; Rahman, Rosnani

    2016-02-01

    Global Positioning System (GPS) receivers are widely installed throughout the Peninsular Malaysia, but the implementation for monitoring weather hazard system such as flash flood is still not optimal. To increase the benefit for meteorological applications, the GPS system should be installed in collocation with meteorological sensors so the precipitable water vapor (PWV) can be measured. The distribution of PWV is a key element to the Earth's climate for quantitative precipitation improvement as well as flash flood forecasts. The accuracy of this parameter depends on a large extent on the number of GPS receiver installations and meteorological sensors in the targeted area. Due to cost constraints, a spatial interpolation method is proposed to address these issues. In this paper, we investigated spatial distribution of GPS PWV and meteorological variables (surface temperature, relative humidity, and rainfall) by using thin plate spline (tps) and ordinary kriging (Krig) interpolation techniques over the Klang Valley in Peninsular Malaysia (longitude: 99.5°-102.5°E and latitude: 2.0°-6.5°N). Three flash flood cases in September, October, and December 2013 were studied. The analysis was performed using mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) to determine the accuracy and reliability of the interpolation techniques. Results at different phases (pre, onset, and post) that were evaluated showed that tps interpolation technique is more accurate, reliable, and highly correlated in estimating GPS PWV and relative humidity, whereas Krig is more reliable for predicting temperature and rainfall during pre-flash flood events. During the onset of flash flood events, both methods showed good interpolation in estimating all meteorological parameters with high accuracy and reliability. The finding suggests that the proposed method of spatial interpolation techniques are capable of handling limited data sources with high accuracy, which in turn can be used to predict future floods.

  2. Vertical ozone characteristics in urban boundary layer in Beijing.

    PubMed

    Ma, Zhiqiang; Xu, Honghui; Meng, Wei; Zhang, Xiaoling; Xu, Jing; Liu, Quan; Wang, Yuesi

    2013-07-01

    Vertical ozone and meteorological parameters were measured by tethered balloon in the boundary layer in the summer of 2009 in Beijing, China. A total of 77 tethersonde soundings were taken during the 27-day campaign. The surface ozone concentrations measured by ozonesondes and TEI 49C showed good agreement, albeit with temporal difference between the two instruments. Two case studies of nocturnal secondary ozone maxima are discussed in detail. The development of the low-level jet played a critical role leading to the observed ozone peak concentrations in nocturnal boundary layer (NBL). The maximum of surface ozone was 161.7 ppbv during the campaign, which could be attributed to abundant precursors storage near surface layer at nighttime. Vertical distribution of ozone was also measured utilizing conventional continuous analyzers on 325-m meteorological observation tower. The results showed the NBL height was between 47 and 280 m, which were consistent with the balloon data. Southerly air flow could bring ozone-rich air to Beijing, and the ozone concentrations exceeded the China's hourly ozone standard (approximately 100 ppb) above 600 m for more than 12 h.

  3. Spatial interpolation of monthly mean air temperature data for Latvia

    NASA Astrophysics Data System (ADS)

    Aniskevich, Svetlana

    2016-04-01

    Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.

  4. BOREAS AFM-07 SRC Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Osborne, Heather; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Young, Kim; Wittrock, Virginia; Shewchuck, Stan; Smith, David E. (Technical Monitor)

    2000-01-01

    The Saskatchewan Research Council (SRC) collected surface meteorological and radiation data from December 1993 until December 1996. The data set comprises Suite A (meteorological and energy balance measurements) and Suite B (diffuse solar and longwave measurements) components. Suite A measurements were taken at each of ten sites, and Suite B measurements were made at five of the Suite A sites. The data cover an approximate area of 500 km (North-South) by 1000 km (East-West) (a large portion of northern Manitoba and northern Saskatchewan). The measurement network was designed to provide researchers with a sufficient record of near-surface meteorological and radiation measurements. The data are provided in tabular ASCII files, and were collected by Aircraft Flux and Meteorology (AFM)-7. The surface meteorological and radiation data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  5. Diffuse solar radiation and associated meteorological parameters in India

    NASA Astrophysics Data System (ADS)

    Bhattacharya, A. B.; Kar, S. K.; Bhattacharya, R.

    1996-10-01

    Solar diffuse radiation data including global radiation, shortwave and longwave balances, net radiation and sunshine hours have been extensively analyzed to study the variation of diffuse radiation with turbidity and cloud discharges appearing in the form of atmospherics over the tropics. Results of surface radiation measurements at Calcutta, Poona, Delhi and Madras are presented together with some meteorological parameters. The monthly values of diffuse radiation and the monthly ratios of diffuse to global solar radiation have been examined, with a special emphasis in relation to the noise level of atmospherics at Calcutta in the very low frequency band. The results exhibit some definite seasonal changes which appear to be in close agreement with one another. Acknowledgements. We gratefully appreciate the on-line DMSP database facility at APL (Newell et al., 1991) from which this study has benefited greatly. We wish to thank E. Friis-Christensen for his encouragement and useful discussions. A. Y. would like to thank the Danish Meteorological Institute, where this work was done, for its hospitality during his stay there and the Nordic Baltic Scholarship Scheme for its financial support of this stay. Topical Editor K.-H. Glassmeier thanks M. J. Engebretson and H. Lühr for their help in evaluating this paper.--> Correspondence to: A. Yahnin-->

  6. 222Rn variations in Mystery Cave, Minnesota

    USGS Publications Warehouse

    Lively, R.S.; Krafthefer, B.C.

    1995-01-01

    222Rn concentrations and meteorological parameters were measured at 4- h intervals over a 2-y period in Mystery Cave, southeastern Minnesota. Continuous radon monitors and meteorological sensors connected to data loggers were installed at several locations along commercial tour routes. 222Rn concentrations ranged as high as 25 kBq m-3 in summer and 20 kBq m-3 in winter. Average winter concentrations were lower than summer by at least a factor of two. Seasonal radon variations were correlative with outside air temperatures. During the winter, radon concentrations were observed to fluctuate periodically by factors of 20 or more in under 24 h. Both the long- and short-term variations are correlative with temperature- induced mixing of cave air with surface air.

  7. Impact of High Resolution Land-Use Data in Meteorology and Air Quality Modeling Systems

    EPA Science Inventory

    Accurate land use information is important in meteorology for land surface exchanges, in emission modeling for emission spatial allocation, and in air quality modeling for chemical surface fluxes. Currently, meteorology, emission, and air quality models often use outdated USGS Gl...

  8. The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model

    NASA Astrophysics Data System (ADS)

    Cuntz, Matthias; Mai, Juliane; Samaniego, Luis; Clark, Martyn; Wulfmeyer, Volker; Branch, Oliver; Attinger, Sabine; Thober, Stephan

    2016-09-01

    Land surface models incorporate a large number of process descriptions, containing a multitude of parameters. These parameters are typically read from tabulated input files. Some of these parameters might be fixed numbers in the computer code though, which hinder model agility during calibration. Here we identified 139 hard-coded parameters in the model code of the Noah land surface model with multiple process options (Noah-MP). We performed a Sobol' global sensitivity analysis of Noah-MP for a specific set of process options, which includes 42 out of the 71 standard parameters and 75 out of the 139 hard-coded parameters. The sensitivities of the hydrologic output fluxes latent heat and total runoff as well as their component fluxes were evaluated at 12 catchments within the United States with very different hydrometeorological regimes. Noah-MP's hydrologic output fluxes are sensitive to two thirds of its applicable standard parameters (i.e., Sobol' indexes above 1%). The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for direct evaporation, which proved to be oversensitive in other land surface models as well. Surface runoff is sensitive to almost all hard-coded parameters of the snow processes and the meteorological inputs. These parameter sensitivities diminish in total runoff. Assessing these parameters in model calibration would require detailed snow observations or the calculation of hydrologic signatures of the runoff data. Latent heat and total runoff exhibit very similar sensitivities because of their tight coupling via the water balance. A calibration of Noah-MP against either of these fluxes should therefore give comparable results. Moreover, these fluxes are sensitive to both plant and soil parameters. Calibrating, for example, only soil parameters hence limit the ability to derive realistic model parameters. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.

  9. Carbonaceous aerosols and Impacts on regional climate over South Asia

    NASA Astrophysics Data System (ADS)

    Pathak, B.; Parottil, A.

    2017-12-01

    A comprehensive assessment on the effects of carbonaceous aerosols over regional climate of South Asia CORDEX Domain is carried out using the ICTP developed Regional climate model version 4 (RegCM 4.4). Five different simulations considering (a) Carbonaceous aerosols with feedback to meteorological field (EXP1), (b) Carbonaceous aerosols without feedback to meteorological field (c) only Black Carbon with feed back to meteorological field (EXP3) and (d) only Black Carbon without feed back to meteorological field (EXP4) and only meteorology simulation (CNTL) are performed. All the five experiments are integrated from 01 January 2008 to 01 January 2012 continuously with a horizontal resolution of 50 km with first one year as spin up time. The simulated meteorology for all the simulations is validated by comparing with observations. The influence of carbonaceous aerosols on Direct Radiative Forcing (DRF) at the top of the atmosphere (TOA) and within the atmosphere (ATM) over the South Asian region with focus on Indian subcontinent is carried out. The contribution of black carbon to the total DRF and its significance is analyzed. Modulation in precipitation and temperature with the aerosol-climate feedback is studied by comparing the meteorological parameters in CNTL with CARB/BC with and without feedback simulations. In general, black carbon is found to reduce the precipitation, wind over the region more strongly than total carbonaceous aerosols. Role of black carbon in warming the surface is investigated by comparing the RegCM simulation considering both biomass burning and anthropogenic emissions with simulations considering only anthropogenic simulations.

  10. High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea

    NASA Astrophysics Data System (ADS)

    Park, Moon-Soo; Park, Sung-Hwa; Chae, Jung-Hoon; Choi, Min-Hyeok; Song, Yunyoung; Kang, Minsoo; Roh, Joon-Woo

    2017-04-01

    To improve our knowledge of urban meteorology, including those processes applicable to high-resolution meteorological models in the Seoul Metropolitan Area (SMA), the Weather Information Service Engine (WISE) Urban Meteorological Observation System (UMS-Seoul) has been designed and installed. The UMS-Seoul incorporates 14 surface energy balance (EB) systems, 7 surface-based three-dimensional (3-D) meteorological observation systems and applied meteorological (AP) observation systems, and the existing surface-based meteorological observation network. The EB system consists of a radiation balance system, sonic anemometers, infrared CO2/H2O gas analyzers, and many sensors measuring the wind speed and direction, temperature and humidity, precipitation, and air pressure. The EB-produced radiation, meteorological, and turbulence data will be used to quantify the surface EB according to land use and to improve the boundary-layer and surface processes in meteorological models. The 3-D system, composed of a wind lidar, microwave radiometer, aerosol lidar, or ceilometer, produces the cloud height, vertical profiles of backscatter by aerosols, wind speed and direction, temperature, humidity, and liquid water content. It will be used for high-resolution reanalysis data based on observations and for the improvement of the boundary-layer, radiation, and microphysics processes in meteorological models. The AP system includes road weather information, mosquito activity, water quality, and agrometeorological observation instruments. The standardized metadata for networks and stations are documented and renewed periodically to provide a detailed observation environment. The UMS-Seoul data are designed to support real-time acquisition and display and automatically quality check within 10 min from observation. After the quality check, data can be distributed to relevant potential users such as researchers and policy makers. Finally, two case studies demonstrate that the observed data have a great potential to help to understand the boundary-layer structures more deeply, improve the performance of high-resolution meteorological models, and provide useful information customized based on the user demands in the SMA.

  11. Sensitivity of Beech Trees to Global Environmental Changes at Most North-Eastern Latitude of Their Occurrence in Europe

    PubMed Central

    Augustaitis, Algirdas; Jasineviciene, Dalia; Girgzdiene, Rasele; Kliucius, Almantas; Marozas, Vitas

    2012-01-01

    The present study aimed to detect sensitivity of beech trees (Fagus sylvatica L.) to meteorological parameters and air pollution by acidifying species as well as to surface ozone outside their north-eastern distribution range. Data set since 1981 of Preila EMEP station enabled to establish that hot Summers, cold dormant, and dry and cold first-half of vegetation periods resulted in beech tree growth reduction. These meteorological parameters explained 57% variation in beech tree ring widths. Acidifying species had no significant effect on beech tree growth. Only ozone was among key factors contributing to beech stand productivity. Phytotoxic effect of this pollutant increased explanation rate of beech tree ring variation by 18%, that is, up to 75%. However, due to climate changes the warmer dormant periods alone are not the basis ensuring favourable conditions for beech tree growth. Increase in air temperature in June-August and decrease in precipitation amount in the first half of vegetation period should result in beech tree radial increment reduction. Despite the fact that phytotoxic effect of surface ozone should not increase due to stabilization in its concentration, it is rather problematic to expect better environmental conditions for beech tree growth at northern latitude of their pervasion. PMID:22649321

  12. Numerical modeling of thermal regime in inland water bodies with field measurement data

    NASA Astrophysics Data System (ADS)

    Gladskikh, D.; Sergeev, D.; Baydakov, G.; Soustova, I.; Troitskaya, Yu.

    2018-01-01

    Modification of the program complex LAKE, which is intended to compute the thermal regimes of inland water bodies, and the results of its validation in accordance with the parameters of lake part of Gorky water reservoir are reviewed in the research. The modification caused changing the procedure of input temperature profile assignment and parameterization of surface stress on air-water boundary in accordance with the consideration of wind influence on mixing process. Also the innovation consists in combined methods of gathering meteorological parameters from files of global meteorological reanalysis and data of hydrometeorological station. Temperature profiles carried out with CTD-probe during expeditions in the period 2014-2017 were used for validation of the model. The comparison between the real data and the numerical results and its assessment based on time and temperature dependences in control points, correspondence of the forms of the profiles and standard deviation for all performed realizations are provided. It is demonstrated that the model reproduces the results of field measurement data for all observed conditions and seasons. The numerical results for the regimes with strong mixing are in the best quantitative and qualitative agreement with the real profiles. The accuracy of the forecast for the ones with strong stratification near the surface is lower but all specificities of the forms are correctly reproduced.

  13. Extended T-index models for glacier surface melting: a case study from Chorabari Glacier, Central Himalaya, India

    NASA Astrophysics Data System (ADS)

    Karakoti, Indira; Kesarwani, Kapil; Mehta, Manish; Dobhal, D. P.

    2016-10-01

    Two enhanced temperature-index (T-index) models are proposed by incorporating meteorological parameters viz. relative humidity, wind speed and net radiation. The models are an attempt to explore different climatic variables other than temperature affecting glacier surface melting. Weather data were recorded at Chorabari Glacier using an automatic weather station during the summers of 2010 (July 10 to September 10) and 2012 (June 10 to October 25). The modelled surface melt is validated against the measured point surface melting at the snout. Performance of the developed models is evaluated by comparing with basic temperature-index model and is quantified through different efficiency criteria. The results suggest that proposed models yield considerable improvement in surface melt simulation . Consequently, the study reveals that glacier surface melt depends not only on temperature but also on weather parameters viz. relative humidity, wind speed and net radiation play a significant role in glacier surface melting. This approach provides a major improvement on basic temperature-index method and offers an alternative to energy balance model.

  14. Space based inverse modeling of seasonal variations of anthropogenic and natural emissions of nitrogen oxides over China and effects of uncertainties in model meteorology and chemistry

    NASA Astrophysics Data System (ADS)

    Lin, J.

    2011-12-01

    Nitrogen oxides (NOx ≡ NO + NO2) are important atmospheric constituents affecting the tropospheric chemistry, surface air quality and climatic forcing. They are emitted both from anthropogenic and from natural (soil, lightning, biomass burning, etc.) sources, which can be estimated inversely from satellite remote sensing of the vertical column densities (VCDs) of nitrogen dioxide (NO2) in the troposphere. Based on VCDs of NO2 retrieved from OMI, a novel approach is developed in this study to separate anthropogenic emissions of NOx from natural sources over East China for 2006. It exploits the fact that anthropogenic and natural emissions vary with seasons with distinctive patterns. The global chemical transport model (CTM) GEOS-Chem is used to establish the relationship between VCDs of NO2 and emissions of NOx for individual sources. Derived soil emissions are compared to results from a newly developed bottom-up approach. Effects of uncertainties in model meteorology and chemistry over China, an important source of errors in the emission inversion, are evaluated systematically for the first time. Meteorological measurements from space and the ground are used to analyze errors in meteorological parameters driving the CTM.

  15. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph G.; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2009-01-01

    The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB.

  16. Estimation water vapor content using the mixing ratio method and validated with the ANFIS PWV model

    NASA Astrophysics Data System (ADS)

    Suparta, W.; Alhasa, K. M.; Singh, M. S. J.

    2017-05-01

    This study reported the comparison between water vapor content, the surface meteorological data (pressure, temperature, and relative humidity), and precipitable water vapor (PWV) produced by PWV from adaptive neuro fuzzy inference system (ANFIS) for areas in the Universiti Kebangsaan Malaysia Bangi (UKMB) station. The water vapor content value was estimated with mixing ratio method and the surface meteorological data as the parameter inputs. The accuracy of water vapor content was validated with PWV from ANFIS PWV model for the period of 20-23 December 2016. The result showed that the water vapor content has a similar trend with the PWV which produced by ANFIS PWV model (r = 0.975 at the 99% confidence level). This indicates that the water vapor content that obtained with mixing ratio agreed very well with the ANFIS PWV model. In addition, this study also found, the pattern of water vapor content and PWV have more influenced by the relative humidity.

  17. Martian Meteorological Lander

    NASA Astrophysics Data System (ADS)

    Vorontsov, V.; Pichkhadze, K.; Polyakov, A.

    2002-01-01

    Martian meteorological lander (MML) is dedicated for landing onto the Mars surface with the purpose to carry on the monitoring of Mars atmosphere condition at a landing point during one Martian year. MML is supposed to become the basic element of a global net of meteorological mini stations and will permit to observe the dynamics of Martian atmosphere parameters changes during a long time duration. The main scientific tasks of MML are as follows: -study of vertical structure of Mars atmosphere during MML descending; -meteorological observations on Mars surface during one Martian year. One of the essential factor influencing to the lander design is descent trajectory design. During the preliminary phase of development five (5) options of MML were considered. In our opinion, these variants provide the accomplishment of the above-mentioned tasks with a high effectiveness. Joined into the first group, variants with parachute system and with Inflatable Air Brakes+Inflatable Airbag are similar in arranging of pre-landing braking stage and completely analogous in landing by means of airbags. The usage of additional Inflatable Braking Unit (IBU) in the second variant does not affect the procedure of braking - decreasing of velocity by the moment of touching the surface due to decreasing of ballistic parameter Px. A distinctive feature of MML development variants of other three concepts is the presence of Inflatable Braking Unit (IBU) in their configurations (IBU is rigidly joined with landing module up to the moment of its touching the surface). Besides, in variant with the tore-shaped IBU it acts as a shock- absorbing unit. In two options, Inflatable Braking Shock-Absorbing Unit (IBSAU) (or IBU) releases the surface module after its landing at the moment of IBSAU (or IBU) elastic recoil. Variants of this concept are equal in terms of mass (approximately 15 kg). For variants of concepts with IBU the landing velocity is up to50-70 m/s. Stations of last three options are much more reliable in comparison with MML of first and second options because their functional diagram is realized by operation of 3-4 (instead of 8-10 for MML of first and second concepts) executive devices. A distinctive moment for MML of last three concepts , namely for variants 3 and 5, is the final stage of landing stipulated by penetration of forebody into the soil. Such a profile of landing was taken into account during the development of one of the landing vehicles for the "MARS-96" SC. This will permit to implement simple technical decisions for putting the meteorological complex into operation and to carry out its further operations on the surface. After comparative analysis of 5 concepts for the more detailed development concepts with parachute system and with IBU and penetration unit have been chosen as most prospective. However, finally, on the next step the new modification of the lander (hybrid version of third and fifth option with inflatable braking device and penetrating unit) has been proposed and chosen for the next step of development. The several small stations should be transported to Mars in frameworks of Scout Mars mission, or Phobos Sample Return mission as piggyback payload.

  18. An Investigation of the Influence of Urban Areas on Rainfall Using a Cloud-Mesoscale Model and the TRMM Satellite

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Starr, David O'C (Technical Monitor)

    2001-01-01

    A recent paper by Shepherd and Pierce (conditionally accepted to Journal of Applied Meteorology) used rainfall data from the Precipitation Radar on NASA's Tropical Rainfall Measuring Mission's (TRMM) satellite to identify warm season rainfall anomalies downwind of major urban areas. A convective-mesoscale model with extensive land-surface processes is employed to (a) determine if an urban heat island (UHI) thermal perturbation can induce a dynamic response to affect rainfall processes and (b) quantify the impact of the following three factors on the evolution of rainfall: (1) urban surface roughness, (2) magnitude of the UHI temperature anomaly, and (3) physical size of the UHI temperature anomaly. The sensitivity experiments are achieved by inserting a slab of land with urban properties (e.g. roughness length, albedo, thermal character) within a rural surface environment and varying the appropriate lower boundary condition parameters. Early analysis suggests that urban surface roughness (through turbulence and low-level convergence) may control timing and initial location of UHI-induced convection. The magnitude of the heat island appears to be closely linked to the total rainfall amount with minor impact on timing and location. The physical size of the city may predominantly impact on the location of UHI-induced rainfall anomaly. The UHI factor parameter space will be thoroughly investigated with respect to their effects on rainfall amount, location, and timing. This study extends prior numerical investigations of the impact of urban surfaces on meteorological processes, particularly rainfall development. The work also contains several novel aspects, including the application of a high-resolution (less than I km) cloud-mesoscale model to investigate urban-induce rainfall process; investigation of thermal magnitude of the UHI on rainfall process; and investigation of UHI physical size on rainfall processes.

  19. [Historical overview of medical meteorology - the new horizon in medical prevention].

    PubMed

    Boussoussou, Nora; Boussoussou, Melinda; Nemes, Attila

    2017-02-01

    The aim of this article is to draw attention to the medical meteorology from the perspective of the history of science. Unfortunately medical meteorology is not part of the daily medical practice. The climate change is a new challenge for health care worldwide. It concerns millions of people a higher morbidity and mortality rate. Knowing the effects of the meteorological parameters as risk factors can allow us to create new prevention strategies. These new strategies could help to decrease the negative health effects of the meteorological parameters. Nowadays on the field of the medical prevention the medical meteorology is a new horizon and in the future it could play an important role. Health care professionals have the most important role to fight against the negative effects of the global climate change. Orv. Hetil., 2017, 158(5), 187-191.

  20. Analysis of aircraft microwave measurements of the ocean surface

    NASA Technical Reports Server (NTRS)

    Willand, J. H.; Fowler, M. G.; Reifenstein, E. C., III; Chang, D. T.

    1973-01-01

    A data system was developed to process, from calibrated brightness temperature to computation of estimated parameters, the microwave measurements obtained by the NASA CV-990 aircraft during the 1972 Meteorological Expedition. A primary objective of the study was the implementation of an integrated software system at the computing facility of NASA/GSFC, and its application to the 1972 data. A single test case involving measurements away from and over a heavy rain cell was chosen to examine the effect of clouds upon the ability to infer ocean surface parameters. The results indicate substantial agreement with those of the theoretical study; namely, that the values obtained for the surface properties are consistent with available ground-truth information, and are reproducible except within the heaviest portions of the rain cell, at which nonlinear (or saturation) effects become apparent. Finally, it is seen that uncorrected instrumental effects introduce systematic errors which may limit the accuracy of the method.

  1. Meteorological responses in the atmospheric boundary layer over southern England to the deep partial eclipse of 20 March 2015.

    PubMed

    Burt, Stephen

    2016-09-28

    A wide range of surface and near-surface meteorological observations were made at the University of Reading's Atmospheric Observatory in central southern England (latitude 51.441° N, longitude 0.938° W, altitude 66 m above mean sea level) during the deep partial eclipse on the morning of 20 March 2015. Observations of temperature, humidity, radiation, wind speed and direction, and atmospheric pressure were made by computerized logging equipment at 1 Hz, supplemented by an automated cloud base recorder sampling at 1 min intervals and a high-resolution (approx. 10 m vertical interval) atmospheric sounding by radiosonde launched from the same location during the eclipse. Sources and details of each instrumental measurement are described briefly, followed by a summary of observed and derived measurements by meteorological parameter. Atmospheric boundary layer responses to the solar eclipse were muted owing to the heavily overcast conditions which prevailed at the observing location, but instrumental records of the event documented a large (approx. 80%) reduction in global solar radiation, a fall in air temperature of around 0.6°C, a decrease in cloud base height, and a slight increase in atmospheric stability during the eclipse. Changes in surface atmospheric moisture content and barometric pressure were largely insignificant during the event.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Author(s).

  2. Meteorological responses in the atmospheric boundary layer over southern England to the deep partial eclipse of 20 March 2015

    PubMed Central

    2016-01-01

    A wide range of surface and near-surface meteorological observations were made at the University of Reading’s Atmospheric Observatory in central southern England (latitude 51.441° N, longitude 0.938° W, altitude 66 m above mean sea level) during the deep partial eclipse on the morning of 20 March 2015. Observations of temperature, humidity, radiation, wind speed and direction, and atmospheric pressure were made by computerized logging equipment at 1 Hz, supplemented by an automated cloud base recorder sampling at 1 min intervals and a high-resolution (approx. 10 m vertical interval) atmospheric sounding by radiosonde launched from the same location during the eclipse. Sources and details of each instrumental measurement are described briefly, followed by a summary of observed and derived measurements by meteorological parameter. Atmospheric boundary layer responses to the solar eclipse were muted owing to the heavily overcast conditions which prevailed at the observing location, but instrumental records of the event documented a large (approx. 80%) reduction in global solar radiation, a fall in air temperature of around 0.6°C, a decrease in cloud base height, and a slight increase in atmospheric stability during the eclipse. Changes in surface atmospheric moisture content and barometric pressure were largely insignificant during the event. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550762

  3. Processing of meteorological data with ultrasonic thermoanemometers

    NASA Astrophysics Data System (ADS)

    Telminov, A. E.; Bogushevich, A. Ya.; Korolkov, V. A.; Botygin, I. A.

    2017-11-01

    The article describes a software system intended for supporting scientific researches of the atmosphere during the processing of data gathered by multi-level ultrasonic complexes for automated monitoring of meteorological and turbulent parameters in the ground layer of the atmosphere. The system allows to process files containing data sets of temperature instantaneous values, three orthogonal components of wind speed, humidity and pressure. The processing task execution is done in multiple stages. During the first stage, the system executes researcher's query for meteorological parameters. At the second stage, the system computes series of standard statistical meteorological field properties, such as averages, dispersion, standard deviation, asymmetry coefficients, excess, correlation etc. The third stage is necessary to prepare for computing the parameters of atmospheric turbulence. The computation results are displayed to user and stored at hard drive.

  4. Air pollution potential: Regional study in Argentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gassmann, M.I.; Mazzeo, N.A.

    2000-04-01

    Air pollution potential is a measure of the atmospheric conditions that are unable to transport and dilute pollutants into the air, independently of the existence of sources. This potential can be determined from two atmospheric parameters; mixing height and transport wind. In this paper a statistical analysis of the mixing height and transport wind, in order to determine the areas with high or poor atmospheric ventilation in Argentina, is presented. In order to achieve this, meteorological data registered during 1979--1982 at eight meteorological stations were used. Daily values of the maximum mixing height were calculated from observations of daily temperaturesmore » at different heights and maximum surface temperature. At the same time as the maximum mixing height, the values of the transport wind were determined from the surface windspeed and the characteristics of the ground in the surroundings of each meteorological station. The mean seasonal values for both parameters were obtained. Isopleths of the mean seasonal of the maximum mixing heights were drawn. The percentage of seasonal frequencies of poor ventilation conditions were calculated and the frequency isopleths were also drawn to determine areas with minor and major relative frequencies. It was found that the northeastern and central-eastern regions of Argentina had a high air pollution potential during the whole year. Unfavorable atmospheric ventilation conditions were also found in the central-western side of the country during the cold seasons (37.5% in autumn and 56.9% in winter). The region with the greatest atmospheric ventilation is located south of 40{degree}S, where the frequency of poor ventilation varies between 8.0% in summer and 10.8% in winter.« less

  5. Integrating effective drought index (EDI) and remote sensing derived parameters for agricultural drought assessment and prediction in Bundelkhand region of India

    NASA Astrophysics Data System (ADS)

    Padhee, S. K.; Nikam, B. R.; Aggarwal, S. P.; Garg, V.

    2014-11-01

    Drought is an extreme condition due to moisture deficiency and has adverse effect on society. Agricultural drought occurs when restraining soil moisture produces serious crop stress and affects the crop productivity. The soil moisture regime of rain-fed agriculture and irrigated agriculture behaves differently on both temporal and spatial scale, which means the impact of meteorologically and/or hydrological induced agriculture drought will be different in rain-fed and irrigated areas. However, there is a lack of agricultural drought assessment system in Indian conditions, which considers irrigated and rain-fed agriculture spheres as separate entities. On the other hand recent advancements in the field of earth observation through different satellite based remote sensing have provided researchers a continuous monitoring of soil moisture, land surface temperature and vegetation indices at global scale, which can aid in agricultural drought assessment/monitoring. Keeping this in mind, the present study has been envisaged with the objective to develop agricultural drought assessment and prediction technique by spatially and temporally assimilating effective drought index (EDI) with remote sensing derived parameters. The proposed technique takes in to account the difference in response of rain-fed and irrigated agricultural system towards agricultural drought in the Bundelkhand region (The study area). The key idea was to achieve the goal by utilizing the integrated scenarios from meteorological observations and soil moisture distribution. EDI condition maps were prepared from daily precipitation data recorded by Indian Meteorological Department (IMD), distributed within the study area. With the aid of frequent MODIS products viz. vegetation indices (VIs), and land surface temperature (LST), the coarse resolution soil moisture product from European Space Agency (ESA) were downscaled using linking model based on Triangle method to a finer resolution soil moisture product. EDI and spatially downscaled soil moisture products were later used with MODIS 16 days NDVI product as key elements to assess and predict agricultural drought in irrigated and rain-fed agricultural systems in Bundelkhand region of India. Meteorological drought, soil moisture deficiency and NDVI degradation were inhabited for each and every pixel of the image in GIS environment, for agricultural impact assessment at a 16 day temporal scale for Rabi seasons (October-April) between years 2000 to 2009. Based on the statistical analysis, good correlations were found among the parameters EDI and soil moisture anomaly; NDVI anomaly and soil moisture anomaly lagged to 16 days and these results were exploited for the development of a linear prediction model. The predictive capability of the developed model was validated on the basis of spatial distribution of predicted NDVI which was compared with MODIS NDVI product in the beginning of preceding Rabi season (Oct-Dec of 2010).The predictions of the model were based on future meteorological data (year 2010) and were found to be yielding good results. The developed model have good predictive capability based on future meteorological data (rainfall data) availability, which enhances its utility in analyzing future Agricultural conditions if meteorological data is available.

  6. What is the sensitivity of the mineral dust cycle at the regional scale to surface wind speed? First insights from the DRUMS project.

    NASA Astrophysics Data System (ADS)

    Bouet, Christel; Siour, Guillaume; Poulet, David; Bergametti, Gilles; Laurent, Benoit; Brocheton, Fabien; Forêt, Gilles; Xu, Yiwen; Marticorena, Béatrice

    2017-04-01

    Modelling of the mineral dust cycle is still a challenging issue both at the global and regional scales: during the last decade, several exercises of model intercomparison highlighted the wide variability of the existing dust models to estimate dust emission fluxes and atmospheric load at both scales. For instance, within the framework of the international AEROCOM Project (http://aerocom.met.no/), 15 different global dust models provide a range of possible dust emission fluxes from 400 to 2200 Tg yr-1 for North Africa and from 26 to 526 Tg yr-1 for the Middle East, i.e. still a factor of 5 and 20 respectively (Huneeus et al., 2011). Whatever the scale, a critical aspect for any dust model is the sensitivity to the meteorological fields used to compute dust emission fluxes (external forcing or simulated by the coupled meteorological or climatic model). Indeed, the intensity of dust emission varies as a power 3 of the surface wind speed, and the number of dust emission events is the number of times the surface wind speed exceeds the wind erosion threshold. As a result, the simulations of dust emissions are extremely sensitive to the way the surface wind speeds are accounted for both in global and regional models. In this context, the aim of the DRUMS (DeseRt dUst Modeling: performance and Sensitivity evaluation) project was to investigate the sensitivity of a regional dust model (CHIMERE) to this parameter. This sensitivity study was conducted for 3 years from 2006 to 2008 over the North of Africa (45°N-0°N; 45°W-55°E), where dust emissions are the most intense. Emission fluxes can be simulated there with the most relevant data set of surface properties controlling dust emissions and accounting for the heterogeneity of land surfaces (surface roughness, soil size distribution and texture) of desert regions (Laurent et al., 2008). Meteorological products (forecasts and re-analysis) provided by the most recognized international meteorological centres (US NCEP and ECMWF), and thus the most widely used for the simulations of the mineral dust cycle, were tested. In addition, the benefit provided by the use of the WRF model to downscale the meteorological forcing was evaluated. The estimation of the performance of the CHIMERE model forced by the different meteorological fields was conducted using a unique validation data set compiled during the project by analysing and evaluating (i) the large number of experimental data resulting from the AMMA (African Monsoon Multidisciplinary Analysis) field campaigns, (ii) long-term aerosol monitoring over West Africa (Sahelian Dust Transect) and downwind the Sahara/Sahel region (AERONET), and (iii) recent satellite aerosol products (SeaWIFS AOD). This dataset allowed to validate the main characteristics of the dust cycle (emission, transport, and deposit).

  7. Global Surface Solar Energy Anomalies Including El Nino and La Nina Years

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Brown, D. E.; Chandler, W. S.; DiPasquale, R. C.; Ritchey, Nancy A.; Gupta, Shashi K.; Wilber, Anne C.; Kratz, David P.; Stackhouse, Paul W.

    2001-01-01

    This paper synthesizes past events in an attempt to define the general magnitude, duration, and location of large surface solar anomalies over the globe. Surface solar energy values are mostly a function of solar zenith angle, cloud conditions, column atmospheric water vapor, aerosols, and surface albedo. For this study, solar and meteorological parameters for the 10-yr period July 1983 through June 1993 are used. These data were generated as part of the Release 3 Surface meteorology and Solar Energy (SSE) activity under the NASA Earth Science Enterprise (ESE) effort. Release 3 SSE uses upgraded input data and methods relative to previous releases. Cloud conditions are based on recent NASA Version-D International Satellite Cloud Climatology Project (ISCCP) global satellite radiation and cloud data. Meteorological inputs are from Version-I Goddard Earth Observing System (GEOS) reanalysis data that uses both weather station and satellite information. Aerosol transmission for different regions and seasons are for an 'average' year based on historic solar energy data from over 1000 ground sites courtesy of Natural Resources Canada (NRCan). These data are input to a new Langley Parameterized Shortwave Algorithm (LPSA) that calculates surface albedo and surface solar energy. That algorithm is an upgraded version of the 'Staylor' algorithm. Calculations are performed for a 280X280 km equal-area grid system over the globe based on 3-hourly input data. A bi-linear interpolation process is used to estimate data output values on a 1 X 1 degree grid system over the globe. Maximum anomalies are examined relative to El Nino and La Nina events in the tropical Pacific Ocean. Maximum year-to-year anomalies over the globe are provided for a 10-year period. The data may assist in the design of systems with increased reliability. It may also allow for better planning for emergency assistance during some atypical events.

  8. SAMOS Surface Fluxes

    NASA Astrophysics Data System (ADS)

    Smith, Shawn; Bourassa, Mark

    2014-05-01

    The development of a new surface flux dataset based on underway meteorological observations from research vessels will be presented. The research vessel data center at the Florida State University routinely acquires, quality controls, and distributes underway surface meteorological and oceanographic observations from over 30 oceanographic vessels. These activities are coordinated by the Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative in partnership with the Rolling Deck to Repository (R2R) project. Recently, the SAMOS data center has used these underway observations to produce bulk flux estimates for each vessel along individual cruise tracks. A description of this new flux product, along with the underlying data quality control procedures applied to SAMOS observations, will be provided. Research vessels provide underway observations at high-temporal frequency (1 min. sampling interval) that include navigational (position, course, heading, and speed), meteorological (air temperature, humidity, wind, surface pressure, radiation, rainfall), and oceanographic (surface sea temperature and salinity) samples. Vessels recruited to the SAMOS initiative collect a high concentration of data within the U.S. continental shelf and also frequently operate well outside routine shipping lanes, capturing observations in extreme ocean environments (Southern, Arctic, South Atlantic, and South Pacific oceans). These observations are atypical for their spatial and temporal sampling, making them very useful for many applications including validation of numerical models and satellite retrievals, as well as local assessments of natural variability. Individual SAMOS observations undergo routine automated quality control and select vessels receive detailed visual data quality inspection. The result is a quality-flagged data set that is ideal for calculating turbulent flux estimates. We will describe the bulk flux algorithms that have been applied to the observations and the choices of constants that are used. Analysis of the preliminary SAMOS flux products will be presented, including spatial and temporal coverage for each derived parameter. The unique quality and sampling locations of research vessel observations and their independence from many models and products makes them ideal for validation studies. The strengths and limitations of research observations for flux validation studies will be discussed. The authors welcome a discussion with the flux community regarding expansion of the SAMOS program to include additional international vessels, thus facilitating and expansion of this research vessel-based flux product.

  9. Lack of evidence for meteorological effects on infradian dynamics of testosterone

    NASA Astrophysics Data System (ADS)

    Celec, Peter; Smreková, Lucia; Ostatníková, Daniela; Čabajová, Zlata; Hodosy, Július; Kúdela, Matúš

    2009-09-01

    Climatic factors are known to influence the endocrine system. Previous studies have shown that circannual seasonal variations of testosterone might be partly explained by changes in air temperature. Whether infradian variations are affected by meteorological factors is unknown. To analyze possible effects of meteorological parameters on infradian variations of salivary testosterone levels in both sexes, daily salivary testosterone levels were measured during 1 month in 14 men and 17 women. A correlation analysis between hormonal levels and selected meteorological parameters was performed. The results indicate that high testosterone levels are loosely associated with cold, sunny and dry weather in both sexes. However, only the correlations between testosterone and air temperature (men) and actual cloudiness (women) were statistically significant ( p < 0,05). Although some correlations reached the level of statistical significance, the effects of selected meteorological parameters on salivary testosterone levels remain unclear. Further longer-term studies concentrating on air temperature, cloudiness and average relative humidity in relation to the sex hormone axis are needed.

  10. Evaluation of an atmospheric model with surface and ABL meteorological data for energy applications in structured areas

    NASA Astrophysics Data System (ADS)

    Triantafyllou, A. G.; Kalogiros, J.; Krestou, A.; Leivaditou, E.; Zoumakis, N.; Bouris, D.; Garas, S.; Konstantinidis, E.; Wang, Q.

    2018-03-01

    This paper provides the performance evaluation of the meteorological component of The Air Pollution Model (TAPM), a nestable prognostic model, in predicting meteorological variables in urban areas, for both its surface layer and atmospheric boundary layer (ABL) turbulence parameterizations. The model was modified by incorporating four urban land surface types, replacing the existing single urban surface. Control runs were carried out over the wider area of Kozani, an urban area in NW Greece. The model was evaluated for both surface and ABL meteorological variables by using measurements of near-surface and vertical profiles of wind and temperature. The data were collected by using monitoring surface stations in selected sites as well as an acoustic sounder (SOnic Detection And Ranging (SODAR), up to 300 m above ground) and a radiometer profiler (up to 600 m above ground). The results showed the model demonstrated good performance in predicting the near-surface meteorology in the Kozani region for both a winter and a summer month. In the ABL, the comparison showed that the model's forecasts generally performed well with respect to the thermal structure (temperature profiles and ABL height) but overestimated wind speed at the heights of comparison (mostly below 200 m) up to 3-4 ms-1.

  11. The surface latent heat flux anomalies related to major earthquake

    NASA Astrophysics Data System (ADS)

    Jing, Feng; Shen, Xuhui; Kang, Chunli; Xiong, Pan; Hong, Shunying

    2011-12-01

    SLHF (Surface Latent Heat Flux) is an atmospheric parameter, which can describe the heat released by phase changes and dependent on meteorological parameters such as surface temperature, relative humidity, wind speed etc. There is a sharp difference between the ocean surface and the land surface. Recently, many studies related to the SLHF anomalies prior to earthquakes have been developed. It has been shown that the energy exchange enhanced between coastal surface and atmosphere prior to earthquakes can increase the rate of the water-heat exchange, which will lead to an obviously increases in SLHF. In this paper, two earthquakes in 2010 (Haiti earthquake and southwest of Sumatra in Indonesia earthquake) have been analyzed using SLHF data by STD (standard deviation) threshold method. It is shows that the SLHF anomaly may occur in interpolate earthquakes or intraplate earthquakes and coastal earthquakes or island earthquakes. And the SLHF anomalies usually appear 5-6 days prior to an earthquake, then disappear quickly after the event. The process of anomaly evolution to a certain extent reflects a dynamic energy change process about earthquake preparation, that is, weak-strong-weak-disappeared.

  12. Airborne-Measured Spatially-Averaged Temperature and Moisture Turbulent Structure Parameters Over a Heterogeneous Surface

    NASA Astrophysics Data System (ADS)

    Platis, Andreas; Martinez, Daniel; Bange, Jens

    2014-05-01

    Turbulent structure parameters of temperature and humidity can be derived from scintillometer measurements along horizontal paths of several 100 m to several 10 km. These parameters can be very useful to estimate the vertical turbulent heat fluxes at the surface (applying MOST). However, there are many assumptions required by this method which can be checked using in situ data, e.g. 1) Were CT2 and CQ2 correctly derived from the initial CN2 scintillometer data (structure parameter of density fluctuations or refraction index, respectively)? 2) What is the influence of the surround hetereogeneous surface regarding its footprint and the weighted averaging effect of the scintillometer method 3) Does MOST provide the correct turbulent fluxes from scintillometer data. To check these issues, in situ data from low-level flight measurements are well suited, since research aircraft cover horizontal distances in very short time (Taylor's hypothesis of a frozen turbulence structure can be applyed very likely). From airborne-measured time series the spatial series are calculated and then their structure functions that finally provide the structure parameters. The influence of the heterogeneous surface can be controlled by the definition of certain moving-average window sizes. A very useful instrument for this task are UAVs since they can fly very low and maintain altitude very precisely. However, the data base of such unmanned operations is still quite thin. So in this contribution we want to present turbulence data obtained with the Helipod, a turbulence probe hanging below a manned helicopter. The structure parameters of temperature and moisture, CT2 and CQ2, in the lower convective boundary layer were derived from data measured using the Helipod in 2003. The measurements were carried out during the LITFASS03 campaign over a heterogeneous land surface around the boundary-layer field site of the Lindenberg Meteorological Observatory-Richard-Aßmann-Observatory (MOL) of the German Meteorological Service during May and June. The synoptic situation of the analyzed days are fair weather conditions with temperature at about 30, sometimes with previous rain events. The spatial series of CT2 and CQ2 showed considerable variability along the flight path that was caused by surface heterogeneity. Measurement flights were performed in the morning and during noon, allowing for a temporal evaluation of the structure parameters during the day. CT2 indicates a high variability between forest, agricultural landscape and lakes at a flight level of 100 m above ground. CQ2 showed lower variations between the different types of soils. The decrease of CT2 with height as predicted by free-convection scaling was confirmed for the analyzed flights.

  13. The Sub-bureau for Atmospheric Angular Momentum of the International Earth Rotation Service - A meteorological data center with geodetic applications

    NASA Technical Reports Server (NTRS)

    Salstein, David A.; Kann, Deirdre M.; Miller, Alvin J.; Rosen, Richard D.

    1993-01-01

    By exchanging angular momentum with the solid portion of the earth, the atmosphere plays a vital role in exciting small but measurable changes in the rotation of our planet. Recognizing this relationship, the International Earth Rotation Service invited the U.S. National Meteorological Center to organize a Sub-bureau for Atmospheric Angular Momentum (SBAAM) for the purpose of collecting, distributing, archiving, and analyzing atmospheric parameters relevant to earth rotation/polar motion. These functions of wind and surface pressure are being computed with data from several of the world's weather services, and they are being widely applied to the research and operations of the geodetic community. The SBAAM began operating formally in October 1989, and this article highlights its development, operations, and significance.

  14. Users' instructions for the NASA/MSFC cloud-rise preprocessor program, version 6, and the NASA/MSFC multilayer diffusion program, version 6: Research version for Univac 1108 system

    NASA Technical Reports Server (NTRS)

    Bjorklund, J. R.

    1978-01-01

    The cloud-rise preprocessor and multilayer diffusion computer programs were used by NASA in predicting concentrations and dosages downwind from normal and abnormal launches of rocket vehicles. These programs incorporated: (1) the latest data for the heat content and chemistry of rocket exhaust clouds; (2) provision for the automated calculation of surface water pH due to deposition of HCl from precipitation scavenging; (3) provision for automated calculation of concentration and dosage parameters at any level within the vertical grounds for which meteorological inputs have been specified; and (4) provision for execution of multiple cases of meteorological data. Procedures used to automatically calculate wind direction shear in a layer were updated.

  15. DEVELOPMENT OF A LAND-SURFACE MODEL PART I: APPLICATION IN A MESOSCALE METEOROLOGY MODEL

    EPA Science Inventory

    Parameterization of land-surface processes and consideration of surface inhomogeneities are very important to mesoscale meteorological modeling applications, especially those that provide information for air quality modeling. To provide crucial, reliable information on the diurn...

  16. Effects of atmospheric dynamics and aerosols on the fraction of supercooled water clouds

    NASA Astrophysics Data System (ADS)

    Li, Jiming; Lv, Qiaoyi; Zhang, Min; Wang, Tianhe; Kawamoto, Kazuaki; Chen, Siyu; Zhang, Beidou

    2017-02-01

    Based on 8 years of (January 2008-December 2015) cloud phase information from the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud Product (GOCCP), aerosol products from CALIPSO and meteorological parameters from the ERA-Interim products, the present study investigates the effects of atmospheric dynamics on the supercooled liquid cloud fraction (SCF) during nighttime under different aerosol loadings at global scale to better understand the conditions of supercooled liquid water gradually transforming to ice phase. Statistical results indicate that aerosols' effect on nucleation cannot fully explain all SCF changes, especially in those regions where aerosols' effect on nucleation is not a first-order influence (e.g., due to low ice nuclei aerosol frequency). By performing the temporal and spatial correlations between SCFs and different meteorological factors, this study presents specifically the relationship between SCF and different meteorological parameters under different aerosol loadings on a global scale. We find that the SCFs almost decrease with increasing of aerosol loading, and the SCF variation is closely related to the meteorological parameters but their temporal relationship is not stable and varies with the different regions, seasons and isotherm levels. Obviously negative temporal correlations between SCFs versus vertical velocity and relative humidity indicate that the higher vertical velocity and relative humidity the smaller SCFs. However, the patterns of temporal correlation for lower-tropospheric static stability, skin temperature and horizontal wind are relatively more complex than those of vertical velocity and humidity. For example, their close correlations are predominantly located in middle and high latitudes and vary with latitude or surface type. Although these statistical correlations have not been used to establish a certain causal relationship, our results may provide a unique point of view on the phase change of mixed-phase cloud and have potential implications for further improving the parameterization of the cloud phase and determining the climate feedbacks.

  17. Derivation of global vegetation biophysical parameters from EUMETSAT Polar System

    NASA Astrophysics Data System (ADS)

    García-Haro, Francisco Javier; Campos-Taberner, Manuel; Muñoz-Marí, Jordi; Laparra, Valero; Camacho, Fernando; Sánchez-Zapero, Jorge; Camps-Valls, Gustau

    2018-05-01

    This paper presents the algorithm developed in LSA-SAF (Satellite Application Facility for Land Surface Analysis) for the derivation of global vegetation parameters from the AVHRR (Advanced Very High Resolution Radiometer) sensor on board MetOp (Meteorological-Operational) satellites forming the EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Polar System (EPS). The suite of LSA-SAF EPS vegetation products includes the leaf area index (LAI), the fractional vegetation cover (FVC), and the fraction of absorbed photosynthetically active radiation (FAPAR). LAI, FAPAR, and FVC characterize the structure and the functioning of vegetation and are key parameters for a wide range of land-biosphere applications. The algorithm is based on a hybrid approach that blends the generalization capabilities offered by physical radiative transfer models with the accuracy and computational efficiency of machine learning methods. One major feature is the implementation of multi-output retrieval methods able to jointly and more consistently estimate all the biophysical parameters at the same time. We propose a multi-output Gaussian process regression (GPRmulti), which outperforms other considered methods over PROSAIL (coupling of PROSPECT and SAIL (Scattering by Arbitrary Inclined Leaves) radiative transfer models) EPS simulations. The global EPS products include uncertainty estimates taking into account the uncertainty captured by the retrieval method and input errors propagation. A sensitivity analysis is performed to assess several sources of uncertainties in retrievals and maximize the positive impact of modeling the noise in training simulations. The paper discusses initial validation studies and provides details about the characteristics and overall quality of the products, which can be of interest to assist the successful use of the data by a broad user's community. The consistent generation and distribution of the EPS vegetation products will constitute a valuable tool for monitoring of earth surface dynamic processes.

  18. Trace Gas/Aerosol Interactions and GMI Modeling Support

    NASA Technical Reports Server (NTRS)

    Penner, Joyce E.; Liu, Xiaohong; Das, Bigyani; Bergmann, Dan; Rodriquez, Jose M.; Strahan, Susan; Wang, Minghuai; Feng, Yan

    2005-01-01

    Current global aerosol models use different physical and chemical schemes and parameters, different meteorological fields, and often different emission sources. Since the physical and chemical parameterization schemes are often tuned to obtain results that are consistent with observations, it is difficult to assess the true uncertainty due to meteorology alone. Under the framework of the NASA global modeling initiative (GMI), the differences and uncertainties in aerosol simulations (for sulfate, organic carbon, black carbon, dust and sea salt) solely due to different meteorological fields are analyzed and quantified. Three meteorological datasets available from the NASA DAO GCM, the GISS-II' GCM, and the NASA finite volume GCM (FVGCM) are used to drive the same aerosol model. The global sulfate and mineral dust burdens with FVGCM fields are 40% and 20% less than those with DAO and GISS fields, respectively due to its heavier rainfall. Meanwhile, the sea salt burden predicted with FVGCM fields is 56% and 43% higher than those with DAO and GISS, respectively, due to its stronger convection especially over the Southern Hemispheric Ocean. Sulfate concentrations at the surface in the Northern Hemisphere extratropics and in the middle to upper troposphere differ by more than a factor of 3 between the three meteorological datasets. The agreement between model calculated and observed aerosol concentrations in the industrial regions (e.g., North America and Europe) is quite similar for all three meteorological datasets. Away from the source regions, however, the comparisons with observations differ greatly for DAO, FVGCM and GISS, and the performance of the model using different datasets varies largely depending on sites and species. Global annual average aerosol optical depth at 550 nm is 0.120-0.131 for the three meteorological datasets.

  19. Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.

  20. Meteorology drives ambient air quality in a valley: a case of Sukinda chromite mine, one among the ten most polluted areas in the world.

    PubMed

    Mishra, Soumya Ranjan; Pradhan, Rudra Pratap; Prusty, B Anjan Kumar; Sahu, Sanjat Kumar

    2016-07-01

    The ambient air quality (AAQ) assessment was undertaken in Sukinda Valley, the chromite hub of India. The possible correlations of meteorological variables with different air quality parameters (PM10, PM2.5, SO2, NO2 and CO) were examined. Being the fourth most polluted area in the globe, Sukinda Valley has always been under attention of researchers, for hexavalent chromium contamination of water. The monitoring was carried out from December 2013 through May 2014 at six strategic locations in the residential and commercial areas around the mining cluster of Sukinda Valley considering the guidelines of Central Pollution Control Board (CPCB). In addition, meteorological parameters viz., temperature, relative humidity, wind speed, wind direction and rainfall, were also monitored. The air quality data were subjected to a general linear model (GLM) coupled with one-way analysis of variance (ANOVA) test for testing the significant difference in the concentration of various parameters among seasons and stations. Further, a two-tailed Pearson's correlation test helped in understanding the influence of meteorological parameters on dispersion of pollutants in the area. All the monitored air quality parameters varied significantly among the monitoring stations suggesting (i) the distance of sampling location to the mine site and other allied activities, (ii) landscape features and topography and (iii) meteorological parameters to be the forcing functions. The area was highly polluted with particulate matters, and in most of the cases, the PM level exceeded the National Ambient Air Quality Standards (NAAQS). The meteorological parameters seemed to play a major role in the dispersion of pollutants around the mine clusters. The role of wind direction, wind speed and temperature was apparent in dispersion of the particulate matters from their source of generation to the surrounding residential and commercial areas of the mine.

  1. What determines transitions between energy- and moisture-limited evaporative regimes?

    NASA Astrophysics Data System (ADS)

    Haghighi, E.; Gianotti, D.; Akbar, R.; Salvucci, G.; Entekhabi, D.

    2017-12-01

    The relationship between evaporative fraction (EF) and soil moisture (SM) has traditionally been used in atmospheric and land-surface modeling communities to determine the strength of land-atmosphere coupling in the context of the dominant evaporative regime (energy- or moisture-limited). However, recent field observations reveal that EF-SM relationship is not unique and could vary substantially with surface and/or meteorological conditions. This implies that conventional EF-SM relationships (exclusive of surface and meteorological conditions) are embedded in more complex dependencies and that in fact it is a multi-dimensional function. To fill the fundamental knowledge gaps on the important role of varying surface and meteorological conditions not accounted for by the traditional evaporative regime conceptualization, we propose a generalized EF framework using a mechanistic pore-scale model for evaporation and energy partitioning over drying soil surfaces. Nonlinear interactions among the components of the surface energy balance are reflected in a critical SM that marks the onset of transition between energy- and moisture-limited evaporative regimes. The new generalized EF framework enables physically based estimates of the critical SM, and provides new insights into the origin of land surface EF partitioning linked to meteorological input data and the evolution of land surface temperature during surface drying that affect the relative efficiency of surface energy balance components. Our results offer new opportunities to advance predictive capabilities quantifying land-atmosphere coupling for a wide range of present and projected meteorological input data.

  2. Transport of particle pollution into the Maipo Valley: winter 2015 campaign results

    NASA Astrophysics Data System (ADS)

    Huneeus, Nicolás; Mazzeo, Andrea; Ordóñez, César; Donoso, Nicolás; Gallardo, Laura; Molina, Luisa; Moreno, Valeria; Muñoz, Ricardo; Orfanoz, Andrea; Vizcarra, Aldo

    2016-04-01

    Each winter, Santiago (33° 27'S, 70° 40'W) the capital of Chile with a population of about 7 million people, experiences episodes with particulate matter (PM) concentrations larger than allowed by Chilean environmental regulations. Transport and residential heating largely dominate emissions prior to and during these episodes. Important impact of black carbon (BC) on the cryosphere has been documented in other parts of the world associated with urban pollution. In order to explore if BC from Santiago has the potential to reach the Andean cryosphere during the aforementioned episodes, a one week-long campaign was conducted in Santiago and the Maipo Valley between 18th and 25th of July 2015 when the air quality conditions of the city reached twice the critical levels (pre-emergency in Chilean regulations). Measurements were carried out at three sites: downtown Santiago, the entrance of the valley (and outskirts of Santiago) and 12 km inside the Maipo Valley. At each of these sites both surface and vertically distributed measurements were conducted. A meteorological station measuring standard meteorological parameters and an E-Sampler measuring PM10 concentrations were installed at each site. In addition, a tethered balloon equipped with a sonde and a mini-aethalometer was used in each site to measure vertical profiles of standard meteorological parameters and BC concentrations, respectively. The tethered balloon was raised every three hours up to a maximum of 1000 meters above ground level, whenever meteorological conditions allowed. In general, the BC concentrations inside the valley, both at the surface and in the vertical, were dominated by emissions within the valley and BC was limited to shallow layers above the ground. However, on both days with critical air quality levels, winds blowing from the city and deeper BC layers were observed inside the valley. Furthermore, during these days observations at the entrance of the valley and those taken inside were coupled, contrary to the other days when they were decoupled. This deeper BC layer and the coupling of observations at the entrance and inside the valley suggest that pollutants are transported into the Maipo Valley and thus could potentially reach the snow and ice covered areas in the Andes.

  3. Mixed Layer Temperature Budget for the Northward Propagating Summer Monsoon Intraseasonal Oscillation (MISO) in the Central Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Girishkumar, M. S.; Joseph, J.; Thangaprakash, V. P.; Pottapinjara, V.; McPhaden, M. J.

    2017-11-01

    Composite analyses of mixed layer temperature (MLT) budget terms from near-surface meteorological and oceanic observations in the central Bay of Bengal are utilized to evaluate the modulation of air-sea interactions and MLT processes in response to the summer monsoon intraseasonal oscillation (MISO). For this purpose, we use moored buoy data at 15°N, 12°N, and 8°N along 90°E together with TropFlux meteorological parameters and the Ocean Surface Current Analyses Real-time (OSCAR) current product. Our analysis shows a strong cooling tendency in MLT with maximum amplitude in the central and northern BoB during the northward propagation of enhanced convective activity associated with the active phase of the MISO; conversely, warming occurs during the suppressed phase of the MISO. The surface mixed layer is generally heated during convectively inactive phases of the MISO primarily due to increased net surface heat flux into the ocean. During convectively active MISO phases, the surface mixed layer is cooled by the combined influence of net surface heat loss to the atmosphere and entrainment cooling at the base of mixed layer. The variability of net surface heat flux is primarily due to modulation of latent heat flux and shortwave radiation. Shortwave is mostly controlled by an enhancement or reduction of cloudiness during the active and inactive MISO phases and latent heat flux is mostly controlled by variations in air-sea humidity difference.

  4. Meteorological surface conditions at Kohnen Station, Antarctica

    NASA Astrophysics Data System (ADS)

    van As, D.; van den Broeke, M. R.

    2003-04-01

    Only a few detailed meteorological experiments have been performed in the higher regions of the Antarctic ice sheet. This contribution will describe part of such an experiment and its outcome, performed at Kohnen Station (75.00 S, 0.07 E, 2892 m asl.) in the Antarctic summer of 2001-'02. Results from this experiment are to benefit the interpretation of the ice core presently being drilled at this location. Surface conditions in the 40 day period of measurements varied from typically stable to extraordinarily warm and windy. First we focus on the surface energy balance during this summer period. A model with only a few input parameters is used to combine measured net radiation with calculated heat fluxes to iteratively search for a surface temperature for which all components balance out. Calculated components are compared with measurements. In time this model will be functional for weather stations at different locations. Despite the high albedo (0.82 - 0.92) the net shortwave radiation is the largest component at the surface, contributing a maximum of 100 W/m2. Surprisingly small is the latent heat flux, in fair weather no more than a few W/m2. In general the calculations agree well with the measurements. A shallow convective layer developed in the daytime by the sensible heat flux is confirmed by balloon measurements. Linking the surface conditions to measurements outside of the surface layer we find little correlation, as to be expected.

  5. SSE Data and Information

    Atmospheric Science Data Center

    2013-01-31

    Surface meteorology and Solar Energy (SSE) Data and Information   The Release 6.0 Surface meteorology and Solar ... Collaboration Benefits International Priorities of Energy Management" features SSE data and the RETScreen renewable energy tool. ( Read ...

  6. Establishment and analysis of a High-Resolution Assimilation Dataset of the water-energy cycle in China

    NASA Astrophysics Data System (ADS)

    Wen, Xiaohang; Dong, Wenjie; Yuan, Wenping; Zheng, Zhiyuan

    For better prediction and understanding of land-atmospheric interaction, in-situ observed meteorological data acquired from the China Meteorological Administration (CMA) were assimilated in the Weather Research and Forecasting (WRF) model and the monthly Green Vegetation Coverage (GVF) data, which was calculated using the Normalized Difference Vegetation Index (NDVI) of the Earth Observing System Moderate-Resolution Imaging Spectroradiometer (EOS-MODIS) and Digital Elevation Model (DEM) data of the Shuttle Radar Topography Mission (SRTM) system. Furthermore, the WRF model produced a High-Resolution Assimilation Dataset of the water-energy cycle in China (HRADC). This dataset has a horizontal resolution of 25 km for near surface meteorological data, such as air temperature, humidity, wind vectors and pressure (19 levels); soil temperature and moisture (four levels); surface temperature; downward/upward short/long radiation; 3-h latent heat flux; sensible heat flux; and ground heat flux. In this study, we 1) briefly introduce the cycling 3D-Var assimilation method and 2) compare results of meteorological elements, such as 2 m temperature and precipitation generated by the HRADC with the gridded observation data from CMA, and surface temperature and specific humidity with Global Land Data Assimilation System (GLDAS) output data from the National Aeronautics and Space Administration (NASA). We find that the simulated results of monthly 2 m temperature from HRADC is improved compared with the control simulation and has effectively reproduced the observed patterns. The simulated special distribution of ground surface temperature and specific humidity from HRADC are much closer to GLDAS outputs. The spatial distribution of root mean square errors (RMSE) and bias of 2 m temperature between observations and HRADC is reduced compared with the bias between observations and the control run. The monthly spatial distribution of surface temperature and specific humidity from HRADC is consistent with the GLDAS outputs over China. This study could improve the land surface parameters by utilizing remote sensing data and could further improve atmospheric elements with a data assimilation system. This work provides an effective attempt at combining multi-source data with different spatial and temporal scales into numerical simulations, and the simulated results could be used in further research on the long-term climatic effects and characteristics of the water-energy cycle over China.

  7. Improved assessment of gross and net primary productivity of Canada's landmass

    NASA Astrophysics Data System (ADS)

    Gonsamo, Alemu; Chen, Jing M.; Price, David T.; Kurz, Werner A.; Liu, Jane; Boisvenue, Céline; Hember, Robbie A.; Wu, Chaoyang; Chang, Kuo-Hsien

    2013-12-01

    assess Canada's gross primary productivity (GPP) and net primary productivity (NPP) using boreal ecosystem productivity simulator (BEPS) at 250 m spatial resolution with improved input parameter and driver fields and phenology and nutrient release parameterization schemes. BEPS is a process-based two-leaf enzyme kinetic terrestrial ecosystem model designed to simulate energy, water, and carbon (C) fluxes using spatial data sets of meteorology, remotely sensed land surface variables, soil properties, and photosynthesis and respiration rate parameters. Two improved key land surface variables, leaf area index (LAI) and land cover type, are derived at 250 m from Moderate Resolution Imaging Spectroradiometer sensor. For diagnostic error assessment, we use nine forest flux tower sites where all measured C flux, meteorology, and ancillary data sets are available. The errors due to input drivers and parameters are then independently corrected for Canada-wide GPP and NPP simulations. The optimized LAI use, for example, reduced the absolute bias in GPP from 20.7% to 1.1% for hourly BEPS simulations. Following the error diagnostics and corrections, daily GPP and NPP are simulated over Canada at 250 m spatial resolution, the highest resolution simulation yet for the country or any other comparable region. Total NPP (GPP) for Canada's land area was 1.27 (2.68) Pg C for 2008, with forests contributing 1.02 (2.2) Pg C. The annual comparisons between measured and simulated GPP show that the mean differences are not statistically significant (p > 0.05, paired t test). The main BEPS simulation error sources are from the driver fields.

  8. The planets of the Solar System

    NASA Technical Reports Server (NTRS)

    Marov, M. Y.

    1986-01-01

    This book is intended both for the lay person and the would-be scientist. The planets are discussed with a comparision of their basic natural features: mechanical characteristics and parameters of movement, surfaces, inner structure, physical properties of the atmosphere and meteorology. Also general problems of planetary cosmogony, thermal history and climatic evolution are considered briefly. The book is based on Soviet and foreign material, data from spacecraft, Earth optical and radio astronomical measurements and also data obtained from theoretical models.

  9. Transport of Cryptosporidium, Giardia, Source-specific Indicator Organisms, and Standard Water Quality Constituents During Storm Events

    NASA Astrophysics Data System (ADS)

    Sturdevant-Rees, P. L.; Bourdeau, D.; Baker, R.; Long, S. C.; Barten, P. K.

    2004-05-01

    Microbial and water-quality measurements are collected during storm events under a variety of meteorological and land-use conditions in order to 1) identify risk of Cryptosporidium oocysts, Giardia cysts and other constituents, including microbial indicator organisms, entering surface waters from various land uses during periods of surface runoff; 2) optimize storm sampling procedures for these parameters; and 3) optimize strategies for accurate determination of constituent loads. The investigation is focused on four isolated land uses: forested with free ranging wildlife, beaver influenced forested with free ranging wildlife, residential/commercial, and dairy farm grazing/pastureland using an upstream and downstream sampling strategy. Traditional water-quality analyses include pH, temperature, turbidity, conductivity, total suspended solids, total phosphorus, total Kjeldahl-nitrogen, and ammonia nitrogen, Giardia cysts and Cryptosporidium oocysts. Total coliforms and fecal coliforms are measured as industry standard microbial analyses. Sorbitol-fermenting Bifidobacteria, Rhodococcus coprophilus, Clostridium perfringens spores, and Somatic and F-specific coliphages are measured at select sites as potential alternative source-specific indicator organisms. Upon completion of the project, the final database will consist of wet weather transport data for a set of parameters during twenty-four distinct storm-events in addition to monthly baseline data. A subset of the results to date will be presented, with focus placed on demonstrating the impact of beaver on constituent loadings over a variety of hydrologic and meteorological conditions.

  10. The Tracking Meteogram, an AWIPS II Tool for Time-Series Analysis

    NASA Technical Reports Server (NTRS)

    Burks, Jason Eric; Sperow, Ken

    2015-01-01

    A new tool has been developed for the National Weather Service (NWS) Advanced Weather Interactive Processing System (AWIPS) II through collaboration between NASA's Short-term Prediction Research and Transition (SPoRT) and the NWS Meteorological Development Laboratory (MDL). Referred to as the "Tracking Meteogram", the tool aids NWS forecasters in assessing meteorological parameters associated with moving phenomena. The tool aids forecasters in severe weather situations by providing valuable satellite and radar derived trends such as cloud top cooling rates, radial velocity couplets, reflectivity, and information from ground-based lightning networks. The Tracking Meteogram tool also aids in synoptic and mesoscale analysis by tracking parameters such as the deepening of surface low pressure systems, changes in surface or upper air temperature, and other properties. The tool provides a valuable new functionality and demonstrates the flexibility and extensibility of the NWS AWIPS II architecture. In 2014, the operational impact of the tool was formally evaluated through participation in the NOAA/NWS Operations Proving Ground (OPG), a risk reduction activity to assess performance and operational impact of new forecasting concepts, tools, and applications. Performance of the Tracking Meteogram Tool during the OPG assessment confirmed that it will be a valuable asset to the operational forecasters. This presentation reviews development of the Tracking Meteogram tool, performance and feedback acquired during the OPG activity, and future goals for continued support and extension to other application areas.

  11. Sensitivity of boundary layer variables to PBL schemes over the central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xu, L.; Liu, H.; Wang, L.; Du, Q.; Liu, Y.

    2017-12-01

    Planetary Boundary Layer (PBL) parameterization schemes play critical role in numerical weather prediction and research. They describe physical processes associated with the momentum, heat and humidity exchange between land surface and atmosphere. In this study, two non-local (YSU and ACM2) and two local (MYJ and BouLac) planetary boundary layer parameterization schemes in the Weather Research and Forecasting (WRF) model have been tested over the central Tibetan Plateau regarding of their capability to model boundary layer parameters relevant for surface energy exchange. The model performance has been evaluated against measurements from the Third Tibetan Plateau atmospheric scientific experiment (TIPEX-III). Simulated meteorological parameters and turbulence fluxes have been compared with observations through standard statistical measures. Model results show acceptable behavior, but no particular scheme produces best performance for all locations and parameters. All PBL schemes underestimate near surface air temperatures over the Tibetan Plateau. By investigating the surface energy budget components, the results suggest that downward longwave radiation and sensible heat flux are the main factors causing the lower near surface temperature. Because the downward longwave radiation and sensible heat flux are respectively affected by atmosphere moisture and land-atmosphere coupling, improvements in water vapor distribution and land-atmosphere energy exchange is meaningful for better presentation of PBL physical processes over the central Tibetan Plateau.

  12. A dynamic experimental study on the evaporative cooling performance of porous building materials

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhang, Lei; Meng, Qinglin; Feng, Yanshan; Chen, Yuanrui

    2017-08-01

    Conventional outdoor dynamic and indoor steady-state experiments have certain limitations in regard to investigating the evaporative cooling performance of porous building materials. The present study investigated the evaporative cooling performance of a porous building material using a special wind tunnel apparatus. First, the composition and control principles of the wind tunnel environment control system were elucidated. Then, the meteorological environment on a typical summer day in Guangzhou was reproduced in the wind tunnel and the evaporation process and thermal parameters of specimens composed of a porous building material were continuously measured. Finally, the experimental results were analysed to evaluate the accuracy of the wind tunnel environment control system, the heat budget of the external surface of the specimens and the total thermal resistance of the specimens and its uncertainty. The analysis results indicated that the normalized root-mean-square error between the measured value of each environmental parameter in the wind tunnel test section and the corresponding value input into the environment control system was <4%, indicating that the wind tunnel apparatus had relatively high accuracy in reproducing outdoor meteorological environments. In addition, the wet specimen could cumulatively consume approximately 80% of the shortwave radiation heat during the day, thereby reducing the temperature of the external surface and the heat flow on the internal surface of the specimen. Compared to the dry specimen, the total thermal resistance of the wet specimen was approximately doubled, indicating that the evaporation process of the porous building material could significantly improve the thermal insulation performance of the specimen.

  13. Solar radiation over Egypt: Comparison of predicted and measured meteorological data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamel, M.A.; Shalaby, S.A.; Mostafa, S.S.

    1993-06-01

    Measurements of global solar irradiance on a horizontal surface at five meteorological stations in Egypt for three years 1987, 1988, and 1989 are compared with their corresponding values computed by two independent methods. The first method is based on the Angstrom formula, which correlates relative solar irradiance H/H[sub o] to corresponding relative duration of bright sunshine n/N. Regional regression coefficients are obtained and used for prediction of global solar irradiance. Good agreement with measurements is obtained. In the second method an empirical relation, in which sunshine duration and the noon altitude of the sun as inputs together with appropriate choicemore » of zone parameters, is employed. This gives good agreement with the measurements. Comparison shows that the first method gives better fitting with the experimental data.« less

  14. Instantaneous and daily values of the surface energy balance over agricultural fields using remote sensing and a reference field in an arid environment

    USGS Publications Warehouse

    Kustas, William P.; Moran, M.S.; Jackson, R. D.; Gay, L.W.; Duell, L.F.W.; Kunkel, K.E.; Matthias, A.D.

    1990-01-01

    Remotely sensed surface temperature and reflectance in the visible and near infrared wavebands along with ancilliary meteorological data provide the capability of computing three of the four surface energy balance components (i.e., net radiation, soil heat flux, and sensible heat flux) at different spatial and temporal scales. As a result, under nonadvective conditions, this enables the estimation of the remaining term (i.e., the latent heat flux). One of the practical applications with this approach is to produce evapotranspiration (ET) maps for agricultural regions which consist of an array of fields containing different crops at varying stages of growth and soil moisture conditions. Such a situation exists in the semiarid southwest at the University of Arizona Maricopa Agricultural Center, south of Phoenix. For one day (14 June 1987), surface temperature and reflectance measurements from an aircraft 150 m above ground level (agl) were acquired over fields from zero to nearly full cover at four times between 1000 MST and 1130 MST. The diurnal pattern of the surface energy balance was measured over four fields, which included alfalfa at 60% cover, furrowed cotton at 20% and 30% cover, and partially plowed what stubble. Instantaneous and daily values of ET were estimated for a representative area around each flux site with an energy balance model that relies on a reference ET. This reference value was determined with remotely sensed data and several meteorological inputs. The reference ET was adjusted to account for the different surface conditions in the other fields using only remotely sensed variables. A comparison with the flux measurements suggests the model has difficulties with partial canopy conditions, especially related to the estimation of the sensible heat flux. The resulting errors for instantaneous ET were on the order of 100 W m-2 and for daily values of order 2 mm day-1. These findings suggest future research should involve development of methods to account for the variability of meteorological parameters brought about by changes in surface conditions and improvements in the modeling of sensible heat transfer across the surface-atmosphere interface for partial canopy conditions using remote sensing information. ?? 1990.

  15. Assessing the impacts of seasonal and vertical atmospheric conditions on air quality over the Pearl River Delta region

    NASA Astrophysics Data System (ADS)

    Tong, Cheuk Hei Marcus; Yim, Steve Hung Lam; Rothenberg, Daniel; Wang, Chien; Lin, Chuan-Yao; Chen, Yongqin David; Lau, Ngar Cheung

    2018-05-01

    Air pollution is an increasingly concerning problem in many metropolitan areas due to its adverse public health and environmental impacts. Vertical atmospheric conditions have strong effects on vertical mixing of air pollutants, which directly affects surface air quality. The characteristics and magnitude of how vertical atmospheric conditions affect surface air quality, which are critical to future air quality projections, have not yet been fully understood. This study aims to enhance understanding of the annual and seasonal sensitivities of air pollution to both surface and vertical atmospheric conditions. Based on both surface and vertical meteorological characteristics provided by 1994-2003 monthly dynamic downscaling data from the Weather and Research Forecast Model, we develop generalized linear models (GLMs) to study the relationships between surface air pollutants (ozone, respirable suspended particulates, and sulfur dioxide) and atmospheric conditions in the Pearl River Delta (PRD) region. Applying Principal Component Regression (PCR) to address multi-collinearity, we study the contributions of various meteorological variables to pollutants' concentration levels based on the loading and model coefficient of major principal components. Our results show that relatively high pollutant concentration occurs under relatively low mid-level troposphere temperature gradients, low relative humidity, weak southerly wind (or strong northerly wind) and weak westerly wind (or strong easterly wind). Moreover, the correlations vary among pollutant species, seasons, and meteorological variables at various altitudes. In general, pollutant sensitivity to meteorological variables is found to be greater in winter than in other seasons, and the sensitivity of ozone to meteorology differs from that of the other two pollutants. Applying our GLMs to anomalous air pollution episodes, we find that meteorological variables up to mid troposphere (∼700 mb) play an important role in influencing surface air quality, pinpointing the significant and unique associations between meteorological variables at higher altitudes and surface air quality.

  16. Meteorological data for four sites at surface-disruption features in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1985-86

    USGS Publications Warehouse

    Carman, Rita L.

    1994-01-01

    Surface-disruption features, or craters, resulting from underground nuclear testing at the Nevada Test Site may increase the potential for ground-water recharge in an area that would normally produce little, if any, recharge. This report presents selected meteorological data resulting from a study of two surface-disruption features during May 1985 through June 1986. The data were collected at four adjacent sites in Yucca Flat, about 56 kilometers north of Mercury, Nevada. Three sites (one in each of two craters and one at an undisturbed site at the original land surface) were instrumented to collect meteorological data for calculating bare-soil evaporation. These data include (1) long-wave radiation, (2) short-wave radiation, (3) net radiation, (4) air temperae, and (5) soil surface temperature. Meteorological data also were collected at a weather station at an undisturbed site near the study craters. Data collected at this site include (1) air temperature, (2) relative humidity, (3) wind velocity, and (4) wind direction.

  17. Modeling of microclimatic characteristics of highland area

    NASA Astrophysics Data System (ADS)

    Sitdikova, Iuliia; Rusin, Igor

    2013-04-01

    Microclimatic characteristics of highlands may vary considerably over distances of a few meters depending on slope and aspect. There is a problem of estimation of components of surface energy balance based on observation of single stations for description of microclimate highlands. The aim of this paper is to develop a method that would restore microclimatic characteristics of terrain, based on observations of the single station, by physical extrapolation. The input parameters to obtain the microclimatic characteristics are as follows: air temperature, relative humidity, and wind speed on two vertical levels, air pressure, surface temperature, direct and diffused solar radiation and surface albedo. The recent version of the Meteorological Radiation Model (MRM) has been used to calculate a solar radiation over the area and to estimate an influence of cloudiness amounts. The height, slope and aspect were accounted at each point with using a digital elevation model. Have been supposed that air temperature and specific humidity vary with altitude only. Net radiation was calculated at all points of the area. Supposed that the difference between the surface temperature and the air temperature is a linear function of net radiation. The empirical coefficient, which depends on wind speed with adjustment of given area. Latent and sensible fluxes are calculated by using the modified Bowen ratio, which varies on the area. Method was tested on field research in Krasnodar region (RF). The meteorological observations were made every three hour on actinometric and gradient sites. The editional gradient site with different orientation of the slope was organized from 400 meters of the main site. Topographic survey of area was made 1x1,3 km in size for a digital elevation model constructing. At all points of the area of radiation and heat balance were calculated. The results of researches are the maps of surface temperature, net radiation, latent and sensible fluxes. The calculations showed that the average value of components of heat balance by area differ significantly from the data observed on meteorological station.

  18. A study to define meteorological uses and performance requirements for the Synchronous Earth Observatory Satellite

    NASA Technical Reports Server (NTRS)

    Suomi, V. E.; Krauss, R. J.; Barber, D.; Levanon, N.; Martin, D. W.; Mclellan, D. W.; Sikdar, D. N.; Sromovsky, L. A.; Branch, D.; Heinricy, D.

    1973-01-01

    The potential meteorological uses of the Synchronous Earth Observatory Satellite (SEOS) were studied for detecting and predicting hazards to life, property, or the quality of the environment. Mesoscale meteorological phenonmena, and the observations requirements for SEOS are discussed along with the sensor parameters.

  19. Abstracts of papers presented at the Eleventh International Laser Radar Conference

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Abstracts of 39 papers discuss measurements of properties from the Earth's ocean surface to the mesosphere, made with techniques ranging from elastic and inelastic scattering to Doppler shifts and differential absorption. Topics covered include: (1) middle atmospheric measurements; (2) meteorological parameters: temperature, density, humidity; (3) trace gases by Raman and DIAL techniques; (4) techniques and technology; (5) plume dispersion; (6) boundary layer dynamics; (7) wind measurements; visibility and aerosol properties; and (9) multiple scattering, clouds, and hydrometers.

  20. Measurements of micrometeorological parameters for testing large scale models

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.; Demetriades-Shah, Tanvir; Watts, David; Nie, Dalin; Ballou, Larry; Harbers, Galen

    1989-01-01

    This annual report discusses work accomplished on the FIFE (First International Satellite Land-Surface Climatology) Project. It contains manuscripts and reports during the past year of Grant NAG 5-389. Of its six chapters, three treat soil heat flux, and two deal with information about the FIFE sites. The first chapter on net radiation and the fourth chapter are to be presented at the Agricultural and Forest Meteorology Conference to be held in March 1989 in Charleston, South Carolina.

  1. Lateral stability and control derivatives extracted from five early flights of the space shuttle Columbia

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.

    1986-01-01

    Flight data taken from the first five flights (STS-2, 3, 4, 5 and 9) of the Space Transportation System Shuttle Columbia during entry are analyzed to determine the Shuttle lateral aerodynamic characteristics. Maximum likelihood estimation is applied to data derived from accelerometer and rate gyro measurements and trajectory, meteorological and control surface data to estimate lateral-directional stability and control derivatives. The estimated parameters are compared across the five flights and to preflight predicted values.

  2. A Research Study of Tropospheric Ozone and Meteorological Parameters to Introduce High School Students to Scientific Procedures

    ERIC Educational Resources Information Center

    Diaz-de-Mera, Yolanda; Notario, Alberto; Aranda, Alfonso; Adame, Jose Antonio; Parra, Alfonso; Romero, Eugenio; Parra, Jesus; Munoz, Fernando

    2011-01-01

    An environmental research project was carried out by a consortium established among scientists and university lecturers in collaboration with two high schools. High school students participated in a long-term study of the local temporal profiles of tropospheric ozone and the relationship to pollution and meteorological parameters. Low-cost…

  3. Effects of short-term variability of meteorological variables on soil temperature in permafrost regions

    NASA Astrophysics Data System (ADS)

    Beer, Christian; Porada, Philipp; Ekici, Altug; Brakebusch, Matthias

    2018-03-01

    Effects of the short-term temporal variability of meteorological variables on soil temperature in northern high-latitude regions have been investigated. For this, a process-oriented land surface model has been driven using an artificially manipulated climate dataset. Short-term climate variability mainly impacts snow depth, and the thermal diffusivity of lichens and bryophytes. These impacts of climate variability on insulating surface layers together substantially alter the heat exchange between atmosphere and soil. As a result, soil temperature is 0.1 to 0.8 °C higher when climate variability is reduced. Earth system models project warming of the Arctic region but also increasing variability of meteorological variables and more often extreme meteorological events. Therefore, our results show that projected future increases in permafrost temperature and active-layer thickness in response to climate change will be lower (i) when taking into account future changes in short-term variability of meteorological variables and (ii) when representing dynamic snow and lichen and bryophyte functions in land surface models.

  4. Applications of Meteorological Tower Data at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Barbre, Robert E., Jr.

    2009-01-01

    Members of the National Aeronautics and Space Administration (NASA) design and operation communities rely on meteorological information collected at Kennedy Space Center (KSC), located near Cape Canaveral, Florida, to correctly apply the ambient environment to various tasks. The Natural Environments Branch/EV44, located at Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is responsible for providing its NASA customers with meteorological data using various climatological data sources including balloons, surface stations, aircraft, hindcast models, and meteorological towers. Of the many resources available within the KSC region, meteorological towers are preferred for near-surface applications because they record data at regular, frequent intervals over an extensive period of record at a single location. This paper discusses the uses of data measured at several different meteorological towers for a common period of record and how the data can be applied to various engineering decisions for the new Constellation Program Ares and Orion space vehicles.

  5. The role of meteorological conditions and pollution control strategies in reducing air pollution in Beijing during APEC 2014 and Victory Parade 2015

    NASA Astrophysics Data System (ADS)

    Liang, Pengfei; Zhu, Tong; Fang, Yanhua; Li, Yingruo; Han, Yiqun; Wu, Yusheng; Hu, Min; Wang, Junxia

    2017-11-01

    To control severe air pollution in China, comprehensive pollution control strategies have been implemented throughout the country in recent years. To evaluate the effectiveness of these strategies, the influence of meteorological conditions on levels of air pollution needs to be determined. Using the intensive air pollution control strategies implemented during the Asia-Pacific Economic Cooperation Forum in 2014 (APEC 2014) and the 2015 China Victory Day Parade (Victory Parade 2015) as examples, we estimated the role of meteorological conditions and pollution control strategies in reducing air pollution levels in Beijing. Atmospheric particulate matter of aerodynamic diameter ≤ 2.5 µm (PM2.5) samples were collected and gaseous pollutants (SO2, NO, NOx, and O3) were measured online at a site in Peking University (PKU). To determine the influence of meteorological conditions on the levels of air pollution, we first compared the air pollutant concentrations during days with stable meteorological conditions. However, there were few days with stable meteorological conditions during the Victory Parade. As such, we were unable to estimate the level of emission reduction efforts during this period. Finally, a generalized linear regression model (GLM) based only on meteorological parameters was built to predict air pollutant concentrations, which could explain more than 70 % of the variation in air pollutant concentration levels, after incorporating the nonlinear relationships between certain meteorological parameters and the concentrations of air pollutants. Evaluation of the GLM performance revealed that the GLM, even based only on meteorological parameters, could be satisfactory to estimate the contribution of meteorological conditions in reducing air pollution and, hence, the contribution of control strategies in reducing air pollution. Using the GLM, we found that the meteorological conditions and pollution control strategies contributed 30 and 28 % to the reduction of the PM2.5 concentration during APEC and 38 and 25 % during the Victory Parade, respectively, based on the assumption that the concentrations of air pollutants are only determined by meteorological conditions and emission intensities. We also estimated the contribution of meteorological conditions and control strategies in reducing the concentrations of gaseous pollutants and PM2.5 components with the GLMs, revealing the effective control of anthropogenic emissions.

  6. Surface and Tower Meteorological Instrumentation at NSA Handbook - January 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MT Ritsche

    2006-01-30

    The Surface and Tower Meteorological Instrumentation at Atqasuk (METTWR2H) uses mainly conventional in situ sensors to measure wind speed, wind direction, air temperature, dew point and humidity mounted on a 10-m tower. It also obtains barometric pressure, visibility, and precipitation data from sensors at or near the base of the tower. In addition, a Chilled Mirror Hygrometer is located at 1 m for comparison purposes. Temperature and relative humidity probes are mounted at 2 m and 5 m on the tower. For more information, see the Surface and Tower Meteorological Instrumentation at Atqasuk Handbook.

  7. Contrastive Analysis of Meteorological Element Effect Simulated by parameterization schemes Land Surface Process of Noah and CLM4 over the Yellow River Source Region

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wen, X.

    2017-12-01

    The Yellow River source region is situated in the northeast Tibetan Plateau, which is considered as a global climate change hot-spot and one of the most sensitive areas in terms of response to global warming in view of its fragile ecosystem. This region plays an irreplaceable role for downstream water supply of The Yellow River because of its unique topography and variable climate. The water energy cycle processes of the Yellow River source Region from July to September in 2015 were simulated by using the WRF mesoscale numerical model. The two groups respectively used Noah and CLM4 parameterization schemes of land surface process. Based on the observation data of GLDAS data set, ground automatic weather station and Zoige plateau wetland ecosystem research station, the simulated values of near surface meteorological elements and surface energy parameters of two different schemes were compared. The results showed that the daily variations about meteorological factors in Zoige station in September were simulated quite well by the model. The correlation coefficient between the simulated temperature and humidity of the CLM scheme were 0.88 and 0.83, the RMSE were 1.94 ° and 9.97%, and the deviation Bias were 0.04 ° and 3.30%, which was closer to the observation data than the Noah scheme. The correlation coefficients of net radiation, surface heat flux, upward short wave and upward longwave radiation were respectively 0.86, 0.81, 0.84 and 0.88, which corresponded better than the observation data. The sensible heat flux and latent heat flux distribution of the Noah scheme corresponded quite well to GLDAS. the distribution and magnitude of 2m relative humidity and soil moisture were closer to surface observation data because the CLM scheme described the photosynthesis and evapotranspiration of land surface vegetation more rationally. The simulating abilities of precipitation and downward longwave radiation need to be improved. This study provides a theoretical basis for the numerical simulation of water energy cycle in the source region over the Yellow River basin.

  8. Results of meteorological monitoring in Gorny Altai before and after the Chuya earthquake in 2003

    NASA Astrophysics Data System (ADS)

    Aptikaeva, O. I.; Shitov, A. V.

    2014-12-01

    We consider the dynamics of some meteorological parameters in Gorny Altai from 2000 to 2011. We analyzed the variations in the meteorological parameters related to the strong Chuya earthquake (September 27, 2003). A number of anomalies were revealed in the time series. Before this strong earthquake, the winter temperatures at the nearest meteorological station to the earthquake source increased by 8-10°C (by 2009 they returned to the mean values), while the air humidity in winter decreased. In the winter of 2002, we observed a long negative anomaly in the time series of the atmospheric pressure. At the same time, the decrease in the released seismic energy was replaced by the tendency to its increase. Using wavelet analysis we revealed the synchronism in the dynamics of the atmospheric parameters, variations in the solar and geomagnetic activities, and geodynamic processes. We also discuss the relationship of the atmospheric and geodynamic processes and the comfort conditions of the population in the climate analyzed here.

  9. The effects of downwelling radiance on MER surface spectra: the evil that atmospheres do

    NASA Astrophysics Data System (ADS)

    Wolff, M.; Ghosh, A.; Arvidson, R.; Christensen, P.; Guinness, E.; Ruff, S.; Seelos, F.; Smith, M.; Athena Science

    2004-11-01

    While it may not be surprising to some that downwelling radiation in the martian atmosphere may contribute a non-negligible fraction of the radiance for a given surface scene, others remain shocked and surprised (and often dismayed) to discover this fact; particularly with regard to mini-TES observations. Naturally, the relative amplitude of this sky ``contamination'' is often a complicated function of meteorological conditions, viewing geometry, surface properties, and (for the IR) surface temperature. Ideally, one would use a specialized observations to mimic the actual hemispherical-directional nature of the problem. Despite repeated attempts to obtain Pancam complete sky observations and mini-TES sky octants, such observations are not available in the MER observational database. As a result, one is left with the less-enviable, though certainly more computationally intensive, task of connecting point observations (radiance and derived meteorological parameters) to a hemispherical integral of downwelling radiance. Naturally, one must turn to a radiative transfer analysis, despite oft-repeated attempts to assert otherwise. In our presentation, we offer insight into the conditions under which one must worry about atmospheric removal, as well as semi-empirical approaches (based upon said radiative transfer efforts) for producing the correction factors from the available MER atmospheric observations. This work is proudly supported by the MER program through NASA/JPL Contract No. 1242889 (MJW), as well as the contracts for the co-authors.

  10. Modelling the variation of land surface temperature as determinant of risk of heat-related health events

    PubMed Central

    2011-01-01

    Background The evaluation of exposure to ambient temperatures in epidemiological studies has generally been based on records from meteorological stations which may not adequately represent local temperature variability. Here we propose a spatially explicit model to estimate local exposure to temperatures of large populations under various meteorological conditions based on satellite and meteorological data. Methods A general linear model was used to estimate surface temperatures using 15 LANDSAT 5 and LANDSAT 7 images for Quebec Province, Canada between 1987 and 2002 and spanning the months of June to August. The images encompassed both rural and urban landscapes and predictors included: meteorological records of temperature and wind speed, distance to major water bodies, Normalized Differential Vegetation Index (NDVI), land cover (built and bare land, water, or vegetation), latitude, longitude, and week of the year. Results The model explained 77% of the variance in surface temperature, accounting for both temporal and spatial variations. The standard error of estimates was 1.42°C. Land cover and NDVI were strong predictors of surface temperature. Conclusions This study suggests that a statistical approach to estimating surface temperature incorporating both spatially explicit satellite data and time-varying meteorological data may be relevant to assessing exposure to heat during the warm season in the Quebec. By allowing the estimation of space- and time-specific surface temperatures, this model may also be used to assess the possible impacts of land use changes under various meteorological conditions. It can be applied to assess heat exposure within a large population and at relatively fine-grained scale. It may be used to evaluate the acute health effect of heat exposure over long time frames. The method proposed here could be replicated in other areas around the globe for which satellite data and meteorological data is available. PMID:21251286

  11. DREAMS-SIS: The Solar Irradiance Sensor on-board the ExoMars 2016 lander

    NASA Astrophysics Data System (ADS)

    Arruego, I.; Apéstigue, V.; Jiménez-Martín, J.; Martínez-Oter, J.; Álvarez-Ríos, F. J.; González-Guerrero, M.; Rivas, J.; Azcue, J.; Martín, I.; Toledo, D.; Gómez, L.; Jiménez-Michavila, M.; Yela, M.

    2017-07-01

    The Solar Irradiance Sensor (SIS) was part of the DREAMS (Dust characterization, Risk assessment, and Environment Analyzer on the Martian Surface) payload package on board the ExoMars 2016 Entry and Descent Module (EDM), "Schiaparelli". DREAMS was a meteorological station aimed at the measurement of several atmospheric parameters, as well as the presence of electric fields, during the surface operations of EDM. DREAMS-SIS is a highly miniaturized lightweight sensor designed for small meteorological stations, capable of estimating the aerosol optical depth (AOD) several times per sol, as well as performing a direct measurement of the global (direct plus scattered) irradiance on the Martian surface in the spectral range between 200 and 1100 nm. AOD is estimated from the irradiance measurements at two different spectral bands - Ultraviolet (UV) and near infrared (NIR) - which also enables color index (CI) analysis for the detection of clouds. Despite the failure in the landing of Schiaparelli, DREAMS-SIS is a valuable precursor for new developments being carried-on at present. The concept and design of DREAMS-SIS are here presented and its operating principles, supported by preliminary results from a short validation test, are described. Lessons learnt and future work towards a new generation of Sun irradiance sensors is also outlined.

  12. Does temperature nudging overwhelm aerosol radiative ...

    EPA Pesticide Factsheets

    For over two decades, data assimilation (popularly known as nudging) methods have been used for improving regional weather and climate simulations by reducing model biases in meteorological parameters and processes. Similar practice is also popular in many regional integrated meteorology-air quality models that include aerosol direct and indirect effects. However in such multi-modeling systems, temperature changes due to nudging can compete with temperature changes induced by radiatively active & hygroscopic short-lived tracers leading to interesting dilemmas: From weather and climate prediction’s (retrospective or future) point of view when nudging is continuously applied, is there any real added benefit of using such complex and computationally expensive regional integrated modeling systems? What are the relative sizes of these two competing forces? To address these intriguing questions, we convert temperature changes due to nudging into radiative fluxes (referred to as the pseudo radiative forcing, PRF) at the surface and troposphere, and compare the net PRF with the reported aerosol radiative forcing. Results indicate that the PRF at surface dominates PRF at top of the atmosphere (i.e., the net). Also, the net PRF is about 2-4 times larger than estimated aerosol radiative forcing at regional scales while it is significantly larger at local scales. These results also show large surface forcing errors at many polluted urban sites. Thus, operational c

  13. Surface Meteorology, Barrow, Alaska, Area A, B, C and D, Ongoing from 2012

    DOE Data Explorer

    Bob Busey; Larry Hinzman; William Cable; Vladimir Romanovsky

    2014-12-04

    Meteorological data are being collected at several points within four intensive study areas in Barrow. These data assist in the calculation of the energy balance at the land surface and are also useful as inputs into modeling activities.

  14. Assessment of Seasonal Water Balance Components over India Using Macroscale Hydrological Model

    NASA Astrophysics Data System (ADS)

    Joshi, S.; Raju, P. V.; Hakeem, K. A.; Rao, V. V.; Yadav, A.; Issac, A. M.; Diwakar, P. G.; Dadhwal, V. K.

    2016-12-01

    Hydrological models provide water balance components which are useful for water resources assessment and for capturing the seasonal changes and impact of anthropogenic interventions and climate change. The study under description is a national level modeling framework for country India using wide range of geo-spatial and hydro-meteorological data sets for estimating daily Water Balance Components (WBCs) at 0.15º grid resolution using Variable Infiltration Capacity model. The model parameters were optimized through calibration of model computed stream flow with field observed yielding Nash-Sutcliffe efficiency between 0.5 to 0.7. The state variables, evapotranspiration (ET) and soil moisture were also validated, obtaining R2 values of 0.57 and 0.69, respectively. Using long-term meteorological data sets, model computation were carried to capture hydrological extremities. During 2013, 2014 and 2015 monsoon seasons, WBCs were estimated and were published in web portal with 2-day time lag. In occurrence of disaster events, weather forecast was ingested, high surface runoff zones were identified for forewarning and disaster preparedness. Cumulative monsoon season rainfall of 2013, 2014 and 2015 were 105, 89 and 91% of long period average (LPA) respectively (Source: India Meteorological Department). Analysis of WBCs indicated that corresponding seasonal surface runoff was 116, 81 and 86% LPA and evapotranspiration was 109, 104 and 90% LPA. Using the grid-wise data, the spatial variation in WBCs among river basins/administrative regions was derived to capture the changes in surface runoff, ET between the years and in comparison with LPA. The model framework is operational and is providing periodic account of national level water balance fluxes which are useful for quantifying spatial and temporal variation in basin/sub-basin scale water resources, periodical water budgeting to form vital inputs for studies on water resources and climate change.

  15. Development of a methodology examining the behaviours of VOCs source apportionment with micro-meteorology analysis in an urban and industrial area.

    PubMed

    Xiang, Yang; Delbarre, Hervé; Sauvage, Stéphane; Léonardis, Thierry; Fourmentin, Marc; Augustin, Patrick; Locoge, Nadine

    2012-03-01

    During summer 2009, online measurements of 25 Volatile Organic Compounds (VOCs) from C6 to C10 as well as micro-meteorological parameters were simultaneously performed in the industrial city of Dunkerque. With the obtained data set, we developed a methodology to examine how the contributions of different source categories depend on atmospheric turbulences, and the results provided identification of emission modes. Eight factors were resolved by using Positive Matrix Factorization model and three of them were associated with mixed sources. The observed behaviours of contributions with turbulences lead to attribute some factors with sources at ground level, and some other factors with sources in the upper part of surface layer. The impact of vertical turbulence on the pollutant dispersion is also affected by the distance between sources and receptor site. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Impact of combustion products from Space Shuttle launches on ambient air quality

    NASA Technical Reports Server (NTRS)

    Dumbauld, R. K.; Bowers, J. F.; Cramer, H. E.

    1974-01-01

    The present work describes some multilayer diffusion models and a computer program for these models developed to predict the impact of ground clouds formed during Space Shuttle launches on ambient air quality. The diffusion models are based on the Gaussian plume equation for an instantaneous volume source. Cloud growth is estimated on the basis of measurable meteorological parameters: standard deviation of the wind azimuth angle, standard deviation of wind elevation angle, vertical wind-speed shear, vertical wind-direction shear, and depth of the surface mixing layer. Calculations using these models indicate that Space Shuttle launches under a variety of meteorological regimes at Kennedy Space Center and Vandenberg AFB are unlikely to endanger the exposure standards for HCl; similar results have been obtained for CO and Al2O3. However, the possibility that precipitation scavenging of the ground cloud might result in an acidic rain that could damage vegetation has not been investigated.

  17. Surface ozone scenario and air quality in the north-central part of India.

    PubMed

    Saini, Renuka; Taneja, Ajay; Singh, Pradyumn

    2017-09-01

    Tropospheric pollutants including surface ozone (O 3 ), nitrogen dioxide (NO 2 ), carbon monoxide (CO) and meteorological parameters were measured at a traffic junction (78°2' E and 27°11' N) in Agra, India from January 2012 to December 2012. Temporal analysis of pollutants suggests that annual average mixing ratios of tropospheric pollutants were: O 3 - 22.97±23.36ppbV, NO 2 - 19.84±16.71ppbV and CO - 0.91±0.86ppmV, with seasonal variations of O 3 having maximum mixing ratio during summer season (32.41±19.31ppbV), whereas lowest was found in post-monsoon season (8.74±3.8ppbV). O 3 precursors: NO 2 and CO, showed inverse relationship with O 3 . Seasonal variation and high O 3 episodes during summer are associated with meteorological parameters such as high solar radiation, atmospheric temperature and transboundary transport. The interdependence of these variables showed a link between the daytime mixing ratios of O 3 with the nighttime level of NO 2 . The mixing ratios of CO and NO 2 showed tight correlations, which confirms the influence of vehicular emissions combined with other anthropogenic activities due to office/working hours, shallowing, and widening of boundary layer. FLEXTRA backward trajectories for the O 3 episode days clearly indicate the transport from the NW and W to S/SE and SW direction at Agra in different seasons. Copyright © 2017. Published by Elsevier B.V.

  18. Application of the Generalized Nonlinear Complementary Relationship for Estimating Evaporation in North China

    NASA Astrophysics Data System (ADS)

    Yu, M.; Wu, B.

    2017-12-01

    As an important part of the coupled Eco-Hydrological processes, evaporation is the bond for exchange of energy and heat between the surface and the atmosphere. However, the estimation of evaporation remains a challenge compared with other main hydrological factors in water cycle. The complementary relationship which proposed by Bouchet (1963) has laid the foundation for various approaches to estimate evaporation from land surfaces, the essence of the principle is a relationship between three types of evaporation in the environment. It can simply implemented with routine meteorological data without the need for resistance parameters of the vegetation and bare land, which are difficult to observed and complicated to estimate in most surface flux models. On this basis the generalized nonlinear formulation was proposed by Brutsaert (2015). The daily evaporation can be estimated once the potential evaporation (Epo) and apparent potential evaporation (Epa) are known. The new formulation has a strong physical basis and can be expected to perform better under natural water stress conditions, nevertheless, the model has not been widely validated over different climate types and underlying surface patterns. In this study, we attempted to apply the generalized nonlinear complementary relationship in North China, three flux stations in North China are used for testing the universality and accuracy of this model against observed evaporation over different vegetation types, including Guantao Site, Miyun Site and Huailai Site. Guantao Site has double-cropping systems and crop rotations with summer maize and winter wheat; the other two sites are dominated by spring maize. Detailed measurements of meteorological factors at certain heights above ground surface from automatic weather stations offered necessary parameters for daily evaporation estimation. Using the Bowen ratio, the surface energy measured by the eddy covariance systems at the flux stations is adjusted on a daily scale to satisfy the surface energy closure. After calibration the estimated daily evaporation are in good agreement with EC-measured flux data with a mean correlation coefficient in excess of 0.85. The results indicate that the generalized nonlinear complementary relationship can be applied in plant growing and non-growing season in North China.

  19. Near Real Time Surface Solar Radiation and Meteorological Parameters From the CERES FLASHFlux Project: Examples of Usage for Energy-Related Applications

    NASA Astrophysics Data System (ADS)

    Hoell, J. M.; Stockhouse, P.; Chandler, W.; Zhang, T.; Kratz, D. P.; Gupta, S. K.; Wilber, A. C.; Sawaengphokhai, P.; Edwards, A. C.; Westberg, D.; Zell, E.; Leng, G.

    2010-12-01

    The NASA Langley Research Center Fast Longwave And SHortwave Radiative Fluxes (FLASHFlux) project is producing global near real-time surface and top of Atmosphere (TOA) radiative fluxes and analyzing these quantities and their variability on regional and global scales. This is being accomplished by using a portion of the existing Clouds and the Earth's Radiant Energy System (CERES) processing system that fuses CERES with MODIS (Moderate Resolution Imaging Spectrometer) to produce orbital flux products. The orbital products from both Terra and Aqua are subsequently merged to derive global gridded radiative flux products. The FLASHFlux processing system also uses meteorological surface and profile file information from NASA Global Modeling and Data Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) operational analysis version 5.2. The production of these together considering the latency times results in the global gridded surface radiative fluxes within 6-7 days of the original satellite observations. Data from the FLASHFlux have been merged and made available through a user-friendly web-based data portal (http://power.larc.nasa.gov/). Solar data from this portal are being continuously updated to provide time series of daily solar radiation to current time minus 7-days. While the current solar data represents an average over a 1-degree cell, comparison with ground observations exhibits a high degree of correlation on a daily time scale. These data are promoted to the web along with surface meteorological data from the GMAO GEOS 5.2 to provide a complete suite of parameters useful for many applications. This paper highlights the use of these data sets in the Ventyx Corporation database Velocity Suite that is being provided to utilities for power load forecasting. Examples of the usage and impact of this data on subsequent load forecasts are presented. The data sets are also being evaluated in collaboration with the Natural Resource Canada RETScreen International Energy Monitoring, Targeting and Verification tool (MTV). This tool allows the monitoring of building energy usage in correlation with variability in the environmental conditions and provides the flexibility of studying the economic and environmental feasibility of various energy efficient and renewable energy enhancements to the building. The FLASHFlux production system or similar is planned to continue as part as CERES for the upcoming NPP (NPOES Preparatory Project) and may be considered as part of the CERES data production stream on the joint NOAA/NASA JPSS missions. Lastly, we identify currently known usage needs requiring enhancement of the current data products that would be appropriate for these future satellite systems.

  20. Relationship between boundary layer heights and growth rates with ground-level ozone in Houston, Texas

    NASA Astrophysics Data System (ADS)

    Haman, C. L.; Couzo, E.; Flynn, J. H.; Vizuete, W.; Heffron, B.; Lefer, B. L.

    2014-05-01

    Measurements and predictions of ambient ozone (O3), planetary boundary layer (PBL) height, the surface energy budget, wind speed, and other meteorological parameters were made near downtown Houston, Texas, and were used to investigate meteorological controls on elevated levels of ground-level O3. Days during the study period (1 April 2009 to 31 December 2010 for measurements and 15 April 2009 to 17 October 2009 for modeled) were classified into low (LO3) and high ozone (HO3) days. The majority of observed high HO3 days occurred in a postfrontal environment. Observations showed there is not a significant difference in daily maximum PBL heights on HO3 and LO3 days. Modeling results showed large differences between maximum PBL heights on HO3 and LO3 days. Nighttime and early morning observed and modeled PBL heights are consistently lower on HO3 days than on LO3 days. The observed spring LO3 days had the most rapid early morning PBL growth (~350 m h-1) while the fall HO3 group had the slowest (~200 m h-1). The predicted maximum average hourly morning PBL growth rates were greater on HO3 (624 m h-1) days than LO3 days (361 m h-1). Observed turbulent mixing parameters were up to 2-3 times weaker on HO3 days, which indicate large-scale subsidence associated with high-pressure systems (leading to clear skies and weak winds) substantially suppresses mixing. Lower surface layer ventilation coefficients were present in the morning on HO3 days in the spring and fall, which promotes the accumulation of O3 precursors near the surface.

  1. Impact of anthropogenic aerosols on regional climate change in Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Liou, K. N.; He, C.; Lee, W. L.; Gu, Y.; Li, Q.; Leung, L. R.

    2015-12-01

    Anthropogenic aerosols affect regional climate significantly through radiative (direct and semi-direct) and indirect effects, but the magnitude of these effects over megacities are subject to large uncertainty. In this study, we evaluated the effects of anthropogenic aerosols on regional climate change in Beijing, China using the online-coupled Weather Research and Forecasting/Chemistry Model (WRF/Chem) with the Fu-Liou-Gu radiation scheme and a spatial resolution of 4km. We further updated this radiation scheme with a geometric-optics surface-wave (GOS) approach for the computation of light absorption and scattering by black carbon (BC) particles in which aggregation shape and internal mixing properties are accounted for. In addition, we incorporated in WRF/Chem a 3D radiative transfer parameterization in conjunction with high-resolution digital data for city buildings and landscape to improve the simulation of boundary-layer, surface solar fluxes and associated sensible/latent heat fluxes. Preliminary simulated meteorological parameters, fine particles (PM2.5) and their chemical components agree well with observational data in terms of both magnitude and spatio-temporal variations. The effects of anthropogenic aerosols, including BC, on radiative forcing, surface temperature, wind speed, humidity, cloud water path, and precipitation are quantified on the basis of simulation results. With several preliminary sensitivity runs, we found that meteorological parameters and aerosol radiative effects simulated with the incorporation of improved BC absorption and 3-D radiation parameterizations deviate substantially from simulation results using the conventional homogeneous/core-shell configuration for BC and the plane-parallel model for radiative transfer. Understanding of the aerosol effects on regional climate change over megacities must consider the complex shape and mixing state of aerosol aggregates and 3D radiative transfer effects over city landscape.

  2. Direct Temperature Measurements during Netlander Descent on Mars

    NASA Astrophysics Data System (ADS)

    Colombatti, G.; Angrilli, F.; Ferri, F.; Francesconi, A.; Fulchignoni, M.; Lion Stoppato, P. F.; Saggi, B.

    1999-09-01

    A new design for a platinum thermoresistance temperature sensor has been developed and tested in Earth's atmosphere and stratosphere. It will be one of the sensors equipping the scientific package ATMIS (Atmospheric and Meteorology Instrument System), which will be devoted to the measurement of the meteorological parameters during both the entry/descent phase and the surface phase, aboard the Netlanders. In particular vertical profiles of temperature, density and pressure will allow the resolution of vertical gradients to investigate the atmospheric structure and dynamics. In view of the future missions to Mars, Netlander represents a unique chance to increase significantly the climate record both in time and in space, doubling the current knowledge of the atmospheric parameters. Furthermore is the only opportunity to conduct direct measurement of temperature and pressure (outside the boundary layer of the airbags used for the landing). The temperature sensor proposed is a platinum thermoresistance, enhancement of HASI TEM (Cassini/Huygens Mission); a substantial improvement of the performances, i.e. a faster dynamic response, has been obtained. Two different prototypes of new design sensor have been built, laboratory test are proceeding and the second one has been already flown aboard a stratospheric balloon.

  3. Spatial Interpolation of Reference Evapotranspiration in India: Comparison of IDW and Kriging Methods

    NASA Astrophysics Data System (ADS)

    Hodam, Sanayanbi; Sarkar, Sajal; Marak, Areor G. R.; Bandyopadhyay, A.; Bhadra, A.

    2017-12-01

    In the present study, to understand the spatial distribution characteristics of the ETo over India, spatial interpolation was performed on the means of 32 years (1971-2002) monthly data of 131 India Meteorological Department stations uniformly distributed over the country by two methods, namely, inverse distance weighted (IDW) interpolation and kriging. Kriging was found to be better while developing the monthly surfaces during cross-validation. However, in station-wise validation, IDW performed better than kriging in almost all the cases, hence is recommended for spatial interpolation of ETo and its governing meteorological parameters. This study also checked if direct kriging of FAO-56 Penman-Monteith (PM) (Allen et al. in Crop evapotranspiration—guidelines for computing crop water requirements, Irrigation and drainage paper 56, Food and Agriculture Organization of the United Nations (FAO), Rome, 1998) point ETo produced comparable results against ETo estimated with individually kriged weather parameters (indirect kriging). Indirect kriging performed marginally well compared to direct kriging. Point ETo values were extended to areal ETo values by IDW and FAO-56 PM mean ETo maps for India were developed to obtain sufficiently accurate ETo estimates at unknown locations.

  4. Use of remote sensing for land use policy formulation

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The overall objectives and strategies of the Center for Remote Sensing remain to provide a center for excellence for multidisciplinary scientific expertise to address land-related global habitability and earth observing systems scientific issues. Specific research projects that were underway during the final contract period include: digital classification of coniferous forest types in Michigan's northern lower peninsula; a physiographic ecosystem approach to remote classification and mapping; land surface change detection and inventory; analysis of radiant temperature data; and development of methodologies to assess possible impacts of man's changes of land surface on meteorological parameters. Significant progress in each of the five project areas has occurred. Summaries on each of the projects are provided.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aslan, Z.; Topcu, S.

    A central objective of micrometeorological research is to establish fluxes from a knowledge of the mean temperature, humidity and wind speed profiles. The effect of time and spatial variations of surface heat and momentum fluxes is studied for various geographic regions. These analysis show the principal boundary conditions for micro and meso-scale analysis, air-sea interactions, weather forecasting air pollution, agrometeorology and climate changing models. The fluxes of heat and momentum can be obtained from observed profiles of wind speed and temperature using the similarity relations for the atmospheric surface layer. In recent years, harmonic analysis is a particularly useful toolmore » in studying annual patterns of some meteorological parameters at the field of micrometeorological studies.« less

  6. A Model for the Formation and Melting of Ice on Surface Waters.

    NASA Astrophysics Data System (ADS)

    de Bruin, H. A. R.; Wessels, H. R. A.

    1988-02-01

    Ice covers have an important influence on the hydrology of surface waters. The growth of ice layer on stationary waters, such as lakes or canals, depends primarily on meteorological parameters like temperature and humidity of the air, windspeed and radiation balance. The more complicated ice formation in rapidly flowing rivers is not considered in this study. A model is described that simulates ice growth and melting utilizing observed or forecast weather data. The model includes situations with a snow cover. Special attention is given to the optimal estimation of the net radiation and to the role of the stability of the near-surface air. Since a major practical application in the Netherlands is the use of frozen waters for recreation skating, the model is extended to include artificial ice tracks.

  7. Site-specific diel mercury emission fluxes in landfill: Combined effects of vegetation and meteorological factors.

    PubMed

    Liu, Yang; Wu, Boran; Hao, Yongxia; Zhu, Wei; Li, Zhonggen; Chai, Xiaoli

    2017-01-01

    Mercury emission fluxes (MEFs) under different surface coverage conditions in a landfill were investigated in this study. The results show similar diel patterns of Hg emission flux under different coverage conditions, with peak fluxes occurring at midday and decreasing during night. We examined the effects of environmental factors on MEFs, such as the physiological characteristics of vegetation and meteorological conditions. The results suggest that growth of vegetation in the daytime facilitates the release of Hg in the anaerobic unit, while in the semi-aerobic unit, where vegetation had been removed, the higher mercury content of the cover soil prompted the photo-reduction pathway to become the main path of mercury release and increased MEFs. MEFs are positively correlated with solar radiation and air temperature, but negatively correlated with relative humidity. The correlation coefficients for MEFs with different environmental parameters indicate that in the anaerobic unit, solar radiation was the main influence on MEFs in September, while air temperature became the main determining factor in December. These observations suggest that the effects of meteorological conditions on the mercury release mechanism varies depending on the vegetation and soil pathways. Copyright © 2016. Published by Elsevier Ltd.

  8. Evaluation of meteorological and epidemiological characteristics of fatal pulmonary embolism

    NASA Astrophysics Data System (ADS)

    Törő, Klára; Pongrácz, Rita; Bartholy, Judit; Váradi-T, Aletta; Marcsa, Boglárka; Szilágyi, Brigitta; Lovas, Attila; Dunay, György; Sótonyi, Péter

    2016-03-01

    The objective of the present study was to identify risk factors among epidemiological factors and meteorological conditions in connection with fatal pulmonary embolism. Information was collected from forensic autopsy records in sudden unexpected death cases where pulmonary embolism was the exact cause of death between 2001 and 2010 in Budapest. Meteorological parameters were detected during the investigated period. Gender, age, manner of death, cause of death, place of death, post-mortem pathomorphological changes and daily meteorological conditions (i.e. daily mean temperature and atmospheric pressure) were examined. We detected that the number of registered pulmonary embolism (No 467, 211 male) follows power law in time regardless of the manner of death. We first described that the number of registered fatal pulmonary embolism up to the nth day can be expressed as Y( n) = α ṡ n β where Y denotes the number of fatal pulmonary embolisms up to the nth day and α > 0 and β > 1 are model parameters. We found that there is a definite link between the cold temperature and the increasing incidence of fatal pulmonary embolism. Cold temperature and the change of air pressure appear to be predisposing factors for fatal pulmonary embolism. Meteorological parameters should have provided additional information about the predisposing factors of thromboembolism.

  9. Air Modeling - Observational Meteorological Data

    EPA Pesticide Factsheets

    Observed meteorological data for use in air quality modeling consist of physical parameters that are measured directly by instrumentation, and include temperature, dew point, wind direction, wind speed, cloud cover, cloud layer(s), ceiling height,

  10. Synergistically combining Optical and Thermal radiative transfer modelswithin the EO-LDAS data assimilation framework to estimate land surfaceand component temperatures from MODIS and Sentinel-3

    NASA Astrophysics Data System (ADS)

    Timmermans, J.; Gomez-Dans, J. L.; Verhoef, W.; Tol, C. V. D.; Lewis, P.

    2017-12-01

    Evapotranspiration (ET) cannot be directly measured from space. Instead it relies on modelling approaches that use several land surface parameters (LSP), LAI and LST, in conjunction with meteorological parameters. Such a modelling approach presents two caveats: the validity of the model, and the consistency between the different input parameters. Often this second step is not considered, ignoring that without good inputs no decent output can provided. When LSP- dynamics contradict each other, the output of the model cannot be representative of reality. At present however, the LSPs used in large scale ET estimations originate from different single-sensor retrieval-approaches and even from different satellite sensors. In response, the Earth Observation Land Data Assimilation System (EOLDAS) was developed. EOLDAS uses a multi-sensor approach to couple different satellite observations/types to radiative transfer models (RTM), consistently. It is therefore capable of synergistically estimating a variety of LSPs. Considering that ET is most sensitive to the temperatures of the land surface (components), the goal of this research is to expand EOLDAS to the thermal domain. This research not only focuses on estimating LST, but also on retrieving (soil/vegetation, Sunlit/shaded) component temperatures, to facilitate dual/quad-source ET models. To achieve this, The Soil Canopy Observations of Photosynthesis and Energy (SCOPE) model was integrated into EOLDAS. SCOPE couples key-parameters to key-processes, such as photosynthesis, ET and optical/thermal RT. In this research SCOPE was also coupled to MODTRAN RTM, in order to estimate BOA component temperatures directly from TOA observations. This paper presents the main modelling steps of integrating these complex models into an operational platform. In addition it highlights the actual retrieval using different satellite observations, such as MODIS and Sentinel-3, and meteorological variables from the ERA-Interim.

  11. Interannual variation, decadal trend, and future change in ozone outflow from East Asia

    NASA Astrophysics Data System (ADS)

    Zhu, Jia; Liao, Hong; Mao, Yuhao; Yang, Yang; Jiang, Hui

    2017-03-01

    We examine the past and future changes in the O3 outflow from East Asia using a global 3-D chemical transport model, GEOS-Chem. The simulations of Asian O3 outflow for 1986-2006 are driven by the assimilated GEOS-4 meteorological fields, and those for 2000-2050 are driven by the meteorological fields archived by the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM) 3 under the IPCC SRES A1B scenario. The evaluation of the model results against measurements shows that the GEOS-Chem model captures the seasonal cycles and interannual variations of tropospheric O3 concentrations fairly well with high correlation coefficients of 0.82-0.93 at four ground-based sites and 0.55-0.88 at two ozonesonde sites where observations are available. The increasing trends in surface-layer O3 concentrations in East Asia over the past 2 decades are captured by the model, although the modeled O3 trends have low biases. Sensitivity studies are conducted to examine the respective impacts of meteorological parameters and emissions on the variations in the outflow flux of O3. When both meteorological parameters and anthropogenic emissions varied from 1986-2006, the simulated Asian O3 outflow fluxes exhibited a statistically insignificant decadal trend; however, they showed large interannual variations (IAVs) with seasonal values of 4-9 % for the absolute percent departure from the mean (APDM) and an annual APDM value of 3.3 %. The sensitivity simulations indicated that the large IAVs in O3 outflow fluxes were mainly caused by variations in the meteorological conditions. The variations in meteorological parameters drove the IAVs in O3 outflow fluxes by altering the O3 concentrations over East Asia and by altering the zonal winds; the latter was identified to be the key factor, since the O3 outflow was highly correlated with zonal winds from 1986-2006. The simulations of the 2000-2050 changes show that the annual outflow flux of O3 will increase by 2.0, 7.9, and 12.2 % owing to climate change alone, emissions change alone, and changes in both climate and emissions, respectively. Therefore, climate change will aggravate the effects of the increases in anthropogenic emissions on future changes in the Asian O3 outflow. Future climate change is predicted to greatly increase the Asian O3 outflow in the spring and summer seasons as a result of the projected increases in zonal winds. The findings from the present study help us to understand the variations in tropospheric O3 in the downwind regions of East Asia on different timescales and have important implications for long-term air quality planning in the regions downwind of China, such as Japan and the US.

  12. Carbon dioxide diffuse emission from the soil: ten years of observations at Vesuvio and Campi Flegrei (Pozzuoli), and linkages with volcanic activity

    NASA Astrophysics Data System (ADS)

    Granieri, D.; Avino, R.; Chiodini, G.

    2010-01-01

    Carbon dioxide flux from the soil is regularly monitored in selected areas of Vesuvio and Solfatara (Campi Flegrei, Pozzuoli) with the twofold aim of i) monitoring spatial and temporal variations of the degassing process and ii) investigating if the surface phenomena could provide information about the processes occurring at depth. At present, the surveyed areas include 15 fixed points around the rim of Vesuvio and 71 fixed points in the floor of Solfatara crater. Soil CO2 flux has been measured since 1998, at least once a month, in both areas. In addition, two automatic permanent stations, located at Vesuvio and Solfatara, measure the CO2 flux and some environmental parameters that can potentially influence the CO2 diffuse degassing. Series acquired by continuous stations are characterized by an annual periodicity that is related to the typical periodicities of some meteorological parameters. Conversely, series of CO2 flux data arising from periodic measurements over the arrays of Vesuvio and Solfatara are less dependent on external factors such as meteorological parameters, local soil properties (porosity, hydraulic conductivity) and topographic effects (high or low ground). Therefore we argue that the long-term trend of this signal contains the “best” possible representation of the endogenous signal related to the upflow of deep hydrothermal fluids.

  13. Hydrologic data for the Walker River Basin, Nevada and California, water years 2010–14

    USGS Publications Warehouse

    Pavelko, Michael T.; Orozco, Erin L.

    2015-12-10

    Walker Lake is a threatened and federally protected desert terminal lake in western Nevada. To help protect the desert terminal lake and the surrounding watershed, the Bureau of Reclamation and U.S. Geological Survey have been studying the hydrology of the Walker River Basin in Nevada and California since 2004. Hydrologic data collected for this study during water years 2010 through 2014 included groundwater levels, surface-water discharge, water chemistry, and meteorological data. Groundwater levels were measured in wells, and surface-water discharge was measured in streams, canals, and ditches. Water samples for chemical analyses were collected from wells, streams, springs, and Walker Lake. Chemical analyses included determining physical properties; the concentrations of major ions, nutrients, trace metals, dissolved gases, and radionuclides; and ratios of the stable isotopes of hydrogen and oxygen. Walker Lake water properties and meteorological parameters were monitored from a floating platform on the lake. Data collection methods followed established U.S. Geological Survey guidelines, and all data are stored in the National Water Information System database. All of the data are presented in this report and accessible on the internet, except multiple-depth Walker Lake water-chemistry data, which are available only in this report.

  14. The Langley Parameterized Shortwave Algorithm (LPSA) for Surface Radiation Budget Studies. 1.0

    NASA Technical Reports Server (NTRS)

    Gupta, Shashi K.; Kratz, David P.; Stackhouse, Paul W., Jr.; Wilber, Anne C.

    2001-01-01

    An efficient algorithm was developed during the late 1980's and early 1990's by W. F. Staylor at NASA/LaRC for the purpose of deriving shortwave surface radiation budget parameters on a global scale. While the algorithm produced results in good agreement with observations, the lack of proper documentation resulted in a weak acceptance by the science community. The primary purpose of this report is to develop detailed documentation of the algorithm. In the process, the algorithm was modified whenever discrepancies were found between the algorithm and its referenced literature sources. In some instances, assumptions made in the algorithm could not be justified and were replaced with those that were justifiable. The algorithm uses satellite and operational meteorological data for inputs. Most of the original data sources have been replaced by more recent, higher quality data sources, and fluxes are now computed on a higher spatial resolution. Many more changes to the basic radiation scheme and meteorological inputs have been proposed to improve the algorithm and make the product more useful for new research projects. Because of the many changes already in place and more planned for the future, the algorithm has been renamed the Langley Parameterized Shortwave Algorithm (LPSA).

  15. Technology Needs Assessment of an Atmospheric Observation System for Multidisciplinary Air Quality/Meteorology Missions, Part 2

    NASA Technical Reports Server (NTRS)

    Alvarado, U. R.; Bortner, M. H.; Grenda, R. N.; Brehm, W. F.; Frippel, G. G.; Alyea, F.; Kraiman, H.; Folder, P.; Krowitz, L.

    1982-01-01

    The technology advancements that will be necessary to implement the atmospheric observation systems are considered. Upper and lower atmospheric air quality and meteorological parameters necessary to support the air quality investigations were included. The technology needs were found predominantly in areas related to sensors and measurements of air quality and meteorological measurements.

  16. The Effect of Internal Gravity Waves on Fluctuations in Meteorological Parameters of the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Zaitseva, D. V.; Kallistratova, M. A.; Lyulyukin, V. S.; Kouznetsov, R. D.; Kuznetsov, D. D.

    2018-03-01

    Variations in the intensity of turbulence during wave activity in the stable atmospheric boundary layer over a homogeneous steppe surface have been analyzed. Eight wave activity episodes recorded with a Doppler sodar in August 2015 at the Tsimlyansk Scientific Station of the Obukhov Institute of Atmospheric Physics have been studied. These episodes include seven trains of Kelvin-Helmholtz waves and one train of buoyancy waves. Variations in the rms deviation of the vertical wind-velocity component, the temperature structure parameter, and vertical heat and momentum fluxes have been estimated for each episode of wave activity. It has been found that Kelvin-Helmholtz waves slightly affect the intensity of turbulence, while buoyancy waves cause the temperature structure parameter and the vertical fluxes to increase by more than an order of magnitude.

  17. GPS IPW as a Meteorological Parameter and Climate Global Change Indicator

    NASA Astrophysics Data System (ADS)

    Kruczyk, M.; Liwosz, T.

    2011-12-01

    Paper focuses on comprehensive investigation of the GPS derived IPW (Integrated Precipitable Water, also IWV) as a geophysical tool. GPS meteorology is now widely acknowledged indirect method of atmosphere sensing. First we demonstrate GPS IPW quality. Most thorough inter-technique comparisons of directly measured IPW are attainable only for some observatories (note modest percentage of GPS stations equipped with meteorological devices). Nonetheless we have managed to compare IPW series derived from GPS tropospheric solutions (ZTD mostly from IGS and EPN solutions) and some independent techniques. IPW values from meteorological sources we used are: radiosoundings, sun photometer and input fields of numerical weather prediction model. We can treat operational NWP models as meteorological database within which we can calculate IWV for all GPS stations independently from network of direct measurements (COSMO-LM model maintained by Polish Institute of Meteorology and Water Management was tried). Sunphotometer (CIMEL-318, Central Geophysical Observatory IGF PAS, Belsk, Poland) data seems the most genuine source - so we decided for direct collocation of GPS measurements and sunphotometer placing permanent GPS receiver on the roof of Belsk Observatory. Next we analyse IPW as geophysical parameter: IPW demonstrates some physical effects evoked by station location (height and series correlation coefficient as a function of distance) and weather patterns like dominant wind directions (in case of neighbouring stations). Deficiency of surface humidity data to model IPW is presented for different climates. This inadequacy and poor humidity data representation in NWP model extremely encourages investigating information exchange potential between Numerical Model and GPS network. The second and most important aspect of this study concerns long series of IPW (daily averaged) which can serve as climatological information indicator (water vapour role in climate system is hard to exaggerate). Especially intriguing are relatively unique shape of such series in different climates. Long lasting changes in weather conditions: 'dry' and 'wet' years are also visible. The longer and more uniform our series are the better chance to estimate the magnitude of climatological IWV changes. Homogenous ZTD solution during long period is great concern in this approach (problems with GPS strategy and reference system changes). In case of continental network (EUREF Permanent Network) reliable data we get only after reprocessing. Simple sinusoidal model has been adjusted to the IPW series (LS method) for selected stations (mainly Europe but also other continents - IGS stations), every year separately. Not only amplitudes but also phases of annual signal differ from year to year. Longer IPW series (up to 14 years) searched for some climatological signal sometimes reveal weak steady trend. Large number of GPS permanent stations, relative easiness of IPW derivation (only and surface meteo data needed apart from GPS solution) and water vapour significance in water cycle and global climate make this GPS IPW promising element of global environmental change monitoring.

  18. Spherical Harmonics Functions Modelling of Meteorological Parameters in PWV Estimation

    NASA Astrophysics Data System (ADS)

    Deniz, Ilke; Mekik, Cetin; Gurbuz, Gokhan

    2016-08-01

    Aim of this study is to derive temperature, pressure and humidity observations using spherical harmonics modelling and to interpolate for the derivation of precipitable water vapor (PWV) of TUSAGA-Active stations in the test area encompassing 38.0°-42.0° northern latitudes and 28.0°-34.0° eastern longitudes of Turkey. In conclusion, the meteorological parameters computed by using GNSS observations for the study area have been modelled with a precision of ±1.74 K in temperature, ±0.95 hPa in pressure and ±14.88 % in humidity. Considering studies on the interpolation of meteorological parameters, the precision of temperature and pressure models provide adequate solutions. This study funded by the Scientific and Technological Research Council of Turkey (TUBITAK) (The Estimation of Atmospheric Water Vapour with GPS Project, Project No: 112Y350).

  19. A numerical forecast model for road meteorology

    NASA Astrophysics Data System (ADS)

    Meng, Chunlei

    2017-05-01

    A fine-scale numerical model for road surface parameters prediction (BJ-ROME) is developed based on the Common Land Model. The model is validated using in situ observation data measured by the ROSA road weather stations of Vaisala Company, Finland. BJ-ROME not only takes into account road surface factors, such as imperviousness, relatively low albedo, high heat capacity, and high heat conductivity, but also considers the influence of urban anthropogenic heat, impervious surface evaporation, and urban land-use/land-cover changes. The forecast time span and the update interval of BJ-ROME in vocational operation are 24 and 3 h, respectively. The validation results indicate that BJ-ROME can successfully simulate the diurnal variation of road surface temperature both under clear-sky and rainfall conditions. BJ-ROME can simulate road water and snow depth well if the artificial removing was considered. Road surface energy balance in rainy days is quite different from that in clear-sky conditions. Road evaporation could not be neglected in road surface water cycle research. The results of sensitivity analysis show solar radiation correction coefficient, asphalt depth, and asphalt heat conductivity are important parameters in road interface temperatures simulation. The prediction results could be used as a reference of maintenance decision support system to mitigate the traffic jam and urban water logging especially in large cities.

  20. Mars surface penetrator: System description

    NASA Technical Reports Server (NTRS)

    Manning, L. A. (Editor)

    1977-01-01

    A point design of a penetrator system for a Mars mission is described. A strawman payload which is to conduct measurements of geophysical and meteorological parameters is included in the design. The subsystems used in the point design are delineated in terms of power, mass, volume, data, and functional modes. The prospects for survival of the rigors of emplacement are described. Data handling and communications plans are presented to allow consideration of the requirements placed by the penetrator on the orbiter and ground operations. The point design is technically feasible and the payload selection scientifically desirable.

  1. Planets of the solar system. [Jupiter and Venus

    NASA Technical Reports Server (NTRS)

    Kondratyev, K. Y.; Moskalenko, N. I.

    1978-01-01

    Venera and Mariner spacecraft and ground based radio astronomy and spectroscopic observations of the atmosphere and surface of venus are examined. The composition and structural parameters of the atmosphere are discussed as the basis for development of models and theories of the vertical structure of the atmosphere, the greenhouse effect, atmospheric circulation and cloud cover. Recommendations for further meteorological studies are given. Ground based and Pioneer satellite observation data on Jupiter are explored as well as calculations and models of the cloud structure, atmospheric circulation and thermal emission field of Jupiter.

  2. The determination of surface albedo from meteorological satellites

    NASA Technical Reports Server (NTRS)

    Johnson, W. T.

    1977-01-01

    A surface albedo was determined from visible data collected by the NOAA-4 polar orbiting meteorological satellite. To filter out the major cause of atmospheric reflectivity, namely clouds, techniques were developed and applied to the data resulting in a map of global surface albedo. Neglecting spurious surface albedos for regions with persistent cloud cover, sun glint effects, insufficient reflected light and, at this time, some unresolved influences, the surface albedos retrieved from satellite data closely matched those of a global surface albedo map produced from surface and aircraft measurements and from characteristic albedos for land type and land use.

  3. Sensitivity of desert dust emission modelling to horizontal resolution: the example of the Bodélé Depression

    NASA Astrophysics Data System (ADS)

    Bouet, Christel; Cautenet, Guy; Marticorena, Béatrice; Bergametti, Gilles; Minvielle, Fanny; Schmechtig, Catherine; Laurent, Benoit

    2010-05-01

    Atmospheric aerosols are known to play an important role in the Earth's climate system. However, the quantification of aerosol radiative impact on the Earth's radiative budget is very complex because of the high variability in space and time of aerosol mass and particle number concentrations, and optical properties as well. In many regions, like in desert regions, dust is the largest contribution to aerosol optical thickness [Tegen et al., 1997]. Consequently, it appears fundamental to well represent mineral dust emissions to reduce uncertainties concerning aerosol radiative impact on the Earth's radiative budget. Recently, several studies (e.g. Prospero et al. [2002]) underlined that the Bodélé depression, in northern Chad, is probably the most important source of mineral dust in the world. However many models fail in simulating these large dust emissions. Indeed, dust emission is a threshold phenomenon mainly driven by the intensity of surface wind velocity. Realistic estimates of dust emissions then rely on the quality and accuracy of the surface wind fields. Koren and Kaufman [2004] showed that the reanalysis data (NCEP), which can be used as input data in numerical models, underestimates surface wind velocity in the Bodélé Depression by up to 50%. Such an uncertainty on surface wind velocity cannot allow an accurate simulation of the dust emission. In mesoscale meteorological models, global reanalysis datasets are used to initialize and laterally nudge the models that compute meteorological parameters (like wind velocity) with a finer spatial and temporal resolutions. The question arises concerning the precision of the wind speeds calculated by these models. Using the Regional Atmospheric Modeling System (RAMS, Cotton et al. [2003]) coupled online with the dust production model developed by Marticorena and Bergametti [1995] and recently improved by Laurent et al. [2008] for Africa, the influence of the horizontal resolution of the mesoscale meteorological model on the simulation of dust emission in the Bodélé Depression is investigated. A one year simulation is run in order to test the capability of the model to represent the pronounced seasonal cycle of dust emission in this region. Routine measurements from meteorological stations as well as satellite imagery are used to evaluate the accuracy of the simulations.

  4. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition

    PubMed Central

    Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei

    2017-01-01

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations. PMID:29057838

  5. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition

    NASA Technical Reports Server (NTRS)

    Belle, Jessica H.; Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang

    2017-01-01

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, approximately 70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations.

  6. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition.

    PubMed

    Belle, Jessica H; Chang, Howard H; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang

    2017-10-18

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM 2.5 ) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM 2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM 2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM 2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM 2.5 concentrations.

  7. Generation of Multivariate Surface Weather Series with Use of the Stochastic Weather Generator Linked to Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Farda, A.; Huth, R.

    2012-12-01

    The regional-scale simulations of weather-sensitive processes (e.g. hydrology, agriculture and forestry) for the present and/or future climate often require high resolution meteorological inputs in terms of the time series of selected surface weather characteristics (typically temperature, precipitation, solar radiation, humidity, wind) for a set of stations or on a regular grid. As even the latest Global and Regional Climate Models (GCMs and RCMs) do not provide realistic representation of statistical structure of the surface weather, the model outputs must be postprocessed (downscaled) to achieve the desired statistical structure of the weather data before being used as an input to the follow-up simulation models. One of the downscaling approaches, which is employed also here, is based on a weather generator (WG), which is calibrated using the observed weather series and then modified (in case of simulations for the future climate) according to the GCM- or RCM-based climate change scenarios. The present contribution uses the parametric daily weather generator M&Rfi to follow two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate/CZ (v.2) Regional Climate Model at 25 km resolution. The WG parameters will be derived from the RCM-simulated surface weather series and compared to those derived from observational data in the Czech meteorological stations. The set of WG parameters will include selected statistics of the surface temperature and precipitation (characteristics of the mean, variability, interdiurnal variability and extremes). (2) Testing a potential of RCM output for calibration of the WG for the ungauged locations. The methodology being examined will consist in using the WG, whose parameters are interpolated from the surrounding stations and then corrected based on a RCM-simulated spatial variability. The quality of the weather series produced by the WG calibrated in this way will be assessed in terms of selected climatic characteristics focusing on extreme precipitation and temperature characteristics (including characteristics of dry/wet/hot/cold spells). Acknowledgements: The present experiment is made within the frame of projects ALARO (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports) and VALUE (COST ES 1102 action).

  8. Meteorological Automatic Weather Station (MAWS) Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdridge, Donna J; Kyrouac, Jenni A

    The Meteorological Automatic Weather Station (MAWS) is a surface meteorological station, manufactured by Vaisala, Inc., dedicated to the balloon-borne sounding system (BBSS), providing surface measurements of the thermodynamic state of the atmosphere and the wind speed and direction for each radiosonde profile. These data are automatically provided to the BBSS during the launch procedure and included in the radiosonde profile as the surface measurements of record for the sounding. The MAWS core set of measurements is: Barometric Pressure (hPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg). The sensors that collect the core variablesmore » are mounted at the standard heights defined for each variable.« less

  9. Extension of surface data by use of meteorological satellites

    NASA Technical Reports Server (NTRS)

    Giddings, L. E.

    1976-01-01

    Ways of using meteorological satellite data to extend surface data are summarized. Temperature models are prepared from infrared data from ITOS/NOAA, NIMBUS, SMS/GOES, or future LANDSAT satellites. Using temperatures for surface meteorological stations as anchors, an adjustment is made to temperature values for each pixel in the model. The result is an image with an estimated temperature for each pixel. This provides an economical way of producing detailed temperature information for data-sparse areas, such as are found in underdeveloped countries. Related uses of these satellite data are also given, including the use of computer prepared cloud-free composites to extend climatic zones, and their use in discrimination of reflectivity-thermal regime zones.

  10. The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Case, Jonathan; Kozlowski, Danielle; Molthan, Andrew

    2012-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting entities, including a number of National Weather Service offices. SPoRT transitions real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One challenge that forecasters face is applying convection-allowing numerical models to predict mesoscale convective weather. In order to address this specific forecast challenge, SPoRT produces real-time mesoscale model forecasts using the Weather Research and Forecasting (WRF) model that includes unique NASA products and capabilities. Currently, the SPoRT configuration of the WRF model (SPoRT-WRF) incorporates the 4-km Land Information System (LIS) land surface data, 1-km SPoRT sea surface temperature analysis and 1-km Moderate resolution Imaging Spectroradiometer (MODIS) greenness vegetation fraction (GVF) analysis, and retrieved thermodynamic profiles from the Atmospheric Infrared Sounder (AIRS). The LIS, SST, and GVF data are all integrated into the SPoRT-WRF through adjustments to the initial and boundary conditions, and the AIRS data are assimilated into a 9-hour SPoRT WRF forecast each day at 0900 UTC. This study dissects the overall impact of the NASA datasets and the individual surface and atmospheric component datasets on daily mesoscale forecasts. A case study covering the super tornado outbreak across the Ce ntral and Southeastern United States during 25-27 April 2011 is examined. Three different forecasts are analyzed including the SPoRT-WRF (NASA surface and atmospheric data), the SPoRT WRF without AIRS (NASA surface data only), and the operational National Severe Storms Laboratory (NSSL) WRF (control with no NASA data). The forecasts are compared qualitatively by examining simulated versus observed radar reflectivity. Differences between the simulated reflectivity are further investigated using convective parameters along with model soundings to determine the impacts of the various NASA datasets. Additionally, quantitative evaluation of select meteorological parameters is performed using the Meteorological Evaluation Tools model verification package to compare forecasts to in situ surface and upper air observations.

  11. A COMPREHENSIVE EVALUATION OF THE ETA-CMAQ FORECAST MODEL PERFORMANCE FOR O3, ITS RELATED PRECURSORS, AND METEOROLOGICAL PARAMETERS DURING THE 2004 ICARTT STUDY

    EPA Science Inventory

    In this study, the ability of the Eta-CMAQ forecast model to represent the vertical profiles of O3, related chemical species (CO, NO, NO2, H2O2, CH2O, HNO3, SO2, PAN, isoprene, toluene), and meteorological paramete...

  12. Investigating malaria risk in the northern region of Nigeria using satellite imagery

    NASA Astrophysics Data System (ADS)

    Emetere, M. E.; Nikouravan, Bijan; Olawole, O. F.

    2015-08-01

    The dynamics of infectious diseases are dependent on salient environment and climate factors which are directly proportional to its transmission. Malaria is a common disease of typical tropics of the West African sub-region. The influences of malaria transmission via meteorological and environmental parameters were examined. Remotely sensed parameters i.e. skin temperature, sensible heat flux, latent heat flux and total precipitation were obtained from the NASA-MERRA. The results show that the meteorological and environmental parameters of northern Nigeria favour the long malaria dominance.

  13. Relative performance of empirical and physical models in assessing the seasonal and annual glacier surface mass balance of Saint-Sorlin Glacier (French Alps)

    NASA Astrophysics Data System (ADS)

    Réveillet, Marion; Six, Delphine; Vincent, Christian; Rabatel, Antoine; Dumont, Marie; Lafaysse, Matthieu; Morin, Samuel; Vionnet, Vincent; Litt, Maxime

    2018-04-01

    This study focuses on simulations of the seasonal and annual surface mass balance (SMB) of Saint-Sorlin Glacier (French Alps) for the period 1996-2015 using the detailed SURFEX/ISBA-Crocus snowpack model. The model is forced by SAFRAN meteorological reanalysis data, adjusted with automatic weather station (AWS) measurements to ensure that simulations of all the energy balance components, in particular turbulent fluxes, are accurately represented with respect to the measured energy balance. Results indicate good model performance for the simulation of summer SMB when using meteorological forcing adjusted with in situ measurements. Model performance however strongly decreases without in situ meteorological measurements. The sensitivity of the model to meteorological forcing indicates a strong sensitivity to wind speed, higher than the sensitivity to ice albedo. Compared to an empirical approach, the model exhibited better performance for simulations of snow and firn melting in the accumulation area and similar performance in the ablation area when forced with meteorological data adjusted with nearby AWS measurements. When such measurements were not available close to the glacier, the empirical model performed better. Our results suggest that simulations of the evolution of future mass balance using an energy balance model require very accurate meteorological data. Given the uncertainties in the temporal evolution of the relevant meteorological variables and glacier surface properties in the future, empirical approaches based on temperature and precipitation could be more appropriate for simulations of glaciers in the future.

  14. Modelling the angular effects on satellite retrieved LST at global scale using a land surface classification

    NASA Astrophysics Data System (ADS)

    Ermida, Sofia; DaCamara, Carlos C.; Trigo, Isabel F.; Pires, Ana C.; Ghent, Darren

    2017-04-01

    Land Surface Temperature (LST) is a key climatological variable and a diagnostic parameter of land surface conditions. Remote sensing constitutes the most effective method to observe LST over large areas and on a regular basis. Although LST estimation from remote sensing instruments operating in the Infrared (IR) is widely used and has been performed for nearly 3 decades, there is still a list of open issues. One of these is the LST dependence on viewing and illumination geometry. This effect introduces significant discrepancies among LST estimations from different sensors, overlapping in space and time, that are not related to uncertainties in the methodologies or input data used. Furthermore, these directional effects deviate LST products from an ideally defined LST, which should represent to the ensemble of directional radiometric temperature of all surface elements within the FOV. Angular effects on LST are here conveniently estimated by means of a kernel model of the surface thermal emission, which describes the angular dependence of LST as a function of viewing and illumination geometry. The model is calibrated using LST data as provided by a wide range of sensors to optimize spatial coverage, namely: 1) a LEO sensor - the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board NASA's TERRA and AQUA; and 2) 3 GEO sensors - the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board EUMETSAT's Meteosat Second Generation (MSG), the Japanese Meteorological Imager (JAMI) on-board the Japanese Meteorological Association (JMA) Multifunction Transport SATellite (MTSAT-2), and NASA's Geostationary Operational Environmental Satellites (GOES). As shown in our previous feasibility studies the sampling of illumination and view angles has a high impact on the obtained model parameters. This impact may be mitigated when the sampling size is increased by aggregating pixels with similar surface conditions. Here we propose a methodology where land surface is stratified by means of a cluster analysis using information on land cover type, fraction of vegetation cover and topography. The kernel model is then adjusted to LST data corresponding to each cluster. It is shown that the quality of the cluster based kernel model is very close to the pixel based one. Furthermore, the reduced number of parameters (limited to the number of identified clusters, instead of a pixel-by-pixel model calibration) allows improving the kernel model trough the incorporation of a seasonal component. The application of the here discussed procedure towards the harmonization of LST products from multi-sensors is on the framework of the ESA DUE GlobTemperature project.

  15. A Bayesian Framework for Coupled Estimation of Key Unknown Parameters of Land Water and Energy Balance Equations

    NASA Astrophysics Data System (ADS)

    Farhadi, L.; Abdolghafoorian, A.

    2015-12-01

    The land surface is a key component of climate system. It controls the partitioning of available energy at the surface between sensible and latent heat, and partitioning of available water between evaporation and runoff. Water and energy cycle are intrinsically coupled through evaporation, which represents a heat exchange as latent heat flux. Accurate estimation of fluxes of heat and moisture are of significant importance in many fields such as hydrology, climatology and meteorology. In this study we develop and apply a Bayesian framework for estimating the key unknown parameters of terrestrial water and energy balance equations (i.e. moisture and heat diffusion) and their uncertainty in land surface models. These equations are coupled through flux of evaporation. The estimation system is based on the adjoint method for solving a least-squares optimization problem. The cost function consists of aggregated errors on state (i.e. moisture and temperature) with respect to observation and parameters estimation with respect to prior values over the entire assimilation period. This cost function is minimized with respect to parameters to identify models of sensible heat, latent heat/evaporation and drainage and runoff. Inverse of Hessian of the cost function is an approximation of the posterior uncertainty of parameter estimates. Uncertainty of estimated fluxes is estimated by propagating the uncertainty for linear and nonlinear function of key parameters through the method of First Order Second Moment (FOSM). Uncertainty analysis is used in this method to guide the formulation of a well-posed estimation problem. Accuracy of the method is assessed at point scale using surface energy and water fluxes generated by the Simultaneous Heat and Water (SHAW) model at the selected AmeriFlux stations. This method can be applied to diverse climates and land surface conditions with different spatial scales, using remotely sensed measurements of surface moisture and temperature states

  16. A statistical investigation into the relationship between meteorological parameters and suicide

    NASA Astrophysics Data System (ADS)

    Dixon, Keith W.; Shulman, Mark D.

    1983-06-01

    Many previous studies of relationships between weather and suicides have been inconclusive and contradictory. This study investigated the relationship between suicide frequency and meteorological conditions in people who are psychologically predisposed to commit suicide. Linear regressions of diurnal temperature change, departure of temperature from the climatic norm, mean daytime sky cover, and the number of hours of precipitation for each day were performed on daily suicide totals using standard computer methods. Statistical analyses of suicide data for days with and without frontal passages were also performed. Days with five or more suicides (clusterdays) were isolated, and their weather parameters compared with those of nonclusterdays. Results show that neither suicide totals nor clusterday occurrence can be predicted using these meteorological parameters, since statistically significant relationships were not found. Although the data hinted that frontal passages and large daily temperature changes may occur on days with above average suicide totals, it was concluded that the influence of the weather parameters used, on the suicide rate, is a minor one, if indeed one exists.

  17. A preliminary assessment of the Titan planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Allison, Michael

    1992-01-01

    Results of a preliminary assessment of the characteristic features of the Titan planetary boundary are addressed. These were derived from the combined application of a patched Ekman surface layer model and Rossby number similarity theory. Both these models together with Obukhov scaling, surface speed limits and saltation are discussed. A characteristic Akman depth of approximately 0.7 km is anticipated, with an eddy viscosity approximately equal to 1000 sq cm/s, an associated friction velocity approximately 0.01 m/s, and a surface wind typically smaller than 0.6 m/s. Actual values of these parameters probably vary by as much as a factor of two or three, in response to local temporal variations in surface roughness and stability. The saltation threshold for the windblown injection of approximately 50 micrometer particulates into the atmosphere is less than twice the nominal friction velocity, suggesting that dusty breezes might be an occassional feature of the Titan meteorology.

  18. Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice C.

    2010-01-01

    This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.

  19. Development of a fire weather index using meteorological observations within the Northeast United States

    Treesearch

    Michael J. Erickson; Joseph J. Charney; Brian A. Colle

    2016-01-01

    A fire weather index (FWI) is developed using wildfire occurrence data and Automated Surface Observing System weather observations within a subregion of the northeastern United States (NEUS) from 1999 to 2008. Average values of several meteorological variables, including near-surface temperature, relative humidity, dewpoint, wind speed, and cumulative daily...

  20. Atmospheric environment for Space Shuttle (STS-41D) launch

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Hill, C. K.; Jasper, G.; Batts, G. W.

    1984-01-01

    Selected atmospheric conditions observed near Space Shuttle STS-41D launch time on August 30, 1984, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given as well as wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area. Final atmospheric tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-41D vehicle ascent and SRB descent/impact were constructed. The STS-41D ascent meteorological data tape was constructed by Marshall Space Flight Center's Atmospheric Science Division to provide an internally consistent data set for use in post flight performance assessments.

  1. On the predictability of land surface fluxes from meteorological variables

    NASA Astrophysics Data System (ADS)

    Haughton, Ned; Abramowitz, Gab; Pitman, Andy J.

    2018-01-01

    Previous research has shown that land surface models (LSMs) are performing poorly when compared with relatively simple empirical models over a wide range of metrics and environments. Atmospheric driving data appear to provide information about land surface fluxes that LSMs are not fully utilising. Here, we further quantify the information available in the meteorological forcing data that are used by LSMs for predicting land surface fluxes, by interrogating FLUXNET data, and extending the benchmarking methodology used in previous experiments. We show that substantial performance improvement is possible for empirical models using meteorological data alone, with no explicit vegetation or soil properties, thus setting lower bounds on a priori expectations on LSM performance. The process also identifies key meteorological variables that provide predictive power. We provide an ensemble of empirical benchmarks that are simple to reproduce and provide a range of behaviours and predictive performance, acting as a baseline benchmark set for future studies. We reanalyse previously published LSM simulations and show that there is more diversity between LSMs than previously indicated, although it remains unclear why LSMs are broadly performing so much worse than simple empirical models.

  2. Long-term weather predictability: Ural case study

    NASA Astrophysics Data System (ADS)

    Kubyshen, Alexander; Shopin, Sergey

    2016-04-01

    The accuracy of the state-of-the-art long-term meteorological forecast (at the seasonal level) is still low. Here it is presented approach (RAMES method) realizing different forecasting methodology. It provides prediction horizon of up to 19-22 years under equal probabilities of determination of parameters in every analyzed period [1]. Basic statements of the method are the following. 1. Long-term forecast on the basis of numerical modeling of the global meteorological process is principally impossible. Extension of long-term prediction horizon could be obtained only by the revealing and using a periodicity of meteorological situations at one point of observation. 2. Conventional calendar is unsuitable for generalization of meteorological data and revealing of cyclicity of meteorological processes. RAMES method uses natural time intervals: one day, synodic month and one year. It was developed a set of special calendars using these natural periods and the Metonic cycle. 3. Long-term time series of meteorological data is not a uniform universal set, it is a sequence of 28 universal sets appropriately superseding each other in time. The specifics of the method are: 1. Usage of the original research toolkit consisting of - a set of calendars based on the Metonic cycle; - a set of charts (coordinate systems) for the construction of sequence diagrams (of daily variability of a meteorological parameter during the analyzed year; of daily variability of a meteorological parameter using long-term dynamical time series of periods-analogues; of monthly and yearly variability of accumulated value of meteorological parameter). 2. Identification and usage of new virtual meteorological objects having several degrees of generalization appropriately located in the used coordinate systems. 3. All calculations are integrated into the single technological scheme providing comparison and mutual verification of calculation results. During the prolonged testing in the Ural region, it was proved the efficiency of the method for forecasting the following meteorological parameters: ­- air temperature (minimum, maximum, daily mean, diurnal variation, last spring and first autumn freeze); - periods of winds with speeds of >5m/s and the maximal expected wind speed; - precipitation periods and amount of precipitations; -­ relative humidity; - atmospheric pressure. Atmospheric events (thunderstorms, fog) and hydrometeors also occupy the appropriate positions at the sequence diagrams that provides a possibility of long-term forecasting also for these events. Accuracy of forecasts was tested in 2006-2009 years. The difference between the forecasted monthly mean temperature and actual values was <0.5°C in 40.9% of cases, between 0.5°C and 1°C in 18.2% of cases, between 1°C and 1.5°C in 18.2% of cases, <2°C in 86% of cases. The RAMES method provides the toolkit to successfully forecast the weather conditions in advance of several years. 1. A.F. Kubyshen, "RAMES method: revealing the periodicity of meteorological processes and it usage for long-term forecast [Metodika «RAMES»: vyjavlenie periodichnosti meteorologicheskih processov i ee ispol'zovanie dlja dolgosrochnogo prognozirovanija]", in A.E. Fedorov (ed.), Sistema «Planeta Zemlja»: 200 let so dnja rozhdenija Izmaila Ivanovicha Sreznevskogo. 100 let so dnja izdanija ego slovarja drevnerusskogo jazyka. LENAND. Moscow. pp. 305-311. (In Russian)

  3. The Interplay Between Transpiration and Runoff Formulations in Land Surface Schemes Used with Atmospheric Models

    NASA Technical Reports Server (NTRS)

    Koster, Rindal D.; Milly, P. C. D.

    1997-01-01

    The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) has shown that different land surface models (LSMS) driven by the same meteorological forcing can produce markedly different surface energy and water budgets, even when certain critical aspects of the LSMs (vegetation cover, albedo, turbulent drag coefficient, and snow cover) are carefully controlled. To help explain these differences, the authors devised a monthly water balance model that successfully reproduces the annual and seasonal water balances of the different PILPS schemes. Analysis of this model leads to the identification of two quantities that characterize an LSM's formulation of soil water balance dynamics: (1) the efficiency of the soil's evaporation sink integrated over the active soil moisture range, and (2) the fraction of this range over which runoff is generated. Regardless of the LSM's complexity, the combination of these two derived parameters with rates of interception loss, potential evaporation, and precipitation provides a reasonable estimate for the LSM's simulated annual water balance. The two derived parameters shed light on how evaporation and runoff formulations interact in an LSM, and the analysis as a whole underscores the need for compatibility in these formulations.

  4. A Dynamic Enhancement With Background Reduction Algorithm: Overview and Application to Satellite-Based Dust Storm Detection

    NASA Astrophysics Data System (ADS)

    Miller, Steven D.; Bankert, Richard L.; Solbrig, Jeremy E.; Forsythe, John M.; Noh, Yoo-Jeong; Grasso, Lewis D.

    2017-12-01

    This paper describes a Dynamic Enhancement Background Reduction Algorithm (DEBRA) applicable to multispectral satellite imaging radiometers. DEBRA uses ancillary information about the clear-sky background to reduce false detections of atmospheric parameters in complex scenes. Applied here to the detection of lofted dust, DEBRA enlists a surface emissivity database coupled with a climatological database of surface temperature to approximate the clear-sky equivalent signal for selected infrared-based multispectral dust detection tests. This background allows for suppression of false alarms caused by land surface features while retaining some ability to detect dust above those problematic surfaces. The algorithm is applicable to both day and nighttime observations and enables weighted combinations of dust detection tests. The results are provided quantitatively, as a detection confidence factor [0, 1], but are also readily visualized as enhanced imagery. Utilizing the DEBRA confidence factor as a scaling factor in false color red/green/blue imagery enables depiction of the targeted parameter in the context of the local meteorology and topography. In this way, the method holds utility to both automated clients and human analysts alike. Examples of DEBRA performance from notable dust storms and comparisons against other detection methods and independent observations are presented.

  5. The interplay between transpiration and Runoff formulations in land surface schemes used with atmospheric models

    USGS Publications Warehouse

    Koster, R.D.; Milly, P.C.D.

    1997-01-01

    The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) has shown that different land surface models (LSMs) driven by the same meteorological forcing can produce markedly different surface energy and water budgets, even when certain critical aspects of the LSMs (vegetation cover, albedo, turbulent drag coefficient, and snowcover) are carefully controlled. To help explain these differences, the authors devised a monthly water balance model that successfully reproduces the annual and seasonal water balances of the different PILPS schemes. Analysis of this model leads to the identification of two quantities that characterize an LSM's formulation of soil water balance dynamics: 1) the efficiency of the soil's evaporation sink integrated over the active soil moisture range, and 2) the fraction of this range over which runoff is generated. Regardless of the LSM's complexity, the combination of these two derived parameters with rates of interception loss, potential evaporation, and precipitation provides a reasonable estimate for the LSM's simulated annual water balance. The two derived parameters shed light on how evaporation and runoff formulations interact in an LSM, and the analysis as a whole underscores the need for compatibility in these formulations.

  6. Spatial and temporal variability of reference evapotranspiration and influenced meteorological factors in the Jialing River Basin, China

    NASA Astrophysics Data System (ADS)

    Herath, Imali Kaushalya; Ye, Xuchun; Wang, Jianli; Bouraima, Abdel-Kabirou

    2018-02-01

    Reference evapotranspiration (ETr) is one of the important parameters in the hydrological cycle. The spatio-temporal variation of ETr and other meteorological parameters that influence ETr were investigated in the Jialing River Basin (JRB), China. The ETr was estimated using the CROPWAT 8.0 computer model based on the Penman-Montieth equation for the period 1964-2014. Mean temperature (MT), relative humidity (RH), sunshine duration (SD), and wind speed (WS) were the main input parameters of CROPWAT while 12 meteorological stations were evaluated. Linear regression and Mann-Kendall methods were applied to study the spatio-temporal trends while the inverse distance weighted (IDW) method was used to identify the spatial distribution of ETr. Stepwise regression and partial correlation methods were used to identify the meteorological variables that most significantly influenced the changes in ETr. The highest annual ETr was found in the northern part of the basin, whereas the lowest rate was recorded in the western part. In the autumn, the highest ETr was recorded in the southeast part of JRB. The annual ETr reflected neither significant increasing nor decreasing trends. Except for the summer, ETr is slightly increasing in other seasons. The MT significantly increased whereas SD and RH were significantly decreased during the 50-year period. Partial correlation and stepwise regression methods found that the impact of meteorological parameters on ETr varies on an annual and seasonal basis while SD, MT, and RH contributed to the changes of annual and seasonal ETr in the JRB.

  7. Modeling actual evapotranspiration with routine meteorological variables in the data-scarce region of the Tibetan Plateau: Comparisons and implications

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Zhang, Yinsheng; Xu, Chong-Yu; Szilagyi, Jozsef

    2015-08-01

    Quantitative estimation of actual evapotranspiration (ETa) by in situ measurements and mathematical modeling is a fundamental task for physical understanding of ETa as well as the feedback mechanisms between land and the ambient atmosphere. However, the ETa information in the Tibetan Plateau (TP) has been greatly impeded by the extremely sparse ground observation network in the region. Approaches for estimating ETa solely from routine meteorological variables are therefore important for investigating spatiotemporal variations of ETa in the data-scarce region of the TP. Motivated by this need, the complementary relationship (CR) and Penman-Monteith approaches were evaluated against in situ measurements of ETa on a daily basis in an alpine steppe region of the TP. The former includes the Nonlinear Complementary Relationship (Nonlinear-CR) as well as the Complementary Relationship Areal Evapotranspiration (CRAE) models, while the latter involves the Katerji-Perrier and the Todorovic models. Results indicate that the Nonlinear-CR, CRAE, and Katerji-Perrier models are all capable of efficiently simulating daily ETa, provided their parameter values were appropriately calibrated. The Katerji-Perrier model performed best since its site-specific parameters take the soil water status into account. The Nonlinear-CR model also performed well with the advantage of not requiring the user to choose between a symmetric and asymmetric CR. The CRAE model, even with a relatively low Nash-Sutcliffe efficiency (NSE) value, is also an acceptable approach in this data-scarce region as it does not need information of wind speed and ground surface conditions. In contrast, application of the Todorovic model was found to be inappropriate in the dry regions of the TP due to its significant overestimation of ETa as it neglects the effect of water stress on the bulk surface resistance. Sensitivity analysis of the parameter values demonstrated the relative importance of each parameter in the corresponding model. Overall, the Nonlinear-CR model is recommended in the absence of measured ETa for local calibration of the model parameter values.

  8. A protocol for a systematic literature review: comparing the impact of seasonal and meteorological parameters on acute respiratory infections in Indigenous and non-Indigenous peoples.

    PubMed

    Bishop-Williams, Katherine E; Sargeant, Jan M; Berrang-Ford, Lea; Edge, Victoria L; Cunsolo, Ashlee; Harper, Sherilee L

    2017-01-26

    Acute respiratory infections (ARI) are a leading cause of morbidity and mortality globally, and are often linked to seasonal and/or meteorological conditions. Globally, Indigenous peoples may experience a different burden of ARI compared to non-Indigenous peoples. This protocol outlines our process for conducting a systematic review to investigate whether associations between ARI and seasonal or meteorological parameters differ between Indigenous and non-Indigenous groups residing in the same geographical region. A search string will be used to search PubMed ® , CAB Abstracts/CAB Direct © , and Science Citation Index ® aggregator databases. Articles will be screened using inclusion/exclusion criteria applied first at the title and abstract level, and then at the full article level by two independent reviewers. Articles maintained after full article screening will undergo risk of bias assessment and data will be extracted. Heterogeneity tests, meta-analysis, and forest and funnel plots will be used to synthesize the results of eligible studies. This protocol paper describes our systematic review methods to identify and analyze relevant ARI, season, and meteorological literature with robust reporting. The results are intended to improve our understanding of potential associations between seasonal and meteorological parameters and ARI and, if identified, whether this association varies by place, population, or other characteristics. The protocol is registered in the PROSPERO database (#38051).

  9. The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment.

    PubMed

    Schofield, J T; Barnes, J R; Crisp, D; Haberle, R M; Larsen, S; Magalhães, J A; Murphy, J R; Seiff, A; Wilson, G

    1997-12-05

    The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment measured the vertical density, pressure, and temperature structure of the martian atmosphere from the surface to 160 km, and monitored surface meteorology and climate for 83 sols (1 sol = 1 martian day = 24.7 hours). The atmospheric structure and the weather record are similar to those observed by the Viking 1 lander (VL-1) at the same latitude, altitude, and season 21 years ago, but there are differences related to diurnal effects and the surface properties of the landing site. These include a cold nighttime upper atmosphere; atmospheric temperatures that are 10 to 12 degrees kelvin warmer near the surface; light slope-controlled winds; and dust devils, identified by their pressure, wind, and temperature signatures. The results are consistent with the warm, moderately dusty atmosphere seen by VL-1.

  10. Superduck Marine Meteorological Experiment Data Summary: Mean Values and Turbulence Parameters.

    DTIC Science & Technology

    1988-08-01

    number) This report summarizes the Mean values and turbulence parameters Of Meteorological measurements made during an experiment at Duck, NC, during...Sept-Oct 1986. The measure- ments wore made to Calculate wind stress in the nearshore area. Wind stress is a primary forcing function for nearshore waves...measure. Only in recent years has technology made it possible to accurately measure its fluctuations. The krypton hygrometer is a recent development

  11. Air Pollutant Distribution and Mesoscale Circulation Systems During Escompte

    NASA Astrophysics Data System (ADS)

    Kottmeier, Ch.; Kalthoff, N.; Corsmeier, U.; Robin, D.; Thürauf, J.; Hofherr, T.; Hasel, M.

    The distribution of pollutants observed with an Dornier 128 instrumented aircraft and from AIRMARAIX ground stations during one day of the Escompte experiment (June 25, 2001) is analysed in relation to the mesoscale wind systems and vertical mixing from aircraft and radiosonde data. The ESCOMPTE-experiment (http://medias.obs- mip.fr/escompte) was carried out in June and July 2001 in the urban area of Marseille and its rural surroundings to investigate periods with photosmog conditions. The over- all aim is to produce an appropriate high quality 3-D data set which includes emission, meteorological, and chemical data. The data is used for the validation of mesoscale models and for chemical and meteorological process studies. The evolution of pho- tosmog episodes with high ozone concentrations depends on both chemical transfor- mation processes and meteorological conditions. As Marseille is situated between the Mediterranean Sea in the south and mountainous sites in the north, under weak large- scale flow the meteorological conditions are dominated by thermally driven circula- tion systems which strongly influence the horizontal transport of air pollutants. Ad- ditionally, vertically exchange processes like mountain venting and slope winds may contribute in the temporal evolution of the trace gas concentration of the city plume in the atmospheric boundary layer and are particularly studied by the Dornier flight measurements. Therefore the experiment was designed to measure both, the chemi- cal species and meteorological parameters with high resolution in space and time by surface stations, aircraft and vertical profiling systems like radiosondes, sodars and lidars. Results are shown (a) on the evolution of the wind field and the ozone concen- trations during June 25, when an ozone maximum develops about 60 km in the lee site of Marseille and (b) the vertical transport of air pollutants between the boundary layer and the free troposphere.

  12. PLAM - a meteorological pollution index for air quality and its applications in fog-haze forecasts in north China

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Wang, J.; Gong, S.; Zhang, X.; Wang, H.; Wang, Y.; Wang, J.; Li, D.; Guo, J.

    2015-03-01

    Using surface meteorological observation and high resolution emission data, this paper discusses the application of PLAM/h Index (Parameter Linking Air-quality to Meteorological conditions/haze) in the prediction of large-scale low visibility and fog-haze events. Based on the two-dimensional probability density function diagnosis model for emissions, the study extends the diagnosis and prediction of the meteorological pollution index PLAM to the regional visibility fog-haze intensity. The results show that combining the influence of regular meteorological conditions and emission factors together in the PLAM/h parameterization scheme is very effective in improving the diagnostic identification ability of the fog-haze weather in North China. The correlation coefficients for four seasons (spring, summer, autumn and winter) between PLAM/h and visibility observation are 0.76, 0.80, 0.96 and 0.86 respectively and all their significance levels exceed 0.001, showing the ability of PLAM/h to predict the seasonal changes and differences of fog-haze weather in the North China region. The high-value correlation zones are respectively located in Jing-Jin-Ji (Beijing, Tianjin, Hebei), Bohai Bay rim and the southern Hebei-northern Henan, indicating that the PLAM/h index has relations with the distribution of frequent heavy fog-haze weather in North China and the distribution of emission high-value zone. Comparatively analyzing the heavy fog-haze events and large-scale fine weather processes in winter and summer, it is found that PLAM/h index 24 h forecast is highly correlated to the visibility observation. Therefore, PLAM/h index has better capability of doing identification, analysis and forecasting.

  13. PLAM - a meteorological pollution index for air quality and its applications in fog-haze forecasts in North China

    NASA Astrophysics Data System (ADS)

    Yang, Y. Q.; Wang, J. Z.; Gong, S. L.; Zhang, X. Y.; Wang, H.; Wang, Y. Q.; Wang, J.; Li, D.; Guo, J. P.

    2016-02-01

    Using surface meteorological observation and high-resolution emission data, this paper discusses the application of the PLAM/h index (Parameter Linking Air-quality to Meteorological conditions/haze) in the prediction of large-scale low visibility and fog-haze events. Based on the two-dimensional probability density function diagnosis model for emissions, the study extends the diagnosis and prediction of the meteorological pollution index PLAM to the regional visibility fog-haze intensity. The results show that combining the influence of regular meteorological conditions and emission factors together in the PLAM/h parameterization scheme is very effective in improving the diagnostic identification ability of the fog-haze weather in North China. The determination coefficients for four seasons (spring, summer, autumn, and winter) between PLAM/h and visibility observation are 0.76, 0.80, 0.96, and 0.86, respectively, and all of their significance levels exceed 0.001, showing the ability of PLAM/h to predict the seasonal changes and differences of fog-haze weather in the North China region. The high-value correlation zones are located in Jing-Jin-Ji (Beijing, Tianjin, Hebei), Bohai Bay rim, and southern Hebei-northern Henan, indicating that the PLAM/h index is related to the distribution of frequent heavy fog-haze weather in North China and the distribution of emission high-value zone. Through comparative analysis of the heavy fog-haze events and large-scale clear-weather processes in winter and summer, it is found that PLAM/h index 24 h forecast is highly correlated with the visibility observation. Therefore, the PLAM/h index has good capability in identification, analysis, and forecasting.

  14. Pollen Concentration in the Atmosphere of Abha City, Saudi Arabia and its Relationship with Meteorological Parameters

    NASA Astrophysics Data System (ADS)

    Alwadie, Hussein M.

    A qualitative and quantitative evaluation of pollen concentration in the atmosphere of Abha city, Saudi Arabia with the relation to meteorological parameters is presented. Investigations were undertaken from January to December 2006 using a Burkard 7 day volumetric spore trap. A total of 6,492 pollen grains m-3 belonging to 50 pollen taxa was detected. Poaceae represented 55.1% of total pollen, Leguminosae (11.7%), Compositae (6.1%), Solanaceae (4.6%) and Cupressaceae (4.2%). Pollen grains were found throughout the year. July represented the highest peak of pollen number and also the highest pollen taxa. The monthly variation of pollen taxa and their relationship to meteorological parameters were investigated. It was found that the pollen concentration is positively correlated with temperature and negatively correlated with rainfall, relative humidity and wind velocity. May-September represented the months of highest pollen number (95% of total pollen).

  15. Development of an analysis tool for cloud base height and visibility

    NASA Astrophysics Data System (ADS)

    Umdasch, Sarah; Reinhold, Steinacker; Manfred, Dorninger; Markus, Kerschbaum; Wolfgang, Pöttschacher

    2014-05-01

    The meteorological variables cloud base height (CBH) and horizontal atmospheric visibility (VIS) at surface level are of vital importance for safety and effectiveness in aviation. Around 20% of all civil aviation accidents in the USA from 2003 to 2007 were due to weather related causes, around 18% of which were owing to decreased visibility or ceiling (main CBH). The aim of this study is to develop a system generating quality-controlled gridded analyses of the two parameters based on the integration of various kinds of observational data. Upon completion, the tool is planned to provide guidance for nowcasting during take-off and landing as well as for flights operated under visual flight rules. Primary input data consists of manual as well as instrumental observation of CBH and VIS. In Austria, restructuring of part of the standard meteorological stations from human observation to automatic measurement of VIS and CBH is currently in progress. As ancillary data, satellite derived products can add 2-dimensional information, e.g. Cloud Type by NWC SAF (Nowcasting Satellite Application Facilities) MSG (Meteosat Second Generation). Other useful available data are meteorological surface measurements (in particular of temperature, humidity, wind and precipitation), radiosonde, radar and high resolution topography data. A one-year data set is used to study the spatial and weather-dependent representativeness of the CBH and VIS measurements. The VERA (Vienna Enhanced Resolution Analysis) system of the Institute of Meteorology and Geophysics of the University of Vienna provides the framework for the analysis development. Its integrated "Fingerprint" technique allows the insertion of empirical prior knowledge and ancillary information in the form of spatial patterns. Prior to the analysis, a quality control of input data is performed. For CBH and VIS, quality control can consist of internal consistency checks between different data sources. The possibility of two-dimensional consistency checks has to be explored. First results in the development of quality control features and fingerprints will be shown.

  16. Development of a comprehensive air quality modeling framework for a coastal urban airshed in south Texas

    NASA Astrophysics Data System (ADS)

    Farooqui, Mohmmed Zuber

    Tropospheric ozone is one of the major air pollution problems affecting urban areas of United States as well as other countries in the world. Analysis of surface observed ozone levels in south and central Texas revealed several days exceeding 8-hour average ozone National Ambient of Air Quality Standards (NAAQS) over the past decade. Two major high ozone episodes were identified during September of 1999 and 2002. A photochemical modeling framework for the high ozone episodes in 1999 and 2002 were developed for the Corpus Christi urban airshed. The photochemical model was evaluated as per U.S. Environmental Protection Agency (EPA) recommended statistical methods and the models performed within the limits set by EPA. An emission impact assessment of various sources within the urban airshed was conducted using the modeling framework. It was noted that by nudging MM5 with surface observed meteorological parameters and sea-surface temperature, the coastal meteorological predictions improved. Consequently, refined meteorology helped the photochemical model to better predict peak ozone levels in urban airsheds along the coastal margins of Texas including in Corpus Christi. The emissions assessment analysis revealed that Austin and San Antonio areas were significantly affected by on-road mobile emissions from light-duty gasoline and heavy-duty diesel vehicles. The urban areas of San Antonio, Austin, and Victoria areas were estimated to be NOx sensitive. Victoria was heavily influenced by point sources in the region while Corpus Christi was influenced by both point and non-road mobile sources and was identified to be sensitive to VOC emissions. A rise in atmospheric temperature due to climate change potentially increase ozone exceedances and the peak ozone levels within the study region and this will be a major concern for air quality planners. This study noted that any future increase in ambient temperature would result in a significant increase in the urban and regional ozone levels within the modeling domain and it would also enhance the transported levels of ozone across the region. Overall, the photochemical modeling framework helped in evaluating the impact of various parameters affecting ozone air quality; and, it has the potential to be a tool for policy-makers to develop effective emissions control strategies under various regulatory and climate conditions.

  17. Meteorological influence on predicting surface SO2 concentration from satellite remote sensing in Shanghai, China.

    PubMed

    Xue, Dan; Yin, Jingyuan

    2014-05-01

    In this study, we explored the potential applications of the Ozone Monitoring Instrument (OMI) satellite sensor in air pollution research. The OMI planetary boundary layer sulfur dioxide (SO2_PBL) column density and daily average surface SO2 concentration of Shanghai from 2004 to 2012 were analyzed. After several consecutive years of increase, the surface SO2 concentration finally declined in 2007. It was higher in winter than in other seasons. The coefficient between daily average surface SO2 concentration and SO2_PBL was only 0.316. But SO2_PBL was found to be a highly significant predictor of the surface SO2 concentration using the simple regression model. Five meteorological factors were considered in this study, among them, temperature, dew point, relative humidity, and wind speed were negatively correlated with surface SO2 concentration, while pressure was positively correlated. Furthermore, it was found that dew point was a more effective predictor than temperature. When these meteorological factors were used in multiple regression, the determination coefficient reached 0.379. The relationship of the surface SO2 concentration and meteorological factors was seasonally dependent. In summer and autumn, the regression model performed better than in spring and winter. The surface SO2 concentration predicting method proposed in this study can be easily adapted for other regions, especially most useful for those having no operational air pollution forecasting services or having sparse ground monitoring networks.

  18. Quantifying energy and water fluxes in dry dune ecosystems of the Netherlands

    NASA Astrophysics Data System (ADS)

    Voortman, B. R.; Bartholomeus, R. P.; van der Zee, S. E. A. T. M.; Bierkens, M. F. P.; Witte, J. P. M.

    2015-04-01

    Coastal and inland dunes provide various ecosystem services that are related to groundwater, such as drinking water production and biodiversity. To manage groundwater in a sustainable manner, knowledge of actual evapotranspiration (ETa) for the various land covers in dunes is essential. Aiming at improving the parameterization of dune vegetation in hydro-meteorological models, this study explores the magnitude of energy and water fluxes in an inland dune ecosystem in the Netherlands. Hydro-meteorological measurements were used to parameterize the Penman-Monteith evapotranspiration model for four different surfaces: bare sand, moss, grass and heather. We found that the net longwave radiation (Rnl) was the largest energy flux for most surfaces during daytime. However, modelling this flux by a calibrated FAO-56 Rnl model for each surface and for hourly time steps was unsuccessful. Our Rnl model, with a novel sub-model using solar elevation angle and air temperature to describe the diurnal pattern in radiative surface temperature, improved Rnl simulations considerably. Model simulations of evaporation from moss surfaces showed that the modulating effect of mosses on the water balance is species dependent. We demonstrate that dense moss carpets (Campylopus introflexus) evaporate more (5%, +14 mm) than bare sand (total of 258 mm in 2013), while more open structured mosses (Hypnum cupressiforme) evaporate less (-30%, -76 mm) than bare sand. Additionally, we found that a drought event in the summer of 2013 showed a pronounced delayed signal on lysimeter measurements of ETa for the grass and heather surfaces respectively. Due to the desiccation of leaves after the drought event, and their feedback on the parameters of the Penman-Monteith equation, the potential evapotranspiration in the year 2013 dropped with 9% (-37mm) and 10% (-61 mm) for the grass and heather surfaces respectively, which subsequently led to lowered ETa of 8% (-29 mm) and 7% (-29 mm). These feedbacks are of importance to water resources, especially during a changing climate with increasing number of drought days. Therefore, such feedbacks need to be integrated into a coupled plant physiological and hydro-meteorological model to accurately simulate ETa. In addition, our study showed that groundwater recharge in dunes can be increased considerably by promoting moss vegetation, especially of open structured moss species.

  19. Shallow soil CO2 flow along the San Andreas and Calaveras Faults, California

    USGS Publications Warehouse

    Lewicki, J.L.; Evans, William C.; Hilley, G.E.; Sorey, M.L.; Rogie, J.D.; Brantley, S.L.

    2003-01-01

    We evaluate a comprehensive soil CO2 survey along the San Andreas fault (SAF) in Parkfield, and the Calaveras fault (CF) in Hollister, California, in the context of spatial and temporal variability, origin, and transport of CO2 in fractured terrain. CO2 efflux was measured within grids with portable instrumentation and continously with meteorological parameters at a fixed station, in both faulted and unfaulted areas. Spatial and temporal variability of surface CO2 effluxes was observed to be higher at faulted SAF and CF sites, relative to comparable background areas. However, ??13C (-23.3 to - 16.4???) and ??14C (75.5 to 94.4???) values of soil CO2 in both faulted and unfaulted areas are indicative of biogenic CO2, even though CO2 effluxes in faulted areas reached values as high as 428 g m-2 d-1. Profiles of soil CO2 concentration as a function of depth were measured at multiple sites within SAF and CF grids and repeatedly at two locations at the SAF grid. Many of these profiles suggest a surprisingly high component of advective CO2 flow. Spectral and correlation analysis of SAF CO2 efflux and meteorological parameter time series indicates that effects of wind speed variations on atmospheric air flow though fractures modulate surface efflux of biogenic CO2. The resulting areal patterns in CO2 effluxes could be erroneously attributed to a deep gas source in the absence of isotopic data, a problem that must be addressed in fault zone soil gas studies.

  20. Data Quality Assurance and Provenance Tracking in ICOADS Release 3.0

    NASA Astrophysics Data System (ADS)

    Cram, T.; Worley, S. J.; Ji, Z.; Schuster, D.

    2017-12-01

    The International Comprehensive Ocean-Atmosphere Data Set (ICOADS) Release 3.0 (R3.0) is the world's most extensive collection of global surface marine meteorological in situ observational data. Managed under an international partnership, it contains over 455 million unique multi-parameter records, dates back to 1662, and is updated monthly in near real-time. It is a foundational dataset for weather and climate research that has been used by thousands of users. By using rigorous data preparation methods, new IT infrastructure, and International Maritime Meteorological Archive (IMMA) format enhancements, ICOADS R3.0 is exemplary in data quality assurance, provenance tracking, and capturing user feedback. The features in this data lifecycle management will be presented and include, but are not limited to, written data translation specification for each data source being added to ICOADS, assignment of data source identification parameters, attachment of the original data in the IMMA format to support future re-evaluation if necessary, permanently assigned unique identification on every record making data development and community collaborations easily possible using a relational database infrastructure, and extensible capacity of the IMMA format to augment the data richness beyond the primary scope of marine surface data. Some recent augmentations are more completely specified ocean observations from profiling observing systems, feedback data submitted by the atmospheric and oceanographic reanalysis providers, higher quality edited cloud reports, and community provided data value adjustments with uncertainty estimates. Highlights covering these ICOADS value-added features will be explained and the open free access from NCAR will be briefly described.

  1. Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Moody, Eric G.; Schaaf, Crystal B.; Platnick, Steven

    2006-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. , Over five years of land surface anisotropy, diffuse bihemispherical (white-sky) albedo and direct beam directional hemispherical (black-sky) albedo from observations acquired by the MODIS instruments aboard NASA s Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface s radiative characteristics. However, roughly 30% of the global land surface, on an annual equal-angle basis, is obscured due to persistent and transient cloud cover, while another 207% is obscured due to ephemeral and seasonal snow effects. This precludes the MOD43B3 albedo products from being directly used in some remote sensing and ground-based applications, climate models, and global change research projects. To provide researchers with the requisite spatially complete global snow-free land surface albedo dataset, an ecosystem-dependent temporal interpolation technique was developed to fill missing or lower quality data and snow covered values from the official MOD43B3 dataset with geophysically realistic values. The method imposes pixel-level and local regional ecosystem-dependent phenological behavior onto retrieved pixel temporal data in such a way as to maintain pixel-level spatial and spectral detail and integrity. The phenological curves are derived from statistics based on the MODIS MOD12Q1 IGBP land cover classification product geolocated with the MOD43B3 data.

  2. The Invigoration of Deep Convective Clouds Over the Atlantic: Aerosol Effect, Meteorology or Retrieval Artifact?

    NASA Technical Reports Server (NTRS)

    Koren, Ilan; Feingold, Graham; Remer, Lorraine A.

    2010-01-01

    Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case that the aerosol does play a role in invigorating convective clouds.

  3. A Meteorological Supersite for Aviation and Cold Weather Applications

    NASA Astrophysics Data System (ADS)

    Gultepe, Ismail; Agelin-Chaab, M.; Komar, J.; Elfstrom, G.; Boudala, F.; Zhou, B.

    2018-05-01

    The goal of this study is to better understand atmospheric boundary layer processes and parameters, and to evaluate physical processes for aviation applications using data from a supersite observing site. Various meteorological sensors, including a weather and environmental unmanned aerial vehicle (WE-UAV), and a fog and snow tower (FSOS) observations are part of the project. The PanAm University of Ontario Institute of Technology (UOIT) Meteorological Supersite (PUMS) observations are being collected from April 2015 to date. The FSOS tower gathers observations related to rain, snow, fog, and visibility, aerosols, solar radiation, and wind and turbulence, as well as surface and sky temperature. The FSOSs are located at three locations at about 450-800 m away from the PUMS supersite. The WE-UAV measurements representing aerosol, wind speed and direction, as well as temperature (T) and relative humidity (RH) are provided during clear weather conditions. Other measurements at the PUMS site include cloud backscattering profiles from CL51 ceilometer, MWR observations of liquid water content (LWC), T, and RH, and Microwave Rain Radar (MRR) reflectivity profile, as well as the present weather type, snow water depth, icing rate, 3D-ultrasonic wind and turbulence, and conventional meteorological observations from compact weather stations, e.g., WXTs. The results based on important weather event studies, representing fog, snow, rain, blowing snow, wind gust, planetary boundary layer (PBL) wind research for UAV, and icing conditions are given. The microphysical parameterizations and analysis processes for each event are provided, but the results should not be generalized for all weather events and be used cautiously. Results suggested that integrated observing systems based on data from a supersite as well as satellite sites can provide better information applicable to aviation meteorology, including PBL weather research, validation of numerical weather model predictions, and remote-sensing retrievals. Overall, the results from the five cases are provided and challenges related to observations applicable to aviation meteorology are discussed.

  4. Different meteorological parameters influence metapneumovirus and respiratory syncytial virus activity.

    PubMed

    Darniot, Magali; Pitoiset, Cécile; Millière, Laurine; Aho-Glélé, Ludwig Serge; Florentin, Emmanuel; Bour, Jean-Baptiste; Manoha, Catherine

    2018-05-05

    Both human metapneumovirus (hMPV) and respiratory syncytial virus (RSV) cause epidemics during the cold season in temperate climates. The purpose of this study was to find out whether climatic factors are associated with RSV and hMPV epidemics. Our study was based on data from 4300 patients admitted to the Dijon University Hospital for acute respiratory infection (ARI) over three winter seasons chosen for their dissimilar meteorological and virological patterns. Cases of hMPV and RSV were correlated with meteorological parameters recorded in the Dijon area. The relationship between virus data and local meteorological conditions was analyzed by univariate and multivariate negative binomial regression analysis. RSV detection was inversely associated with temperature and positively with relative humidity and air pressure, whereas hMPV was inversely associated with temperature and positively with wind speed. The association among meteorological variables and weekly ARIs cases due to RSV and hMPV demonstrated the relevance of climate factors as contributors to both hMPV and RSV activities. Meteorological drivers of RSV and hMPV epidemics are different. Low temperatures influence both hMPV and RSV activity. Relative humidity is an important predictor of RSV activity, but it does not influence hMPV activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Sensitivity of potential evapotranspiration and simulated flow to varying meteorological inputs, Salt Creek watershed, DuPage County, Illinois

    USGS Publications Warehouse

    Whitbeck, David E.

    2006-01-01

    The Lamoreux Potential Evapotranspiration (LXPET) Program computes potential evapotranspiration (PET) using inputs from four different meteorological sources: temperature, dewpoint, wind speed, and solar radiation. PET and the same four meteorological inputs are used with precipitation data in the Hydrological Simulation Program-Fortran (HSPF) to simulate streamflow in the Salt Creek watershed, DuPage County, Illinois. Streamflows from HSPF are routed with the Full Equations (FEQ) model to determine water-surface elevations. Consequently, variations in meteorological inputs have potential to propagate through many calculations. Sensitivity of PET to variation was simulated by increasing the meteorological input values by 20, 40, and 60 percent and evaluating the change in the calculated PET. Increases in temperatures produced the greatest percent changes, followed by increases in solar radiation, dewpoint, and then wind speed. Additional sensitivity of PET was considered for shifts in input temperatures and dewpoints by absolute differences of ?10, ?20, and ?30 degrees Fahrenheit (degF). Again, changes in input temperatures produced the greatest differences in PET. Sensitivity of streamflow simulated by HSPF was evaluated for 20-percent increases in meteorological inputs. These simulations showed that increases in temperature produced the greatest change in flow. Finally, peak water-surface elevations for nine storm events were compared among unmodified meteorological inputs and inputs with values predicted 6, 24, and 48 hours preceding the simulated peak. Results of this study can be applied to determine how errors specific to a hydrologic system will affect computations of system streamflow and water-surface elevations.

  6. The 1981 current research on aviation weather (bibliography)

    NASA Technical Reports Server (NTRS)

    Daniel, J.; Frost, W.

    1982-01-01

    Current and ongoing research programs related to various areas of aviation meteorology are presented. Literature searches of major abstract publications, were conducted. Research project managers of various government agencies involved in aviation meteorology research provided a list of current research project titles and managers, supporting organizations, performing organizations, the principal investigators, and the objectives. These are tabulated under the headings of advanced meteorological instruments, forecasting, icing, lightning and atmospheric electricity; fog, visibility, and ceilings; low level wind shear, storm hazards/severe storms, turbulence, winds, and ozone and other meteorological parameters. This information was reviewed and assembled into a bibliography providing a current readily useable source of information in the area of aviation meteorology.

  7. Constraining the JULES land-surface model for different land-use types using citizen-science generated hydrological data

    NASA Astrophysics Data System (ADS)

    Chou, H. K.; Ochoa-Tocachi, B. F.; Buytaert, W.

    2017-12-01

    Community land surface models such as JULES are increasingly used for hydrological assessment because of their state-of-the-art representation of land-surface processes. However, a major weakness of JULES and other land surface models is the limited number of land surface parameterizations that is available. Therefore, this study explores the use of data from a network of catchments under homogeneous land-use to generate parameter "libraries" to extent the land surface parameterizations of JULES. The network (called iMHEA) is part of a grassroots initiative to characterise the hydrological response of different Andean ecosystems, and collects data on streamflow, precipitation, and several weather variables at a high temporal resolution. The tropical Andes are a useful case study because of the complexity of meteorological and geographical conditions combined with extremely heterogeneous land-use that result in a wide range of hydrological responses. We then calibrated JULES for each land-use represented in the iMHEA dataset. For the individual land-use types, the results show improved simulations of streamflow when using the calibrated parameters with respect to default values. In particular, the partitioning between surface and subsurface flows can be improved. But also, on a regional scale, hydrological modelling was greatly benefitted from constraining parameters using such distributed citizen-science generated streamflow data. This study demonstrates the modelling and prediction on regional hydrology by integrating citizen science and land surface model. In the context of hydrological study, the limitation of data scarcity could be solved indeed by using this framework. Improved predictions of such impacts could be leveraged by catchment managers to guide watershed interventions, to evaluate their effectiveness, and to minimize risks.

  8. Meteorological Observations Available for the State of Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wharton, S.

    The National Weather Service’s Meteorological Assimilation Data Ingest System (MADIS) contains a large number of station networks of surface and upper air meteorological observations for the state of Utah. In addition to MADIS, observations from individual station networks may also be available. It has been confirmed that LLNL has access to the data sources listed below.

  9. Complementary system for long term measurements of radon exhalation rate from soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazur, J.; Kozak, K., E-mail: Krzysztof.Kozak@ifj.edu.pl

    A special set-up for continuous measurements of radon exhalation rate from soil is presented. It was constructed at Laboratory of Radiometric Expertise, Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN), Krakow, Poland. Radon exhalation rate was determined using the AlphaGUARD PQ2000 PRO (Genitron) radon monitor together with a special accumulation container which was put on the soil surface during the measurement. A special automatic device was built and used to raise and lower back onto the ground the accumulation container. The time of raising and putting down the container was controlled by an electronic timer. This set-up mademore » it possible to perform 4–6 automatic measurements a day. Besides, some additional soil and meteorological parameters were continuously monitored. In this way, the diurnal and seasonal variability of radon exhalation rate from soil can be studied as well as its dependence on soil properties and meteorological conditions.« less

  10. Improvement of short-term numerical wind predictions

    NASA Astrophysics Data System (ADS)

    Bedard, Joel

    Geophysic Model Output Statistics (GMOS) are developed to optimize the use of NWP for complex sites. GMOS differs from other MOS that are widely used by meteorological centers in the following aspects: it takes into account the surrounding geophysical parameters such as surface roughness, terrain height, etc., along with wind direction; it can be directly applied without any training, although training will further improve the results. The GMOS was applied to improve the Environment Canada GEM-LAM 2.5km forecasts at North Cape (PEI, Canada): It improves the predictions RMSE by 25-30% for all time horizons and almost all meteorological conditions; the topographic signature of the forecast error due to insufficient grid refinement is eliminated and the NWP combined with GMOS outperform the persistence from a 2h horizon, instead of 4h without GMOS. Finally, GMOS was applied at another site (Bouctouche, NB, Canada): similar improvements were observed, thus showing its general applicability. Keywords: wind energy, wind power forecast, numerical weather prediction, complex sites, model output statistics

  11. PM source identification at Sunland Park, New Mexico, using a simple heuristic meteorological and chemical analysis.

    PubMed

    Li, Wen-Whai; Cardenas, Nidia; Walton, John; Trujillo, David; Morales, Hugo; Arimoto, Richard

    2005-03-01

    The causes for evening low-wind PM10 and PM2.5 peaks at Sunland Park, NM, were investigated by using wind sector analysis and by assessing relationships between PM loadings and meteorological parameters through canonical ordination analysis. Both PM10 and PM2.5 concentrations during the evening hours accounted for approximately 50% of their respective 24-hr averages, and the PM10 was mainly composed of coarse material (PM10-2.5 amounted to 77% of PM10). A wind sector analysis based on data from three surface meteorological monitoring stations in the region narrowed the potential source region for PM10 and PM2.5 to an area within a few kilometers south of Sunland Park. Canonical ordination analysis confirmed that the peak frequently occurred under stable conditions with weak southerly winds. Chemical analyses of PM showed that elemental and organic carbon (EC and OC, respectively) dominate PM2.5 and inorganic elements dominate PM10-2.5. The combined data for EC/OC, geologic elements, and various trace elements indicate that under low wind and stable conditions, traffic-related PM emissions (motor vehicle exhausts and re-suspended road dust) from the south of the site are the most likely sources for the evening PM10 and PM2.5 peaks.

  12. Analysis of a Meteorological Database for London Heathrow in the Context of Wake Vortex Hazards

    NASA Astrophysics Data System (ADS)

    Agnew, P.; Ogden, D. J.; Hoad, D. J.

    2003-04-01

    A database of meteorological parameters collected by aircraft arriving at LHR has recently been compiled. We have used the recorded variation of temperature and wind with height to deduce the 'wake vortex behaviour class' (WVBC) along the glide slope, as experienced by each flight. The integrated state of the glide slope has been investigated, allowing us to estimate the proportion of time for which the wake vortex threat is reduced, due to either rapid decay or transport off the glide slope. A numerical weather prediction model was used to forecast the meteorological parameters for periods coinciding with the aircraft data. This allowed us to perform a comparison of forecast WVBC with those deduced from the aircraft measurements.

  13. A FEDERATED PARTNERSHIP FOR URBAN METEOROLOGICAL AND AIR QUALITY MODELING

    EPA Science Inventory

    Recently, applications of urban meteorological and air quality models have been performed at resolutions on the order of km grid sizes. This necessitated development and incorporation of high resolution landcover data and additional boundary layer parameters that serve to descri...

  14. GEMPAK5. Part 2: GEMPLT programmer's guide, version 5.0

    NASA Technical Reports Server (NTRS)

    Desjardins, Mary L.; Brill, Keith F.; Schotz, Steven S.

    1991-01-01

    GEMPAK is a general meteorological software package used to analyze and display conventional meteorological data as well as satellite derived parameters. The GEMPAK Programmer's Guide describes the subroutines which can be used in the GEMPAK graphics and transformation subsystem, GEMPLT.

  15. Influence of long-range anthropogenic transport on arctic cloud phase transition

    NASA Astrophysics Data System (ADS)

    Riedi, J.; Coopman, Q.; Garrett, T. J.; Finch, D.

    2016-12-01

    A decrease in precipitation during winter allows polluted air parcels from mid-latitudes to reach the Arctic. Low vertical mixing in the region concentrates aerosols and decreases scavenging. Aerosol impacts on cloud microphysical parameters remain poorly understood. However, cloud properties and pollution concentrations also vary with meteorological state, which poses the challenge of how to disentangle the impact of aerosols on clouds from that of natural thermodynamic variability. In this study we combine measurements from satellite instruments POLDER-3 and MODIS to temporally and spatially co-locate cloud properties over 65º in latitude with carbon monoxide concentrations, passive tracer of aerosol content, from GEOS-Chem between 2005 and 2010. We also add ERA-I reanalysis of meteorological parameters to stratify meteorological parameters, such as specific humidity and lower tropospheric stability. The goal is to determine the extent to which differences in cloud phase can be attributed to differences in aerosol content and not in meteorological parameters.We evaluated the amount of supercooling ΔT50 that is required for 50% of a chosen ensemble of low-level clouds to be in the ice phase. Consistent with Rangno & Hobbs (2001), our results suggest that small droplet effective radii are related to high values of ΔT50. Also, anthropogenic pollution plumes lower the degree of supercooling by approximately 5°C, independent of the decrease in effective radius and change of meteorological regime. This effect of anthropogenic aerosol on the transition temperature to freezing has not been reported before to our knowledge and lacks clear explanation. Rangno, A. L., & Hobbs, P. V. (2001). Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice concentrations. Journal of geophysical research, 106, 15.

  16. Analysis of traffic and meteorology on airborne particulate matter in Münster, northwest Germany.

    PubMed

    Gietl, Johanna K; Klemm, Otto

    2009-07-01

    The importance of street traffic and meteorological conditions on the concentrations of particulate matter (PM) with an aerodynamic diameter smaller than 10 microm (PM10) was studied in the city of Münster in northwest Germany. The database consisted of meteorological data, data of PM10 mass concentrations and fine particle number (6-225 nm diameter) concentrations, and traffic intensity data as counted with tally hand counters at a four- to six-lane road. On working days, a significant correlation could be found between the diurnal mean PM10 mass concentration and vehicle number. The lower number of heavy-duty vehicles compared with passenger cars contributed more to the particle number concentration on working days than on weekend days. On weekends, when the vehicle number was very low, the correlation between PM10 mass concentration and vehicle number changed completely. Other sources of PM and the meteorology dominated the PM concentration. Independent of the weekday, by decreasing the traffic by approximately 99% during late-night hours, the PM10 concentration was reduced by 12% of the daily mean value. A correlation between PM10 and the particle number concentration was found for each weekday. In this study, meteorological parameters, including the atmospheric stability of the boundary layer, were also accounted for. The authors deployed artificial neural networks to achieve more information on the influence of various meteorological parameters, traffic, and the day of the week. A multilayer perceptron network showed the best results for predicting the PM10 concentration, with the correlation coefficient being 0.72. The influence of relative humidity, temperature, and wind was strong, whereas the influence of atmospheric stability and the traffic parameters was weak. Although traffic contributes a constant amount of particles in a daily and weekly cycle, it is the meteorology that drives most of the variability.

  17. Estimating urban ground-level PM10 using MODIS 3km AOD product and meteorological parameters from WRF model

    NASA Astrophysics Data System (ADS)

    Ghotbi, Saba; Sotoudeheian, Saeed; Arhami, Mohammad

    2016-09-01

    Satellite remote sensing products of AOD from MODIS along with appropriate meteorological parameters were used to develop statistical models and estimate ground-level PM10. Most of previous studies obtained meteorological data from synoptic weather stations, with rather sparse spatial distribution, and used it along with 10 km AOD product to develop statistical models, applicable for PM variations in regional scale (resolution of ≥10 km). In the current study, meteorological parameters were simulated with 3 km resolution using WRF model and used along with the rather new 3 km AOD product (launched in 2014). The resulting PM statistical models were assessed for a polluted and largely variable urban area, Tehran, Iran. Despite the critical particulate pollution problem, very few PM studies were conducted in this area. The issue of rather poor direct PM-AOD associations existed, due to different factors such as variations in particles optical properties, in addition to bright background issue for satellite data, as the studied area located in the semi-arid areas of Middle East. Statistical approach of linear mixed effect (LME) was used, and three types of statistical models including single variable LME model (using AOD as independent variable) and multiple variables LME model by using meteorological data from two sources, WRF model and synoptic stations, were examined. Meteorological simulations were performed using a multiscale approach and creating an appropriate physic for the studied region, and the results showed rather good agreements with recordings of the synoptic stations. The single variable LME model was able to explain about 61%-73% of daily PM10 variations, reflecting a rather acceptable performance. Statistical models performance improved through using multivariable LME and incorporating meteorological data as auxiliary variables, particularly by using fine resolution outputs from WRF (R2 = 0.73-0.81). In addition, rather fine resolution for PM estimates was mapped for the studied city, and resulting concentration maps were consistent with PM recordings at the existing stations.

  18. The 1991 International Aerospace and Ground Conference on Lightning and Static Electricity, volume 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings of the 1991 International Aerospace and Ground Conference on Lightning and Static Electricity are reported. Some of the topics covered include: lightning, lightning suppression, aerospace vehicles, aircraft safety, flight safety, aviation meteorology, thunderstorms, atmospheric electricity, warning systems, weather forecasting, electromagnetic coupling, electrical measurement, electrostatics, aircraft hazards, flight hazards, meteorological parameters, cloud (meteorology), ground effect, electric currents, lightning equipment, electric fields, measuring instruments, electrical grounding, and aircraft instruments.

  19. Toward Robust Climate Baselining: Objective Assessment of Climate Change Using Widely Distributed Miniaturized Sensors for Accurate World-Wide Geophysical Measurements

    DOE R&D Accomplishments Database

    Teller, E.; Leith, C.; Canavan, G.; Marion, J.; Wood, L.

    2001-11-13

    A gap-free, world-wide, ocean-, atmosphere-, and land surface-spanning geophysical data-set of three decades time-duration containing the full set of geophysical parameters characterizing global weather is the scientific perquisite for defining the climate; the generally-accepted definition in the meteorological community is that climate is the 30-year running-average of weather. Until such a tridecadal climate baseline exists, climate change discussions inevitably will have a semi-speculative, vs. a purely scientific, character, as the baseline against which changes are referenced will at least somewhat uncertain.

  20. GEMPAK5. Part 1: GEMPAK5 programmer's guide, version 5.0

    NASA Technical Reports Server (NTRS)

    Desjardins, Mary L.; Brill, Keith F.; Schotz, Steven S.

    1991-01-01

    GEMPAK is a general meteorological software package used to analyze and display conventional meteorological data as well as satellite derived parameters. The Programmer's Guide describes the subroutines which can be used to build new GEMPAK programs. Part 1 contains GEMPAK subroutines.

  1. Meteorological Processors and Accessory Programs

    EPA Pesticide Factsheets

    Surface and upper air data, provided by NWS, are important inputs for air quality models. Before these data are used in some of the EPA dispersion models, meteorological processors are used to manipulate the data.

  2. Possible rainfall reduction through reduced surface temperatures due to overgrazing

    NASA Technical Reports Server (NTRS)

    Otterman, J.

    1975-01-01

    Surface temperature reduction in terrain denuded of vegetation (as by overgrazing) is postulated to decrease air convection, reducing cloudiness and rainfall probability during weak meteorological disturbances. By reducing land-sea daytime temperature differences, the surface temperature reduction decreases daytime circulation of thermally driven local winds. The described desertification mechanism, even when limited to arid regions, high albedo soils, and weak meteorological disturbances, can be an effective rainfall reducing process in many areas including most of the Mediterranean lands.

  3. Design of extensible meteorological data acquisition system based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Liu, Yin-hua; Zhang, Hui-jun; Li, Xiao-hui

    2015-02-01

    In order to compensate the tropospheric refraction error generated in the process of satellite navigation and positioning. Temperature, humidity and air pressure had to be used in concerned models to calculate the value of this error. While FPGA XC6SLX16 was used as the core processor, the integrated silicon pressure sensor MPX4115A and digital temperature-humidity sensor SHT75 are used as the basic meteorological parameter detection devices. The core processer was used to control the real-time sampling of ADC AD7608 and to acquire the serial output data of SHT75. The data was stored in the BRAM of XC6SLX16 and used to generate standard meteorological parameters in NEMA format. The whole design was based on Altium hardware platform and ISE software platform. The system was described in the VHDL language and schematic diagram to realize the correct detection of temperature, humidity, air pressure. The 8-channel synchronous sampling characteristics of AD7608 and programmable external resources of FPGA laid the foundation for the increasing of analog or digital meteorological element signal. The designed meteorological data acquisition system featured low cost, high performance, multiple expansions.

  4. Study of key factors influencing dust emission: An assessment of GEOS-Chem and DEAD simulations with observations

    NASA Astrophysics Data System (ADS)

    Bartlett, Kevin S.

    Mineral dust aerosols can impact air quality, climate change, biological cycles, tropical cyclone development and flight operations due to reduced visibility. Dust emissions are primarily limited to the extensive arid regions of the world, yet can negatively impact local to global scales, and are extremely complex to model accurately. Within this dissertation, the Dust Entrainment And Deposition (DEAD) model was adapted to run, for the first known time, using high temporal (hourly) and spatial (0.3°x0.3°) resolution data to methodically interrogate the key parameters and factors influencing global dust emissions. The dependence of dust emissions on key parameters under various conditions has been quantified and it has been shown that dust emissions within DEAD are largely determined by wind speeds, vegetation extent, soil moisture and topographic depressions. Important findings were that grid degradation from 0.3ºx0.3º to 1ºx1º, 2ºx2.5º, and 4°x5° of key meteorological, soil, and surface input parameters greatly reduced emissions approximately 13% and 29% and 64% respectively, as a result of the loss of sub grid detail within these key parameters at coarse grids. After running high resolution DEAD emissions globally for 2 years, two severe dust emission cases were chosen for an in-depth investigation of the root causes of the events and evaluation of the 2°x2.5° Goddard Earth Observing System (GEOS)-Chem and 0.3°x0.3° DEAD model capabilities to simulate the events: one over South West Asia (SWA) in June 2008 and the other over the Middle East in July 2009. The 2 year lack of rain over SWA preceding June 2008 with a 43% decrease in mean rainfall, yielded less than normal plant growth, a 28% increase in Aerosol Optical Depth (AOD), and a 24% decrease in Meteorological Aerodrome Report (METAR) observed visibility (VSBY) compared to average years. GEOS-Chem captured the observed higher AOD over SWA in June 2008. More detailed comparisons of GEOS-Chem predicted AOD and visibility over SWA with those observed at surface stations and from satellites revealed overall success of the model, although substantial regional differences exist. Within the extended drought, the study area was zoomed into the Middle East (ME) for July 2009 where multi-grid DEAD dust emissions using hourly CFSR meteorological input were compared with observations. The high resolution input yielded the best spatial and temporal dust patterns compared with Defense Meteorological Satellite Program (DMSP), Moderate Resolution Imaging Spectroradiometer (MODIS) and METAR VSBY observations and definitively revealed Syria as a major dust source for the region. The coarse resolution dust emissions degraded or missed daily dust emissions entirely. This readily showed that the spatial scale degradation of the input data can significantly impair DEAD dust emissions and offers a strong argument for adapting higher resolution dust emission schemes into future global models for improvements of dust simulations.

  5. Monitoring Supraglacial Streams over Three Months in Southwest Greenland

    NASA Astrophysics Data System (ADS)

    Muthyala, R.; Rennermalm, A.; Leidman, S. Z.; Cooper, M. G.; Cooley, S. W.; Smith, L. C.; van As, D.

    2017-12-01

    Supraglacial river networks are the most efficient conduits for evacuation of meltwater runoff produced on Greenland ice sheet. These rivers are prominent features on the ablation zone of southwest Greenland. However, little is known about the transport of meltwater through supraglacial stream network and most of the in-situ observations only capture a few days of streamflow. Here we report three months of observations of water level and discharge collected during summer of 2016, in two small supraglacial streams near the ice sheet margin in southwest Greenland. We also compare streamflow observations with meteorological data from a nearby automatic weather station. The two sites are very different, with the lower basin relatively steep, smooth and dark while the upper basin has rugged terrain and deeply incised stream channels. These catchment characteristics propagate to different relationships with meteorological parameters. For example, upper basin stream water levels show a strong covariance with surface temperature while the lower basin water levels do not. We also find differences in temporal variation of supraglacial stream water level, with the upper basin having two distinct peaks, in mid-June and mid-July, while the lower basin shows gradual decrease from June to August. Long-term supraglacial stream observations such as these will ultimately help assess how well surface mass balance models can simulate ice sheet runoff.

  6. Sea-air boundary meteorological sensor

    NASA Astrophysics Data System (ADS)

    Barbosa, Jose G.

    2015-05-01

    The atmospheric environment can significantly affect radio frequency and optical propagation. In the RF spectrum refraction and ducting can degrade or enhance communications and radar coverage. Platforms in or beneath refractive boundaries can exploit the benefits or suffer the effects of the atmospheric boundary layers. Evaporative ducts and surface-base ducts are of most concern for ocean surface platforms and evaporative ducts are almost always present along the sea-air interface. The atmospheric environment also degrades electro-optical systems resolution and visibility. The atmospheric environment has been proven not to be uniform and under heterogeneous conditions substantial propagation errors may be present for large distances from homogeneous models. An accurate and portable atmospheric sensor to profile the vertical index of refraction is needed for mission planning, post analysis, and in-situ performance assessment. The meteorological instrument used in conjunction with a radio frequency and electro-optical propagation prediction tactical decision aid tool would give military platforms, in real time, the ability to make assessments on communication systems propagation ranges, radar detection and vulnerability ranges, satellite communications vulnerability, laser range finder performance, and imaging system performance predictions. Raman lidar has been shown to be capable of measuring the required atmospheric parameters needed to profile the atmospheric environment. The atmospheric profile could then be used as input to a tactical decision aid tool to make propagation predictions.

  7. Surface microlayer enrichment of polycyclic aromatic hydrocarbons in lower Chesapeake Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, K.; Dickhut, R.M.

    1995-12-31

    Surface microlayer samples were collected with a rotating cylinder sampler in the York River and Elizabeth River tributaries of lower Chesapeake Bay every other month from May 1994 to June, 1995. Spatial and temporal variabilities were also investigated over an annual cycle as well as shorter periods (i.e. days). All the samples were analyzed for 17 polycyclic aromatic hydrocarbons, total suspended particulate matter (TSP), particular organic carbon (POC), total nitrogen(TN) and dissolved organic carbon (DOC), and selected samples for chlorophyll. TSP in the surface microlayer was 10 to 100 times higher than that in the related bulk water. Particle associatedmore » PAH concentrations were 20--50 times those in bulk surface water, whereas PAH concentrations in freely dissolved phase of the surface microlayer were 5--60 times higher than dissolved concentrations in the bulk water. Particulate PAH concentrations increase with TSP in the surface microlayer and dissolved PAH concentrations increase with DOC. Overall, surface microlayer characteristics were found to be significantly affected by hydrological and meteorological parameters.« less

  8. Characteristics of ozone vertical profile observed in the boundary layer around Beijing in autumn.

    PubMed

    Ma, Zhiqiang; Zhang, Xiaoling; Xu, Jing; Zhao, Xiujuan; Meng, Wei

    2011-01-01

    In the autumn of 2008, the vertical profiles of ozone and meteorological parameters in the low troposphere (0-1000 m) were observed at two sites around Beijing, specifically urban Nanjiao and rural Shangdianzi. At night and early morning, the lower troposphere divided into two stratified layers due to temperature inversion. Ozone in the lower layer showed a large gradient due to the titration of NO. Air flow from the southwest brought ozone-rich air to Beijing, and the ozone profiles were marked by a continuous increase in the residual layer at night. The accumulated ozone in the upper layer played an important role in the next day's surface peak ozone concentration, and caused a rapid increase in surface ozone in the morning. Wind direction shear and wind speed shear exhibited different influences on ozone profiles and resulted in different surface ozone concentrations in Beijing.

  9. The Hyperspectral Infrared Imager (HyspIRI) Public Health and Air Quality Applications

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Hook, Simon J.

    2014-01-01

    The neglected tropical diseases (NTDs), a group of chronic, debilitating, and poverty-promoting parasitic, bacterial, and some viral and fungal infections, are among the most common causes of illness of the poorest people living in developing countries. Abiotic environmental factors are important in determining the distribution of disease-causing vectors and their life-cycles. HyspIRI observations can be merged through a Land Data Assimilation System (LDAS) be used to drive spatially-explicit ecological models of NTD vectors distribution and life cycles. Assimilations will be driven by observational data LDAS and satellite-derived meteorological forcing data, parameter datasets, and assimilation observations. HyspIRI hyperspectral measurements would provide global measurements of surface mineralogy and biotic crusts important in accessing the impact of dust in human health. HyspIRI surface thermal measurements would also help identify the variability of dust sources due to surface moisture conditions and map mineralogy.

  10. The Hyperspectral Infrared Imager (HyspIRI) Public Health and Air Quality Applications

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Hook, Simon J.

    2013-01-01

    The neglected tropical diseases (NTDs), a group of chronic, debilitating, and poverty-promoting parasitic, bacterial, and some viral and fungal infections, are among the most common causes of illness of the poorest people living in developing countries. Abiotic environmental factors are important in determining the distribution of disease-causing vectors and their life-cycles. HyspIRI observations can be merged through a Land Data Assimilation System (LDAS) be used to drive spatially-explicit ecological models of NTD vectors distribution & life cycles. Assimilations will be driven by observational data LDAS and satellite-derived meteorological forcing data, parameter datasets, and assimilation observations. HyspIRI hyperspectral measurements would provide global measurements of surface mineralogy and biotic crusts important in accessing the impact of dust in human health. HyspIRI surface thermal measurements would also help identify the variability of dust sources due to surface moisture conditions and map mineralogy.

  11. The Hyperspectral Infrared Imager (HyspIRI) Public Health & Air Quality Applications

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Hook, Simon J.

    2013-01-01

    The neglected tropical diseases (NTDs), a group of chronic, debilitating, and poverty-promoting parasitic, bacterial, and some viral and fungal infections, are among the most common causes of illness of the poorest people living in developing countries. Abiotic environmental factors are important in determining the distribution of disease-causing vectors and their life-cycles. HyspIRI observations can be merged through a Land Data Assimilation System (LDAS) be used to drive spatially-explicit ecological models of NTD vectors distribution & life cycles. Assimilations will be driven by observational data LDAS and satellite-derived meteorological forcing data, parameter datasets, and assimilation observations. HyspIRI hyperspectral measurements would provide global measurements of surface mineralogy and biotic crusts important in accessing the impact of dust in human health. HyspIRI surface thermal measurements would also help identify the variability of dust sources due to surface moisture conditions and map mineralogy.

  12. Factors affecting the 7Be surface concentration and its extremely high occurrences over the Scandinavian Peninsula during autumn and winter.

    PubMed

    Ajtić, J; Brattich, E; Sarvan, D; Djurdjevic, V; Hernández-Ceballos, M A

    2018-05-01

    Relationships between the beryllium-7 activity concentrations in surface air and meteorological parameters (temperature, atmospheric pressure, and precipitation), teleconnection indices (Arctic Oscillation, North Atlantic Oscillation, and Scandinavian pattern) and number of sunspots are investigated using two multivariate statistical techniques: hierarchical cluster and factor analysis. The beryllium-7 surface measurements over 1995-2011, at four sampling sites located in the Scandinavian Peninsula, are obtained from the Radioactivity Environmental Monitoring Database. In all sites, the statistical analyses show that the beryllium-7 concentrations are strongly linked to temperature. Although the beryllium-7 surface concentration exhibits the well-characterised spring/summer maximum, our study shows that extremely high beryllium-7 concentrations, defined as the values exceeding the 90 th percentile in the data records for each site, also occur over the October-March period. Two types of autumn/winter extremes are distinguished: type-1 when the number of extremes in a given month is less than three, and type-2 when at least three extremes occur in a month. Factor analysis performed for these autumn/winter events shows a weaker effect of temperature and a stronger impact of the transport and production signal on the beryllium-7 concentrations. Further, the majority of the type-2 extremes are associated with a very high monthly Scandinavian teleconnection index. The type-2 extremes that occurred in January, February and March are also linked to sudden stratospheric warmings of the Arctic vortex. Our results indicate that the Scandinavian teleconnection index might be a good indicator of the meteorological conditions facilitating extremely high beryllium-7 surface concentrations over Scandinavia during autumn and winter. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. CEOS Land Surface Imaging Constellation Mid-Resolution Optical Guidelines

    NASA Technical Reports Server (NTRS)

    Keyes, Jennifer P.; Killough, B.

    2011-01-01

    The LSI community of users is large and varied. To reach all these users as well as potential instrument contributors this document has been organized by measurement parameters of interest such as Leaf Area Index and Land Surface Temperature. These measurement parameters and the data presented in this document are drawn from multiple sources, listed at the end of the document, although the two primary ones are "The Space-Based Global Observing System in 2010 (GOS-2010)" that was compiled for the World Meteorological Organization (WMO) by Bizzarro Bizzarri, and the CEOS Missions, Instruments, and Measurements online database (CEOS MIM). For each measurement parameter the following topics will be discussed: (1) measurement description, (2) applications, (3) measurement spectral bands, and (4) example instruments and mission information. The description of each measurement parameter starts with a definition and includes a graphic displaying the relationships to four general land surface imaging user communities: vegetation, water, earth, and geo-hazards, since the LSI community of users is large and varied. The vegetation community uses LSI data to assess factors related to topics such as agriculture, forest management, crop type, chlorophyll, vegetation land cover, and leaf or canopy differences. The water community analyzes snow and lake cover, water properties such as clarity, and body of water delineation. The earth community focuses on minerals, soils, and sediments. The geo-hazards community is designed to address and aid in emergencies such as volcanic eruptions, forest fires, and large-scale damaging weather-related events.

  14. MODELED MESOSCALE METEOROLOGICAL FIELDS WITH FOUR-DIMENSIONAL DATA ASSIMILATION IN REGIONAL SCALE AIR QUALITY MODELS

    EPA Science Inventory

    This paper addresses the need to increase the temporal and spatial resolution of meteorological data currently used in air quality simulation models, AQSMs. ransport and diffusion parameters including mixing heights and stability used in regulatory air quality dispersion models a...

  15. Mars Dust and LETKF Data Assimilation of TES Observations

    NASA Astrophysics Data System (ADS)

    Greybush, S. J.; Hoffman, R. N.; Wilson, R.; Kang, J.; Zhao, Y.; Hoffman, M. J.; Kalnay, E.; Miyoshi, T.

    2012-12-01

    Simulation and prediction of dust storms remains one of the greatest challenges in Martian meteorology. Large-scale dust storms impact all Mars operations including spacecraft observations. What makes the difference between a regional event and a planet-encircling event? What are the predictability characteristics of these events and of the transition from regional to global? We examine the meteorology, including dustiness, in the Mars reanalysis created with the GFDL Mars Global Climate Model (MGCM) Local Ensemble Transform Kalman Filter (LETKF) data assimilation system (DAS). Characterizing the distribution and temporal evolution of dust in the Martian atmosphere is a considerable challenge. Spacecraft observations are sparse and have limitations in vertical coverage, dust physical properties are not well known, and model parameterizations of surface lifting have limited success in reproducing observed variability. Methods for generating a dust reanalysis begin with satellite inferred dust information in the form of column opacities, dust profile retrievals, or the original radiances. Opacities may be estimated from a formal retrieval of the satellite data or inferred through surface brightness temperatures. The opacities have been ingested via ad hoc adjustments to model tracer fields (Conrath vertical distributions, changes to the boundary layer dust only, etc.), but could also be assimilated by the LETKF or other advanced DAS. We will present dust distributions in the most recent version of the MGCM-LETKF Mars reanalysis. Current results are from two DASs, one assuming a fixed dust distribution and one using TES opacities and updating the boundary layer dust only. In these reanalyses, a full year of Thermal Emission Spectrometer (TES) temperature profiles have been assimilated. Since an accurate characterization of the sources and sinks of dust would greatly improve our understanding of the Martian dust cycle and its representation in numerical weather prediction models, we will examine two advanced DAS techniques that have been demonstrated in terrestrial DASs and could be applied to the problem -- surface dust flux estimation and estimating the surface parameters that control the source of dust (roughness, inventories). The surface dust flux method requires no a priori information about the fluxes, and uses only atmospheric observations. For the terrestrial CO2 problem, surface sources and sinks of CO2 have been estimated using only time-dependent measurements of atmospheric CO2, temperatures, and winds, and without a priori information on the surface fluxes. This scenario is very analogous to the case of Mars. On Mars we have only information on temperature and dust opacities at spacecraft overpass locations. Results for terrestrial CO2 and plans for Mars dust will be presented. However, to improve model parameterizations of dust lifting, we need to understand not only the planetary distribution of dust but also the evolution of its sources and sinks and their relation to meteorology. The surface parameters method assumes the physical properties have a persistence or damped persistence evolution equation. These are then treated as part of the model state vector in the LETKF. This approach is then analogous to the bias correction method used in LETKF to improve the atmospheric state estimation.

  16. Temporal dynamics of airborne fungi in Havana (Cuba) during dry and rainy seasons: influence of meteorological parameters

    NASA Astrophysics Data System (ADS)

    Almaguer, Michel; Aira, María-Jesús; Rodríguez-Rajo, F. Javier; Rojas, Teresa I.

    2014-09-01

    The aim of this paper was to determine for first time the influence of the main meteorological parameters on the atmospheric fungal spore concentration in Havana (Cuba). This city is characterized by a subtropical climate with two different marked annual rainfall seasons during the year: a "dry season" and a "rainy season". A nonviable volumetric methodology (Lanzoni VPPS-2000 sampler) was used to sample airborne spores. The total number of spores counted during the 2 years of study was 293,594, belonging to 30 different genera and five spore types. Relative humidity was the meteorological parameter most influencing the atmospheric concentration of the spores, mainly during the rainy season of the year. Winds coming from the SW direction also increased the spore concentration in the air. In terms of spore intradiurnal variation we found three different patterns: morning maximum values for Cladosporium, night peaks for Coprinus and Leptosphaeria, and uniform behavior throughout the whole day for Aspergillus/ Penicillium."

  17. Effects of future land use and ecosystem changes on boundary-layer meteorology and air quality

    NASA Astrophysics Data System (ADS)

    Tai, A. P. K.; Wang, L.; Sadeke, M.

    2017-12-01

    Land vegetation plays key roles shaping boundary-layer meteorology and air quality via various pathways. Vegetation can directly affect surface ozone via dry deposition and biogenic emissions of volatile organic compounds (VOCs). Transpiration from land plants can also influence surface temperature, soil moisture and boundary-layer mixing depth, thereby indirectly affecting surface ozone. Future changes in the distribution, density and physiology of vegetation are therefore expected to have major ramifications for surface ozone air quality. In our study, we examine two aspects of potential vegetation changes using the Community Earth System Model (CESM) in the fully coupled land-atmosphere configuration, and evaluate their implications on meteorology and air quality: 1) land use change, which alters the distribution of plant functional types and total leaf density; and 2) ozone damage on vegetation, which alters leaf density and physiology (e.g., stomatal resistance). We find that, following the RCP8.5 scenario for 2050, global cropland expansion induces only minor changes in surface ozone in tropical and subtropical regions, but statistically significant changes by up to +4 ppbv in midlatitude North America and East Asia, mostly due to higher surface temperature that enhances biogenic VOC emissions, and reduced dry deposition to a lesser degree. These changes are in turn to driven mostly by meteorological changes that include a shift from latent to sensible heat in the surface energy balance and reduced soil moisture, reflecting not only local responses but also a northward expansion of the Hadley Cell. On the other hand, ozone damage on vegetation driven by rising anthropogenic emissions is shown to induce a further enhancement of ozone by up to +6 ppbv in midlatitude regions by 2050. This reflects a strong localized positive feedback, with severe ozone damage in polluted regions generally inducing stomatal closure, which in turn reduces transpiration, increases surface temperature, and thus enhances biogenic VOC emissions and surface ozone. Our findings demonstrate the importance of considering meteorological responses to vegetation changes in future air quality assessment, and call for greater coordination among land use, ecosystem and air quality management efforts.

  18. Planetary entry, descent, and landing technologies

    NASA Astrophysics Data System (ADS)

    Pichkhadze, K.; Vorontsov, V.; Polyakov, A.; Ivankov, A.; Taalas, P.; Pellinen, R.; Harri, A.-M.; Linkin, V.

    2003-04-01

    Martian meteorological lander (MML) is intended for landing on the Martian surface in order to monitor the atmosphere at landing point for one Martian year. MMLs shall become the basic elements of a global network of meteorological mini-landers, observing the dynamics of changes of the atmospheric parameters on the Red Planet. The MML main scientific tasks are as follows: (1) Study of vertical structure of the Martian atmosphere throughout the MML descent; (2) On-surface meteorological observations for one Martian year. One of the essential factors influencing the lander's design is its entry, descent, and landing (EDL) sequence. During Phase A of the MML development, five different options for the lander's design were carefully analyzed. All of these options ensure the accomplishment of the above-mentioned scientific tasks with high effectiveness. CONCEPT A (conventional approach): Two lander options (with a parachute system + airbag and an inflatable airbrake + airbag) were analyzed. They are similar in terms of fulfilling braking phases and completely analogous in landing by means of airbags. CONCEPT B (innovative approach): Three lander options were analyzed. The distinguishing feature is the presence of inflatable braking units (IBU) in their configurations. SELECTED OPTION (innovative approach): Incorporating a unique design approach and modern technologies, the selected option of the lander represents a combination of the options analyzed in the framework of Concept B study. Currently, the selected lander option undergoes systems testing (Phase D1). Several MMLs can be delivered to Mars in frameworks of various missions as primary or piggybacking payload: (1) USA-led "Mars Scout" (2007); (2) France-led "NetLander" (2007/2009); (3) Russia-led "Mars-Deimos-Phobos sample return" (2007); (4) Independent mission (currently under preliminary study); etc.

  19. Hydrological state of the Large Aral Sea in the fall season of 2013

    NASA Astrophysics Data System (ADS)

    Izhitskiy, Alexander; Zavialov, Peter

    2014-05-01

    We report here the results of the latest expedition of the Shirshov Institute to the Aral Sea. The survey encompassed 8 field days in October-November, 2013. Direct measurements of thermohaline characteristics and water currents were conducted in the western basin of the Large Aral Sea during the expedition. Vertical profiles of temperature and salinity were obtained using a CTD profiler at 9 stations, situated on two cross-sections of the western basin. Four mooring stations equipped with current meters, as well as pressure gauges, were deployed for 4-6 days on the slopes of the deepest portion of the western basin. A portable automatic meteorological station, continuously recording the variability of wind and principal meteorological parameters, was installed near the mooring sites. Analysis of the current measurements data along with the meteorological data records demonstrated the current velocity and level anomalies responded energetically to winds. Correlation analysis of the velocity series versus the wind stress allowed to quantify the response of the system to the wind forcing. Together with the similar results of more earlier surveys, recently collected data shows that the mean surface circulation of the western basin remains anti-cyclonic under the predominant winds. Character of the interannual variability of salinity values in the Aral Sea water manifested increase in the surface layer during last 5 years. On the other hand, salinity values in the bottom layer appear to be decreased due to ceasing of the influence of the interbasin water exchange since 2010. Water level of the Large Aral Sea is still falling. Assessment of the on-going changes holds promise to help predicting the subsequent state of the Aral Sea region.

  20. Circulation and thermohaline structure of the Aral Sea in the last three years

    NASA Astrophysics Data System (ADS)

    Izhitskiy, A. S.; Zavialov, P. O.

    2012-04-01

    The results of the 3 latest expeditions (2009 - 2011) of the Shirshov Institute to the Aral Sea are reported. We analyze the interannual variability of the basin circulation together with the thermohaline structure in order to identify the underlying mechanisms. The study is based on the results of the field surveys of August, 2009, September, 2010, and November, 2011. The vertical profiles of temperature and salinity were obtained using a CTD profiler at 6 stations across the deepest part of the western basin in 2009 and 2010, and 3 stations in 2011. Additionally, during each of the surveys, mooring stations equipped with current meters and pressure gauges were deployed for 3-5 days in the deepest portion of the western basin. A portable automatic meteorological station, continuously recording the wind stress and the principal meteorological parameters, was installed near the mooring sites. The vertical stratification exhibited a 3-layered pattern, with local salinity maxima in the upper mixed layer and near the bottom, while the intermediate layer was characterized by a core of minimum salinity and temperature. Such a pattern persisted throughout the 3 years of observations. Analysis of the current measurements data along with the meteorological data records demonstrated that the mean basin-scale surface circulation of the Large Aral Sea is likely to have remained anticyclonic, whilst the near-bottom circulation appears to be cyclonic. The current velocity and level anomalies responded energetically to winds. Correlation analysis of the velocity and surface level series versus the wind stress allowed to quantify the response of the system to the wind forcing as well as to formulate a conceptual scheme of the lake's response to wind forcing at synoptic temporal scales.

  1. Diurnal variations of the Martian surface layer meteorological parameters during the first 45 sols at two Viking Lander sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, J.L.; Leovy, C.B.; Tillman, J.E.

    1978-12-01

    Wind speed, ambient and surface temperatures from both Viking Landers have been used to compute bulk Richardson numbers and Monin-Obukhov lengths during the earliest phase of the Mars missions. These parameters are used to estimate drag and heat transfer coefficients, friction velocities and surface heat fluxes at the two sites. The principal uncertainty is in the specification of the roughness length. Maximum heat fluxes occur near local noon at both sites, and are estimated to be in the range 15--20 W m/sup -2/ at the Viking 1 site and 10--15 W m/sup -2/ at the Viking 2 site. Maximum valuesmore » of friction velocity occur in late morning at Viking 1 and are estimated to be 0.4--0.6 m s/sup -1/. They occur shortly after drawn at the Viking 2 site where peak values are estimated to be in the range 0.25--0.35 m s/sup -1/. Extension of these calculations to later times during the mission will require allowance for dust opacity effects in the estimation of surface temperature and in the correction of radiation errors of the Viking 2 temperature sensor.« less

  2. Estimation of height-dependent solar irradiation and application to the solar climate of Iran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samimi, J.

    1994-05-01

    An explicitly height-dependent model has been used to estimate the solar irradiation over Iran which has a vast range of altitudes. The parameters of the model have been chosen on general grounds and not by parameters best fitting to any of the available measured irradiation data in Iran. The estimated global solar irradiation on the horizontal surface shows a very good agreement (4.1% deviation) with the 17-year long pyranometric measurements in Tehran, and also, is in good agreement with other, shorter available measured data. The entire data base of the Iranian meteorological stations have been used to establish a simplemore » relation between the sunshine duration records and the cloud cover reports which can be utilized in solar energy estimations for sites with no sunshine duration recorders. Clear sky maps of Iran for direct solar irradiation on tracking, horizontal, and south-facing vertical planes are presented. The global solar irradiation map for horizontal surface with cloudiness is zoned into four irradiation zones. In about four-fifths of the land in Iran, the annual-mean daily global solar irradiation on horizontal surface ranges from 4.5 to 5.4 kWh/m[sup 2].« less

  3. Enhanced near-surface ozone under heatwave conditions in a Mediterranean island.

    PubMed

    Pyrgou, Andri; Hadjinicolaou, Panos; Santamouris, Mat

    2018-06-15

    Near-surface ozone is enhanced under particular chemical reactions and physical processes. This study showed the seasonal variation of near-surface ozone in Nicosia, Cyprus and focused in summers when the highest ozone levels were noted using a seven year hourly dataset from 2007 to 2014. The originality of this study is that it examines how ozone levels changed under heatwave conditions (defined as 4 consecutive days with daily maximum temperature over 39 °C) with emphasis on specific air quality and meteorological parameters with respect to non-heatwave summer conditions. The influencing parameters had a medium-strong positive correlation of ozone with temperature, UVA and UVB at daytime which increased by about 35% under heatwave conditions. The analysis of the wind pattern showed a small decrease of wind speed during heatwaves leading to stagnant weather conditions, but also revealed a steady diurnal cycle of wind speed reaching a peak at noon, when the highest ozone levels were noted. The negative correlation of NOx budget with ozone was further increased under heatwave conditions leading to steeper lows of ozone in the morning. In summary, this research encourages further analysis into the persistent weather conditions prevalent during HWs stimulating ozone formation for higher temperatures.

  4. Variations of the aerosol concentration and chemical composition over the arid steppe zone of Southern Russia in summer

    NASA Astrophysics Data System (ADS)

    Artamonova, M. S.; Gubanova, D. P.; Iordanskii, M. A.; Lebedev, V. A.; Maksimenkov, L. O.; Minashkin, V. M.; Obvintsev, Y. I.; Chketiani, O. G.

    2016-12-01

    Variations in the surface aerosol over the arid steppe zone of Southern Russia have been measured. The parameters of atmospheric aerosol (mass concentration, both dispersed and elemental compositions) and meteorological parameters were measured in Tsimlaynsk raion (Rostov oblast). The chemical composition of aerosol particles in the atmospheric surface layer has been determined, and the coefficients of enrichment of elements with respect to clarkes in the Earth's crust have been calculated. It is shown that, in summer, arid aerosols are transported from both alkaline and sandy soils of Kalmykia to the air basin over the observation zone. Aerosol particles in the surface air layer over this region have been found to contain the products of combustion of oil, coal, and ethylized fuel. These combustion products make a small contribution to the total mass concentration of atmospheric aerosol; however, they are most hazardous to the health of people because of their sizes and heavy-metal contents. A high concentration of submicron sulfur-containing aerosol particles of chemocondensation nature has been recorded. Sources of aerosol of both natural and anthropogenic origins in southern Russia are discussed.

  5. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements.

    PubMed

    Pal, Sandip

    2016-06-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Influence of meteorological parameters on air quality

    NASA Astrophysics Data System (ADS)

    Gioda, Adriana; Ventura, Luciana; Lima, Igor; Luna, Aderval

    2013-04-01

    The physical characterization representative of ambient air particle concentrations is becoming a topic of great interest for urban air quality monitoring and human exposure assessment. Human exposure to particulate matter of less than 2.5 µm in diameter (PM2.5) can result in a variety of adverse health impacts, including reduced lung function and premature mortality. Numerous studies have shown that fine airborne inhalable particulate matter particles (PM2.5) are more dangerous to human health than coarse particles, e.g. PM10. This study investigates meteorological parameter impacts on PM2.5 concentrations in the atmosphere of Rio de Janeiro, Brazil. Samples were collected during 24 h every six days using a high-volume sampler from six sites in the metropolitan area of Rio de Janeiro from January to December 2011. The particles mass was determined by Gravimetry. Meteorological parameters were obtained from automatic stations near the sampling sites. The average PM2.5 concentrations ranged from 9 to 32 µg/m3 for all sites, exceeding the suggested annual limit of WHO (10 µg/m3). The relationship between the effects of temperature, relative humidity, wind speed and direction and particle concentration was examined using a Principal Component Analysis (PCA) for the different sites and seasons. The results for each sampling point and season presented different principal component numbers, varying from 2 to 4, and extremely different relationships with the parameters. This clearly shows that changes in meteorological conditions exert a marked influence on air quality.

  7. Atmospheric new particle formation at the research station Melpitz, Germany: connection with gaseous precursors and meteorological parameters

    NASA Astrophysics Data System (ADS)

    Größ, Johannes; Hamed, Amar; Sonntag, André; Spindler, Gerald; Elina Manninen, Hanna; Nieminen, Tuomo; Kulmala, Markku; Hõrrak, Urmas; Plass-Dülmer, Christian; Wiedensohler, Alfred; Birmili, Wolfram

    2018-02-01

    This paper revisits the atmospheric new particle formation (NPF) process in the polluted Central European troposphere, focusing on the connection with gas-phase precursors and meteorological parameters. Observations were made at the research station Melpitz (former East Germany) between 2008 and 2011 involving a neutral cluster and air ion spectrometer (NAIS). Particle formation events were classified by a new automated method based on the convolution integral of particle number concentration in the diameter interval 2-20 nm. To study the relevance of gaseous sulfuric acid as a precursor for nucleation, a proxy was derived on the basis of direct measurements during a 1-month campaign in May 2008. As a major result, the number concentration of freshly produced particles correlated significantly with the concentration of sulfur dioxide as the main precursor of sulfuric acid. The condensation sink, a factor potentially inhibiting NPF events, played a subordinate role only. The same held for experimentally determined ammonia concentrations. The analysis of meteorological parameters confirmed the absolute need for solar radiation to induce NPF events and demonstrated the presence of significant turbulence during those events. Due to its tight correlation with solar radiation, however, an independent effect of turbulence for NPF could not be established. Based on the diurnal evolution of aerosol, gas-phase, and meteorological parameters near the ground, we further conclude that the particle formation process is likely to start in elevated parts of the boundary layer rather than near ground level.

  8. Changes of atmospheric properties over Belgrade, observed using remote sensing and in situ methods during the partial solar eclipse of 20 March 2015

    NASA Astrophysics Data System (ADS)

    Ilić, L.; Kuzmanoski, M.; Kolarž, P.; Nina, A.; Srećković, V.; Mijić, Z.; Bajčetić, J.; Andrić, M.

    2018-06-01

    Measurements of atmospheric parameters were carried out during the partial solar eclipse (51% coverage of solar disc) observed in Belgrade on 20 March 2015. The measured parameters included height of the planetary boundary layer (PBL), meteorological parameters, solar radiation, surface ozone and air ions, as well as Very Low Frequency (VLF, 3-30 kHz) and Low Frequency (LF, 30-300 kHz) signals to detect low-ionospheric plasma perturbations. The observed decrease of global solar and UV-B radiation was 48%, similar to the solar disc coverage. Meteorological parameters showed similar behavior at two measurement sites, with different elevations and different measurement heights. Air temperature change due to solar eclipse was more pronounced at the lower measurement height, showing a decrease of 2.6 °C, with 15-min time delay relative to the eclipse maximum. However, at the other site temperature did not decrease; its morning increase ceased with the start of the eclipse, and continued after the eclipse maximum. Relative humidity at both sites remained almost constant until the eclipse maximum and then decreased as the temperature increased. The wind speed decreased and reached minimum 35 min after the last contact. The eclipse-induced decrease of PBL height was about 200 m, with minimum reached 20 min after the eclipse maximum. Although dependent on UV radiation, surface ozone concentration did not show the expected decrease, possibly due to less significant influence of photochemical reactions at the measurement site and decline of PBL height. Air-ion concentration decreased during the solar eclipse, with minimum almost coinciding with the eclipse maximum. Additionally, the referential Line-of-Sight (LOS) radio link was set in the area of Belgrade, using the carrier frequency of 3 GHz. Perturbation of the receiving signal level (RSL) was observed on March 20, probably induced by the solar eclipse. Eclipse-related perturbations in ionospheric D-region were detected based on the VLF/LF signal variations, as a consequence of Lyα radiation decrease.

  9. Development of the ClearSky smoke dispersion forecast system for agricultural field burning in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Jain, Rahul; Vaughan, Joseph; Heitkamp, Kyle; Ramos, Charleston; Claiborn, Candis; Schreuder, Maarten; Schaaf, Mark; Lamb, Brian

    The post-harvest burning of agricultural fields is commonly used to dispose of crop residue and provide other desired services such as pest control. Despite careful regulation of burning, smoke plumes from field burning in the Pacific Northwest commonly degrade air quality, particularly for rural populations. In this paper, ClearSky, a numerical smoke dispersion forecast system for agricultural field burning that was developed to support smoke management in the Inland Pacific Northwest, is described. ClearSky began operation during the summer through fall burn season of 2002 and continues to the present. ClearSky utilizes Mesoscale Meteorological Model version 5 (MM5v3) forecasts from the University of Washington, data on agricultural fields, a web-based user interface for defining burn scenarios, the Lagrangian CALPUFF dispersion model and web-served animations of plume forecasts. The ClearSky system employs a unique hybrid source configuration, which treats the flaming portion of a field as a buoyant line source and the smoldering portion of the field as a buoyant area source. Limited field observations show that this hybrid approach yields reasonable plume rise estimates using source parameters derived from recent field burning emission field studies. The performance of this modeling system was evaluated for 2003 by comparing forecast meteorology against meteorological observations, and comparing model-predicted hourly averaged PM 2.5 concentrations against observations. Examples from this evaluation illustrate that while the ClearSky system can accurately predict PM 2.5 surface concentrations due to field burning, the overall model performance depends strongly on meteorological forecast error. Statistical evaluation of the meteorological forecast at seven surface stations indicates a strong relationship between topographical complexity near the station and absolute wind direction error with wind direction errors increasing from approximately 20° for sites in open areas to 70° or more for sites in very complex terrain. The analysis also showed some days with good forecast meteorology with absolute mean error in wind direction less than 30° when ClearSky correctly predicted PM 2.5 surface concentrations at receptors affected by field burns. On several other days with similar levels of wind direction error the model did not predict apparent plume impacts. In most of these cases, there were no reported burns in the vicinity of the monitor and, thus, it appeared that other, non-reported burns were responsible for the apparent plume impact at the monitoring site. These cases do not provide information on the performance of the model, but rather indicate that further work is needed to identify all burns and to improve burn reports in an accurate and timely manner. There were also a number of days with wind direction errors exceeding 70° when the forecast system did not correctly predict plume behavior.

  10. New York Bight Study. Report 1. Hydrodynamic Modeling

    DTIC Science & Technology

    1994-08-01

    function of time. Values of these parameters, averaged daily, were computed from meteorological data recorded at the John F. Kennedy ( JFK ) Airport for...Island Sound "exchange coefficient values were obtained as before from meteorological data collected at the JFK Airport . They are shown in Figures 62-63

  11. Estimation of Key Parameters of the Coupled Energy and Water Model by Assimilating Land Surface Data

    NASA Astrophysics Data System (ADS)

    Abdolghafoorian, A.; Farhadi, L.

    2017-12-01

    Accurate estimation of land surface heat and moisture fluxes, as well as root zone soil moisture, is crucial in various hydrological, meteorological, and agricultural applications. Field measurements of these fluxes are costly and cannot be readily scaled to large areas relevant to weather and climate studies. Therefore, there is a need for techniques to make quantitative estimates of heat and moisture fluxes using land surface state observations that are widely available from remote sensing across a range of scale. In this work, we applies the variational data assimilation approach to estimate land surface fluxes and soil moisture profile from the implicit information contained Land Surface Temperature (LST) and Soil Moisture (SM) (hereafter the VDA model). The VDA model is focused on the estimation of three key parameters: 1- neutral bulk heat transfer coefficient (CHN), 2- evaporative fraction from soil and canopy (EF), and 3- saturated hydraulic conductivity (Ksat). CHN and EF regulate the partitioning of available energy between sensible and latent heat fluxes. Ksat is one of the main parameters used in determining infiltration, runoff, groundwater recharge, and in simulating hydrological processes. In this study, a system of coupled parsimonious energy and water model will constrain the estimation of three unknown parameters in the VDA model. The profile of SM (LST) at multiple depths is estimated using moisture diffusion (heat diffusion) equation. In this study, the uncertainties of retrieved unknown parameters and fluxes are estimated from the inverse of Hesian matrix of cost function which is computed using the Lagrangian methodology. Analysis of uncertainty provides valuable information about the accuracy of estimated parameters and their correlation and guide the formulation of a well-posed estimation problem. The results of proposed algorithm are validated with a series of experiments using a synthetic data set generated by the simultaneous heat and water (SHAW) model. In addition, the feasibility of extending this algorithm to use remote sensing observations that have low temporal resolution is examined by assimilating the limited number of land surface moisture and temperature observations.

  12. The Synoptic Climatology of Severe Thunderstorms in Manitoba.

    NASA Astrophysics Data System (ADS)

    Ladochy, Stephen Eugene Gabriel

    The thesis presents the climatologies for Manitoba thunderstorms, hailstorms and tornadoes as well as investigates the synoptic weather conditions conducive for their development. The study not only uses standard meteorological information, but also various kinds of proxy data, in the form of damage reports. These damage reports complement the meteorological data by providing a higher resolution of observations, particularly in the sparsely populated regions. The synoptic conditions are relatively similar for all forms of severe thunderstorms, though the upper level jet stream (ULJ) is stronger for tornadoes, in general. Composite charts, drawn for 50 larger, more damaging hail days and 48 tornado days in the 1970's, helped identify important surface and upper air weather parameters and their inter -relationships with each other and the location of the storm. Time sequence composite charts were used to also show the development process in severe weather occurrences. From the composites, a synoptic weather type classification was devised with 10 categories to identify each storm by type. The most common pattern for severe weather has a strong southwesterly ULJ, with the storm occurring ahead of an advancing cold front. The ULJ patterns were drawn for each synoptic type days, showing differences between categories. The average conditions during tornado touchdowns were also seen from composite maps of surface and upper air isobaric charts. While severe thunderstorms are seen to occur under the "ideal" conditions, often described for U.S. severe weather, they can also be produced under other weather patterns and combinations of atmospheric parameters thought less favorable. The ULJ and LLJ (low-level jet stream) models used in U.S. studies do not always fit Manitoba storms, however, less favorable jet positions, at specific levels, can be compensated for by low-level advection of warm, and moist air.

  13. An Extreme Meteorological Events Analysis For Nuclear Power Plant (NPP) Siting Project at Bangka Island, Indonesia

    NASA Astrophysics Data System (ADS)

    Septiadi, Deni; S, Yarianto Sugeng B.; Sriyana; Anzhar, Kurnia; Suntoko, Hadi

    2018-03-01

    The potential sources of meteorological phenomena in Nuclear Power Plant (NPP) area of interest are identified and the extreme values of the possible resulting hazards associated which such phenomena are evaluated to derive the appropriate design bases for the NPP. The appropriate design bases shall be determined according to the Nuclear Energy Regulatory Agency (Bapeten) applicable regulations, which presently do not indicate quantitative criteria for purposes of determining the design bases for meteorological hazards. These meteorological investigations are also carried out to evaluate the regional and site specific meteorological parameters which affect the transport and dispersion of radioactive effluents on the environment of the region around the NPP site. The meteorological hazards are to be monitored and assessed periodically over the lifetime of the plant to ensure that consistency with the design assumptions is maintained throughout the full lifetime of the facility.

  14. Kalman filters for assimilating near-surface observations in the Richards equation - Part 2: A dual filter approach for simultaneous retrieval of states and parameters

    NASA Astrophysics Data System (ADS)

    Medina, H.; Romano, N.; Chirico, G. B.

    2012-12-01

    We present a dual Kalman Filter (KF) approach for retrieving states and parameters controlling soil water dynamics in a homogenous soil column by using near-surface state observations. The dual Kalman filter couples a standard KF algorithm for retrieving the states and an unscented KF algorithm for retrieving the parameters. We examine the performance of the dual Kalman Filter applied to two alternative state-space formulations of the Richards equation, respectively differentiated by the type of variable employed for representing the states: either the soil water content (θ) or the soil matric pressure head (h). We use a synthetic time-series series of true states and noise corrupted observations and a synthetic time-series of meteorological forcing. The performance analyses account for the effect of the input parameters, the observation depth and the assimilation frequency as well as the relationship between the retrieved states and the assimilated variables. We show that the identifiability of the parameters is strongly conditioned by several factors, such as the initial guess of the unknown parameters, the wet or dry range of the retrieved states, the boundary conditions, as well as the form (h-based or θ-based) of the state-space formulation. State identifiability is instead efficient even with a relatively coarse time-resolution of the assimilated observation. The accuracy of the retrieved states exhibits limited sensitivity to the observation depth and the assimilation frequency.

  15. Uncertainty in predictions of forest carbon dynamics: separating driver error from model error.

    PubMed

    Spadavecchia, L; Williams, M; Law, B E

    2011-07-01

    We present an analysis of the relative magnitude and contribution of parameter and driver uncertainty to the confidence intervals on estimates of net carbon fluxes. Model parameters may be difficult or impractical to measure, while driver fields are rarely complete, with data gaps due to sensor failure and sparse observational networks. Parameters are generally derived through some optimization method, while driver fields may be interpolated from available data sources. For this study, we used data from a young ponderosa pine stand at Metolius, Central Oregon, and a simple daily model of coupled carbon and water fluxes (DALEC). An ensemble of acceptable parameterizations was generated using an ensemble Kalman filter and eddy covariance measurements of net C exchange. Geostatistical simulations generated an ensemble of meteorological driving variables for the site, consistent with the spatiotemporal autocorrelations inherent in the observational data from 13 local weather stations. Simulated meteorological data were propagated through the model to derive the uncertainty on the CO2 flux resultant from driver uncertainty typical of spatially extensive modeling studies. Furthermore, the model uncertainty was partitioned between temperature and precipitation. With at least one meteorological station within 25 km of the study site, driver uncertainty was relatively small ( 10% of the total net flux), while parameterization uncertainty was larger, 50% of the total net flux. The largest source of driver uncertainty was due to temperature (8% of the total flux). The combined effect of parameter and driver uncertainty was 57% of the total net flux. However, when the nearest meteorological station was > 100 km from the study site, uncertainty in net ecosystem exchange (NEE) predictions introduced by meteorological drivers increased by 88%. Precipitation estimates were a larger source of bias in NEE estimates than were temperature estimates, although the biases partly compensated for each other. The time scales on which precipitation errors occurred in the simulations were shorter than the temporal scales over which drought developed in the model, so drought events were reasonably simulated. The approach outlined here provides a means to assess the uncertainty and bias introduced by meteorological drivers in regional-scale ecological forecasting.

  16. WRF and WRF-Chem v3.5.1 simulations of meteorology and black carbon concentrations in the Kathmandu Valley

    NASA Astrophysics Data System (ADS)

    Mues, Andrea; Lauer, Axel; Lupascu, Aurelia; Rupakheti, Maheswar; Kuik, Friderike; Lawrence, Mark G.

    2018-06-01

    An evaluation of the meteorology simulated using the Weather Research and Forecast (WRF) model for the region of south Asia and Nepal with a focus on the Kathmandu Valley is presented. A particular focus of the model evaluation is placed on meteorological parameters that are highly relevant to air quality such as wind speed and direction, boundary layer height and precipitation. The same model setup is then used for simulations with WRF including chemistry and aerosols (WRF-Chem). A WRF-Chem simulation has been performed using the state-of-the-art emission database, EDGAR HTAP v2.2, which is the Emission Database for Global Atmospheric Research of the Joint Research Centre (JRC) of the European Commission, in cooperation with the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) organized by the United Nations Economic Commission for Europe, along with a sensitivity simulation using observation-based black carbon emission fluxes for the Kathmandu Valley. The WRF-Chem simulations are analyzed in comparison to black carbon measurements in the valley and to each other. The evaluation of the WRF simulation with a horizontal resolution of 3×3 km2 shows that the model is often able to capture important meteorological parameters inside the Kathmandu Valley and the results for most meteorological parameters are well within the range of biases found in other WRF studies especially in mountain areas. But the evaluation results also clearly highlight the difficulties of capturing meteorological parameters in such complex terrain and reproducing subgrid-scale processes with a horizontal resolution of 3×3 km2. The measured black carbon concentrations are typically systematically and strongly underestimated by WRF-Chem. A sensitivity study with improved emissions in the Kathmandu Valley shows significantly reduced biases but also underlines several limitations of such corrections. Further improvements of the model and of the emission data are needed before being able to use the model to robustly assess air pollution mitigation scenarios in the Kathmandu region.

  17. Correlation between isotopic and meteorological parameters in Italian wines: a local-scale approach.

    PubMed

    Aghemo, Costanza; Albertino, Andrea; Gobetto, Roberto; Spanna, Federico

    2011-08-30

    Since the beginning of the 1980s deuterium nuclear magnetic resonance and carbon-13 mass spectrometry have proved to be reliable techniques for detecting adulteration and for classifying natural products by their geographic origin. Scientific literature has so far mainly focused on data acquired at regional level where isotopic parameters are correlated to climatic mean data relative to large territories. Nebbiolo and Barbera wine samples of various vintages and from different areas within the Piedmont region (northern Italy) were analysed using SNIF-NMR and GC-C-IRMS and a large set of meteorological parameters were recorded by means of weather stations placed in fields where the grapes were grown. Correlations between isotopic ((2)H and (13)C) data and several climatic parameters at a local level (mean temperature, total rainfall, mean humidity and thermal sums) were attempted and some linear correlations were found. Mean temperature and total rainfall were found to be correlated to isotopic ((2)H and (13)C) abundance in linear direct and inverse proportions respectively. Lower or no correlations between deuterium and carbon-13 abundances and other meteorological parameters such as mean humidity and thermal sums were found. Moreover, wines produced from different grape varieties in the same grape field showed significantly different isotopic values. Copyright © 2011 Society of Chemical Industry.

  18. Uncertainty analysis of scintillometers methods in measuring sensible heat fluxes of forest ecosystem

    NASA Astrophysics Data System (ADS)

    Zheng, N.

    2017-12-01

    Sensible heat flux (H) is one of the driving factors of surface turbulent motion and energy exchange. Therefore, it is particularly important to measure sensible heat flux accurately at the regional scale. However, due to the heterogeneity of the underlying surface, hydrothermal regime, and different weather conditions, it is difficult to estimate the represented flux at the kilometer scale. The scintillometer have been developed into an effective and universal equipment for deriving heat flux at the regional-scale which based on the turbulence effect of light in the atmosphere since the 1980s. The parameter directly obtained by the scintillometer is the structure parameter of the refractive index of air based on the changes of light intensity fluctuation. Combine with parameters such as temperature structure parameter, zero-plane displacement, surface roughness, wind velocity, air temperature and the other meteorological data heat fluxes can be derived. These additional parameters increase the uncertainties of flux because the difference between the actual feature of turbulent motion and the applicable conditions of turbulence theory. Most previous studies often focused on the constant flux layers that are above the rough sub-layers and homogeneous flat surfaces underlying surfaces with suitable weather conditions. Therefore, the criteria and modified forms of key parameters are invariable. In this study, we conduct investment over the hilly area of northern China with different plants, such as cork oak, cedar-black and locust. On the basis of key research on the threshold and modified forms of saturation with different turbulence intensity, modified forms of Bowen ratio with different drying-and-wetting conditions, universal function for the temperature structure parameter under different atmospheric stability, the dominant sources of uncertainty will be determined. The above study is significant to reveal influence mechanism of uncertainty and explore influence degree of uncertainty with quantitative analysis. The study can provide theoretical basis and technical support for accurately measuring sensible heat fluxes of forest ecosystem with scintillometer method, and can also provide work foundation for further study on role of forest ecosystem in energy balance and climate change.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, K. D.; Bohrer, G.; Kenny, W. T.

    Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less

  20. Influence of seasonal and inter-annual hydro-meteorological variability on surface water fecal coliform concentration under varying land-use composition.

    PubMed

    St Laurent, Jacques; Mazumder, Asit

    2014-01-01

    Quantifying the influence of hydro-meteorological variability on surface source water fecal contamination is critical to the maintenance of safe drinking water. Historically, this has not been possible due to the scarcity of data on fecal indicator bacteria (FIB). We examined the relationship between hydro-meteorological variability and the most commonly measured FIB, fecal coliform (FC), concentration for 43 surface water sites within the hydro-climatologically complex region of British Columbia. The strength of relationship was highly variable among sites, but tended to be stronger in catchments with nival (snowmelt-dominated) hydro-meteorological regimes and greater land-use impacts. We observed positive relationships between inter-annual FC concentration and hydro-meteorological variability for around 50% of the 19 sites examined. These sites are likely to experience increased fecal contamination due to the projected intensification of the hydrological cycle. Seasonal FC concentration variability appeared to be driven by snowmelt and rainfall-induced runoff for around 30% of the 43 sites examined. Earlier snowmelt in nival catchments may advance the timing of peak contamination, and the projected decrease in annual snow-to-precipitation ratio is likely to increase fecal contamination levels during summer, fall, and winter among these sites. Safeguarding drinking water quality in the face of such impacts will require increased monitoring of FIB and waterborne pathogens, especially during periods of high hydro-meteorological variability. This data can then be used to develop predictive models, inform source water protection measures, and improve drinking water treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Large-eddy simulations of surface roughness parameter sensitivity to canopy-structure characteristics

    DOE PAGES

    Maurer, K. D.; Bohrer, G.; Kenny, W. T.; ...

    2015-04-30

    Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less

  2. Large-eddy simulations of surface roughness parameter sensitivity to canopy-structure characteristics

    NASA Astrophysics Data System (ADS)

    Maurer, K. D.; Bohrer, G.; Kenny, W. T.; Ivanov, V. Y.

    2015-04-01

    Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction. We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.

  3. Selection of meteorological parameters affecting rainfall estimation using neuro-fuzzy computing methodology

    NASA Astrophysics Data System (ADS)

    Hashim, Roslan; Roy, Chandrabhushan; Motamedi, Shervin; Shamshirband, Shahaboddin; Petković, Dalibor; Gocic, Milan; Lee, Siew Cheng

    2016-05-01

    Rainfall is a complex atmospheric process that varies over time and space. Researchers have used various empirical and numerical methods to enhance estimation of rainfall intensity. We developed a novel prediction model in this study, with the emphasis on accuracy to identify the most significant meteorological parameters having effect on rainfall. For this, we used five input parameters: wet day frequency (dwet), vapor pressure (e̅a), and maximum and minimum air temperatures (Tmax and Tmin) as well as cloud cover (cc). The data were obtained from the Indian Meteorological Department for the Patna city, Bihar, India. Further, a type of soft-computing method, known as the adaptive-neuro-fuzzy inference system (ANFIS), was applied to the available data. In this respect, the observation data from 1901 to 2000 were employed for testing, validating, and estimating monthly rainfall via the simulated model. In addition, the ANFIS process for variable selection was implemented to detect the predominant variables affecting the rainfall prediction. Finally, the performance of the model was compared to other soft-computing approaches, including the artificial neural network (ANN), support vector machine (SVM), extreme learning machine (ELM), and genetic programming (GP). The results revealed that ANN, ELM, ANFIS, SVM, and GP had R2 of 0.9531, 0.9572, 0.9764, 0.9525, and 0.9526, respectively. Therefore, we conclude that the ANFIS is the best method among all to predict monthly rainfall. Moreover, dwet was found to be the most influential parameter for rainfall prediction, and the best predictor of accuracy. This study also identified sets of two and three meteorological parameters that show the best predictions.

  4. Meteorological and urban landscape factors on severe air pollution in Beijing.

    PubMed

    Han, Lijian; Zhou, Weiqi; Li, Weifeng; Meshesha, Derege T; Li, Li; Zheng, Mingqing

    2015-07-01

    Air pollution gained special attention with the rapid development in Beijing. In January 2013, Beijing experienced extreme air pollution, which was not well examined. We thus examine the magnitude of air quality in the particular month by applying the air quality index (AQI), which is based on the newly upgraded Chinese environmental standard. Our finding revealed that (1) air quality has distinct spatial heterogeneity and relatively better air quality was observed in the northwest while worse quality happened in the southeast part of the city; (2) the wind speed is the main determinant of air quality in the city-when wind speed is greater than 4 m/sec, air quality can be significantly improved; and (3) urban impervious surface makes a contribution to the severity of air pollution-that is, with an increase in the fraction of impervious surface in a given area, air pollution is more severe. The results from our study demonstrated the severe pollution in Beijing and its meteorological and landscape factors. Also, the results of this work suggest that very strict air quality management should be conducted when wind speed less than 4 m/sec, especially at places with a large fraction of urban impervious surface. Prevention of air pollution is rare among methods with controls on meteorological and urban landscape conditions. We present research that utilizes the latest air quality index (AQI) to compare air pollution with meteorological and landscape conditions. We found that wind is the major meteorological factor that determines the air quality. For a given wind speed greater than 4 m/sec, the air quality improved significantly. Urban impervious surface also contributes to the severe air pollution: that is, when the fraction of impervious surface increases, there is more severe air pollution. These results suggest that air quality management should be conducted when wind speed is less than 4 m/sec, especially at places with a larger fraction of urban impervious surface.

  5. Algorithm of regional surface evaporation using remote sensing: A case study of Haihe basin, China

    NASA Astrophysics Data System (ADS)

    Xiong, Jun; Wu, Bingfang; Yan, Nana; Hu, Minggang

    2007-11-01

    Evapotranspiration (ET, or latent heat flux) is the most essential and uncertain factor in water resource management. Remote sensing is a promising tool for estimation of spatial distribution of ET at regional scale with limited ground observations. We developed an algorithm for estimating regional evapotranspiration from MODIS 1b data and ancillary meteorological data. The algorithm is an integration of Penman-Monteith equation and SEBS (Surface Energy Balance System) model. The former is a combination of the energy balance theory and the mass transfer method to compute the evaporation from cropped surfaces from standard climatological records of sunshine, temperature, humidity and wind speed by introducing resistance factors, and the latter determines the spatio-temporal variability of regional evaporative condition. First, we characterized key land surface parameters on satellite over passing days, including fractional vegetation cover (fc), roughness height for momentum (z0m), net radiation (Rn) and soil heat flux (G0); Second, SEBS was applied to partition the sensible heat (H) from latent heat (LE) in combination with Planetary Boundary Layer (PBL) information from seven meteorological stations. A parameterization of surface roughness was applied at mountainous area considering topographic influence; third, we chose available surface resistance (RS) as the temporal-scaling factor. With bulk surface resistance is properly defined, P-M methods is valid for both soil and vegetation canopy. We validated ET from this algorithm with limited actual observations of ET including 2 eddy covariance system dataset and 1 lysimeter sites. Water balance equation is used as a trend-analysis tool to show the consistency between rainfall and ET on four drainage area. As a result, the prototype products showed different accuracy and applicability on different underlying and time scale, which demonstrates the potential of this approach for estimating ET from 1-km to regional spatial scale in North China Plain.

  6. Temperature lapse rate as an adjunct to wind shear detection

    NASA Technical Reports Server (NTRS)

    Zweifil, Terry

    1991-01-01

    Several meteorological parameters were examined to determine if measurable atmospheric conditions can improve windshear detection devices. Lapse rate, the temperature change with altitude, shows promise as being an important parameter in the prediction of severe wind shears. It is easily measured from existing aircraft instrumentation, and it can be important indicator of convective activity including thunderstorms and microbursts. The meteorological theory behind lapse rate measurement is briefly reviewed, and and FAA certified system is described that is currently implemented in the Honeywell Wind Shear Detection and Guidance System.

  7. PLS Road surface temperature forecast for susceptibility of ice occurrence

    NASA Astrophysics Data System (ADS)

    Marchetti, Mario; Khalifa, Abderrhamen; Bues, Michel

    2014-05-01

    Winter maintenance relies on many operational tools consisting in monitoring atmospheric and pavement physical parameters. Among them, road weather information systems (RWIS) and thermal mapping are mostly used by service in charge of managing infrastructure networks. The Data from RWIS and thermal mapping are considered as inputs for forecasting physical numerical models, commonly in place since the 80s. These numerical models do need an accurate description of the infrastructure, such as pavement layers and sub-layers, along with many meteorological parameters, such as air temperature and global and infrared radiation. The description is sometimes partially known, and meteorological data is only monitored on specific spot. On the other hand, thermal mapping is now an easy, reliable and cost effective way to monitor road surface temperature (RST), and many meteorological parameters all along routes of infrastructure networks, including with a whole fleet of vehicles in the specific cases of roads, or airports. The technique uses infrared thermometry to measure RST and an atmospheric probes for air temperature, relative humidity, wind speed and global radiation, both at a high resolution interval, to identify sections of the road network prone to ice occurrence. However, measurements are time-consuming, and the data from thermal mapping is one input among others to establish the forecast. The idea was to build a reliable forecast on the sole data from thermal mapping. Previous work has established the interest to use principal component analysis (PCA) on the basis of a reduced number of thermal fingerprints. The work presented here is a focus on the use of partial least-square regression (PLS) to build a RST forecast with air temperature measurements. Roads with various environments, weather conditions (clear, cloudy mainly) and seasons were monitored over several months to generate an appropriate number of samples. The study was conducted to determine the minimum number of samples to get a reliable forecast, considering inputs for numerical models do not exceed five thermal fingerprints. Results of PLS have shown that the PLS model could have a R² of 0.9562, a RMSEP of 1.34 and a bias of -0.66. The same model applied to establish a forecast on past event indicates an average difference between measurements and forecasts of 0.20 °C. The advantage of such approach is its potential application not only to winter events, but also the extreme summer ones for urban heat island.

  8. Impacts of a Stochastic Ice Mass-Size Relationship on Squall Line Ensemble Simulations

    NASA Astrophysics Data System (ADS)

    Stanford, M.; Varble, A.; Morrison, H.; Grabowski, W.; McFarquhar, G. M.; Wu, W.

    2017-12-01

    Cloud and precipitation structure, evolution, and cloud radiative forcing of simulated mesoscale convective systems (MCSs) are significantly impacted by ice microphysics parameterizations. Most microphysics schemes assume power law relationships with constant parameters for ice particle mass, area, and terminal fallspeed relationships as a function of size, despite observations showing that these relationships vary in both time and space. To account for such natural variability, a stochastic representation of ice microphysical parameters was developed using the Predicted Particle Properties (P3) microphysics scheme in the Weather Research and Forecasting model, guided by in situ aircraft measurements from a number of field campaigns. Here, the stochastic framework is applied to the "a" and "b" parameters of the unrimed ice mass-size (m-D) relationship (m=aDb) with co-varying "a" and "b" values constrained by observational distributions tested over a range of spatiotemporal autocorrelation scales. Diagnostically altering a-b pairs in three-dimensional (3D) simulations of the 20 May 2011 Midlatitude Continental Convective Clouds Experiment (MC3E) squall line suggests that these parameters impact many important characteristics of the simulated squall line, including reflectivity structure (particularly in the anvil region), surface rain rates, surface and top of atmosphere radiative fluxes, buoyancy and latent cooling distributions, and system propagation speed. The stochastic a-b P3 scheme is tested using two frameworks: (1) a large ensemble of two-dimensional idealized squall line simulations and (2) a smaller ensemble of 3D simulations of the 20 May 2011 squall line, for which simulations are evaluated using observed radar reflectivity and radial velocity at multiple wavelengths, surface meteorology, and surface and satellite measured longwave and shortwave radiative fluxes. Ensemble spreads are characterized and compared against initial condition ensemble spreads for a range of variables.

  9. An Investigation of Turbulent Heat Exchange in the Subtropics

    DTIC Science & Technology

    2014-09-30

    meteorological sensors aboard the research vessel the R/V Revelle during the DYNAMO field program. In situ meteorology and high-rate flux sensors operated...continuously while in the sampling period for DYNAMO Leg 3. This included all sensors operating during Leg 2 with the addition of a closed-path LI...stress; wave data; surface and near surface sea temperatures, salinity and currents; and other key variables specifically requested by DYNAMO /LASP PIs

  10. [Application of artificial neural networks on the prediction of surface ozone concentrations].

    PubMed

    Shen, Lu-Lu; Wang, Yu-Xuan; Duan, Lei

    2011-08-01

    Ozone is an important secondary air pollutant in the lower atmosphere. In order to predict the hourly maximum ozone one day in advance based on the meteorological variables for the Wanqingsha site in Guangzhou, Guangdong province, a neural network model (Multi-Layer Perceptron) and a multiple linear regression model were used and compared. Model inputs are meteorological parameters (wind speed, wind direction, air temperature, relative humidity, barometric pressure and solar radiation) of the next day and hourly maximum ozone concentration of the previous day. The OBS (optimal brain surgeon) was adopted to prune the neutral work, to reduce its complexity and to improve its generalization ability. We find that the pruned neural network has the capacity to predict the peak ozone, with an agreement index of 92.3%, the root mean square error of 0.0428 mg/m3, the R-square of 0.737 and the success index of threshold exceedance 77.0% (the threshold O3 mixing ratio of 0.20 mg/m3). When the neural classifier was added to the neural network model, the success index of threshold exceedance increased to 83.6%. Through comparison of the performance indices between the multiple linear regression model and the neural network model, we conclud that that neural network is a better choice to predict peak ozone from meteorological forecast, which may be applied to practical prediction of ozone concentration.

  11. GNSS Remote Sensing at GFZ: Overview and Recent Results

    NASA Astrophysics Data System (ADS)

    Wickert, Jens; Alshawaf, Fadwa; Arras, Christina; Asgarimehr, Milad; Dick, Galina; Heise, Stefan; Larson, Kristine; Li, Xingxing; Lu, Cuixian; Peraza, Luis; Ramatschi, Markus; Schmidt, Torsten; Schuh, Harald; Semmling, Maximilian; Simeonov, Tzvetan; Vey, Sibylle; Zus, Florian

    2017-04-01

    GNSS atmospheric remote sensing was successfully established during the last two decades and evolved into a major application for high precision GNSS. The most prominent example for this development is the use of GNSS atmospheric data to improve day-by-day regional and global weather forecasts since 2006. Globally distributed vertical profiles of refractivity, temperature and water vapour are derived from satellite based GNSS data (Radio Occultation, RO). Ground based measurements, provided by global and regional GNSS networks, allow for the derivation of vertically (IWV) or along the line-of-sight integrated water vapour (SWV). Another important GNSS remote sensing technique, the exploitation of Earth reflected signals (GNSS Reflectometry, GNSS-R), is not yet operationally applied. But the huge potential for the determination of various physical parameters, as, e.g., sea surface height, wind speed over water and soil moisture on regional and global scales is recognized by the Earth Observation community. Therefore GNSS-R is recently a major challenge of international geophysical research. We review related activities at the German Research Centre for Geosciences GFZ and introduce recent results. The status of the GNSS-RO experiments aboard the satellites GRACE-A, TerraSAR-X and TanDEM-X, which are coordinated by GFZ, is reviewed. Examples of GNSS RO applications are given, as, e.g., climatological investigations of the global vertical temperature structure or the detection of ionospheric irregularities in the E-region. We also focus on ground based activities for GNSS water vapour monitoring. Observations of a global and regionally densified German network, with about 600 stations in total, are processed in near-real time to operationally provide IWV data. These data are assimilated into atmospheric models by several European weather centers. Current research activities are focused on the generation and meteorological application of GNSS based slant data, on real-time and multi-GNSS meteorology. In addition, climatological investigations are described to analyse long-term trends of the atmospheric water vapour over Germany but also as part of the Global Climate Observing System (GCOS) of the WMO (World Meteorological Organization). Multipath data from standard GNSS receivers are used to derive information on soil moisture, vegetation and snow properties. This technique exhibits a large potential to get geophysical parameters for Earth surface monitoring from the existing global and regional GNSS networks. GFZ also applies dedicated GNSS receivers aboard flight and ship platforms to derive sea surface heights using the GNSS-R phase altimetry technique. Other research activities contribute to the preparation of satellite missions for geophysical GNSS-R applications on a global scale. The most prominent current example is the ESA mission GEROS-ISS for global sea surface monitoring.

  12. On the origin of regional spring time ozone episodes in the Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Kalabokas, Pavlos; Hjorth, Jens; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Siour, Guillaume; Cuesta, Juan; Beekmann, Matthias

    2017-04-01

    For the identification of regional spring time ozone episodes, rural EMEP ozone measurements from countries surrounding the Western Mediterranean (Spain, France, Switzerland, Italy, Malta) have been examined with emphasis on periods of high ozone, according to the daily variation of the afternoon (12:00 - 18:00) ozone. For two selected high ozone episodes in April-May 2008, composite NCEP/NCAR reanalysis maps of various meteorological parameters and/or their anomalies (geopotential height, specific humidity, vertical velocity omega, vector wind speed and temperature) at various tropospheric pressure levels have been examined together with the corresponding satellite IASI ozone measurements (at 3 and 10 km), CHIMERE simulations, vertical ozone soundings and HYSPLIT back trajectories (Kalabokas et al., 2016). The results show that high surface ozone is measured at several countries simultaneously over several days. Also, the examined spring ozone episodes in Western Mediterranean and Central Europe are linked to synoptic meteorological conditions very similar to those recently observed in summertime ozone episodes over the Eastern Mediterranean (Doche et al., 2014; Kalabokas et al., 2015 and references therein), where the transport of tropospheric ozone-rich air masses through atmospheric subsidence influences significantly the boundary layer and surface ozone concentrations. In particular, the geographic areas with observed tropospheric subsidence seem to be the transition regions between high pressure and low pressure systems. IASI satellite measurements show extended areas of high tropospheric ozone over the low pressure systems adjacent to the anticyclones, which influence significantly the boundary layer and surface ozone concentrations within the anticyclones by subsidence and advection, in addition to the photochemically produced ozone there, resulting to exceedances of the 60 ppb standard for human health protection over extended geographical areas. References Doche, C., Dufour, G., Foret, G., Eremenko, M., Cuesta, J., Beekmann, M., and Kalabokas, P., 2014. Summertime tropospheric-ozone variability over the Mediterranean basin observed with IASI, Atmos. Chem. Phys., 14, 10589-10600. Kalabokas P. D., Thouret V., Cammas J.-P., Volz-Τhomas A., Boulanger D., Repapis C.C., 2015. The geographical distribution of meteorological parameters associated with high and low summer ozone levels in the lower troposphere and the boundary layer over the eastern Mediterranean (Cairo case), Tellus B, 67, 27853, http://dx.doi.org/10.3402/tellusb.v67.27853. Kalabokas P., J. Hjorth, G. Foret, G. Dufour, M. Eremenko, G. Siour, J. Cuesta, M. Beekmann, 2016. An investigation on the origin of regional spring time ozone episodes in the Western Mediterranean and Central Europe. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-615.

  13. The Impact of Model and Rainfall Forcing Errors on Characterizing Soil Moisture Uncertainty in Land Surface Modeling

    NASA Technical Reports Server (NTRS)

    Maggioni, V.; Anagnostou, E. N.; Reichle, R. H.

    2013-01-01

    The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters (representing model parameter uncertainty) or by adding randomly generated noise (representing model structure and parameter uncertainty) to the model prognostic variables. Our findings highlight that the method currently used in the NASA GEOS-5 Land Data Assimilation System to perturb CLSM variables poorly describes the uncertainty in the predicted soil moisture, even when combined with rainfall model perturbations. On the other hand, by adding model parameter perturbations to rainfall forcing perturbations, a better characterization of uncertainty in soil moisture simulations is observed. Specifically, an analysis of the rank histograms shows that the most consistent ensemble of soil moisture is obtained by combining rainfall and model parameter perturbations. When rainfall forcing and model prognostic perturbations are added, the rank histogram shows a U-shape at the domain average scale, which corresponds to a lack of variability in the forecast ensemble. The more accurate estimation of the soil moisture prediction uncertainty obtained by combining rainfall and parameter perturbations is encouraging for the application of this approach in ensemble data assimilation systems.

  14. A study of model parameters associated with the urban climate using HCMM data. [St. Louis, Missouri

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The use of infrared and visible data from the Heat Capacity Mapping Mission (HCMM) and in situ data to study the intensity of the urban heat island of Saint Louis is described. Analysis of HCMM data shows that an urban heat island exists day and night in all seasons when clear skies prevail. The lower albedo value of the urban region during the day suggests that the higher temperatures are due to more absorption of solar radiation. Preliminary analysis of in situ meteorological data was performed after merging with HCMM data, and surface roughness, the exchange coefficient, and the soil moisture were calculated.

  15. Deriving meteorological variables across Africa for the study and control of vector-borne disease: a comparison of remote sensing and spatial interpolation of climate

    PubMed Central

    Hay, S. I.; Lennon, J. J.

    2012-01-01

    Summary This paper presents the results of an investigation into the utility of remote sensing (RS) using meteorological satellites sensors and spatial interpolation (SI) of data from meteorological stations, for the prediction of spatial variation in monthly climate across continental Africa in 1990. Information from the Advanced Very High Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Administration’s (NOAA) polar-orbiting meteorological satellites was used to estimate land surface temperature (LST) and atmospheric moisture. Cold cloud duration (CCD) data derived from the High Resolution Radiometer (HRR) on-board the European Meteorological Satellite programme’s (EUMETSAT) Meteosat satellite series were also used as a RS proxy measurement of rainfall. Temperature, atmospheric moisture and rainfall surfaces were independently derived from SI of measurements from the World Meteorological Organization (WMO) member stations of Africa. These meteorological station data were then used to test the accuracy of each methodology, so that the appropriateness of the two techniques for epidemiological research could be compared. SI was a more accurate predictor of temperature, whereas RS provided a better surrogate for rainfall; both were equally accurate at predicting atmospheric moisture. The implications of these results for mapping short and long-term climate change and hence their potential for the study and control of disease vectors are considered. Taking into account logistic and analytical problems, there were no clear conclusions regarding the optimality of either technique, but there was considerable potential for synergy. PMID:10203175

  16. Deriving meteorological variables across Africa for the study and control of vector-borne disease: a comparison of remote sensing and spatial interpolation of climate.

    PubMed

    Hay, S I; Lennon, J J

    1999-01-01

    This paper presents the results of an investigation into the utility of remote sensing (RS) using meteorological satellites sensors and spatial interpolation (SI) of data from meteorological stations, for the prediction of spatial variation in monthly climate across continental Africa in 1990. Information from the Advanced Very High Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Administration's (NOAA) polar-orbiting meteorological satellites was used to estimate land surface temperature (LST) and atmospheric moisture. Cold cloud duration (CCD) data derived from the High Resolution Radiometer (HRR) on-board the European Meteorological Satellite programme's (EUMETSAT) Meteosat satellite series were also used as a RS proxy measurement of rainfall. Temperature, atmospheric moisture and rainfall surfaces were independently derived from SI of measurements from the World Meteorological Organization (WMO) member stations of Africa. These meteorological station data were then used to test the accuracy of each methodology, so that the appropriateness of the two techniques for epidemiological research could be compared. SI was a more accurate predictor of temperature, whereas RS provided a better surrogate for rainfall; both were equally accurate at predicting atmospheric moisture. The implications of these results for mapping short and long-term climate change and hence their potential for the study and control of disease vectors are considered. Taking into account logistic and analytical problems, there were no clear conclusions regarding the optimality of either technique, but there was considerable potential for synergy.

  17. Artificial neural network model for ozone concentration estimation and Monte Carlo analysis

    NASA Astrophysics Data System (ADS)

    Gao, Meng; Yin, Liting; Ning, Jicai

    2018-07-01

    Air pollution in urban atmosphere directly affects public-health; therefore, it is very essential to predict air pollutant concentrations. Air quality is a complex function of emissions, meteorology and topography, and artificial neural networks (ANNs) provide a sound framework for relating these variables. In this study, we investigated the feasibility of using ANN model with meteorological parameters as input variables to predict ozone concentration in the urban area of Jinan, a metropolis in Northern China. We firstly found that the architecture of network of neurons had little effect on the predicting capability of ANN model. A parsimonious ANN model with 6 routinely monitored meteorological parameters and one temporal covariate (the category of day, i.e. working day, legal holiday and regular weekend) as input variables was identified, where the 7 input variables were selected following the forward selection procedure. Compared with the benchmarking ANN model with 9 meteorological and photochemical parameters as input variables, the predicting capability of the parsimonious ANN model was acceptable. Its predicting capability was also verified in term of warming success ratio during the pollution episodes. Finally, uncertainty and sensitivity analysis were also performed based on Monte Carlo simulations (MCS). It was concluded that the ANN could properly predict the ambient ozone level. Maximum temperature, atmospheric pressure, sunshine duration and maximum wind speed were identified as the predominate input variables significantly influencing the prediction of ambient ozone concentrations.

  18. [An operational remote sensing algorithm of land surface evapotranspiration based on NOAA PAL dataset].

    PubMed

    Hou, Ying-Yu; He, Yan-Bo; Wang, Jian-Lin; Tian, Guo-Liang

    2009-10-01

    Based on the time series 10-day composite NOAA Pathfinder AVHRR Land (PAL) dataset (8 km x 8 km), and by using land surface energy balance equation and "VI-Ts" (vegetation index-land surface temperature) method, a new algorithm of land surface evapotranspiration (ET) was constructed. This new algorithm did not need the support from meteorological observation data, and all of its parameters and variables were directly inversed or derived from remote sensing data. A widely accepted ET model of remote sensing, i. e., SEBS model, was chosen to validate the new algorithm. The validation test showed that both the ET and its seasonal variation trend estimated by SEBS model and our new algorithm accorded well, suggesting that the ET estimated from the new algorithm was reliable, being able to reflect the actual land surface ET. The new ET algorithm of remote sensing was practical and operational, which offered a new approach to study the spatiotemporal variation of ET in continental scale and global scale based on the long-term time series satellite remote sensing images.

  19. The impact of urbanization during half a century on surface meteorology based on WRF model simulations over National Capital Region, India

    NASA Astrophysics Data System (ADS)

    Sati, Ankur Prabhat; Mohan, Manju

    2017-10-01

    An estimated 50% of the global population lives in the urban areas, and this percentage is projected to reach around 69% by the year 2050 (World Urbanization Prospects 2009). There is a considerable growth of urban and built-up area during the recent decades over National Capital Region (NCR) of India (17-fold increase in the urban extent). The proposed study estimates the land use land cover changes particularly changes to urban class from other land use types such as croplands, shrubland, open areas, and water bodies and quantify these changes for a span of about five decades. Further, the impact of these land use/land cover changes is examined on spatial and temporal variations of meteorological parameters using the Weather Research and Forecast (WRF) Model. The urbanized areas appear to be one of the regions with highest changes in the values of the fluxes and temperatures where during daytime, the surface sensible heat flux values show a noticeable increase of 60-70 W m-2 which commensurate with increase in urbanization. Similarly, the nighttime LST and T2m show an increase of 3-5 and 2-3 K, respectively. The diurnal temperature range (DTR) of LST and surface temperature also shows a decrease of about 5 and 2-3 K, respectively, with increasing urbanization. Significant decrease in the magnitude of surface winds and relative humidity is also observed over the areas converted to urban form over a period of half a century. The impacts shown here have serious implications on human health, energy consumption, ventilation, and atmospheric pollution.

  20. A statistical-based approach for acoustic tomography of the atmosphere.

    PubMed

    Kolouri, Soheil; Azimi-Sadjadi, Mahmood R; Ziemann, Astrid

    2014-01-01

    Acoustic travel-time tomography of the atmosphere is a nonlinear inverse problem which attempts to reconstruct temperature and wind velocity fields in the atmospheric surface layer using the dependence of sound speed on temperature and wind velocity fields along the propagation path. This paper presents a statistical-based acoustic travel-time tomography algorithm based on dual state-parameter unscented Kalman filter (UKF) which is capable of reconstructing and tracking, in time, temperature, and wind velocity fields (state variables) as well as the dynamic model parameters within a specified investigation area. An adaptive 3-D spatial-temporal autoregressive model is used to capture the state evolution in the UKF. The observations used in the dual state-parameter UKF process consist of the acoustic time of arrivals measured for every pair of transmitter/receiver nodes deployed in the investigation area. The proposed method is then applied to the data set collected at the Meteorological Observatory Lindenberg, Germany, as part of the STINHO experiment, and the reconstruction results are presented.

  1. Height extrapolation of wind data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhail, A.S.

    1982-11-01

    Hourly average data for a period of 1 year from three tall meteorological towers - the Erie tower in Colorado, the Goodnoe Hills tower in Washington and the WKY-TV tower in Oklahoma - were used to analyze the wind shear exponent variabiilty with various parameters such as thermal stability, anemometer level wind speed, projection height and surface roughness. Different proposed models for prediction of height variability of short-term average wind speeds were discussed. Other models that predict the height dependence of Weilbull distribution parameters were tested. The observed power law exponent for all three towers showed strong dependence on themore » anemometer level wind speed and stability (nighttime and daytime). It also exhibited a high degree of dependence on extrapolation height with respect to anemometer height. These dependences became less severe as the anemometer level wind speeds were increased due to the turbulent mixing of the atmospheric boundary layer. The three models used for Weibull distribution parameter extrapolation were he velocity-dependent power law model (Justus), the velocity, surface roughness, and height-dependent model (Mikhail) and the velocity and surface roughness-dependent model (NASA). The models projected the scale parameter C fairly accurately for the Goodnoe Hills and WKY-TV towers and were less accurate for the Erie tower. However, all models overestimated the C value. The maximum error for the Mikhail model was less than 2% for Goodnoe Hills, 6% for WKY-TV and 28% for Erie. The error associated with the prediction of the shape factor (K) was similar for the NASA, Mikhail and Justus models. It ranged from 20 to 25%. The effect of the misestimation of hub-height distribution parameters (C and K) on average power output is briefly discussed.« less

  2. Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data

    NASA Astrophysics Data System (ADS)

    Tang, Wenjun; Qin, Jun; Yang, Kun; Liu, Shaomin; Lu, Ning; Niu, Xiaolei

    2016-03-01

    Cloud parameters (cloud mask, effective particle radius, and liquid/ice water path) are the important inputs in estimating surface solar radiation (SSR). These parameters can be derived from MODIS with high accuracy, but their temporal resolution is too low to obtain high-temporal-resolution SSR retrievals. In order to obtain hourly cloud parameters, an artificial neural network (ANN) is applied in this study to directly construct a functional relationship between MODIS cloud products and Multifunctional Transport Satellite (MTSAT) geostationary satellite signals. In addition, an efficient parameterization model for SSR retrieval is introduced and, when driven with MODIS atmospheric and land products, its root mean square error (RMSE) is about 100 W m-2 for 44 Baseline Surface Radiation Network (BSRN) stations. Once the estimated cloud parameters and other information (such as aerosol, precipitable water, ozone) are input to the model, we can derive SSR at high spatiotemporal resolution. The retrieved SSR is first evaluated against hourly radiation data at three experimental stations in the Haihe River basin of China. The mean bias error (MBE) and RMSE in hourly SSR estimate are 12.0 W m-2 (or 3.5 %) and 98.5 W m-2 (or 28.9 %), respectively. The retrieved SSR is also evaluated against daily radiation data at 90 China Meteorological Administration (CMA) stations. The MBEs are 9.8 W m-2 (or 5.4 %); the RMSEs in daily and monthly mean SSR estimates are 34.2 W m-2 (or 19.1 %) and 22.1 W m-2 (or 12.3 %), respectively. The accuracy is comparable to or even higher than two other radiation products (GLASS and ISCCP-FD), and the present method is more computationally efficient and can produce hourly SSR data at a spatial resolution of 5 km.

  3. Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data

    NASA Astrophysics Data System (ADS)

    Tang, W.; Qin, J.; Yang, K.; Liu, S.; Lu, N.; Niu, X.

    2015-12-01

    Cloud parameters (cloud mask, effective particle radius and liquid/ice water path) are the important inputs in determining surface solar radiation (SSR). These parameters can be derived from MODIS with high accuracy but their temporal resolution is too low to obtain high temporal resolution SSR retrievals. In order to obtain hourly cloud parameters, the Artificial Neural Network (ANN) is applied in this study to directly construct a functional relationship between MODIS cloud products and Multi-functional Transport Satellite (MTSAT) geostationary satellite signals. Meanwhile, an efficient parameterization model for SSR retrieval is introduced and, when driven with MODIS atmospheric and land products, its root mean square error (RMSE) is about 100 W m-2 for 44 Baseline Surface Radiation Network (BSRN) stations. Once the estimated cloud parameters and other information (such as aerosol, precipitable water, ozone and so on) are input to the model, we can derive SSR at high spatio-temporal resolution. The retrieved SSR is first evaluated against hourly radiation data at three experimental stations in the Haihe River Basin of China. The mean bias error (MBE) and RMSE in hourly SSR estimate are 12.0 W m-2 (or 3.5 %) and 98.5 W m-2 (or 28.9 %), respectively. The retrieved SSR is also evaluated against daily radiation data at 90 China Meteorological Administration (CMA) stations. The MBEs are 9.8 W m-2 (5.4 %); the RMSEs in daily and monthly-mean SSR estimates are 34.2 W m-2 (19.1 %) and 22.1 W m-2 (12.3 %), respectively. The accuracy is comparable or even higher than other two radiation products (GLASS and ISCCP-FD), and the present method is more computationally efficient and can produce hourly SSR data at a spatial resolution of 5 km.

  4. Computer-generated imagery for 4-D meteorological data

    NASA Technical Reports Server (NTRS)

    Hibbard, William L.

    1986-01-01

    The University of Wisconsin-Madison Space Science and Engineering Center is developing animated stereo display terminals for use with McIDAS (Man-computer Interactive Data Access System). This paper describes image-generation techniques which have been developed to take maximum advantage of these terminals, integrating large quantities of four-dimensional meteorological data from balloon and satellite soundings, satellite images, Doppler and volumetric radar, and conventional surface observations. The images have been designed to use perspective, shading, hidden-surface removal, and transparency to augment the animation and stereo-display geometry. They create an illusion of a moving three-dimensional model of the atmosphere. This paper describes the design of these images and a number of rules of thumb for generating four-dimensional meteorological displays.

  5. Observed temporal variations in the Earth's gravity field from 16-year Starlette orbit analysis

    NASA Technical Reports Server (NTRS)

    Cheng, M. K.; Eanes, R. L.; Shum, C. K.; Schutz, B. E.; Tapley, B. D.

    1992-01-01

    Satellite laser ranging data to Starlette, collected during the period from 1975 to 1990, are analyzed to determine yearly values of the second degree annual (Sa) and semiannual (Ssa) tides, simultaneously with average values of other low degree and order tide parameters. The yearly fluctuations in the values for Sa and Ssa are associated with changes in the Earth's second degree zonal harmonic caused by meteorological excitation. The Starlette-determined mean values for the amplitude of the annual and semiannual variations in J2 are 32.3 x 10 exp -11 and 19.5 x 10 exp -11, respectively; while the rms about the mean values are 4.1 x 10 exp -11 and 6.3 x 10 exp -11, respectively. The annual delta-J2 is in good agreement with the value obtained from the combined effects of air mass redistribution without the oceanic inverted-barometer effects (non-IB) and hydrological change. Approximately 90 percent of the observed annual variation from Starlette is attributed to the meteorological mass redistribution occurring on the Earth's surface.

  6. The Australian Bureau of Meteorology Activities for the Regional Ionosphere Specification and Forcating

    NASA Astrophysics Data System (ADS)

    Bouya, Z.; Terkildsen, M.; Maher, P.

    2016-12-01

    Space Weather Services, Australian Bureau of Meteorology, Sydney, Australia Abstract:The Australian Bureau of Meteorology through its Space Weather Service (SWS) provides ionospheric products and services to a diverse group of customers. In this work, we present a regional approach to characterizing the Australian regional Total Electron Content (TEC) and an assimilative model to map the Ionospheric layer parameter foF2. Finally we outline the design of an Australian regional Ionospheric forecast model at SWS. Keywords: TEC, foF2, regional, data assimilation, forecast

  7. Calibrating a surface mass-balance model for Austfonna ice cap, Svalbard

    NASA Astrophysics Data System (ADS)

    Schuler, Thomas Vikhamar; Loe, Even; Taurisano, Andrea; Eiken, Trond; Hagen, Jon Ove; Kohler, Jack

    2007-10-01

    Austfonna (8120 km2) is by far the largest ice mass in the Svalbard archipelago. There is considerable uncertainty about its current state of balance and its possible response to climate change. Over the 2004/05 period, we collected continuous meteorological data series from the ice cap, performed mass-balance measurements using a network of stakes distributed across the ice cap and mapped the distribution of snow accumulation using ground-penetrating radar along several profile lines. These data are used to drive and test a model of the surface mass balance. The spatial accumulation pattern was derived from the snow depth profiles using regression techniques, and ablation was calculated using a temperature-index approach. Model parameters were calibrated using the available field data. Parameter calibration was complicated by the fact that different parameter combinations yield equally acceptable matches to the stake data while the resulting calculated net mass balance differs considerably. Testing model results against multiple criteria is an efficient method to cope with non-uniqueness. In doing so, a range of different data and observations was compared to several different aspects of the model results. We find a systematic underestimation of net balance for parameter combinations that predict observed ice ablation, which suggests that refreezing processes play an important role. To represent these effects in the model, a simple PMAX approach was included in its formulation. Used as a diagnostic tool, the model suggests that the surface mass balance for the period 29 April 2004 to 23 April 2005 was negative (-318 mm w.e.).

  8. Sastrugi Geometrical Properties and Morphometry Over Two Winter Seasons at col du Lac Blanc (french Alps, 2700 m a.s.l)

    NASA Astrophysics Data System (ADS)

    Naaim, Florence; Picard, Ghislain; Bellot, Hervé; Arnaud, Laurent; Vionnet, Vincent

    2017-04-01

    Some elements of snow surface roughness, such as ripple or sastrugi, are a direct manifestation of wind erosion and in turn modify the near-surface wind field and consequently the horizontal snow mass fluxes. This leads to a negative feedback between wind strength and surface roughness that must be taken into account in numerical models. Formation of sastrugi, which are elongated metric-scale ridges of wind-packed snow whose longitudinal axis is parallel to the prevailing wind at the time of their formation, is still not well-understood. The first step to provide new information about the formation and evolution of such features is to integrate meteorological data and accurate description of geometrical properties. But the complex and dynamic surface of sastrugi cannot be easily captured by manual measurements (Bellot et al., 2014), which furthermore must be frequent as the formation of new landforms can happen very quickly. That's why the potential of a low-cost time-lapse terrestrial laserscan RLS (Picard et al., 2016) has been investigated during the winter seasons 2015-2016 and 2016-2017 at Col du Lac Blanc in the French Alps. This experimental test site, dedicated to drifting snow studies, and subject to the formation of sastrugi is well-suited for such study : accurate meteorological data, including drifting snow fluxes, are available each 10 minutes. RLS covered a surface area of around 200 m2 for a spatial horizontal resolution of nearly 2 cm and monitored successfully surface roughness once a day during the whole winter seasons. Sastrugi geometrical parameters, such as the frontal area and average height of roughness elements has been extracted from the RLS data and the sastrugi morphometry has be examined over two winter seasons in link with snow fall, drifting snow occurence and intensity and wind speed.

  9. Sensitivity analysis of WRF model PBL schemes in simulating boundary-layer variables in southern Italy: An experimental campaign

    NASA Astrophysics Data System (ADS)

    Avolio, E.; Federico, S.; Miglietta, M. M.; Lo Feudo, T.; Calidonna, C. R.; Sempreviva, A. M.

    2017-08-01

    The sensitivity of boundary layer variables to five (two non-local and three local) planetary boundary-layer (PBL) parameterization schemes, available in the Weather Research and Forecasting (WRF) mesoscale meteorological model, is evaluated in an experimental site in Calabria region (southern Italy), in an area characterized by a complex orography near the sea. Results of 1 km × 1 km grid spacing simulations are compared with the data collected during a measurement campaign in summer 2009, considering hourly model outputs. Measurements from several instruments are taken into account for the performance evaluation: near surface variables (2 m temperature and relative humidity, downward shortwave radiation, 10 m wind speed and direction) from a surface station and a meteorological mast; vertical wind profiles from Lidar and Sodar; also, the aerosol backscattering from a ceilometer to estimate the PBL height. Results covering the whole measurement campaign show a cold and moist bias near the surface, mostly during daytime, for all schemes, as well as an overestimation of the downward shortwave radiation and wind speed. Wind speed and direction are also verified at vertical levels above the surface, where the model uncertainties are, usually, smaller than at the surface. A general anticlockwise rotation of the simulated flow with height is found at all levels. The mixing height is overestimated by all schemes and a possible role of the simulated sensible heat fluxes for this mismatching is investigated. On a single-case basis, significantly better results are obtained when the atmospheric conditions near the measurement site are dominated by synoptic forcing rather than by local circulations. From this study, it follows that the two first order non-local schemes, ACM2 and YSU, are the schemes with the best performance in representing parameters near the surface and in the boundary layer during the analyzed campaign.

  10. Small-scale and mesoscale lake surface water temperature structure: Thermography and in situ measurements from Lake Geneva, Switzerland

    NASA Astrophysics Data System (ADS)

    Irani Rahaghi, Abolfazl; Lemmin, Ulrich; Bouffard, Damien; Riffler, Michael; Wunderle, Stefan; Barry, Andrew

    2017-04-01

    Lake surface water temperature (LSWT), which varies spatially and temporarily, reflects meteorological and climatological forcing more than any other physical lake parameter. There are different data sources for LSWT mapping, including remote sensing and in situ measurements. Depending on cloud cover, satellite data can depict large-scale thermal patterns, but not the meso- or small-scale processes. Meso-scale thermography allows complementing (and hence ground-truth) satellite imagery at the sub-pixel scale. A Balloon Launched Imaging and Monitoring Platform (BLIMP) was used to measure the LSWT at the meso-scale. The BLIMP consists of a small balloon tethered to a boat and is equipped with thermal and RGB cameras, as well as other instrumentation for geo-location and communication. A feature matching-based algorithm was implemented to create composite thermal images. Simultaneous ground-truthing of the BLIMP data were achieved using an autonomous craft measuring among other in situ surface/near surface temperatures, radiation and meteorological data. Latent and sensible surface heat fluxes were calculated using the bulk parameterization algorithm based on similarity theory. Results are presented for the day-time stratified low wind speed (up to 3 ms-1) conditions over Lake Geneva for two field campaigns, each of 6 h on 18 March and 19 July 2016. The meso-scale temperature field ( 1-m pixel resolution) had a range and standard deviation of 2.4°C and 0.3°C, respectively, over a 1-km2 area (typical satellite pixel size). Interestingly, at the sub-pixel scale, various temporal and spatial thermal structures are evident - an obvious example being streaks in the along-wind direction during March, which we hypothesize are caused by the steady 3 h wind condition. The results also show that the spatial variability of the estimated total heat flux is due to the corresponding variability of the longwave cooling from the water surface and the latent heat flux.

  11. Mitigation of global cooling by stratospheric chemistry feedbacks in a simulation of the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Noda, S.; Kodera, K.; Deushi, M.; Kitoh, A.; Mizuta, R.; Yoshida, K.; Murakami, S.; Adachi, Y.; Yoden, S.

    2017-12-01

    A series of numerical simulations of the Last Glacial Maximum (21 kyr B.P.) climate are performed by using an Earth System Model of the Meteorological Research Institute of the Japan Meteorological Agency to investigate the impact of stratospheric ozone profile on the surface climate with decreased CO2 condition and different orbital parameters. The contribution of the interactive ozone chemistry reveals a significant anomaly of +0.5 K (approximately 20 %) in the tropics and up to +1.5 K in high-latitudes for the annual mean zonal mean surface air temperature compared with those of the corresponding experiments with a prescribed ozone profile for preindustrial simulation of the fifth Coupled Model Intercomparison Project (CMIP5). In the tropics, this mitigation of global cooling is related to longwave radiative feedbacks associated with circulation-driven increases in lower stratospheric ozone and related increase in stratospheric water vapor and related decrease in cirrus cloud. The relations are opposite signs to and consistent with those of a global warming simulation. In high-latitudes, the polar amplification of mitigation of cooling associated with the change of sea ice area that is the same sign to and consistent with our previous paleoclimate simulation in the mid-Holocene (6 kyr B.P.). We recommend that climate models include sea ice and ozone profile that are consistent with CO2 concentration.

  12. Techniques for Improved Retrospective Fine-scale Meteorology

    EPA Science Inventory

    Pleim-Xiu Land-Surface model (PX LSM) was developed for retrospective meteorological simulations to drive chemical transport models. One of the key features of the PX LSM is the indirect soil moisture and temperature nudging. The idea is to provide a three hourly 2-m temperature ...

  13. Surface Meteorological Station - SWiFT southwest - METa1 - Reviewed Data

    DOE Data Explorer

    Herges, Thomas

    2017-10-23

    Scaled Wind Farm Technology (SWiFT) Facility meteorological tower (MET), turbine, and Technical University of Denmark (DTU) SpinnerLidar data acquired on 20161216 UTC during a neutral atmospheric boundary layer inflow at a single focus distance of 2.5 D (D=27 m).

  14. Relationships between nocturnal winter road slipperiness, cloud cover and surface temperature

    NASA Astrophysics Data System (ADS)

    Grimbacher, T.; Schmid, W.

    2003-04-01

    Ice and Snow are important risks for road traffic. In this study we show several events of slipperiness in Switzerland, mainly caused by rain or snow falling on a frozen surface. Other reasons for slippery conditions are frost or freezing dew in clear nights and nocturnal clearing after precipitation, which goes along with radiative cooling. The main parameters of road weather forecasts are precipitation, cloudiness and surface temperature. Precipitation is well predictable with weather radars and radar nowcasting algorithms. Temperatures are often taken from numerical weather prediction models, but because of changes in cloud cover these model values are inaccurate in terms of predicting the onset of freezing. Cloudiness, especially the advection, formation and dissipation of clouds and their interaction with surface temperatures, is one of the major unsolved problems of road weather forecasts. Cloud cover and the temperature difference between air and surface temperature are important parameters of the radiation balance. In this contribution, we show the relationship between them, proved at several stations all over Switzerland. We found a quadratic correlation coefficient of typically 60% and improved it considering other meteorological parameters like wind speed and surface water. The acquired relationship may vary from one station to another, but we conclude that temperature difference is a signature for nocturnal cloudiness. We investigated nocturnal cloudiness for two cases from winters 2002 and 2003 in the canton of Lucerne in central Switzerland. There, an ultra-dense combination of two networks with together 55 stations within 50x50 km^2 is operated, measuring air and surface temperature, wind and other road weather parameters. With the aid of our equations, temperature differences detected from this network were converted into cloud maps. A comparison between precipitation seen by radar, cloud maps and surface temperatures shows that there are similar structures in all data. Depending on the situation, we also identified additional effects influencing the temperature differences, for instance the advection of could air or the influence of melting heat at or after a snow event. All these findings help to further understand the phenomena, and hence will contribute to a better predictability of winter road slipperiness.

  15. Numerical experiments on short-term meteorological effects on solar variability

    NASA Technical Reports Server (NTRS)

    Somerville, R. C. J.; Hansen, J. E.; Stone, P. H.; Quirk, W. J.; Lacis, A. A.

    1975-01-01

    A set of numerical experiments was conducted to test the short-range sensitivity of a large atmospheric general circulation model to changes in solar constant and ozone amount. On the basis of the results of 12-day sets of integrations with very large variations in these parameters, it is concluded that realistic variations would produce insignificant meteorological effects. Any causal relationships between solar variability and weather, for time scales of two weeks or less, rely upon changes in parameters other than solar constant or ozone amounts, or upon mechanisms not yet incorporated in the model.

  16. Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain

    NASA Astrophysics Data System (ADS)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields resulting from the proposed downscaling strategy have significantly improved spatiotemporal variance compared to those from the operational forecasts, and any time series generated from the downscaled fields do not suffer from discontinuities due to switching between the consecutive forecasts.

  17. Determining the parameters of Weibull function to estimate the wind power potential in conditions of limited source meteorological data

    NASA Astrophysics Data System (ADS)

    Fetisova, Yu. A.; Ermolenko, B. V.; Ermolenko, G. V.; Kiseleva, S. V.

    2017-04-01

    We studied the information basis for the assessment of wind power potential on the territory of Russia. We described the methodology to determine the parameters of the Weibull function, which reflects the density of distribution of probabilities of wind flow speeds at a defined basic height above the surface of the earth using the available data on the average speed at this height and its repetition by gradations. The application of the least square method for determining these parameters, unlike the use of graphical methods, allows performing a statistical assessment of the results of approximation of empirical histograms by the Weibull formula. On the basis of the computer-aided analysis of the statistical data, it was shown that, at a fixed point where the wind speed changes at different heights, the range of parameter variation of the Weibull distribution curve is relatively small, the sensitivity of the function to parameter changes is quite low, and the influence of changes on the shape of speed distribution curves is negligible. Taking this into consideration, we proposed and mathematically verified the methodology of determining the speed parameters of the Weibull function at other heights using the parameter computations for this function at a basic height, which is known or defined by the average speed of wind flow, or the roughness coefficient of the geological substrate. We gave examples of practical application of the suggested methodology in the development of the Atlas of Renewable Energy Resources in Russia in conditions of deficiency of source meteorological data. The proposed methodology, to some extent, may solve the problem related to the lack of information on the vertical profile of repeatability of the wind flow speeds in the presence of a wide assortment of wind turbines with different ranges of wind-wheel axis heights and various performance characteristics in the global market; as a result, this methodology can become a powerful tool for effective selection of equipment in the process of designing a power supply system in a certain location.

  18. Estimation of Regional Net CO2 Exchange over the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Biraud, S. C.; Riley, W. J.; Fischer, M. L.; Torn, M. S.; Cooley, H. S.

    2004-12-01

    Estimating spatially distributed ecosystem CO2 exchange is an important component of the North American Carbon Program. We describe here a methodology to estimate Net Ecosystem Exchange (NEE) over the Southern Great Plains, using: (1) data from the Department Of Energy's Atmospheric Radiation Measurement (ARM) sites in Oklahoma and Kansas; (2) meteorological forcing data from the Mesonet facilities; (3) soil and vegetation types from 1 km resolution USGS databases; (4) vegetation status (e.g., LAI) from 1 km satellite measurements of surface reflectance (MODIS); (5) a tested land-surface model; and (6) a coupled land-surface and meteorological model (MM5/ISOLSM). This framework allows us to simulate regional surface fluxes in addition to ABL and free troposphere concentrations of CO2 at a continental scale with fine-scale nested grids centered on the ARM central facility. We use the offline land-surface and coupled models to estimate regional NEE, and compare predictions to measurements from the 9 Extended Facility sites with eddy correlation measurements. Site level comparisons to portable ECOR measurements in several crop types are also presented. Our approach also allows us to extend bottom-up estimates to periods and areas where meteorological forcing data are unavailable.

  19. Influence of meteorological parameters on the soil radon (Rn222) emanation in Kutch, Gujarat, India.

    PubMed

    Sahoo, Sushanta Ku; Katlamudi, Madhusudhanarao; Shaji, Jerin P; Murali Krishna, K S; Udaya Lakshmi, G

    2018-02-02

    The soil radon (Rn 222 ) and thoron (Rn 220 ) concentrations recorded at Badargadh and Desalpar observatories in the Kutch region of Gujarat, India, have been analyzed to study the sources of the radon emissions, earthquake precursors, and the influence of meteorological parameters on radon emission. Radon and meteorological parameters were recorded using Radon Monitor RMT 1688-2 at these two stations. We used the radon data during February 21, 2011 to June 8, 2011, for Badargadh and March 2, 2011 to May 19, 2011, for the Desalpar station with a sampling interval of 10 min. It is observed that the radon concentrations at Desalpar varies between 781 and 4320 Bq m -3 with an average value of 2499 Bq m -3 , whereas thoron varies between 191 and 2017 Bq m -3 with an average value of 1433.69 Bq m -3 . The radon concentration at Badargadh varies between 264 and 2221 Bq m -3 with an average value of 1135.4 Bq m -3 , whereas thoron varies between 97 and 556 Bq m -3 . To understand how the meteorological parameters influence radon emanation, the radon and other meteorological parameters were correlated with linear regression analysis. Here, it was observed that radon and temperature are negatively correlated whereas radon and other two parameters, i.e., humidity and pressure are positively correlated. The cross correlogram also ascertains similar relationships between radon and other parameters. Further, the ratio between radon and thoron has been analyzed to determine the deep or shallow source of the radon emanation in the study area. These results revealed that the ratio radon/thoron enhanced during this period which indicates the deeper source contribution is prominent. Incidentally, all the local earthquakes occurred with a focal depth of 18-25 km at the lower crust in this region. We observed the rise in the concentrations of radon and the ratio radon/thoron at Badargadh station before the occurrence of the local earthquakes on 29th March 2011 (M 3.7) and 17th May 2011 (M 4.2). We clearly observed the radon level crossing the mean + 2*sigma level before the occurrence of these events. We conclude that these enhanced radon emissions are linked with alteration of the crustal stress/strain in this region as this observing station is near the epicenters of the earthquakes. We did not observe considerable variations in radon at the Desalpar station which is far from the earthquake location.

  20. Incorporating JULES into NASA's Land Information System (LIS) and Investigations of Land-Atmosphere Coupling

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph

    2011-01-01

    NASA's Land Information System (LIS; lis.gsfc.nasa.gov) is a flexible land surface modeling and data assimilation framework developed over the past decade with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. LIS features a high performance and flexible design, and operates on an ensemble of land surface models for extension over user-specified regional or global domains. The extensible interfaces of LIS allow the incorporation of new domains, land surface models (LSMs), land surface parameters, meteorological inputs, data assimilation and optimization algorithms. In addition, LIS has also been demonstrated for parameter estimation and uncertainty estimation, and has been coupled to the Weather Research and Forecasting (WRF) mesoscale model. A visiting fellowship is currently underway to implement JULES into LIS and to undertake some fundamental science on the feedbacks between the land surface and the atmosphere. An overview of the LIS system, features, and sample results will be presented in an effort to engage the community in the potential advantages of LIS-JULES for a range of applications. Ongoing efforts to develop a framework for diagnosing land-atmosphere coupling will also be presented using the suite of LSM and PBL schemes available in LIS and WRF along with observations from the U. S .. Southern Great Plains. This methodology provides a potential pathway to study factors controlling local land-atmosphere coupling (LoCo) using the LIS-WRF system, which will serve as a testbed for future experiments to evaluate coupling diagnostics within the community.

  1. Coupling of WRF meteorological model to WAM spectral wave model through sea surface roughness at the Balearic Sea: impact on wind and wave forecasts

    NASA Astrophysics Data System (ADS)

    Tolosana-Delgado, R.; Soret, A.; Jorba, O.; Baldasano, J. M.; Sánchez-Arcilla, A.

    2012-04-01

    Meteorological models, like WRF, usually describe the earth surface characteristics by tables that are function of land-use. The roughness length (z0) is an example of such approach. However, over sea z0 is modeled by the Charnock (1955) relation, linking the surface friction velocity u*2 with the roughness length z0 of turbulent air flow, z0 = α-u2* g The Charnock coefficient α may be considered a measure of roughness. For the sea surface, WRF considers a constant roughness α = 0.0185. However, there is evidence that sea surface roughness should depend on wave energy (Donelan, 1982). Spectral wave models like WAM, model the evolution and propagation of wave energy as a function of wind, and include a richer sea surface roughness description. Coupling WRF and WAM is thus a common way to improve the sea surface roughness description of WRF. WAM is a third generation wave model, solving the equation of advection of wave energy subject to input/output terms of: wind growth, energy dissipation and resonant non-linear wave-wave interactions. Third generation models work on the spectral domain. WAM considers the Charnock coefficient α a complex yet known function of the total wind input term, which depends on the wind velocity and on the Charnock coefficient again. This is solved iteratively (Janssen et al., 1990). Coupling of meteorological and wave models through a common Charnock coefficient is operationally done in medium-range met forecasting systems (e.g., at ECMWF) though the impact of coupling for smaller domains is not yet clearly assessed (Warner et al, 2010). It is unclear to which extent the additional effort of coupling improves the local wind and wave fields, in comparison to the effects of other factors, like e.g. a better bathymetry and relief resolution, or a better circulation information which might have its influence on local-scale meteorological processes (local wind jets, local convection, daily marine wind regimes, etc.). This work, within the scope of the 7th EU FP Project FIELD_AC, assesses the impact of coupling WAM and WRF on wind and wave forecasts on the Balearic Sea, and compares it with other possible improvements, like using available high-resolution circulation information from MyOcean GMES core services, or assimilating altimeter data on the Western Mediterranean. This is done in an ordered fashion following statistical design rules, which allows to extract main effects of each of the factors considered (coupling, better circulation information, data assimilation following Lionello et al., 1992) as well as two-factor interactions. Moreover, the statistical significance of these improvements can be tested in the future, though this requires maximum likelihood ratio tests with correlated data. Charnock, H. (1955) Wind stress on a water surface. Quart.J. Row. Met. Soc. 81: 639-640 Donelan, M. (1982) The dependence of aerodynamic drag coefficient on wave parameters. Proc. 1st Int. Conf. on Meteorology and Air-Sea Interactions of teh Coastal Zone. The Hague (Netherlands). AMS. 381-387 Janssen, P.A.E.M., Doyle, J., Bidlot, J., Hansen, B., Isaksen, L. and Viterbo, P. (1990) The impact of oean waves on the atmosphere. Seminars of the ECMWF. Lionello, P., Günther, H., and Janssen P.A.E.M. (1992) Assimilation of altimeter data in a global third-generation wave model. Journal of Geophysical Research 97 (C9): 453-474. Warner, J., Armstrong, B., He, R. and Zambon, J.B. (2010) Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. Ocean Modelling 35: 230-244.

  2. Effects of meteorological models on the solution of the surface energy balance and soil temperature variations in bare soils

    NASA Astrophysics Data System (ADS)

    Saito, Hirotaka; Šimůnek, Jiri

    2009-07-01

    SummaryA complete evaluation of the soil thermal regime can be obtained by evaluating the movement of liquid water, water vapor, and thermal energy in the subsurface. Such an evaluation requires the simultaneous solution of the system of equations for the surface water and energy balance, and subsurface heat transport and water flow. When only daily climatic data is available, one needs not only to estimate diurnal cycles of climatic data, but to calculate the continuous values of various components in the energy balance equation, using different parameterization methods. The objective of this study is to quantify the impact of the choice of different estimation and parameterization methods, referred together to as meteorological models in this paper, on soil temperature predictions in bare soils. A variety of widely accepted meteorological models were tested on the dataset collected at a proposed low-level radioactive-waste disposal site in the Chihuahua Desert in West Texas. As the soil surface was kept bare during the study, no vegetation effects were evaluated. A coupled liquid water, water vapor, and heat transport model, implemented in the HYDRUS-1D program, was used to simulate diurnal and seasonal soil temperature changes in the engineered cover installed at the site. The modified version of HYDRUS provides a flexible means for using various types of information and different models to evaluate surface mass and energy balance. Different meteorological models were compared in terms of their prediction errors for soil temperatures at seven observation depths. The results obtained indicate that although many available meteorological models can be used to solve the energy balance equation at the soil-atmosphere interface in coupled water, vapor, and heat transport models, their impact on overall simulation results varies. For example, using daily average climatic data led to greater prediction errors, while relatively simple meteorological models may significantly improve soil temperature predictions. On the other hand, while models for the albedo and soil emissivity had little impact on soil temperature predictions, the choice of the atmospheric emissivity models had a greater impact. A comparison of all the different models indicates that the error introduced at the soil atmosphere interface propagates to deeper layers. Therefore, attention needs to be paid not only to the precise determination of the soil hydraulic and thermal properties, but also to the selection of proper meteorological models for the components involved in the surface energy balance calculations.

  3. Software for storage and processing coded messages for the international exchange of meteorological information

    NASA Astrophysics Data System (ADS)

    Popov, V. N.; Botygin, I. A.; Kolochev, A. S.

    2017-01-01

    The approach allows representing data of international codes for exchange of meteorological information using metadescription as the formalism associated with certain categories of resources. Development of metadata components was based on an analysis of the data of surface meteorological observations, atmosphere vertical sounding, atmosphere wind sounding, weather radar observing, observations from satellites and others. A common set of metadata components was formed including classes, divisions and groups for a generalized description of the meteorological data. The structure and content of the main components of a generalized metadescription are presented in detail by the example of representation of meteorological observations from land and sea stations. The functional structure of a distributed computing system is described. It allows organizing the storage of large volumes of meteorological data for their further processing in the solution of problems of the analysis and forecasting of climatic processes.

  4. Estimation of biogenic volatile organic compound (BVOC) emissions from the terrestrial ecosystem in China using real-time remote sensing data

    NASA Astrophysics Data System (ADS)

    Li, M.; Huang, X.; Li, J.; Song, Y.

    2012-03-01

    Because of the high emission rate and reactivity, biogenic volatile organic compounds (BVOCs) play a significant role in the terrestrial ecosystems, human health, secondary pollution, global climate change and the global carbon cycle. Past estimations of BVOC emissions in China were based on outdated algorithms and coarsely resolved meteorological data, and there have been significant inconsistences between the land surface parameters of dynamic models and those of BVOC estimation models, leading to large inaccuracies in the estimated results. To refine BVOC emission estimations for China and to further explore the role of BVOCs in the atmosphere, we used the latest algorithms of MEGAN (Model of Emissions of Gases and Aerosols from Nature), with MM5 (the Fifth-Generation Mesoscale Model) providing highly resolved meteorological data, to estimate the biogenic emissions of isoprene (C5H8) and seven monoterpene species (C10H16) in 2006. Real-time MODIS (Moderate Resolution Imaging Spectroradiometer) data were introduced to update the land surface parameters and to improve the simulation performance of MM5, and to determine the influence of leaf area index (LAI) and leaf age deviation from standard conditions. In this study, the annual BVOC emissions for the whole country totaled 12.97 Tg C, a relevant value compared with past studies. Therein, the most important individual contributor was isoprene (9.36 Tg C yr-1), followed by α-pinene (1.24 Tg C yr-1) and β-pinene (0.84 Tg C yr-1). Due to the considerable regional disparity in plant distributions and meteorological conditions across China, BVOC emissions presented significant spatial and temporal variations. Spatially, isoprene emission was concentrated in South China, which is covered by large areas of broadleaf forests and shrubs. While Southeast China was the top-ranking contributor of monoterpenes, in which the dominant vegetation genera consist of evergreen coniferous forests. Temporally, BVOC emissions primarily occurred in July and August, with daily emissions peaking at about 13:00∼14:00 h (Beijing Time, BJT). In this study, we present an improved estimation of BVOC emissions, which provides important information for further exploration of the role of BVOCs in atmospheric processes.

  5. BOREAS TE-21 Daily Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Kimball, John; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-21 (Terrestrial Ecology) team collected data sets in support of its efforts to characterize and interpret information on the meteorology of boreal forest areas. Daily meteorological data were derived from half-hourly BOREAS tower flux (TF) and Automatic Meteorological Station (AMS) mesonet measurements collected in the Southern and Northern Study Areas (SSA and NSA) for the period of 01 Jan 1994 until 31 Dec 1994. The data were stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  6. Development and Implementation of the DTOPLATS-MP land surface model over the Continental US at 30 meters

    NASA Astrophysics Data System (ADS)

    Chaney, N.; Wood, E. F.

    2014-12-01

    The increasing accessibility of high-resolution land data (< 100 m) and high performance computing allows improved parameterizations of subgrid hydrologic processes in macroscale land surface models. Continental scale fully distributed modeling at these spatial scales is possible; however, its practicality for operational use is still unknown due to uncertainties in input data, model parameters, and storage requirements. To address these concerns, we propose a modeling framework that provides the spatial detail of a fully distributed model yet maintains the benefits of a semi-distributed model. In this presentation we will introduce DTOPLATS-MP, a coupling between the NOAH-MP land surface model and the Dynamic TOPMODEL hydrologic model. This new model captures a catchment's spatial heterogeneity by clustering high-resolution land datasets (soil, topography, and land cover) into hundreds of hydrologic similar units (HSUs). A prior DEM analysis defines the connections between each HSU. At each time step, the 1D land surface model updates each HSU; the HSUs then interact laterally via the subsurface and surface. When compared to the fully distributed form of the model, this framework allows a significant decrease in computation and storage while providing most of the same information and enabling parameter transferability. As a proof of concept, we will show how this new modeling framework can be run over CONUS at a 30-meter spatial resolution. For each catchment in the WBD HUC-12 dataset, the model is run between 2002 and 2012 using available high-resolution continental scale land and meteorological datasets over CONUS (dSSURGO, NLCD, NED, and NCEP Stage IV). For each catchment, the model is run with 1000 model parameter sets obtained from a Latin hypercube sample. This exercise will illustrate the feasibility of running the model operationally at continental scales while accounting for model parameter uncertainty.

  7. Does the scatterometer see wind speed or friction velocity?

    NASA Technical Reports Server (NTRS)

    Donelan, M. A.; Pierson, W. J., Jr.

    1984-01-01

    Studies of radar backscatter from the sea surface are referred either to the wind speed, U, or friction velocity, u(sub *). Bragg scattering theory suggests that these variations in backscatter are directly related to the height of the capillary-gravity waves modulated by the larger waves in tilt and by straining of the short wave field. The question then arises as to what characteristic of the wind field is most probably correlated with the wave number spectrum of the capillary-gravity waves. The justification for selecting U as the appropriate meteorological parameter to be associated with backscatter from L-band to Ku-band are reviewed. Both theoretical reasons and experimental evidence are used to demonstrate that the dominant parameter is U/C(lambda) where U is the wind speed at a height of about lambda/2 for waves having a phase speed of C(lambda).

  8. Marine Layer Stratus Study

    NASA Astrophysics Data System (ADS)

    Wells, Leonard A.

    2007-06-01

    The intent of this study is to develop a better understanding of the behavior of late spring through early fall marine layer stratus and fog at Vandenberg Air Force Base, which accounts for a majority of aviation forecasting difficulties. The main objective was to use Leipper (1995) study as a starting point to evaluate synoptic and mesoscale processes involved, and identify specific meteorological parameters that affected the behavior of marine layer stratus and fog. After identifying those parameters, the study evaluates how well the various weather models forecast them. The main conclusion of this study is that weak upper-air dynamic features work with boundary layer motions to influence marine layer behavior. It highlights the importance of correctly forecasting the surface temperature by showing how it ties directly to the wind field. That wind field, modified by the local terrain, establishes the low-level convergence and divergence pattern and the resulting marine layer cloud thicknesses and visibilities.

  9. Investigation using data from ERTS-1 to develop and implement utilization of living marine resources. [availability and distribution of menhaden fish in Mississippi Sound and Gulf waters

    NASA Technical Reports Server (NTRS)

    Stevenson, W. H. (Principal Investigator); Pastula, E. J., Jr.

    1973-01-01

    The author has identified the following significant results. This 15-month ERTS-1 investigation produced correlations between satellite, aircraft, menhaden fisheries, and environmental sea truth data from the Mississippi Sound. Selected oceanographic, meteorological, and biological parameters were used as indirect indicators of the menhaden resource. Synoptic and near real time sea truth, fishery, satellite imagery, aircraft acquired multispectral, photo and thermal IR information were acquired as data inputs. Computer programs were developed to manipulate these data according to user requirements. Preliminary results indicate a correlation between backscattered light with chlorophyll concentration and water transparency in turbid waters. Eight empirical menhaden distribution models were constructed from combinations of four fisheries-significant oceanographic parameters: water depth, transparency, color, and surface salinity. The models demonstrated their potential for management utilization in areas of resource assessment, prediction, and monitoring.

  10. Atmospheric turbulence review of space shuttle launches

    NASA Technical Reports Server (NTRS)

    Susko, Michael

    1991-01-01

    Research and analysis on the identification of turbulent regions from the surface to 16 km during Space Shuttle launches are discussed. It was demonstrated that the results from the FPS-16 radar/jimsphere balloon system in measuring winds can indeed indicate the presence or conditions ripe for turbulence in the troposphere and lower stratosphere. It was further demonstrated that atmospheric data obtained during the shuttle launches by the rawinsonde in conjunction with the jimsphere provides the necessary meteorological data to compute aerodynamic parameters to identify turbulence, such as Reynolds number drag coefficient, turbulent stresses, total energy, stability parameter, vertical gradient of kinetic energy, Richardson number, and the turbulence probability index. Enhanced temperature lapse rates and inversion rates, strong vector wind shears, and large changes in wind direction identify the occurrence of turbulence at the troposphere. When any two of the above conditions occur simultaneously, a significant probability of turbulence can occur.

  11. On the relationship between water vapor over the oceans and sea surface temperature

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.

    1990-01-01

    Monthly mean precipitable water data obtained from passive microwave radiometry were correlated with the National Meteorological Center (NMC) blended sea surface temperature data. It is shown that the monthly mean water vapor content of the atmosphere above the oceans can generally be prescribed from the sea surface temperature with a standard deviation of 0.36 g/sq cm. The form of the relationship between precipitable water and sea surface temperature in the range T (sub s) greater than 18 C also resembles that predicted from simple arguments based on the Clausius-Clapeyron relationship. The annual cycle of the globally integrated mass of Scanning Multichannel Microwave Radiometer (SMMR) water vapor is shown to differ from analyses of other water vapor data in both phase and amplitude and these differences point to a significant influence of the continents on water vapor. Regional scale analyses of water vapor demonstrate that monthly averaged water vapor data, when contrasted with the bulk sea surface temperature relationship developed in this study, reflect various known characteristics of the time mean large-scale circulation over the oceans. A water vapor parameter is introduced to highlight the effects of large-scale motion on atmospheric water vapor. Based on the magnitude of this parameter, it is shown that the effects of large-scale flow on precipitable water vapor are regionally dependent, but for the most part, the influence of circulation is generally less than about + or - 20 percent of the seasonal mean.

  12. On the relationship between water vapor over the oceans and sea surface temperature

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.

    1989-01-01

    Monthly mean precipitable water data obtained from passive microwave radiometry were correlated with the National Meteorological Center (NMC) blended sea surface temperature data. It is shown that the monthly mean water vapor content of the atmosphere above the oceans can generally be prescribed from the sea surface temperature with a standard deviation of 0.36 g/sq cm. The form of the relationship between precipitable water and sea surface temperature in the range T(sub s) greater than 18 C also resembles that predicted from simple arguments based on the Clausius-Clapeyron relationship. The annual cycle of the globally integrated mass of Scanning Multichannel Microwave Radiometer (SMMR) water vapor is shown to differ from analyses of other water vapor data in both phase and amplitude and these differences point to a significant influence of the continents on water vapor. Regional scale analyses of water vapor demonstrate that monthly averaged water vapor data, when contrasted with the bulk sea surface temperature relationship developed in this study, reflect various known characteristics of the time mean large-scale circulation over the oceans. A water vapor parameter is introduced to highlight the effects of large-scale motion on atmospheric water vapor. Based on the magnitude of this parameter, it is shown that the effects of large-scale flow on precipitable water vapor are regionally dependent, but for the most part, the influence of circulation is generally less than about + or - 20 percent of the seasonal mean.

  13. Analysis of Surface Electric Field Measurements from an Array of Electric Field Mills

    NASA Astrophysics Data System (ADS)

    Lucas, G.; Thayer, J. P.; Deierling, W.

    2016-12-01

    Kennedy Space Center (KSC) has operated an distributed array of over 30 electric field mills over the past 18 years, providing a unique data set of surface electric field measurements over a very long timespan. In addition to the electric field instruments there are many meteorological towers around KSC that monitor the local meteorological conditions. Utilizing these datasets we have investigated and found unique spatial and temporal signatures in the electric field data that are attributed to local meteorological effects and the global electric circuit. The local and global scale influences on the atmospheric electric field will be discussed including the generation of space charge from the ocean surf, local cloud cover, and a local enhancement in the electric field that is seen at sunrise.

  14. Modelling the association of dengue fever cases with temperature and relative humidity in Jeddah, Saudi Arabia-A generalised linear model with break-point analysis.

    PubMed

    Alkhaldy, Ibrahim

    2017-04-01

    The aim of this study was to examine the role of environmental factors in the temporal distribution of dengue fever in Jeddah, Saudi Arabia. The relationship between dengue fever cases and climatic factors such as relative humidity and temperature was investigated during 2006-2009 to determine whether there is any relationship between dengue fever cases and climatic parameters in Jeddah City, Saudi Arabia. A generalised linear model (GLM) with a break-point was used to determine how different levels of temperature and relative humidity affected the distribution of the number of cases of dengue fever. Break-point analysis was performed to modelled the effect before and after a break-point (change point) in the explanatory parameters under various scenarios. Akaike information criterion (AIC) and cross validation (CV) were used to assess the performance of the models. The results showed that maximum temperature and mean relative humidity are most probably the better predictors of the number of dengue fever cases in Jeddah. In this study three scenarios were modelled: no time lag, 1-week lag and 2-weeks lag. Among these scenarios, the 1-week lag model using mean relative humidity as an explanatory variable showed better performance. This study showed a clear relationship between the meteorological variables and the number of dengue fever cases in Jeddah. The results also demonstrated that meteorological variables can be successfully used to estimate the number of dengue fever cases for a given period of time. Break-point analysis provides further insight into the association between meteorological parameters and dengue fever cases by dividing the meteorological parameters into certain break-points. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. 76 FR 14616 - Approval and Promulgation of Implementation Plans; State of California; Interstate Transport of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ... during the winter time, when frequent and persistent temperature inversions occur, were specifically... winds and strong temperature inversions. These meteorological conditions may trap emissions within the... show a very high frequency of surface temperature inversions in the winter. Due to the meteorology...

  16. Latest Data on Thermohaline Structure and Circulation of the Dying Aral Sea

    NASA Astrophysics Data System (ADS)

    Izhitsky, Alexander; Zavialov, Peter

    2010-05-01

    The results of the latest expedition of the Shirshov Institute to the Aral Sea are reported. The survey encompassed 15 field days in August, 2009. An interdisciplinary oceanographic study in the western basin of the sea was conducted during the expedition. Vertical profiles of temperature, salinity and fluorescence were obtained using a CTD profiler at 8 stations across the western basin. Two mooring stations equipped with current meters, one at the surface and one in the bottom layer at each station, as well as pressure gauges at the bottom, were deployed for 5 days in the deepest portion of the western basin. One of the stations was installed at the western slope of the basin, while the other one was positioned at the eastern slope. A portable automatic meteorological station, continuously recording the variability of wind and principal meteorological parameters, was installed near the mooring sites. The vertical structure of the themohaline fields exhibited a 3-layered pattern, with local salinity maxima in the upper mixed layer and at the bottom. The intermediate layer was characterized by a core of minimum salinity and temperature, also accompanied by maximum fluorescence. Such a pattern indicates that the signature of the denser, saltier water originating from the eastern basin is still evident, even though the eastern basin itself dried up almost completely during the summer of 2009. The surface salinity was around 136 ppt, which constituted a notable increase for about 20 ppt since the summer of 2008. Over the same period, sea level decreased by 164 cm since the summer of 2008. Analysis of the current measurements data along with the meteorological data records demonstrated that the mean basin-scale surface circulation of the Large Aral Sea is likely to have remained anticyclonic, whilst the near-bottom circulation appears to be cyclonic. The current velocity and level anomalies responded energetically to winds. Correlation analysis of the velocity series versus the wind stress allowed to quantify the response of the system to the wind forcing.

  17. Study of surface energy budget and test of a newly developed fast photoacoustic spectroscopy based hygrometer in field campaign Szeged (Hungary)

    NASA Astrophysics Data System (ADS)

    Tatrai, David; Nikov, Daniella; Zsolt Jász, Ervin; Bozóki, Zoltán; Szabó, Gábor; Weidinger, Tamás; András Gyöngyösi, Zénó; Kiss, Melinda; Józsa, János; Simó Diego, Gemma; Cuxart Rodamilans, Joan; Wrenger, Burkhart; Bottyán, Zsolt

    2014-05-01

    A micrometeorological field measurement campaign dedicated to study the surface energy budget and the structure of the boundary layer focusing on the transient layer forming periods during night-time was organized in the period of 10th of November to 3rd of December 2013 in the nearby of Szeged, Hungary. A temporary micrometeorological measurement station was set up at the coordinates N:46.239943; E:20.089758, approximately 1700 m far from a national meteorology station (N:46.255711; E:20.09052). In the experimental micrometeorological site different types of instruments were installed to measure numerous parameters: standard meteorological measurements (p, T, wet, wind speed and direction at three different levels, relative humidity at two levels and absolute humidity at one level) radiation budget components surface temperature and leaf wetness soil temperature, moisture and heat flux into the deeper soil layer eddy-covariance measurements (t, H, LE CO2) at 3 m level using Campbell open-path IRGA (EC150) system. At the national meteorology station (http://adatok.geo.u-szeged.hu/?lang=eng) besides their standard measurement equipment and measurement routine a SODAR was installed and continuously operated. These ground based measurements were combined with and supported by UAV, quadcopter and tethered balloon based vertical profile measurements of p, T, rh. For this measurement campaign as a modification of a previously developed airborne ready dual channel hygrometer, a fast photoacoustic spectroscopy based hygrometer was developed for absolute humidity measurements. The estimated response time of the system is faster than 15 Hz, which was achieved by the replacement of the data acquisition system and by recording the raw photoacoustic signal sampled at rate of 48 kHz for post-processing. During the campaign this new system was compared to a TDL system commercially available at Li-COR Inc. Besides the testing of the newly developed fast photoacoustic hygrometer the main goal of the present study is the determination of the total energy budget and the accuracy of its closure. Results and consequences of the measurements will be presented.

  18. CentNet—A deployable 100-station network for surface exchange research

    NASA Astrophysics Data System (ADS)

    Oncley, S.; Horst, T. W.; Semmer, S.; Militzer, J.; Maclean, G.; Knudson, K.

    2014-12-01

    Climate, air quality, atmospheric composition, surface hydrology, and ecological processes are directly affected by the Earth's surface. Complexity of this surface exists at multiple spatial scales, which complicates the understanding of these processes. NCAR/EOL currently provides a facility to the research community to make direct eddy-covariance flux observations to quantify surface-atmosphere interactions. However, just as model resolution has continued to increase, there is a need to increase the spatial density of flux measurements to capture the wide variety of scales that contribute to exchange processes close to the surface. NCAR/EOL now has developed the CentNet facility, that is envisioned to have on the order of 100 surface flux stations deployable for periods of months to years. Each station would measure standard meteorological variables, all components of the surface energy balance (including turbulence fluxes and radiation), atmospheric composition, and other quantities to characterize the surface. Thus, CentNet can support observational research in the biogeosciences, hydrology, urban meteorology, basic meteorology, and turbulence. CentNet has been designed to be adaptable to a wide variety of research problems while keeping operations manageable. Tower infrastructure has been designed to be lightweight, easily deployed, and with a minimal set-up footprint. CentNet uses sensor networks to increase spatial sampling at each station. The data system saves every sample on site to retain flexibility in data analysis. We welcome guidance on development and funding priorities as we build CentNet.

  19. Micro weather stations for in situ measurements in the Martian planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Crisp, D.; Kaiser, W. J.; Kenny, T. W.; Vanzandt, T. R.; Tillman, J. E.

    1992-01-01

    Viking Lander meteorology measurements show that the Martian planetary boundary layer (PBL) has large diurnal and seasonal variations in pressure, wind velocity, relative humidity, and airborne dust loading. An even larger range of conditions was inferred from remote sensing observations acquired by the Mariner 9 and Viking orbiters. Numerical models indicate that these changes may be accompanied by dramatic vertical and horizontal wind shears (100 m/s/km) and rapid changes in the static stability. In-situ measurements from a relatively small number surface stations could yield global constraints on the Martian climate and atmospheric general circulation by providing ground truth for remote sensing instruments on orbiters. A more complete understanding of the meteorology of the PBL is an essential precursor to manned missions to Mars because this will be their working environment. In-situ measurements are needed for these studies because the spatial and temporal scales that characterize the important meteorological processes near the surface cannot be resolved from orbit. The Mars Environmental Survey (MESUR) Program will provide the first opportunity to deploy a network of surface weather stations for a comprehensive investigation of the Martian PBL. The feasibility and utility of a network of micro-weather stations for making in-situ meteorological measurements in the Martian PBL are assessed.

  20. Assessment of a surface-layer parameterization scheme in an atmospheric model for varying meteorological conditions

    NASA Astrophysics Data System (ADS)

    Anurose, T. J.; Bala Subrahamanyam, D.

    2014-06-01

    The performance of a surface-layer parameterization scheme in a high-resolution regional model (HRM) is carried out by comparing the model-simulated sensible heat flux (H) with the concurrent in situ measurements recorded at Thiruvananthapuram (8.5° N, 76.9° E), a coastal station in India. With a view to examining the role of atmospheric stability in conjunction with the roughness lengths in the determination of heat exchange coefficient (CH) and H for varying meteorological conditions, the model simulations are repeated by assigning different values to the ratio of momentum and thermal roughness lengths (i.e. z0m/z0h) in three distinct configurations of the surface-layer scheme designed for the present study. These three configurations resulted in differential behaviour for the varying meteorological conditions, which is attributed to the sensitivity of CH to the bulk Richardson number (RiB) under extremely unstable, near-neutral and stable stratification of the atmosphere.

  1. Estimation of Monthly Near Surface Air Temperature Using Geographically Weighted Regression in China

    NASA Astrophysics Data System (ADS)

    Wang, M. M.; He, G. J.; Zhang, Z. M.; Zhang, Z. J.; Liu, X. G.

    2018-04-01

    Near surface air temperature (NSAT) is a primary descriptor of terrestrial environment conditions. The availability of NSAT with high spatial resolution is deemed necessary for several applications such as hydrology, meteorology and ecology. In this study, a regression-based NSAT mapping method is proposed. This method is combined remote sensing variables with geographical variables, and uses geographically weighted regression to estimate NSAT. The altitude was selected as geographical variable; and the remote sensing variables include land surface temperature (LST) and Normalized Difference vegetation index (NDVI). The performance of the proposed method was assessed by predict monthly minimum, mean, and maximum NSAT from point station measurements in China, a domain with a large area, complex topography, and highly variable station density, and the NSAT maps were validated against the meteorology observations. Validation results with meteorological data show the proposed method achieved an accuracy of 1.58 °C. It is concluded that the proposed method for mapping NSAT is very operational and has good precision.

  2. Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian Peninsula.

    PubMed

    Silva-Palacios, Inmaculada; Fernández-Rodríguez, Santiago; Durán-Barroso, Pablo; Tormo-Molina, Rafael; Maya-Manzano, José María; Gonzalo-Garijo, Ángela

    2016-02-01

    Cupressaceae includes species cultivated as ornamentals in the urban environment. This study aims to investigate airborne pollen data for Cupressaceae on the southwestern Iberian Peninsula over a 21-year period and to analyse the trends in these data and their relationship with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1993 to 2013 in Badajoz (SW Spain). The main pollen season for Cupressaceae lasted, on average, 58 days, ranging from 55 to 112 days, from 24 January to 22 March. Furthermore, a short-term forecasting model has been developed for daily pollen concentrations. The model proposed to forecast the airborne pollen concentration is described by one equation. This expression is composed of two terms: the first term represents the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term is obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological parameters multiplied by a fitting coefficient. Temperature was the main meteorological factor by its influence over daily pollen forecast, being the rain the second most important factor. This model represents a good approach to a continuous balance model of Cupressaceae pollen concentration and is supported by a close agreement between the observed and predicted mean concentrations. The novelty of the proposed model is the analysis of meteorological parameters that are not frequently used in Aerobiology.

  3. An operational system of fire danger rating over Mediterranean Europe

    NASA Astrophysics Data System (ADS)

    Pinto, Miguel M.; DaCamara, Carlos C.; Trigo, Isabel F.; Trigo, Ricardo M.

    2017-04-01

    A methodology is presented to assess fire danger based on the probability of exceedance of prescribed thresholds of daily released energy. The procedure is developed and tested over Mediterranean Europe, defined by latitude circles of 35 and 45°N and meridians of 10°W and 27.5°E, for the period 2010-2016. The procedure involves estimating the so-called static and daily probabilities of exceedance. For a given point, the static probability is estimated by the ratio of the number of daily fire occurrences releasing energy above a given threshold to the total number of occurrences inside a cell centred at the point. The daily probability of exceedance which takes into account meteorological factors by means of the Canadian Fire Weather Index (FWI) is in turn estimated based on a Generalized Pareto distribution with static probability and FWI as covariates of the scale parameter. The rationale of the procedure is that small fires, assessed by the static probability, have a weak dependence on weather, whereas the larger fires strongly depend on concurrent meteorological conditions. It is shown that observed frequencies of exceedance over the study area for the period 2010-2016 match with the estimated values of probability based on the developed models for static and daily probabilities of exceedance. Some (small) variability is however found between different years suggesting that refinements can be made in future works by using a larger sample to further increase the robustness of the method. The developed methodology presents the advantage of evaluating fire danger with the same criteria for all the study area, making it a good parameter to harmonize fire danger forecasts and forest management studies. Research was performed within the framework of EUMETSAT Satellite Application Facility for Land Surface Analysis (LSA SAF). Part of methods developed and results obtained are on the basis of the platform supported by The Navigator Company that is currently providing information about fire meteorological danger for Portugal for a wide range of users.

  4. Synergy of the SimSphere land surface process model with ASTER imagery for the retrieval of spatially distributed estimates of surface turbulent heat fluxes and soil moisture content

    NASA Astrophysics Data System (ADS)

    Petropoulos, George; Wooster, Martin J.; Carlson, Toby N.; Drake, Nick

    2010-05-01

    Accurate information on spatially explicit distributed estimates of key land-atmosphere fluxes and related land surface parameters is of key importance in a range of disciplines including hydrology, meteorology, agriculture and ecology. Estimation of those parameters from remote sensing frequently employs the integration of such data with mathematical representations of the transfers of energy, mass and radiation between soil, vegetation and atmosphere continuum, known as Soil Vegetation Atmosphere Transfer (SVAT) models. The ability of one such inversion modelling scheme to resolve for key surface energy fluxes and of soil surface moisture content is examined here using data from a multispectral high spatial resolution imaging instrument, the Advanced Spaceborne Thermal Emission and Reflection Scanning Radiometer (ASTER) and SimSphere one-dimensional SVAT model. Accuracy of the investigated methodology, so-called as the "triangle" method, is verified using validated ground observations obtained from selected days collected from nine CARBOEUROPE IP sites representing a variety of climatic, topographic and environmental conditions. Subsequently, a new framework is suggested for the retrieval of two additional parameters by the investigated method, namely the Evaporative (EF) and the Non-Evaporative (NEF) Fractions. Results indicated a close agreement between the inverted surface fluxes and surface moisture availability maps as well as of the EF and NEF parameters with the observations both spatially and temporally with accuracies comparable to those obtained in similar experiments with high spatial resolution data. Inspection of the inverted surface fluxes maps regionally, showed an explainable distribution in the range of the inverted parameters in relation with the surface heterogeneity. Overall performance of the "triangle" inversion methodology was found to be affected predominantly by the SVAT model "correct" initialisation representative of the test site environment, most importantly the atmospheric conditions required in the SVAT model initial conditions. This study represents the first comprehensive evaluation of the performance of this particular methodological implementation at a European setting using the SimSphere SVAT with the ASTER data. The present work is also very timely in that, a variation of this specific inversion methodology has been proposed for the operational retrieval of the soil surface moisture content by National Polar-orbiting Operational Environmental Satellite System (NPOESS), in a series of satellite platforms that are due to be launched in the next 12 years starting from 2012. KEYWORDS: micrometeorology, surface heat fluxes, soil moisture content, ASTER, triangle method, SimSphere, CarboEurope IP

  5. Detection of mesoscale zones of atmospheric instabilities using remote sensing and weather forecasting model data

    NASA Astrophysics Data System (ADS)

    Winnicki, I.; Jasinski, J.; Kroszczynski, K.; Pietrek, S.

    2009-04-01

    The paper presents elements of research conducted in the Faculty of Civil Engineering and Geodesy of the Military University of Technology, Warsaw, Poland, concerning application of mesoscale models and remote sensing data to determining meteorological conditions of aircraft flight directly related with atmospheric instabilities. The quality of meteorological support of aviation depends on prompt and effective forecasting of weather conditions changes. The paper presents a computer module for detecting and monitoring zones of cloud cover, precipitation and turbulence along the aircraft flight route. It consists of programs and scripts for managing, processing and visualizing meteorological and remote sensing databases. The application was developed in Matlab® for Windows®. The module uses products of COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) mesoscale non-hydrostatic model of the atmosphere developed by the US Naval Research Laboratory, satellite images acquisition system from the MSG-2 (Meteosat Second Generation) of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and meteorological radars data acquired from the Institute of Meteorology and Water Management (IMGW), Warsaw, Poland. The satellite images acquisition system and the COAMPS model are run operationally in the Faculty of Civil Engineering and Geodesy. The mesoscale model is run on an IA64 Feniks multiprocessor 64-bit computer cluster. The basic task of the module is to enable a complex analysis of data sets of miscellaneous information structure and to verify COAMPS results using satellite and radar data. The research is conducted using uniform cartographic projection of all elements of the database. Satellite and radar images are transformed into the Lambert Conformal projection of COAMPS. This facilitates simultaneous interpretation and supports decision making process for safe execution of flights. Forecasts are based on horizontal distributions and vertical profiles of meteorological parameters produced by the module. Verification of forecasts includes research of spatial and temporal correlations of structures generated by the model, e.g.: cloudiness, meteorological phenomena (fogs, precipitation, turbulence) and structures identified on current satellite images. The developed module determines meteorological parameters fields for vertical profiles of the atmosphere. Interpolation procedures run at user selected standard (pressure) or height levels of the model enable to determine weather conditions along any route of aircraft. Basic parameters of the procedures determining e.g. flight safety include: cloud base, visibility, cloud cover, turbulence coefficient, icing and precipitation intensity. Determining icing and turbulence characteristics is based on standard and new methods (from other mesoscale models). The research includes also investigating new generation mesoscale models, especially remote sensing data assimilation. This is required by necessity to develop and introduce objective methods of forecasting weather conditions. Current research in the Faculty of Civil Engineering and Geodesy concerns validation of the mesoscale module performance.

  6. A Multiscale Surface Water Temperature Data Acquisition Platform: Tests on Lake Geneva, Switzerland

    NASA Astrophysics Data System (ADS)

    Barry, D. A.; Irani Rahaghi, A.; Lemmin, U.; Riffler, M.; Wunderle, S.

    2015-12-01

    An improved understanding of surface transport processes is necessary to predict sediment, pollutant and phytoplankton patterns in large lakes. Lake surface water temperature (LSWT), which varies in space and time, reflects meteorological and climatological forcing more than any other physical lake parameter. There are different data sources for LSWT mapping, including remote sensing and in situ measurements. Satellite data can be suitable for detecting large-scale thermal patterns, but not meso- or small scale processes. Lake surface thermography, investigated in this study, has finer resolution compared to satellite images. Thermography at the meso-scale provides the ability to ground-truth satellite imagery over scales of one to several satellite image pixels. On the other hand, thermography data can be used as a control in schemes to upscale local measurements that account for surface energy fluxes and the vertical energy budget. Independently, since such data can be collected at high frequency, they can be also useful in capturing changes in the surface signatures of meso-scale eddies and thus to quantify mixing processes. In the present study, we report results from a Balloon Launched Imaging and Monitoring Platform (BLIMP), which was developed in order to measure the LSWT at meso-scale. The BLIMP consists of a small balloon that is tethered to a boat and equipped with thermal and RGB cameras, as well as other instrumentation for location and communication. Several deployments were carried out on Lake Geneva. In a typical deployment, the BLIMP is towed by a boat, and collects high frequency data from different heights (i.e., spatial resolutions) and locations. Simultaneous ground-truthing of the BLIMP data is achieved using an autonomous craft that collects a variety of data, including in situ surface/near surface temperatures, radiation and meteorological data in the area covered by the BLIMP images. With suitable scaling, our results show good consistency between in situ, BLIMP and concurrent satellite data. In addition, the BLIMP thermography reveals (hydrodynamically-driven) structures in the LSWT - an obvious example being mixing of river discharges.

  7. Controlling Factors of the Surface Energy and Water Balances in cities located in cold climate regions

    NASA Astrophysics Data System (ADS)

    Järvi, L.; Grimmond, S. B.; Christen, A.; McFadden, J. P.; Strachan, I. B.

    2016-12-01

    Urban effects on climate are often pronounced in winter due to large anthropogenic heat releases and differences in snow cover between urban and surrounding rural areas. In this study, we simulate energy and water balances in cities characterized by cold winter climates with snow. Eleven urban sites from Helsinki (Finland), Basel (Switzerland), Montreal (Canada) and Minneapolis (USA) are analysed. The sites were selected based on the availability of either measured turbulent fluxes (from eddy covariance) or surface runoff to be used for model evaluation. The sites vary with respect to land cover fractions, irrigation habits and population densities. For example, the plan area fraction of impervious surface varies from 5% in Minneapolis to 84% in Basel. To simulate urban energy and water balances, we use the Surface Urban Energy and Water balance Scheme (SUEWS) model, which has been designed to minimize the number of required input variables and model parameters. For each site, the model is run in an offline mode using measured hourly meteorological data with a time step of 5-min. As the modelled time periods range from one (Basel) to 7.5 years (Helsinki), a wide range of meteorological conditions occur. Our results show how both evaporation and surface runoff are highly dependent on the fraction of impervious surface cover (r > |0.8|) during snow-free periods. However, high year-to-year variability in simulated evaporation and runoff indicates that climatological factors are also important. In winter, the amount and duration of snow cover become import controlling factor in determining the two components of water balance. The shorter the snow cover period is, the larger the cumulative runoff tends to be. Thus, our results suggest that warmer winters with less snow will increase the stress on drainage systems and modify the urban ecosystem via changes in evaporation and Bowen ratio. Also, our results indicate that simply using the fraction of impervious or pervious surfaces when estimating the surface runoff at different sites is not sufficient, but rather inter-annual variability in climatology also needs to be considered.

  8. Impacts of meteorological conditions on wintertime PM2.5 pollution in Taiyuan, North China.

    PubMed

    Miao, Yucong; Liu, Shuhua; Guo, Jianping; Yan, Yan; Huang, Shunxiang; Zhang, Gen; Zhang, Yong; Lou, Mengyun

    2018-05-23

    Taiyuan frequently experiences heavy PM 2.5 pollution in winter under unfavorable meteorological conditions. To understand how the meteorological factors influence the pollution in Taiyuan, this study involved a systematic analysis for a continuous period from November 2016 to January 2017, using near-surface meteorological observations, radiosonde soundings, PM 2.5 measurements, and three-dimension numerical simulation, in combination with backward trajectory calculations. The results show that PM 2.5 concentration positively correlates with surface temperature and relative humidity and anti-correlates with near-surface wind speed and boundary layer height (BLH). The low BLH is often associated with a strong thermal inversion layer capping over. In addition to the high local emissions, it is found that under certain synoptic conditions, the southwesterly and southerly winds could bring pollutants from Linfen to Taiyuan, leading to a near-surface PM 2.5 concentration higher than 200 μg m -3 . Another pollution enhancing issue is due to the semi-closed basin of Taiyuan affecting the planetary boundary layer (PBL): the surrounding mountains favor the formation of a cold air pool in the basin, which inhibits vertical exchanges of heat, flux, and momentum between PBL and the free troposphere, resulting in stagnant conditions and poor air quality in Taiyuan. These findings can be utilized to improve the understanding of PM 2.5 pollution in Taiyuan, to enhance the accuracy of forecasting pollution, and to provide scientific support for policy makers to mitigate the pollution.

  9. Ozone time scale decomposition and trend assessment from surface observations

    NASA Astrophysics Data System (ADS)

    Boleti, Eirini; Hueglin, Christoph; Takahama, Satoshi

    2017-04-01

    Emissions of ozone precursors have been regulated in Europe since around 1990 with control measures primarily targeting to industries and traffic. In order to understand how these measures have affected air quality, it is now important to investigate concentrations of tropospheric ozone in different types of environments, based on their NOx burden, and in different geographic regions. In this study, we analyze high quality data sets for Switzerland (NABEL network) and whole Europe (AirBase) for the last 25 years to calculate long-term trends of ozone concentrations. A sophisticated time scale decomposition method, called the Ensemble Empirical Mode Decomposition (EEMD) (Huang,1998;Wu,2009), is used for decomposition of the different time scales of the variation of ozone, namely the long-term trend, seasonal and short-term variability. This allows subtraction of the seasonal pattern of ozone from the observations and estimation of long-term changes of ozone concentrations with lower uncertainty ranges compared to typical methodologies used. We observe that, despite the implementation of regulations, for most of the measurement sites ozone daily mean values have been increasing until around mid-2000s. Afterwards, we observe a decline or a leveling off in the concentrations; certainly a late effect of limitations in ozone precursor emissions. On the other hand, the peak ozone concentrations have been decreasing for almost all regions. The evolution in the trend exhibits some differences between the different types of measurement. In addition, ozone is known to be strongly affected by meteorology. In the applied approach, some of the meteorological effects are already captured by the seasonal signal and already removed in the de-seasonalized ozone time series. For adjustment of the influence of meteorology on the higher frequency ozone variation, a statistical approach based on Generalized Additive Models (GAM) (Hastie,1990;Wood,2006), which corrects for meteorological effects, has been developed in order to a) investigate if trends are masked by meteorological variability and b) to understand which part of the observed trends is meteorology driven. By correlating short-term variation of ozone, as obtained from the EEMD, with the corresponding short-term variation of relevant meteorological parameters, we subtract the variation of ozone concentrations that is related to the meteorological effects explained by the GAM. We find that higher frequency meteorological correction reduces further the uncertainty in trend estimation by a small factor. In addition, the seasonal variability of ozone as obtained from the EEMD has been studied in more detail for possible changes in its behavior. A shortening of the seasonal cycle was observed, i.e. reduction of maximum and in-crease of minimum concentration per year, while the occurrence of maximum is shifted to earlier times during a year. In summary, we present a sophisticated and consistent approach for detecting and categorizing trends and meteorological influences on ozone concentrations in long-term measurements across Europe.

  10. Water Resource Assessment in KRS Reservoir Using Remote Sensing and GIS Modelling

    NASA Astrophysics Data System (ADS)

    Manubabu, V. H.; Gouda, K. C.; Bhat, N.; Reddy, A.

    2014-12-01

    In the recent time the fresh water resource becomes very important because of various reasons like population growth, pollution, over exploitation of the ground water resources etc. As there is no efficient and proper measures for recharging ground water exists and also the climatological impacts on water resources like global warming exacerbating water shortages, growing populations and rising demand for freshwater in agriculture, industry, and energy production. There is a need and challenging task for analyzing the future changes in regional water availability and it is also very much necessary to asses and predict the fresh water present in a lake or reservoir to make better decision making in the optimal usage of surface water. In the present study is intended to provide a practical discussion of methodology that deals with how to asses and predict amount of surface water available in the future using Remote Sensing(RS) data , Geographical Information System(GIS) techniques, and GCM (Global Circulation Model). Basically the study emphasized over one of the biggest reservoir i.e. the Krishna Raja Sagara (KRS) reservoir situated in the state of Karnataka in India. Multispectral satellite images like IRS LISS III and Landsat L8 from different open source web portals like NRSC-Bhuvan and NASA Earth Explorer respectively are used for the present analysis. The multispectral satellite images are used to identify the temporal changes of the water quantity in the reservoir for the period 2000 to 2014. Also the water volume are being calculated using Advances Space born Thermal Emission and Reflection Radiometer (ASTER) Global DEM over the reservoir basin. The hydro meteorological parameters are also studied using multi-source observed data and the empirical water budget models for the reservoir in terms of rainfall, temperature, run off, water inflow and outflow etc. are being developed and analyzed. Statistical analysis are also carried out to quantify the relation between reservoir water volume and the hydrological parameters (Figure 1). A general circulation model (GCM) is used for the prediction of major hydro meteorological parameters like rainfall and using the GCM predictions the water availability in terms of water volume in future are simulated using the empirical water budget model.

  11. Quality assurance report - Loch Vale Watershed, 1999-2002

    USGS Publications Warehouse

    Botte, Jorin A.; Baron, Jill S.

    2004-01-01

    The National Park Service initiated the Loch Vale Watershed (LVWS) project in 1980 with funding from the Aquatic Effects Research Program of the National Acid Precipitation Assessment Program. Long-term ecological research and monitoring address watershed-scale ecosystem processes, particularly as they respond to atmospheric deposition and climate variability. Monitoring of meteorological, hydrologic, precipitation chemistry, and surface water quality parameters enable us to use long-term trends to distinguish natural from human-caused disturbances. Research into snow distribution, hydrologic flowpaths, vegetation responses to N deposition, isotopic transformations of N by forest and soil processes, trace metals, and aquatic ecological responses to disturbance enable us to understand processes that influence high elevation ecosystems.

  12. New gridded database of clear-sky solar radiation derived from ground-based observations over Europe

    NASA Astrophysics Data System (ADS)

    Bartok, Blanka; Wild, Martin; Sanchez-Lorenzo, Arturo; Hakuba, Maria Z.

    2017-04-01

    Since aerosols modify the entire energy balance of the climate system through different processes, assessments regarding aerosol multiannual variability are highly required by the climate modelling community. Because of the scarcity of long-term direct aerosol measurements, the retrieval of aerosol data/information from other type of observations or satellite measurements are very relevant. One approach frequently used in the literature is analyze of the clear-sky solar radiation which offer a better overview of changes in aerosol content. In the study first two empirical methods are elaborated in order to separate clear-sky situations from observed values of surface solar radiation available at the World Radiation Data Center (WRDC), St. Petersburg. The daily data has been checked for temporal homogeneity by applying the MASH method (Szentimrey, 2003). In the first approach, clear sky situations are detected based on clearness index, namely the ratio of the surface solar radiation to the extraterrestrial solar irradiation. In the second approach the observed values of surface solar radiation are compared to the climatology of clear-sky surface solar radiation calculated by the MAGIC radiation code (Muller et al. 2009). In both approaches the clear-sky radiation values highly depend on the applied thresholds. In order to eliminate this methodological error a verification of clear-sky detection is envisaged through a comparison with the values obtained by a high time resolution clear-sky detection and interpolation algorithm (Long and Ackermann, 2000) making use of the high quality data from the Baseline Surface Radiation Network (BSRN). As the consequences clear-sky data series are obtained for 118 European meteorological stations. Next a first attempt has been done in order to interpolate the point-wise clear-sky radiation data by applying the MISH (Meteorological Interpolation based on Surface Homogenized Data Basis) method for the spatial interpolation of surface meteorological elements developed at the Hungarian Meteorological Service (Szentimrey 2007). In this way new gridded database of clear-sky solar radiation is created suitable for further investigations regarding the role of aerosols in the energy budget, and also for validations of climate model outputs. References 1. Long CN, Ackerman TP. 2000. Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects, J. Geophys. Res., 105(D12), 15609-15626, doi:10.1029/2000JD900077. 2. Mueller R, Matsoukas C, Gratzki A, Behr H, Hollmann R. 2009. The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance - a LUT based eigenvector hybrid approach, Remote Sensing of Environment, 113 (5), 1012-1024, doi:10.1016/j.rse.2009. 01.012 3. Szentimrey T. 2014. Multiple Analysis of Series for Homogenization (MASHv3.03), Hungarian Meteorological Service, https://www.met.hu/en/omsz/rendezvenyek/homogenization_and_interpolation/software/ 4. Szentimrey T. Bihari Z. 2014: Meteorological Interpolation based on Surface Homogenized Data Basis (MISHv1.03) https://www.met.hu/en/omsz/rendezvenyek/homogenization_and_interpolation/software/

  13. Studies of vorticity imbalance and stability, moisture budget, atmospheric energetics, and gradients of meteorological parameters during AVE 3

    NASA Technical Reports Server (NTRS)

    Scoggins, J. R. (Editor)

    1978-01-01

    Four diagnostic studies of AVE 3. are presented. AVE 3 represents a high wind speed wintertime situation, while most AVE's analyzed previously represented springtime conditions with rather low wind speeds. The general areas of analysis include the examination of budgets of vorticity, moisture, kinetic energy, and potential energy and a synoptic and statistical study of the horizontal gradients of meteorological parameters. Conclusions are integrated with and compared to those obtained in previously analyzed experiments (mostly springtime weather situations) so as to establish a more definitive understanding of the structure and dynamics of the atmosphere under a wide range of synoptic conditions.

  14. An analysis of the first two years of GASP data

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Nastrom, G. D.; Falconer, P. D.

    1977-01-01

    Distributions of mean ozone levels from the first two years of data from the NASA Global Atmospheric Sampling Program (GASP) show spatial and temporal variations in agreement with previous measurements. The standard deviations of these distributions reflect the large natural variability of ozone levels in the altitude range of the GASP measurements. Monthly mean levels of ozone below the tropopause show an annual cycle with a spring maximum which is believed to result from transport from the stratosphere. Correlations of ozone with independent meteorological parameters, and meteorological parameters obtained by the GASP systems show that this transport occurs primarily through cyclogenesis at mid-latitudes.

  15. Relationships between stratospheric clear air turbulence and synoptic meteorological parameters over the western United States between 12-20 km altitude

    NASA Technical Reports Server (NTRS)

    Scoggins, J. R.; Clark, T. L.; Possiel, N. C.

    1975-01-01

    Procedures for forecasting clear air turbulence in the stratosphere over the western United States from rawinsonde data are described and results presented. Approaches taken to relate meteorological parameters to regions of turbulence and nonturbulence encountered by the XB-70 during 46 flights at altitudes between 12-20 km include: empirical probabilities, discriminant function analysis, and mountainwave theory. Results from these techniques were combined into a procedure to forecast regions of clear air turbulence with an accuracy of 70-80 percent. A computer program was developed to provide an objective forecast directly from the rawinsonde sounding data.

  16. Impact of fugitive sources and meteorological parameters on vertical distribution of particulate matter over the industrial agglomeration.

    PubMed

    Štrbová, Kristína; Raclavská, Helena; Bílek, Jiří

    2017-12-01

    The aim of the study was to characterize vertical distribution of particulate matter, in an area well known by highest air pollution levels in Europe. A balloon filled with helium with measuring instrumentation was used for vertical observation of air pollution over the fugitive sources in Moravian-Silesian metropolitan area during spring and summer. Synchronously, selected meteorological parameters were recorded together with particulate matter for exploration its relationship with particulate matter. Concentrations of particulate matter in the vertical profile were significantly higher in the spring than in the summer. Significant effect of fugitive sources was observed up to the altitude ∼255 m (∼45 m above ground) in both seasons. The presence of inversion layer was observed at the altitude ∼350 m (120-135 m above ground) at locations with major source traffic load. Both particulate matter concentrations and number of particles for the selected particle sizes decreased with increasing height. Strong correlation of particulate matter with meteorological parameters was not observed. The study represents the first attempt to assess the vertical profile over the fugitive emission sources - old environmental burdens in industrial region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Meteorological Drivers of Extreme Air Pollution Events

    NASA Astrophysics Data System (ADS)

    Horton, D. E.; Schnell, J.; Callahan, C. W.; Suo, Y.

    2017-12-01

    The accumulation of pollutants in the near-surface atmosphere has been shown to have deleterious consequences for public health, agricultural productivity, and economic vitality. Natural and anthropogenic emissions of ozone and particulate matter can accumulate to hazardous concentrations when atmospheric conditions are favorable, and can reach extreme levels when such conditions persist. Favorable atmospheric conditions for pollutant accumulation include optimal temperatures for photochemical reaction rates, circulation patterns conducive to pollutant advection, and a lack of ventilation, dispersion, and scavenging in the local environment. Given our changing climate system and the dual ingredients of poor air quality - pollutants and the atmospheric conditions favorable to their accumulation - it is important to characterize recent changes in favorable meteorological conditions, and quantify their potential contribution to recent extreme air pollution events. To facilitate our characterization, this study employs the recently updated Schnell et al (2015) 1°×1° gridded observed surface ozone and particulate matter datasets for the period of 1998 to 2015, in conjunction with reanalysis and climate model simulation data. We identify extreme air pollution episodes in the observational record and assess the meteorological factors of primary support at local and synoptic scales. We then assess (i) the contribution of observed meteorological trends (if extant) to the magnitude of the event, (ii) the return interval of the meteorological event in the observational record, simulated historical climate, and simulated pre-industrial climate, as well as (iii) the probability of the observed meteorological trend in historical and pre-industrial climates.

  18. Comparative analysis of different underlying surfaces using a high-resolution assimilation dataset in semi-arid areas in China

    NASA Astrophysics Data System (ADS)

    Ruan, Jinshuai; Wen, Xiaohang; Fan, Guangzhou; Li, Deqin; Hua, Wei; Wang, Bingyun; Zhang, Yi; Zhang, Mingjun; Wang, Chao; Wang, Lei

    2017-11-01

    To study the land surface and atmospheric meteorological characteristics of non-uniform underlying surfaces in the semi-arid area of Northeast China, we use a "High-Resolution Assimilation Dataset of the water-energy cycle in China (HRADC)". The grid points of three different underlying surfaces were selected, and their meteorological elements were averaged for each type (i.e., mixed forest, grassland, and cropland). For 2009, we compared and analyzed the different components of leaf area index (LAI), soil temperature and moisture, surface albedo, precipitation, and surface energy for various underlying surfaces in Northeast China. The results indicated that the LAI of mixed forest and cropland during the summer is greater than 5 m2 m-2 and below 2.5 m2 m-2 for grassland; in the winter and spring seasons, the Green Vegetation Fraction (GVF) is below 30%. The soil temperature and moisture both vary greatly. Throughout the year, the mixed forest is dominated by latent heat evaporation; in grasslands and croplands, the sensible heat flux and the latent heat flux are approximately equal, and the GVF contributed more to latent heat flux than sensible heat flux in the summer. This study compares meteorological characteristics between three different underlying surfaces of the semi-arid area of Northeast China and makes up for the insufficiency of purely using observations for the study. This research is important for understanding the water-energy cycle and transport in the semi-arid area.

  19. Effects on surface meteorological parameters and radiation levels of a heavy dust storm occurred in Central Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Maghrabi, A. H.; Al-Dosari, A. F.

    2016-12-01

    On 24 April 2015 a severe dust storm event arrived at Riyadh causing various problems. The quantitative impact of this dusty event on solar ultraviolet radiation UVA and UVB, global solar radiation component, downward and outgoing long-wave radiation, and some meteorological variables, was investigated and presented. The results showed significant changes in all of these parameters due to this event. Shortly after the storm arrived, UVA, UVB, global radiation, and air temperature rapidly decrease by 83%, 86%, 57.5%, and 9.4%, respectively. Atmospheric pressure increased by 4 mbar, relative humidly increased from 8% to 16%, and wind direction became northerly with wind speed increasing to a maximum of 6.3 m/s. Outgoing long-wave radiation decreased by 19 W/m2 and downward long-wave radiation increased by 41 W/m2. The dust storm caused the atmosphere to emit radiation that resembled that of a black body. The daily average of the atmospheric pressure showed no changes compared to a non-dusty day. Apart from the relative humidity (which increased by about 32%), the remainder of the variables have shown significant reduction, with different magnitudes, in their daily values due to the dust event compared to the values of a non-disturbed reference day. For instance, the daily mean values of the UVA radiation, air temperature, and outgoing long-wave radiation, decreased in the dusty day by 15.6%, 30.8% and 11.4%, respectively, as compared to the clear day.

  20. Ozone indices based on simple meteorological parameters: potentials and limitations of regression and neural network models

    NASA Astrophysics Data System (ADS)

    Soja, G.; Soja, A.-M.

    This study tested the usefulness of extremely simple meteorological models for the prediction of ozone indices. The models were developed with the input parameters of daily maximum temperature and sunshine duration and are based on a data collection period of three years. For a rural environment in eastern Austria, the meteorological and ozone data of three summer periods have been used to develop functions to describe three ozone exposure indices (daily maximum, 7 h mean 9.00-16.00 h, accumulated ozone dose AOT40). Data sets for other years or stations not included in the development of the models were used as test data to validate the performance of the models. Generally, optimized regression models performed better than simplest linear models, especially in the case of AOT40. For the description of the summer period from May to September, the mean absolute daily differences between observed and calculated indices were 8±6 ppb for the maximum half hour mean value, 6±5 ppb for the 7 h mean and 41±40 ppb h for the AOT40. When the parameters were further optimized to describe individual months separately, the mean absolute residuals decreased by ⩽10%. Neural network models did not always perform better than the regression models. This is attributed to the low number of inputs in this comparison and to the simple architecture of these models (2-2-1). Further factorial analyses of those days when the residuals were higher than the mean plus one standard deviation should reveal possible reasons why the models did not perform well on certain days. It was observed that overestimations by the models mainly occurred on days with partly overcast, hazy or very windy conditions. Underestimations more frequently occurred on weekdays than on weekends. It is suggested that the application of this kind of meteorological model will be more successful in topographically homogeneous regions and in rural environments with relatively constant rates of emission and long-range transport of ozone precursors. Under conditions too demanding for advanced physico/chemical models, the presented models may offer useful alternatives to derive ecologically relevant ozone indices directly from meteorological parameters.

  1. Sabkha Trafficability,

    DTIC Science & Technology

    1981-01-01

    Meteorological Parameters at Meteorological Station 1, 31 May 1980 ........................ 68 $24 Relationship of Jubai. Port Datum to Tide Table Datum. .70 25...around which was a circular weight with two handles. Once assembled, the device was nositioned vertically at the point to be sampled and manually...limited use for sampling very fluid or unconsolidated sand or shell. In the former case, the upper few centimeters of cohesive sediment became embedded

  2. Bayesian dynamic modeling of time series of dengue disease case counts.

    PubMed

    Martínez-Bello, Daniel Adyro; López-Quílez, Antonio; Torres-Prieto, Alexander

    2017-07-01

    The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model's short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful models for decision-making in public health.

  3. Statistical analysis of aerosol species, trace gasses, and meteorology in Chicago.

    PubMed

    Binaku, Katrina; O'Brien, Timothy; Schmeling, Martina; Fosco, Tinamarie

    2013-09-01

    Both canonical correlation analysis (CCA) and principal component analysis (PCA) were applied to atmospheric aerosol and trace gas concentrations and meteorological data collected in Chicago during the summer months of 2002, 2003, and 2004. Concentrations of ammonium, calcium, nitrate, sulfate, and oxalate particulate matter, as well as, meteorological parameters temperature, wind speed, wind direction, and humidity were subjected to CCA and PCA. Ozone and nitrogen oxide mixing ratios were also included in the data set. The purpose of statistical analysis was to determine the extent of existing linear relationship(s), or lack thereof, between meteorological parameters and pollutant concentrations in addition to reducing dimensionality of the original data to determine sources of pollutants. In CCA, the first three canonical variate pairs derived were statistically significant at the 0.05 level. Canonical correlation between the first canonical variate pair was 0.821, while correlations of the second and third canonical variate pairs were 0.562 and 0.461, respectively. The first canonical variate pair indicated that increasing temperatures resulted in high ozone mixing ratios, while the second canonical variate pair showed wind speed and humidity's influence on local ammonium concentrations. No new information was uncovered in the third variate pair. Canonical loadings were also interpreted for information regarding relationships between data sets. Four principal components (PCs), expressing 77.0 % of original data variance, were derived in PCA. Interpretation of PCs suggested significant production and/or transport of secondary aerosols in the region (PC1). Furthermore, photochemical production of ozone and wind speed's influence on pollutants were expressed (PC2) along with overall measure of local meteorology (PC3). In summary, CCA and PCA results combined were successful in uncovering linear relationships between meteorology and air pollutants in Chicago and aided in determining possible pollutant sources.

  4. Assessment and prediction of short term hospital admissions: the case of Athens, Greece

    NASA Astrophysics Data System (ADS)

    Kassomenos, P.; Papaloukas, C.; Petrakis, M.; Karakitsios, S.

    The contribution of air pollution on hospital admissions due to respiratory and heart diseases is a major issue in the health-environmental perspective. In the present study, an attempt was made to run down the relationships between air pollution levels and meteorological indexes, and corresponding hospital admissions in Athens, Greece. The available data referred to a period of eight years (1992-2000) including the daily number of hospital admissions due to respiratory and heart diseases, hourly mean concentrations of CO, NO 2, SO 2, O 3 and particulates in several monitoring stations, as well as, meteorological data (temperature, relative humidity, wind speed/direction). The relations among the above data were studied through widely used statistical techniques (multivariate stepwise analyses) and Artificial Neural Networks (ANNs). Both techniques revealed that elevated particulate concentrations are the dominant parameter related to hospital admissions (an increase of 10 μg m -3 leads to an increase of 10.2% in the number of admissions), followed by O 3 and the rest of the pollutants (CO, NO 2 and SO 2). Meteorological parameters also play a decisive role in the formation of air pollutant levels affecting public health. Consequently, increased/decreased daily hospital admissions are related to specific types of meteorological conditions that favor/do not favor the accumulation of pollutants in an urban complex. In general, the role of meteorological factors seems to be underestimated by stepwise analyses, while ANNs attribute to them a more important role. Comparison of the two models revealed that ANN adaptation in complicate environmental issues presents improved modeling results compared to a regression technique. Furthermore, the ANN technique provides a reliable model for the prediction of the daily hospital admissions based on air quality data and meteorological indices, undoubtedly useful for regulatory purposes.

  5. Modeling soil evaporation efficiency in a range of soil and atmospheric conditions using a meta-analysis approach

    NASA Astrophysics Data System (ADS)

    Merlin, O.; Stefan, V. G.; Amazirh, A.; Chanzy, A.; Ceschia, E.; Er-Raki, S.; Gentine, P.; Tallec, T.; Ezzahar, J.; Bircher, S.; Beringer, J.; Khabba, S.

    2016-05-01

    A meta-analysis data-driven approach is developed to represent the soil evaporative efficiency (SEE) defined as the ratio of actual to potential soil evaporation. The new model is tested across a bare soil database composed of more than 30 sites around the world, a clay fraction range of 0.02-0.56, a sand fraction range of 0.05-0.92, and about 30,000 acquisition times. SEE is modeled using a soil resistance (rss) formulation based on surface soil moisture (θ) and two resistance parameters rss,ref and θefolding. The data-driven approach aims to express both parameters as a function of observable data including meteorological forcing, cut-off soil moisture value θ1/2 at which SEE=0.5, and first derivative of SEE at θ1/2, named Δθ1/2-1. An analytical relationship between >(rss,ref;θefolding) and >(θ1/2;Δθ1/2-1>) is first built by running a soil energy balance model for two extreme conditions with rss = 0 and rss˜∞ using meteorological forcing solely, and by approaching the middle point from the two (wet and dry) reference points. Two different methods are then investigated to estimate the pair >(θ1/2;Δθ1/2-1>) either from the time series of SEE and θ observations for a given site, or using the soil texture information for all sites. The first method is based on an algorithm specifically designed to accomodate for strongly nonlinear SEE>(θ>) relationships and potentially large random deviations of observed SEE from the mean observed SEE>(θ>). The second method parameterizes θ1/2 as a multi-linear regression of clay and sand percentages, and sets Δθ1/2-1 to a constant mean value for all sites. The new model significantly outperformed the evaporation modules of ISBA (Interaction Sol-Biosphère-Atmosphère), H-TESSEL (Hydrology-Tiled ECMWF Scheme for Surface Exchange over Land), and CLM (Community Land Model). It has potential for integration in various land-surface schemes, and real calibration capabilities using combined thermal and microwave remote sensing data.

  6. A combined road weather forecast system to prevent road ice formation in the Adige Valley (Italy)

    NASA Astrophysics Data System (ADS)

    Di Napoli, Claudia; Piazza, Andrea; Antonacci, Gianluca; Todeschini, Ilaria; Apolloni, Roberto; Pretto, Ilaria

    2016-04-01

    Road ice is a dangerous meteorological hazard to a nation's transportation system and economy. By reducing the pavement friction with vehicle tyres, ice formation on pavements increases accident risk and delays travelling times thus posing a serious threat to road users' safety and the running of economic activities. Keeping roads clear and open is therefore essential, especially in mountainous areas where ice is likely to form during the winter period. Winter road maintenance helps to restore road efficiency and security, and its benefits are up to 8 times the costs sustained for anti-icing strategies [1]. However, the optimization of maintenance costs and the reduction of the environmental damage from over-salting demand further improvements. These can be achieved by reliable road weather forecasts, and in particular by the prediction of road surface temperatures (RSTs). RST is one of the most important parameters in determining road surface conditions. It is well known from literature that ice forms on pavements in high-humidity conditions when RSTs are below 0°C. We have therefore implemented an automatic forecast system to predict critical RSTs on a test route along the Adige Valley complex terrain, in the Italian Alps. The system considers two physical models, each computing heat and energy fluxes between the road and the atmosphere. One is Reuter's radiative cooling model, which predicts RSTs at sunrise as a function of surface temperatures at sunset and the time passed since then [2]. One is METRo (Model of the Environment and Temperature of Roads), a road weather forecast software which also considers heat conduction through road material [3]. We have applied the forecast system to a network of road weather stations (road weather information system, RWIS) installed on the test route [4]. Road and atmospheric observations from RWIS have been used as initial conditions for both METRo and Reuter's model. In METRo observations have also been coupled to meteorological forecasts from ECMWF numerical prediction model. Overnight RST minima have then been estimated automatically in nowcast mode. In this presentation we show and discuss results and performances for the 2014-2015 and 2015-2016 winter seasons. Using evaluation indexes we demonstrate that combining METRo and Reuter's models into one single forecast system improves bias and accuracy by about 0.5°C. This study is supported by the LIFE11 ENV/IT/000002 CLEAN-ROADS project. The project aims to assess the environmental impact of salt de-icers in Trentino mountain region by supporting winter road management operations with meteorological information. [1] Thornes J.E. and Stephenson D.B., Meteorological Applications, 8:307 (2001) [2] Reuter H., Tellus, 3:141 (1951) [3] Crevier L.P. and Delage Y., Journal of applied meteorology, 40:2026 (2001) [4] Pretto I. et al., SIRWEC 2014 conference proceedings, ID:0019 (2014)

  7. Evaluation of near surface ozone and particulate matter in air quality simulations driven by dynamically downscaled historical meteorological fields

    EPA Science Inventory

    In this study, techniques typically used for future air quality projections are applied to a historical 11-year period to assess the performance of the modeling system when the driving meteorological conditions are obtained using dynamical downscaling of coarse-scale fields witho...

  8. BOREAS TF-3 NSA-OBS Tower Flux, Meteorological, and Soil Temperature Data

    NASA Technical Reports Server (NTRS)

    Wofsy, Steven; Sutton, Doug; Goulden, Mike; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Tower Flux (BOREAS TF-3) team collected tower flux, surface meteorological, and soil temperature data at the BOREAS Northern Study Area-Old Black Spruce (NSA-OBS) site continuously from the March 1994 through October 1996. The data are available in tabular ASCII files.

  9. The Influence on CMAQ Modeled Wet and Dry Deposition of Advances in the CMAQ Systems for Meteorology and Emissions

    EPA Science Inventory

    Process level improvements in the CMAQ system have been made to WRF meteorology, national ammonia emission profiles, and CMAQ ammonia air-surface exchange. An incremental study was conducted to quantify the impact of individual and combined changes on modeled inorganic depositio...

  10. Development of Forest Drought Index and Forest Water Use Prediction in Gyeonggi Province, Korea Using High-Resolution Weather Research and Forecast Data and Localized JULES Land Surface Model

    NASA Astrophysics Data System (ADS)

    Lee, H.; Park, J.; Cho, S.; Lee, S. J.; Kim, H. S.

    2017-12-01

    Forest determines the amount of water available to low land ecosystems, which use the rest of water after evapotranspiration by forests. Substantial increase of drought, especially for seasonal drought, has occurred in Korea due to climate change, recently. To cope with this increasing crisis, it is necessary to predict the water use of forest. In our study, forest water use in the Gyeonggi Province in Korea was estimated using high-resolution (spatial and temporal) meteorological forecast data and localized Joint UK Land Environment Simulator (JULES) which is one of the widely used land surface models. The modeled estimation was used for developing forest drought index. The localization of the model was conducted by 1) refining the existing two tree plant functional types (coniferous and deciduous trees) into five (Quercus spp., other deciduous tree spp., Pinus spp., Larix spp., and other coniferous spp.), 2) correcting moderate resolution imaging spectroradiometer (MODIS) leaf area index (LAI) through data assimilation with in situ measured LAI, and 3) optimizing the unmeasured plant physiological parameters (e.g. leaf nitrogen contents, nitrogen distribution within canopy, light use efficiency) based on sensitivity analysis of model output values. The high-resolution (hourly and 810 × 810 m) National Center for AgroMeteorology-Land-Atmosphere Modeling Package (NCAM-LAMP) data were employed as meteorological input data in JULES. The plant functional types and soil texture of each grid cell in the same resolution with that of NCAM-LAMP was also used. The performance of the localized model in estimating forest water use was verified by comparison with the multi-year sapflow measurements and Eddy covariance data of Taehwa Mountain site. Our result can be used as referential information to estimate the forest water use change by the climate change. Moreover, the drought index can be used to foresee the drought condition and prepare to it.

  11. Multi-Index Attribution of Beijing's 2013 "Airpocalypse"

    NASA Astrophysics Data System (ADS)

    Callahan, C.; Diffenbaugh, N. S.; Horton, D. E.

    2017-12-01

    Poor air quality causes 2 to 4 million premature deaths per year globally. Individual high-impact events, like Beijing's January 2013 "airpocalypse," have drawn significant attention, as they have demonstrated that short-lived air quality events can have outsized effects on public health and economic vitality. Poor air quality events are the result of emission of pollutants and the meteorological conditions favorable to their accumulation in the near-surface environment. Accumulation occurs when pollutants are not dispersed or scavenged from the atmosphere. The most important meteorological precursors of these conditions include lack of precipitation, low wind speeds, and vertical temperature inversions. Recent reports of extreme air quality, in conjunction with projected future changes in some meteorological air quality indices, raise the question: have the meteorological conditions that shape air quality changed in frequency, intensity, or duration over the observational era? Here we assess whether anthropogenic climate change has altered meteorological conditions conducive to poor air quality. To gain a more complete picture of the effect of anthropogenic change on air quality, we use three indices that quantify poor air quality: the Pollution Potential Index (Zou et al, 2017), which measures temperature inversions and surface wind speeds, the Haze Weather Index (Cai et al, 2017), which measures temperature inversions and mid-level wind speeds, and the Air Stagnation Index (Horton et al, 2014), which measures precipitation, surface wind speeds, and mid-level wind speeds. Drawing on the attribution methods of Diffenbaugh et al (2017), we assess the contribution of observed meteorological trends to the magnitude of air quality events, the return interval of events in the observational record, historical simulated climate, and pre-industrial simulated climate, and the probability of the observed trend in historical and pre-industrial simulated climates. Particular attention is paid to Beijing's January 2013 event, but we also analyze air quality meteorology on a global scale. This work provides a framework for both further understanding the role of climate change in particular air quality events and for expanding the scope of extreme event attribution beyond its current applications.

  12. Modeling of meteorology, tracer transport and chemistry for the Uintah Basin Winter Ozone Studies 2012 and 2013

    NASA Astrophysics Data System (ADS)

    Ahmadov, R.; McKeen, S. A.; Angevine, W. M.; Frost, G. J.; Roberts, J. M.; De Gouw, J. A.; Warneke, C.; Peischl, J.; Brown, S. S.; Edwards, P. M.; Wild, R. J.; Pichugina, Y. L.; Banta, R. M.; Brewer, A.; Senff, C. J.; Langford, A. O.; Petron, G.; Karion, A.; Sweeney, C.; Schnell, R. C.; Johnson, B.; Zamora, R. J.; Helmig, D.; Park, J.; Evans, J.; Stephens, C. R.; Olson, J. B.; Trainer, M.

    2013-12-01

    The Uintah Basin Winter Ozone Studies (UBWOS) field campaigns took place during winter of 2012 and 2013 in the Uintah Basin, Utah. The studies were aimed at characterizing meteorology, emissions of atmospheric constituents and air chemistry in a region abundant with oil and gas production, with associated emissions of various volatile organic compounds (VOCs) and NOx. High ozone pollution events were observed throughout the Uintah Basin during the winter of 2013, but not during the winter of 2012. A clear understanding of the processes leading to high ozone events is still lacking. We present here high spatiotemporal resolution simulations of meteorology, tracer transport and gas chemistry over the basin during January-February, 2012 and 2013 using the WRF/Chem regional photochemical model. Correctly characterizing the meteorology poses unique challenges due to complex terrain, cold-pool conditions, and shallow inversion layers observed during the winter of 2013. We discuss the approach taken to adequately simulate the meteorology over the basin and present evaluations of the modeled meteorology using surface, lidar and tethersonde measurements. Initial simulations use a passive tracer within the model as a surrogate for CH4 released from oil and gas wells. These tracer transport simulations show that concentrations of inert, emitted species near the surface in 2013 were 4-8 times higher than 2012 due to much shallower boundary layers and reduced winds in 2013. This is supported by in-situ measurements of CH4 made at the Horse Pool surface station during the field campaigns. Full photochemical simulations are forced by VOC and NOx emissions that are determined in a top-down approach, using observed emission ratios of VOC and NOx relative to CH4, along with available information of active wells, compressors, and processing plants. We focus on differences in meteorology, temperature, and radiation between the two winters in determining ozone concentrations in the basin. The model is then used diagnostically to assess first-order sensitivities of basin-wide ozone to NOx or VOC emissions, and how they depend on the environmental differences between the winters of 2012 and 2013.

  13. Linking the Weather Generator with Regional Climate Model: Effect of Higher Resolution

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Martin; Huth, Radan; Farda, Ales; Skalak, Petr

    2014-05-01

    This contribution builds on our last year EGU contribution, which followed two aims: (i) validation of the simulations of the present climate made by the ALADIN-Climate Regional Climate Model (RCM) at 25 km resolution, and (ii) presenting a methodology for linking the parametric weather generator (WG) with RCM output (aiming to calibrate a gridded WG capable of producing realistic synthetic multivariate weather series for weather-ungauged locations). Now we have available new higher-resolution (6.25 km) simulations with the same RCM. The main topic of this contribution is an anser to a following question: What is an effect of using a higher spatial resolution on a quality of simulating the surface weather characteristics? In the first part, the high resolution RCM simulation of the present climate will be validated in terms of selected WG parameters, which are derived from the RCM-simulated surface weather series and compared to those derived from weather series observed in 125 Czech meteorological stations. The set of WG parameters will include statistics of the surface temperature and precipitation series. When comparing the WG parameters from the two sources (RCM vs observations), we interpolate the RCM-based parameters into the station locations while accounting for the effect of altitude. In the second part, we will discuss an effect of using the higher resolution: the results of the validation tests will be compared with those obtained with the lower-resolution RCM. Acknowledgements: The present experiment is made within the frame of projects ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR) and VALUE (COST ES 1102 action).

  14. Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands

    NASA Astrophysics Data System (ADS)

    Hendriks, Rob F. A.; van den Akker, Jan J. A.

    2017-04-01

    Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather conditions and for two extreme climate scenarios of the Royal Netherlands Meteorological Institute. In this study the model results of one of the pilot studies are presented. The case study 'de Krimpenerwaard' is situated in the peat area in the "Green Heart" between the major cities of Amsterdam, The Hague, Rotterdam and Utrecht. Model results show a halving of soil subsidence, a strong increase of water recharge but a lower increase of water discharge, and generally small to moderate effects on nutrient loading , all depending (strongly) on meteorological conditions.

  15. Field assessment of optical transparency in the low-level marine boundary layer: preliminary data from coastal New England sites

    NASA Astrophysics Data System (ADS)

    Vandemark, Douglas; Feng, Hui; Greenslade, Margaret E.

    2016-05-01

    Estimating the variation in the spectral transmission and scattering of optical and near-IR radiation near the sea surface under a range of conditions should be feasible using historical data collected off the coast of New Hampshire USA and along the coastline in the Gulf of Maine. Presented here are long-term offshore aerosol optical depth measurements collected using an AERONET sun photometer from 2007-2011 and near-surface wind and (3 m) horizontal visibility measurements collected using surface meteorological buoys from 2001-present. Future analysis of these data can address their correlation with near-surface meteorological and sea state conditions and to exploit an intensive but limited subset of historical aerosol particle measurements collected here both during a large research ship surveys (ICARTT) as well as with a dedicated aerosol measurement station in summer 2005. Refractive index variation and relevant altitude-dependent differences in meteorological scalars are also investigated using unique offshore long-term measurements at 3 and 32 m above sea level. Overall project results should provide new information for assessment against several existing models for aerosol extinction in marine environments.

  16. Volcanic ash and meteorological clouds detection by neural networks

    NASA Astrophysics Data System (ADS)

    Picchiani, Matteo; Del Frate, Fabio; Stefano, Corradini; Piscini, Alessandro; Merucci, Luca; Chini, Marco

    2014-05-01

    The recent eruptions of the Icelandic Eyjafjallajokull and Grímsvötn volcanoes occurred in 2010 and 2011 respectively have been highlighted the necessity to increase the accuracy of the ash detection and retrieval. Follow the evolution of the ash plume is crucial for aviation security. Indeed from the accuracy of the algorithms applied to identify the ash presence may depend the safety of the passengers. The difference between the brightness temperatures (BTD) of thermal infrared channels, centered around 11 µm and 12 µm, is suitable to distinguish the ash plume from the meteorological clouds [Prata, 1989] on satellite images. Anyway in some condition an accurate interpretation is essential to avoid false alarms. In particular Corradini et al. (2008) have developed a correction procedure aimed to avoid the atmospheric water vapour effect that tends to mask, or cancel-out, the ash plume effects on the BTD. Another relevant issue is due to the height of the meteorological clouds since their brightness temperatures is affected by this parameter. Moreover the overlapping of ash plume and meteorological clouds may affects the retrieval result since this latter is dependent by the physical temperature of the surface below the ash cloud. For this reason the correct identification of such condition, that can require a proper interpretation by the analyst, is crucial to address properly the inversion of ash parameters. In this work a fast and automatic procedure based on multispectral data from MODIS and a neural network algorithm is applied to the recent eruptions of Eyjafjallajokull and Grímsvötn volcanoes. A similar approach has been already tested with encouraging results in a previous work [Picchiani et al., 2011]. The algorithm is now improved in order to distinguish the meteorological clouds from the ash plume, dividing the latter between ash above sea and ash overlapped to meteorological clouds. The results have been compared to the BTD ones, properly interpreted considering the information of the visible and infrared channels. The comparison shows that the proposed methodology achieves very promising performances, indeed an overall accuracy greater than 87% can be iteratively obtained classifying new images without human interactions. References: Corradini, S., Spinetti, C., Carboni, E., Tirelli, C., Buongiorno, M. F., Pugnaghi, S., and Gangale, G..; "Mt. Etna tropospheric ash retrieval and sensitivity analysis using Moderate Resolution Imaging Spectroradiometer measurements". J, Atmosph. Rem. Sens., 2, 023550, DOI:10.1117/12.823215, 2008. Prata A. J., "Infrared radiative transfer calculations for volcanic ash clouds", Geophys. Res. Lett., Vol. 16, No. 11, pp. 1293-1296, 1989. Picchiani, M., Chini, M., Corradini, S., Merucci, L., Sellitto, P., Del Frate, F. and Stramondo, S., "Volcanic ash detection and retrievals from MODIS data by means of Neural Networks", Atmos. Meas. Tech., 4, 2619-2631, doi:10.5194/amt-4-2619-2011, 2011.

  17. Contribution of ambient ozone to Scots pine defoliation and reduced growth in the Central European forests: a Lithuanian case study.

    PubMed

    Augustaitis, Algirdas; Bytnerowicz, Andrzej

    2008-10-01

    The study aimed to explore if changes in crown defoliation and stem growth of Scots pines (Pinus sylvestris L.) could be related to changes in ambient ozone (O(3)) concentration in central Europe. To meet this objective the study was performed in 3 Lithuanian national parks, close to the ICP integrated monitoring stations from which data on meteorology and pollution were provided. Contribution of peak O(3) concentrations to the integrated impact of acidifying compounds and meteorological parameters on pine stem growth was found to be more significant than its contribution to the integrated impact of acidifying compounds and meteorological parameters on pine defoliation. Findings of the study provide statistical evidence that peak concentrations of ambient O(3) can have a negative impact on pine tree crown defoliation and stem growth reduction under field conditions in central and northeastern Europe where the AOT40 values for forests are commonly below their phytotoxic levels.

  18. Thirty-year survey on airborne pollen concentrations in Genoa, Italy: relationship with sensitizations, meteorological data, and air pollution.

    PubMed

    Negrini, Arsenio Corrado; Negrini, Simone; Giunta, Vania; Quaglini, Silvana; Ciprandi, Giorgio

    2011-01-01

    Pollen allergy represents a relevant health issue. Betulaceae sensitization significantly increased in Genoa, Italy, in the last decades. This study investigated possible relationships among pollen count, meteorological changes, air pollution, and sensitizations in this city during a 30-year period. Betulaceae, Urticaceae, Gramineae, and Oleaceae pollen counts were measured from 1981 to 2010 in Genoa. Sensitization to these pollens was also considered in large populations of allergic patients. Meteorological parameters and pollutants were also measured in the same area. Betulaceae sensitization increased over time. All pollen species significantly increased over this time. Pollen season advanced for Betulaceae and Urticaceae. Only Urticaceae season significantly increased. Temperature increased while rainfall decreased over the time. Pollutants significantly decreased. There were some relationships between pollen changes and climatic and air pollution parameters. This 30-year study conducted in an urbanized area provided evidence that Betulaceae sensitization significantly increased, pollen load significantly augmented, and climate and air pollution changed with a possible influence on pollen release.

  19. Observed and predicted sensitivities of extreme surface ozone to meteorological drivers in three US cities

    NASA Astrophysics Data System (ADS)

    Fix, Miranda J.; Cooley, Daniel; Hodzic, Alma; Gilleland, Eric; Russell, Brook T.; Porter, William C.; Pfister, Gabriele G.

    2018-03-01

    We conduct a case study of observed and simulated maximum daily 8-h average (MDA8) ozone (O3) in three US cities for summers during 1996-2005. The purpose of this study is to evaluate the ability of a high resolution atmospheric chemistry model to reproduce observed relationships between meteorology and high or extreme O3. We employ regional coupled chemistry-transport model simulations to make three types of comparisons between simulated and observational data, comparing (1) tails of the O3 response variable, (2) distributions of meteorological predictor variables, and (3) sensitivities of high and extreme O3 to meteorological predictors. This last comparison is made using two methods: quantile regression, for the 0.95 quantile of O3, and tail dependence optimization, which is used to investigate even higher O3 extremes. Across all three locations, we find substantial differences between simulations and observational data in both meteorology and meteorological sensitivities of high and extreme O3.

  20. Seasonal Variations of the Earth's Gravitational Field: An Analysis of Atmospheric Pressure, Ocean Tidal, and Surface Water Excitation

    NASA Technical Reports Server (NTRS)

    Dong, D,; Gross, R.S.; Dickey, J.

    1996-01-01

    Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.

  1. Development of specifications for surface and subsurface oceanic environmental data

    NASA Technical Reports Server (NTRS)

    Wolff, P. M.

    1976-01-01

    The existing need for synoptic subsurface observations was demonstrated giving special attention to the requirements of meteorology. The current state of synoptic oceanographic observations was assessed; a preliminary design for the Basic Observational Network needed to fulfill the minimum needs of synoptic meteorology and oceanography was presented. There is an existing critical need for such a network in the support of atmospheric modeling and operational meteorological prediction, and through utilization of the regional water mass concept an adequate observational system can be designed which is realistic in terms of cost and effort.

  2. Effect of solar activity on the repetitiveness of some meteorological phenomena

    NASA Astrophysics Data System (ADS)

    Todorović, Nedeljko; Vujović, Dragana

    2014-12-01

    In this paper we research the relationship between solar activity and the weather on Earth. This research is based on the assumption that every ejection of magnetic field energy and particles from the Sun (also known as Solar wind) has direct effects on the Earth's weather. The impact of coronal holes and active regions on cold air advection (cold fronts, precipitation, and temperature decrease on the surface and higher layers) in the Belgrade region (Serbia) was analyzed. Some active regions and coronal holes appear to be in a geo-effective position nearly every 27 days, which is the duration of a solar rotation. A similar period of repetitiveness (27-29 days) of the passage of the cold front, and maximum and minimum temperatures measured at surface and at levels of 850 and 500 hPa were detected. We found that 10-12 days after Solar wind velocity starts significantly increasing, we could expect the passage of a cold front. After eight days, the maximum temperatures in the Belgrade region are measured, and it was found that their minimum values appear after 12-16 days. The maximum amount of precipitation occurs 14 days after Solar wind is observed. A recurring period of nearly 27 days of different phases of development for hurricanes Katrina, Rita and Wilma was found. This analysis confirmed that the intervals of time between two occurrences of some particular meteorological parameter correlate well with Solar wind and A index.

  3. Spatially Complete Surface Albedo Data Sets: Value-Added Products Derived from Terra MODIS Land Products

    NASA Technical Reports Server (NTRS)

    Moody, E. G.; King, M. D.; Platnick, S.; Schaaf, C. B.; Gao, F.

    2004-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. The availability of global albedo data over a large range of spectral channels and at high spatial resolution has dramatically improved with the launch of the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA s Earth Observing System (EOS) Terra spacecraft in December 1999. However, lack of spatial and temporal coverage due to cloud and snow effects can preclude utilization of official products in production and research studies. We report on a technique used to fill incomplete MOD43 albedo data sets with the intention of providing complete value-added maps. The technique is influenced by the phenological concept that within a certain area, a pixel s ecosystem class should exhibit similar growth cycle events over the same time period. The shape of an area s phenological temporal curve can be imposed upon existing pixel-level data to fill missing temporal points. The methodology will be reviewed by showcasing 2001 global and regional results of complete albedo and NDVl data sets.

  4. Regional Differences in Stratospheric Intrusions over the USA Investigated using the NASA MERRA-2 Reanalysis

    NASA Astrophysics Data System (ADS)

    Knowland, K. E.; Ott, L.; Hodges, K.; Wargan, K.; Duncan, B. N.

    2016-12-01

    Stratospheric intrusions (SI) - the introduction of ozone-rich stratospheric air into the troposphere - have been linked with surface ozone air quality exceedences, especially at the high elevations in the western USA in springtime. However, the impact of SIs in the remaining seasons and over the rest of the USA is less clear. This study investigates the atmospheric dynamics that generate SIs over the western USA and the different mechanisms through which SIs may influence atmospheric chemistry and surface air quality over the eastern USA. An analysis of the spatiotemporal variability of SIs over the continental US is performed using NASA's Modern-Era Retrospective Analysis for Research and Applications Version-2 (MERRA-2) reanalysis dataset and other Goddard Earth Observing System Model, Version 5 (GEOS-5) model products. Both upper-level and lower-level dynamical features are examined on seasonal timescales using the tracking algorithm of Hodges (1995, 1999). We show how upper-level relative vorticity maxima - representing troughs and cut-off lows - can be tracked and related to the lower-level storm tracks. The influence of both sets of tracks on the assimilated MERRA-2 ozone and meteorological parameters throughout the troposphere and lower stratosphere is quantified. By focusing on the major modes of variability that influence the weather patterns in the USA, namely the Pacific North American (PNA) pattern, Arctic Oscillation (AO) and the North Atlantic Oscillation (NAO), predicative patterns in the meteorological fields that are associated with SIs are identified for their regional effects.

  5. The MeteoMet2 project—highlights and results

    NASA Astrophysics Data System (ADS)

    Merlone, A.; Sanna, F.; Beges, G.; Bell, S.; Beltramino, G.; Bojkovski, J.; Brunet, M.; del Campo, D.; Castrillo, A.; Chiodo, N.; Colli, M.; Coppa, G.; Cuccaro, R.; Dobre, M.; Drnovsek, J.; Ebert, V.; Fernicola, V.; Garcia-Benadí, A.; Garcia-Izquierdo, C.; Gardiner, T.; Georgin, E.; Gonzalez, A.; Groselj, D.; Heinonen, M.; Hernandez, S.; Högström, R.; Hudoklin, D.; Kalemci, M.; Kowal, A.; Lanza, L.; Miao, P.; Musacchio, C.; Nielsen, J.; Nogueras-Cervera, M.; Oguz Aytekin, S.; Pavlasek, P.; de Podesta, M.; Rasmussen, M. K.; del-Río-Fernández, J.; Rosso, L.; Sairanen, H.; Salminen, J.; Sestan, D.; Šindelářová, L.; Smorgon, D.; Sparasci, F.; Strnad, R.; Underwood, R.; Uytun, A.; Voldan, M.

    2018-02-01

    Launched in 2011 within the European Metrology Research Programme (EMRP) of EURAMET, the joint research project ‘MeteoMet’—Metrology for Meteorology—is the largest EMRP consortium; national metrology institutes, universities, meteorological and climate agencies, research institutes, collaborators and manufacturers are working together, developing new metrological techniques, as well as improving existing ones, for use in meteorological observations and climate records. The project focuses on humidity in the upper and surface atmosphere, air temperature, surface and deep-sea temperatures, soil moisture, salinity, permafrost temperature, precipitation, and the snow albedo effect on air temperature. All tasks are performed using a rigorous metrological approach and include the design and study of new sensors, new calibration facilities, the investigation of sensor characteristics, improved techniques for measurements of essential climate variables with uncertainty evaluation, traceability, laboratory proficiency and the inclusion of field influencing parameters, long-lasting measurements, and campaigns in remote and extreme areas. The vision for MeteoMet is to take a step further towards establishing full data comparability, coherency, consistency, and long-term continuity, through a comprehensive evaluation of the measurement uncertainties for the quantities involved in the global climate observing systems and the derived observations. The improvement in quality of essential climate variables records, through the inclusion of measurement uncertainty budgets, will also highlight possible strategies for the reduction of the uncertainty. This contribution presents selected highlights of the MeteoMet project and reviews the main ongoing activities, tasks and deliverables, with a view to its possible future evolution and extended impact.

  6. Inherent uncertainties in meteorological parameters for wind turbine design

    NASA Technical Reports Server (NTRS)

    Doran, J. C.

    1982-01-01

    Major difficulties associated with meteorological measurments such as the inability to duplicate the experimental conditions from one day to the next are discussed. This lack of consistency is compounded by the stochastic nature of many of the meteorological variables of interest. Moreover, simple relationships derived in one location may be significantly altered by topographical or synoptic differences encountered at another. The effect of such factors is a degree of inherent uncertainty if an attempt is made to describe the atmosphere in terms of universal laws. Some of these uncertainties and their causes are examined, examples are presented and some implications for wind turbine design are suggested.

  7. Implications of a lightning-rich tundra biome for permafrost carbon and vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Veraverbeke, S.; Randerson, J. T.

    2017-12-01

    Lightning is a major ignition source of wildfires in circumpolar boreal forests but rarely occurs in arctic tundra. While theoretical and empirical work suggests that climate change will increase lightning strikes in temperate regions, much less is known about future changes in lightning across terrestrial ecosystems at high northern latitudes. Here we analyzed the spatial and temporal patterns of lightning flash rate (FR) from the satellite observations and surface detection networks. Regression models between the observed FR from the Optical Transient Detector on the MicroLab-1 satellite (later renamed OV-1) and meteorological parameters, including surface temperature (T), convective available potential energy (CAPE), and convective precipitation (CP) from ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-interim reanalysis, were established and assessed. We found that FR had significant linear correlations with CAPE and CP, and a strong non-linear relationship with T. The statistical model based on T and CP can reproduce most of the spatial and temporal variability in FR in the circumpolar region. By using the regression model and meteorological predictions from 24 earth system models in the Coupled Model Intercomparison Project Phase 5 (CMIP5), we estimated the spatial distribution of FR by the end of the 21st century. Due to increases in surface temperature and convection, modeled FR shows substantial increase in northern biomes, including a 338% change in arctic tundra and a 185% change in regions with permafrost soil carbon reservoirs. These changes highlight a new mechanism by which permafrost carbon is vulnerable to the sustained impacts of climate warming. Increased fire in a warmer and lightning-rich future near the treeline has the potential to accelerate the northward migration of trees, which may further enhance warming and the abundance of lightning strikes.

  8. WRF/Chem-MADRID: Incorporation of an Improved Aerosol Module into WRF/Chem and Its Initial Application to the TexAQS2000 Episode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yang; Pan, Ying; Wang, K.

    2010-09-17

    The Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (MADRID) with three improved gas/particle mass transfer approaches (i.e., bulk equilibrium (EQUI), hybrid (HYBR), and kinetic (KINE)) has been incorporated into the Weather Research and Forecast/Chemistry Model (WRF/Chem) (referred to as WRF/Chem-MADRID) and evaluated with a 5-day episode from the 2000 Texas Air Quality Study (TexAQS2000). WRF/Chem-MADRID demonstrates an overall good skill in simulating surface/aloft meteorological parameters and chemical concentrations, tropospheric O3 residuals, and aerosol optical depths. The discrepancies can be attributed to inaccuracies in meteorological predictions (e.g., overprediction in mid-day boundary layer height), inaccurate total emissions or their hourly variationsmore » (e.g., HCHO, olefins, other inorganic aerosols), and uncertainties in initial and boundary conditions for some species (e.g., other inorganic aerosols and O3) at surface and aloft. Major differences in the results among the three gas/particle mass transfer approaches occur over coastal areas, where EQUI predicts higher PM2.5 than HYBR and KINE due to improperly redistributing condensed nitrate from chloride depletion process to fine PM mode. The net direct, semi-direct, and indirect effects of PM2.5 decreased domain wide shortwave radiation by 11.2-14.4 W m-2 (or 4.1-5.6%), decreased near-surface temperature by 0.06-0.14 °C (or 0.2-0.4%), led to 125 to 796 cm-3 cloud condensation nuclei at a supersaturation of 0.1%, produced cloud droplet numbers as high as 2064 cm-3, and reduced domain wide mean precipitation by 0.22-0.59 mm day-1.« less

  9. The Impacts of Urbanization on Meteorology and Air Quality in the Los Angeles Basin

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhang, J.; Sailor, D.; Ban-Weiss, G. A.

    2017-12-01

    Urbanization has a profound influence on regional meteorology in mega cities like Los Angeles. This influence is driven by changes in land surface physical properties and urban processes, and their corresponding influence on surface-atmosphere coupling. Changes in meteorology from urbanization in turn influences air quality through weather-dependent chemical reaction, pollutant dispersion, etc. Hence, a real-world representation of the urban land surface properties and urban processes should be accurately resolved in regional climate-chemistry models for better understanding the role of urbanization on changing urban meteorology and associated pollutant dynamics. By incorporating high-resolution land surface data, previous research has improved model-observation comparisons of meteorology in urban areas including the Los Angeles basin, and indicated that historical urbanization has increased urban temperatures and altered wind flows significantly. However, the impact of urban expansion on air quality has been less studied. Thus, in this study, we aim to evaluate the effectiveness of resolving high-resolution heterogeneity in urban land surface properties and processes for regional weather and pollutant concentration predictions. We coupled the Weather Research and Forecasting model with Chemistry to the single-layer Urban Canopy Model to simulate a typical summer period in year 2012 for Southern California. Land cover type and urban fraction were determined from National Land Cover Data. MODIS observations were used to determine satellite-derived albedo, green vegetation fraction, and leaf area index. Urban morphology was determined from GIS datasets of 3D building geometries. An urban irrigation scheme was also implemented in the model. Our results show that the improved model captures the diurnal cycle of 2m air temperature (T2) and Ozone (O3) concentrations. However, it tends to overestimate wind speed and underestimate T2, which leads to an underestimation of O3 and fine particulate matter concentrations. By comparing simulations assuming current land cover of the Los Angeles basin versus pre-urbanization land cover, we find that land cover change through urbanization has led to important shifts in regional air pollution via the aforementioned physical and chemical mechanisms.

  10. Improved meteorology from an updated WRF/CMAQ modeling ...

    EPA Pesticide Factsheets

    Realistic vegetation characteristics and phenology from the Moderate Resolution Imaging Spectroradiometer (MODIS) products improve the simulation for the meteorology and air quality modeling system WRF/CMAQ (Weather Research and Forecasting model and Community Multiscale Air Quality model) that employs the Pleim-Xiu land surface model (PX LSM). Recently, PX LSM WRF/CMAQ has been updated in vegetation, soil, and boundary layer processes resulting in improved 2 m temperature (T) and mixing ratio (Q), 10 m wind speed, and surface ozone simulations across the domain compared to the previous version for a period around August 2006. Yearlong meteorology simulations with the updated system demonstrate that MODIS input helps reduce bias of the 2 m Q estimation during the growing season from April to September. Improvements follow the green-up in the southeast from April and move toward the west and north through August. From October to March, MODIS input does not have much influence on the system because vegetation is not as active. The greatest effects of MODIS input include more accurate phenology, better representation of leaf area index (LAI) for various forest ecosystems and agricultural areas, and realistically sparse vegetation coverage in the western drylands. Despite the improved meteorology, MODIS input causes higher bias for the surface O3 simulation in April, August, and October in areas where MODIS LAI is much less than the base LAI. Thus, improvement

  11. The effect of plant water stress approach on the modelled energy-, water and carbon balance for Mediterranean vegetation; implications for (agro)meteorological applications.

    NASA Astrophysics Data System (ADS)

    Verhoef, Anne; Egea, Gregorio; Garrigues, Sebastien; Vidale, Pier Luigi; Balan Sarojini, Beena

    2017-04-01

    Current land surface schemes in many crop, weather and climate models make use of the coupled photosynthesis-stomatal conductance (A-gs) models of plant function to determine the transpiration flux and gross primary productivity. Vegetation exchange is controlled by many environmental factors, and soil moisture control on root water uptake and stomatal function is a primary pathway for feedbacks in sub-tropical to temperate ecosystems. Representations of the above process of soil moisture control on plant function (often referred to as a 'beta' factor) vary among models. This matters because the simulated energy, water and carbon balances are very sensitive to the representation of water stress in these models. Building on Egea et al. (2011) and Verhoef and Egea (2014), we tested a range of 'beta' approaches in a leaf-level A-gs model (compatible with models such as JULES, CHTESSEL, ISBA, CLM), as well as some beta-approaches borrowed from the agronomic, and plant physiological communities (a combined soil-plant hydraulic approach, see Verhoef and Egea, 2014). Root zone soil moisture was allowed to limit plant function via individual routes (via CO2 assimilation, stomatal conductance, or mesophyll conductance) as well as combinations of that. The simulations were conducted for a typical Mediterranean field site (Avignon, France; Garrigues et al., 2015) which provides 14 years of near-continuous measurements of soil moisture and atmospheric driving data. Daytime (8-16 hrs local time) data between April-September were used. This allowed a broad range of atmospheric and soil moisture/vegetation states to be explored. A number of crops and tree types were investigated in this way. We evaluated the effect of choice of beta-function for Mediterranean climates in relation to stomatal conductance, transpiration, photosynthesis, and leaf surface temperature. We also studied the implications for a range of widely used agro-/micro-meteorological indicators such as Bowen ratio and the omega decoupling coefficient (which quantifies the degree of the aerodynamic coupling between a vegetated surface and the atmospheric boundary layer; Jacobs and de Bruin, 1992); and applications (e.g. the use of surface temperature based water stress indices). Results showed that choice of 'beta' function has far-reaching consequences. For certain widely used 'beta'-models the predicted key fluxes and state variables, predominantly compared using kernel density functions, showed considerable 'clumping' around narrow data ranges. This will have implications for the strength of land-surface feedback predicted by these models, and for any agrometeorological applications they are used for. Recommendations as to the most suitable 'beta'-functions, and related parameter sets, for Mediterranean climates were made. References Garrigues, S. et al. (2015) Evaluation of land surface model simulations of evapotranspiration over a 12-year crop succession: impact of soil hydraulic and vegetation properties, Hydrol. Earth Syst. Sci., 19, 3109-3131; Jacobs, C. M. J. and de Bruin, H. A. R. (1992) The sensitivity of regional transpiration to land-surface characteristics: Significance of feedback, J. Climate, 5(7), 683-698; Verhoef, A. and Egea, G. (2014) Agriculture and Forest Meteorology, 191, 22-32; Egea, G., Verhoef, A., and Vidale, P. L. (2011) Agricultural and Forest Meteorology, 151, 1370-1384

  12. Towards physiologically meaningful water-use efficiency estimates from eddy covariance data.

    PubMed

    Knauer, Jürgen; Zaehle, Sönke; Medlyn, Belinda E; Reichstein, Markus; Williams, Christopher A; Migliavacca, Mirco; De Kauwe, Martin G; Werner, Christiane; Keitel, Claudia; Kolari, Pasi; Limousin, Jean-Marc; Linderson, Maj-Lena

    2018-02-01

    Intrinsic water-use efficiency (iWUE) characterizes the physiological control on the simultaneous exchange of water and carbon dioxide in terrestrial ecosystems. Knowledge of iWUE is commonly gained from leaf-level gas exchange measurements, which are inevitably restricted in their spatial and temporal coverage. Flux measurements based on the eddy covariance (EC) technique can overcome these limitations, as they provide continuous and long-term records of carbon and water fluxes at the ecosystem scale. However, vegetation gas exchange parameters derived from EC data are subject to scale-dependent and method-specific uncertainties that compromise their ecophysiological interpretation as well as their comparability among ecosystems and across spatial scales. Here, we use estimates of canopy conductance and gross primary productivity (GPP) derived from EC data to calculate a measure of iWUE (G 1 , "stomatal slope") at the ecosystem level at six sites comprising tropical, Mediterranean, temperate, and boreal forests. We assess the following six mechanisms potentially causing discrepancies between leaf and ecosystem-level estimates of G 1 : (i) non-transpirational water fluxes; (ii) aerodynamic conductance; (iii) meteorological deviations between measurement height and canopy surface; (iv) energy balance non-closure; (v) uncertainties in net ecosystem exchange partitioning; and (vi) physiological within-canopy gradients. Our results demonstrate that an unclosed energy balance caused the largest uncertainties, in particular if it was associated with erroneous latent heat flux estimates. The effect of aerodynamic conductance on G 1 was sufficiently captured with a simple representation. G 1 was found to be less sensitive to meteorological deviations between canopy surface and measurement height and, given that data are appropriately filtered, to non-transpirational water fluxes. Uncertainties in the derived GPP and physiological within-canopy gradients and their implications for parameter estimates at leaf and ecosystem level are discussed. Our results highlight the importance of adequately considering the sources of uncertainty outlined here when EC-derived water-use efficiency is interpreted in an ecophysiological context. © 2017 John Wiley & Sons Ltd.

  13. Long-term visibility data in the UK - how does visibility vary with meteorological and pollutant parameters?

    NASA Astrophysics Data System (ADS)

    Singh, Ajit; Bloss, William J.; Pope, Francis D.

    2016-04-01

    Poor visibility can be an indicator of poor air quality. Moreover, degradation in visibility can be hazardous to human safety; for example, low visibility can lead to accidents particularly during winter when fogs are prevalent. The present quantitative analysis attempts to explain the influence of aerosol concentration and composition, and meteorology on long-term UK visibility. We use visibility data from eight UK meteorological stations which have been running since the 1950s. The site locations include urban, rural and marine environments. Overall, most stations show a long term trend of visibility increase, which is indicative of reductions in aerosol pollution, especially in urban areas. Additionally, results at all sites show a very clear dependence on relative humidity, indicating the importance of aerosol hygroscopicity on the ability of aerosols to scatter radiation and hence impact upon visibility. The dependence of visibility on other meteorological parameters (e.g. relative humidity, air temperature, wind speed & direction) is also investigated. To explain the long term visibility trends and their dependence on meteorological conditions, a light extinction model was constructed incorporating the concentrations and composition of historic aerosol. The lack of historic aerosol size distributions and aerosol composition data, which determine hygroscopicity and refractive index, leads to an under-constrained model. Aerosol measurements from the last 10 years are used to constrain these model parameters, and hence their historical variation can be estimated; sensitivity analyses are used to estimate errors for the time period before regular aerosol measurements are available. A good agreement is observed between modelled and measured visibility. This work has generated a unique 60 year data set with which to understand how aerosol concentration and composition has varied over the UK. The model is applicable and easily transferrable to other data sets worldwide. Hence, different clean air legislation can be assessed for its effectiveness in reducing aerosol pollution. The implications for the UK will be discussed.

  14. 60 years of visibility data in the UK - how does visibility vary with meteorological and pollutant parameters?

    NASA Astrophysics Data System (ADS)

    Singh, A.; Bloss, W.; Pope, F.

    2015-12-01

    Reduced visibility can be an indicator of poor air quality. Moreover, degradation in visibility can be hazardous to human safety; for example, low visibility can lead to accidents particularly during the winter season when fogs are prevalent. Here, we explore the combined influence of aerosol characteristics and meteorology on long-term visibility. We use visibility data from eight meteorological stations, situated in the UK, which have been running since the 1950s. The site locations include urban, rural and marine environments. Most stations show a long term trend of visibility increase, which is indicative of reductions in aerosol pollution, especially in urban areas. Additionally, results at all sites show a very clear dependence on relative humidity, indicating the importance of aerosol hygroscopicity on the ability of aerosols to scatter radiation and hence impact upon visibility. The dependence of visibility on other meteorological parameters (e.g. wind speed, wind direction) is also investigated. To explain the long term visibility trends and their dependence on meteorological conditions, a light extinction model was constructed incorporating the concentrations and composition of historic aerosol. The lack of historic aerosol size distributions and aerosol composition data, which determine hygroscopicity and refractive index, leads to an under-constrained model. Aerosol measurements from the last 10 years are used to constrain these model parameters, and hence their historical variation can be estimated; sensitivity analyses are used to estimate errors for the time period before regular aerosol measurements are available. This work has generated a unique 60 year data set with which to understand how aerosol concentration and composition has varied over the UK. The model is applicable and easily transferrable to other data sets worldwide. Hence, different clean air legislation can be assessed for its effectiveness in reducing aerosol pollution. The implications for the UK will be discussed.

  15. Predictability Analysis of PM10 Concentrations in Budapest

    NASA Astrophysics Data System (ADS)

    Ferenczi, Zita

    2013-04-01

    Climate, weather and air quality may have harmful effects on human health and environment. Over the past few hundred years we had to face the changes in climate in parallel with the changes in air quality. These observed changes in climate, weather and air quality continuously interact with each other: pollutants are changing the climate, thus changing the weather, but climate also has impacts on air quality. The increasing number of extreme weather situations may be a result of climate change, which could create favourable conditions for rising of pollutant concentrations. Air quality in Budapest is determined by domestic and traffic emissions combined with the meteorological conditions. In some cases, the effect of long-range transport could also be essential. While the time variability of the industrial and traffic emissions is not significant, the domestic emissions increase in winter season. In recent years, PM10 episodes have caused the most critical air quality problems in Budapest, especially in winter. In Budapest, an air quality network of 11 stations detects the concentration values of different pollutants hourly. The Hungarian Meteorological Service has developed an air quality prediction model system for the area of Budapest. The system forecasts the concentration of air pollutants (PM10, NO2, SO2 and O3) for two days in advance. In this work we used meteorological parameters and PM10 data detected by the stations of the air quality network, as well as the forecasted PM10 values of the air quality prediction model system. In this work we present the evaluation of PM10 predictions in the last two years and the most important meteorological parameters affecting PM10 concentration. The results of this analysis determine the effect of the meteorological parameters and the emission of aerosol particles on the PM10 concentration values as well as the limits of this prediction system.

  16. Crop evapotranspiration estimation using remote sensing and the existing network of meteorological stations in Cyprus

    NASA Astrophysics Data System (ADS)

    Papadavid, G.; Hadjimitsis, D.; Michaelides, S.; Nisantzi, A.

    2011-05-01

    Cyprus is frequently confronted with severe droughts and the need for accurate and systematic data on crop evapotranspiration (ETc) is essential for decision making, regarding water irrigation management and scheduling. The aim of this paper is to highlight how data from meteorological stations in Cyprus can be used for monitoring and determining the country's irrigation demands. This paper shows how daily ETc can be estimated using FAO Penman-Monteith method adapted to satellite data and auxiliary meteorological parameters. This method is widely used in many countries for estimating crop evapotranspiration using auxiliary meteorological data (maximum and minimum temperatures, relative humidity, wind speed) as inputs. Two case studies were selected in order to determine evapotranspiration using meteorological and low resolution satellite data (MODIS - TERRA) and to compare it with the results of the reference method (FAO-56) which estimates the reference evapotranspiration (ETo) by using only meteorological data. The first approach corresponds to the FAO Penman-Monteith method adapted for using both meteorological and remotely sensed data. Furthermore, main automatic meteorological stations in Cyprus were mapped using Geographical Information System (GIS). All the agricultural areas of the island were categorized according to the nearest meteorological station which is considered as "representative" of the area. Thiessen polygons methodology was used for this purpose. The intended goal was to illustrate what can happen to a crop, in terms of water requirements, if meteorological data are retrieved from other than the representative stations. The use of inaccurate data can result in low yields or excessive irrigation which both lead to profit reduction. The results have shown that if inappropriate meteorological data are utilized, then deviations from correct ETc might be obtained, leading to water losses or crop water stress.

  17. Diffusion from a line source

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1973-01-01

    The problem with predicting pollutant diffusion from a line source of arbitrary geometry is treated. The concentration at the line source may be arbitrarily varied with time. Special attention is given to the meteorological inputs which act as boundary conditions for the problem, and a mixing layer of arbitrary depth is assumed. Numerical application of the derived theory indicates the combinations of meteorological parameters that may be expected to result in high pollution concentrations.

  18. Gravitational Signal of Mass Redistribution Due to Interannual Meteorological Oscillations in Atmosphere and Ocean

    NASA Technical Reports Server (NTRS)

    Chao, B. F.; Au, A. Y.; Johnson, T.; Smith, David E. (Technical Monitor)

    2001-01-01

    Interannual meteorological oscillations (ENSO, QBO, NAO, etc.) have demonstrable influences on Earth's rotation. Here we study their effects on global gravitational field, whose temporal variations are being studied using SLR (satellite laser ranging) data and in anticipation of the new space mission GRACE. The meteorological oscillation modes are identified using the EOF (empirical orthogonal function)/PC (principal component) decomposition of surface fields (in which we take care of issues associated with the area-weighting and non-zero mean). We examine two fields, one for the global surface pressure field for the atmosphere obtained from the NCEP reanalysis (for the past 40 years), one for the surface topography field for the ocean from the Topex/Poseidon (T/P) data (for the past 8 years). We use monthly maps, and remove the mean-monthly ("climatology") values from each grid point, hence focusing only on non-seasonal signals. The T/P data were first subject to a steric correction where the steric contribution to the ocean surface topography was removed according to output of the numerical POCM model. The respective atmospheric and oceanic contributions to the gravitational variation, in terms of harmonic Stokes coefficients, are then combined mode-by-mode. Since the T/P data already contain the oceanic response to overlying atmospheric pressure, no regards to the inverted-barometer behavior for the ocean need be considered. Results for the lowest-degree Stokes coefficients can then be compared with space geodetic observations including the Earth's rotation and the SLR data mentioned above, to identify the importance of each meteorological oscillations in gravitational variation signals.

  19. Diurnal and long-term variation of instability indices over a tropical region in India

    NASA Astrophysics Data System (ADS)

    Chakraborty, Rohit; Basha, Ghouse; Venkat Ratnam, M.

    2018-07-01

    Climatology of atmospheric instability is studied over Gadanki using high-resolution radiosonde launched daily during April 2006 to April 2017. The diurnal and seasonal variation of instability parameters is discussed in relation with surface meteorological parameters. Seasonal variations depict strong variability in instability which is masked by stronger diurnal variation with descending Lifting Condensation Level (LCL) and Level of Free Convection (LFC) between 11 and 18 IST resulting in high Convective Available Potential Energy (CAPE) values and heavy rainfall. On a seasonal basis, parcel parameters are high during the late monsoon and post-monsoon while the instability parameters like Total Totals index (TT) and Vertical Totals index (VT) show highest values in the pre-monsoon associated with strong convection. LFC and LCL start descending with ascent in Equilibrium Level (EL) before the monsoon onset. However after the onset, atmospheric instability falls sharply as supported by decreasing TT, VT and CAPE with increasing LI. The 11-year long-term variation depicts slightly elevated LFC and LCL and declining EL values indicating a decrease in the instability with a decrease in CAPE and K Index (KI) and increase in Lifted Index (LI) and Convective Inhibition (CIN).

  20. Vertical PM10 Characteristics and their Relation with Tropospheric Meteorology over Hong Kong

    NASA Astrophysics Data System (ADS)

    Hei Tong, Cheuk

    2016-04-01

    Small particulates or PM10, those with aerodynamic diameters less than 10 mm, can cause long term impairment to human health as they can penetrate deep and deposit on the wall of the respiratory system. Hong Kong receives significant concentration of cross-boundary particulates but at the same time produce domestic pollutants which altogether contribute to the total pollution problem. Recent research interest is paying more attention on the vertical characteristic of PM in the lower atmosphere as possible correlations exist along different altitude. Besides, there exists potential relationship between PM concentration aloft and the high-level weather condition. Yet, most studies focus only up to around 200 meters above sea level due to the proposed significance and the lack of technology. Undoubtedly, this is not enough in investigating the relation between vertical atmospheric profile and PM vertical characteristics. New technology development has allowed measuring PM concentration along the vertical atmospheric profile up to tropopause. This measurement relies on the Atmospheric Light Detection and Ranging (LiDAR) which operates using the radar principle to detect Rayleigh and Mie scattering from atmospheric gas and aerosols. The research involves (1) study of the seasonal vertical PM10 characteristics in five studying site of Hong Kong covering urban, suburban and rural area; (2) the relationship of the PM10 characteristics with meteorological parameters; (3) the vertical PM10 characteristics under the approach of tropical cyclones. A portable Micro Pulse Lidar (MPL) is adopted to collect PM data aloft while surface PM data is collected from ground stations. High-level meteorology data is received from Hong Kong Observatory. Statistical analyses are operated to investigate the correlation between weather conditions and PM concentration along the vertical profile. The research study is divided in phrases. The ultimate goal of the study is to develop models simulating high-level PM concentration under different meteorological conditions and predict the impacts under global and urban climate change. Keywords: PM10; High level meteorology; Seasonal variations; Tropical cyclone; Hong Kong; LiDAR

  1. Advances in simultaneous atmospheric profile and cloud parameter regression based retrieval from high-spectral resolution radiance measurements

    NASA Astrophysics Data System (ADS)

    Weisz, Elisabeth; Smith, William L.; Smith, Nadia

    2013-06-01

    The dual-regression (DR) method retrieves information about the Earth surface and vertical atmospheric conditions from measurements made by any high-spectral resolution infrared sounder in space. The retrieved information includes temperature and atmospheric gases (such as water vapor, ozone, and carbon species) as well as surface and cloud top parameters. The algorithm was designed to produce a high-quality product with low latency and has been demonstrated to yield accurate results in real-time environments. The speed of the retrieval is achieved through linear regression, while accuracy is achieved through a series of classification schemes and decision-making steps. These steps are necessary to account for the nonlinearity of hyperspectral retrievals. In this work, we detail the key steps that have been developed in the DR method to advance accuracy in the retrieval of nonlinear parameters, specifically cloud top pressure. The steps and their impact on retrieval results are discussed in-depth and illustrated through relevant case studies. In addition to discussing and demonstrating advances made in addressing nonlinearity in a linear geophysical retrieval method, advances toward multi-instrument geophysical analysis by applying the DR to three different operational sounders in polar orbit are also noted. For any area on the globe, the DR method achieves consistent accuracy and precision, making it potentially very valuable to both the meteorological and environmental user communities.

  2. Linking the Weather Generator with Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Martin; Farda, Ales; Skalak, Petr; Huth, Radan

    2013-04-01

    One of the downscaling approaches, which transform the raw outputs from the climate models (GCMs or RCMs) into data with more realistic structure, is based on linking the stochastic weather generator with the climate model output. The present contribution, in which the parametric daily surface weather generator (WG) M&Rfi is linked to the RCM output, follows two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate Regional Climate Model at 25 km resolution. The WG parameters are derived from the RCM-simulated surface weather series and compared to those derived from weather series observed in 125 Czech meteorological stations. The set of WG parameters will include statistics of the surface temperature and precipitation series (including probability of wet day occurrence). (2) Presenting a methodology for linking the WG with RCM output. This methodology, which is based on merging information from observations and RCM, may be interpreted as a downscaling procedure, whose product is a gridded WG capable of producing realistic synthetic multivariate weather series for weather-ungauged locations. In this procedure, WG is calibrated with RCM-simulated multi-variate weather series in the first step, and the grid specific WG parameters are then de-biased by spatially interpolated correction factors based on comparison of WG parameters calibrated with gridded RCM weather series and spatially scarcer observations. The quality of the weather series produced by the resultant gridded WG will be assessed in terms of selected climatic characteristics (focusing on characteristics related to variability and extremes of surface temperature and precipitation). Acknowledgements: The present experiment is made within the frame of projects ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR) and VALUE (COST ES 1102 action).

  3. Estimation of atmospheric turbidity and surface radiative parameters using broadband clear sky solar irradiance models in Rio de Janeiro-Brasil

    NASA Astrophysics Data System (ADS)

    Flores, José L.; Karam, Hugo A.; Marques Filho, Edson P.; Pereira Filho, Augusto J.

    2016-02-01

    The main goal of this paper is to estimate a set of optimal seasonal, daily, and hourly values of atmospheric turbidity and surface radiative parameters Ångström's turbidity coefficient ( β), Ångström's wavelength exponent ( α), aerosol single scattering albedo ( ω o ), forward scatterance ( F c ) and average surface albedo ( ρ g ), using the Brute Force multidimensional minimization method to minimize the difference between measured and simulated solar irradiance components, expressed as cost functions. In order to simulate the components of short-wave solar irradiance (direct, diffuse and global) for clear sky conditions, incidents on a horizontal surface in the Metropolitan Area of Rio de Janeiro (MARJ), Brazil (22° 51' 27″ S, 43° 13' 58″ W), we use two parameterized broadband solar irradiance models, called CPCR2 and Iqbal C, based on synoptic information. The meteorological variables such as precipitable water ( u w ) and ozone concentration ( u o ) required by the broadband solar models were obtained from moderate-resolution imaging spectroradiometer (MODIS) sensor on Terra and Aqua NASA platforms. For the implementation and validation processes, we use global and diffuse solar irradiance data measured by the radiometric platform of LabMiM, located in the north area of the MARJ. The data were measured between the years 2010 and 2012 at 1-min intervals. The performance of solar irradiance models using optimal parameters was evaluated with several quantitative statistical indicators and a subset of measured solar irradiance data. Some daily results for Ångström's wavelength exponent α were compared with Ångström's parameter (440-870 nm) values obtained by aerosol robotic network (AERONET) for 11 days, showing an acceptable level of agreement. Results for Ångström's turbidity coefficient β, associated with the amount of aerosols in the atmosphere, show a seasonal pattern according with increased precipitation during summer months (December-February) in the MARJ.

  4. Surface Meteorology at Teller Site Stations, Seward Peninsula, Alaska, Ongoing from 2016

    DOE Data Explorer

    Bob Busey; Bob Bolton; Cathy Wilson; Lily Cohen

    2017-12-05

    Meteorological data are currently being collected at two locations at the Teller Site, Seward Peninsula. Teller Creek Station near TL_BSV (TELLER BOTTOM METEOROLOGICAL STATION) Station is located in the lower watershed in a tussock / willow transition zone and co-located with continuous snow depth measurements and subsurface measurements. Teller Creek Station near TL_IS_5 (TELLER TOP METEOROLOGICAL STATION) Station is located in the upper watershed and co-located with continuous snow depth measurements and subsurface measurements. Two types of data products are provided for these stations: First, meteorological and site characterization data grouped by sensor/measurement type (e.g., radiation or soil pit temperature and moisture). These are *.csv files. Second, a Data Visualization tool is provided for quick visualization of measurements over time at a station. Download the *_Visualizer.zip file, extract, and click on the 'index.html' file. Data values are the same in both products.

  5. A NEW LAND-SURFACE MODEL IN MM5

    EPA Science Inventory

    There has recently been a general realization that more sophisticated modeling of land-surface processes can be important for mesoscale meteorology models. Land-surface models (LSMs) have long been important components in global-scale climate models because of their more compl...

  6. Performance assessment of retrospective meteorological inputs for use in air quality modeling during TexAQS 2006

    NASA Astrophysics Data System (ADS)

    Ngan, Fong; Byun, Daewon; Kim, Hyuncheol; Lee, Daegyun; Rappenglück, Bernhard; Pour-Biazar, Arastoo

    2012-07-01

    To achieve more accurate meteorological inputs than was used in the daily forecast for studying the TexAQS 2006 air quality, retrospective simulations were conducted using objective analysis and 3D/surface analysis nudging with surface and upper observations. Model ozone using the assimilated meteorological fields with improved wind fields shows better agreement with the observation compared to the forecasting results. In the post-frontal conditions, important factors for ozone modeling in terms of wind patterns are the weak easterlies in the morning for bringing in industrial emissions to the city and the subsequent clockwise turning of the wind direction induced by the Coriolis force superimposing the sea breeze, which keeps pollutants in the urban area. Objective analysis and nudging employed in the retrospective simulation minimize the wind bias but are not able to compensate for the general flow pattern biases inherited from large scale inputs. By using an alternative analyses data for initializing the meteorological simulation, the model can re-produce the flow pattern and generate the ozone peak location closer to the reality. The inaccurate simulation of precipitation and cloudiness cause over-prediction of ozone occasionally. Since there are limitations in the meteorological model to simulate precipitation and cloudiness in the fine scale domain (less than 4-km grid), the satellite-based cloud is an alternative way to provide necessary inputs for the retrospective study of air quality.

  7. Application of troposphere model from NWP and GNSS data into real-time precise positioning

    NASA Astrophysics Data System (ADS)

    Wilgan, Karina; Hadas, Tomasz; Kazmierski, Kamil; Rohm, Witold; Bosy, Jaroslaw

    2016-04-01

    The tropospheric delay empirical models are usually functions of meteorological parameters (temperature, pressure and humidity). The application of standard atmosphere parameters or global models, such as GPT (global pressure/temperature) model or UNB3 (University of New Brunswick, version 3) model, may not be sufficient, especially for positioning in non-standard weather conditions. The possible solution is to use regional troposphere models based on real-time or near-real time measurements. We implement a regional troposphere model into the PPP (Precise Point Positioning) software GNSS-WARP (Wroclaw Algorithms for Real-time Positioning) developed at Wroclaw University of Environmental and Life Sciences. The software is capable of processing static and kinematic multi-GNSS data in real-time and post-processing mode and takes advantage of final IGS (International GNSS Service) products as well as IGS RTS (Real-Time Service) products. A shortcoming of PPP technique is the time required for the solution to converge. One of the reasons is the high correlation among the estimated parameters: troposphere delay, receiver clock offset and receiver height. To efficiently decorrelate these parameters, a significant change in satellite geometry is required. Alternative solution is to introduce the external high-quality regional troposphere delay model to constrain troposphere estimates. The proposed model consists of zenith total delays (ZTD) and mapping functions calculated from meteorological parameters from Numerical Weather Prediction model WRF (Weather Research and Forecasting) and ZTDs from ground-based GNSS stations using the least-squares collocation software COMEDIE (Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Pathdelays) developed at ETH Zurich.

  8. Variation in aerosol nucleation and growth in coal-fired power plant plumes due to background aerosol, meteorology and emissions: sensitivity analysis and parameterization.

    NASA Astrophysics Data System (ADS)

    Stevens, R. G.; Lonsdale, C. L.; Brock, C. A.; Reed, M. K.; Crawford, J. H.; Holloway, J. S.; Ryerson, T. B.; Huey, L. G.; Nowak, J. B.; Pierce, J. R.

    2012-04-01

    New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulphur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10s of kilometres and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. In this presentation, we focus on sub-grid sulphate aerosol processes within coal-fired power plant plumes: the sub-grid oxidation of SO2 with condensation of H2SO4 onto newly-formed and pre-existing particles. Based on the results of the System for Atmospheric Modelling (SAM), a Large-Eddy Simulation/Cloud-Resolving Model (LES/CRM) with online TwO Moment Aerosol Sectional (TOMAS) microphysics, we develop a computationally efficient, but physically based, parameterization that predicts the characteristics of aerosol formed within coal-fired power plant plumes based on parameters commonly available in global and regional-scale models. Given large-scale mean meteorological parameters, emissions from the power plant, mean background condensation sink, and the desired distance from the source, the parameterization will predict the fraction of the emitted SO2 that is oxidized to H2SO4, the fraction of that H2SO4 that forms new particles instead of condensing onto preexisting particles, the median diameter of the newly-formed particles, and the number of newly-formed particles per kilogram SO2 emitted. We perform a sensitivity analysis of these characteristics of the aerosol size distribution to the meteorological parameters, the condensation sink, and the emissions. In general, new-particle formation and growth is greatly reduced during polluted conditions due to the large preexisting aerosol surface area for H2SO4 condensation and particle coagulation. The new-particle formation and growth rates are also a strong function of the amount of sunlight and NOx since both control OH concentrations. Decreases in NOx emissions without simultaneous decreases in SO2 emissions increase new-particle formation and growth due to increased oxidation of SO2. The parameterization we describe here should allow for more accurate predictions of aerosol size distributions and a greater confidence in the effects of aerosols in climate and health studies.

  9. The effect of aerosol optical depth on rainfall with reference to meteorology over metro cities in India.

    PubMed

    Gunaseelan, Indira; Bhaskar, B Vijay; Muthuchelian, K

    2014-01-01

    Rainfall is a key link in the global water cycle and a proxy for changing climate; therefore, proper assessment of the urban environment's impact on rainfall will be increasingly important in ongoing climate diagnostics and prediction. Aerosol optical depth (AOD) measurements on the monsoon seasons of the years 2008 to 2010 were made over four metro regional hotspots in India. The highest average of AOD was in the months of June and July for the four cities during 3 years and lowest was in September. Comparing the four regions, Kolkata was in the peak of aerosol contamination and Chennai was in least. Pearson correlation was made between AOD with climatic parameters. Some changes in the parameters were found during drought year. Temperature, cloud parameters, and humidity play an important role for the drought conditions. The role of aerosols, meteorological parameters, and their impacts towards the precipitation during the monsoon was studied.

  10. Solar Radiative Flux Calculations from Standard Surface Meteorological Observations

    DTIC Science & Technology

    1982-03-01

    the p round in T F3 "d = II3 0 2 and the sum of the terms transmitted through layer 2 𔃻 il, to te botton o0 layer 1 is RTI𔃺/ Ad G. (C; forms a pair o...no obstruc-k k tions to visibility are present. The next stige in; the jproccsts was to evaluate Fk and T’k for the var- 2 5•" k f3 q ious uniform...Boston, 9 bpp . 59. SOLMET, 1977: Hourly solai radiation - surface meteorological obser- vations. Vol. 1 - users Manual. Vol. 2, 1979, Final Report

  11. The Calculation of the Heat Required for Wing Thermal Ice Prevention in Specified Icing Conditions

    NASA Technical Reports Server (NTRS)

    Bergrun, Norman R.; Jukoff, David; Schlaff, Bernard A.; Neel, Carr B., Jr.

    1947-01-01

    Flight tests were made in natural icing conditions with two 8-ft-chord heated airfoils of different sections. Measurements of meteorological variables conducive to ice formation were made simultaneously with the procurement of airfoil thermal data. The extent of knowledge on the meteorology of icing, the impingement of water drops on airfoil surfaces, and the processes of heat transfer and evaporation from a wetted airfoil surface have been increased to a point where the design of heated wings on a fundamental, wet-air basis now can be undertaken with reasonable certainty.

  12. The influence of meteorological conditions on the progress and dynamics of pollen phenophases of selected species.

    NASA Astrophysics Data System (ADS)

    Jatczak, K.; Linkowska, J.; Rapiejko, P.

    2010-09-01

    In Poland phenological data is used mainly as a natural indicator of the influence of climate changes on environment. In relation to the growing interest of phenology in scientific research, we substantially extended observation ranges, concentrating mainly on phenophases of selected species that are important for allergology. Phenological data application in complex analysis together with meteorological and aerobiological data, give an opportunity for drawing conclusions on variability of the starting date of pollen season and its dynamics in a meteorological aspect. Species have their regional phenological characteristics, however the characteristics depends on meteorological conditions in a particular year. Therefore, the calculation of pheno-meteorological parameters is important for pollen release prediction. Availability of phenological database can also be useful in the field of preventive health care, through phenological data application in different atmospheric models (NWP models, phenological models, pollen release models) for numerical forecasting of pollen concentration in the air. Genetic conditions, industrial development, increase of air pollution are regarded as the main determinants of allergic diseases. The results of pheno - aero- meteorological analysis enable the estimation of the influence of natural environmental changes on the increasing prevalence of allergic diseases in Poland.

  13. A Summary of the Naval Postgraduate School Research Program

    DTIC Science & Technology

    1988-08-30

    Teh.(accepted). F. P. Kel lyr C.-F. Shih , D. L. Reinke, and T. H. Vonder Haart "Metric Statistical Comparison of Objective Cloud Detectors," Er...February 5, 1988, Anaheim, CAP American Meteorological Society# Boston, MA. 211 Publications: C.-F. Shih , M. Wentzel, and T. H. Yonder Haar, (cont... Shih , "Estimation of Meteorological Parameters Over Mesoscale Regions from Satel l ite and In Situ Data." Preprints, Third Conference DR Satellite

  14. The Automatic Meteorological Station System AN/TMQ-30 ( ).

    DTIC Science & Technology

    1982-08-01

    network, the station electronics initiate the above operating sequence. 3.2.1 Meteorological Parameters Vindspeed. Windspeed measurements are made over a...much like a pocket calculator. Provision has been made to enable the operator to set or read the clock of the master station and to * set, modify, or...conditions is occuring during a regular cycle period. A normal report is not made under these conditions. Control is passed to the read data module under

  15. Satellite Power System (SPS) laser studies. Volume 2: Meteorological effects on laser beam propagation and direct solar pumped lasers for the SPS

    NASA Technical Reports Server (NTRS)

    Beverly, R. E., III

    1980-01-01

    The primary emphasis of this research activity was to investigate the effect of the environment on laser power transmission/reception from space to ground. Potential mitigation techniques to minimize the environment effect by a judicious choice of laser operating parameters was investigated. Using these techniques, the availability of power at selected sites was determined using statistical meteorological data for each site.

  16. The Meteorological Experiment on the Mars Surveyor '98 Polar Lander

    NASA Technical Reports Server (NTRS)

    Crisp, D.

    1999-01-01

    When it lands on Mars on December 3, 1999, the Mars Surveyor '98 Mars Polar Lander (MPL) will provide the first opportunity to make in-situ measurements of the near-surface weather climate, and volatile inventory in the Martian south polar region. To make the most of this opportunity, the MPL's Mars Volatiles and Climate Surveyor (MVACS) payload includes the most comprehensive complement of meteorological instruments ever sent to Mars. Like the Viking and the Mars Pathfinder Lander, the MVACS Meteorological (Met) package includes sensors for measuring atmospheric pressures, temperatures, and wind velocities. This payload also includes a 2-channel tunable diode laser spectrometer for in-situ measurements of the atmospheric water vapor abundance near the ground, and improved instruments for measuring the relative abundances of oxygen isotopes (in water vapor and CO2) and a surface temperature probe for measuring the surface and sub-surface temperatures. This presentation will provide a brief overview of the environmental conditions anticipated at the surface in the Martian regions. We will then provide an over-view of the MVACS Met instrument and describe the MET sensors in detail, including their principle of operation, range, resolution, accuracy, sampling strategy, heritage, accommodation on the Lander, and their control and data handling system. Finally, we will describe the operational sequences, resource requirements, and the anticipated data volumes for each of the Met instruments.

  17. A dynamic aerodynamic resistance approach to calculate high resolution sensible heat fluxes in urban areas

    NASA Astrophysics Data System (ADS)

    Crawford, Ben; Grimmond, Sue; Kent, Christoph; Gabey, Andrew; Ward, Helen; Sun, Ting; Morrison, William

    2017-04-01

    Remotely sensed data from satellites have potential to enable high-resolution, automated calculation of urban surface energy balance terms and inform decisions about urban adaptations to environmental change. However, aerodynamic resistance methods to estimate sensible heat flux (QH) in cities using satellite-derived observations of surface temperature are difficult in part due to spatial and temporal variability of the thermal aerodynamic resistance term (rah). In this work, we extend an empirical function to estimate rah using observational data from several cities with a broad range of surface vegetation land cover properties. We then use this function to calculate spatially and temporally variable rah in London based on high-resolution (100 m) land cover datasets and in situ meteorological observations. In order to calculate high-resolution QH based on satellite-observed land surface temperatures, we also develop and employ novel methods to i) apply source area-weighted averaging of surface and meteorological variables across the study spatial domain, ii) calculate spatially variable, high-resolution meteorological variables (wind speed, friction velocity, and Obukhov length), iii) incorporate spatially interpolated urban air temperatures from a distributed sensor network, and iv) apply a modified Monte Carlo approach to assess uncertainties with our results, methods, and input variables. Modeled QH using the aerodynamic resistance method is then compared to in situ observations in central London from a unique network of scintillometers and eddy-covariance measurements.

  18. Estimation of open water evaporation using land-based meteorological data

    NASA Astrophysics Data System (ADS)

    Li, Fawen; Zhao, Yong

    2017-10-01

    Water surface evaporation is an important process in the hydrologic and energy cycles. Accurate simulation of water evaporation is important for the evaluation of water resources. In this paper, using meteorological data from the Aixinzhuang reservoir, the main factors affecting water surface evaporation were determined by the principal component analysis method. To illustrate the influence of these factors on water surface evaporation, the paper first adopted the Dalton model to simulate water surface evaporation. The results showed that the simulation precision was poor for the peak value zone. To improve the model simulation's precision, a modified Dalton model considering relative humidity was proposed. The results show that the 10-day average relative error is 17.2%, assessed as qualified; the monthly average relative error is 12.5%, assessed as qualified; and the yearly average relative error is 3.4%, assessed as excellent. To validate its applicability, the meteorological data of Kuancheng station in the Luan River basin were selected to test the modified model. The results show that the 10-day average relative error is 15.4%, assessed as qualified; the monthly average relative error is 13.3%, assessed as qualified; and the yearly average relative error is 6.0%, assessed as good. These results showed that the modified model had good applicability and versatility. The research results can provide technical support for the calculation of water surface evaporation in northern China or similar regions.

  19. Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Moody, Eric G.; Platnick, Steven; Schaaf, Crystal B.

    2004-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent production of land surface anisotropy, diffuse bihemispherical (white-sky) albedo and direct beam directional hemispherical (black-sky) albedo from observations acquired by the MODIS instruments aboard NASA s Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface's radiative characteristics. Cloud cover, which cutails retrievals, and the presence of ephemeral and seasonal snow limit the snow-free data to approximately half the global land surfaces on an annual equal-angle basis. This precludes the MOD43B3 albedo products from being used in some remote sensing and ground-based applications, climate models, and global change research projects. An ecosystem-dependent temporal interpolation technique is described that has been developed to fill missing or seasonally snow-covered data in the official MOD43B3 albedo product. The method imposes pixel-level and local regional ecosystem-dependent phenological behavior onto retrieved pixel temporal data in such a way as to maintain pixel-level spatial and spectral detail and integrity. The phenological curves are derived from statistics based on the MODIS MOD12Q1 IGBP land cover classification product geolocated with the MOD43B3 data. The resulting snow-free value-added products provide the scientific community with spatially and temporally complete global white- and black-sky surface albedo maps and statistics. These products are stored on 1'(approximately 10 km) and coarser resolution equal-angle grids, and are computed for the first seven MODIS wavelengths, ranging from 0.47 through 2.1 microns, and for three broadband wavelengths, 0.3-0.7,0.3-5.0 and 0.7-5.0 microns.

  20. The International VEGA "Venus-Halley" (1984-1986) Experiment: Description and Scientific Objectives

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Venus-Halley (Vega) project will provide a unique opportunity to combine a mission over Venus with a transfer flight to Halley's comet. This project is based on three research goals: (1) to study the surface of Venus; (2) to study the air circulation on Venus and its meteorological parameters; and (3) to study Halley's comet. The objective of the study of Halley's comet is to: determine the physical characteristics of its nucleus; define the structure and dynamics of the coma around the nucleus; define the gas composition near the nucleus; investigate the dust particle distribution as a function of mass at various distances from the nucleus; and investigate the solar wind interaction with the atmosphere and ionosphere of the comet.

  1. Atmospheric measurements on Mars - The Viking meteorology experiment

    NASA Technical Reports Server (NTRS)

    Chamberlain, T. E.; Cole, H. L.; Dutton, R. G.; Greene, G. C.; Tillman, J. E.

    1976-01-01

    The Viking meteorology experiment is one of nine experiments to be carried out on the surface of Mars by each of two Viking Landers positioned at different latitudes and longitudes in the Northern Hemisphere. The meteorology experiment will measure pressure, temperature, wind speed, and wind direction at 1.5-hr intervals throughout the Martian day. The duration of each measurement period, the interval between data samples for a measurement period, and the time at which the measurement period is started will be varied throughout the mission. The scientific investigation and the sensors and electronics used for making the atmospheric measurement are discussed.

  2. Analysis of Ozone And CO2 Profiles Measured At A Diary Facility

    NASA Astrophysics Data System (ADS)

    Ogunjemiyo, S. O.; Hasson, A. S.; Ashkan, S.; Steele, J.; Shelton, T.

    2015-12-01

    Ozone and carbon dioxide are both greenhouse gasses in the planetary boundary layer. Ozone is a harmful secondary pollutant in the troposphere produced mostly during the day when there is a photochemical reaction in which primary pollutant precursors such as nitrous oxide (NOx) or volatile organic compounds (VOC's) mix with sunlight. As with most pollutants in the lower troposphere, both ozone and carbon dioxide vary in spatial and temporal scale depending on sources of pollution, environmental conditions and the boundary layer dynamics. Among the several factors that influence ozone variation, the seasonal changes in meteorological parameters and availability of ozone precursors are crucial because they control ozone formation and decay. Understanding how the difference in emission sources affect vertical transport of ozone and carbon dioxide is considered crucial to the improvement of their regional inventory sources. The purpose of this study is to characterize vertical transport of ozone and carbon at a diary facility. The study was conducted in the summer of 2011 and 2012 at a commercial dairy facility in Central California and involved profile measurements of ozone and CO2 using electrochemical ozonesondes, meteorological sondes and CO2 probe tethered to a 9 cubic meters helium balloon. On each day of the data collection, multiple balloon launches were made over a period representing different stages of the boundary layer development. The results show ozone and CO2 profiles display different characteristics. Regardless of the time of the day, the CO2 concentration decreases with height with a sharp gradient near the surface that is strengthened by a stable atmospheric condition, a feature suggesting the surface as the source. On the other hand, ozone profiles show greater link to the evolution of the lower boundary layer. Ozone profiles display unique features indicating ozone destruction near the surface. This unusual near the surface, observed even in the afternoon when the boundary layer is fully developed, greatly contrast ozone profiles are typical of urban environment

  3. Loch Vale Watershed Project quality assurance report, 1995-1998

    USGS Publications Warehouse

    Allstott, E.J.; Bashkin, Michael A.; Baron, Jill S.

    1999-01-01

    The Loch Vale Watershed (LVWS) project was initiated in 1980 by the National Park Service with funding from the Aquatic Effects Research Program of the National Acid Precipitation Assessment Program. Initial research objectives were to understand the processes that would either mitigate or accelerate the effects of pollution on soil and surface water chemistry, and to build a record in which long-term trends could be identified and examined.It is important for all data collected in Loch Vale to meet the high standards of quality set forth in previous LVWS QA/QC reports and LVWS Methods Manuals. Given the ever-widening usage of data collected in Loch Vale, it is equally important to provide users of that data with a report assuring that all data are sound. Parameters covered in this report are the quality of meteorological measurements, hydrological measurements, surface water chemistry, and similarities in catch efficiency of two raingage types in Loch Vale for the period of 1995-1998.Routine sampling of weather conditions, precipitation chemistry, and stream/lake water chemistry began in 1982. Since then, all samples and data have been analyzed according to widely accepted and published methods. Weather data have been collected, analyzed, and stored by LVWS project personnel. Methods for the handling of meteorological data are well documented (Denning 1988, Edwards 1991, Newkirk 1995,and Allstott 1995). Precipitation chemistry has always been collected according to National Atmospheric Deposition Program protocol (Bigelow 1988), and analyzed at the Central Analytical Laboratory of the Illinois State Water Survey in Champaign, IL. QA/QC procedures of the National Atmospheric Deposition Program are well documented (Aubertin 1990). Protocols for sampling surface waters are also well documented (Newkirk 1995). Analysis of surface water chemistry has been performed using standard EPA protocol at the US Forest Service's Rocky Mt. Station Biogeochemistry Laboratory since 1993.

  4. Current Sounding Capability From Satellite Meteorological Observation With Ultraspectral Infrared Instruments

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.

    2008-01-01

    Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. The intent of the measurement of tropospheric thermodynamic state and trace abundances is the initialization of climate models and the monitoring of air quality. The NPOESS Airborne Sounder Testbed-Interferometer (NAST-I), designed to support the development of future satellite temperature and moisture sounders, aboard high altitude aircraft has been collecting data throughout many field campaigns. An advanced retrieval algorithm developed with NAST-I is now applied to satellite data collected with the Atmospheric InfraRed Sounder (AIRS) on the Aqua satellite launched on 4 May 2002 and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite launched on October 19, 2006. These instruments possess an ultra-spectral resolution, for example, both IASI and NAST-I have 0.25 cm-1 and a spectral coverage from 645 to 2760 cm-1. The retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error less than 1 km). Retrievals of atmospheric soundings, surface properties, and cloud microphysical properties with the AIRS and IASI observations are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed? Interferometer (NAST I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the AIRS and IASI are investigated. These advanced satellite ultraspectral infrared instruments are now playing an important role in satellite meteorological observation for numerical weather prediction.

  5. The Implementation and Evaluation of the Emergency Response Dose Assessment System (ERDAS) at Cape Canaveral Air Station/Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Evans, Randolph J.; Tremback, Craig J.; Lyons, Walter A.

    1996-01-01

    The Emergency Response Dose Assessment System (ERDAS) is a system which combines the mesoscale meteorological prediction model RAMS with the diffusion models REEDM and HYPACT. Operators use a graphical user interface to run the models for emergency response and toxic hazard planning at CCAS/KCS. The Applied Meteorology Unit has been evaluating the ERDAS meteorological and diffusion models and obtained the following results: (1) RAMS adequately predicts the occurrence of the daily sea breeze during non-cloudy conditions for several cases. (2) RAMS shows a tendency to predict the sea breeze to occur slightly earlier and to move it further inland than observed. The sea breeze predictions could most likely be improved by better parameterizing the soil moisture and/or sea surface temperatures. (3) The HYPACT/REEDM/RAMS models accurately predict launch plume locations when RAMS winds are accurate and when the correct plume layer is modeled. (4) HYPACT does not adequately handle plume buoyancy for heated plumes since all plumes are presently treated as passive tracers. Enhancements should be incorporated into the ERDAS as it moves toward being a fully operational system and as computer workstations continue to increase in power and decrease in cost. These enhancements include the following: activate RAMS moisture physics; use finer RAMS grid resolution; add RAMS input parameters (e.g. soil moisture, radar, and/or satellite data); automate data quality control; implement four-dimensional data assimilation; modify HYPACT plume rise and deposition physics; and add cumulative dosage calculations in HYPACT.

  6. Spatial disaggregation of POWER-NASA air temperatures and effects on grass reference evapotranspiration in Sicily, Italy

    NASA Astrophysics Data System (ADS)

    Negm, Amro; Minacapilli, Mario; Provenzano, Giuseppe

    2017-04-01

    The accurate estimation of grass reference evapotranspiration (ET0) is important for many fields, including hydrology and irrigation water management. Being direct measure of ET0 difficult, expensive and time consuming, application of simplified approaches and web-based meteorological information are often preferred. The Prediction of Worldwide Energy Resource project developed by the American National Aeronautics and Space Administration (POWER-NASA) provides meteorological observations and surface energy fluxes on 1° latitude by 1° longitude grid, with a continuous daily coverage and for the entire globe. However, the broad spatial resolution of these data represents a limiting factor, for example when they have to be used for local estimations of reference ET0. In this work, a procedure for the spatial disaggregation of POWER-NASA daily average air temperature was proposed. In particular, a daily scaling factor was initially defined as the ratio between disaggregated average air temperature and the corresponding native value. This ratio was then modeled with a cosine function, characterized by three parameters depending on elevation, so to account for seasonal and regional variability. The proposed model was calibrated with three years of ground measurements (2006-2008) and then validated over six years (2009-2014). The suitability of the procedure was finally assessed by applying two simplified empirical models to estimate ET0 (Turc, 1961; Hargreaves, 1975). When compared to ET0 values obtained with FAO-56 PM equation, both simplified equations associated to downscaled meteorological observations, were characterized by RMSE ranging between 0.44 and 1.08 mm (average of 0.72-0.74 mm), and average MBE of -0.06 (Turc equation) and 0.13 mm (Hargreaves equation). These results indicated the strength of the proposed procedure to estimate ET0, even for regions characterized by the lack of detailed meteorological information.

  7. Practice of Meteorological Services in Turpan Solar Eco-City in China (Invited)

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Chang, R.; He, X.; Jiang, Y.; Zhao, D.; Ma, J.

    2013-12-01

    Turpan Solar Eco-City is located in Gobi in Northwest China, which is one of the National New Energy Demonstration Urban. The city was planed and designed from October of 2008 and constructed from May of 2010, and the first phase of the project has been completed by October of 2013. Energy supply in Turpan Solar Eco-City is mainly from PV power, which is installed in all of the roof and the total capacity is 13.4MW. During the planning and designing of the city, and the running of the smart grid, meteorological services have played an important role. 1) Solar Energy Resource Assessment during Planning Phase. According to the observed data from meteorological stations in recent 30 years, solar energy resource was assessed and available PV power generation capacity was calculated. The results showed that PV power generation capacity is 1.3 times the power consumption, that is, solar energy resource in Turpan is rich. 2) Key Meteorological Parameters Determination for Architectural Design. A professional solar energy resource station was constructed and the observational items included Global Horizontal Irradiance, Inclined Total Solar Irradiance at 30 degree, Inclined Total Solar Irradiance at local latitude, and so on. According these measured data, the optical inclined angle for PV array was determined, that is, 30 degree. The results indicated that the annual irradiation on inclined plane with optimal angle is 1.4% higher than the inclined surface with latitude angle, and 23.16% higher than the horizontal plane. The diffuse ratio and annual variation of the solar elevation angle are two major factors that influence the irradiation on inclined plane. 3) Solar Energy Resource Forecast for Smart Grid. Weather Research Forecast (WRF) model was used to forecast the hourly solar radiation of future 72 hours and the measured irradiance data was used to forecast the minutely solar radiation of future 4 hours. The forecast results were submitted to smart grid and used to regulate the local grid and the city gird.

  8. The effect of wind and eruption source parameter variations on tephra fallout hazard assessment: an example from Vesuvio (Italy)

    NASA Astrophysics Data System (ADS)

    Macedonio, Giovanni; Costa, Antonio; Scollo, Simona; Neri, Augusto

    2015-04-01

    Uncertainty in the tephra fallout hazard assessment may depend on different meteorological datasets and eruptive source parameters used in the modelling. We present a statistical study to analyze this uncertainty in the case of a sub-Plinian eruption of Vesuvius of VEI = 4, column height of 18 km and total erupted mass of 5 × 1011 kg. The hazard assessment for tephra fallout is performed using the advection-diffusion model Hazmap. Firstly, we analyze statistically different meteorological datasets: i) from the daily atmospheric soundings of the stations located in Brindisi (Italy) between 1962 and 1976 and between 1996 and 2012, and in Pratica di Mare (Rome, Italy) between 1996 and 2012; ii) from numerical weather prediction models of the National Oceanic and Atmospheric Administration and of the European Centre for Medium-Range Weather Forecasts. Furthermore, we modify the total mass, the total grain-size distribution, the eruption column height, and the diffusion coefficient. Then, we quantify the impact that different datasets and model input parameters have on the probability maps. Results shows that the parameter that mostly affects the tephra fallout probability maps, keeping constant the total mass, is the particle terminal settling velocity, which is a function of the total grain-size distribution, particle density and shape. Differently, the evaluation of the hazard assessment weakly depends on the use of different meteorological datasets, column height and diffusion coefficient.

  9. An investigation of the key parameters for predicting PV soiling losses

    DOE PAGES

    Micheli, Leonardo; Muller, Matthew

    2017-01-25

    One hundred and two environmental and meteorological parameters have been investigated and compared with the performance of 20 soiling stations installed in the USA, in order to determine their ability to predict the soiling losses occurring on PV systems. The results of this investigation showed that the annual average of the daily mean particulate matter values recorded by monitoring stations deployed near the PV systems are the best soiling predictors, with coefficients of determination ( R 2) as high as 0.82. The precipitation pattern was also found to be relevant: among the different meteorological parameters, the average length of drymore » periods had the best correlation with the soiling ratio. Lastly, a preliminary investigation of two-variable regressions was attempted and resulted in an adjusted R 2 of 0.90 when a combination of PM 2.5 and a binary classification for the average length of the dry period was introduced.« less

  10. Calibration of the ER-2 meteorological measurement system

    NASA Technical Reports Server (NTRS)

    Bowen, Stuart W.; Chan, K. Roland; Bui, T. Paul

    1991-01-01

    The Meteorological Measurement System (MMS) on the high altitude ER-2 aircraft was developed specifically for atmospheric research. The MMS provides accurate measurements of pressure, temperature, wind vector, position (longitude, latitude, altitude), pitch, roll, heading, angle of attack, angle of sideslip, true airspeed, aircraft eastward velocity, northward velocity, vertical acceleration, and time, at a sample rate of 5/s. MMS data products are presented in the form of either 5 or 1 Hz time series. The 1 Hz data stream, generally used by ER-2 investigators, is obtained from the 5 Hz data stream by filtering and desampling. The method of measurement of the meteorological parameters is given and the results of their analyses are discussed.

  11. Impact of highway construction on land surface energy balance and local climate derived from LANDSAT satellite data.

    PubMed

    Nedbal, Václav; Brom, Jakub

    2018-08-15

    Extensive construction of highways has a major impact on the landscape and its structure. They can also influence local climate and heat fluxes in the surrounding area. After the removal of vegetation due to highway construction, the amount of solar radiation energy used for plant evapotranspiration (latent heat flux) decreases, bringing about an increase in landscape surface temperature, changing the local climate and increasing surface run-off. In this study, we evaluated the impact of the D8 highway construction (Central Bohemia, Czech Republic) on the distribution of solar radiation energy into the various heat fluxes (latent, sensible and ground heat flux) and related surface functional parameters (surface temperature and surface wetness). The aim was to describe the severity of the impact and the distance from the actual highway in which it can be observed. LANDSAT multispectral satellite images and field meteorological measurements were used to calculate surface functional parameters and heat balance before and during the highway construction. Construction of a four-lane highway can influence the heat balance of the landscape surface as far as 90m in the perpendicular direction from the highway axis, i.e. up to 75m perpendicular from its edge. During a summer day, the decrease in evapotranspired water can reach up to 43.7m 3 per highway kilometre. This means a reduced cooling effect, expressed as the decrease in latent heat flux, by an average of 29.7MWh per day per highway kilometre and its surroundings. The loss of the cooling ability of the land surface by evaporation can lead to a rise in surface temperature by as much as 7°C. Thus, the results indicate the impact of extensive line constructions on the local climate. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean Coast.

    PubMed

    Dueñas, C; Fernández, M C; Cañete, S; Carretero, J; Liger, E

    2002-11-01

    Ozone concentrations are valuable indicators of possible health and environmental impacts. However, they are also used to monitor changes and trends in the sources of both ozone and its precursors. For this purpose, the influence of meteorological variables is a confusing factor. This study presents an analysis of a year of ozone concentrations measured in a coastal Spanish city. Firstly, the aim of this study was to perceive the daily, monthly and seasonal variation patterns of ozone concentrations. Diurnal cycles are presented by season and the fit of the data to a normal distribution is tested. In order to assess ozone behaviour under temperate weather conditions, local meteorological variables (wind direction and speed, temperature, relative humidity, pressure and rainfall) were monitored together with ozone concentrations. The main relationships we could observe in these analyses were then used to obtain a regression equation linking diurnal ozone concentrations in summer with meteorological parameters.

  13. Albedo indicating land degradation around the Badain Jaran Desert for better land resources utilization.

    PubMed

    Liu, Fengshan; Chen, Ying; Lu, Haiying; Shao, Hongbo

    2017-02-01

    Surface albedo is an easy access parameter in reflecting the status of both human disturbed soil and indirectly influenced area, whose characteristic is an important indicator in sustainable development under the background of global climate change. In this study, we employed meteorological data, MODIS 8-day BRDF/Albedo and LAI products from 2000 to 2014 to show the amelioration and mechanism around the Badain Jaran Desert. Results showed that the human-dominated afforestation activities significantly increased the leaf area index (LAI) in summer and autumn. Lower reflectance at visible band was sensed inside the desert compared with the ecozone and the lowest albedo at forested area. The contribution of soil and vegetation reflectance to surface albedo determined the linear sensitivity of albedo to LAI variation. Decreased albedo dominated the spatial-temporal pattern of the Badain Jaran Desert. This study suggested that surface albedo can be regarded as a useful index in indicating the change process and evaluating the sustainable development of biological management around the Badain Jaran Desert. Copyright © 2016. Published by Elsevier B.V.

  14. The Southern Hemisphere lower stratosphere during August and September 1987 - Analyses based on the United Kingdom Meteorological Office Global Model

    NASA Technical Reports Server (NTRS)

    Mckenna, D. S.; Jones, R. L.; Buckland, A. T.; Austin, J.; Tuck, A. F.; Winkler, R. H.; Chan, K. R.

    1989-01-01

    This paper presents a series of meteorological analyses used to aid the interpretation of the in situ Airborne Antarctic Ozone Experiment (AAOE) observations obtained aboard the ER-2 and DC-8 aircraft and examines the basis and accuracy of the analytical procedure. Maps and sections of meteorological variables derived from the UK Meteorological Office Global Model are presented for ER-2 and DC-8 flight days. It is found that analyzed temperatures and winds are generally in good agreement with AAOE observations at all levels; minor discrepancies were evident only at DC-8 altitudes. Maps of potential vorticity presented on the 428-K potential temperature surface show that the vortex is essentially circumpolar, although there are periods when major distortions are apparent.

  15. The Modern Near-Surface Martian Climate: A Review of In-Situ Meteorological Data from Viking to Curiosity

    NASA Technical Reports Server (NTRS)

    Martinez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.; hide

    2017-01-01

    We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to todays Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars present day conditions and its implications for future Mars missions.

  16. Estimation of biogenic volatile organic compound (BVOC) emissions from the terrestrial ecosystem in China using real-time remote sensing data

    NASA Astrophysics Data System (ADS)

    Li, M.; Huang, X.; Li, J.; Song, Y.

    2012-04-01

    Because of the high emission intensity and reactivity, biogenic volatile organic compounds (BVOCs) play a significant role in the terrestrial ecosystems, human health, secondary pollution, global climate change and the global carbon cycle. Past estimations of BVOC emissions in China were based on outdated algorithms and limited meteorological data, and there have been significant inconsistences between the land surface parameters of dynamic models and those of BVOC estimation models, leading to large inaccuracies in the estimated results. To refine BVOC emission estimations for China and to further explore the role of BVOCs in atmospheric chemical processes, we used the latest algorithms of MEGAN (Model of Emissions of Gases and Aerosols from Nature) with MM5 (the Fifth-Generation Mesoscale Model) providing highly resolved meteorological data, to estimate the biogenic emissions of isoprene (C5H8) and seven monoterpene species (C10H16) in 2006. Real-time MODIS (Moderate Resolution Imaging Spectroradiometer) data were introduced to update the land surface parameters and improve the simulation performance of MM5, and to modify the influence of leaf area index (LAI) and leaf age deviation from standard conditions. In this study, the annual BVOC emissions for the whole country totaled 12.97 Tg C, a relevant value much lower than that given in global estimations but higher than the past estimations in China. Therein, the most important individual contributor was isoprene (9.36 Tg C), followed by α-pinene (1.24 Tg C yr-1) and β-pinene (0.84 Tg C yr-1). Due to the considerable regional disparity in plant distributions and meteorological conditions across China, BVOC emissions presented significant spatial-temporal variations. Spatially, isoprene emission was concentrated in South China, which is covered by large areas of broadleaf forests and shrubs. On the other hand, Southeast China was the top-ranking contributor of monoterpenes, in which the dominant vegetation genera consist of evergreen coniferous forests (mainly Pinus massoniana). Temporally, BVOC emissions primarily occurred in July and August during periods of high temperatures, high solar radiation and dense plant cover, with daily emissions peaking at about 13:00~14:00 hours (Beijing Time, BJT) and reaching their lowest values at night. Additionally, emissions of volatile organic compounds (VOCs) of biogenic origin (14.7 Tg yr-1) were approximately one-third less than anthropogenic emissions (23.2 Tg yr-1) and showed distinct spatial distributions. We present a reasonable estimation of BVOC emissions, which provides important information for further exploration of the role of BVOCs in atmospheric processes.

  17. Intercomparison of methods for the estimation of displacement height and roughness length from single-level eddy covariance data

    NASA Astrophysics Data System (ADS)

    Graf, Alexander; van de Boer, Anneke; Schüttemeyer, Dirk; Moene, Arnold; Vereecken, Harry

    2013-04-01

    The displacement height d and roughness length z0 are parameters of the logarithmic wind profile and as such these are characteristics of the surface, that are required in a multitude of meteorological modeling applications. Classically, both parameters are estimated from multi-level measurements of wind speed over a terrain sufficiently homogeneous to avoid footprint-induced differences between the levels. As a rule-of thumb, d of a dense, uniform crop or forest canopy is 2/3 to 3/4 of the canopy height h, and z0 about 10% of canopy height in absence of any d. However, the uncertainty of this rule-of-thumb becomes larger if the surface of interest is not "dense and uniform", in which case a site-specific determination is required again. By means of the eddy covariance method, alternative possibilities to determine z0 and d have become available. Various authors report robust results if either several levels of sonic anemometer measurements, or one such level combined with a classic wind profile is used to introduce direct knowledge on the friction velocity into the estimation procedure. At the same time, however, the eddy covariance method to measure various fluxes has superseded the profile method, leaving many current stations without a wind speed profile with enough levels sufficiently far above the canopy to enable the classic estimation of z0 and d. From single-level eddy covariance measurements at one point in time, only one parameter can be estimated, usually z0 while d is assumed to be known. Even so, results tend to scatter considerably. However, it has been pointed out, that the use of multiple points in time providing different stability conditions can enable the estimation of both parameters, if they are assumed constant over the time period regarded. These methods either rely on flux-variance similarity (Weaver 1990 and others following), or on the integrated universal function for momentum (Martano 2000 and others following). In both cases, iterations over the range of possible d values are necessary. We extended this set of methods by a non-iterative, regression based approach. Only a stability range of data is used in which the universal function is known to be approximately linear. Then, various types of multiple linear regression can be used to relate the terms of the logarithmic wind profile equation to each other, and derive z0 and d from the regression parameters. Two examples each of the two existing iterative approaches, and the new non-iterative one are compared to each other and to plausibility limits in three different agricultural crops. The study contains periods of growth as well as of constant crop height, also allowing for an examination of the relations between z0, d, and canopy height. Results indicate that estimated z0 values, even in absence of prescribed d values, are fairly robust, plausible and consistent across all methods. The largest deviations are produced by the two flux-variance similarity based methods. Estimates of d, in contrast, can be subject to implausible deviations with all methods, even after quality-filtering of input data. Again, the largest deviations occur with flux-variance similarity based methods. Ensemble averaging between all methods can reduce this problem, offering a potentially useful way of estimating d at more complex sites where the rule-of-thumb cannot be applied easily. Martano P (2000): Estimation of surface roughness length and displacement height from single-level sonic anemometer data. Journal of Applied Meteorology 39:708-715. Weaver HL (1990): Temperature and Humidity flux-variance relations determined by one-dimensional eddy correlation. Boundary-Layer Meteorology 53:77-91.

  18. Diurnal and seasonal variations in surface methane at a tropical coastal station: Role of mesoscale meteorology.

    PubMed

    Kavitha, M; Nair, Prabha R; Girach, I A; Aneesh, S; Sijikumar, S; Renju, R

    2018-08-01

    In view of the large uncertainties in the methane (CH 4 ) emission estimates and the large spatial gaps in its measurements, studies on near-surface CH 4 on regional basis become highly relevant. This paper presents the first time observational results of a study on the impacts of mesoscale meteorology on the temporal variations of near-surface CH 4 at a tropical coastal station, in India. It is based on the in-situ measurements conducted during January 2014 to August 2016, using an on-line CH 4 analyzer working on the principle of gas chromatography. The diurnal variation shows a daytime low (1898-1925ppbv) and nighttime high (1936-2022ppbv) extending till early morning hours. These changes are closely associated with the mesoscale circulations, namely Sea Breeze (SB) and Land Breeze (LB), as obtained through the meteorological observations, WRF simulations of the circulations and the diurnal variation of boundary layer height as observed by the Microwave Radiometer Profiler. The diurnal enhancement always coincides with the onset of LB. Several cases of different onset timings of LB were examined and results presented. The CH 4 mixing ratio also exhibits significant seasonal patterns being maximum in winter and minimum in pre-monsoon/monsoon with significant inter-annual variations, which is also reflected in diurnal patterns, and are associated with changing synoptic meteorology. This paper also presents an analysis of in-situ measured near-surface CH 4 , column averaged and upper tropospheric CH 4 retrieved by Atmospheric Infrared Sounder (AIRS) onboard Earth Observing System (EOS)/Aqua which gives insight into the vertical distribution of the CH 4 over the location. An attempt is also made to estimate the instantaneous radiative forcing for the measured CH 4 mixing ratio. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. 4D-tomographic reconstruction of water vapor using the hybrid regularization technique with application to the North West of Iran

    NASA Astrophysics Data System (ADS)

    Adavi, Zohre; Mashhadi-Hossainali, Masoud

    2015-04-01

    Water vapor is considered as one of the most important weather parameter in meteorology. Its non-uniform distribution, which is due to the atmospheric phenomena above the surface of the earth, depends both on space and time. Due to the limited spatial and temporal coverage of observations, estimating water vapor is still a challenge in meteorology and related fields such as positioning and geodetic techniques. Tomography is a method for modeling the spatio-temporal variations of this parameter. By analyzing the impact of troposphere on the Global Navigation Satellite (GNSS) signals, inversion techniques are used for modeling the water vapor in this approach. Non-uniqueness and instability of solution are the two characteristic features of this problem. Horizontal and/or vertical constraints are usually used to compute a unique solution for this problem. Here, a hybrid regularization method is used for computing a regularized solution. The adopted method is based on the Least-Square QR (LSQR) and Tikhonov regularization techniques. This method benefits from the advantages of both the iterative and direct techniques. Moreover, it is independent of initial values. Based on this property and using an appropriate resolution for the model, firstly the number of model elements which are not constrained by GPS measurement are minimized and then; water vapor density is only estimated at the voxels which are constrained by these measurements. In other words, no constraint is added to solve the problem. Reconstructed profiles of water vapor are validated using radiosonde measurements.

  20. Micro-sensors for in-situ meteorological measurements

    NASA Technical Reports Server (NTRS)

    Crisp, David; Kaiser, William J.; Vanzandt, Thomas R.; Tillman, James E.

    1993-01-01

    Improved in-situ meteorological measurements are needed for monitoring the weather and climate of the terrestrial and Martian atmospheres. We have initiated a program to assess the feasibility and utility of micro-sensors for precise in-situ meteorological measurements in these environments. Sensors are being developed for measuring pressure, temperature, wind velocity, humidity, and aerosol amounts. Silicon micro-machining and large scale integration technologies are being used to make sensors that are small, rugged, lightweight, and require very little power. Our long-term goal is to develop very accurate miniaturized sensors that can be incorporated into complete instrument packages or 'micro weather stations,' and deployed on a variety of platforms. If conventional commercially available silicon production techniques can be used to fabricate these sensor packages, it will eventually be possible to mass-produce them at low cost. For studies of the Earth's troposphere and stratosphere, they could be deployed on aircraft, dropsondes, radiosondes, or autonomous surface stations at remote sites. Improved sensor accuracy and reduced sensor cost are the primary challenges for these applications. For studies of the Martian atmosphere, these sensor packages could be incorporated into the small entry probes and surface landers that are being planned for the Mars Environmental SURvey (MESUR) Mission. That decade-long program will deploy a global network of small stations on the Martian surface for monitoring meteorological and geological processes. Low mass, low power, durability, large dynamic range and calibration stability are the principal challenges for this application. Our progress on each of these sensor types is presented.

  1. Analysis of observed surface ozone in the dry season over Eastern Thailand during 1997-2012

    NASA Astrophysics Data System (ADS)

    Assareh, Nosha; Prabamroong, Thayukorn; Manomaiphiboon, Kasemsan; Theramongkol, Phunsak; Leungsakul, Sirakarn; Mitrjit, Nawarat; Rachiwong, Jintarat

    2016-09-01

    This study analyzed observed surface ozone (O3) in the dry season over a long-term period of 1997-2012 for the eastern region of Thailand and incorporated several technical tools or methods in investigating different aspects of O3. The focus was the urbanized and industrialized coastal areas recently recognized as most O3-polluted areas. It was found that O3 is intensified most in the dry-season months when meteorological conditions are favorable to O3 development. The diurnal variations of O3 and its precursors show the general patterns of urban background. From observational O3 isopleth diagrams and morning ratios of non-methane volatile organic compounds (NMVOC) and nitrogen oxides (NOx), the chemical regime of O3 formation was identified as VOC-sensitive, and the degree of VOC sensitivity tends to increase over the years, suggesting emission control on VOC to be suitable for O3 management. Both total oxidant analysis and back-trajectory modeling (together with K-means clustering) indicate the potential role of regional transport or influence in enhancing surface O3 level over the study areas. A meteorological adjustment with generalized linear modeling was performed to statistically exclude meteorological effects on the variability of O3. Local air-mass recirculation factor was included in the modeling to support the coastal application. The derived trends in O3 based on the meteorological adjustment were found to be significantly positive using a Mann-Kendall test with block bootstrapping.

  2. Use of multiple correspondence analysis (MCA) to identify interactive meteorological conditions affecting relative throughfall

    NASA Astrophysics Data System (ADS)

    Van Stan, John T.; Gay, Trent E.; Lewis, Elliott S.

    2016-02-01

    Forest canopies alter rainfall reaching the surface by redistributing it as throughfall. Throughfall supplies water and nutrients to a variety of ecohydrological components (soil microbial communities, stream water discharge/chemistry, and stormflow pathways) and is controlled by canopy structural interactions with meteorological conditions across temporal scales. This work introduces and applies multiple correspondence analyses (MCAs) to a range of meteorological thresholds (median intensity, median absolute deviation (MAD) of intensity, median wind-driven droplet inclination angle, and MAD of wind speed) for an example throughfall problem: identification of interacting storm conditions corresponding to temporal concentration in relative throughfall beyond the median observation (⩾73% of rain). MCA results from the example show that equalling or exceeding rain intensity thresholds (median and MAD) corresponded with temporal concentration of relative throughfall across all storms. Under these intensity conditions, two wind mechanisms produced significant correspondences: (1) high, steady wind-driven droplet inclination angles increased surface wetting; and (2) sporadic winds shook entrained droplets from surfaces. A discussion is provided showing that these example MCA findings agree well with previous work relying on more historically common methods (e.g., multiple regression and analytical models). Meteorological threshold correspondences to temporal concentration of relative throughfall at our site may be a function of heavy Tillandsia usneoides coverage. Applications of MCA within other forests may provide useful insights to how temporal throughfall dynamics are affected for drainage pathways dependent on different structures (leaves, twigs, branches, etc.).

  3. Bridging the Radiative Transfer Models for Meteorology and Solar Energy Applications

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Sengupta, M.

    2017-12-01

    Radiative transfer models are used to compute solar radiation reaching the earth surface and play an important role in both meteorology and solar energy studies. Therefore, they are designed to meet the needs of specialized applications. For instance, radiative transfer models for meteorology seek to provide more accurate cloudy-sky radiation compared to models used in solar energy that are geared towards accuracy in clear-sky conditions associated with the maximum solar resource. However, models for solar energy applications are often computationally faster, as the complex solution of the radiative transfer equation is parameterized by atmospheric properties that can be acquired from surface- or satellite-based observations. This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to combine the advantages of radiative transfer models designed for meteorology and solar energy applictions. A fast all-sky radiation model, FARMS-NIT, was developed to efficiently compute narrowband all-sky irradiances over inclined photovoltaic (PV) panels. This new model utilizes the optical preperties from a solar energy model, SMARTS, to computes surface radiation by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. For cloudy-sky conditions, cloud bidirectional transmittance functions (BTDFs) are provided by a precomputed lookup table (LUT) by LibRadtran. Our initial results indicate that FARMS-NIT has an accuracy that is similar to LibRadtran, a highly accurate multi-stream model, but is significantly more efficient. The development and validation of this model will be presented.

  4. SAMOS - A Decade of High-Quality, Underway Meteorological and Oceanographic Data from Research Vessels

    NASA Astrophysics Data System (ADS)

    Smith, S. R.; Rolph, J.; Briggs, K.; Elya, J. L.; Bourassa, M. A.

    2016-02-01

    The authors will describe the successes and lessons learned from the Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative. Over the past decade, SAMOS has acquired, quality controlled, and distributed underway surface meteorological and oceanographic observations from nearly 40 oceanographic research vessels. Research vessels provide underway observations at high-temporal frequency (1-minute sampling interval) that include navigational (position, course, heading, and speed), meteorological (air temperature, humidity, wind, surface pressure, radiation, rainfall), and oceanographic (surface sea temperature and salinity) samples. Vessels recruited to the SAMOS initiative collect a high concentration of data within the U.S. continental shelf, around Hawaii and the islands of the tropical Pacific, and frequently operate well outside routine shipping lanes, capturing observations in extreme ocean environments (Southern, Arctic, South Atlantic, and South Pacific oceans) desired by the air-sea exchange, modeling, and satellite remote sensing communities. The presentation will highlight the data stewardship practices of the SAMOS initiative. Activities include routine automated and visual data quality evaluation, feedback to vessel technicians and operators regarding instrumentation errors, best practices for instrument siting and exposure on research vessels, and professional development activities for research vessel technicians. Best practices for data, metadata, and quality evaluation will be presented. We will discuss ongoing efforts to expand data services to enhance interoperability between marine data centers. Data access and archival protocols will also be presented, including how these data may be referenced and accessed via NCEI.

  5. Relationship between aerodynamic roughness length and bulk sedge leaf area index in a mixed-species boreal mire complex

    NASA Astrophysics Data System (ADS)

    Alekseychik, P. K.; Korrensalo, A.; Mammarella, I.; Vesala, T.; Tuittila, E.-S.

    2017-06-01

    Leaf area index (LAI) is an important parameter in natural ecosystems, representing the seasonal development of vegetation and photosynthetic potential. However, direct measurement techniques require labor-intensive field campaigns that are usually limited in time, while remote sensing approaches often do not yield reliable estimates. Here we propose that the bulk LAI of sedges (LAIs) can be estimated alternatively from a micrometeorological parameter, the aerodynamic roughness length for momentum (z0). z0 can be readily calculated from high-response turbulence and other meteorological data, typically measured continuously and routinely available at ecosystem research sites. The regressions of LAI versus z0 were obtained using the data from two Finnish natural sites representative of boreal fen and bog ecosystems. LAIs was found to be well correlated with z0 and sedge canopy height. Superior method performance was demonstrated in the fen ecosystem where the sedges make a bigger contribution to overall surface roughness than in bogs.

  6. Winter ambient training conditions are associated with increased bronchial hyperreactivity and with shifts in serum innate immunity proteins in young competitive speed skaters.

    PubMed

    Kurowski, Marcin; Jurczyk, Janusz; Moskwa, Sylwia; Jarzębska, Marzanna; Krysztofiak, Hubert; Kowalski, Marek L

    2018-01-01

    Regular training modulates airway inflammation and modifies susceptibility to respiratory infections. The impact of exercise and ambient conditions on airway hyperreactivity and innate immunity has not been well studied. We aimed to assess exercise-related symptoms, lung function, airway hyperresponsiveness and innate immunity proteins in relation to meteorological conditions and exercise load in competitive athletes. Thirty-six speed skaters were assessed during winter (WTP) and summer (STP) periods. The control group comprised 22 non-exercising subjects. An allergy questionnaire for athletes (AQUA) and IPAQ (International Physical Activity Questionnaire) were used to assess symptoms and exercise. Meteorological parameters were acquired from World Meteorological Organization resources. Serum innate immunity proteins were measured by ELISA. Exercise-associated respiratory symptoms were reported by 79.4% of skaters. Despite similar exercise load and lung parameters during both periods, positive methacholine challenge was more frequent during winter ( p = 0.04). Heat shock protein HSPA1 and IL-1RA were significantly decreased during STP compared to WTP and controls. During WTP, IL-1RA was elevated in skaters reporting exercise-induced symptoms ( p = 0.007). sCD14 was elevated in athletes versus controls in both periods ( p < 0.05). HSPA1 was significantly higher in WTP compared to STP irrespective of presence of respiratory tract infections (RTIs). IL-1RA in WTP was elevated versus STP ( p = 0.004) only in RTI-negative athletes. Serum IL-1RA negatively correlated with most meteorological parameters during WTP. Ambient training conditions, but not training load, influence bronchial hyperreactivity and the innate immune response in competitive athletes assessed during winter. The protective effect of regular exercise against respiratory infections is associated with a shift in serum innate immunity proteins.

  7. A comparison of selected models for estimating cable icing

    NASA Astrophysics Data System (ADS)

    McComber, Pierre; Druez, Jacques; Laflamme, Jean

    In many cold climate countries, it is becoming increasingly important to monitor transmission line icing. Indeed, by knowing in advance of localized danger for icing overloads, electric utilities can take measures in time to prevent generalized failure of the power transmission network. Recently in Canada, a study was made to compare the estimation of a few icing models working from meteorological data in estimating ice loads for freezing rain events. The models tested were using only standard meteorological parameters, i.e. wind speed and direction, temperature and precipitation rate. This study has shown that standard meteorological parameters can only achieve very limited accuracy, especially for longer icing events. However, with the help of an additional instrument monitoring the icing rate intensity, a significant improvement in model prediction might be achieved. The icing rate meter (IRM) which counts icing and de-icing cycles per unit time on a standard probe can be used to estimate the icing intensity. A cable icing estimation is then made by taking into consideration the accretion size, temperature, wind speed and direction, and precipitation rate. In this paper, a comparison is made between the predictions of two previously tested models (one obtained and the other reconstructed from their description in the public literature) and of a model based on the icing rate meter readings. The models are tested against nineteen events recorded on an icing test line at Mt. Valin, Canada, during the winter season 1991-1992. These events are mostly rime resulting from in-cloud icing. However, freezing rain and wet snow events were also recorded. Results indicate that a significant improvement in the estimation is attained by using the icing rate meter data together with the other standard meteorological parameters.

  8. Characteristics of Fine Particles in an Urban Atmosphere-Relationships with Meteorological Parameters and Trace Gases.

    PubMed

    Zhang, Tianhao; Zhu, Zhongmin; Gong, Wei; Xiang, Hao; Fang, Ruimin

    2016-08-10

    Atmospheric fine particles (diameter < 1 μm) attract a growing global health concern and have increased in urban areas that have a strong link to nucleation, traffic emissions, and industrial emissions. To reveal the characteristics of fine particles in an industrial city of a developing country, two-year measurements of particle number size distribution (15.1 nm-661 nm), meteorological parameters, and trace gases were made in the city of Wuhan located in central China from June 2012 to May 2014. The annual average particle number concentrations in the nucleation mode (15.1 nm-30 nm), Aitken mode (30 nm-100 nm), and accumulation mode (100 nm-661 nm) reached 4923 cm(-3), 12193 cm(-3) and 4801 cm(-3), respectively. Based on Pearson coefficients between particle number concentrations and meteorological parameters, precipitation and temperature both had significantly negative relationships with particle number concentrations, whereas atmospheric pressure was positively correlated with the particle number concentrations. The diurnal variation of number concentration in nucleation mode particles correlated closely with photochemical processes in all four seasons. At the same time, distinct growth of particles from nucleation mode to Aitken mode was only found in spring, summer, and autumn. The two peaks of Aitken mode and accumulation mode particles in morning and evening corresponded obviously to traffic exhaust emissions peaks. A phenomenon of "repeated, short-lived" nucleation events have been created to explain the durability of high particle concentrations, which was instigated by exogenous pollutants, during winter in a case analysis of Wuhan. Measurements of hourly trace gases and segmental meteorological factors were applied as proxies for complex chemical reactions and dense industrial activities. The results of this study offer reasonable estimations of particle impacts and provide references for emissions control strategies in industrial cities of developing countries.

  9. Investigating the Impact of Surface Heterogeneity on the Convective Boundary Layer Over Urban Areas Through Coupled Large-Eddy Simulation and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Dominguez, Anthony; Kleissl, Jan P.; Luvall, Jeffrey C.

    2011-01-01

    Large-eddy Simulation (LES) was used to study convective boundary layer (CBL) flow through suburban regions with both large and small scale heterogeneities in surface temperature. Constant remotely sensed surface temperatures were applied at the surface boundary at resolutions of 10 m, 90 m, 200 m, and 1 km. Increasing the surface resolution from 1 km to 200 m had the most significant impact on the mean and turbulent flow characteristics as the larger scale heterogeneities became resolved. While previous studies concluded that scales of heterogeneity much smaller than the CBL inversion height have little impact on the CBL characteristics, we found that further increasing the surface resolution (resolving smaller scale heterogeneities) results in an increase in mean surface heat flux, thermal blending height, and potential temperature profile. The results of this study will help to better inform sub-grid parameterization for meso-scale meteorological models. The simulation tool developed through this study (combining LES and high resolution remotely sensed surface conditions) is a significant step towards future studies on the micro-scale meteorology in urban areas.

  10. A Multialgorithm Approach to Land Surface Modeling of Suspended Sediment in the Colorado Front Range

    PubMed Central

    Stewart, J. R.; Kasprzyk, J. R.; Rajagopalan, B.; Minear, J. T.; Raseman, W. J.

    2017-01-01

    Abstract A new paradigm of simulating suspended sediment load (SSL) with a Land Surface Model (LSM) is presented here. Five erosion and SSL algorithms were applied within a common LSM framework to quantify uncertainties and evaluate predictability in two steep, forested catchments (>1,000 km2). The algorithms were chosen from among widely used sediment models, including empirically based: monovariate rating curve (MRC) and the Modified Universal Soil Loss Equation (MUSLE); stochastically based: the Load Estimator (LOADEST); conceptually based: the Hydrologic Simulation Program—Fortran (HSPF); and physically based: the Distributed Hydrology Soil Vegetation Model (DHSVM). The algorithms were driven by the hydrologic fluxes and meteorological inputs generated from the Variable Infiltration Capacity (VIC) LSM. A multiobjective calibration was applied to each algorithm and optimized parameter sets were validated over an excluded period, as well as in a transfer experiment to a nearby catchment to explore parameter robustness. Algorithm performance showed consistent decreases when parameter sets were applied to periods with greatly differing SSL variability relative to the calibration period. Of interest was a joint calibration of all sediment algorithm and streamflow parameters simultaneously, from which trade‐offs between streamflow performance and partitioning of runoff and base flow to optimize SSL timing were noted, decreasing the flexibility and robustness of the streamflow to adapt to different time periods. Parameter transferability to another catchment was most successful in more process‐oriented algorithms, the HSPF and the DHSVM. This first‐of‐its‐kind multialgorithm sediment scheme offers a unique capability to portray acute episodic loading while quantifying trade‐offs and uncertainties across a range of algorithm structures. PMID:29399268

  11. Influence of ozone and meteorological parameters on levels of polycyclic aromatic hydrocarbons in the air

    NASA Astrophysics Data System (ADS)

    Pehnec, Gordana; Jakovljević, Ivana; Šišović, Anica; Bešlić, Ivan; Vađić, Vladimira

    2016-04-01

    Concentrations of ten polycyclic aromatic hydrocarbons (PAHs) in the PM10 particle fraction were measured together with ozone and meteorological parameters at an urban site (Zagreb, Croatia) over a one-year period. Data were subjected to regression analysis in order to determine the relationship between the measured pollutants and selected meteorological variables. All of the PAHs showed seasonal variations with high concentrations in winter and autumn and very low concentrations during summer and spring. All of the ten PAHs concentrations also correlated well with each other. A statistically significant negative correlation was found between the concentrations of PAHs and ozone concentrations and concentrations of PAHs and temperature, as well as a positive correlation between concentrations of PAHs and PM10 mass concentration and relative humidity. Multiple regression analysis showed that concentrations of PM10 and ozone, temperature, relative humidity and pressure accounted for 43-70% of PAHs variability. Concentrations of PM10 and temperature were significant variables for all of the measured PAH's concentrations in all seasons. Ozone concentrations were significant for only some of the PAHs, particularly 6-ring PAHs.

  12. In situ sensors for measurements in the global trosposphere

    NASA Technical Reports Server (NTRS)

    Saeger, M. L.; Eaton, W. C.; Wright, R. S.; White, J. H.; Tommerdahl, J. B.

    1981-01-01

    Current techniques available for the in situ measurement of ambient trace gas species, particulate composition, and particulate size distribution are reviewed. The operational specifications of the various techniques are described. Most of the techniques described are those that have been used in airborne applications or show promise of being adaptable to airborne applications. Some of the instruments described are specialty items that are not commercially-available. In situ measurement techniques for several meteorological parameters important in the study of the distribution and transport of ambient air pollutants are discussed. Some remote measurement techniques for meteorological parameters are also discussed. State-of-the-art measurement capabilities are compared with a list of capabilities and specifications desired by NASA for ambient measurements in the global troposphere.

  13. Use of Advanced Meteorological Model Output for Coastal Ocean Modeling in Puget Sound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping

    2011-06-01

    It is a great challenge to specify meteorological forcing in estuarine and coastal circulation modeling using observed data because of the lack of complete datasets. As a result of this limitation, water temperature is often not simulated in estuarine and coastal modeling, with the assumption that density-induced currents are generally dominated by salinity gradients. However, in many situations, temperature gradients could be sufficiently large to influence the baroclinic motion. In this paper, we present an approach to simulate water temperature using outputs from advanced meteorological models. This modeling approach was applied to simulate annual variations of water temperatures of Pugetmore » Sound, a fjordal estuary in the Pacific Northwest of USA. Meteorological parameters from North American Region Re-analysis (NARR) model outputs were evaluated with comparisons to observed data at real-time meteorological stations. Model results demonstrated that NARR outputs can be used to drive coastal ocean models for realistic simulations of long-term water-temperature distributions in Puget Sound. Model results indicated that the net flux from NARR can be further improved with the additional information from real-time observations.« less

  14. Meteorological Decision Assistance.

    DTIC Science & Technology

    1981-08-01

    500 for labor and materials. The most economical course of action can be determined by computing the cost/loss ratio (C/L) and comparing it to the...interest, a clima - tology of these parameters, the impact of these parameters on the customer’s mission, and the techniques for assessing the probability of

  15. Investigatigating inter-/intra-annual variability of surface hydrology at northern high latitude from spaceborne measurements

    NASA Astrophysics Data System (ADS)

    Kang, K.; Duguay, C. R.

    2014-12-01

    Lakes encompass a large part of the surface cover in the northern boreal and tundra areas of northern Canada and are therefore a significant component of the terrestrial hydrological system. To understand the hydrologic cycle over subarctic and arctic landscapes, estimating surface parameters such as surface net radiation, soil moisture, and surface albedo is important. Although ground-based field measurements provide a good temporal resolution, these data provide a limited spatial representation and are often restricted to the summer period (from June to August), and few surface-based stations are located in high-latitude regions. In this respect, spaceborne remote sensing provides the means to monitor surface hydrology and to estimate components of the surface energy balance with reasonable spatial and temporal resolutions required for hydrological investigations, as well as for providing more spatially representative lake-relevant information than available from in situ measurements. The primary objective of this study is to quantify the sources of temporal and spatial variability in surface albedo over subarctic wetland from satellite derived albedo measurements in the Hudson Bay Lowlands near Churchill, Manitoba. The spatial variability in albedo within each land-cover type is investigated through optical satellite imagery from Landsat-5 Thematic Mapper, Landsat-7 Enhanced Thematic Mapper Plus, and Landsat-8 Operational Land Imager obtained in different seasons from spring into fall (April and October) over a 30-year period (1984-2013). These data allowed for an examination of the spatial variability of surface albedo under relatively dry and wet summer conditions (i.e. 1984, 1998 versus 1991, 2005). A detailed analysis of Landsat-derived surface albedo (ranging from 0.09 to 0.15) conducted in the Churchill region for August is inversely related to surface water fraction calculated from Landsat images. Preliminary analysis of surface albedo observed between July and August are 0.10 to 0.15, and vary due to differences in meteorological parameters such as rainfall, surface moisture and surface air temperature. Overall, spaceborne optical data are an invaluable source for investigating changes and variability in surface albedo in relation to surface hydrology over subarctic regions.

  16. Bayesian dynamic modeling of time series of dengue disease case counts

    PubMed Central

    López-Quílez, Antonio; Torres-Prieto, Alexander

    2017-01-01

    The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model’s short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful models for decision-making in public health. PMID:28671941

  17. Wavelet and Fractal Analysis of Remotely Sensed Surface Temperature with Applications to Estimation of Surface Sensible Heat Flux Density

    NASA Technical Reports Server (NTRS)

    Schieldge, John

    2000-01-01

    Wavelet and fractal analyses have been used successfully to analyze one-dimensional data sets such as time series of financial, physical, and biological parameters. These techniques have been applied to two-dimensional problems in some instances, including the analysis of remote sensing imagery. In this respect, these techniques have not been widely used by the remote sensing community, and their overall capabilities as analytical tools for use on satellite and aircraft data sets is not well known. Wavelet and fractal analyses have the potential to provide fresh insight into the characterization of surface properties such as temperature and emissivity distributions, and surface processes such as the heat and water vapor exchange between the surface and the lower atmosphere. In particular, the variation of sensible heat flux density as a function of the change In scale of surface properties Is difficult to estimate, but - in general - wavelets and fractals have proved useful in determining the way a parameter varies with changes in scale. We present the results of a limited study on the relationship between spatial variations in surface temperature distribution and sensible heat flux distribution as determined by separate wavelet and fractal analyses. We analyzed aircraft imagery obtained in the thermal infrared (IR) bands from the multispectral TIMS and hyperspectral MASTER airborne sensors. The thermal IR data allows us to estimate the surface kinetic temperature distribution for a number of sites in the Midwestern and Southwestern United States (viz., San Pedro River Basin, Arizona; El Reno, Oklahoma; Jornada, New Mexico). The ground spatial resolution of the aircraft data varied from 5 to 15 meters. All sites were instrumented with meteorological and hydrological equipment including surface layer flux measuring stations such as Bowen Ratio systems and sonic anemometers. The ground and aircraft data sets provided the inputs for the wavelet and fractal analyses, and the validation of the results.

  18. Effect of regional-scale transport on oxidants in the vicinity of Philadelphia during the 1999 NE-OPS field campaign

    Treesearch

    Jerome D. Fast; Rahul A. Zaveri; Xindi Bian; Elaine G. Chapman; Richard C. Easter

    2002-01-01

    A new meteorological-chemical model is used to determine the relative contribution of regional-scale transport and local photochemical production on air quality over Philadelphia. The model performance is evaluated using surface and airborne meteorological and chemical measurements made during a 30-day period in July and August of 1999 as part of the Northeast Oxidant...

  19. Dynamical Mapping of Anopheles darlingi Densities in a Residual Malaria Transmission Area of French Guiana by Using Remote Sensing and Meteorological Data.

    PubMed

    Adde, Antoine; Roux, Emmanuel; Mangeas, Morgan; Dessay, Nadine; Nacher, Mathieu; Dusfour, Isabelle; Girod, Romain; Briolant, Sébastien

    2016-01-01

    Local variation in the density of Anopheles mosquitoes and the risk of exposure to bites are essential to explain the spatial and temporal heterogeneities in the transmission of malaria. Vector distribution is driven by environmental factors. Based on variables derived from satellite imagery and meteorological observations, this study aimed to dynamically model and map the densities of Anopheles darlingi in the municipality of Saint-Georges de l'Oyapock (French Guiana). Longitudinal sampling sessions of An. darlingi densities were conducted between September 2012 and October 2014. Landscape and meteorological data were collected and processed to extract a panel of variables that were potentially related to An. darlingi ecology. Based on these data, a robust methodology was formed to estimate a statistical predictive model of the spatial-temporal variations in the densities of An. darlingi in Saint-Georges de l'Oyapock. The final cross-validated model integrated two landscape variables-dense forest surface and built surface-together with four meteorological variables related to rainfall, evapotranspiration, and the minimal and maximal temperatures. Extrapolation of the model allowed the generation of predictive weekly maps of An. darlingi densities at a resolution of 10-m. Our results supported the use of satellite imagery and meteorological data to predict malaria vector densities. Such fine-scale modeling approach might be a useful tool for health authorities to plan control strategies and social communication in a cost-effective, targeted, and timely manner.

  20. Simulation of trace metals and PAH atmospheric pollution over Greater Paris: Concentrations and deposition on urban surfaces

    NASA Astrophysics Data System (ADS)

    Thouron, L.; Seigneur, C.; Kim, Y.; Legorgeu, C.; Roustan, Y.; Bruge, B.

    2017-10-01

    Urban areas can be subject not only to poor air quality, but also to contamination of other environmental media by air pollutants. Here, we address the potential transfer of selected air pollutants (two metals and three PAH) to urban surfaces. To that end, we simulate meteorology and air pollution from Europe to a Paris suburban neighborhood, using a four-level one-way nesting approach. The meteorological and air quality simulations use urban canopy sub-models in order to better represent the effect of the urban morphology on the air flow, atmospheric dispersion, and deposition of air pollutants to urban surfaces. This modeling approach allows us to distinguish air pollutant deposition among various urban surfaces (roofs, roads, and walls). Meteorological model performance is satisfactory, showing improved results compared to earlier simulations, although precipitation amounts are underestimated. Concentration simulation results are also satisfactory for both metals, with a fractional bias <0.5. Concentrations of benzo[a]pyrene are overestimated, probably because continental emissions may be overestimated. Concentrations of benzo[b]fluoranthene and indeno[1,2,3,cd]pyrene are underestimated, in part because of null boundary conditions. PAH deposition fluxes are consistent with earlier measurements obtained in the Greater Paris region. The model simulation results suggest that both wet and dry deposition processes need to be considered when estimating the transfer of air pollutants to other environmental media. Dry deposition fluxes to various urban surfaces are mostly uniform for PAH, which are entirely present in fine particles. However, there is significantly less wall deposition compared to deposition to roofs and roads for trace metals, due to their coarse fraction. Meteorology, particle size distribution, and urban morphology are all important factors affecting air pollutant deposition. Future work should focus on the collection of data suitable to evaluate the performance of atmospheric models for both wet and dry deposition with fine spatial resolution.

  1. Evaluating the two-source energy balance model using local thermal and surface flux observations in a strongly advective irrigated agricultural area

    NASA Astrophysics Data System (ADS)

    Kustas, William P.; Alfieri, Joseph G.; Anderson, Martha C.; Colaizzi, Paul D.; Prueger, John H.; Evett, Steven R.; Neale, Christopher M. U.; French, Andrew N.; Hipps, Lawrence E.; Chávez, José L.; Copeland, Karen S.; Howell, Terry A.

    2012-12-01

    Application and validation of many thermal remote sensing-based energy balance models involve the use of local meteorological inputs of incoming solar radiation, wind speed and air temperature as well as accurate land surface temperature (LST), vegetation cover and surface flux measurements. For operational applications at large scales, such local information is not routinely available. In addition, the uncertainty in LST estimates can be several degrees due to sensor calibration issues, atmospheric effects and spatial variations in surface emissivity. Time differencing techniques using multi-temporal thermal remote sensing observations have been developed to reduce errors associated with deriving the surface-air temperature gradient, particularly in complex landscapes. The Dual-Temperature-Difference (DTD) method addresses these issues by utilizing the Two-Source Energy Balance (TSEB) model of Norman et al. (1995) [1], and is a relatively simple scheme requiring meteorological input from standard synoptic weather station networks or mesoscale modeling. A comparison of the TSEB and DTD schemes is performed using LST and flux observations from eddy covariance (EC) flux towers and large weighing lysimeters (LYs) in irrigated cotton fields collected during BEAREX08, a large-scale field experiment conducted in the semi-arid climate of the Texas High Plains as described by Evett et al. (2012) [2]. Model output of the energy fluxes (i.e., net radiation, soil heat flux, sensible and latent heat flux) generated with DTD and TSEB using local and remote meteorological observations are compared with EC and LY observations. The DTD method is found to be significantly more robust in flux estimation compared to the TSEB using the remote meteorological observations. However, discrepancies between model and measured fluxes are also found to be significantly affected by the local inputs of LST and vegetation cover and the representativeness of the remote sensing observations with the local flux measurement footprint.

  2. Research Vessel Meteorological and Oceanographic Systems Support Satellite and Model Validation Studies

    NASA Astrophysics Data System (ADS)

    Smith, S. R.; Lopez, N.; Bourassa, M. A.; Rolph, J.; Briggs, K.

    2012-12-01

    The research vessel data center at the Florida State University routinely acquires, quality controls, and distributes underway surface meteorological and oceanographic observations from vessels. The activities of the center are coordinated by the Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative in partnership with the Rolling Deck to Repository (R2R) project. The data center evaluates the quality of the observations, collects essential metadata, provides data quality feedback to vessel operators, and ensures the long-term data preservation at the National Oceanographic Data Center. A description of the SAMOS data stewardship protocols will be provided, including dynamic web tools that ensure users can select the highest quality observations from over 30 vessels presently recruited to the SAMOS initiative. Research vessels provide underway observations at high-temporal frequency (1 min. sampling interval) that include navigational (position, course, heading, and speed), meteorological (air temperature, humidity, wind, surface pressure, radiation, rainfall), and oceanographic (surface sea temperature and salinity) samples. Recruited vessels collect a high concentration of data within the U.S. continental shelf and also frequently operate well outside routine shipping lanes, capturing observations in extreme ocean environments (Southern Ocean, Arctic, South Atlantic and Pacific). The unique quality and sampling locations of research vessel observations and there independence from many models and products (RV data are rarely distributed via normal marine weather reports) makes them ideal for validation studies. We will present comparisons between research vessel observations and model estimates of the sea surface temperature and salinity in the Gulf of Mexico. The analysis reveals an underestimation of the freshwater input to the Gulf from rivers, resulting in an overestimation of near coastal salinity in the model. Additional comparisons between surface atmospheric products derived from satellite observations and the underway research vessel observations will be shown. The strengths and limitations of research observations for validation studies will be highlighted through these case studies.

  3. A one-year study of the diurnal cycle of meteorology, clouds and radiation in the West African Sahel region

    DOE PAGES

    Collow, Allison B.; Ghate, Virendra P.; Miller, Mark A.; ...

    2015-09-09

    Here, the diurnal cycles of meteorological and radiation variables are analysed during the wet and dry seasons over the Sahel region of West Africa during 2006 using surface data collected by the Atmospheric Radiation Measurement (ARM) programme's Mobile Facility, satellite radiation measurements from the Geostationary Earth Radiation Budget (GERB) instrument aboard Meteosat 8, and reanalysis products from the National Centers for Environmental Prediction (NCEP). The meteorological analysis builds upon past studies of the diurnal cycle in the region by incorporating diurnal cycles of lower tropospheric wind profiles, thermodynamic profiles, integrated water vapour and liquid water measurements, and cloud radar measurementsmore » of frequency and location. These meteorological measurements are complemented by 3 h measurements of the diurnal cycles of the top-of-atmosphere (TOA) and surface short-wave (SW) and long-wave (LW) radiative fluxes and cloud radiative effects (CREs), and the atmospheric radiative flux divergence (RFD) and atmospheric CREs. Cirrus cloudiness during the dry season is shown to peak in coverage in the afternoon, while convective clouds during the wet season are shown to peak near dawn and have an afternoon minimum related to the rise of the lifting condensation level into the Saharan Air Layer. The LW and SW RFDs and CREs exhibit diurnal cycles during both seasons, but there is a relatively small difference in the LW cycles during the two seasons (10 – 30 W m –2 depending on the variable and time of day). Small differences in the TOA CREs during the two seasons are overwhelmed by large differences in the surface SW CREs, which exceed 100 W m –2. A significant surface SW CRE during the wet season combined with a negligible TOA SW CRE produces a diurnal cycle in the atmospheric CRE that is modulated primarily by the SW surface CRE, peaks at midday at ~150 W m –2, and varies widely from day to day.« less

  4. A One-Year Study of the Diurnal Cycle of Meteorology, Clouds, and Radiation in the West African Sahel Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquardt-Collow, Allison; Ghate, Virendra P.; Miller, Mark A.

    The diurnal cycles of meteorological and radiation variables are analyzed during the wet and dry seasons over the Sahel region of West Africa during 2006 using surface data collected by the Atmospheric Radiation Measurement (ARM) program’s Mobile Facility, satellite radiation measurements from the Geostationary Earth Radiation Budget (GERB) instrument aboard Meteosat 8, and reanalysis products from the National Center for Environmental Prediction (NCEP). The meteorological analysis builds upon past studies of the diurnal cycle in the region by incorporating diurnal cycles of lower tropospheric wind profiles, thermodynamic profiles, integrated water vapor and liquid water measurements, and cloud radar measurements ofmore » frequency and location. These meteorological measurements are complemented by 3-hour measurements of the diurnal cycles of the TOA and surface shortwave (SW) and longwave (LW) radiative fluxes and cloud radiative effects (CREs), and the atmospheric radiative flux divergence (RFD) and atmospheric CREs. Cirrus cloudiness during the dry season is shown to peak in coverage in the afternoon, while convective clouds during the wet season are shown to peak near dawn and have an afternoon minimum related to the rise of the Lifting Condensation Level into the Saharan Air Layer. The LW and SW RFDs and CREs exhibit diurnal cycles during both seasons, but there is a relatively small difference in the LW cycles during the two seasons (10-30 Wm^(-2) depending on the variable and time of day). Small differences in the TOA CREs during the two seasons are overwhelmed by large differences in the surface SW CREs, which exceed 100 Wm^(-2). A significant surface SW CRE during the wet season combined with a negligible TOA SW CRE produces a diurnal cycle in the atmospheric CRE that is modulated primarily by the SW surface CRE, peaks at midday at ~150 Wm^(-2), and varies widely from day to day.« less

  5. A one-year study of the diurnal cycle of meteorology, clouds and radiation in the West African Sahel region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collow, Allison B.; Ghate, Virendra P.; Miller, Mark A.

    Here, the diurnal cycles of meteorological and radiation variables are analysed during the wet and dry seasons over the Sahel region of West Africa during 2006 using surface data collected by the Atmospheric Radiation Measurement (ARM) programme's Mobile Facility, satellite radiation measurements from the Geostationary Earth Radiation Budget (GERB) instrument aboard Meteosat 8, and reanalysis products from the National Centers for Environmental Prediction (NCEP). The meteorological analysis builds upon past studies of the diurnal cycle in the region by incorporating diurnal cycles of lower tropospheric wind profiles, thermodynamic profiles, integrated water vapour and liquid water measurements, and cloud radar measurementsmore » of frequency and location. These meteorological measurements are complemented by 3 h measurements of the diurnal cycles of the top-of-atmosphere (TOA) and surface short-wave (SW) and long-wave (LW) radiative fluxes and cloud radiative effects (CREs), and the atmospheric radiative flux divergence (RFD) and atmospheric CREs. Cirrus cloudiness during the dry season is shown to peak in coverage in the afternoon, while convective clouds during the wet season are shown to peak near dawn and have an afternoon minimum related to the rise of the lifting condensation level into the Saharan Air Layer. The LW and SW RFDs and CREs exhibit diurnal cycles during both seasons, but there is a relatively small difference in the LW cycles during the two seasons (10 – 30 W m –2 depending on the variable and time of day). Small differences in the TOA CREs during the two seasons are overwhelmed by large differences in the surface SW CREs, which exceed 100 W m –2. A significant surface SW CRE during the wet season combined with a negligible TOA SW CRE produces a diurnal cycle in the atmospheric CRE that is modulated primarily by the SW surface CRE, peaks at midday at ~150 W m –2, and varies widely from day to day.« less

  6. Surface Meteorology at Kougarok Site Station, Seward Peninsula, Alaska, Ongoing from 2017

    DOE Data Explorer

    Bob Busey; Bob Bolton; Cathy Wilson; Lily Cohen

    2017-12-04

    Meteorological data are currently being collected at one location at the top of the Kougarok hill, Seward Peninsula. This December 18, 2017 release includes data for: Teller Creek Station near TL_BSV (TELLER BOTTOM METEOROLOGICAL STATION) Station is located in the lower watershed in a tussock / willow transition zone and co-located with continuous snow depth measurements and subsurface measurements. Teller Creek Station near TL_IS_5 (TELLER TOP METEOROLOGICAL STATION) Station is located in the upper watershed and co-located with continuous snow depth measurements and subsurface measurements. Two types of data products are provided for these stations: First, meteorological and site characterization data grouped by sensor/measurement type (e.g., radiation or soil pit temperature and moisture). These are *.csv files. Second, a Data Visualization tool is provided for quick visualization of measurements over time at a station. Download the *_Visualizer.zip file, extract, and click on the 'index.html' file. Data values are the same in both products.

  7. Regional probability distribution of the annual reference evapotranspiration and its effective parameters in Iran

    NASA Astrophysics Data System (ADS)

    Khanmohammadi, Neda; Rezaie, Hossein; Montaseri, Majid; Behmanesh, Javad

    2017-10-01

    The reference evapotranspiration (ET0) plays an important role in water management plans in arid or semi-arid countries such as Iran. For this reason, the regional analysis of this parameter is important. But, ET0 process is affected by several meteorological parameters such as wind speed, solar radiation, temperature and relative humidity. Therefore, the effect of distribution type of effective meteorological variables on ET0 distribution was analyzed. For this purpose, the regional probability distribution of the annual ET0 and its effective parameters were selected. Used data in this research was recorded data at 30 synoptic stations of Iran during 1960-2014. Using the probability plot correlation coefficient (PPCC) test and the L-moment method, five common distributions were compared and the best distribution was selected. The results of PPCC test and L-moment diagram indicated that the Pearson type III distribution was the best probability distribution for fitting annual ET0 and its four effective parameters. The results of RMSE showed that the ability of the PPCC test and L-moment method for regional analysis of reference evapotranspiration and its effective parameters was similar. The results also showed that the distribution type of the parameters which affected ET0 values can affect the distribution of reference evapotranspiration.

  8. EVALUATION OF METEOROLOGICAL ALERT CHAIN IN CASTILLA Y LEÓN (SPAIN): How can the meteorological risk managers help researchers?

    NASA Astrophysics Data System (ADS)

    López, Laura; Guerrero-Higueras, Ángel Manuel; Sánchez, José Luis; Matía, Pedro; Ortiz de Galisteo, José Pablo; Rodríguez, Vicente; Lorente, José Manuel; Merino, Andrés; Hermida, Lucía; García-Ortega, Eduardo; Fernández-Manso, Oscar

    2013-04-01

    Evaluating the meteorological alert chain, or, how information is transmitted from the meteorological forecasters to the final users, passing through risk managers, is a useful tool that benefits all the links of the chain, especially the meteorology researchers and forecasters. In fact, the risk managers can help significantly to improve meteorological forecasts in different ways. Firstly, by pointing out the most appropriate type of meteorological format, and its characteristics when representing the meteorological information, consequently improving the interpretation of the already-existing forecasts. Secondly, by pointing out the specific predictive needs in their workplaces related to the type of significant meteorological parameters, temporal or spatial range necessary, meteorological products "custom-made" for each type of risk manager, etc. In order to carry out an evaluation of the alert chain in Castilla y León, we opted for the creation of a Panel of Experts made up of personnel specialized in risk management (Responsible for Protection Civil, Responsible for Alert Services and Hydrological Planning of Hydrographical Confederations, Responsible for highway maintenance, and management of fires, fundamentally). In creating this panel, a total of twenty online questions were evaluated, and the majority of the questions were multiple choice or open-ended. Some of the results show how the risk managers think that it would be interesting, or very interesting, to carry out environmental educational campaigns about the meteorological risks in Castilla y León. Another result is the elevated importance that the risk managers provide to the observation data in real-time (real-time of wind, lightning, relative humidity, combined indices of risk of avalanches, snowslides, index of fires due to convective activity, etc.) Acknowledgements The authors would like to thank the Junta de Castilla y León for its financial support through the project LE220A11-2.

  9. Estimating the Soil Temperature Profile from a Single Depth Observation: A Simple Empirical Heatflow Solution

    NASA Technical Reports Server (NTRS)

    Holmes, Thomas; Owe, Manfred; deJeu, Richard

    2007-01-01

    Two data sets of experimental field observations with a range of meteorological conditions are used to investigate the possibility of modeling near-surface soil temperature profiles in a bare soil. It is shown that commonly used heat flow methods that assume a constant ground heat flux can not be used to model the extreme variations in temperature that occur near the surface. This paper proposes a simple approach for modeling the surface soil temperature profiles from a single depth observation. This approach consists of two parts: 1) modeling an instantaneous ground flux profile based on net radiation and the ground heat flux at 5cm depth; 2) using this ground heat flux profile to extrapolate a single temperature observation to a continuous near surface temperature profile. The new model is validated with an independent data set from a different soil and under a range of meteorological conditions.

  10. Evaporation estimation of rift valley lakes: comparison of models.

    PubMed

    Melesse, Assefa M; Abtew, Wossenu; Dessalegne, Tibebe

    2009-01-01

    Evapotranspiration (ET) accounts for a substantial amount of the water flux in the arid and semi-arid regions of the World. Accurate estimation of ET has been a challenge for hydrologists, mainly because of the spatiotemporal variability of the environmental and physical parameters governing the latent heat flux. In addition, most available ET models depend on intensive meteorological information for ET estimation. Such data are not available at the desired spatial and temporal scales in less developed and remote parts of the world. This limitation has necessitated the development of simple models that are less data intensive and provide ET estimates with acceptable level of accuracy. Remote sensing approach can also be applied to large areas where meteorological data are not available and field scale data collection is costly, time consuming and difficult. In areas like the Rift Valley regions of Ethiopia, the applicability of the Simple Method (Abtew Method) of lake evaporation estimation and surface energy balance approach using remote sensing was studied. The Simple Method and a remote sensing-based lake evaporation estimates were compared to the Penman, Energy balance, Pan, Radiation and Complementary Relationship Lake Evaporation (CRLE) methods applied in the region. Results indicate a good correspondence of the models outputs to that of the above methods. Comparison of the 1986 and 2000 monthly lake ET from the Landsat images to the Simple and Penman Methods show that the remote sensing and surface energy balance approach is promising for large scale applications to understand the spatial variation of the latent heat flux.

  11. Characterization of Water Quality Changes During Storm Events: New Methods to Protect Drinking Water Supplies

    NASA Astrophysics Data System (ADS)

    Sturdevant-Rees, P. L.; Long, S. C.; Barten, P. K.

    2002-05-01

    A forty-month investigation to collect microbial and water-quality measurements during storm events under a variety of meteorological and land-use conditions is in its initial stages. Intense sampling during storm event periods will be used to optimize sampling and analysis strategies for accurate determination of constituent loads. Of particular interest is identification of meteorological and hydrologic conditions under which sampling and analysis of surface waters for traditional microbial organisms, emerging microbial organisms and non-bacterial pathogens are critical to ensure the integrity of surface-water drinking supplies. This work is particular to the Quabbin-Ware-Wachusett reservoir system in Massachusetts, which provides unfiltered drinking water to 2.5 million people in Boston and surrounding communities. Sampling and analysis strategies will be optimized in terms of number of samples over the hydrograph, timing of sample collection (including sample initiation), constituents measured, volumes analyzed, and monetary and personnel costs. Initial water-quality analyses include pH, temperature, turbidity, conductivity, total suspended solids, total phosphorus, total Kjeldahl-nitrogen, ammonia nitrogen, and total and fecal coliforms. Giardia cysts and Cryptosporidium oocysts will also be measured at all sample sites. Sorbitol-fermenting Bifidobacteria, Rhodococcus coprophilus, Clostridium perfringens spores, and Somatic and F-specific coliphages are measured at select sites as potential alternative source-specific indicator organisms. It is anticipated that the final database will consist of transport data for the above parameters during twenty-four distinct storm-events in addition to monthly baseline data. Results and analyses for the first monitored storm-event will be presented.

  12. Model analysis of urbanization impacts on boundary layer meteorology under hot weather conditions: a case study of Nanjing, China

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zhang, Meigen; Wang, Yongwei

    2016-08-01

    The Weather Research and Forecasting (WRF) model, configured with a single-layer urban canopy model, was employed to investigate the influence of urbanization on boundary layer meteorological parameters during a long-lasting heat wave. This study was conducted over Nanjing city, East China, from 26 July to 4 August 2010. The impacts of urban expansion and anthropogenic heat (AH) release were simulated to quantify their effects on 2-m temperature, 2-m water vapor mixing ratio, and 10-m wind speed and heat stress index. Urban sprawl increased the daily 2-m temperature in urbanized areas by around 1.6 °C and decreased the urban diurnal temperature range (DTR) by 1.24 °C. The contribution of AH release to the atmospheric warming was nearly 22 %, but AH had little influence on the DTR. The urban regional mean surface wind speed decreased by about 0.4 m s-1, and this decrease was successfully simulated from the surface to 300 m. The influence of urbanization on 2-m water vapor mixing ratio was significant over highly urbanized areas with a decrease of 1.1-1.8 g kg-1. With increased urbanization ratio, the duration of the inversion layer was about 4 h shorter, and the lower atmospheric layer was less stable. Urban heat island (UHI) intensity was significantly enhanced when synthesizing both urban sprawl and AH release and the daily mean UHI intensity increased by 0.74 °C. Urbanization increased the time under extreme heat stress (about 40 %) and worsened the living environment in urban areas.

  13. Pulling Results Out of Thin Air: Four Years of Ozone and Greenhouse Gas Measurements by the Alpha Jet Atmospheric Experiment (AJAX)

    NASA Technical Reports Server (NTRS)

    Yates, Emma

    2015-01-01

    The Alpha Jet Atmospheric eXperiment (AJAX) has been measuring atmospheric ozone, carbon dioxide, methane and meteorological parameters from near the surface to 8000 m since January 2011. The main goals are to study photochemical ozone production and the impacts of extreme events on western US air quality, provide data to support satellite observations and aid in the quantification of emission sources e.g. wildfires, urban outflow, diary and oil and gas. The aircraft is based at Moffett Field and flies multiple times a month to sample vertical profiles at selected sites in California and Nevada, providing long-term data records at these sites. AJAX is also uniquely positioned to launch with short notice sampling flights in rapid response to extreme events e.g. the 2013 Yosemite Rim fire. This talk will focus on the impacts of vertical transport on surface air quality, and investigation of emission sources from diaries and wildfires.

  14. Current Status and Future Plan of Arctic Sea Ice monitoring in South Korea

    NASA Astrophysics Data System (ADS)

    Shin, J.; Park, J.

    2016-12-01

    Arctic sea ice is one of the most important parameters in climate. For monitoring of sea ice changes, the National Meteorological Satellite Center (NMSC) of Korea Metrological Administration has developed the "Arctic sea ice monitoring system" to retrieve the sea ice extent and surface roughness using microwave sensor data, and statistical prediction model for Arctic sea ice extent. This system has been implemented to the web site for real-time public service. The sea ice information can be retrieved using the spaceborne microwave sensor-Special Sensor Microwave Imager/Sounder (SSMI/S). The sea ice information like sea ice extent, sea ice surface roughness, and predictive sea ice extent are produced weekly base since 2007. We also publish the "Analysis report of the Arctic sea ice" twice a year. We are trying to add more sea ice information into this system. Details of current status and future plan of Arctic sea ice monitoring and the methodology of the sea ice information retrievals will be presented in the meeting.

  15. City landscape changes effects on land surface temperature in Bucharest metropolitan area

    NASA Astrophysics Data System (ADS)

    Savastru, Dan M.; Zoran, Maria A.; Savastru, Roxana S.; Dida, Adrian I.

    2017-10-01

    This study investigated the influences of city land cover changes and extreme climate events on land surface temperature in relationship with several biophysical variables in Bucharest metropolitan area of Romania through satellite and in-situ monitoring data. Remote sensing data from IKONOS, Landsat TM/ETM+ and time series MODIS Terra/Aqua and NOAA AVHRR sensors have been used to assess urban land cover- temperature interactions over 2000 - 2016 period. Time series Thermal InfraRed (TIR) satellite remote sensing data in synergy with meteorological data (air temperatureAT, precipitations, wind, solar radiation, etc.) were applied mainly for analyzing land surface temperature (LST) pattern and its relationship with surface landscape characteristics, assessing urban heat island (UHI), and relating urban land cover temperatures (LST). The land surface temperature, a key parameter for urban thermal characteristics analysis, was also analyzed in relation with the Normalized Difference Vegetation Index (NDVI) at city level. Results show that in the metropolitan area ratio of impervious surface in Bucharest increased significantly during investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, LST and AT possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at metropolitan scale respectively. The NDVI was significantly correlated with precipitation. The spatial average air temperatures in urban test areas rise with the expansion of the urban size.

  16. Nimbus 7 SMMR Derived Seasonal Variations in the Water Vapor, Liquid Water and Surface Winds over the Global Oceans

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Short, D. A.

    1984-01-01

    Monthly mean distributions of water vapor and liquid water contained in a vertical column of the atmosphere and the surface wind speed were derived from Nimbus Scanning Multichannel Microwave Radiometer (SMMR) observations over the global oceans for the period November 1978 to November 1979. The remote sensing techniques used to estimate these parameters from SMMR are presented to reveal the limitations, accuracies, and applicability of the satellite-derived information for climate studies. On a time scale of the order of a month, the distribution of atmospheric water vapor over the oceans is controlled by the sea surface temperature and the large scale atmospheric circulation. The monthly mean distribution of liquid water content in the atmosphere over the oceans closely reflects the precipitation patterns associated with the convectively and baroclinically active regions. Together with the remotely sensed surface wind speed that is causing the sea surface stress, the data collected reveal the manner in which the ocean-atmosphere system is operating. Prominent differences in the water vapor patterns from one year to the next, or from month to month, are associated with anomalies in the wind and geopotential height fields. In association with such circulation anomalies the precipitation patterns deduced from the meteorological network over adjacent continents also reveal anomalous distributions.

  17. Surface Meteorological Station - ANL 10m, (1) Sonics, (1) EBBR, Physics site-3 - Raw Data

    DOE Data Explorer

    Muradyan, Paytsar

    2017-10-23

    Sonic anemometers from Physics Site-3 and Site-9 provide wind components and virtual temperature. The energy balance Bowen ratio (EBBR) station at Physics site-3 provides measurements of the surface fluxes of latent and sensible heat, net radiation, and surface soil heat flux.

  18. Surface Meteorological Station - ANL 10m, (1) Sonic, Physics site-9 - Raw Data

    DOE Data Explorer

    Muradyan, Paytsar

    2017-10-23

    Sonic anemometers from Physics Site-3 and Site-9 provide wind components and virtual temperature. The energy balance Bowen ratio (EBBR) station at Physics site-3 provides measurements of the surface fluxes of latent and sensible heat, net radiation, and surface soil heat flux.

  19. Surface Meteorological Station - ANL 10m, (1) Sonics, (1) EBBR, Physics site-3 - Reviewed Data

    DOE Data Explorer

    Muradyan, Paytsar

    2018-03-14

    Sonic anemometers from Physics Site-3 and Site-9 provide wind components and virtual temperature. The energy balance Bowen ratio (EBBR) station at Physics site-3 provides measurements of the surface fluxes of latent and sensible heat, net radiation, and surface soil heat flux.

  20. Surface Meteorological Station - ANL 10m, (1) Sonic, Physics site-9 - Reviewed Data

    DOE Data Explorer

    Muradyan, Paytsar

    2018-03-14

    Sonic anemometers from Physics Site-3 and Site-9 provide wind components and virtual temperature. The energy balance Bowen ratio (EBBR) station at Physics site-3 provides measurements of the surface fluxes of latent and sensible heat, net radiation, and surface soil heat flux.

Top