Sample records for surface method rsm

  1. Harmonize input selection for sediment transport prediction

    NASA Astrophysics Data System (ADS)

    Afan, Haitham Abdulmohsin; Keshtegar, Behrooz; Mohtar, Wan Hanna Melini Wan; El-Shafie, Ahmed

    2017-09-01

    In this paper, three modeling approaches using a Neural Network (NN), Response Surface Method (RSM) and response surface method basis Global Harmony Search (GHS) are applied to predict the daily time series suspended sediment load. Generally, the input variables for forecasting the suspended sediment load are manually selected based on the maximum correlations of input variables in the modeling approaches based on NN and RSM. The RSM is improved to select the input variables by using the errors terms of training data based on the GHS, namely as response surface method and global harmony search (RSM-GHS) modeling method. The second-order polynomial function with cross terms is applied to calibrate the time series suspended sediment load with three, four and five input variables in the proposed RSM-GHS. The linear, square and cross corrections of twenty input variables of antecedent values of suspended sediment load and water discharge are investigated to achieve the best predictions of the RSM based on the GHS method. The performances of the NN, RSM and proposed RSM-GHS including both accuracy and simplicity are compared through several comparative predicted and error statistics. The results illustrated that the proposed RSM-GHS is as uncomplicated as the RSM but performed better, where fewer errors and better correlation was observed (R = 0.95, MAE = 18.09 (ton/day), RMSE = 25.16 (ton/day)) compared to the ANN (R = 0.91, MAE = 20.17 (ton/day), RMSE = 33.09 (ton/day)) and RSM (R = 0.91, MAE = 20.06 (ton/day), RMSE = 31.92 (ton/day)) for all types of input variables.

  2. Trade Space Analysis: Rotational Analyst Research Project

    DTIC Science & Technology

    2015-09-01

    POM Program Objective Memoranda PM Program Manager RFP Request for Proposal ROM Rough Order Magnitude RSM Response Surface Method RSE ...response surface method (RSM) / response surface equations ( RSEs ) as surrogate models. It uses the RSEs with Monte Carlo simulation to quantitatively

  3. Theoretical Analysis of Spacing Parameters of Anisotropic 3D Surface Roughness

    NASA Astrophysics Data System (ADS)

    Rudzitis, J.; Bulaha, N.; Lungevics, J.; Linins, O.; Berzins, K.

    2017-04-01

    The authors of the research have analysed spacing parameters of anisotropic 3D surface roughness crosswise to machining (friction) traces RSm1 and lengthwise to machining (friction) traces RSm2. The main issue arises from the RSm2 values being limited by values of sampling length l in the measuring devices; however, on many occasions RSm2 values can exceed l values. Therefore, the mean spacing values of profile irregularities in the longitudinal direction in many cases are not reliable and they should be determined by another method. Theoretically, it is proved that anisotropic surface roughness anisotropy coefficient c=RSm1/RSm2 equals texture aspect ratio Str, which is determined by surface texture standard EN ISO 25178-2. This allows using parameter Str to determine mean spacing of profile irregularities and estimate roughness anisotropy.

  4. Optimisation of warpage on plastic injection moulding part using response surface methodology (RSM) and genetic algorithm method (GA)

    NASA Astrophysics Data System (ADS)

    Miza, A. T. N. A.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    In this study, Computer Aided Engineering was used for injection moulding simulation. The method of Design of experiment (DOE) was utilize according to the Latin Square orthogonal array. The relationship between the injection moulding parameters and warpage were identify based on the experimental data that used. Response Surface Methodology (RSM) was used as to validate the model accuracy. Then, the RSM and GA method were combine as to examine the optimum injection moulding process parameter. Therefore the optimisation of injection moulding is largely improve and the result shown an increasing accuracy and also reliability. The propose method by combining RSM and GA method also contribute in minimising the warpage from occur.

  5. Response Surface Methods for Spatially-Resolved Optical Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; Dorrington, A. A.; Cutler, A. D.; DeLoach, R.

    2003-01-01

    Response surface methods (or methodology), RSM, have been applied to improve data quality for two vastly different spatial ly-re solved optical measurement techniques. In the first application, modern design of experiments (MDOE) methods, including RSM, are employed to map the temperature field in a direct-connect supersonic combustion test facility at NASA Langley Research Center. The laser-based measurement technique known as coherent anti-Stokes Raman spectroscopy (CARS) is used to measure temperature at various locations in the combustor. RSM is then used to develop temperature maps of the flow. Even though the temperature fluctuations at a single point in the flowfield have a standard deviation on the order of 300 K, RSM provides analytic fits to the data having 95% confidence interval half width uncertainties in the fit as low as +/-30 K. Methods of optimizing future CARS experiments are explored. The second application of RSM is to quantify the shape of a 5-meter diameter, ultra-light, inflatable space antenna at NASA Langley Research Center.

  6. Optimisation on processing parameters for minimising warpage on side arm using response surface methodology (RSM) and particle swarm optimisation (PSO)

    NASA Astrophysics Data System (ADS)

    Rayhana, N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.; Sazli, M.; Yahya, Z. R.

    2017-09-01

    This study presents the application of optimisation method to reduce the warpage of side arm part. Autodesk Moldflow Insight software was integrated into this study to analyse the warpage. The design of Experiment (DOE) for Response Surface Methodology (RSM) was constructed and by using the equation from RSM, Particle Swarm Optimisation (PSO) was applied. The optimisation method will result in optimised processing parameters with minimum warpage. Mould temperature, melt temperature, packing pressure, packing time and cooling time was selected as the variable parameters. Parameters selection was based on most significant factor affecting warpage stated by previous researchers. The results show that warpage was improved by 28.16% for RSM and 28.17% for PSO. The warpage improvement in PSO from RSM is only by 0.01 %. Thus, the optimisation using RSM is already efficient to give the best combination parameters and optimum warpage value for side arm part. The most significant parameters affecting warpage are packing pressure.

  7. An efficient reliability algorithm for locating design point using the combination of importance sampling concepts and response surface method

    NASA Astrophysics Data System (ADS)

    Shayanfar, Mohsen Ali; Barkhordari, Mohammad Ali; Roudak, Mohammad Amin

    2017-06-01

    Monte Carlo simulation (MCS) is a useful tool for computation of probability of failure in reliability analysis. However, the large number of required random samples makes it time-consuming. Response surface method (RSM) is another common method in reliability analysis. Although RSM is widely used for its simplicity, it cannot be trusted in highly nonlinear problems due to its linear nature. In this paper, a new efficient algorithm, employing the combination of importance sampling, as a class of MCS, and RSM is proposed. In the proposed algorithm, analysis starts with importance sampling concepts and using a represented two-step updating rule of design point. This part finishes after a small number of samples are generated. Then RSM starts to work using Bucher experimental design, with the last design point and a represented effective length as the center point and radius of Bucher's approach, respectively. Through illustrative numerical examples, simplicity and efficiency of the proposed algorithm and the effectiveness of the represented rules are shown.

  8. Optimisation of warpage on plastic injection moulding part using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Miza, A. T. N. A.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Rashidi, M. M.

    2017-09-01

    The warpage is often encountered which occur during injection moulding process of thin shell part depending the process condition. The statistical design of experiment method which are Integrating Finite Element (FE) Analysis, moldflow analysis and response surface methodology (RSM) are the stage of few ways in minimize the warpage values of x,y and z on thin shell plastic parts that were investigated. A battery cover of a remote controller is one of the thin shell plastic part that produced by using injection moulding process. The optimum process condition parameter were determined as to achieve the minimum warpage from being occur. Packing pressure, Cooling time, Melt temperature and Mould temperature are 4 parameters that considered in this study. A two full factorial experimental design was conducted in Design Expert of RSM analysis as to combine all these parameters study. FE analysis result gain from analysis of variance (ANOVA) method was the one of the important process parameters influenced warpage. By using RSM, a predictive response surface model for warpage data will be shown.

  9. Response Surface Methods For Spatially-Resolved Optical Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; Dorrington, A. A.; Cutler, A. D.; DeLoach, R.

    2003-01-01

    Response surface methods (or methodology), RSM, have been applied to improve data quality for two vastly different spatially-resolved optical measurement techniques. In the first application, modern design of experiments (MDOE) methods, including RSM, are employed to map the temperature field in a direct-connect supersonic combustion test facility at NASA Langley Research Center. The laser-based measurement technique known as coherent anti-Stokes Raman spectroscopy (CARS) is used to measure temperature at various locations in the combustor. RSM is then used to develop temperature maps of the flow. Even though the temperature fluctuations at a single point in the flowfield have a standard deviation on the order of 300 K, RSM provides analytic fits to the data having 95% confidence interval half width uncertainties in the fit as low as +/- 30 K. Methods of optimizing future CARS experiments are explored. The second application of RSM is to quantify the shape of a 5-meter diameter, ultra-lightweight, inflatable space antenna at NASA Langley Research Center. Photogrammetry is used to simultaneously measure the shape of the antenna at approximately 500 discrete spatial locations. RSM allows an analytic model to be developed that describes the shape of the majority of the antenna with an uncertainty of 0.4 mm, with 95% confidence. This model would allow a quantitative comparison between the actual shape of the antenna and the original design shape. Accurately determining this shape also allows confident interpolation between the measured points. Such a model could, for example, be used for ray tracing of radio-frequency waves up to 95 GHz. to predict the performance of the antenna.

  10. Optimisation Of Cutting Parameters Of Composite Material Laser Cutting Process By Taguchi Method

    NASA Astrophysics Data System (ADS)

    Lokesh, S.; Niresh, J.; Neelakrishnan, S.; Rahul, S. P. Deepak

    2018-03-01

    The aim of this work is to develop a laser cutting process model that can predict the relationship between the process input parameters and resultant surface roughness, kerf width characteristics. The research conduct is based on the Design of Experiment (DOE) analysis. Response Surface Methodology (RSM) is used in this work. It is one of the most practical and most effective techniques to develop a process model. Even though RSM has been used for the optimization of the laser process, this research investigates laser cutting of materials like Composite wood (veneer)to be best circumstances of laser cutting using RSM process. The input parameters evaluated are focal length, power supply and cutting speed, the output responses being kerf width, surface roughness, temperature. To efficiently optimize and customize the kerf width and surface roughness characteristics, a machine laser cutting process model using Taguchi L9 orthogonal methodology was proposed.

  11. Warpage optimization on a mobile phone case using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Lee, X. N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.; Shazzuan, S.

    2017-09-01

    Plastic injection moulding is a popular manufacturing method not only it is reliable, but also efficient and cost saving. It able to produce plastic part with detailed features and complex geometry. However, defects in injection moulding process degrades the quality and aesthetic of the injection moulded product. The most common defect occur in the process is warpage. Inappropriate process parameter setting of injection moulding machine is one of the reason that leads to the occurrence of warpage. The aims of this study were to improve the quality of injection moulded part by investigating the optimal parameters in minimizing warpage using Response Surface Methodology (RSM). Subsequent to this, the most significant parameter was identified and recommended parameters setting was compared with the optimized parameter setting using RSM. In this research, the mobile phone case was selected as case study. The mould temperature, melt temperature, packing pressure, packing time and cooling time were selected as variables whereas warpage in y-direction was selected as responses in this research. The simulation was carried out by using Autodesk Moldflow Insight 2012. In addition, the RSM was performed by using Design Expert 7.0. The warpage in y direction recommended by RSM were reduced by 70 %. RSM performed well in solving warpage issue.

  12. [Optimization of calcium alginate floating microspheres loading aspirin by artificial neural networks and response surface methodology].

    PubMed

    Zhang, An-yang; Fan, Tian-yuan

    2010-04-18

    To investigate the preparation and optimization of calcium alginate floating microspheres loading aspirin. A model was used to predict the in vitro release of aspirin and optimize the formulation by artificial neural networks (ANNs) and response surface methodology (RSM). The amounts of the material in the formulation were used as inputs, while the release and floating rate of the microspheres were used as outputs. The performances of ANNs and RSM were compared. ANNs were more accurate in prediction. There was no significant difference between ANNs and RSM in optimization. Approximately 90% of the optimized microspheres could float on the artificial gastric juice over 4 hours. 42.12% of aspirin was released in 60 min, 60.97% in 120 min and 78.56% in 240 min. The release of the drug from the microspheres complied with Higuchi equation. The aspirin floating microspheres with satisfying in vitro release were prepared successfully by the methods of ANNs and RSM.

  13. Warpage analysis on thin shell part using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Zulhasif, Z.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    The optimisation of moulding parameters appropriate to reduce warpage defects produce using Autodesk Moldflow Insight (AMI) 2012 software The product is injected by using Acrylonitrile-Butadiene-Styrene (ABS) materials. This analysis has processing parameter that varies in melting temperature, mould temperature, packing pressure and packing time. Design of Experiments (DOE) has been integrated to obtain a polynomial model using Response Surface Methodology (RSM). The Glowworm Swarm Optimisation (GSO) method is used to predict a best combination parameters to minimise warpage defect in order to produce high quality parts.

  14. A Descriptive Guide to Trade Space Analysis

    DTIC Science & Technology

    2015-09-01

    Development QFD Quality Function Deployment RSM Response Surface Method RSE Response Surface Equation SE Systems Engineering SME Subject Matter...surface equations ( RSEs ) as surrogate models. It uses the RSEs with Monte Carlo simulation to quantitatively explore changes across the surfaces to

  15. Distributed collaborative response surface method for mechanical dynamic assembly reliability design

    NASA Astrophysics Data System (ADS)

    Bai, Guangchen; Fei, Chengwei

    2013-11-01

    Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the randomness from a probabilistic perspective. To improve the accuracy and efficiency of dynamic assembly relationship reliability analysis, the mechanical dynamic assembly reliability(MDAR) theory and a distributed collaborative response surface method(DCRSM) are proposed. The mathematic model of DCRSM is established based on the quadratic response surface function, and verified by the assembly relationship reliability analysis of aeroengine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). Through the comparison of the DCRSM, traditional response surface method(RSM) and Monte Carlo Method(MCM), the results show that the DCRSM is not able to accomplish the computational task which is impossible for the other methods when the number of simulation is more than 100 000 times, but also the computational precision for the DCRSM is basically consistent with the MCM and improved by 0.40˜4.63% to the RSM, furthermore, the computational efficiency of DCRSM is up to about 188 times of the MCM and 55 times of the RSM under 10000 times simulations. The DCRSM is demonstrated to be a feasible and effective approach for markedly improving the computational efficiency and accuracy of MDAR analysis. Thus, the proposed research provides the promising theory and method for the MDAR design and optimization, and opens a novel research direction of probabilistic analysis for developing the high-performance and high-reliability of aeroengine.

  16. Deploying response surface methodology (RSM) and glowworm swarm optimization (GSO) in optimizing warpage on a mobile phone cover

    NASA Astrophysics Data System (ADS)

    Lee, X. N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.; Shazzuan, S.

    2017-09-01

    Plastic injection moulding is a popular manufacturing method not only it is reliable, but also efficient and cost saving. It able to produce plastic part with detailed features and complex geometry. However, defects in injection moulding process degrades the quality and aesthetic of the injection moulded product. The most common defect occur in the process is warpage. Inappropriate process parameter setting of injection moulding machine is one of the reason that leads to the occurrence of warpage. The aims of this study were to improve the quality of injection moulded part by investigating the optimal parameters in minimizing warpage using Response Surface Methodology (RSM) and Glowworm Swarm Optimization (GSO). Subsequent to this, the most significant parameter was identified and recommended parameters setting was compared with the optimized parameter setting using RSM and GSO. In this research, the mobile phone case was selected as case study. The mould temperature, melt temperature, packing pressure, packing time and cooling time were selected as variables whereas warpage in y-direction was selected as responses in this research. The simulation was carried out by using Autodesk Moldflow Insight 2012. In addition, the RSM was performed by using Design Expert 7.0 whereas the GSO was utilized by using MATLAB. The warpage in y direction recommended by RSM were reduced by 70 %. The warpages recommended by GSO were decreased by 61 % in y direction. The resulting warpages under optimal parameter setting by RSM and GSO were validated by simulation in AMI 2012. RSM performed better than GSO in solving warpage issue.

  17. Process Setting through General Linear Model and Response Surface Method

    NASA Astrophysics Data System (ADS)

    Senjuntichai, Angsumalin

    2010-10-01

    The objective of this study is to improve the efficiency of the flow-wrap packaging process in soap industry through the reduction of defectives. At the 95% confidence level, with the regression analysis, the sealing temperature, temperatures of upper and lower crimper are found to be the significant factors for the flow-wrap process with respect to the number/percentage of defectives. Twenty seven experiments have been designed and performed according to three levels of each controllable factor. With the general linear model (GLM), the suggested values for the sealing temperature, temperatures of upper and lower crimpers are 185, 85 and 85° C, respectively while the response surface method (RSM) provides the optimal process conditions at 186, 89 and 88° C. Due to different assumptions between percentage of defective and all three temperature parameters, the suggested conditions from the two methods are then slightly different. Fortunately, the estimated percentage of defectives at 5.51% under GLM process condition and the predicted percentage of defectives at 4.62% under RSM process condition are not significant different. But at 95% confidence level, the percentage of defectives under RSM condition can be much lower approximately 2.16% than those under GLM condition in accordance with wider variation. Lastly, the percentages of defectives under the conditions suggested by GLM and RSM are reduced by 55.81% and 62.95%, respectively.

  18. Durable warmth retention finishing of down using titanium dioxide optimized by RSM

    NASA Astrophysics Data System (ADS)

    Li, Huihao; Qi, Lu; Li, Jun

    2017-03-01

    A new product, referred to herein as modified down, was prepared by grafting down fiber with titanium dioxide. Grafting modification brings new functionalities to down Using response surface methodology (RSM); the effect of titanium dioxide concentration, KH550 concentration, and baking temperature on the warmth retention is studied using the response surface method (RSM) to obtain the optimal experimental formula and models. The optimal preparation conditions for modified down were 19.35% titanium dioxide, 15.81% KH550, 10min baking time, and 115 °C temperature. The warmth retention of the modified down was 79.98%, The structure and property of modified down were characterized and analyzed by using Flat Plate Warmth Retaining Tester, FT-IR, and TG. The CLO value increased by 27.28%, the thermal resistance increased by 27.34%. The ultimate residual quantities of the modified down fibers were 30.05%.

  19. Research of Surface Roughness Anisotropy

    NASA Astrophysics Data System (ADS)

    Bulaha, N.; Rudzitis, J.; Lungevics, J.; Linins, O.; Krizbergs, J.

    2017-04-01

    The authors of the paper have investigated surfaces with irregular roughness for the purpose of determination of roughness spacing parameters perpendicularly to machining traces - RSm1 and parallel to them - RSm2, as well as checking the relationship between the surface anisotropy coefficient c and surface aspect ratio Str from the standard LVS EN ISO 25178-2. Surface roughness measurement experiments with 11 surfaces show that measuring equipment values of mean spacing of profile irregularities in the longitudinal direction are not reliable due to the divergence of surface mean plane and roughness profile mean line. After the additional calculations it was stated that parameter Str can be used for determination of parameter RSm2 and roughness anisotropy evaluation for grinded, polished, friction surfaces and other surfaces with similar characteristics.

  20. Process optimization of rolling for zincked sheet technology using response surface methodology and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ji, Liang-Bo; Chen, Fang

    2017-07-01

    Numerical simulation and intelligent optimization technology were adopted for rolling and extrusion of zincked sheet. By response surface methodology (RSM), genetic algorithm (GA) and data processing technology, an efficient optimization of process parameters for rolling of zincked sheet was investigated. The influence trend of roller gap, rolling speed and friction factor effects on reduction rate and plate shortening rate were analyzed firstly. Then a predictive response surface model for comprehensive quality index of part was created using RSM. Simulated and predicted values were compared. Through genetic algorithm method, the optimal process parameters for the forming of rolling were solved. They were verified and the optimum process parameters of rolling were obtained. It is feasible and effective.

  1. Estimating multivariate response surface model with data outliers, case study in enhancing surface layer properties of an aircraft aluminium alloy

    NASA Astrophysics Data System (ADS)

    Widodo, Edy; Kariyam

    2017-03-01

    To determine the input variable settings that create the optimal compromise in response variable used Response Surface Methodology (RSM). There are three primary steps in the RSM problem, namely data collection, modelling, and optimization. In this study focused on the establishment of response surface models, using the assumption that the data produced is correct. Usually the response surface model parameters are estimated by OLS. However, this method is highly sensitive to outliers. Outliers can generate substantial residual and often affect the estimator models. Estimator models produced can be biased and could lead to errors in the determination of the optimal point of fact, that the main purpose of RSM is not reached. Meanwhile, in real life, the collected data often contain some response variable and a set of independent variables. Treat each response separately and apply a single response procedures can result in the wrong interpretation. So we need a development model for the multi-response case. Therefore, it takes a multivariate model of the response surface that is resistant to outliers. As an alternative, in this study discussed on M-estimation as a parameter estimator in multivariate response surface models containing outliers. As an illustration presented a case study on the experimental results to the enhancement of the surface layer of aluminium alloy air by shot peening.

  2. Recent developments of axial flow compressors under transonic flow conditions

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.

    2017-05-01

    The objective of this paper is to give a holistic view of the most advanced technology and procedures that are practiced in the field of turbomachinery design. Compressor flow solver is the turbulence model used in the CFD to solve viscous problems. The popular techniques like Jameson’s rotated difference scheme was used to solve potential flow equation in transonic condition for two dimensional aero foils and later three dimensional wings. The gradient base method is also a popular method especially for compressor blade shape optimization. Various other types of optimization techniques available are Evolutionary algorithms (EAs) and Response surface methodology (RSM). It is observed that in order to improve compressor flow solver and to get agreeable results careful attention need to be paid towards viscous relations, grid resolution, turbulent modeling and artificial viscosity, in CFD. The advanced techniques like Jameson’s rotated difference had most substantial impact on wing design and aero foil. For compressor blade shape optimization, Evolutionary algorithm is quite simple than gradient based technique because it can solve the parameters simultaneously by searching from multiple points in the given design space. Response surface methodology (RSM) is a method basically used to design empirical models of the response that were observed and to study systematically the experimental data. This methodology analyses the correct relationship between expected responses (output) and design variables (input). RSM solves the function systematically in a series of mathematical and statistical processes. For turbomachinery blade optimization recently RSM has been implemented successfully. The well-designed high performance axial flow compressors finds its application in any air-breathing jet engines.

  3. Optimization of succinic acid fermentation with Actinobacillus succinogenes by response surface methodology (RSM)*

    PubMed Central

    Zhang, Yun-jian; Li, Qiang; Zhang, Yu-xiu; Wang, Dan; Xing, Jian-min

    2012-01-01

    Succinic acid is considered as an important platform chemical. Succinic acid fermentation with Actinobacillus succinogenes strain BE-1 was optimized by central composite design (CCD) using a response surface methodology (RSM). The optimized production of succinic acid was predicted and the interactive effects between glucose, yeast extract, and magnesium carbonate were investigated. As a result, a model for predicting the concentration of succinic acid production was developed. The accuracy of the model was confirmed by the analysis of variance (ANOVA), and the validity was further proved by verification experiments showing that percentage errors between actual and predicted values varied from 3.02% to 6.38%. In addition, it was observed that the interactive effect between yeast extract and magnesium carbonate was statistically significant. In conclusion, RSM is an effective and useful method for optimizing the medium components and investigating the interactive effects, and can provide valuable information for succinic acid scale-up fermentation using A. succinogenes strain BE-1. PMID:22302423

  4. Dynamical downscaling of regional climate over eastern China using RSM with multiple physics scheme ensembles

    NASA Astrophysics Data System (ADS)

    Peishu, Zong; Jianping, Tang; Shuyu, Wang; Lingyun, Xie; Jianwei, Yu; Yunqian, Zhu; Xiaorui, Niu; Chao, Li

    2017-08-01

    The parameterization of physical processes is one of the critical elements to properly simulate the regional climate over eastern China. It is essential to conduct detailed analyses on the effect of physical parameterization schemes on regional climate simulation, to provide more reliable regional climate change information. In this paper, we evaluate the 25-year (1983-2007) summer monsoon climate characteristics of precipitation and surface air temperature by using the regional spectral model (RSM) with different physical schemes. The ensemble results using the reliability ensemble averaging (REA) method are also assessed. The result shows that the RSM model has the capacity to reproduce the spatial patterns, the variations, and the temporal tendency of surface air temperature and precipitation over eastern China. And it tends to predict better climatology characteristics over the Yangtze River basin and the South China. The impact of different physical schemes on RSM simulations is also investigated. Generally, the CLD3 cloud water prediction scheme tends to produce larger precipitation because of its overestimation of the low-level moisture. The systematic biases derived from the KF2 cumulus scheme are larger than those from the RAS scheme. The scale-selective bias correction (SSBC) method improves the simulation of the temporal and spatial characteristics of surface air temperature and precipitation and advances the circulation simulation capacity. The REA ensemble results show significant improvement in simulating temperature and precipitation distribution, which have much higher correlation coefficient and lower root mean square error. The REA result of selected experiments is better than that of nonselected experiments, indicating the necessity of choosing better ensemble samples for ensemble.

  5. Warpage investigation on side arms using response surface methodology (RSM) and glow-worm swarm optimizations (GSO)

    NASA Astrophysics Data System (ADS)

    Sow, C. K.; Fathullah, M.; Nasir, S. M.; Shayfull, Z.; Shazzuan, S.

    2017-09-01

    This paper discusses on an analysis run via injection moulding process in determination of the optimum processing parameters used for manufacturing side arms of catheters in minimizing the warpage issues. The optimization method used was RSM. Moreover, in this research tries to find the most significant factor affecting the warpage. From the previous literature review,4 most significant parameters on warpage defect was selected. Those parameters were melt temperature, packing time, packing pressure, mould temperature and cooling time. At the beginning, side arm was drawn using software of CATIA V5. Then, software Mouldflow and Design Expert were employed to analyses on the popular warpage issues. After that, GSO artificial intelligence was apply using the mathematical model from Design Expert for more optimization on RSM result. Recommended parameter settings from the simulation work were then compared with the optimization work of RSM and GSO. The result show that the warpage on the side arm was improved by 3.27 %

  6. Parameter estimation procedure for complex non-linear systems: calibration of ASM No. 1 for N-removal in a full-scale oxidation ditch.

    PubMed

    Abusam, A; Keesman, K J; van Straten, G; Spanjers, H; Meinema, K

    2001-01-01

    When applied to large simulation models, the process of parameter estimation is also called calibration. Calibration of complex non-linear systems, such as activated sludge plants, is often not an easy task. On the one hand, manual calibration of such complex systems is usually time-consuming, and its results are often not reproducible. On the other hand, conventional automatic calibration methods are not always straightforward and often hampered by local minima problems. In this paper a new straightforward and automatic procedure, which is based on the response surface method (RSM) for selecting the best identifiable parameters, is proposed. In RSM, the process response (output) is related to the levels of the input variables in terms of a first- or second-order regression model. Usually, RSM is used to relate measured process output quantities to process conditions. However, in this paper RSM is used for selecting the dominant parameters, by evaluating parameters sensitivity in a predefined region. Good results obtained in calibration of ASM No. 1 for N-removal in a full-scale oxidation ditch proved that the proposed procedure is successful and reliable.

  7. Response surface methodology: A non-conventional statistical tool to maximize the throughput of Streptomyces species biomass and their bioactive metabolites.

    PubMed

    Latha, Selvanathan; Sivaranjani, Govindhan; Dhanasekaran, Dharumadurai

    2017-09-01

    Among diverse actinobacteria, Streptomyces is a renowned ongoing source for the production of a large number of secondary metabolites, furnishing immeasurable pharmacological and biological activities. Hence, to meet the demand of new lead compounds for human and animal use, research is constantly targeting the bioprospecting of Streptomyces. Optimization of media components and physicochemical parameters is a plausible approach for the exploration of intensified production of novel as well as existing bioactive metabolites from various microbes, which is usually achieved by a range of classical techniques including one factor at a time (OFAT). However, the major drawbacks of conventional optimization methods have directed the use of statistical optimization approaches in fermentation process development. Response surface methodology (RSM) is one of the empirical techniques extensively used for modeling, optimization and analysis of fermentation processes. To date, several researchers have implemented RSM in different bioprocess optimization accountable for the production of assorted natural substances from Streptomyces in which the results are very promising. This review summarizes some of the recent RSM adopted studies for the enhanced production of antibiotics, enzymes and probiotics using Streptomyces with the intention to highlight the significance of Streptomyces as well as RSM to the research community and industries.

  8. Comparison of response surface methodology and artificial neural network to enhance the release of reducing sugars from non-edible seed cake by autoclave assisted HCl hydrolysis.

    PubMed

    Shet, Vinayaka B; Palan, Anusha M; Rao, Shama U; Varun, C; Aishwarya, Uday; Raja, Selvaraj; Goveas, Louella Concepta; Vaman Rao, C; Ujwal, P

    2018-02-01

    In the current investigation, statistical approaches were adopted to hydrolyse non-edible seed cake (NESC) of Pongamia and optimize the hydrolysis process by response surface methodology (RSM). Through the RSM approach, the optimized conditions were found to be 1.17%v/v of HCl concentration at 54.12 min for hydrolysis. Under optimized conditions, the release of reducing sugars was found to be 53.03 g/L. The RSM data were used to train the artificial neural network (ANN) and the predictive ability of both models was compared by calculating various statistical parameters. A three-layered ANN model consisting of 2:12:1 topology was developed; the response of the ANN model indicates that it is precise when compared with the RSM model. The fit of the models was expressed with the regression coefficient R 2 , which was found to be 0.975 and 0.888, respectively, for the ANN and RSM models. This further demonstrated that the performance of ANN was better than that of RSM.

  9. A comparison RSM and ANN surface roughness models in thin-wall machining of Ti6Al4V using vegetable oils under MQL-condition

    NASA Astrophysics Data System (ADS)

    Mohruni, Amrifan Saladin; Yanis, Muhammad; Sharif, Safian; Yani, Irsyadi; Yuliwati, Erna; Ismail, Ahmad Fauzi; Shayfull, Zamree

    2017-09-01

    Thin-wall components as usually applied in the structural parts of aeronautical industry require significant challenges in machining. Unacceptable surface roughness can occur during machining of thin-wall. Titanium product such Ti6Al4V is mostly applied to get the appropriate surface texture in thin wall designed requirements. In this study, the comparison of the accuracy between Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) in the prediction of surface roughness was conducted. Furthermore, the machining tests were carried out under Minimum Quantity Lubrication (MQL) using AlCrN-coated carbide tools. The use of Coconut oil as cutting fluids was also chosen in order to evaluate its performance when involved in end milling. This selection of cutting fluids is based on the better performance of oxidative stability than that of other vegetable based cutting fluids. The cutting speed, feed rate, radial and axial depth of cut were used as independent variables, while surface roughness is evaluated as the dependent variable or output. The results showed that the feed rate is the most significant factors in increasing the surface roughness value followed by the radial depth of cut and lastly the axial depth of cut. In contrary, the surface becomes smoother with increasing the cutting speed. From a comparison of both methods, the ANN model delivered a better accuracy than the RSM model.

  10. Application of response surface methodology (RSM) and genetic algorithm in minimizing warpage on side arm

    NASA Astrophysics Data System (ADS)

    Raimee, N. A.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.

    2017-09-01

    The plastic injection moulding process produces large numbers of parts of high quality with great accuracy and quickly. It has widely used for production of plastic part with various shapes and geometries. Side arm is one of the product using injection moulding to manufacture it. However, there are some difficulties in adjusting the parameter variables which are mould temperature, melt temperature, packing pressure, packing time and cooling time as there are warpage happen at the tip part of side arm. Therefore, the work reported herein is about minimizing warpage on side arm product by optimizing the process parameter using Response Surface Methodology (RSM) and with additional artificial intelligence (AI) method which is Genetic Algorithm (GA).

  11. An optimal design of wind turbine and ship structure based on neuro-response surface method

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Chul; Shin, Sung-Chul; Kim, Soo-Young

    2015-07-01

    The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.

  12. Surface laser marking optimization using an experimental design approach

    NASA Astrophysics Data System (ADS)

    Brihmat-Hamadi, F.; Amara, E. H.; Lavisse, L.; Jouvard, J. M.; Cicala, E.; Kellou, H.

    2017-04-01

    Laser surface marking is performed on a titanium substrate using a pulsed frequency doubled Nd:YAG laser ( λ= 532 nm, τ pulse=5 ns) to process the substrate surface under normal atmospheric conditions. The aim of the work is to investigate, following experimental and statistical approaches, the correlation between the process parameters and the response variables (output), using a Design of Experiment method (DOE): Taguchi methodology and a response surface methodology (RSM). A design is first created using MINTAB program, and then the laser marking process is performed according to the planned design. The response variables; surface roughness and surface reflectance were measured for each sample, and incorporated into the design matrix. The results are then analyzed and the RSM model is developed and verified for predicting the process output for the given set of process parameters values. The analysis shows that the laser beam scanning speed is the most influential operating factor followed by the laser pumping intensity during marking, while the other factors show complex influences on the objective functions.

  13. Optimisation of process parameters on thin shell part using response surface methodology (RSM) and genetic algorithm (GA)

    NASA Astrophysics Data System (ADS)

    Faiz, J. M.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    This study conducts the simulation on optimisation of injection moulding process parameters using Autodesk Moldflow Insight (AMI) software. This study has applied some process parameters which are melt temperature, mould temperature, packing pressure, and cooling time in order to analyse the warpage value of the part. Besides, a part has been selected to be studied which made of Polypropylene (PP). The combination of the process parameters is analysed using Analysis of Variance (ANOVA) and the optimised value is obtained using Response Surface Methodology (RSM). The RSM as well as Genetic Algorithm are applied in Design Expert software in order to minimise the warpage value. The outcome of this study shows that the warpage value improved by using RSM and GA.

  14. Determination of melt pool dimensions using DOE-FEM and RSM with process window during SLM of Ti6Al4V powder

    NASA Astrophysics Data System (ADS)

    Zhuang, Jyun-Rong; Lee, Yee-Ting; Hsieh, Wen-Hsin; Yang, An-Shik

    2018-07-01

    Selective laser melting (SLM) shows a positive prospect as an additive manufacturing (AM) technique for fabrication of 3D parts with complicated structures. A transient thermal model was developed by the finite element method (FEM) to simulate the thermal behavior for predicting the time evolution of temperature field and melt pool dimensions of Ti6Al4V powder during SLM. The FEM predictions were then compared with published experimental measurements and calculation results for model validation. This study applied the design of experiment (DOE) scheme together with the response surface method (RSM) to conduct the regression analysis based on four processing parameters (exactly, the laser power, scanning speed, preheating temperature and hatch space) for predicting the dimensions of the melt pool in SLM. The preliminary RSM results were used to quantify the effects of those parameters on the melt pool size. The process window was further implemented via two criteria of the width and depth of the molten pool to screen impractical conditions of four parameters for including the practical ranges of processing parameters. The FEM simulations confirmed the good accuracy of the critical RSM models in the predictions of melt pool dimensions for three typical SLM working scenarios.

  15. Optimizing culture conditions for production of intra and extracellular inulinase and invertase from Aspergillus niger ATCC 20611 by response surface methodology (RSM).

    PubMed

    Dinarvand, Mojdeh; Rezaee, Malahat; Foroughi, Majid

    The aim of this study was obtain a model that maximizes growth and production of inulinase and invertase by Aspergillus niger ATCC 20611, employing response surface methodology (RSM). The RSM with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. Results showed that the experimental data could be appropriately fitted into a second-order polynomial model with a coefficient of determination (R 2 ) more than 0.90 for all responses. This model adequately explained the data variation and represented the actual relationships between the parameters and responses. The pH and temperature value of the cultivation medium were the most significant variables and the effects of inoculum size and agitation speed were slightly lower. The intra-extracellular inulinase, invertase production and biomass content increased 10-32 fold in the optimized medium condition (pH 6.5, temperature 30°C, 6% (v/v), inoculum size and 150rpm agitation speed) by RSM compared with medium optimized through the one-factor-at-a-time method. The process development and intensification for simultaneous production of intra-extracellular inulinase (exo and endo inulinase) and invertase from A. niger could be used for industrial applications. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  16. Statistical optimization of the phytoremediation of arsenic by Ludwigia octovalvis- in a pilot reed bed using response surface methodology (RSM) versus an artificial neural network (ANN).

    PubMed

    Titah, Harmin Sulistiyaning; Halmi, Mohd Izuan Effendi Bin; Abdullah, Siti Rozaimah Sheikh; Hasan, Hassimi Abu; Idris, Mushrifah; Anuar, Nurina

    2018-06-07

    In this study, the removal of arsenic (As) by plant, Ludwigia octovalvis, in a pilot reed bed was optimized. A Box-Behnken design was employed including a comparative analysis of both Response Surface Methodology (RSM) and an Artificial Neural Network (ANN) for the prediction of maximum arsenic removal. The predicted optimum condition using the desirability function of both models was 39 mg kg -1 for the arsenic concentration in soil, an elapsed time of 42 days (the sampling day) and an aeration rate of 0.22 L/min, with the predicted values of arsenic removal by RSM and ANN being 72.6% and 71.4%, respectively. The validation of the predicted optimum point showed an actual arsenic removal of 70.6%. This was achieved with the deviation between the validation value and the predicted values being within 3.49% (RSM) and 1.87% (ANN). The performance evaluation of the RSM and ANN models showed that ANN performs better than RSM with a higher R 2 (0.97) close to 1.0 and very small Average Absolute Deviation (AAD) (0.02) and Root Mean Square Error (RMSE) (0.004) values close to zero. Both models were appropriate for the optimization of arsenic removal with ANN demonstrating significantly higher predictive and fitting ability than RSM.

  17. Optimization of a novel improver gel formulation for Barbari flat bread using response surface methodology.

    PubMed

    Pourfarzad, Amir; Haddad Khodaparast, Mohammad Hossein; Karimi, Mehdi; Mortazavi, Seyed Ali

    2014-10-01

    Nowadays, the use of bread improvers has become an essential part of improving the production methods and quality of bakery products. In the present study, the Response Surface Methodology (RSM) was used to determine the optimum improver gel formulation which gave the best quality, shelf life, sensory and image properties for Barbari flat bread. Sodium stearoyl-2-lactylate (SSL), diacetyl tartaric acid esters of monoglyceride (DATEM) and propylene glycol (PG) were constituents of the gel and considered in this study. A second-order polynomial model was fitted to each response and the regression coefficients were determined using least square method. The optimum gel formulation was found to be 0.49 % of SSL, 0.36 % of DATEM and 0.5 % of PG when desirability function method was applied. There was a good agreement between the experimental data and their predicted counterparts. Results showed that the RSM, image processing and texture analysis are useful tools to investigate, approximate and predict a large number of bread properties.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Andrew; Lawrence, Earl

    The Response Surface Modeling (RSM) Tool Suite is a collection of three codes used to generate an empirical interpolation function for a collection of drag coefficient calculations computed with Test Particle Monte Carlo (TPMC) simulations. The first code, "Automated RSM", automates the generation of a drag coefficient RSM for a particular object to a single command. "Automated RSM" first creates a Latin Hypercube Sample (LHS) of 1,000 ensemble members to explore the global parameter space. For each ensemble member, a TPMC simulation is performed and the object drag coefficient is computed. In the next step of the "Automated RSM" code,more » a Gaussian process is used to fit the TPMC simulations. In the final step, Markov Chain Monte Carlo (MCMC) is used to evaluate the non-analytic probability distribution function from the Gaussian process. The second code, "RSM Area", creates a look-up table for the projected area of the object based on input limits on the minimum and maximum allowed pitch and yaw angles and pitch and yaw angle intervals. The projected area from the look-up table is used to compute the ballistic coefficient of the object based on its pitch and yaw angle. An accurate ballistic coefficient is crucial in accurately computing the drag on an object. The third code, "RSM Cd", uses the RSM generated by the "Automated RSM" code and the projected area look-up table generated by the "RSM Area" code to accurately compute the drag coefficient and ballistic coefficient of the object. The user can modify the object velocity, object surface temperature, the translational temperature of the gas, the species concentrations of the gas, and the pitch and yaw angles of the object. Together, these codes allow for the accurate derivation of an object's drag coefficient and ballistic coefficient under any conditions with only knowledge of the object's geometry and mass.« less

  19. Applying horizontal diffusion on pressure surface to mesoscale models on terrain-following coordinates

    Treesearch

    Hann-Ming Henry Juang; Ching-Teng Lee; Yongxin Zhang; Yucheng Song; Ming-Chin Wu; Yi-Leng Chen; Kevin Kodama; Shyh-Chin Chen

    2005-01-01

    The National Centers for Environmental Prediction regional spectral model and mesoscale spectral model (NCEP RSM/MSM) use a spectral computation on perturbation. The perturbation is defined as a deviation between RSM/MSM forecast value and their outer model or analysis value on model sigma-coordinate surfaces. The horizontal diffusion used in the models applies...

  20. Runway Safety Monitor Algorithm for Runway Incursion Detection and Alerting

    NASA Technical Reports Server (NTRS)

    Green, David F., Jr.; Jones, Denise R. (Technical Monitor)

    2002-01-01

    The Runway Safety Monitor (RSM) is an algorithm for runway incursion detection and alerting that was developed in support of NASA's Runway Incursion Prevention System (RIPS) research conducted under the NASA Aviation Safety Program's Synthetic Vision System element. The RSM algorithm provides pilots with enhanced situational awareness and warnings of runway incursions in sufficient time to take evasive action and avoid accidents during landings, takeoffs, or taxiing on the runway. The RSM currently runs as a component of the NASA Integrated Display System, an experimental avionics software system for terminal area and surface operations. However, the RSM algorithm can be implemented as a separate program to run on any aircraft with traffic data link capability. The report documents the RSM software and describes in detail how RSM performs runway incursion detection and alerting functions for NASA RIPS. The report also describes the RIPS flight tests conducted at the Dallas-Ft Worth International Airport (DFW) during September and October of 2000, and the RSM performance results and lessons learned from those flight tests.

  1. Modeling and optimization of fermentation variables for enhanced production of lactase by isolated Bacillus subtilis strain VUVD001 using artificial neural networking and response surface methodology.

    PubMed

    Venkateswarulu, T C; Prabhakar, K Vidya; Kumar, R Bharath; Krupanidhi, S

    2017-07-01

    Modeling and optimization were performed to enhance production of lactase through submerged fermentation by Bacillus subtilis VUVD001 using artificial neural networks (ANN) and response surface methodology (RSM). The effect of process parameters namely temperature (°C), pH, and incubation time (h) and their combinational interactions on production was studied in shake flask culture by Box-Behnken design. The model was validated by conducting an experiment at optimized process variables which gave the maximum lactase activity of 91.32 U/ml. Compared to traditional activity, 3.48-folds improved production was obtained after RSM optimization. This study clearly shows that both RSM and ANN models provided desired predictions. However, compared with RSM (R 2  = 0.9496), the ANN model (R 2  = 0.99456) gave a better prediction for the production of lactase.

  2. Assessment of DOE radioactive scrap metal disposition options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, C.R.; Kasper, K.M.; Bossart, S.J.

    1997-02-01

    The DOE has amassed a large amount of radioactively-contaminated scrap metal (RSM) as a result of past operations and decontamination and decommissioning (D&D) projects. The volume of RSM will continue to increase as a result of the D&D of more than 6,000 surplus facilities and many of the 14,000 operating facilities in the DOE complex. RSM can be either surface contaminated or volumetrically contaminated, or both, with varying amounts of radioactivity. Several options exist for the disposition of this RSM, including disposal as radioactive waste, recycling by decontamination and free-release for unrestricted use, or recycling for restricted reuse inside amore » DOE controlled area. The DOE Office of Science and Technology (EM-50) has been actively investing in technology and strategy development in support of restricted-reuse RSM recycling for the past several years. This paper will assess the nature of the RSM recycling issue, review past investment by DOE to develop technologies and strategies to recycle RSM, and then discuss some recommendations concerning future investments in support of RSM management. Available information on the supply of RSM will be presented in Section II. The regulatory and policy framework concerning recycling RSM will be presented in Section III. A review of DOE investment in RSM recycling technology and current programs will be presented in Section IV. The current and projected industrial capacity will be described in Section V. And, finally, a discussion of issues and recommendations regarding DOE technology development interests in RSM recycling will be presented in Section VI and VII, respectively.« less

  3. Satellite-Enhanced Dynamical Downscaling of Extreme Events

    NASA Astrophysics Data System (ADS)

    Nunes, A.

    2015-12-01

    Severe weather events can be the triggers of environmental disasters in regions particularly susceptible to changes in hydrometeorological conditions. In that regard, the reconstruction of past extreme weather events can help in the assessment of vulnerability and risk mitigation actions. Using novel modeling approaches, dynamical downscaling of long-term integrations from global circulation models can be useful for risk analysis, providing more accurate climate information at regional scales. Originally developed at the National Centers for Environmental Prediction (NCEP), the Regional Spectral Model (RSM) is being used in the dynamical downscaling of global reanalysis, within the South American Hydroclimate Reconstruction Project. Here, RSM combines scale-selective bias correction with assimilation of satellite-based precipitation estimates to downscale extreme weather occurrences. Scale-selective bias correction is a method employed in the downscaling, similar to the spectral nudging technique, in which the downscaled solution develops in agreement with its coarse boundaries. Precipitation assimilation acts on modeled deep-convection, drives the land-surface variables, and therefore the hydrological cycle. During the downscaling of extreme events that took place in Brazil in recent years, RSM continuously assimilated NCEP Climate Prediction Center morphing technique precipitation rates. As a result, RSM performed better than its global (reanalysis) forcing, showing more consistent hydrometeorological fields compared with more sophisticated global reanalyses. Ultimately, RSM analyses might provide better-quality initial conditions for high-resolution numerical predictions in metropolitan areas, leading to more reliable short-term forecasting of severe local storms.

  4. Application of Artificial Neural Network and Response Surface Methodology in Modeling of Surface Roughness in WS2 Solid Lubricant Assisted MQL Turning of Inconel 718

    NASA Astrophysics Data System (ADS)

    Maheshwera Reddy Paturi, Uma; Devarasetti, Harish; Abimbola Fadare, David; Reddy Narala, Suresh Kumar

    2018-04-01

    In the present paper, the artificial neural network (ANN) and response surface methodology (RSM) are used in modeling of surface roughness in WS2 (tungsten disulphide) solid lubricant assisted minimal quantity lubrication (MQL) machining. The real time MQL turning of Inconel 718 experimental data considered in this paper was available in the literature [1]. In ANN modeling, performance parameters such as mean square error (MSE), mean absolute percentage error (MAPE) and average error in prediction (AEP) for the experimental data were determined based on Levenberg–Marquardt (LM) feed forward back propagation training algorithm with tansig as transfer function. The MATLAB tool box has been utilized in training and testing of neural network model. Neural network model with three input neurons, one hidden layer with five neurons and one output neuron (3-5-1 architecture) is found to be most confidence and optimal. The coefficient of determination (R2) for both the ANN and RSM model were seen to be 0.998 and 0.982 respectively. The surface roughness predictions from ANN and RSM model were related with experimentally measured values and found to be in good agreement with each other. However, the prediction efficacy of ANN model is relatively high when compared with RSM model predictions.

  5. Constraint Optimization Problem For The Cutting Of A Cobalt Chrome Refractory Material

    NASA Astrophysics Data System (ADS)

    Lebaal, Nadhir; Schlegel, Daniel; Folea, Milena

    2011-05-01

    This paper shows a complete approach to solve a given problem, from the experimentation to the optimization of different cutting parameters. In response to an industrial problem of slotting FSX 414, a Cobalt-based refractory material, we have implemented a design of experiment to determine the most influent parameters on the tool life, the surface roughness and the cutting forces. After theses trials, an optimization approach has been implemented to find the lowest manufacturing cost while respecting the roughness constraints and cutting force limitation constraints. The optimization approach is based on the Response Surface Method (RSM) using the Sequential Quadratic programming algorithm (SQP) for a constrained problem. To avoid a local optimum and to obtain an accurate solution at low cost, an efficient strategy, which allows improving the RSM accuracy in the vicinity of the global optimum, is presented. With these models and these trials, we could apply and compare our optimization methods in order to get the lowest cost for the best quality, i.e. a satisfying surface roughness and limited cutting forces.

  6. Optimization of cyanide extraction from wastewater using emulsion liquid membrane system by response surface methodology.

    PubMed

    Xue, Juan Qin; Liu, Ni Na; Li, Guo Ping; Dang, Long Tao

    To solve the disposal problem of cyanide wastewater, removal of cyanide from wastewater using a water-in-oil emulsion type of emulsion liquid membrane (ELM) was studied in this work. Specifically, the effects of surfactant Span-80, carrier trioctylamine (TOA), stripping agent NaOH solution and the emulsion-to-external-phase-volume ratio on removal of cyanide were investigated. Removal of total cyanide was determined using the silver nitrate titration method. Regression analysis and optimization of the conditions were conducted using the Design-Expert software and response surface methodology (RSM). The actual cyanide removals and the removals predicted using RSM analysis were in close agreement, and the optimal conditions were determined to be as follows: the volume fraction of Span-80, 4% (v/v); the volume fraction of TOA, 4% (v/v); the concentration of NaOH, 1% (w/v); and the emulsion-to-external-phase volume ratio, 1:7. Under the optimum conditions, the removal of total cyanide was 95.07%, and the RSM predicted removal was 94.90%, with a small exception. The treatment of cyanide wastewater using an ELM is an effective technique for application in industry.

  7. Biodiesel production from castor oil using heterogeneous Ni doped ZnO nanocatalyst.

    PubMed

    Baskar, G; Aberna Ebenezer Selvakumari, I; Aiswarya, R

    2018-02-01

    In the present study, castor oil with high free fatty acid was used for biodiesel production using heterogeneous Ni doped ZnO nanocatalyst. Ni doped ZnO nanocomposite calcinated at 800 °C has shown better catalytic activity. Process parameters on heterogeneous catalysis of castor oil into biodiesel were optimized using conventional and Response Surface Methodology (RSM). RSM was found more accurate in estimating the optimum conditions with higher biodiesel yield (95.20%). The optimum conditions for transesterification was found to be oil to methanol molar ratio of 1:8, catalyst loading 11% (w/w), reaction temperature of 55 °C for 60 min of reaction time by response surface method. The reusability studies showed that the nanocatalyst can be reused efficiently for 3 cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A Monte Carlo simulation based inverse propagation method for stochastic model updating

    NASA Astrophysics Data System (ADS)

    Bao, Nuo; Wang, Chunjie

    2015-08-01

    This paper presents an efficient stochastic model updating method based on statistical theory. Significant parameters have been selected implementing the F-test evaluation and design of experiments, and then the incomplete fourth-order polynomial response surface model (RSM) has been developed. Exploiting of the RSM combined with Monte Carlo simulation (MCS), reduces the calculation amount and the rapid random sampling becomes possible. The inverse uncertainty propagation is given by the equally weighted sum of mean and covariance matrix objective functions. The mean and covariance of parameters are estimated synchronously by minimizing the weighted objective function through hybrid of particle-swarm and Nelder-Mead simplex optimization method, thus the better correlation between simulation and test is achieved. Numerical examples of a three degree-of-freedom mass-spring system under different conditions and GARTEUR assembly structure validated the feasibility and effectiveness of the proposed method.

  9. Response surface methodology (RSM) to evaluate moisture effects on corn stover in recovering xylose by DEO hydrolysis

    Treesearch

    Rita C.L.B. Rodrigues; William R. Kenealy; Diane Dietrich; Thomas W. Jeffries

    2012-01-01

    Response surface methodology (RSM), based on a 22 full factorial design, evaluated the moisture effects in recovering xylose by diethyloxalate (DEO) hydrolysis. Experiments were carried out in laboratory reactors (10 mL glass ampoules) containing corn stover (0.5 g) properly ground. The ampoules were kept at 160 °C for 90 min. Both DEO...

  10. Response surface modeling and optimization of ultrasound-assisted extraction of three flavonoids from tartary buckwheat (Fagopyrum tataricum)

    PubMed Central

    Peng, Lian-Xin; Zou, Liang; Zhao, Jiang-Lin; Xiang, Da-Bing; Zhu, Peng; Zhao, Gang

    2013-01-01

    Background: Buckwheat (Fagopyrum spp., Polygonaceae) is a widely planted food crop. Flavonoids, including quercetin, rutin, and kaempferol, are the main bioactive components in tartary buckwheat (Fagopyrum tataricum (L.) Gaertn). From the nutriological and pharmacological perspectives, flavonoids have great value in controlling blood glucose and blood pressure levels, and they also have antioxidant properties. Objective: To optimize the conditions for extraction of quercetin, rutin, and kaempferol from F. tataricum. Materials and Methods: A combination of ultrasound-assisted extraction (UAE) and response surface methodology (RSM) was used for flavonoid extraction and yield assessment. The RSM was based on a three-level, three-variable Box-Behnken design. Results: Flavonoids were optimally extracted from F. tataricum by using 72% methanol, at 60°C, for 21 minutes. Under these conditions, the obtained extraction yield of the total flavonoids was 3.94%. Conclusion: The results indicated that the UAE method was effective for extraction of flavonoids from tartary buckwheat. PMID:23930003

  11. Multi-objective parametric optimization of Inertance type pulse tube refrigerator using response surface methodology and non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Rout, Sachindra K.; Choudhury, Balaji K.; Sahoo, Ranjit K.; Sarangi, Sunil K.

    2014-07-01

    The modeling and optimization of a Pulse Tube Refrigerator is a complicated task, due to its complexity of geometry and nature. The aim of the present work is to optimize the dimensions of pulse tube and regenerator for an Inertance-Type Pulse Tube Refrigerator (ITPTR) by using Response Surface Methodology (RSM) and Non-Sorted Genetic Algorithm II (NSGA II). The Box-Behnken design of the response surface methodology is used in an experimental matrix, with four factors and two levels. The diameter and length of the pulse tube and regenerator are chosen as the design variables where the rest of the dimensions and operating conditions of the ITPTR are constant. The required output responses are the cold head temperature (Tcold) and compressor input power (Wcomp). Computational fluid dynamics (CFD) have been used to model and solve the ITPTR. The CFD results agreed well with those of the previously published paper. Also using the results from the 1-D simulation, RSM is conducted to analyse the effect of the independent variables on the responses. To check the accuracy of the model, the analysis of variance (ANOVA) method has been used. Based on the proposed mathematical RSM models a multi-objective optimization study, using the Non-sorted genetic algorithm II (NSGA-II) has been performed to optimize the responses.

  12. The Optimisation of the Expression of Recombinant Surface Immunogenic Protein of Group B Streptococcus in Escherichia coli by Response Surface Methodology Improves Humoral Immunity.

    PubMed

    Díaz-Dinamarca, Diego A; Jerias, José I; Soto, Daniel A; Soto, Jorge A; Díaz, Natalia V; Leyton, Yessica Y; Villegas, Rodrigo A; Kalergis, Alexis M; Vásquez, Abel E

    2018-03-01

    Group B Streptococcus (GBS) is the leading cause of neonatal meningitis and a common pathogen in livestock and aquaculture industries around the world. Conjugate polysaccharide and protein-based vaccines are under development. The surface immunogenic protein (SIP) is a conserved protein in all GBS serotypes and has been shown to be a good target for vaccine development. The expression of recombinant proteins in Escherichia coli cells has been shown to be useful in the development of vaccines, and the protein purification is a factor affecting their immunogenicity. The response surface methodology (RSM) and Box-Behnken design can optimise the performance in the expression of recombinant proteins. However, the biological effect in mice immunised with an immunogenic protein that is optimised by RSM and purified by low-affinity chromatography is unknown. In this study, we used RSM for the optimisation of the expression of the rSIP, and we evaluated the SIP-specific humoral response and the property to decrease the GBS colonisation in the vaginal tract in female mice. It was observed by NI-NTA chromatography that the RSM increases the yield in the expression of rSIP, generating a better purification process. This improvement in rSIP purification suggests a better induction of IgG anti-SIP immune response and a positive effect in the decreased GBS intravaginal colonisation. The RSM applied to optimise the expression of recombinant proteins with immunogenic capacity is an interesting alternative in the evaluation of vaccines in preclinical phase, which could improve their immune response.

  13. Optimisation of process parameters on thin shell part using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Faiz, J. M.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Rashidi, M. M.

    2017-09-01

    This study is carried out to focus on optimisation of process parameters by simulation using Autodesk Moldflow Insight (AMI) software. The process parameters are taken as the input in order to analyse the warpage value which is the output in this study. There are some significant parameters that have been used which are melt temperature, mould temperature, packing pressure, and cooling time. A plastic part made of Polypropylene (PP) has been selected as the study part. Optimisation of process parameters is applied in Design Expert software with the aim to minimise the obtained warpage value. Response Surface Methodology (RSM) has been applied in this study together with Analysis of Variance (ANOVA) in order to investigate the interactions between parameters that are significant to the warpage value. Thus, the optimised warpage value can be obtained using the model designed using RSM due to its minimum error value. This study comes out with the warpage value improved by using RSM.

  14. Fundamental Studies on Crashworthiness Design with Uncertainties in the System

    DTIC Science & Technology

    2005-01-01

    studied; examples include using the Response Surface Methods (RSM) and Design of Experiment (DOE) [2-4]. Space Mapping (SM) is another practical...Exposed to Impact Load Using a Space Mapping Technique,” Struct. Multidisc. Optim., Vol. 27, pp. 411-420 (2004). 6. Mayer, R. R., Kikuchi, N. and Scott

  15. Fundamental Studies on Crashworthiness Design with Uncertainties in the System

    DTIC Science & Technology

    2005-01-01

    studied; examples include using the Response Surface Methods (RSM) and Design of Experiment (DOE) [2-4]. Space Mapping (SM) is another practical...to Impact Load Using a Space Mapping Technique," Struct. Multidisc. Optim., Vol. 27, pp. 411-420 (2004). 6. Mayer, R. R., Kikuchi, N. and Scott, R

  16. Aerodynamic configuration design using response surface methodology analysis

    NASA Technical Reports Server (NTRS)

    Engelund, Walter C.; Stanley, Douglas O.; Lepsch, Roger A.; Mcmillin, Mark M.; Unal, Resit

    1993-01-01

    An investigation has been conducted to determine a set of optimal design parameters for a single-stage-to-orbit reentry vehicle. Several configuration geometry parameters which had a large impact on the entry vehicle flying characteristics were selected as design variables: the fuselage fineness ratio, the nose to body length ratio, the nose camber value, the wing planform area scale factor, and the wing location. The optimal geometry parameter values were chosen using a response surface methodology (RSM) technique which allowed for a minimum dry weight configuration design that met a set of aerodynamic performance constraints on the landing speed, and on the subsonic, supersonic, and hypersonic trim and stability levels. The RSM technique utilized, specifically the central composite design method, is presented, along with the general vehicle conceptual design process. Results are presented for an optimized configuration along with several design trade cases.

  17. Dynamic Downscaling of Seasonal Simulations over South America.

    NASA Astrophysics Data System (ADS)

    Misra, Vasubandhu; Dirmeyer, Paul A.; Kirtman, Ben P.

    2003-01-01

    In this paper multiple atmospheric global circulation model (AGCM) integrations at T42 spectral truncation and prescribed sea surface temperature were used to drive regional spectral model (RSM) simulations at 80-km resolution for the austral summer season (January-February-March). Relative to the AGCM, the RSM improves the ensemble mean simulation of precipitation and the lower- and upper-level tropospheric circulation over both tropical and subtropical South America and the neighboring ocean basins. It is also seen that the RSM exacerbates the dry bias over the northern tip of South America and the Nordeste region, and perpetuates the erroneous split intertropical convergence zone (ITCZ) over both the Pacific and Atlantic Ocean basins from the AGCM. The RSM at 80-km horizontal resolution is able to reasonably resolve the Altiplano plateau. This led to an improvement in the mean precipitation over the plateau. The improved resolution orography in the RSM did not substantially change the predictability of the precipitation, surface fluxes, or upper- and lower-level winds in the vicinity of the Andes Mountains from the AGCM. In spite of identical convective and land surface parameterization schemes, the diagnostic quantities, such as precipitation and surface fluxes, show significant differences in the intramodel variability over oceans and certain parts of the Amazon River basin (ARB). However, the prognostic variables of the models exhibit relatively similar model noise structures and magnitude. This suggests that the model physics are in large part responsible for the divergence of the solutions in the two models. However, the surface temperature and fluxes from the land surface scheme of the model [Simplified Simple Biosphere scheme (SSiB)] display comparable intramodel variability, except over certain parts of ARB in the two models. This suggests a certain resilience of predictability in SSiB (over the chosen domain of study) to variations in horizontal resolution. It is seen in this study that the summer precipitation over tropical and subtropical South America is highly unpredictable in both models.

  18. Techno-economical optimization of Reactive Blue 19 removal by combined electrocoagulation/coagulation process through MOPSO using RSM and ANFIS models.

    PubMed

    Taheri, M; Alavi Moghaddam, M R; Arami, M

    2013-10-15

    In this research, Response Surface Methodology (RSM) and Adaptive Neuro Fuzzy Inference System (ANFIS) models were applied for optimization of Reactive Blue 19 removal using combined electrocoagulation/coagulation process through Multi-Objective Particle Swarm Optimization (MOPSO). By applying RSM, the effects of five independent parameters including applied current, reaction time, initial dye concentration, initial pH and dosage of Poly Aluminum Chloride were studied. According to the RSM results, all the independent parameters are equally important in dye removal efficiency. In addition, ANFIS was applied for dye removal efficiency and operating costs modeling. High R(2) values (≥85%) indicate that the predictions of RSM and ANFIS models are acceptable for both responses. ANFIS was also used in MOPSO for finding the best techno-economical Reactive Blue 19 elimination conditions according to RSM design. Through MOPSO and the selected ANFIS model, Minimum and maximum values of 58.27% and 99.67% dye removal efficiencies were obtained, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Multi-Objective Optimization of Moving-magnet Linear Oscillatory Motor Using Response Surface Methodology with Quantum-Behaved PSO Operator

    NASA Astrophysics Data System (ADS)

    Lei, Meizhen; Wang, Liqiang

    2018-01-01

    To reduce the difficulty of manufacturing and increase the magnetic thrust density, a moving-magnet linear oscillatory motor (MMLOM) without inner-stators was Proposed. To get the optimal design of maximum electromagnetic thrust with minimal permanent magnetic material, firstly, the 3D finite element analysis (FEA) model of the MMLOM was built and verified by comparison with prototype experiment result. Then the influence of design parameters of permanent magnet (PM) on the electromagnetic thrust was systematically analyzed by the 3D FEA to get the design parameters. Secondly, response surface methodology (RSM) was employed to build the response surface model of the new MMLOM, which can obtain an analytical model of the PM volume and thrust. Then a multi-objective optimization methods for design parameters of PM, using response surface methodology (RSM) with a quantum-behaved PSO (QPSO) operator, was proposed. Then the way to choose the best design parameters of PM among the multi-objective optimization solution sets was proposed. Then the 3D FEA of the optimal design candidates was compared. The comparison results showed that the proposed method can obtain the best combination of the geometric parameters of reducing the PM volume and increasing the thrust.

  20. Optimization of Extraction Conditions for Phenolic Acids from the Leaves of Melissa officinalis L. Using Response Surface Methodology

    PubMed Central

    Yoo, Guijae; Lee, Il Kyun; Park, Seonju; Kim, Nanyoung; Park, Jun Hyung; Kim, Seung Hyun

    2018-01-01

    Background: Melissa officinalis L. is a well-known medicinal plant from the family Lamiaceae, which is distributed throughout Eastern Mediterranean region and Western Asia. Objective: In this study, response surface methodology (RSM) was utilized to optimize the extraction conditions for bioactive compounds from the leaves of M. officinalis L. Materials and Methods: A Box–Behnken design (BBD) was utilized to evaluate the effects of three independent variables, namely extraction temperature (°C), methanol concentration (%), and solvent-to-material ratio (mL/g) on the responses of the contents of caffeic acid and rosmarinic acid. Results: Regression analysis showed a good fit of the experimental data. The optimal condition was obtained at extraction temperature 80.53°C, methanol concentration 29.89%, and solvent-to-material ratio 30 mL/g. Conclusion: These results indicate the suitability of the model employed and the successful application of RSM in optimizing the extraction conditions. This study may be useful for standardizing production quality, including improving the efficiency of large-scale extraction systems. SUMMARY The optimum conditions for the extraction of major phenolic acids from the leaves of Melissa officinalis L. were determined using response surface methodologyBox–Behnken design was utilized to evaluate the effects of three independent variablesQuadratic polynomial model provided a satisfactory description of the experimental dataThe optimized condition for simultaneous maximum contents of caffeic acid and rosmarinic acid was determined. Abbreviations used: RSM: Response surface methodology, BBD: Box–Behnken design, CA: Caffeic acid, RA: Rosmarinic acid, HPLC: High-performance liquid chromatography. PMID:29720824

  1. Tannase production by Penicillium purpurogenum PAF6 in solid state fermentation of tannin-rich plant residues following OVAT and RSM.

    PubMed

    Jana, Arijit; Maity, Chiranjit; Halder, Suman Kumar; Mondal, Keshab Chandra; Pati, Bikash Ranjan; Mohapatra, Pradeep Kumar Das

    2012-07-01

    Tannase production by newly isolated Penicillium purpurogenum PAF6 was investigated by 'one variable at a time' (OVAT) approach followed by response surface methodology (RSM). Tannin-rich plant residues were used as supporting solid substrate and sole carbon source and, among them, tamarind seed was found to be the most favorable substrate than haritaki, pomegranate, tea leaf waste and arjun fruit. Physicochemical parameters were initially optimized using OVAT methodology and some important factors like incubation time, incubation temperature, substrate:moisture ratio as well as carbon, nitrogen and phosphate concentrations were verified with Box-Behken design of response surface methodology. Phosphate source, nitrogen source and temperature were found as the most favorable variables in the maximization of production. Tannase production was enhanced from 1.536 U/g to 5.784 U/g using tamarind seed OVAT optimization and further enhancement up to 6.15 U/g following RSM. An overall 3.76- and 4.0-fold increases in tannase production were achieved in OVAT and RSM, respectively.

  2. Modeling and optimization aspects of radiation induced grafting of 4-vinylpyridene onto partially fluorinated films

    NASA Astrophysics Data System (ADS)

    Nasef, Mohamed Mahmoud; Ahmad Ali, Amgad; Saidi, Hamdani; Ahmad, Arshad

    2014-01-01

    Modeling and optimization aspects of radiation induced grafting (RIG) of 4-vinylpyridine (4-VP) onto partially fluorinated polymers such as poly(ethylene-co-tetrafluoroethene) (ETFE) and poly(vinylidene fluoride) (PVDF) films were comparatively investigated using response surface method (RSM). The effects of independent parameters: absorbed dose, monomer concentration, grafting time and reaction temperature on the response, grafting yield (GY) were correlated through two quadratic models. The results of this work confirm that RSM is a reliable tool not only for optimization of the reaction parameters and prediction of GY in RIG processes, but also for the reduction of the number of the experiments, monomer consumption and absorbed dose leading to an improvement of the overall reaction cost.

  3. Medium optimization by orthogonal array and response surface methodology for cholesterol oxidase production by Streptomyces lavendulae NCIM 2499.

    PubMed

    Chauhan, Awadesh K; Survase, Shrikant A; Kishenkumar, Jyoti; Annapure, Uday S

    2009-06-01

    This paper deals with the optimization of culture conditions for the production of cholesterol oxidase (COD) by Streptomyces lavendulae NCIM 2499 using the one-factor-at-a-time method, orthogonal array method and response surface methodology (RSM) approaches. The one-factor-at-a-time method was adopted to investigate the effects of medium components (i.e. carbon and nitrogen) and environmental factors (i.e. initial pH) on biomass growth and COD production. Subsequently, an L12 orthogonal matrix was used to evaluate the significance of glycerol, soyabean meal, malt extract, K2HPO4, MgSO4 and NaCl. The effects of media components were ranked according to their effects on the production of COD as malt extract > soyabean meal > K2HPO4 > NaCl > MgSO4 > glycerol. The subsequent optimization of the four most significant factors viz. malt extract, soyabean meal, K2HPO4 and NaCl, was carried out by employing a central composite rotatable design (CCRD) of RSM. There was a 2.48-fold increase in productivity of COD as compared to the unoptimized media by using these statistical approaches.

  4. Use of Response Surface Methodology to Optimize Culture Conditions for Hydrogen Production by an Anaerobic Bacterial Strain from Soluble Starch

    NASA Astrophysics Data System (ADS)

    Kieu, Hoa Thi Quynh; Nguyen, Yen Thi; Dang, Yen Thi; Nguyen, Binh Thanh

    2016-05-01

    Biohydrogen is a clean source of energy that produces no harmful byproducts during combustion, being a potential sustainable energy carrier for the future. Therefore, biohydrogen produced by anaerobic bacteria via dark fermentation has attracted attention worldwide as a renewable energy source. However, the hydrogen production capability of these bacteria depends on major factors such as substrate, iron-containing hydrogenase, reduction agent, pH, and temperature. In this study, the response surface methodology (RSM) with central composite design (CCD) was employed to improve the hydrogen production by an anaerobic bacterial strain isolated from animal waste in Phu Linh, Soc Son, Vietnam (PL strain). The hydrogen production process was investigated as a function of three critical factors: soluble starch concentration (8 g L-1 to 12 g L-1), ferrous iron concentration (100 mg L-1 to 200 mg L-1), and l-cysteine concentration (300 mg L-1 to 500 mg L-1). RSM analysis showed that all three factors significantly influenced hydrogen production. Among them, the ferrous iron concentration presented the greatest influence. The optimum hydrogen concentration of 1030 mL L-1 medium was obtained with 10 g L-1 soluble starch, 150 mg L-1 ferrous iron, and 400 mg L-1 l-cysteine after 48 h of anaerobic fermentation. The hydrogen concentration produced by the PL strain was doubled after using RSM. The obtained results indicate that RSM with CCD can be used as a technique to optimize culture conditions for enhancement of hydrogen production by the selected anaerobic bacterial strain. Hydrogen production from low-cost organic substrates such as soluble starch using anaerobic fermentation methods may be one of the most promising approaches.

  5. Physicochemical Properties Analysis and Secretome of Aspergillus niger in Fermented Rapeseed Meal

    PubMed Central

    Shi, Changyou; He, Jun; Yu, Jie; Yu, Bing; Mao, Xiangbing; Zheng, Ping; Huang, Zhiqing; Chen, Daiwen

    2016-01-01

    The nutrient digestibility and feeding value of rapeseed meal (RSM) for non-ruminant animals is poor due to the presence of anti-nutritional substances such as glucosinolate, phytic acid, crude fiber etc. In the present study, a solid state fermentation (SSF) using Aspergillus niger was carried out with the purpose of improving the nutritional quality of RSM. The chemical composition and physicochemical properties of RSM before and after fermentation were compared. To further understand possible mechanism of solid state fermentation, the composition of extracellular enzymes secreted by Aspergillus niger during fermentation was analysed using two-dimentional difference gel electrophoresis (2D-DIGE) combined with matrix assisted laser desorption ionization—time of flight—mass spectrometer (MALDI-TOF-MS). Results of the present study indicated that SSF had significant effects on chemical composition of RSM. The fermented rapeseed meal (FRSM) contained more crude protein (CP) and amino acid (AA) (except His) than unfermented RSM. Notably, the small peptide in FRSM was 2.26 time larger than that in unfermented RSM. Concentrations of anti-nutritional substrates in FRSM including neutral detergent fiber (NDF), glucosinolates, isothiocyanate, oxazolidithione, and phytic acid declined (P < 0.05) by 13.47, 43.07, 55.64, 44.68 and 86.09%, respectively, compared with unfermented RSM. A. niger fermentation disrupted the surface structure, changed macromolecular organic compounds, and reduced the protein molecular weights of RSM substrate. Total proteins of raw RSM and FRSM were separated and 51 protein spots were selected for mass spectrometry according to 2D-DIGE map. In identified proteins, there were 15 extracellular hydrolases secreted by A. niger including glucoamylase, acid protease, beta-glucanase, arabinofuranosidase, xylanase, and phytase. Some antioxidant related enzymes also were identified. These findings suggested that A. niger is able to secrete many extracellular degradation enzymes (especially lignocellulosic hydrolyzing enzymes, acid proteases and phytase) during fermentation of RSM, thus altering chemical composition and physicochemical properties of RSM. PMID:27049858

  6. Physicochemical Properties Analysis and Secretome of Aspergillus niger in Fermented Rapeseed Meal.

    PubMed

    Shi, Changyou; He, Jun; Yu, Jie; Yu, Bing; Mao, Xiangbing; Zheng, Ping; Huang, Zhiqing; Chen, Daiwen

    2016-01-01

    The nutrient digestibility and feeding value of rapeseed meal (RSM) for non-ruminant animals is poor due to the presence of anti-nutritional substances such as glucosinolate, phytic acid, crude fiber etc. In the present study, a solid state fermentation (SSF) using Aspergillus niger was carried out with the purpose of improving the nutritional quality of RSM. The chemical composition and physicochemical properties of RSM before and after fermentation were compared. To further understand possible mechanism of solid state fermentation, the composition of extracellular enzymes secreted by Aspergillus niger during fermentation was analysed using two-dimentional difference gel electrophoresis (2D-DIGE) combined with matrix assisted laser desorption ionization-time of flight-mass spectrometer (MALDI-TOF-MS). Results of the present study indicated that SSF had significant effects on chemical composition of RSM. The fermented rapeseed meal (FRSM) contained more crude protein (CP) and amino acid (AA) (except His) than unfermented RSM. Notably, the small peptide in FRSM was 2.26 time larger than that in unfermented RSM. Concentrations of anti-nutritional substrates in FRSM including neutral detergent fiber (NDF), glucosinolates, isothiocyanate, oxazolidithione, and phytic acid declined (P < 0.05) by 13.47, 43.07, 55.64, 44.68 and 86.09%, respectively, compared with unfermented RSM. A. niger fermentation disrupted the surface structure, changed macromolecular organic compounds, and reduced the protein molecular weights of RSM substrate. Total proteins of raw RSM and FRSM were separated and 51 protein spots were selected for mass spectrometry according to 2D-DIGE map. In identified proteins, there were 15 extracellular hydrolases secreted by A. niger including glucoamylase, acid protease, beta-glucanase, arabinofuranosidase, xylanase, and phytase. Some antioxidant related enzymes also were identified. These findings suggested that A. niger is able to secrete many extracellular degradation enzymes (especially lignocellulosic hydrolyzing enzymes, acid proteases and phytase) during fermentation of RSM, thus altering chemical composition and physicochemical properties of RSM.

  7. Optimization of composite coagulant made from polyferric chloride and tapioca starch in landfill leachate treatment

    NASA Astrophysics Data System (ADS)

    Shaylinda, M. Z. N.; Hamidi, A. A.; Mohd, N. A.; Ariffin, A.; Irvan, D.; Hazreek, Z. A. M.; Nizam, Z. M.

    2018-04-01

    In this research, the performance of polyferric chloride and tapioca flour as composite coagulants for partially stabilized leachate was investigated. Response surface methodology (RSM) was used to optimize the coagulation and flocculation process of partially stabilized leachate. Central composite design a standard design tool in RSM was applied to evaluate the interactions and effects of dose and pH. Dose 0.2 g/L Fe and pH 4.71 were the optimum value suggested by RSM. Experimental test based on the optimum condition, resulted in 95.9%, 94.6% and 50.4% of SS, color and COD removals, respectively. The percentage difference recorded between experimental and model responses was <5%. Therefore, it can be concluded that RSM was an appropriate optimization tool for coagulation and flocculation process.

  8. Optimizing Prednisolone Loading into Distiller's Dried Grain Kafirin Microparticles, and In vitro Release for Oral Delivery.

    PubMed

    Lau, Esther T L; Johnson, Stuart K; Williams, Barbara A; Mikkelsen, Deirdre; McCourt, Elizabeth; Stanley, Roger A; Mereddy, Ram; Halley, Peter J; Steadman, Kathryn J

    2017-05-19

    Kafirin microparticles have potential as colon-targeted delivery systems because of their ability to protect encapsulated material from digestive processes of the upper gastrointestinal tract (GIT). The aim was to optimize prednisolone loading into kafirin microparticles, and investigate their potential as an oral delivery system. Response surface methodology (RSM) was used to predict the optimal formulation of prednisolone loaded microparticles. Prednisolone release from the microparticles was measured in simulated conditions of the GIT. The RSM models were inadequate for predicting the relationship between starting quantities of kafirin and prednisolone, and prednisolone loading into microparticles. Compared to prednisolone released in the simulated gastric and small intestinal conditions, no additional drug release was observed in simulated colonic conditions. Hence, more insight into factors affecting drug loading into kafirin microparticles is required to improve the robustness of the RSM model. This present method of formulating prednisolone-loaded kafirin microparticles is unlikely to offer clinical benefits over commercially available dosage forms. Nevertheless, the overall amount of prednisolone released from the kafirin microparticles in conditions simulating the human GIT demonstrates their ability to prevent the release of entrapped core material. Further work developing the formulation methods may result in a delivery system that targets the lower GIT.

  9. Optimization of biostimulant for bioremediation of contaminated coastal sediment by response surface methodology (RSM) and evaluation of microbial diversity by pyrosequencing.

    PubMed

    Subha, Bakthavachallam; Song, Young Chae; Woo, Jung Hui

    2015-09-15

    The present study aims to optimize the slow release biostimulant ball (BSB) for bioremediation of contaminated coastal sediment using response surface methodology (RSM). Different bacterial communities were evaluated using a pyrosequencing-based approach in contaminated coastal sediments. The effects of BSB size (1-5cm), distance (1-10cm) and time (1-4months) on changes in chemical oxygen demand (COD) and volatile solid (VS) reduction were determined. Maximum reductions of COD and VS, 89.7% and 78.8%, respectively, were observed at a 3cm ball size, 5.5cm distance and 4months; these values are the optimum conditions for effective treatment of contaminated coastal sediment. Most of the variance in COD and VS (0.9291 and 0.9369, respectively) was explained in our chosen models. BSB is a promising method for COD and VS reduction and enhancement of SRB diversity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Improved antimicrobial compound production by a new isolate Streptomyces hygroscopicus MTCC 4003 using Plackett-Burman design and response Surface methodology.

    PubMed

    Singh, Neha; Rai, Vibhuti

    2012-01-01

    An active strain, isolated from soil of Chhattisgarh, India, showed broad-spectrum antimicrobial activity against various pathogenic bacteria and fungi in glucose soybean meal broth. Strain was characterized as Streptomyces hygroscopicus MTCC 4003 based on 16S rRNA sequencing from Microbial Type culture Collection (MTCC), IMTECH, Chandigarh, India. Identification of the purified antimicrobial compound was done by using Infra-red (IR), Mass, Ultraviolet (UV), 1H and 13C nuclear magnetic resonance (NMR) spectra. Plackett-Burman design (PBD) and response surface methodology (RSM) methods were used for the optimization of antibiotic production. Effects of the four medium components soybean meal, glucose, CaCO3 and MgSO4 showed positive effect on antibiotic production, were investigated with the help of PBD. The individual and interaction effects of the selected variables were determined by RSM using central composite design (CCD). Applying statistical design, antibiotic production was improved nearly ten times (412 mg/L) compared with unoptimized production medium (37 mg/L).

  11. Optimizing adsorption of blue pigment from wastewater by nano-porous modified Na-bentonite using spectrophotometry based on response surface method

    NASA Astrophysics Data System (ADS)

    Moradi, Neshat; Salem, Shiva; Salem, Amin

    2018-03-01

    This work highlighted the effective activation of bentonite paste to produce nano-porous powder for removal of cationic dye from wastewater. The effects of activation parameters such as soda and moisture contents, ageing time and temperature were analyzed using response surface methodology (RSM). The significance of independent variables and their interactions were tested by blending the obtained powders with wastewater and then the adsorption was evaluated, spectrophotometrically. The experiments were carried out by preparation of pastes according to response surface methodology and central composite design, which is the standard method, was used to evaluate the effects and interactions of four factors on the treatment efficiency. RSM was demonstrated as an appropriate approach for optimization of alkali activation. The optimal conditions obtained from the desirable responses were 5.0 wt% soda and 45.0 wt% moisture, respectively in which the powder activation was carried out at 150 °C. In order to well understand the role of nano-structured material on dye removal, the adsorbents were characterized through X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and Brunauer-Emmett-Teller surface area measurement. Finally, the analysis clearly demonstrates that the dye removal onto prepared adsorbent is well fitted with Langmuir isotherm compared to the other isotherm models. The low cost of material and facile process support the further development for commercial application purpose.

  12. Optimization of microwave-assisted extraction of total extract, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling.

    PubMed

    Ameer, Kashif; Bae, Seong-Woo; Jo, Yunhee; Lee, Hyun-Gyu; Ameer, Asif; Kwon, Joong-Ho

    2017-08-15

    Stevia rebaudiana (Bertoni) consists of stevioside and rebaudioside-A (Reb-A). We compared response surface methodology (RSM) and artificial neural network (ANN) modelling for their estimation and predictive capabilities in building effective models with maximum responses. A 5-level 3-factor central composite design was used to optimize microwave-assisted extraction (MAE) to obtain maximum yield of target responses as a function of extraction time (X 1 : 1-5min), ethanol concentration, (X 2 : 0-100%) and microwave power (X 3 : 40-200W). Maximum values of the three output parameters: 7.67% total extract yield, 19.58mg/g stevioside yield, and 15.3mg/g Reb-A yield, were obtained under optimum extraction conditions of 4min X 1 , 75% X 2 , and 160W X 3 . The ANN model demonstrated higher efficiency than did the RSM model. Hence, RSM can demonstrate interaction effects of inherent MAE parameters on target responses, whereas ANN can reliably model the MAE process with better predictive and estimation capabilities. Copyright © 2017. Published by Elsevier Ltd.

  13. Optimization of Nd: YAG Laser Marking of Alumina Ceramic Using RSM And ANN

    NASA Astrophysics Data System (ADS)

    Peter, Josephine; Doloi, B.; Bhattacharyya, B.

    2011-01-01

    The present research papers deals with the artificial neural network (ANN) and the response surface methodology (RSM) based mathematical modeling and also an optimization analysis on marking characteristics on alumina ceramic. The experiments have been planned and carried out based on Design of Experiment (DOE). It also analyses the influence of the major laser marking process parameters and the optimal combination of laser marking process parametric setting has been obtained. The output of the RSM optimal data is validated through experimentation and ANN predictive model. A good agreement is observed between the results based on ANN predictive model and actual experimental observations.

  14. Determination of trace amino acids in human serum by a selective and sensitive pre-column derivatization method using HPLC-FLD-MS/MS and derivatization optimization by response surface methodology.

    PubMed

    Li, Guoliang; Cui, Yanyan; You, Jinmao; Zhao, Xianen; Sun, Zhiwei; Xia, Lian; Suo, Yourui; Wang, Xiao

    2011-04-01

    Analysis of trace amino acids (AA) in physiological fluids has received more attention, because the analysis of these compounds could provide fundamental and important information for medical, biological, and clinical researches. More accurate method for the determination of those compounds is highly desirable and valuable. In the present study, we developed a selective and sensitive method for trace AA determination in biological samples using 2-[2-(7H-dibenzo [a,g]carbazol-7-yl)-ethoxy] ethyl chloroformate (DBCEC) as labeling reagent by HPLC-FLD-MS/MS. Response surface methodology (RSM) was first employed to optimize the derivatization reaction between DBCEC and AA. Compared with traditional single-factor design, RSM was capable of lessening laborious, time and reagents consumption. The complete derivatization can be achieved within 6.3 min at room temperature. In conjunction with a gradient elution, a baseline resolution of 20 AA containing acidic, neutral, and basic AA was achieved on a reversed-phase Hypersil BDS C(18) column. This method showed excellent reproducibility and correlation coefficient, and offered the exciting detection limits of 0.19-1.17 fmol/μL. The developed method was successfully applied to determinate AA in human serum. The sensitive and prognostic index of serum AA for liver diseases has also been discussed.

  15. Optimization of Coolant Technique Conditions for Machining A319 Aluminium Alloy Using Response Surface Method (RSM)

    NASA Astrophysics Data System (ADS)

    Zainal Ariffin, S.; Razlan, A.; Ali, M. Mohd; Efendee, A. M.; Rahman, M. M.

    2018-03-01

    Background/Objectives: The paper discusses about the optimum cutting parameters with coolant techniques condition (1.0 mm nozzle orifice, wet and dry) to optimize surface roughness, temperature and tool wear in the machining process based on the selected setting parameters. The selected cutting parameters for this study were the cutting speed, feed rate, depth of cut and coolant techniques condition. Methods/Statistical Analysis Experiments were conducted and investigated based on Design of Experiment (DOE) with Response Surface Method. The research of the aggressive machining process on aluminum alloy (A319) for automotive applications is an effort to understand the machining concept, which widely used in a variety of manufacturing industries especially in the automotive industry. Findings: The results show that the dominant failure mode is the surface roughness, temperature and tool wear when using 1.0 mm nozzle orifice, increases during machining and also can be alternative minimize built up edge of the A319. The exploration for surface roughness, productivity and the optimization of cutting speed in the technical and commercial aspects of the manufacturing processes of A319 are discussed in automotive components industries for further work Applications/Improvements: The research result also beneficial in minimizing the costs incurred and improving productivity of manufacturing firms. According to the mathematical model and equations, generated by CCD based RSM, experiments were performed and cutting coolant condition technique using size nozzle can reduces tool wear, surface roughness and temperature was obtained. Results have been analyzed and optimization has been carried out for selecting cutting parameters, shows that the effectiveness and efficiency of the system can be identified and helps to solve potential problems.

  16. Development of Fractal Dimension and Characteristic Roughness Models for Turned Surface of Carbon Steels

    NASA Astrophysics Data System (ADS)

    Zuo, Xue; Zhu, Hua; Zhou, Yuankai; Ding, Cong; Sun, Guodong

    2016-08-01

    Relationships between material hardness, turning parameters (spindle speed and feed rate) and surface parameters (surface roughness Ra, fractal dimension D and characteristic roughness τ∗) are studied and modeled using response surface methodology (RSM). The experiments are carried out on a CNC lathe for six carbon steel material AISI 1010, AISI 1020, AISI 1030, AISI 1045, AISI 1050 and AISI 1060. The profile of turned surface and the surface roughness value are measured by a JB-5C profilometer. Based on the profile data, D and τ∗ are computed through the root-mean-square method. The analysis of variance (ANOVA) reveals that spindle speed is the most significant factors affecting Ra, while material hardness is the most dominant parameter affecting τ∗. Material hardness and spindle speed have the same influence on D. Feed rate has less effect on three surface parameters than spindle speed and material hardness. The second-order models of RSM are established for estimating Ra, D and τ∗. The validity of the developed models is approximately 80%. The response surfaces show that a surface with small Ra and large D and τ∗ can be obtained by selecting a high speed and a large hardness material. According to the established models, Ra, D and τ∗ of six carbon steels surfaces can be predicted under cutting conditions studied in this paper. The results have an instructive meaning to estimate the surface quality before turning.

  17. System Synthesis in Preliminary Aircraft Design using Statistical Methods

    NASA Technical Reports Server (NTRS)

    DeLaurentis, Daniel; Mavris, Dimitri N.; Schrage, Daniel P.

    1996-01-01

    This paper documents an approach to conceptual and preliminary aircraft design in which system synthesis is achieved using statistical methods, specifically design of experiments (DOE) and response surface methodology (RSM). These methods are employed in order to more efficiently search the design space for optimum configurations. In particular, a methodology incorporating three uses of these techniques is presented. First, response surface equations are formed which represent aerodynamic analyses, in the form of regression polynomials, which are more sophisticated than generally available in early design stages. Next, a regression equation for an overall evaluation criterion is constructed for the purpose of constrained optimization at the system level. This optimization, though achieved in a innovative way, is still traditional in that it is a point design solution. The methodology put forward here remedies this by introducing uncertainty into the problem, resulting a solutions which are probabilistic in nature. DOE/RSM is used for the third time in this setting. The process is demonstrated through a detailed aero-propulsion optimization of a high speed civil transport. Fundamental goals of the methodology, then, are to introduce higher fidelity disciplinary analyses to the conceptual aircraft synthesis and provide a roadmap for transitioning from point solutions to probabalistic designs (and eventually robust ones).

  18. Improved biomass and lipid production in Synechocystis sp. NN using industrial wastes and nano-catalyst coupled transesterification for biodiesel production.

    PubMed

    Jawaharraj, Kalimuthu; Karpagam, Rathinasamy; Ashokkumar, Balasubramaniem; Kathiresan, Shanmugam; Moorthy, Innasi Muthu Ganesh; Arumugam, Muthu; Varalakshmi, Perumal

    2017-10-01

    In this study, the improved biomass (1.6 folds) and lipid (1.3 folds) productivities in Synechocystis sp. NN using agro-industrial wastes supplementation through hybrid response surface methodology-genetic algorithm (RSM-GA) for cost-effective methodologies for biodiesel production was achieved. Besides, efficient harvesting in Synechocystis sp. NN was achieved by electroflocculation (flocculation efficiency 97.8±1.2%) in 10min when compared to other methods. Furthermore, different pretreatment methods were employed for lipid extraction and maximum lipid content of 19.3±0.2% by Synechocystis sp. NN was attained by ultrasonication than microwave and liquid nitrogen assisted pretreatment methods. The highest FAME (fatty acid methyl ester) conversion of 36.5±8.3mg FAME/g biomass was obtained using titanium oxide as heterogeneous nano-catalyst coupled whole-cell transesterification based method. Conclusively, Synechocystis sp. NN may be used as a biodiesel feedstock and its fuel production can be enriched by hybrid RSM-GA and nano-catalyst technologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Antiproliferative activity of Curcuma phaeocaulis Valeton extract using ultrasonic assistance and response surface methodology.

    PubMed

    Wang, Xiaoqin; Jiang, Ying; Hu, Daode

    2017-01-02

    The objective of the study was to optimize the ultrasonic-assisted extraction of curdione, furanodienone, curcumol, and germacrone from Curcuma phaeocaulis Valeton (Val.) and investigate the antiproliferative activity of the extract. Under the suitable high-performance liquid chromatography condition, the calibration curves for these four tested compounds showed high levels of linearity and the recoveries of these four compounds were between 97.9 and 104.3%. Response surface methodology (RSM) combining central composite design and desirability function (DF) was used to define optimal extraction parameters. The results of RSM and DF revealed that the optimum conditions were obtained as 8 mL g -1 for liquid-solid ratio, 70% ethanol concentration, and 20 min of ultrasonic time. It was found that the surface structures of the sonicated herbal materials were fluffy and irregular. The C. phaeocaulis Val. extract significantly inhibited the proliferation of RKO and HT-29 cells in vitro. The results reveal that the RSM can be effectively used for optimizing the ultrasonic-assisted extraction of bioactive components from C. phaeocaulis Val. for antiproliferative activity.

  20. Maca polysaccharides: Extraction optimization, structural features and anti-fatigue activities.

    PubMed

    Li, Yujuan; Xin, Yizhou; Xu, Fangxue; Zheng, Mengmeng; Xi, Xiaozhi; Cui, Xiaowei; Cao, Hui; Guo, Hong; Han, Chunchao

    2018-08-01

    The maca polysaccharides optimal extraction conditions were obtained by using response surface methodology (RSM) method and the anti-fatigue activity of maca polysaccharides (MCP) was explored. The maca polysaccharides extract yield of RSM could reach 9.97 mg/g by using the model predicts, and the total sugar and protein purity were 61.00% and 4.46% with the further isolation process, respectively. And the monosaccharide compositions obtained by gas chromatograph (GC) were composed of rhamnose (rha), glucose (glc), galactose (gal) with the ratio of 2.34:10.21:1.00. Furthermore, the anti-fatigue activity was evaluated by the swimming parameter, biochemistry parameters (liver glycogen (LG), blood urea nitrogen (BUN), and lactic acid (LD)), the result indicated that the low-dose maca polysaccharides group had the significant anti-fatigue activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Optimization of enhanced bioelectrical reactor with electricity from microbial fuel cells for groundwater nitrate removal.

    PubMed

    Liu, Ye; Zhang, Baogang; Tian, Caixing; Feng, Chuanping; Wang, Zhijun; Cheng, Ming; Hu, Weiwu

    2016-01-01

    Factors influencing the performance of a continual-flow bioelectrical reactor (BER) intensified by microbial fuel cells for groundwater nitrate removal, including nitrate load, carbon source and hydraulic retention time (HRT), were investigated and optimized by response surface methodology (RSM). With the target of maximum nitrate removal and minimum intermediates accumulation, nitrate load (for nitrogen) of 60.70 mg/L, chemical oxygen demand (COD) of 849.55 mg/L and HRT of 3.92 h for the BER were performed. COD was the dominant factor influencing performance of the system. Experimental results indicated the undistorted simulation and reliable optimized values. These demonstrate that RSM is an effective method to evaluate and optimize the nitrate-reducing performance of the present system and can guide mathematical models development to further promote its practical applications.

  2. Optimization of Nd: YAG Laser Marking of Alumina Ceramic Using RSM And ANN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter, Josephine; Doloi, B.; Bhattacharyya, B.

    The present research papers deals with the artificial neural network (ANN) and the response surface methodology (RSM) based mathematical modeling and also an optimization analysis on marking characteristics on alumina ceramic. The experiments have been planned and carried out based on Design of Experiment (DOE). It also analyses the influence of the major laser marking process parameters and the optimal combination of laser marking process parametric setting has been obtained. The output of the RSM optimal data is validated through experimentation and ANN predictive model. A good agreement is observed between the results based on ANN predictive model and actualmore » experimental observations.« less

  3. Optimization of additive compositions for anode in Ni-MH secondary battery using the response surface method

    NASA Astrophysics Data System (ADS)

    Yang, Dong-Cheol; Jang, In-Su; Jang, Min-Ho; Park, Choong-Nyeon; Park, Chan-Jin; Choi, Jeon

    2009-06-01

    We optimized the composition of additives for the anode in a Ni-MH battery using the response surface method (RSM) to improve the electrode discharge capacities. When the amount of additives was small, the discharge characteristics of the electrode were degraded by charge-discharge cycling due to the low binding strength among the alloy powders and the resultant separation of the powder from the electrode surface. In contrast, the addition of a large amount of the additives increased the electrical impedance of the electrode. Through a response optimization process, we found an optimum composition range of additives to exhibit the greatest discharge capacity of the electrode.

  4. RsmV a small non-coding regulatory RNA in Pseudomonas aeruginosa that sequesters RsmA and RsmF from target mRNAs.

    PubMed

    Janssen, Kayley H; Diaz, Manisha R; Gode, Cindy J; Wolfgang, Matthew C; Yahr, Timothy L

    2018-06-04

    The Gram-negative opportunistic pathogen Pseudomonas aeruginosa has distinct genetic programs that favor either acute or chronic virulence gene expression. Acute virulence is associated with twitching and swimming motility, expression of a type III secretion system (T3SS), and the absence of alginate, Psl, or Pel polysaccharide production. Traits associated with chronic infection include growth as a biofilm, reduced motility, and expression of a type VI secretion system (T6SS). The Rsm post-transcriptional regulatory system plays important roles in the inverse control of phenotypes associated with acute and chronic virulence. RsmA and RsmF are RNA-binding proteins that interact with target mRNAs to control gene expression at the post-transcriptional level. Previous work found that RsmA activity is controlled by at least three small, non-coding regulatory RNAs (RsmW, RsmY, and RsmZ). In this study, we took an in-silico approach to identify additional sRNAs that might function in the sequestration of RsmA and/or RsmF and identified RsmV, a 192 nt transcript with four predicted RsmA/RsmF consensus binding sites. RsmV is capable of sequestering RsmA and RsmF in vivo to activate translation of tssA1 , a component of the T6SS, and to inhibit T3SS gene expression. Each of the predicted RsmA/RsmF consensus binding sites contribute to RsmV activity. Electrophoretic mobility shifts assays show that RsmF binds RsmV with >10-fold higher affinity than RsmY and RsmZ. Gene expression studies revealed that the temporal expression pattern of RsmV differs from RsmW, RsmY, and RsmZ. These findings suggest that each sRNA may play distinct roles in controlling RsmA and RsmF activity. IMPORTANCE The CsrA/RsmA family of RNA-binding proteins play important roles in post-transcriptional control of gene expression. The activity of CsrA/RsmA proteins is controlled by small non-coding RNAs that function as decoys to sequester CsrA/RsmA from target mRNAs. Pseudomonas aeruginosa has two CsrA family proteins (RsmA and RsmF) and at least four sequestering sRNAs (RsmV [identified in this study], RsmW, RsmY, RsmZ) that control RsmA/RsmF activity. RsmY and RsmZ are the primary sRNAs that sequester RsmA/RsmF, and RsmV and RsmW appear to play smaller roles. Differences in the temporal expression and absolute levels of the sRNAs and in their binding affinities for RsmA/RsmF may provide a mechanism of fine-tuning the output of the Rsm system in response to environmental cues. Copyright © 2018 American Society for Microbiology.

  5. On the use of response surface methodology to predict and interpret the preferred c-axis orientation of sputtered AlN thin films

    NASA Astrophysics Data System (ADS)

    Adamczyk, J.; Horny, N.; Tricoteaux, A.; Jouan, P.-Y.; Zadam, M.

    2008-01-01

    This paper deals with experimental design applied to response surface methodology (RSM) in order to determine the influence of the discharge conditions on preferred c-axis orientation of sputtered AlN thin films. The thin films have been deposited by DC reactive magnetron sputtering on Si (1 0 0) substrates. The preferred orientation was evaluated using a conventional Bragg-Brentano X-ray diffractometer ( θ-2 θ) with the CuKα radiation. We have first determined the experimental domain for 3 parameters: sputtering pressure (2-6 mTorr), discharge current (312-438 mA) and nitrogen percentage (17-33%). For the setup of the experimental design we have used a three factors Doehlert matrix which allows the use of the statistical response surface methodology (RSM) in a spherical domain. A four dimensional surface response, which represents the (0 0 0 2) peak height as a function of sputtering pressure, discharge current and nitrogen percentage, was obtained. It has been found that the main interaction affecting the preferential c-axis orientation was the pressure-nitrogen percentage interaction. It has been proved that a Box-Cox transformation is a very useful method to interpret and discuss the experimental results and leads to predictions in good agreement with experiments.

  6. Enhanced cell disruption strategy in the release of recombinant hepatitis B surface antigen from Pichia pastoris using response surface methodology

    PubMed Central

    2012-01-01

    Background Cell disruption strategies by high pressure homogenizer for the release of recombinant Hepatitis B surface antigen (HBsAg) from Pichia pastoris expression cells were optimized using response surface methodology (RSM) based on the central composite design (CCD). The factors studied include number of passes, biomass concentration and pulse pressure. Polynomial models were used to correlate the above mentioned factors to project the cell disruption capability and specific protein release of HBsAg from P. pastoris cells. Results The proposed cell disruption strategy consisted of a number of passes set at 20 times, biomass concentration of 7.70 g/L of dry cell weight (DCW) and pulse pressure at 1,029 bar. The optimized cell disruption strategy was shown to increase cell disruption efficiency by 2-fold and 4-fold for specific protein release of HBsAg when compared to glass bead method yielding 75.68% cell disruption rate (CDR) and HBsAg concentration of 29.20 mg/L respectively. Conclusions The model equation generated from RSM on cell disruption of P. pastoris was found adequate to determine the significant factors and its interactions among the process variables and the optimum conditions in releasing HBsAg when validated against a glass bead cell disruption method. The findings from the study can open up a promising strategy for better recovery of HBsAg recombinant protein during downstream processing. PMID:23039947

  7. A response surface methodology based damage identification technique

    NASA Astrophysics Data System (ADS)

    Fang, S. E.; Perera, R.

    2009-06-01

    Response surface methodology (RSM) is a combination of statistical and mathematical techniques to represent the relationship between the inputs and outputs of a physical system by explicit functions. This methodology has been widely employed in many applications such as design optimization, response prediction and model validation. But so far the literature related to its application in structural damage identification (SDI) is scarce. Therefore this study attempts to present a systematic SDI procedure comprising four sequential steps of feature selection, parameter screening, primary response surface (RS) modeling and updating, and reference-state RS modeling with SDI realization using the factorial design (FD) and the central composite design (CCD). The last two steps imply the implementation of inverse problems by model updating in which the RS models substitute the FE models. The proposed method was verified against a numerical beam, a tested reinforced concrete (RC) frame and an experimental full-scale bridge with the modal frequency being the output responses. It was found that the proposed RSM-based method performs well in predicting the damage of both numerical and experimental structures having single and multiple damage scenarios. The screening capacity of the FD can provide quantitative estimation of the significance levels of updating parameters. Meanwhile, the second-order polynomial model established by the CCD provides adequate accuracy in expressing the dynamic behavior of a physical system.

  8. Optimization of microwave-assisted enzymatic extraction of polysaccharides from the fruit of Schisandra chinensis Baill.

    PubMed

    Cheng, Zhenyu; Song, Haiyan; Yang, Yingjie; Liu, Yan; Liu, Zhigang; Hu, Haobin; Zhang, Yang

    2015-05-01

    A microwave-assisted enzymatic extraction (MAEE) method had been developed, which was optimized by response surface methodology (RSM) and orthogonal test design, to enhance the extraction of crude polysaccharides (CPS) from the fruit of Schisandra chinensis Baill. The optimum conditions were as follows: microwave irradiation time of 10 min, extraction pH of 4.21, extraction temperature of 47.58°C, extraction time of 3h and enzyme concentration of 1.5% (wt% of S. chinensis powder) for cellulase, papain and pectinase, respectively. Under these conditions, the extraction yield of CPS was 7.38 ± 0.21%, which was well in close agreement with the value predicted by the model. The three methods including heat-refluxing extraction (HRE), ultrasonic-assisted extraction (UAE) and enzyme-assisted extraction (EAE) for extracting CPS by RSM were further compared. Results indicated MAEE method had the highest extraction yields of CPS at lower temperature. It was indicated that the proposed approach in this study was a simple and efficient technique for extraction of CPS in S. chinensis Baill. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Evaluation of the effect of temperature, NaOH concentration and time on solubilization of palm oil mill effluent (POME) using response surface methodology (RSM).

    PubMed

    Chou, K W; Norli, I; Anees, A

    2010-11-01

    In this study, palm oil mill effluent (POME) was solubilized by batch thermo-alkaline pre-treatments. A three-factor central composite design (CCD) was applied to identify the optimum COD solubilization condition. The individual and interactive effects of three factors, temperature, NaOH concentration and reaction time, on solubilization of POME were evaluated by employing response surface methodology (RSM). The experimental results showed that temperature, NaOH concentration and reaction time all had an individual significant effect on the solubilization of POME. But these three factors were independent, or there was insignificant interaction on the response. The maximum COD solubilization of 82.63% was estimated under the optimum condition at 32.5 degrees C, 8.83g/L of NaOH and 41.23h reaction time. The confirmation experiment of the predicted optimum conditions verified that the RSM with the central composite design was useful for optimizing the solubilization of POME.

  10. Evaluating the influence of process parameters on soluble microbial products formation using response surface methodology coupled with grey relational analysis.

    PubMed

    Xu, Juan; Sheng, Guo-Ping; Luo, Hong-Wei; Fang, Fang; Li, Wen-Wei; Zeng, Raymond J; Tong, Zhong-Hua; Yu, Han-Qing

    2011-01-01

    Soluble microbial products (SMPs) present a major part of residual chemical oxygen demand (COD) in the effluents from biological wastewater treatment systems, and the SMP formation is greatly influenced by a variety of process parameters. In this study, response surface methodology (RSM) coupled with grey relational analysis (GRA) method was used to evaluate the effects of substrate concentration, temperature, NH(4)(+)-N concentration and aeration rate on the SMP production in batch activated sludge reactors. Carbohydrates were found to be the major component of SMP, and the influential priorities of these factors were: temperature>substrate concentration > aeration rate > NH(4)(+)-N concentration. On the basis of the RSM results, the interactive effects of these factors on the SMP formation were evaluated, and the optimal operating conditions for a minimum SMP production in such a batch activated sludge system also were identified. These results provide useful information about how to control the SMP formation of activated sludge and ensure the bioreactor high-quality effluent. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Application of Fracture Mechanics to Specify the Proof Load Factor for Clamp Band Systems of Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Singaravelu, J.; Sundaresan, S.; Nageswara Rao, B.

    2013-04-01

    This article presents a methodology for evaluation of the proof load factor (PLF) for clamp band system (CBS) made of M250 Maraging steel following fracture mechanics principles.CBS is most widely used as a structural element and as a separation system. Using Taguchi's design of experiments and the response surface method (RSM) the compact tension specimens were tested to establish an empirical relation for the failure load ( P max) in terms of the ultimate strength, width, thickness, and initial crack length. The test results of P max closely matched with the developed RSM empirical relation. Crack growth rates of the maraging steel in different environments were examined. Fracture strength (σf) of center surface cracks and through-crack tension specimens are evaluated utilizing the fracture toughness ( K IC). Stress induced in merman band at flight loading conditions is evaluated to estimate the higher load factor and PLF. Statistical safety factor and reliability assessments were made for the specified flaw sizes useful in the development of fracture control plan for CBS of launch vehicles.

  12. Development of mathematical models and optimization of the process parameters of laser surface hardened EN25 steel using elitist non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Vignesh, S.; Dinesh Babu, P.; Surya, G.; Dinesh, S.; Marimuthu, P.

    2018-02-01

    The ultimate goal of all production entities is to select the process parameters that would be of maximum strength, minimum wear and friction. The friction and wear are serious problems in most of the industries which are influenced by the working set of parameters, oxidation characteristics and mechanism involved in formation of wear. The experimental input parameters such as sliding distance, applied load, and temperature are utilized in finding out the optimized solution for achieving the desired output responses such as coefficient of friction, wear rate, and volume loss. The optimization is performed with the help of a novel method, Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) based on an evolutionary algorithm. The regression equations obtained using Response Surface Methodology (RSM) are used in determining the optimum process parameters. Further, the results achieved through desirability approach in RSM are compared with that of the optimized solution obtained through NSGA-II. The results conclude that proposed evolutionary technique is much effective and faster than the desirability approach.

  13. Photocatalytic degradation using design of experiments: a review and example of the Congo red degradation.

    PubMed

    Sakkas, Vasilios A; Islam, Md Azharul; Stalikas, Constantine; Albanis, Triantafyllos A

    2010-03-15

    The use of chemometric methods such as response surface methodology (RSM) based on statistical design of experiments (DOEs) is becoming increasingly widespread in several sciences such as analytical chemistry, engineering and environmental chemistry. Applied catalysis, is certainly not the exception. It is clear that photocatalytic processes mated with chemometric experimental design play a crucial role in the ability of reaching the optimum of the catalytic reactions. The present article reviews the major applications of RSM in modern experimental design combined with photocatalytic degradation processes. Moreover, the theoretical principles and designs that enable to obtain a polynomial regression equation, which expresses the influence of process parameters on the response are thoroughly discussed. An original experimental work, the photocatalytic degradation of the dye Congo red (CR) using TiO(2) suspensions and H(2)O(2), in natural surface water (river water) is comprehensively described as a case study, in order to provide sufficient guidelines to deal with this subject, in a rational and integrated way. (c) 2009 Elsevier B.V. All rights reserved.

  14. Response surface methodology for ozonation of trifluralin using advanced oxidation processes in an airlift photoreactor

    NASA Astrophysics Data System (ADS)

    Behin, J.; Farhadian, N.

    2017-10-01

    Degradation of trifluralin, as a wide used pesticide, was investigated by advance oxidation process comprising O3/UV/H2O2 in a concentric tube airlift photoreactor. Main and interactive effects of three independent factors including pH (5-9), superficial gas velocity (0.05-0.15 cm/s) and time (20-60 min) on the removal efficiency were assessed using central composite face-centered design and response surface method (RSM). The RSM allows to solve multivariable equations and to estimate simultaneously the relative importance of several contributing parameters even in the presence of complex interaction. Airlift photoreactor imposed a synergistic effect combining good mixing intensity merit with high ozone transfer rate. Mixing in the airlift photoreactor enhanced the UV light usage efficiency and its availability. Complete degradation of trifluralin was achieved under optimum conditions of pH 9 and superficial gas velocity 0.15 cm/s after 60 min of reaction time. Under these conditions, degradation of trifluralin was performed in a bubble column photoreactor of similar volume and a lower efficiency was observed.

  15. Latent structure analysis in the pharmaceutical process of tablets prepared by wet granulation.

    PubMed

    Uehara, Naoto; Hayashi, Yoshihiro; Mochida, Hiroshi; Otoguro, Saori; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2016-01-01

    Granule characteristics are some of the important intermediate qualities that determine tablet properties. However, the relationships between granule and tablet characteristics are poorly understood. The aim of this study was to elucidate relationships among formulation factors, granule characteristics, and tablet properties using a non-linear response surface method (RSM) incorporating a thin-plate spline interpolation (RSM-S) and a Bayesian network (BN). Tablets containing lactose (Lac), cornstarch (CS), and microcrystalline cellulose (MCC) were prepared by wet granulation. Ten formulations were prepared by an extreme vertices design. The angle of repose (Y 1 ), compressibility (Y 2 ), cohesion force (Y 3 ), internal friction angle (Y 4 ), and mean particle size (Y 5 ) were measured as granule characteristics. Tensile strength (TS) and disintegration time (DT) were measured as tablet properties. RSM-S results showed that TS increased with increasing amounts of MCC and Lac. DT decreased with increasing amounts of MCC and CS. The optimal BN models were predicted using four evaluation indices -Y 3 was shown to be the most important factor for TS, whereas Y 2 , Y 3 , and Y 4 were relatively important for predicting DT. Moreover, tablets with excellent tablet properties (i.e. high TS and low DT) were produced by relatively high Y 1 , low Y 2 , high Y 3 , high Y 4 , and middle Y 5 values, and resulted from the middle of MCC, middle-to-low CS, low Lac, and middle-to-low magnesium stearate (Mg-St) amounts. The RSM-S and BN techniques are useful for revealing complex relationships among formulation factors, granule characteristics, and tablet properties.

  16. Effect of processing of rapeseed under defined conditions in a pilot plant on chemical composition and standardized ileal amino acid digestibility in rapeseed meal for pigs.

    PubMed

    Eklund, M; Sauer, N; Schöne, F; Messerschmidt, U; Rosenfelder, P; Htoo, J K; Mosenthin, R

    2015-06-01

    Five rapeseed meals (RSM) were produced from a single batch of rapeseed in a large-scale pilot plant under standardized conditions. The objective was to evaluate the effect of residence time in the desolventizer/toaster (DT) on chemical composition and standardized ileal digestibility (SID) of AA in RSM. Four RSM, with 48, 64, 76, and 93 min residence time and using unsaturated steam in the DT, referred to as RSM48, RSM64, RSM76, and RSM93, respectively, and 1 low-glucosinolate RSM, which was subjected to sequential treatment with unsaturated steam, saturated steam, and dry heat in the DT, referred to as low-GSL RSM, were assayed. Six barrows (average initial BW = 22 ± 1 kg) were surgically fitted with a T-cannula at the distal ileum. Pigs were allotted to a 5 × 6 row × column design with 5 diets and 5 periods. The 5 RSM were included in a cornstarch-casein-based basal diet. In addition, basal ileal endogenous losses and SID of AA originating from casein were determined at the conclusion of the experiment in 2 additional periods by means of the regression method and using 3 graded levels of casein. The SID of AA in the 5 RSM was determined in difference to SID of AA originating from casein. The glucosinolates (GSL) were efficiently reduced, whereas NDF, ADF, ADL, and NDIN contents increased and reactive Lys (rLys) and Lys:CP ratio decreased as the residence time in the DT was increased from 48 to 93 min. The SID of most AA in RSM linearly decreased (P < 0.05) as the residence time in the DT increased from 48 to 93 min. Moreover, there was a linear decrease (P < 0.05) in SID of AA with increasing NDF, ADF, ADL, and NDIN contents in these RSM, whereas SID of AA linearly decreased (P < 0.05) with decreasing levels of GSL and rLys and a decreasing Lys:CP ratio. The decrease (P < 0.05) in SID of AA amounted from 3 up to 6 (percentage units) for most AA, except for SID of Cys and Lys, which decreased by 10 and 11%-units (P < 0.05), respectively, as the residence time in the DT was increased from 48 to 93 min. The SID in low-GSL RSM was for CP and most AA similar to RSM93 but lower ( < 0.05) compared to RSM48. It can be concluded that time and energy-intensive heat treatment results in lower contents of SID AA in RSM together with a reduction in GSL levels. The feed industry would most likely benefit from a rapid and accurate prediction of SID of AA, for example, based on content of NDIN, GSL, rLys or on Lys:CP ratio, in different batches of RSM used for feed manufacturing.

  17. Application of Response Surface Methodology (RSM) for wastewater of hospital by using electrocoagulation

    NASA Astrophysics Data System (ADS)

    Murdani; Jakfar; Ekawati, D.; Nadira, R.; Darmadi

    2018-04-01

    Hospital wastewater is a source of potential environmental contamination. Therefore, the waste water needs to be treated before it is discharged into the landfill. Various research methods have been used to treat hospital wastewater. However, some methods that have been implemented have not achieved the effluent standards for hospitals that have been set by the government. The experiment was conducted by an electrochemical method is electrolysis using aluminum electrodes with independent variable is the voltage, contact time and concentration of electrolytes. The response optimization using response surface with optimum conditions obtained by the contact time of 34.26 min, voltage 12 V, concentration electrolyte 0.38 M can decrease of COD 65.039%. The model recommended by the response surface for the three variables, namely quadratic response.

  18. Response Ant Colony Optimization of End Milling Surface Roughness

    PubMed Central

    Kadirgama, K.; Noor, M. M.; Abd Alla, Ahmed N.

    2010-01-01

    Metal cutting processes are important due to increased consumer demands for quality metal cutting related products (more precise tolerances and better product surface roughness) that has driven the metal cutting industry to continuously improve quality control of metal cutting processes. This paper presents optimum surface roughness by using milling mould aluminium alloys (AA6061-T6) with Response Ant Colony Optimization (RACO). The approach is based on Response Surface Method (RSM) and Ant Colony Optimization (ACO). The main objectives to find the optimized parameters and the most dominant variables (cutting speed, feedrate, axial depth and radial depth). The first order model indicates that the feedrate is the most significant factor affecting surface roughness. PMID:22294914

  19. Enzymatic catalysis treatment method of meat industry wastewater using lacasse.

    PubMed

    Thirugnanasambandham, K; Sivakumar, V

    2015-01-01

    The process of meat industry produces in a large amount of wastewater that contains high levels of colour and chemical oxygen demand (COD). So they must be pretreated before their discharge into the ecological system. In this paper, enzymatic catalysis (EC) was adopted to treat the meat wastewater. Box-Behnken design (BBD), an experimental design for response surface methodology (RSM), was used to create a set of 29 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the colour and COD removals. The experimental results show that EC could effectively reduce colour (95 %) and COD (86 %) at the optimum conditions of enzyme dose of 110 U/L, incubation time of 100 min, pH of 7 and temperature of 40 °C. RSM could be effectively adopted to optimize the operating multifactors in complex EC process.

  20. Study of the efficiency of moving bed biofilm reactor (MBBR) in LAS Anionic Detergent removal from hospital wastewater: determination of removing model according to response surface methodology (RSM).

    PubMed

    Shokoohi, Reza; Torkshavand, Zahra; Zolghadnasab, Hassan; Alikhani, Mohammad Yousef; Hemmat, Meisam Sedighi

    2017-04-01

    Detergents are considered one of the important pollutants in hospital wastewater. Achieving efficient and bio-friendly methods for the removal of these pollutants is considered as a concern for environmental researchers. This study aims at studying the efficiency of a moving bed biofilm reactor (MBBR) system for removing linear alkyl benzene sulfonate (LAS) from hospital wastewater with utilization of response surface methodology (RSM). The present study was carried out on a reactor with continuous hydraulic flow using media k 1 at pilot scale to remove detergent from hospital wastewater. The effect of independent variables including contact time, percentage of media filling and mixed liquor suspended solids (MLSS) concentration of 1000-3000 mg/l on the system efficiency were assessed. Methylene blue active substances (MBAS) and chemical oxygen demand (COD) 750-850 mg/l were used by closed laboratory method in order to measure the concentration of LAS. The results revealed that the removal efficiency of LAS detergent and COD using media k 1 , retention time of 24 hours, and MLSS concentration of around 3,000 mg/l were 92.3 and 95.8%, respectively. The results showed that the MBBR system as a bio-friendly compatible method has high efficiency in removing detergents from hospital wastewater and can achieve standard output effluent in acceptable time.

  1. Preparation of Ti species coating hydrotalcite by chemical vapor deposition for photodegradation of azo dye.

    PubMed

    Xiao, Gaofei; Zeng, HongYan; Xu, Sheng; Chen, ChaoRong; Zhao, Quan; Liu, XiaoJun

    2017-10-01

    TiO 2 in anatase crystal phase is a very effective catalyst in the photocatalytic oxidation of organic compounds in water. To improve its photocatalytic activity, the Ti-coating MgAl hydrotalcite (Ti-MgAl-LDH) was prepared by chemical vapor deposition (CVD) method. Response surface method (RSM) was employed to evaluate the effect of Ti species coating parameters on the photocatalytic activity, which was found to be affected by the furnace temperature, N 2 flow rate and influx time of precursor gas. Application of RSM successfully increased the photocatalytic efficiency of the Ti-MgAl-LDH in methylene blue photodegradation under UV irradiation, leading to improved economy of the process. According to the results from X-ray diffraction, scanning electron microscopy, Brunner-Emmet-Teller and Barrett-Joyner-Hallender, thermogravimetric and differential thermal analysis, UV-vis diffuse reflectance spectra analyses, the Ti species (TiO 2 or/and Ti 4+ ) were successfully coated on the MgAl-LDH matrix. The Ti species on the surface of the Ti-MgAl-LDH lead to a higher photocatalytic performance than commercial TiO 2 -P25. The results suggested that CVD method provided a new approach for the industrial preparation of Ti-coating MgAl-LDH material with good photocatalytic performances. Copyright © 2017. Published by Elsevier B.V.

  2. Optimization of suitable ethanol blend ratio for motorcycle engine using response surface method.

    PubMed

    Chen, Yu-Liang; Chen, Suming; Tsai, Jin-Ming; Tsai, Chao-Yin; Fang, Hsin-Hsiung; Yang, I-Chang; Liu, Sen-Yuan

    2012-01-01

    In view of energy shortage and air pollution, ethanol-gasoline blended fuel used for motorcycle engine was studied in this work. The emissions of carbon monoxide (CO), nitrogen oxides (NO(X)) and engine performance of a 125 cc four-stroke motorcycle engine with original carburetor using ethanol-gasoline fuels were investigated. The model of three-variable Box Behnken design (BBD) was used for experimental design, the ethanol blend ratios were prepared at 0, 10, 20 vol%; the speeds of motorcycle were selected as 30, 45, 60 km/h; and the throttle positions were set at 30, 60, 90 %. Both engine performance and air pollutant emissions were then analyzed by response surface method (RSM) to yield optimum operation parameters for tolerable pollutant emissions and maximum engine performance. The RSM optimization analysis indicated that the most suitable ethanol-gasoline blended ratio was found at the range of 3.92-4.12 vol% to yield a comparable fuel conversion efficiency, while considerable reductions of exhaust pollutant emissions of CO (-29 %) and NO(X) (-12 %) when compared to pure gasoline fuel. This study demonstrated low ethanol-gasoline blended fuels could be used in motorcycle carburetor engines without any modification to keep engine power while reducing exhaust pollutants.

  3. Formulation and optimization of mucoadhesive buccal patches of losartan potassium by using response surface methodology

    PubMed Central

    Ikram, Md.; Gilhotra, Neeraj; Gilhotra, Ritu Mehra

    2015-01-01

    Background: This study was undertaken with an aim to systematically design a model of factors that would yield an optimized sustained release dosage form of an anti-hypertensive agent, losartan potassium, using response surface methodology (RSM) by employing 32 full factorial design. Materials and Methods: Mucoadhesive buccal patches were prepared using different grades of hydroxypropyl methylcellulose (HPMC) (K4M and K100M) and polyvinylpyrrolidone-K30 by solvent casting method. The amount of the release retardant polymers – HPMC K4M (X1) and HPMC K100M (X2) was taken as an independent variable. The dependent variables were the burst release in 30 min (Y1), cumulative percentage release of drug after 8 h (Y2) and swelling index (Y3) of the patches. In vitro release and swelling studies were carried out and the data were fitted to kinetic equations. Results: The physicochemical, bioadhesive, and swelling properties of patches were found to vary significantly depending on the viscosity of the polymers and their combination. Patches showed an initial burst release preceding a more gradual sustained release phase following a nonfickian diffusion process. Discussion: The results indicate that suitable bioadhesive buccal patches with desired permeability could be prepared, facilitated with the RSM. PMID:26682205

  4. Optimization of ultrasound-assisted extraction of charantin from Momordica charantia fruits using response surface methodology

    PubMed Central

    Ahamad, Javed; Amin, Saima; Mir, Showkat R.

    2015-01-01

    Background: Momordica charantia Linn. (Cucurbitaceae) fruits are well known for their beneficial effects in diabetes that are often attributed to its bioactive component charantin. Objective: The aim of the present study is to develop and optimize an efficient protocol for the extraction of charantin from M. charantia fruits. Materials and Methods: Response surface methodology (RSM) was used for the optimization of ultrasound-assisted extraction (UAE) conditions. RSM was based on a three-level, three-variable Box-Behnken design (BBD), and the studied variables included solid to solvent ratio, extraction temperature, and extraction time. Results: The optimal conditions predicted by the BBD were: UAE with methanol: Water (80:20, v/v) at 46°C for 120 min with solid to solvent ratio of 1:26 w/v, under which the yield of charantin was 3.18 mg/g. Confirmation trials under slightly adjusted conditions yielded 3.12 ± 0.14 mg/g of charantin on dry weight basis of fruits. The result of UAE was also compared with Soxhlet extraction method and UAE was found 2.74-fold more efficient than the Soxhlet extraction for extracting charantin. Conclusions: A facile UAE protocol for a high extraction yield of charantin was developed and validated. PMID:26681889

  5. Modeling and optimization of reductive degradation of chloramphenicol in aqueous solution by zero-valent bimetallic nanoparticles.

    PubMed

    Singh, Kunwar P; Singh, Arun K; Gupta, Shikha; Rai, Premanjali

    2012-07-01

    The present study aims to investigate the individual and combined effects of temperature, pH, zero-valent bimetallic nanoparticles (ZVBMNPs) dose, and chloramphenicol (CP) concentration on the reductive degradation of CP using ZVBMNPs in aqueous medium. Iron-silver ZVBMNPs were synthesized. Batch experimental data were generated using a four-factor statistical experimental design. CP reduction by ZVBMNPs was optimized using the response surface modeling (RSM) and artificial neural network-genetic algorithm (ANN-GA) approaches. The RSM and ANN methodologies were also compared for their predictive and generalization abilities using the same training and validation data set. Reductive by-products of CP were identified using liquid chromatography-mass spectrometry technique. The optimized process variables (RSM and ANN-GA approaches) yielded CP reduction capacity of 57.37 and 57.10 mg g(-1), respectively, as compared to the experimental value of 54.0 mg g(-1) with un-optimized variables. The ANN-GA and RSM methodologies yielded comparable results and helped to achieve a higher reduction (>6%) of CP by the ZVBMNPs as compared to the experimental value. The root mean squared error, relative standard error of prediction and correlation coefficient between the measured and model-predicted values of response variable were 1.34, 3.79, and 0.964 for RSM and 0.03, 0.07, and 0.999 for ANN models for the training and 1.39, 3.47, and 0.996 for RSM and 1.25, 3.11, and 0.990 for ANN models for the validation set. Predictive and generalization abilities of both the RSM and ANN models were comparable. The synthesized ZVBMNPs may be used for an efficient reductive removal of CP from the water.

  6. Artificial Neural Network Modeling and Genetic Algorithm Optimization for Cadmium Removal from Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO) Composites

    PubMed Central

    Fan, Mingyi; Li, Tongjun; Hu, Jiwei; Cao, Rensheng; Wei, Xionghui; Shi, Xuedan; Ruan, Wenqian

    2017-01-01

    Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites were synthesized in the present study by chemical deposition method and were then characterized by various methods, such as Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The nZVI/rGO composites prepared were utilized for Cd(II) removal from aqueous solutions in batch mode at different initial Cd(II) concentrations, initial pH values, contact times, and operating temperatures. Response surface methodology (RSM) and artificial neural network hybridized with genetic algorithm (ANN-GA) were used for modeling the removal efficiency of Cd(II) and optimizing the four removal process variables. The average values of prediction errors for the RSM and ANN-GA models were 6.47% and 1.08%. Although both models were proven to be reliable in terms of predicting the removal efficiency of Cd(II), the ANN-GA model was found to be more accurate than the RSM model. In addition, experimental data were fitted to the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherms. It was found that the Cd(II) adsorption was best fitted to the Langmuir isotherm. Examination on thermodynamic parameters revealed that the removal process was spontaneous and exothermic in nature. Furthermore, the pseudo-second-order model can better describe the kinetics of Cd(II) removal with a good R2 value than the pseudo-first-order model. PMID:28772901

  7. Artificial Neural Network Modeling and Genetic Algorithm Optimization for Cadmium Removal from Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO) Composites.

    PubMed

    Fan, Mingyi; Li, Tongjun; Hu, Jiwei; Cao, Rensheng; Wei, Xionghui; Shi, Xuedan; Ruan, Wenqian

    2017-05-17

    Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites were synthesized in the present study by chemical deposition method and were then characterized by various methods, such as Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The nZVI/rGO composites prepared were utilized for Cd(II) removal from aqueous solutions in batch mode at different initial Cd(II) concentrations, initial pH values, contact times, and operating temperatures. Response surface methodology (RSM) and artificial neural network hybridized with genetic algorithm (ANN-GA) were used for modeling the removal efficiency of Cd(II) and optimizing the four removal process variables. The average values of prediction errors for the RSM and ANN-GA models were 6.47% and 1.08%. Although both models were proven to be reliable in terms of predicting the removal efficiency of Cd(II), the ANN-GA model was found to be more accurate than the RSM model. In addition, experimental data were fitted to the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherms. It was found that the Cd(II) adsorption was best fitted to the Langmuir isotherm. Examination on thermodynamic parameters revealed that the removal process was spontaneous and exothermic in nature. Furthermore, the pseudo-second-order model can better describe the kinetics of Cd(II) removal with a good R² value than the pseudo-first-order model.

  8. A Comparison Study of Rule Space Method and Neural Network Model for Classifying Individuals and an Application.

    ERIC Educational Resources Information Center

    Hayashi, Atsuhiro

    Both the Rule Space Method (RSM) and the Neural Network Model (NNM) are techniques of statistical pattern recognition and classification approaches developed for applications from different fields. RSM was developed in the domain of educational statistics. It started from the use of an incidence matrix Q that characterizes the underlying cognitive…

  9. Molecular Characterization of Global Regulatory RNA Species That Control Pathogenicity Factors in Erwinia amylovora and Erwinia herbicola pv. gypsophilae†‡

    PubMed Central

    Ma, Weilei; Cui, Yaya; Liu, Yang; Dumenyo, C. Korsi; Mukherjee, Asita; Chatterjee, Arun K.

    2001-01-01

    rsmBEcc specifies a nontranslatable RNA regulator that controls exoprotein production and pathogenicity in soft rot-causing Erwinia carotovora subsp. carotovora. This effect of rsmBEcc RNA is mediated mostly by neutralizing the function of RsmAEcc, an RNA-binding protein of E. carotovora subsp. carotovora, which acts as a global negative regulator. To determine the occurrence of functional homologs of rsmBEcc in non-soft-rot-causing Erwinia species, we cloned the rsmB genes of E. amylovora (rsmBEa) and E. herbicola pv. gypsophilae (rsmBEhg). We show that rsmBEa in E. amylovora positively regulates extracellular polysaccharide (EPS) production, motility, and pathogenicity. In E. herbicola pv. gypsophilae, rsmBEhg elevates the levels of transcripts of a cytokinin (etz) gene and stimulates the production of EPS and yellow pigment as well as motility. RsmAEa and RsmAEhg have more than 93% identity to RsmAEcc and, like the latter, function as negative regulators by affecting the transcript stability of the target gene. The rsmB genes reverse the negative effects of RsmAEa, RsmAEhg, and RsmAEcc, but the extent of reversal is highest with homologous combinations of rsm genes. These observations and findings that rsmBEa and rsmBEhg RNA bind RsmAEcc indicate that the rsmB effect is channeled via RsmA. Additional support for this conclusion comes from the observation that the rsmB genes are much more effective as positive regulators in a RsmA+ strain of E. carotovora subsp. carotovora than in its RsmA− derivative. E. herbicola pv. gypsophilae produces a 290-base rsmB transcript that is not subject to processing. By contrast, E. amylovora produces 430- and 300-base rsmB transcripts, the latter presumably derived by processing of the primary transcript as previously noted with the transcripts of rsmBEcc. Southern blot hybridizations revealed the presence of rsmB homologs in E. carotovora, E. chrysanthemi, E. amylovora, E. herbicola, E. stewartii and E. rhapontici, as well as in other enterobacteria such as Escherichia coli, Salmonella enterica serovar Typhimurium, Serratia marcescens, Shigella flexneri, Enterobacter aerogenes, Klebsiella pneumoniae, Yersinia enterocolitica, and Y. pseudotuberculosis. A comparison of rsmB sequences from several of these enterobacterial species revealed a highly conserved 34-mer region which is predicted to play a role in positive regulation by rsmB RNA. PMID:11222584

  10. Investigation of equilibrium and kinetics of Cr(VI) adsorption by dried Bacillus cereus using response surface methodology.

    PubMed

    Yang, Kai; Zhang, Jing; Yang, Tao; Wang, Hongyu

    2016-01-01

    In this study, response surface methodology (RSM) based on three-variable-five-level central composite rotatable design was used to analyze the effects of combined and individual operating parameters (biomass dose, initial concentration of Cr(VI) and pH) on the Cr(VI) adsorption capacity of dried Bacillus cereus. A quadratic polynomial equation was obtained to predict the adsorbed Cr(VI) amount. Analysis of variance showed that the effect of biomass dose was the key factor in the removal of Cr(VI). The maximum adsorbed Cr(VI) amount (30.93 mg g(-1)) was found at 165.30 mg L(-1), 2.96, and 3.01 g L(-1) for initial Cr(VI) concentration, pH, and biosorbent dosage, respectively. The surface chemical functional groups and microstructure of unloaded and Cr(VI)-loaded dried Bacillus cereus were identified by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively. Besides, the results gained from these studies indicated that Langmuir isotherm and the second-order rate expression were suitable for the removal of Cr(VI) from wastewater. The results revealed RSM was an effective method for optimizing biosorption process, and dried Bacillus cereus had a remarkable performance on the removal of Cr(VI) from wastewater.

  11. Using Response Surface Methods to Correlate the Modal Test of an Inflatable Test Article

    NASA Technical Reports Server (NTRS)

    Gupta, Anju

    2013-01-01

    This paper presents a practical application of response surface methods (RSM) to correlate a finite element model of a structural modal test. The test article is a quasi-cylindrical inflatable structure which primarily consists of a fabric weave, with an internal bladder and metallic bulkheads on either end. To mitigate model size, the fabric weave was simplified by representing it with shell elements. The task at hand is to represent the material behavior of the weave. The success of the model correlation is measured by comparing the four major modal frequencies of the analysis model to the four major modal frequencies of the test article. Given that only individual strap material properties were provided and material properties of the overall weave were not available, defining the material properties of the finite element model became very complex. First it was necessary to determine which material properties (modulus of elasticity in the hoop and longitudinal directions, shear modulus, Poisson's ratio, etc.) affected the modal frequencies. Then a Latin Hypercube of the parameter space was created to form an efficiently distributed finite case set. Each case was then analyzed with the results input into RSM. In the resulting response surface it was possible to see how each material parameter affected the modal frequencies of the analysis model. If the modal frequencies of the analysis model and its corresponding parameters match the test with acceptable accuracy, it can be said that the model correlation is successful.

  12. Development of Response Surface Models for Rapid Analysis & Multidisciplinary Optimization of Launch Vehicle Design Concepts

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1999-01-01

    Multdisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO. An alternative has been to utilize response surface methodology (RSM) to obtain polynomial models that approximate the functional relationships between performance characteristics and design variables. These approximation models, called response surface models, are then used to integrate the disciplines using mathematical programming methods for efficient system level design analysis, MDO and fast sensitivity simulations. A second-order response surface model of the form given has been commonly used in RSM since in many cases it can provide an adequate approximation especially if the region of interest is sufficiently limited.

  13. Analyzing parameters optimisation in minimising warpage on side arm using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Rayhana, N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.

    2017-09-01

    This paper presents a systematic methodology to analyse the warpage of the side arm part using Autodesk Moldflow Insight software. Response Surface Methodology (RSM) was proposed to optimise the processing parameters that will result in optimal solutions by efficiently minimising the warpage of the side arm part. The variable parameters considered in this study was based on most significant parameters affecting warpage stated by previous researchers, that is melt temperature, mould temperature and packing pressure while adding packing time and cooling time as these is the commonly used parameters by researchers. The results show that warpage was improved by 10.15% and the most significant parameters affecting warpage are packing pressure.

  14. Enhanced α-amylase production by a marine protist, Ulkenia sp. using response surface methodology and genetic algorithm.

    PubMed

    Shirodkar, Priyanka V; Muraleedharan, Usha Devi

    2017-11-26

    Amylases are a group of enzymes with a wide variety of industrial applications. Enhancement of α-amylase production from the marine protists, thraustochytrids has been attempted for the first time by applying statistical-based experimental designs using response surface methodology (RSM) and genetic algorithm (GA) for optimization of the most influencing process variables. A full factorial central composite experimental design was used to study the cumulative interactive effect of nutritional components viz., glucose, corn starch, and yeast extract. RSM was performed on two objectives, that is, growth of Ulkenia sp. AH-2 (ATCC® PRA-296) and α-amylase activity. When GA was conducted for maximization of the enzyme activity, the optimal α-amylase activity was found to be 71.20 U/mL which was close to that obtained by RSM (71.93 U/mL), both of which were in agreement with the predicted value of 72.37 U/mL. Optimal growth at the optimized process variables was found to be 1.89A 660nm . The optimized medium increased α-amylase production by 1.2-fold.

  15. Optimization of hydrolysis conditions for the production of glucomanno-oligosaccharides from konjac using β-mannanase by response surface methodology.

    PubMed

    Chen, Junfan; Liu, Desheng; Shi, Bo; Wang, Hai; Cheng, Yongqiang; Zhang, Wenjing

    2013-03-01

    Glucomanno-oligosaccharides (GMO), usually produced from hydrolysis of konjac tubers with a high content of glucomannan, have a positive effect on Bifidobacterium as well as a variety of other physiological activities. Response surface methodology (RSM) was employed to optimize the hydrolysis time, hydrolysis temperature, pH and enzyme to substrate ratio (E/S) to obtain a high GMO yield from konjac tubers. From the signal-factor experiments, it was concluded that the change in the direct reducing sugar (DRS) is consistent with total reducing sugar (TRS) but contrary to the degree of polymerization (DP). DRS was used as an indicator of the content of GMO in the RSM study. The optimum RSM operating conditions were: reaction time of 3.4 h, reaction temperature of 41.0°C, pH of 7.1 and E/S of 0.49. The results suggested that the enzymatic hydrolysis was enhanced by temperature, pH and incubation time. Model validation showed good agreement between experimental results and the predicted responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Modeling of biosorption of Cu(II) by alkali-modified spent tea leaves using response surface methodology (RSM) and artificial neural network (ANN)

    NASA Astrophysics Data System (ADS)

    Ghosh, Arpita; Das, Papita; Sinha, Keka

    2015-06-01

    In the present work, spent tea leaves were modified with Ca(OH)2 and used as a new, non-conventional and low-cost biosorbent for the removal of Cu(II) from aqueous solution. Response surface methodology (RSM) and artificial neural network (ANN) were used to develop predictive models for simulation and optimization of the biosorption process. The influence of process parameters (pH, biosorbent dose and reaction time) on the biosorption efficiency was investigated through a two-level three-factor (23) full factorial central composite design with the help of Design Expert. The same design was also used to obtain a training set for ANN. Finally, both modeling methodologies were statistically compared by the root mean square error and absolute average deviation based on the validation data set. Results suggest that RSM has better prediction performance as compared to ANN. The biosorption followed Langmuir adsorption isotherm and it followed pseudo-second-order kinetic. The optimum removal efficiency of the adsorbent was found as 96.12 %.

  17. Investigation and optimization of the novel UASB-MFC integrated system for sulfate removal and bioelectricity generation using the response surface methodology (RSM).

    PubMed

    Zhang, Baogang; Zhang, Jing; Yang, Qi; Feng, Chuanping; Zhu, Yuling; Ye, Zhengfang; Ni, Jinren

    2012-11-01

    COD/sulfate ratio and hydraulic residence time (HRT), both of which influence sulfate loadings jointly, are recognized as the most two important affecting factors for sulfate removal and bioelectricity generation in the novel up-flow anaerobic sludge blanket reactor-microbial fuel cell (UASB-MFC) integrated system. The response surface methodology (RSM) was employed for the optimization of this system and the optimum condition with COD/sulfate ratio of 2.3 and HRT of 54.3h was obtained with the target of maximizing the power output. In terms of maximizing the total sulfate removal efficiency, the obtained optimum condition was COD/sulfate ratio of 3.7 and HRT of 55.6h. Experimental results indicated the undistorted simulation and reliable optimized results. These demonstrated that RSM was effective to evaluate and optimize the UASB-MFC system for sulfate removal and energy recovery, providing a promising guide to further improvement of the system for potential applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Repetitive and Stereotyped Movements in Children with Autism Spectrum Disorders Late in the Second Year of Life

    PubMed Central

    Morgan, Lindee; Wetherby, Amy M.; Barber, Angie

    2008-01-01

    Objectives The purpose of this study was to examine group differences and relationships with later developmental level and autism symptoms using a new clinical tool developed to measure repetitive and stereotyped movements (RSM) in young children. Method Videotaped behavior samples using the Communication and Symbolic Behavior Scales Developmental Profile (CSBS; Wetherby & Prizant, 2002) were coded for children with autism spectrum disorders (ASD; n=50), developmental delays without ASD (DD; n=25), and typical development (TD; n=50) between 18 and 24 months of age. Results Children with ASD demonstrated significantly higher rate and larger inventory of RSM with objects and body during a systematic behavior sample than both the DD and TD groups. Measures of RSM were related to concurrent measures of social communication and predicted developmental outcomes and autism symptoms in the fourth year for the ASD group. None of the correlations between RSM and autism symptoms remained significant when controlling for CSBS Symbolic level. RSM with objects predicted unique variance in the severity of autism symptoms in the fourth year beyond that predicted by social communication measures alone. Conclusions This study provides support for the diagnostic significance of RSM in children under 24 months of age and documents the utility of this RSM measurement tool as a companion to the CSBS. PMID:18503532

  19. Optimization of preparation of antioxidative peptides from pumpkin seeds using response surface method.

    PubMed

    Fan, Sanhong; Hu, Yanan; Li, Chen; Liu, Yanrong

    2014-01-01

    Protein isolates of pumpkin (Cucurbita pepo L) seeds were hydrolyzed by acid protease to prepare antioxidative peptides. The hydrolysis conditions were optimized through Box-Behnken experimental design combined with response surface method (RSM). The second-order model, developed for the DPPH radical scavenging activity of pumpkin seed hydrolysates, showed good fit with the experiment data with a high value of coefficient of determination (0.9918). The optimal hydrolysis conditions were determined as follows: hydrolyzing temperature 50°C, pH 2.5, enzyme amount 6000 U/g, substrate concentration 0.05 g/ml and hydrolyzing time 5 h. Under the above conditions, the scavenging activity of DPPH radical was as high as 92.82%.

  20. Estimation of design space for an extrusion-spheronization process using response surface methodology and artificial neural network modelling.

    PubMed

    Sovány, Tamás; Tislér, Zsófia; Kristó, Katalin; Kelemen, András; Regdon, Géza

    2016-09-01

    The application of the Quality by Design principles is one of the key issues of the recent pharmaceutical developments. In the past decade a lot of knowledge was collected about the practical realization of the concept, but there are still a lot of unanswered questions. The key requirement of the concept is the mathematical description of the effect of the critical factors and their interactions on the critical quality attributes (CQAs) of the product. The process design space (PDS) is usually determined by the use of design of experiment (DoE) based response surface methodologies (RSM), but inaccuracies in the applied polynomial models often resulted in the over/underestimation of the real trends and changes making the calculations uncertain, especially in the edge regions of the PDS. The completion of RSM with artificial neural network (ANN) based models is therefore a commonly used method to reduce the uncertainties. Nevertheless, since the different researches are focusing on the use of a given DoE, there is lack of comparative studies on different experimental layouts. Therefore, the aim of present study was to investigate the effect of the different DoE layouts (2 level full factorial, Central Composite, Box-Behnken, 3 level fractional and 3 level full factorial design) on the model predictability and to compare model sensitivities according to the organization of the experimental data set. It was revealed that the size of the design space could differ more than 40% calculated with different polynomial models, which was associated with a considerable shift in its position when higher level layouts were applied. The shift was more considerable when the calculation was based on RSM. The model predictability was also better with ANN based models. Nevertheless, both modelling methods exhibit considerable sensitivity to the organization of the experimental data set, and the use of design layouts is recommended, where the extreme values factors are more represented. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Optimization of the production conditions of the lipase produced by Bacillus cereus from rice flour through Plackett-Burman Design (PBD) and response surface methodology (RSM).

    PubMed

    Vasiee, Alireza; Behbahani, Behrooz Alizadeh; Yazdi, Farideh Tabatabaei; Moradi, Samira

    2016-12-01

    In this study, the screening of lipase positive bacteria from rice flour was carried out by Rhodamin B agar plate method. Bacillus cereus was identified by 16S rDNA method. Screening of the appropriate variables and optimization of the lipase production was performed using Plackett-Burman design (PBD) and response surface methodology (RSM). Among the isolated bacteria, an aerobic Bacillus cereus strain was recognized as the best lipase-producing bacteria (177.3 ± 20 U/ml). Given the results, the optimal enzyme production conditions were achieved with coriander seed extract (CSE)/yeast extract ratio of 16.9 w/w, olive oil (OO) and MgCl 2 concentration of 2.37 g/L and 24.23 mM, respectively. In these conditions, the lipase activity (LA) was predicted 343 U/mL that was approximately close to the predicted value (324 U/mL), which was increased 1.83 fold LA compared with the non-optimized lipase. The kinetic parameters of V max and K m for the lipase were measured 0.367 μM/min.mL and 5.3 mM, respectively. The lipase producing Bacillus cereus was isolated and RSM was used for the optimization of enzyme production. The CSE/yeast extract ratio of 16.9 w/w, OO concentration of 2.37 g/L and MgCl 2 concentration of 24.23 mM, were found to be the optimal conditions of the enzyme production process. LA at optimal enzyme production conditions was observed 1.83 times more than the non-optimal conditions. Ultimately, it can be concluded that the isolated B. cereus from rice flour is a proper source of lipase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Investigation of the first-order phase transition kinetics using the method of pulsed photothermal surface deformation: radial measurements

    NASA Astrophysics Data System (ADS)

    Vintzentz, S. V.; Sandomirsky, V. B.

    1992-09-01

    An extension of the photothermal surface deformation (PTSD) method to study the macroscopic kinetics of the first-order phase transition (PTr) is given. The movement of the phase interface (PI) over a surface with a PTr locally induced in the subsurface volume by a focused laser pulse is investigated for the first time using radial measurements of the PTSD kinetics. For the known metal-to-semiconductor PTr in VO 2 (a good model system) a procedure is suggested for measuring the maximum size rsm of the "hot" (metal) phase on the surface (a parameter most difficult to determine) as well as for estimating the velocity of the PI movement over the surface, vs, and in the bulk, vb. Besides, it is shown that the PTSD method may be used to determine the "local" threshold energy E0 needed for the laser-induced PTr and the "local" latent heat L of the PTr. This demonstrates the feasibility of scanning surface E0- and L-microscopy.

  3. Prediction of surface roughness in turning of Ti-6Al-4V using cutting parameters, forces and tool vibration

    NASA Astrophysics Data System (ADS)

    Sahu, Neelesh Kumar; Andhare, Atul B.; Andhale, Sandip; Raju Abraham, Roja

    2018-04-01

    Present work deals with prediction of surface roughness using cutting parameters along with in-process measured cutting force and tool vibration (acceleration) during turning of Ti-6Al-4V with cubic boron nitride (CBN) inserts. Full factorial design is used for design of experiments using cutting speed, feed rate and depth of cut as design variables. Prediction model for surface roughness is developed using response surface methodology with cutting speed, feed rate, depth of cut, resultant cutting force and acceleration as control variables. Analysis of variance (ANOVA) is performed to find out significant terms in the model. Insignificant terms are removed after performing statistical test using backward elimination approach. Effect of each control variables on surface roughness is also studied. Correlation coefficient (R2 pred) of 99.4% shows that model correctly explains the experiment results and it behaves well even when adjustment is made in factors or new factors are added or eliminated. Validation of model is done with five fresh experiments and measured forces and acceleration values. Average absolute error between RSM model and experimental measured surface roughness is found to be 10.2%. Additionally, an artificial neural network model is also developed for prediction of surface roughness. The prediction results of modified regression model are compared with ANN. It is found that RSM model and ANN (average absolute error 7.5%) are predicting roughness with more than 90% accuracy. From the results obtained it is found that including cutting force and vibration for prediction of surface roughness gives better prediction than considering only cutting parameters. Also, ANN gives better prediction over RSM models.

  4. [Optimization of riboflavin sodium phosphate loading to calcium alginate floating microspheres by response surface methodology].

    PubMed

    Zhang, An-yang; Fan, Tian-yuan

    2009-12-18

    To investigate the preparation, optimization and in vitro properties of riboflavin sodium phosphate floating microspheres. The floating microspheres composed of riboflavin sodium phosphate and calcium alginate were prepared using ion gelatin-oven drying method. The properties of the microspheres were investigated, including the buoyancy, release, appearance and entrapment efficiency. The formulation was optimized by response surface methodology (RSM). The optimized microspheres were round. The entrapment efficiency was 57.49%. All the microspheres could float on the artificial gastric juice over 8 hours. The release of the drug from the microspheres complied with Fick's diffusion.

  5. Genome-wide mapping of the RNA targets of the Pseudomonas aeruginosa riboregulatory protein RsmN.

    PubMed

    Romero, Manuel; Silistre, Hazel; Lovelock, Laura; Wright, Victoria J; Chan, Kok-Gan; Hong, Kar-Wai; Williams, Paul; Cámara, Miguel; Heeb, Stephan

    2018-04-30

    Pseudomonads typically carry multiple non-identical alleles of the post-transcriptional regulator rsmA. In Pseudomonas aeruginosa, RsmN is notable in that its structural rearrangement confers distinct and overlapping functions with RsmA. However, little is known about the specificities of RsmN for its target RNAs and overall impact on the biology of this pathogen. We purified and mapped 503 transcripts directly bound by RsmN in P. aeruginosa. About 200 of the mRNAs identified encode proteins of demonstrated function including some determining acute and chronic virulence traits. For example, RsmN reduces biofilm development both directly and indirectly via multiple pathways, involving control of Pel exopolysaccharide biosynthesis and c-di-GMP levels. The RsmN targets identified are also shared with RsmA, although deletion of rsmN generally results in less pronounced phenotypes than those observed for ΔrsmA or ΔrsmArsmNind mutants, probably as a consequence of different binding affinities. Targets newly identified for the Rsm system include the small non-coding RNA CrcZ involved in carbon catabolite repression, for which differential binding of RsmN and RsmA to specific CrcZ regions is demonstrated. The results presented here provide new insights into the intricacy of riboregulatory networks involving multiple but distinct RsmA homologues.

  6. Optimization of ultrasound-assisted extraction of charantin from Momordica charantia fruits using response surface methodology.

    PubMed

    Ahamad, Javed; Amin, Saima; Mir, Showkat R

    2015-01-01

    Momordica charantia Linn. (Cucurbitaceae) fruits are well known for their beneficial effects in diabetes that are often attributed to its bioactive component charantin. The aim of the present study is to develop and optimize an efficient protocol for the extraction of charantin from M. charantia fruits. Response surface methodology (RSM) was used for the optimization of ultrasound-assisted extraction (UAE) conditions. RSM was based on a three-level, three-variable Box-Behnken design (BBD), and the studied variables included solid to solvent ratio, extraction temperature, and extraction time. The optimal conditions predicted by the BBD were: UAE with methanol: Water (80:20, v/v) at 46°C for 120 min with solid to solvent ratio of 1:26 w/v, under which the yield of charantin was 3.18 mg/g. Confirmation trials under slightly adjusted conditions yielded 3.12 ± 0.14 mg/g of charantin on dry weight basis of fruits. The result of UAE was also compared with Soxhlet extraction method and UAE was found 2.74-fold more efficient than the Soxhlet extraction for extracting charantin. A facile UAE protocol for a high extraction yield of charantin was developed and validated.

  7. Development of a heat-stable and orally delivered recombinant M2e-expressing B. subtilis spore-based influenza vaccine.

    PubMed

    Zhao, Guangyu; Miao, Yu; Guo, Yan; Qiu, Hongjie; Sun, Shihui; Kou, Zhihua; Yu, Hong; Li, Junfeng; Chen, Yue; Jiang, Shibo; Du, Lanying; Zhou, Yusen

    2014-01-01

    Highly conserved ectodomain of influenza virus M2 protein (M2e) is an important target for the development of universal influenza vaccines. Today, the use of chemical or genetic fusion constructs have been undertaken to overcome the low immunogenicity of M2e in vaccine formulation. However, current M2e vaccines are neither orally delivered nor heat-stable. In this study, we evaluated the immune efficacy of an orally delivered recombinant M2e vaccine containing 3 molcules of M2e consensus sequence of influenza A viruses, termed RSM2e3. To accomplish this, CotB, a spore coat of Bacillus subtilis (B. subtilis), was used as a fusion partner, and heat-stable nonpathogenic B. subtilis spores were used as the carrier. Our results showed that CotB-M2e3 fusion had no effect on spore structure or function in the resultant recombinant RSM2e3 strain and that heterologous influenza virus M2e protein was successfully displayed on the surface of the recombinant RSM2e3 spore. Importantly, recombinant RSM2e3 spores elicited strong and long-term M2e-specific systemic and mucosal immune responses, completely protecting immunized mice from lethal challenge of A/PR/8/34(H1N1) influenza virus. Taken together, our study forms a solid basis for the development of a novel orally delivered and heat-stable influenza vaccine based on B. subtilis spore surface display.

  8. Development and case study of a science-based software platform to support policy making on air quality.

    PubMed

    Zhu, Yun; Lao, Yanwen; Jang, Carey; Lin, Chen-Jen; Xing, Jia; Wang, Shuxiao; Fu, Joshua S; Deng, Shuang; Xie, Junping; Long, Shicheng

    2015-01-01

    This article describes the development and implementations of a novel software platform that supports real-time, science-based policy making on air quality through a user-friendly interface. The software, RSM-VAT, uses a response surface modeling (RSM) methodology and serves as a visualization and analysis tool (VAT) for three-dimensional air quality data obtained by atmospheric models. The software features a number of powerful and intuitive data visualization functions for illustrating the complex nonlinear relationship between emission reductions and air quality benefits. The case study of contiguous U.S. demonstrates that the enhanced RSM-VAT is capable of reproducing the air quality model results with Normalized Mean Bias <2% and assisting in air quality policy making in near real time. Copyright © 2014. Published by Elsevier B.V.

  9. Preparation and Characterization of Sulfonic Acid Functionalized Silica and Its Application for the Esterification of Ethanol and Maleic Acid

    NASA Astrophysics Data System (ADS)

    Sirsam, Rajkumar; Usmani, Ghayas

    2016-04-01

    The surface of commercially available silica gel, 60-200 mesh size, was modified with sulfonic acid through surface activation, grafting of 3-Mercaptopropyltrimethoxysilane, oxidation and acidification of 3-Mercaptopropylsilica. Sulfonic Acid Functionalization of Silica (SAFS) was confirmed by Fourier Transform Infra-red (FTIR) spectroscopy and thermal gravimetric analysis. Acid-base titration was used to estimate the cation exchange capacity of the SAFS. Catalytic activity of SAFS was judged for the esterification of ethanol with maleic acid. An effect of different process parameters viz. molar ratio, catalyst loading, speed of agitation and temperature were studied and optimized by Box Behnken Design (BBD) of Response Surface Methodology (RSM). Quadratic model developed by BBD-RSM reasonably satisfied an experimental and predicted values with correlation coefficient value R2 = 0.9504.

  10. Application of electrochemical peroxidation (ECP) process for waste-activated sludge stabilization and system optimization using response surface methodology (RSM).

    PubMed

    Gholikandi, Gagik Badalians; Kazemirad, Khashayar

    2018-03-01

    In this study, the performance of the electrochemical peroxidation (ECP) process for removing the volatile suspended solids (VSS) content of waste-activated sludge was evaluated. The Fe 2+ ions required by the process were obtained directly from iron electrodes in the system. The performance of the ECP process was investigated in various operational conditions employing a laboratory-scale pilot setup and optimized by response surface methodology (RSM). According to the results, the ECP process showed its best performance when the pH value, current density, H 2 O 2 concentration and the retention time were 3, 3.2 mA/cm 2 , 1,535 mg/L and 240 min, respectively. In these conditions, the introduced Fe 2+ concentration was approximately 500 (mg/L) and the VSS removal efficiency about 74%. Moreover, the results of the microbial characteristics of the raw and the stabilized sludge demonstrated that the ECP process is able to remove close to 99.9% of the coliforms in the raw sludge during the stabilization process. The energy consumption evaluation showed that the required energy of the ECP reactor (about 1.8-2.5 kWh (kg VSS removed) -1 ) is considerably lower than for aerobic digestion, the conventional waste-activated sludge stabilization method (about 2-3 kWh (kg VSS removed) -1 ). The RSM optimization process showed that the best operational conditions of the ECP process comply with the experimental results, and the actual and the predicted results are in good conformity with each other. This feature makes it possible to predict the introduced Fe 2+ concentrations into the system and the VSS removal efficiency of the process precisely.

  11. Application of response surface methodology for optimization of biosorption of fluoride from groundwater using Shorea robusta flower petal

    NASA Astrophysics Data System (ADS)

    Biswas, G.; Kumari, M.; Adhikari, K.; Dutta, S.

    2017-12-01

    Fluoride pollution in groundwater is a major concern in rural areas. The flower petal of Shorea robusta, commonly known as sal tree, is used in the present study both in its native form and Ca-impregnated activated form to eradicate excess fluoride from simulated wastewater. Response surface methodology (RSM) was used for experimental designing and analyzing optimum condition for carbonization vis-à-vis calcium impregnation for preparation of adsorbent. During carbonization, temperature, time and weight ratio of calcium chloride to sal flower petal (SFP) have been considered as input factors and percentage removal of fluoride as response. Optimum condition for carbonization has been obtained as temperature, 500 °C; time, 1 h and weight ratio, 2.5 and the sample prepared has been termed as calcium-impregnated carbonized sal flower petal (CCSFP). Optimum condition as analyzed by one-factor-at-a-time (OFAT) method is initial fluoride concentration, 2.91 mg/L; pH 3 and adsorbent dose, 4 g/L. CCSFP shows maximum removal of 98.5% at this condition. RSM has also been used for finding out optimum condition for defluoridation considering initial concentration, pH and adsorbent dose as input parameters. The optimum condition as analyzed by RSM is: initial concentration, 5 mg/L; pH 3.5 and adsorbent dose, 2 g/L. Kinetic and equilibrium data follow Ho pseudo-second-order kinetic model and Freundlich isotherm model, respectively. Adsorption capacity of CCSFP has been found to be 5.465 mg/g. At optimized condition, CCSFP has been found to remove fluoride (80.4%) efficiently from groundwater collected from Bankura district in West Bengal, a fluoride-contaminated province in India.

  12. Formulation and optimization of fast dissolving intraoral drug delivery system for clobazam using response surface methodology

    PubMed Central

    Bala, Rajni; Khanna, Sushil; Pawar, Pravin K.

    2013-01-01

    Clobazam is a newer 1,5-benzodiazepine used for the treatment of epilepsy. It is better tolerated and less sedating than other benzodiazepines. Absorption of the drug can be impacted by oral fast dissolving dosage form; this may have implications for epilepsy in pediatrics and those having difficulty in swallowing tablets/capsules resulting in improved patient compliance. The purpose of the present investigation was to formulate and optimize clobazam oro-dissolving tablets by direct compression method using response surface methodology (RSM). Oro-dispersible tablets of clobazam were prepared by direct compression method using crospovidone (2-6%) as a superdisintegrant, microcrystalline cellulose (MCC) (20-40%) was used as diluents along with directly compressible mannitol to enhance mouth feel. A 32 full factorial design was applied to investigate the combined effect of two formulation variables: amount of crospovidone and MCC over the independent variables disintegration time, wetting time and percent drug release. Disintegration time showed by all formulations was found to be in the range of 24.3-193 s based on evaluation parameters the formulation containing 6% of crospovidone and 30% of MCC showed promising performance against all other formulations. The results demonstrated that the RSM could efficiently be applied for the formulation of clobazam oro-dispersible tablets; therefore, constitute an advance in the management of epileptic attacks. PMID:24083203

  13. Robust optimization of the billet for isothermal local loading transitional region of a Ti-alloy rib-web component based on dual-response surface method

    NASA Astrophysics Data System (ADS)

    Wei, Ke; Fan, Xiaoguang; Zhan, Mei; Meng, Miao

    2018-03-01

    Billet optimization can greatly improve the forming quality of the transitional region in the isothermal local loading forming (ILLF) of large-scale Ti-alloy ribweb components. However, the final quality of the transitional region may be deteriorated by uncontrollable factors, such as the manufacturing tolerance of the preforming billet, fluctuation of the stroke length, and friction factor. Thus, a dual-response surface method (RSM)-based robust optimization of the billet was proposed to address the uncontrollable factors in transitional region of the ILLF. Given that the die underfilling and folding defect are two key factors that influence the forming quality of the transitional region, minimizing the mean and standard deviation of the die underfilling rate and avoiding folding defect were defined as the objective function and constraint condition in robust optimization. Then, the cross array design was constructed, a dual-RSM model was established for the mean and standard deviation of the die underfilling rate by considering the size parameters of the billet and uncontrollable factors. Subsequently, an optimum solution was derived to achieve the robust optimization of the billet. A case study on robust optimization was conducted. Good results were attained for improving the die filling and avoiding folding defect, suggesting that the robust optimization of the billet in the transitional region of the ILLF was efficient and reliable.

  14. Effect of C/N Ratio and Media Optimization through Response Surface Methodology on Simultaneous Productions of Intra- and Extracellular Inulinase and Invertase from Aspergillus niger ATCC 20611

    PubMed Central

    Dinarvand, Mojdeh; Rezaee, Malahat; Masomian, Malihe; Jazayeri, Seyed Davoud; Zareian, Mohsen; Abbasi, Sahar; Ariff, Arbakariya B.

    2013-01-01

    The study is to identify the extraction of intracellular inulinase (exo- and endoinulinase) and invertase as well as optimization medium composition for maximum productions of intra- and extracellular enzymes from Aspergillus niger ATCC 20611. From two different methods for extraction of intracellular enzymes, ultrasonic method was found more effective. Response surface methodology (RSM) with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. The effect of five main reaction parameters including sucrose, yeast extract, NaNO3, Zn+2, and Triton X-100 on the production of enzymes was analyzed. A modified quadratic model was fitted to the data with a coefficient of determination (R 2) more than 0.90 for all responses. The intra-extracellular inulinase and invertase productions increased in the range from 16 to 8.4 times in the optimized medium (10% (w/v) sucrose, 2.5% (w/v) yeast extract, 2% (w/v) NaNO3, 1.5 mM (v/v) Zn+2, and 1% (v/v) Triton X-100) by RSM and from around 1.2 to 1.3 times greater than in the medium optimized by one-factor-at-a-time, respectively. The results of bioprocesses optimization can be useful in the scale-up fermentation and food industry. PMID:24151605

  15. Latent structure analysis of the process variables and pharmaceutical responses of an orally disintegrating tablet.

    PubMed

    Hayashi, Yoshihiro; Oshima, Etsuko; Maeda, Jin; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2012-01-01

    A multivariate statistical technique was applied to the design of an orally disintegrating tablet and to clarify the causal correlation among variables of the manufacturing process and pharmaceutical responses. Orally disintegrating tablets (ODTs) composed mainly of mannitol were prepared via the wet-granulation method using crystal transition from the δ to the β form of mannitol. Process parameters (water amounts (X(1)), kneading time (X(2)), compression force (X(3)), and amounts of magnesium stearate (X(4))) were optimized using a nonlinear response surface method (RSM) incorporating a thin plate spline interpolation (RSM-S). The results of a verification study revealed that the experimental responses, such as tensile strength and disintegration time, coincided well with the predictions. A latent structure analysis of the pharmaceutical formulations of the tablet performed using a Bayesian network led to the clear visualization of a causal connection among variables of the manufacturing process and tablet characteristics. The quantity of β-mannitol in the granules (Q(β)) was affected by X(2) and influenced all granule properties. The specific surface area of the granules was affected by X(1) and Q(β) and had an effect on all tablet characteristics. Moreover, the causal relationships among the variables were clarified by inferring conditional probability distributions. These techniques provide a better understanding of the complicated latent structure among variables of the manufacturing process and tablet characteristics.

  16. Dynamical Downscaling of Seasonal Climate Prediction over Nordeste Brazil with ECHAM3 and NCEP's Regional Spectral Models at IRI.

    NASA Astrophysics Data System (ADS)

    Nobre, Paulo; Moura, Antonio D.; Sun, Liqiang

    2001-12-01

    This study presents an evaluation of a seasonal climate forecast done with the International Research Institute for Climate Prediction (IRI) dynamical forecast system (regional model nested into a general circulation model) over northern South America for January-April 1999, encompassing the rainy season over Brazil's Nordeste. The one-way nesting is one in two tiers: first the NCEP's Regional Spectral Model (RSM) runs with an 80-km grid mesh forced by the ECHAM3 atmospheric general circulation model (AGCM) outputs; then the RSM runs with a finer grid mesh (20 km) forced by the forecasts generated by the RSM-80. An ensemble of three realizations is done. Lower boundary conditions over the oceans for both ECHAM and RSM model runs are sea surface temperature forecasts over the tropical oceans. Soil moisture is initialized by ECHAM's inputs. The rainfall forecasts generated by the regional model are compared with those of the AGCM and observations. It is shown that the regional model at 80-km resolution improves upon the AGCM rainfall forecast, reducing both seasonal bias and root-mean-square error. On the other hand, the RSM-20 forecasts presented larger errors, with spatial patterns that resemble those of local topography. The better forecast of the position and width of the intertropical convergence zone (ITCZ) over the tropical Atlantic by the RSM-80 model is one of the principal reasons for better-forecast scores of the RSM-80 relative to the AGCM. The regional model improved the spatial as well as the temporal details of rainfall distribution, and also presenting the minimum spread among the ensemble members. The statistics of synoptic-scale weather variability on seasonal timescales were best forecast with the regional 80-km model over the Nordeste. The possibility of forecasting the frequency distribution of dry and wet spells within the rainy season is encouraging.

  17. Process optimization and analysis of microwave assisted extraction of pectin from dragon fruit peel.

    PubMed

    Thirugnanasambandham, K; Sivakumar, V; Prakash Maran, J

    2014-11-04

    Microwave assisted extraction (MAE) technique was employed for the extraction of pectin from dragon fruit peel. The extracting parameters were optimized by using four-variable-three-level Box-Behnken design (BBD) coupled with response surface methodology (RSM). RSM analysis indicated good correspondence between experimental and predicted values. 3D response surface plots were used to study the interactive effects of process variables on extraction of pectin. The optimum extraction conditions for the maximum yield of pectin were power of 400 W, temperature of 45 °C, extracting time of 20 min and solid-liquid ratio of 24 g/mL. Under these conditions, 7.5% of pectin was extracted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Application of Artificial Neural Network to Predict Colour Change, Shrinkage and Texture of Osmotically Dehydrated Pumpkin

    NASA Astrophysics Data System (ADS)

    Tang, S. Y.; Lee, J. S.; Loh, S. P.; Tham, H. J.

    2017-06-01

    The objectives of this study were to use Artificial Neural Network (ANN) to predict colour change, shrinkage and texture of osmotically dehydrated pumpkin slices. The effects of process variables such as concentration of osmotic solution, immersion temperature and immersion time on the above mentioned physical properties were studied. The colour of the samples was measured using a colorimeter and the net colour difference changes, ΔE were determined. The texture was measured in terms of hardness by using a Texture Analyzer. As for the shrinkage, displacement of volume method was applied and percentage of shrinkage was obtained in terms of volume changes. A feed-forward backpropagation network with sigmoidal function was developed and best network configuration was chosen based on the highest correlation coefficients between the experimental values versus predicted values. As a comparison, Response Surface Methodology (RSM) statistical analysis was also employed. The performances of both RSM and ANN modelling were evaluated based on absolute average deviation (AAD), correlation of determination (R2) and root mean square error (RMSE). The results showed that ANN has higher prediction capability as compared to RSM. The relative importance of the variables on the physical properties were also determined by using connection weight approach in ANN. It was found that solution concentration showed the highest influence on all three physical properties.

  19. Riemann sum method for non-line-of-sight ultraviolet communication in noncoplanar geometry

    NASA Astrophysics Data System (ADS)

    Song, Peng; Zhou, Xianli; Song, Fei; Zhao, Taifei; Li, Yunhong

    2017-12-01

    The non-line-of-sight ultraviolet (UV) communication relies on the scattering common volume, however, it is difficult to carry out the triple integral operation of the scattering common volume. Based on UV single-scattering propagation theory and the spherical coordinate, we propose to use the Riemann sum method (RSM) to analyze the link path loss (PL) of UV communication system in noncoplanar geometries, and carried out related simulations. In addition, an outdoor testbed using UV light-emitting diode was set up to provide support for the validity of the RSM. When the elevation angles of the transmitter or the receiver are small, using RSM, the channel PL and temporal response of UV communication systems can be effectively and efficiently calculated. It is useful in UV embedded system design.

  20. A CsrA/RsmA translational regulator gene encoded in the replication region of a Sinorhizobium meliloti cryptic plasmid complements Pseudomonas fluorescens rsmA/E mutants.

    PubMed

    Agaras, Betina; Sobrero, Patricio; Valverde, Claudio

    2013-02-01

    Members of the CsrA/RsmA family are global regulatory proteins that bind to mRNAs, usually at the ribosome-binding site, to control mRNA translation and stability. Their activity is counteracted by small non-coding RNAs (sRNAs), which offer several binding sites to compete with mRNA binding. The csrA/rsmA genes are widespread in prokaryotic chromosomes, although certain phylogenetic groups such as Alphaproteobacteria lack this type of global regulator. Interestingly, a csrA/rsmA-like sequence was identified in the replication region of plasmid pMBA19a from the alphaproteobacterium Sinorhizobium meliloti. This rsmA-like allele (rsmA(Sm)) is 58 % identical to Xanthomonas axonopodis pv. citri chromosomal rsmA and bears an unusual C-terminal extension that may fold into an extra α-helix. Homology-based modelling of RsmA(Sm) suggests that all key mRNA-binding residues are conserved and correctly positioned in the RNA-binding pocket. In fact, a 1.6 kb fragment from pMBA19a encompassing the rsmA(Sm) locus restored rsmA/E-dependent phenotypes of rsmA/E gacS Pseudomonas fluorescens mutants. The functionality of RsmA(Sm) was confirmed by the gain of control over target aprA'-'lacZ and hcnA'-'lacZ translational fusions in the same mutant background. The RsmA(Sm) activity correlated with Western blot detection of the polypeptide. Phenotype and translational fusion data from rsmA/E P. fluorescens mutants expressing RsmX/Y/Z RNAs indicated that RsmA(Sm) is able to bind these antagonistic sRNAs. In agreement with the latter observation, it was also found that the sRNA RsmY was stabilized by RsmA(Sm). Deletion of the C-terminal extra α-helix of RsmA(Sm) affected its cellular concentration, but increased its relative RNA-binding activity. This is believed to be the first report of the presence and characterization of a functional csrA/rsmA homologue in a mobile genetic element.

  1. Optimization of injection molding process parameters for a plastic cell phone housing component

    NASA Astrophysics Data System (ADS)

    Rajalingam, Sokkalingam; Vasant, Pandian; Khe, Cheng Seong; Merican, Zulkifli; Oo, Zeya

    2016-11-01

    To produce thin-walled plastic items, injection molding process is one of the most widely used application tools. However, to set optimal process parameters is difficult as it may cause to produce faulty items on injected mold like shrinkage. This study aims at to determine such an optimum injection molding process parameters which can reduce the fault of shrinkage on a plastic cell phone cover items. Currently used setting of machines process produced shrinkage and mis-specified length and with dimensions below the limit. Thus, for identification of optimum process parameters, maintaining closer targeted length and width setting magnitudes with minimal variations, more experiments are needed. The mold temperature, injection pressure and screw rotation speed are used as process parameters in this research. For optimal molding process parameters the Response Surface Methods (RSM) is applied. The major contributing factors influencing the responses were identified from analysis of variance (ANOVA) technique. Through verification runs it was found that the shrinkage defect can be minimized with the optimal setting found by RSM.

  2. Optimization of ultrasound-assisted extraction (UAE) of phenolic compounds from olive cake.

    PubMed

    Mojerlou, Zohreh; Elhamirad, Amirhhossein

    2018-03-01

    The use of ultrasound in ultrasound-assisted extraction (UAE) is one of the main applications of this technology in food industry. This study aimed to optimize UAE conditions for olive cake extract (OCE) through response surface methodology (RSM). The optimal UAE conditions were obtained with extraction temperature of 56 °C, extraction time of 3 min, duty cycle of 0.6 s, and solid to solvent ratio of 3.6%. At the optimum conditions, the total phenolic compounds (TPC) content and antioxidant activity (AA) were measured 4.04 mg/g and 68.9%, respectively. The linear term of temperature had the most effect on TPC content and AA of OCE prepared by UAE. Protocatechuic acid and cinnamic acid were characterized as the highest (19.5%) and lowest (1.6%) phenolic compound measured in OCE extracted by UAE. This research revealed that UAE is an effective method to extract phenolic compounds from olive cake. RSM successfully optimized UAE conditions for OCE.

  3. Effect of cold plasma pre-treatment on photocatalytic activity of 3D fabric loaded with nano-photocatalysts: Response surface methodology

    NASA Astrophysics Data System (ADS)

    Ghoreishian, Seyed Majid; Badii, Khashayar; Norouzi, Mohammad; Malek, Kaveh

    2016-03-01

    In this study, the physico-chemical effects occasioned by the cold plasma discharge (CPD) on the photo-decolorization of Reactive Orange 16 (RO16) by 3D fabrics (spacer fabrics) loaded with ZnO:TiO2 nano-photocatalysts (nphs) were optimized via response surface methodology (RSM). CPD was employed to improve the surface characteristics of the spacer fabrics for nphs loading. Surface morphology and color variation were studied utilizing scanning electron microscopy (SEM) and CIE-Lab system, respectively. The effect of CPD on the wetting ability of the spacer fabrics was examined using dynamic adsorption measurement (DAM). Also, X-ray fluorescence (XRF) was utilized to investigate the durability of the nphs on the spacer fabrics. All the experiments were implemented in a Box-Behnken design (BBD) with three independent variables (CPD treatment time, dye concentration and irradiation time) in order to optimize the decolorization of RO16. The anticipated values of the decolorization efficiency were found to be in excellent agreement with the experimental values (R2 = 0.9996, Adjusted R2 = 0.9992). The kinetic analysis demonstrated that the photocatalytic decolorization followed the Langmuir-Hinshelwood kinetic model. In conclusion, this heterogeneous photocatalytic process is capable of decolorizing and mineralizing azoic reactive dye in textile wastewater. Moreover, the results confirmed that RSM based on the BBD was a suitable method to optimize the operating conditions of RO16 degradation.

  4. Method for Constructing Composite Response Surfaces by Combining Neural Networks with other Interpolation or Estimation Techniques

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan (Inventor); Madavan, Nateri K. (Inventor)

    2003-01-01

    A method and system for design optimization that incorporates the advantages of both traditional response surface methodology (RSM) and neural networks is disclosed. The present invention employs a unique strategy called parameter-based partitioning of the given design space. In the design procedure, a sequence of composite response surfaces based on both neural networks and polynomial fits is used to traverse the design space to identify an optimal solution. The composite response surface has both the power of neural networks and the economy of low-order polynomials (in terms of the number of simulations needed and the network training requirements). The present invention handles design problems with many more parameters than would be possible using neural networks alone and permits a designer to rapidly perform a variety of trade-off studies before arriving at the final design.

  5. Adherence to stainless steel by foodborne microorganisms during growth in model food systems.

    PubMed

    Hood, S K; Zottola, E A

    1997-07-22

    Biofilm formation on stainless steel by Salmonella typhimurium, Listeria monocytogenes, Escherichia coli O157:H7, Pseudomonas fragi and Pseudomonas fluorescens during growth in model food systems was studied. Test growth media included tryptic soy broth (TSB), diluted TSB (dTSB), 1% reconstituted skim milk (RSM) and diluted meat juice (DMJ). Adherent cells were stained with acridine orange and enumerated using epifluorescent microscopy and computerized image analysis. Cells were observed on the stainless steel surface after 1 h in all of the media. However, the increases in the number of adherent cells over time was seen only with S. typhimurium in DMJ, E. coli O157:H7 in TSB, dTSB and DMJ, P. fragi in RSM and P. fluorescens in RSM. The medium which produced the highest observed level of adherent cells was different for each microorganism.

  6. Optimising the inactivation of grape juice spoilage organisms by pulse electric fields.

    PubMed

    Marsellés-Fontanet, A Robert; Puig, Anna; Olmos, Paola; Mínguez-Sanz, Santiago; Martín-Belloso, Olga

    2009-04-15

    The effect of some pulsed electric field (PEF) processing parameters (electric field strength, pulse frequency and treatment time), on a mixture of microorganisms (Kloeckera apiculata, Saccharomyces cerevisiae, Lactobacillus plantarum, Lactobacillus hilgardii and Gluconobacter oxydans) typically present in grape juice and wine were evaluated. An experimental design based on response surface methodology (RSM) was used and results were also compared with those of a factorially designed experiment. The relationship between the levels of inactivation of microorganisms and the energy applied to the grape juice was analysed. Yeast and bacteria were inactivated by the PEF treatments, with reductions that ranged from 2.24 to 3.94 log units. All PEF parameters affected microbial inactivation. Optimal inactivation of the mixture of spoilage microorganisms was predicted by the RSM models at 35.0 kV cm(-1) with 303 Hz pulse width for 1 ms. Inactivation was greater for yeasts than for bacteria, as was predicted by the RSM. The maximum efficacy of the PEF treatment for inactivation of microorganisms in grape juice was observed around 1500 MJ L(-1) for all the microorganisms investigated. The RSM could be used in the fruit juice industry to optimise the inactivation of spoilage microorganisms by PEF.

  7. Modeling of electrohydrodynamic drying process using response surface methodology

    PubMed Central

    Dalvand, Mohammad Jafar; Mohtasebi, Seyed Saeid; Rafiee, Shahin

    2014-01-01

    Energy consumption index is one of the most important criteria for judging about new, and emerging drying technologies. One of such novel and promising alternative of drying process is called electrohydrodynamic (EHD) drying. In this work, a solar energy was used to maintain required energy of EHD drying process. Moreover, response surface methodology (RSM) was used to build a predictive model in order to investigate the combined effects of independent variables such as applied voltage, field strength, number of discharge electrode (needle), and air velocity on moisture ratio, energy efficiency, and energy consumption as responses of EHD drying process. Three-levels and four-factor Box–Behnken design was employed to evaluate the effects of independent variables on system responses. A stepwise approach was followed to build up a model that can map the entire response surface. The interior relationships between parameters were well defined by RSM. PMID:24936289

  8. Optimization of Preparation of Antioxidative Peptides from Pumpkin Seeds Using Response Surface Method

    PubMed Central

    Fan, Sanhong; Hu, Yanan; Li, Chen; Liu, Yanrong

    2014-01-01

    Protein isolates of pumpkin (Cucurbita pepo L) seeds were hydrolyzed by acid protease to prepare antioxidative peptides. The hydrolysis conditions were optimized through Box-Behnken experimental design combined with response surface method (RSM). The second-order model, developed for the DPPH radical scavenging activity of pumpkin seed hydrolysates, showed good fit with the experiment data with a high value of coefficient of determination (0.9918). The optimal hydrolysis conditions were determined as follows: hydrolyzing temperature 50°C, pH 2.5, enzyme amount 6000 U/g, substrate concentration 0.05 g/ml and hydrolyzing time 5 h. Under the above conditions, the scavenging activity of DPPH radical was as high as 92.82%. PMID:24637721

  9. Quorum sensing controls the synthesis of virulence factors by modulating rsmA gene expression in Erwinia carotovora subsp. carotovora.

    PubMed

    Kõiv, V; Mäe, A

    2001-04-01

    The plant-pathogenic bacterium Erwinia carotovora subsp. carotovora (Ecc) causes disease mainly by means of a number of extracellular plant cell wall-degrading enzymes (PCWDEs), also referred to as virulence factors. The production of PCWDEs is coordinately activated by the diffusible signal molecule N-acyl-homoserine lactone (HSL) in a population density-dependent manner ("quorum sensing"). ExpI is the enzyme responsible for the synthesis of HSL. The Rsm system negatively regulates the production of PCWDEs. It includes three components: RsmA is an RNA-binding protein which promotes mRNA decay; rsmB is a unique regulator RNA, and RsmC regulates expression of rsmA positively and of rsmB negatively. We report here that in an expI knockout mutant of Ecc strain SCC3193, the levels of rsmA and rsmB RNA are remarkably enhanced in comparison to the wild-type strain, while the level of the rsmC transcript is not affected. The increase in transcription of rsmA in the expI strain represses production of PCWDEs, which in turn leads to the avirulent phenotype of this mutant. In the expI- mutant, addition of exogenous HSL caused repression of rsmA and rsmB transcription to the wild-type level, whereas the expression of rsmC was not affected. Taken together, these data suggest that HSL affects the expression of rsmA, and that this effect is not mediated by RsmC. This specific effect and the previous demonstration that HSL is required for PCWDE production in Ecc support the hypothesis that regulation by quorum sensing in Ecc, in contrast to most other systems already described, requires HSL to repress rsmA transcription, which in turn leads to the activation of PCWDE production. A model is presented that explains how HSL controls the production of PCWDEs by modulating the expression of rsmA.

  10. Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties.

    PubMed

    Şahin, Selin; Samli, Ruya; Tan, Ayşe Seher Birteksöz; Barba, Francisco J; Chemat, Farid; Cravotto, Giancarlo; Lorenzo, José M

    2017-06-24

    Response surface methodology (RSM) and artificial neural networks (ANN) were evaluated and compared in order to decide which method was the most appropriate to predict and optimize total phenolic content (TPC) and oleuropein yields in olive tree leaf ( Olea europaea ) extracts, obtained after solvent-free microwave-assisted extraction (SFMAE). The SFMAE processing conditions were: microwave irradiation power 250-350 W, extraction time 2-3 min, and the amount of sample 5-10 g. Furthermore, the antioxidant and antimicrobial activities of the olive leaf extracts, obtained under optimal extraction conditions, were assessed by several in vitro assays. ANN had better prediction performance for TPC and oleuropein yields compared to RSM. The optimum extraction conditions to recover both TPC and oleuropein were: irradiation power 250 W, extraction time 2 min, and amount of sample 5 g, independent of the method used for prediction. Under these conditions, the maximal yield of oleuropein (0.060 ± 0.012 ppm) was obtained and the amount of TPC was 2.480 ± 0.060 ppm. Moreover, olive leaf extracts obtained under optimum SFMAE conditions showed antibacterial activity against S. aureus and S. epidermidis , with a minimum inhibitory concentration (MIC) value of 1.25 mg/mL.

  11. Improved Test Planning and Analysis Through the Use of Advanced Statistical Methods

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Maxwell, Katherine A.; Glass, David E.; Vaughn, Wallace L.; Barger, Weston; Cook, Mylan

    2016-01-01

    The goal of this work is, through computational simulations, to provide statistically-based evidence to convince the testing community that a distributed testing approach is superior to a clustered testing approach for most situations. For clustered testing, numerous, repeated test points are acquired at a limited number of test conditions. For distributed testing, only one or a few test points are requested at many different conditions. The statistical techniques of Analysis of Variance (ANOVA), Design of Experiments (DOE) and Response Surface Methods (RSM) are applied to enable distributed test planning, data analysis and test augmentation. The D-Optimal class of DOE is used to plan an optimally efficient single- and multi-factor test. The resulting simulated test data are analyzed via ANOVA and a parametric model is constructed using RSM. Finally, ANOVA can be used to plan a second round of testing to augment the existing data set with new data points. The use of these techniques is demonstrated through several illustrative examples. To date, many thousands of comparisons have been performed and the results strongly support the conclusion that the distributed testing approach outperforms the clustered testing approach.

  12. Artificial sRNAs activating the Gac/Rsm signal transduction pathway in Pseudomonas fluorescens.

    PubMed

    Valverde, Claudio

    2009-04-01

    In Pseudomonas fluorescens CHA0, the synthesis of antifungal compounds is post-transcriptionally activated by the Gac/Rsm cascade. The two-component system GacS/GacA promotes transcription of three small regulatory RNAs (i.e., sRNAs), RsmX, RsmY, and RsmZ, which remove the regulatory proteins RsmA and RsmE from the ribosome-binding sites of exoproduct-related mRNAs. The GacS/GacA-dependent accumulation of RsmX/Y/Z and formation of RsmX/Y/Z-RsmA/E complexes relieve mRNA translational repression. Other bacteria as E. coli and Vibrio spp. utilize similar sRNA-protein based systems to adjust mRNA translation (e.g., the E. coli Csr system for carbon storage, motility and biofilm regulation). The Rsm/Csr sRNAs are remarkably similar in that they contain several stem-loops with an invariant GGA trinucleotide exposed in the hairpin loop that would be the characteristic structural-sequence motifs relevant for sRNA activity and stability. Here it is shown that the dysfunctional Gac/Rsm cascade of P. fluorescens DeltarsmXYZ mutants could be restored by appropriate transcription levels of artificial genes encoding RNAs with unrelated primary sequence but with two or more hairpins displaying the RsmA/E binding motifs. The results support the hypothesis that the molecular mimicry of Rsm/Csr sRNAs is based on proper secondary structures that expose critical binding motifs irrespective of their overall sequence.

  13. An Improved Response Surface Methodology Algorithm with an Application to Traffic Signal Optimization for Urban Networks

    DOT National Transportation Integrated Search

    1995-01-01

    Prepared ca. 1995. This paper illustrates the use of the simulation-optimization technique of response surface methodology (RSM) in traffic signal optimization of urban networks. It also quantifies the gains of using the common random number (CRN) va...

  14. Optimization of pH and nitrogen for enhanced hydrogen production by Synechocystis sp. PCC 6803 via statistical and machine learning methods.

    PubMed

    Burrows, Elizabeth H; Wong, Weng-Keen; Fern, Xiaoli; Chaplen, Frank W R; Ely, Roger L

    2009-01-01

    The nitrogen (N) concentration and pH of culture media were optimized for increased fermentative hydrogen (H(2)) production from the cyanobacterium, Synechocystis sp. PCC 6803. The optimization was conducted using two procedures, response surface methodology (RSM), which is commonly used, and a memory-based machine learning algorithm, Q2, which has not been used previously in biotechnology applications. Both RSM and Q2 were successful in predicting optimum conditions that yielded higher H(2) than the media reported by Burrows et al., Int J Hydrogen Energy. 2008;33:6092-6099 optimized for N, S, and C (called EHB-1 media hereafter), which itself yielded almost 150 times more H(2) than Synechocystis sp. PCC 6803 grown on sulfur-free BG-11 media. RSM predicted an optimum N concentration of 0.63 mM and pH of 7.77, which yielded 1.70 times more H(2) than EHB-1 media when normalized to chlorophyll concentration (0.68 +/- 0.43 micromol H(2) mg Chl(-1) h(-1)) and 1.35 times more when normalized to optical density (1.62 +/- 0.09 nmol H(2) OD(730) (-1) h(-1)). Q2 predicted an optimum of 0.36 mM N and pH of 7.88, which yielded 1.94 and 1.27 times more H(2) than EHB-1 media when normalized to chlorophyll concentration (0.77 +/- 0.44 micromol H(2) mg Chl(-1) h(-1)) and optical density (1.53 +/- 0.07 nmol H(2) OD(730) (-1) h(-1)), respectively. Both optimization methods have unique benefits and drawbacks that are identified and discussed in this study. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  15. Simultaneous spectrophotometric determination of synthetic dyes in food samples after cloud point extraction using multiple response optimizations.

    PubMed

    Heidarizadi, Elham; Tabaraki, Reza

    2016-01-01

    A sensitive cloud point extraction method for simultaneous determination of trace amounts of sunset yellow (SY), allura red (AR) and brilliant blue (BB) by spectrophotometry was developed. Experimental parameters such as Triton X-100 concentration, KCl concentration and initial pH on extraction efficiency of dyes were optimized using response surface methodology (RSM) with a Doehlert design. Experimental data were evaluated by applying RSM integrating a desirability function approach. The optimum condition for extraction efficiency of SY, AR and BB simultaneously were: Triton X-100 concentration 0.0635 mol L(-1), KCl concentration 0.11 mol L(-1) and pH 4 with maximum overall desirability D of 0.95. Correspondingly, the maximum extraction efficiency of SY, AR and BB were 100%, 92.23% and 95.69%, respectively. At optimal conditions, extraction efficiencies were 99.8%, 92.48% and 95.96% for SY, AR and BB, respectively. These values were only 0.2%, 0.25% and 0.27% different from the predicted values, suggesting that the desirability function approach with RSM was a useful technique for simultaneously dye extraction. Linear calibration curves were obtained in the range of 0.02-4 for SY, 0.025-2.5 for AR and 0.02-4 μg mL(-1) for BB under optimum condition. Detection limit based on three times the standard deviation of the blank (3Sb) was 0.009, 0.01 and 0.007 μg mL(-1) (n=10) for SY, AR and BB, respectively. The method was successfully used for the simultaneous determination of the dyes in different food samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Response surface method for modeling the removal of carbon dioxide from a simulated gas using water absorption enhanced with a liquid-film-forming device.

    PubMed

    Nguyen, Diem-Mai Kim; Imai, Tsuyoshi; Dang, Thanh-Loc Thi; Kanno, Ariyo; Higuchi, Takaya; Yamamoto, Koichi; Sekine, Masahiko

    2018-03-01

    This paper presents the results from using a physical absorption process to absorb gaseous CO 2 mixed with N 2 using water by producing tiny bubbles via a liquid-film-forming device (LFFD) that improves the solubility of CO 2 in water. The influence of various parameters-pressure, initial CO 2 concentration, gas-to-liquid ratios, and temperature-on the CO 2 removal efficiency and its absorption rate in water were investigated and estimated thoroughly by statistical polynomial models obtained by the utilization of the response surface method (RSM) with a central composite design (CCD). Based on the analysis, a high efficiency of CO 2 capture can be reached in conditions such as low pressure, high CO 2 concentration at the inlet, low gas/liquid ratio, and low temperature. For instance, the highest removal efficiency in the RSM-CCD experimental matrix of nearly 80% occurred for run number 20, which was conducted at 0.30MPa, CO 2 concentration of 35%, gas/liquid ratio of 0.71, and temperature of 15°C. Furthermore, the coefficients of determination, R 2 , were 0.996 for the removal rate and 0.982 for the absorption rate, implying that the predicted values computed by the constructed models correlate strongly and fit well with the experimental values. The results obtained provide essential information for implementing this method properly and effectively and contribute a promising approach to the problem of CO 2 capture in air pollution treatment. Copyright © 2017. Published by Elsevier B.V.

  17. Optimization of process parameters in CNC turning of aluminium alloy using hybrid RSM cum TLBO approach

    NASA Astrophysics Data System (ADS)

    Rudrapati, R.; Sahoo, P.; Bandyopadhyay, A.

    2016-09-01

    The main aim of the present work is to analyse the significance of turning parameters on surface roughness in computer numerically controlled (CNC) turning operation while machining of aluminium alloy material. Spindle speed, feed rate and depth of cut have been considered as machining parameters. Experimental runs have been conducted as per Box-Behnken design method. After experimentation, surface roughness is measured by using stylus profile meter. Factor effects have been studied through analysis of variance. Mathematical modelling has been done by response surface methodology, to made relationships between the input parameters and output response. Finally, process optimization has been made by teaching learning based optimization (TLBO) algorithm. Predicted turning condition has been validated through confirmatory experiment.

  18. Efficient Preparation of Streptochlorin from Marine Streptomyces sp. SYYLWHS-1-4 by Combination of Response Surface Methodology and High-Speed Counter-Current Chromatography.

    PubMed

    Li, Lin; He, Shan; Ding, Lijian; Yuan, Ye; Zhu, Peng; Epstein, Slava; Fan, Jianzhong; Wu, Xiaokai; Yan, Xiaojun

    2016-05-27

    Since first isolated from the lipophilic extract of Streptomyces sp. SF2583, streptochlorin, has attracted a lot of attention because of its various pharmacological properties, such as antibiotic, antiallergic, antitumor, and anti-inflammatory activities. For the efficient preparation of streptochlorin from a producing strain Streptomyces sp. SYYLWHS-1-4, we developed a combinative method by using response surface methodology (RSM) and high-speed counter-current chromatography (HSCCC). In the fermentation process, we used RSM to optimize the condition for the efficient accumulation of streptochlorin, and the optimal parameters were: yeast extract 1.889 g/L, soluble starch 8.636 g/L, K₂HPO₄ 0.359 g/L, CaCl₂ 2.5 g/L, MgSO₄ 0.625 g/L, marine salt 25 g/L, medium volume 50%, initial pH value 7.0, temperature 27.5 °C, which enhanced streptochlorin yield by 17.7-fold. During the purification process, the preparative HSCCC separation was performed using a petroleum ether-ethyl acetate-methanol-water (9:0.8:5:5, v/v/v/v) biphasic solvent system, where 300 mg of crude sample yielded 16.5 mg streptochlorin with over 95% purity as determined by UPLC. Consequently, the combination method provided a feasible strategy for highly effective preparation of streptochlorin, which ensured the supply of large amounts of streptochlorin for in vivo pharmacological assessments or other requirements.

  19. Optimization of palm oil extraction from Decanter cake of small crude palm oil mill by aqueous surfactant solution using RSM

    NASA Astrophysics Data System (ADS)

    Ahmadi Pirshahid, Shewa; Arirob, Wallop; Punsuvon, Vittaya

    2018-04-01

    The use of hexane to extract vegetable oil from oilseeds or seed cake is of growing concern due to its environmental impact such as its smelling and toxicity. In our method, used Response Surface Methodology (RSM) was applied to study the optimum condition of decanter cake obtained from small crude palm oil with aqueous surfactant solution. For the first time, we provide an optimum condition of preliminary study with decanter cake extraction to obtain the maximum of oil yield. The result from preliminary was further used in RSM study by using Central Composite Design (CCD) that consisted of thirty experiments. The effect of four independent variables: the concentration of Sodium Dodecyl Sulfate (SDS) as surfactant, temperature, the ratio by weight to volume of cake to surfactant solution and the amount of sodium chloride (NaCl) on dependent variables are studied. Data were analyzed using Design-Expert 8 software. The results showed that the optimum condition of decanter cake extraction were 0.016M of SDS solution concentration, 73°C of extraction temperature, 1:10 (g:ml) of the ratio of decanter cake to SDS solution and 2% (w/w) of NaCl amount. This condition gave 77.05% (w/w) oil yield. The chemical properties of the extracted palm oil from this aqueous surfactant extraction are further investigated compared with the hexane extraction. The obtained result showed that all properties of both extractions were nearly the same.

  20. Warship Combat System Selection Methodology Based on Discrete Event Simulation

    DTIC Science & Technology

    2010-09-01

    Platform (from Spanish) PD Damage Probability xiv PHit Hit Probability PKill Kill Probability RSM Response Surface Model SAM Surface-Air Missile...such a large target allows an assumption that the probability of a hit ( PHit ) is one. This structure can be considered as a bridge; therefore, the

  1. Optimization of a cryoprotective medium to increase the viability of freeze-dried Streptococcus thermophilus by response surface methodology

    USDA-ARS?s Scientific Manuscript database

    Streptococcus thermophilus normally exhibits different survival rates in different bacteria medium during freeze-drying. In this study, response surface methodology (RSM) was applied on the design of experiments for optimizing the cryoprotective medium. Results showed that the most significant facto...

  2. A novel synthesis of a new thorium (IV) metal organic framework nanostructure with well controllable procedure through ultrasound assisted reverse micelle method.

    PubMed

    Sargazi, Ghasem; Afzali, Daryoush; Mostafavi, Ali

    2018-03-01

    Reverse micelle (RM) and ultrasound assisted reverse micelle (UARM) were applied to the synthesis of novel thorium nanostructures as metal organic frameworks (MOFs). Characterization with different techniques showed that the Th-MOF sample synthesized by UARM method had higher thermal stability (354°C), smaller mean particle size (27nm), and larger surface area (2.02×10 3 m 2 /g). Besides, in this novel approach, the nucleation of crystals was found to carry out in a shorter time. The synthesis parameters of UARM method were designed by 2 k-1 factorial and the process control was systematically studied using analysis of variance (ANOVA) and response surface methodology (RSM). ANOVA showed that various factors, including surfactant content, ultrasound duration, temperature, ultrasound power, and interaction between these factors, considerably affected different properties of the Th-MOF samples. According to the 2 k-1 factorial design, the determination coefficient (R 2 ) of the model is 0.999, with no significant lack of fit. The F value of 5432, implied that the model was highly significant and adequate to represent the relationship between the responses and the independent variables, also the large R-adjusted value indicates a good relationship between the experimental data and the fitted model. RSM predicted that it would be possible to produce Th-MOF samples with the thermal stability of 407°C, mean particle size of 13nm, and surface area of 2.20×10 3 m 2 /g. The mechanism controlling the Th-MOF properties was considerably different from the conventional mechanisms. Moreover, the MOF sample synthesized using UARM exhibited higher capacity for nitrogen adsorption as a result of larger pore sizes. It is believed that the UARM method and systematic studies developed in the present work can be considered as a new strategy for their application in other nanoscale MOF samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Small RNAs regulate the biocontrol property of fluorescent Pseudomonas strain Psd.

    PubMed

    Upadhyay, Anamika; Kochar, Mandira; Upadhyay, Ashutosh; Tripathy, Soumya; Rajam, Manchikatla Venkat; Srivastava, Sheela

    2017-03-01

    The production of biocontrol factors by Pseudomonads is reported to be controlled at the post-transcriptional level by the GacS/GacA signal transduction pathway. This involves RNA-binding translational repressor proteins, RsmA and RsmE, and the small regulatory RNAs (sRNAs) RsmX, RsmY, and RsmZ. While the former represses genes involved in secondary metabolite production, the latter relieves this repression at the end of exponential growth. We have studied the fluorescent Pseudomonas strain Psd, possessing good biocontrol potential, and confirmed the presence of rsmY and rsmZ by PCR amplification. Gene constructs for all the three small RNAs (RsmX, RsmY and RsmZ) carried on broad host-range plasmid, pME6032 were mobilized into strain Psd. Expression analysis of gacA in the recombinant strains over-expressing rsmX (Psd-pME7320), rsmY (Psd-pME6359) and rsmZ (Psd-pME6918) revealed a significant upregulation of the response regulator. Besides, a remarkable down-regulation of rsmA was also reported in all the strains. The variant strains were found to produce comparatively higher levels of phenazines. Indole acetic acid levels were higher to some extent, and strain Psd-pME6918 also showed elevated production of HCN. The tomato seedlings infected with Fusarium oxysporum and Verticillium dahliae in the presence of culture filtrate of the recombinant strains showed better plant protection response in comparison to the wild-type strain Psd. These results suggest that small RNAs are important determinants in regulation of the biocontrol property of strain Psd. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Optimization of response surface and neural network models in conjugation with desirability function for estimation of nutritional needs of methionine, lysine, and threonine in broiler chickens.

    PubMed

    Mehri, Mehran

    2014-07-01

    The optimization algorithm of a model may have significant effects on the final optimal values of nutrient requirements in poultry enterprises. In poultry nutrition, the optimal values of dietary essential nutrients are very important for feed formulation to optimize profit through minimizing feed cost and maximizing bird performance. This study was conducted to introduce a novel multi-objective algorithm, desirability function, for optimization the bird response models based on response surface methodology (RSM) and artificial neural network (ANN). The growth databases on the central composite design (CCD) were used to construct the RSM and ANN models and optimal values for 3 essential amino acids including lysine, methionine, and threonine in broiler chicks have been reevaluated using the desirable function in both analytical approaches from 3 to 16 d of age. Multi-objective optimization results showed that the most desirable function was obtained for ANN-based model (D = 0.99) where the optimal levels of digestible lysine (dLys), digestible methionine (dMet), and digestible threonine (dThr) for maximum desirability were 13.2, 5.0, and 8.3 g/kg of diet, respectively. However, the optimal levels of dLys, dMet, and dThr in the RSM-based model were estimated at 11.2, 5.4, and 7.6 g/kg of diet, respectively. This research documented that the application of ANN in the broiler chicken model along with a multi-objective optimization algorithm such as desirability function could be a useful tool for optimization of dietary amino acids in fractional factorial experiments, in which the use of the global desirability function may be able to overcome the underestimations of dietary amino acids resulting from the RSM model. © 2014 Poultry Science Association Inc.

  5. Structural Rearrangement in an RsmA/CsrA Ortholog of Pseudomonas aeruginosa Creates a Dimeric RNA-Binding Protein, RsmN

    PubMed Central

    Morris, Elizabeth R.; Hall, Gareth; Li, Chan; Heeb, Stephan; Kulkarni, Rahul V.; Lovelock, Laura; Silistre, Hazel; Messina, Marco; Cámara, Miguel; Emsley, Jonas; Williams, Paul; Searle, Mark S.

    2013-01-01

    Summary In bacteria, the highly conserved RsmA/CsrA family of RNA-binding proteins functions as global posttranscriptional regulators acting on mRNA translation and stability. Through phenotypic complementation of an rsmA mutant in Pseudomonas aeruginosa, we discovered a family member, termed RsmN. Elucidation of the RsmN crystal structure and that of the complex with a hairpin from the sRNA, RsmZ, reveals a uniquely inserted α helix, which redirects the polypeptide chain to form a distinctly different protein fold to the domain-swapped dimeric structure of RsmA homologs. The overall β sheet structure required for RNA recognition is, however, preserved with compensatory sequence and structure differences, allowing the RsmN dimer to target binding motifs in both structured hairpin loops and flexible disordered RNAs. Phylogenetic analysis indicates that, although RsmN appears unique to P. aeruginosa, homologous proteins with the inserted α helix are more widespread and arose as a consequence of a gene duplication event. PMID:23954502

  6. Optimization of lipase-catalyzed enantioselective production of 1-phenyl 1-propanol using response surface methodology.

    PubMed

    Soyer, Asli; Bayraktar, Emine; Mehmetoglu, Ulku

    2010-01-01

    Optically active 1-phenyl 1-propanol is used as a chiral building block and synthetic intermediate in the pharmaceutical industries. In this study, the enantioselective production of 1-phenyl 1-propanol was investigated systematically using response surface methodology (RSM). Before RSM was applied, the effects of the enzyme source, the type of acyl donor, and the type of solvent on the kinetic resolution of 1-phenyl 1-propanol were studied. The best results were obtained with Candida antartica lipase (commercially available as Novozym 435), vinyl laurate as the acyl donor, and isooctane as the solvent. In the RSM, substrate concentration, molar ratio of acyl donor to the substrate, amount of enzyme, temperature, and stirring rate were chosen as independent variables. The predicted optimum conditions for a higher enantiomeric excess (ee) were as follows: substrate concentration, 233 mM; molar ratio of acyl donor to substrate, 1.5; enzyme amount, 116 mg; temperature, 47 °C; and stirring rate, 161 rpm. A verification experiment conducted at these optimized conditions for maximum ee yielded 91% for 3 hr, which is higher than the predicted value of 83%. The effect of microwave on the ee was also investigated and ee reached 87% at only 5 min.

  7. Method for Constructing Composite Response Surfaces by Combining Neural Networks with Polynominal Interpolation or Estimation Techniques

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan (Inventor); Madavan, Nateri K. (Inventor)

    2007-01-01

    A method and system for data modeling that incorporates the advantages of both traditional response surface methodology (RSM) and neural networks is disclosed. The invention partitions the parameters into a first set of s simple parameters, where observable data are expressible as low order polynomials, and c complex parameters that reflect more complicated variation of the observed data. Variation of the data with the simple parameters is modeled using polynomials; and variation of the data with the complex parameters at each vertex is analyzed using a neural network. Variations with the simple parameters and with the complex parameters are expressed using a first sequence of shape functions and a second sequence of neural network functions. The first and second sequences are multiplicatively combined to form a composite response surface, dependent upon the parameter values, that can be used to identify an accurate mode

  8. Optimization of Nanocomposite Modified Asphalt Mixtures Fatigue Life using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Bala, N.; Napiah, M.; Kamaruddin, I.; Danlami, N.

    2018-04-01

    In this study, modelling and optimization of materials polyethylene, polypropylene and nanosilica for nanocomposite modified asphalt mixtures has been examined to obtain optimum quantities for higher fatique life. Response Surface Methodology (RSM) was applied for the optimization based on Box Behnken design (BBD). Interaction effects of independent variables polymers and nanosilica on fatique life were evaluated. The result indicates that the individual effects of polymers and nanosilica content are both important. However, the content of nanosilica used has more significant effect on fatique life resistance. Also, the mean error obtained from optimization results is less than 5% for all the responses, this indicates that predicted values are in agreement with experimental results. Furthermore, it was concluded that asphalt mixture design with high performance properties, optimization using RSM is a very effective approach.

  9. Analysis of the tenderisation of jumbo squid (Dosidicus gigas) meat by ultrasonic treatment using response surface methodology.

    PubMed

    Hu, Yaqin; Yu, Hiaxia; Dong, Kaicheng; Yang, Shuibing; Ye, Xingqian; Chen, Shiguo

    2014-10-01

    Due to its unique structure, jumbo squid (Dosidicus gigas) meat is sensitive to heat treatment, which makes the traditional squid products taste tough and hard. This study aimed to tenderise jumbo squid meat through ultrasonic treatment. Response surface methodology (RSM) was used to predict the tenderising effect of various treatment conditions. According to the results of RSM, the optimal conditions appeared to be a power of 186.9 W, a frequency of 25.6 kHz, and a time of 30.8 min, and the predicted values of flexibility and firmness under these optimal conditions were 2.40 mm and 435.1 g, respectively. Protein degradation and a broken muscle fibre structure were observed through histological assay and SDS-PAGE, which suggests a satisfactory tenderisation effect. Copyright © 2014. Published by Elsevier Ltd.

  10. Optimization of volatile fatty acid production with co-substrate of food wastes and dewatered excess sludge using response surface methodology.

    PubMed

    Hong, Chen; Haiyun, Wu

    2010-07-01

    Central-composite design (CCD) and response surface methodology (RSM) were used to optimize the parameters of volatile fatty acid (VFA) production from food wastes and dewatered excess sludge in a semi-continuous process. The effects of four variables (food wastes composition in the co-substrate of food wastes and excess sludge, hydraulic retention time (HRT), organic loading rate (OLR), and pH) on acidogenesis were evaluated individually and interactively. The optimum condition derived via RSM was food wastes composition, 88.03%; HRT, 8.92 days; OLR, 8.31 g VSS/ld; and pH 6.99. The experimental VFA concentration was 29,099 mg/l under this optimum condition, which was well in agreement with the predicted value of 28,000 mg/l. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Development of Phaleria macrocarpa (Scheff.) Boerl Fruits Using Response Surface Methodology Focused on Phenolics, Flavonoids and Antioxidant Properties.

    PubMed

    Mohamed Mahzir, Khurul Ain; Abd Gani, Siti Salwa; Hasanah Zaidan, Uswatun; Halmi, Mohd Izuan Effendi

    2018-03-22

    In this study, the optimal conditions for the extraction of antioxidants from the Buah Mahkota Dewa fruit ( Phaleria macrocarpa) was determined by using Response Surface Methodology (RSM). The optimisation was applied using a Central Composite Design (CCD) to investigate the effect of three independent variables, namely extraction temperature (°C), extraction time (minutes) and extraction solvent to-feed ratio (% v / v ) on four responses: free radical scavenging activity (DPPH), ferric ion reducing power assay (FRAP), total phenolic content (TPC) and total flavonoid content (TFC). The optimal conditions for the antioxidants extraction were found to be 64 °C extraction temperature, 66 min extraction time and 75% v / v solvent to-feed ratio giving the highest percentage yields of DPPH, FRAP, TPC and TFC of 86.85%, 7.47%, 292.86 mg/g and 3.22 mg/g, respectively. Moreover, the data were subjected to Response Surface Methodology (RSM) and the results showed that the polynomial equations for all models were significant, did not show lack of fit, and presented adjusted determination coefficients ( R ²) above 99%, proving that the yield of phenolic, flavonoid and antioxidants activities obtained experimentally were close to the predicted values and the suitability of the model employed in RSM to optimise the extraction conditions. Hence, in this study, the fruit from P. macrocarpa could be considered to have strong antioxidant ability and can be used in various cosmeceutical or medicinal applications.

  12. Degradation of ciprofloxacin antibiotic by Homogeneous Fenton oxidation: Hybrid AHP-PROMETHEE method, optimization, biodegradability improvement and identification of oxidized by-products.

    PubMed

    Salari, Marjan; Rakhshandehroo, Gholam Reza; Nikoo, Mohammad Reza

    2018-09-01

    The main purpose of this experimental study was to optimize Homogeneous Fenton oxidation (HFO) and identification of oxidized by-products from degradation of Ciprofloxacin (CIP) using hybrid AHP-PROMETHEE, Response Surface Methodology (RSM) and High Performance Liquid Chromatography coupled with Mass Spectrometry (HPLC-MS). At the first step, an assessment was made for performances of two catalysts (FeSO 4 ·7H 2 O and FeCl 2 ·4H 2 O) based on hybrid AHP-PROMETHEE decision making method. Then, RSM was utilized to examine and optimize the influence of different variables including initial CIP concentration, Fe 2+ concentration, [H 2 O 2 ]/[ Fe 2+ ] mole ratio and initial pH as independent variables on CIP removal, COD removal, and sludge to iron (SIR) as the response functions in a reaction time of 25 min. Weights of the mentioned responses as well as cost criteria were determined by AHP model based on pairwise comparison and then used as inputs to PROMETHEE method to develop hybrid AHP-PROMETHEE. Based on net flow results of this hybrid model, FeCl 2 ·4H 2 O was more efficient because of its less environmental stability as well as lower SIR production. Then, optimization of experiments using Central Composite Design (CCD) under RSM was performed with the FeCl 2 ·4H 2 O catalyst. Biodegradability of wastewater was determined in terms of BOD 5 /COD ratio, showing that HFO process is able to improve wastewater biodegradability from zero to 0.42. Finally, the main intermediaries of degradation and degradation pathways of CIP were investigated with (HPLC-MS). Major degradation pathways from hydroxylation of both piperazine and quinolonic rings, oxidation and cleavage of the piperazine ring, and defluorination (OH/F substitution) were suggested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Statistical optimization of process parameters for the production of tannase by Aspergillus flavus under submerged fermentation.

    PubMed

    Mohan, S K; Viruthagiri, T; Arunkumar, C

    2014-04-01

    Production of tannase by Aspergillus flavus (MTCC 3783) using tamarind seed powder as substrate was studied in submerged fermentation. Plackett-Burman design was applied for the screening of 12 medium nutrients. From the results, the significant nutrients were identified as tannic acid, magnesium sulfate, ferrous sulfate and ammonium sulfate. Further the optimization of process parameters was carried out using response surface methodology (RSM). RSM has been applied for designing of experiments to evaluate the interactive effects through a full 31 factorial design. The optimum conditions were tannic acid concentration, 3.22 %; fermentation period, 96 h; temperature, 35.1 °C; and pH 5.4. Higher value of the regression coefficient (R 2  = 0.9638) indicates excellent evaluation of experimental data by second-order polynomial regression model. The RSM revealed that a maximum tannase production of 139.3 U/ml was obtained at the optimum conditions.

  14. Formulation optimization of transdermal meloxicam potassium-loaded mesomorphic phases containing ethanol, oleic acid and mixture surfactant using the statistical experimental design methodology.

    PubMed

    Huang, Chi-Te; Tsai, Chia-Hsun; Tsou, Hsin-Yeh; Huang, Yaw-Bin; Tsai, Yi-Hung; Wu, Pao-Chu

    2011-01-01

    Response surface methodology (RSM) was used to develop and optimize the mesomorphic phase formulation for a meloxicam transdermal dosage form. A mixture design was applied to prepare formulations which consisted of three independent variables including oleic acid (X(1)), distilled water (X(2)) and ethanol (X(3)). The flux and lag time (LT) were selected as dependent variables. The result showed that using mesomorphic phases as vehicles can significantly increase flux and shorten LT of drug. The analysis of variance showed that the permeation parameters of meloxicam from formulations were significantly influenced by the independent variables and their interactions. The X(3) (ethanol) had the greatest potential influence on the flux and LT, followed by X(1) and X(2). A new formulation was prepared according to the independent levels provided by RSM. The observed responses were in close agreement with the predicted values, demonstrating that RSM could be successfully used to optimize mesomorphic phase formulations.

  15. Fermentation of rapeseed meal, sunflower meal and faba beans in combination with wheat bran increases solubility of protein and phosphorus.

    PubMed

    Poulsen, Hanne Damgaard; Blaabjerg, Karoline

    2017-01-01

    To increase self-supply of protein and phosphorus (P) in European pig and poultry diets and reduce nitrogen (N) and P excretion, attention is directed to approaches increasing protein and P digestibility of rapeseed, sunflower and faba beans. Wheat bran is rich in enzymes degrading and solubilizing protein and phytate. Herein, solubilization of protein, N and P was investigated when increasing ratios of wheat bran were fermented with rapeseed meal (RSM), sunflower meal (SFM), faba beans (FB) or a combination of these (RSM/SFM/FB). Protein, N and P solubility was greater, for all mixtures, the more wheat bran was included and the longer the mixtures were fermented. The increase in N (FB > RSM/SFM/FB > SFM > RSM) and protein solubility (RSM/SFM/FB > RSM > SFM > FB) was greatest from day 0 to day 3 and thereafter limited, whereas P solubility increased during the whole period (5 days; FB > RSM/SFM/FB > SFM > RSM). In general, FB showed the highest solubility and highest increase in N and P solubility, while RSM showed the highest protein solubility and RSM/SFM/FB the highest increase in protein solubility. Fermentation of RSM, SFM, FB and RSM/SFM/FB without or with wheat bran uncovers a potential for increased protein and P digestibility and thereby reduced N and P excretion from pigs and poultry. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Autonomous Experimentation of Carbon Nanotube Using Response Surface Methods

    DTIC Science & Technology

    2015-03-26

    on the unique challenges of creating autonomous research robots . v Table of Contents Page Abstract...previous RSM results. 31 S AR Reset a l data les Disp ay Sta t Menu Adjust eas ble bounda es Ad ust acto evel size Dec de andom o speci ed n t...al sta t ni ial Sta t Gene ate andom sta t # o uns D splay O Block Menu C ea e O B ock des gn Disp ay ull O Design Menu C ea e O ull Design W

  17. Optimizing Hyperspectral Imagery Anomaly Detection through Robust Parameter Design

    DTIC Science & Technology

    2011-10-01

    72 3.2.1 Standard RSM Model ( y (1)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.2.2 RPD Model Including N ×N ( y (2...LT surface plot for y (1) model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.6. LT surface plot for y (2) model...88 3.12. AutoGAD y (1) residual versus predicted plot. . . . . . . . . . . . . . . . . . . . . . . . 96 3.13

  18. Optimizing pulsed Nd:YAG laser beam welding process parameters to attain maximum ultimate tensile strength for thin AISI316L sheet using response surface methodology and simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Torabi, Amir; Kolahan, Farhad

    2018-07-01

    Pulsed laser welding is a powerful technique especially suitable for joining thin sheet metals. In this study, based on experimental data, pulsed laser welding of thin AISI316L austenitic stainless steel sheet has been modeled and optimized. The experimental data required for modeling are gathered as per Central Composite Design matrix in Response Surface Methodology (RSM) with full replication of 31 runs. Ultimate Tensile Strength (UTS) is considered as the main quality measure in laser welding. Furthermore, the important process parameters including peak power, pulse duration, pulse frequency and welding speed are selected as input process parameters. The relation between input parameters and the output response is established via full quadratic response surface regression with confidence level of 95%. The adequacy of the regression model was verified using Analysis of Variance technique results. The main effects of each factor and the interactions effects with other factors were analyzed graphically in contour and surface plot. Next, to maximum joint UTS, the best combinations of parameters levels were specified using RSM. Moreover, the mathematical model is implanted into a Simulated Annealing (SA) optimization algorithm to determine the optimal values of process parameters. The results obtained by both SA and RSM optimization techniques are in good agreement. The optimal parameters settings for peak power of 1800 W, pulse duration of 4.5 ms, frequency of 4.2 Hz and welding speed of 0.5 mm/s would result in a welded joint with 96% of the base metal UTS. Computational results clearly demonstrate that the proposed modeling and optimization procedures perform quite well for pulsed laser welding process.

  19. Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila

    PubMed Central

    Sahr, Tobias; Brüggemann, Holger; Jules, Matthieu; Lomma, Mariella; Albert-Weissenberger, Christiane; Cazalet, Christel; Buchrieser, Carmen

    2009-01-01

    Summary To transit from intra- to extracellular environments, L. pneumophila differentiates from a replicative/non-virulent to a transmissive/virulent form using the two-component system LetA/LetS and the global repressor protein CsrA. While investigating how both regulators act coordinately we characterized two ncRNAs, RsmY and RsmZ that link the LetA/LetS and CsrA regulatory networks. We demonstrate that LetA directly regulates their expression and show that RsmY and RsmZ are functional in E. coli and are able to bind CsrA in vitro. Single mutants have no (ΔrsmY) or a little (ΔrsmZ) impact on virulence, but the ΔrsmYZ strain shows a drastic defect in intracellular growth in Acanthamoeba castellanii and THP-1 monocyte-derived macrophages. Analysis of the transcriptional programs of the ΔletA, ΔletS and ΔrsmYZ strains revealed that the switch to the transmissive phase is partially blocked. One major difference between the ΔletA, ΔletS and ΔrsmYZ strains was that the latter synthesizes flagella. Taken together, LetA activates transcription of RsmY and RsmZ, which sequester CsrA and abolish its post-transcriptional repressive activity. However, the RsmYZ-CsrA pathway appears not to be the main or only regulatory circuit governing flagella synthesis. We suggest that rather RpoS and LetA, by influencing LetE and probably cyclic-di-GMP levels, regulate motility in L. pneumophila. PMID:19400772

  20. Optimization of solvent extraction of shea butter (Vitellaria paradoxa) using response surface methodology and its characterization.

    PubMed

    Ajala, E O; Aberuagba, F; Olaniyan, A M; Onifade, K R

    2016-01-01

    Shea butter (SB) was extracted from its kernel by using n-hexane as solvent in an optimization study. This was to determine the optima operating variables that would give optimum yield of SB and to study the effect of solvent on the physico-chemical properties and chemical composition of SB extracted using n-hexane. A Box-behnken response surface methodology (RSM) was used for the optimization study while statistical analysis using ANOVA was used to test the significance of the variables for the process. The variables considered for this study were: sample weight (g), solvent volume (ml) and extraction time (min). The physico-chemical properties of SB extracted were determined using standard methods and Fourier Transform Infrared Spectroscopy (FTIR) for the chemical composition. The results of RSM analysis showed that the three variables investigated have significant effect (p < 0.05) on the %yield of SB, with R(2) - 0.8989 which showed good fitness of a second-order model. Based on this model, optima operating variables for the extraction process were established as: sample weight of 30.04 g, solvent volume of 346.04 ml and extraction time of 40 min, which gave 66.90 % yield of SB. Furthermore, the result of the physico-chemical properties obtained for the shea butter extracted using traditional method (SBT) showed that it is a more suitable raw material for food, biodiesel production, cosmetics, medicinal and pharmaceutical purposes than shea butter extracted using solvent extraction method (SBS). Fourier Transform Infrared Spectroscopy (FTIR) results obtained for the two samples were similar to what was obtainable from other vegetable oil.

  1. Mars Science Laboratory Frame Manager for Centralized Frame Tree Database and Target Pointing

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Leger, Chris; Peters, Stephen; Carsten, Joseph; Diaz-Calderon, Antonio

    2013-01-01

    The FM (Frame Manager) flight software module is responsible for maintaining the frame tree database containing coordinate transforms between frames. The frame tree is a proper tree structure of directed links, consisting of surface and rover subtrees. Actual frame transforms are updated by their owner. FM updates site and saved frames for the surface tree. As the rover drives to a new area, a new site frame with an incremented site index can be created. Several clients including ARM and RSM (Remote Sensing Mast) update their related rover frames that they own. Through the onboard centralized FM frame tree database, client modules can query transforms between any two frames. Important applications include target image pointing for RSM-mounted cameras and frame-referenced arm moves. The use of frame tree eliminates cumbersome, error-prone calculations of coordinate entries for commands and thus simplifies flight operations significantly.

  2. Treatment of dyeing wastewater by TiO2/H2O2/UV process: experimental design approach for evaluating total organic carbon (TOC) removal efficiency.

    PubMed

    Lee, Seung-Mok; Kim, Young-Gyu; Cho, Il-Hyoung

    2005-01-01

    Optimal operating conditions in order to treat dyeing wastewater were investigated by using the factorial design and responses surface methodology (RSM). The experiment was statistically designed and carried out according to a 22 full factorial design with four factorial points, three center points, and four axial points. Then, the linear and nonlinear regression was applied on the data by using SAS package software. The independent variables were TiO2 dosage, H2O2 concentration and total organic carbon (TOC) removal efficiency of dyeing wastewater was dependent variable. From the factorial design and responses surface methodology (RSM), maximum removal efficiency (85%) of dyeing wastewater was obtained at TiO2 dosage (1.82 gL(-1)), H2O2 concentration (980 mgL(-1)) for oxidation reaction (20 min).

  3. Response surface methodology for optimization of medium for decolorization of textile dye Direct Black 22 by a novel bacterial consortium.

    PubMed

    Mohana, Sarayu; Shrivastava, Shalini; Divecha, Jyoti; Madamwar, Datta

    2008-02-01

    Decolorization and degradation of polyazo dye Direct Black 22 was carried out by distillery spent wash degrading mixed bacterial consortium, DMC. Response surface methodology (RSM) involving a central composite design (CCD) in four factors was successfully employed for the study and optimization of decolorization process. The hyper activities and interactions between glucose concentration, yeast extract concentration, dye concentration and inoculum size on dye decolorization were investigated and modeled. Under optimized conditions the bacterial consortium was able to decolorize the dye almost completely (>91%) within 12h. Bacterial consortium was able to decolorize 10 different azo dyes. The optimum combination of the four variables predicted through RSM was confirmed through confirmatory experiments and hence this bacterial consortium holds potential for the treatment of industrial waste water. Dye degradation products obtained during the course of decolorization were analyzed by HPTLC.

  4. Optimization of thermoacoustic engine driven thermoacoustic refrigerator using response surface methodology

    NASA Astrophysics Data System (ADS)

    Desai, A. B.; Desai, K. P.; Naik, H. B.; Atrey, M. D.

    2017-02-01

    Thermoacoustic engines (TAEs) are devices which convert heat energy into useful acoustic work whereas thermoacoustic refrigerators (TARs) convert acoustic work into temperature gradient. These devices work without any moving component. Study presented here comprises of a combination system i.e. thermoacoustic engine driven thermoacoustic refrigerator (TADTAR). This system has no moving component and hence it is easy to fabricate but at the same time it is very challenging to design and construct optimized system with comparable performance. The work presented here aims to apply optimization technique to TADTAR in the form of response surface methodology (RSM). Significance of stack position and stack length for engine stack, stack position and stack length for refrigerator stack are investigated in current work. Results from RSM are compared with results from simulations using Design Environment for Low-amplitude Thermoacoustic Energy conversion (DeltaEC) for compliance.

  5. Optimization of gelatine extraction from grass carp (Catenopharyngodon idella) fish skin by response surface methodology.

    PubMed

    Kasankala, Ladislaus M; Xue, Yan; Weilong, Yao; Hong, Sun D; He, Qian

    2007-12-01

    To establish the optimum gelatine extraction conditions from grass carp fish skin, response surface methodology (RSM) was adopted in this study. The effects of concentration of HCl (%, A), pre-treatment time (h, B), extraction temperature ( degrees C, C) and extraction time (h, D) were studied. The responses were yield (%) and gel strength (g). A=1.19%, B=24 h, C=52.61 degrees C and D=5.12h were determined as the optimum conditions while the predicted responses were 19.83% yield and 267 g gel strength. Gelling and melting points were 19.5 degrees C and 26.8 degrees C, respectively. Moreover, grass carp gelatine showed high contents of imino acids (proline and hydroxyproline) 19.47%. RSM provided a powerful tool to optimize the extraction parameters and the results may be adapted for industrial extraction of gelatine from grass carp fish skins.

  6. Parametric and energy consumption optimization of Basic Red 2 removal by electrocoagulation/egg shell adsorption coupling using response surface methodology in a batch system.

    PubMed

    de Carvalho, Helder Pereira; Huang, Jiguo; Zhao, Meixia; Liu, Gang; Yang, Xinyu; Dong, Lili; Liu, Xingjuan

    2016-01-01

    In this study, response surface methodology (RSM) model was applied for optimization of Basic Red 2 (BR2) removal using electrocoagulation/eggshell (ES) coupling process in a batch system. Central composite design was used to evaluate the effects and interactions of process parameters including current density, reaction time, initial pH and ES dosage on the BR2 removal efficiency and energy consumption. The analysis of variance revealed high R(2) values (≥85%) indicating that the predictions of RSM models are adequately applicable for both responses. The optimum conditions when the dye removal efficiency of 93.18% and energy consumption of 0.840 kWh/kg were observed were 11.40 mA/cm(2) current density, 5 min and 3 s reaction time, 6.5 initial pH and 10.91 g/L ES dosage.

  7. Modelling and optimization of Mn/activate carbon nanocatalysts for NO reduction: comparison of RSM and ANN techniques.

    PubMed

    Mousavi, Seyed Mahdi; Niaei, Aligholi; Salari, Dariush; Panahi, Parvaneh Nakhostin; Samandari, Masoud

    2013-01-01

    A response surface methodology (RSM) involving a central composite design was applied to the modelling and optimization of a preparation of Mn/active carbon nanocatalysts in NH3-SCR of NO at 250 degrees C and the results were compared with the artificial neural network (ANN) predicted values. The catalyst preparation parameters, including metal loading (wt%), calcination temperature and pre-oxidization degree (v/v% HNO3) were selected as influence factors on catalyst efficiency. In the RSM model, the predicted values of NO conversion were found to be in good agreement with the experimental values. Pareto graphic analysis showed that all the chosen parameters and some of the interactions were effective on response. The optimization results showed that maximum NO conversion was achieved at the optimum conditions: 10.2 v/v% HNO3, 6.1 wt% Mn loading and calcination at 480 degrees C. The ANN model was developed by a feed-forward back propagation network with the topology 3, 8 and 1 and a Levenberg-Marquardt training algorithm. The mean square error for the ANN and RSM models were 0.339 and 1.176, respectively, and the R2 values were 0.991 and 0.972, respectively, indicating the superiority of ANN in capturing the nonlinear behaviour of the system and being accurate in estimating the values of the NO conversion.

  8. Optimization of Extraction Process for Antidiabetic and Antioxidant Activities of Kursi Wufarikun Ziyabit Using Response Surface Methodology and Quantitative Analysis of Main Components.

    PubMed

    Edirs, Salamet; Turak, Ablajan; Numonov, Sodik; Xin, Xuelei; Aisa, Haji Akber

    2017-01-01

    By using extraction yield, total polyphenolic content, antidiabetic activities (PTP-1B and α -glycosidase), and antioxidant activity (ABTS and DPPH) as indicated markers, the extraction conditions of the prescription Kursi Wufarikun Ziyabit (KWZ) were optimized by response surface methodology (RSM). Independent variables were ethanol concentration, extraction temperature, solid-to-solvent ratio, and extraction time. The result of RSM analysis showed that the four variables investigated have a significant effect ( p < 0.05) for Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 with R 2 value of 0.9120, 0.9793, 0.9076, 0.9125, and 0.9709, respectively. Optimal conditions for the highest extraction yield of 39.28%, PTP-1B inhibition rate of 86.21%, α -glycosidase enzymes inhibition rate of 96.56%, and ABTS inhibition rate of 77.38% were derived at ethanol concentration 50.11%, extraction temperature 72.06°C, solid-to-solvent ratio 1 : 22.73 g/mL, and extraction time 2.93 h. On the basis of total polyphenol content of 48.44% in this optimal condition, the quantitative analysis of effective part of KWZ was characterized via UPLC method, 12 main components were identified by standard compounds, and all of them have shown good regression within the test ranges and the total content of them was 11.18%.

  9. The red spider mite, Oligonychus coffeae (Acari: Tetranychidae): its status, biology, ecology and management in tea plantations.

    PubMed

    Roy, Somnath; Muraleedharan, Narayanannair; Mukhopadhyay, Ananda

    2014-08-01

    Oligonychus coffeae Nietner (Acari: Tetranychidae), the red spider mite (RSM), is a major pest of tea (Camellia sinensis) in most tea-producing countries. Nymphs and adults of RSM lacerate cells, producing minute characteristic reddish brown marks on the upper surface of mature leaves, which turn red in severe cases of infestation, resulting in crop loss. The pest is present on tea all the year round, although numbers vary depending on season. Their number increases as the weather warms up and decreases markedly once rains set in. Under optimal conditions there may be 22 overlapping generations in a year. Parthenogenesis is known to occur; consequently, all mite stages can be found at a given time. Their infestation is mainly confined to the upper surface of the mature leaves and could readily be identified by the bronzing of the leaf. There are several naturally occurring insect predators, such as coccinellid and staphylinid larvae, lacewing larvae, and mite predators, most importantly species of the families Phytoseiidae and Stigmaeidae. Integrated management has been adopted to control this mite pest, involving cultural, mechanical, physical, biological and chemical methods. This review collates the most important works carried out on biology, ecology and management of O. coffeae. Also the scope of future studies for better management of this regular mite pest of tea is discussed.

  10. Biochemical responses of Gammarus pulex to malachite green solutions decolorized by Coriolus versicolor as a biosorbent under batch adsorption conditions optimized with response surface methodology.

    PubMed

    Yildirim, Nuran Cikcikoglu; Tanyol, Mehtap; Yildirim, Numan; Serdar, Osman; Tatar, Sule

    2018-07-30

    The current study was aimed to investigate the detoxifying and antioxidant enzyme response of Gammarus pulex exposed to malachite green (MG) after decolorization by Coriolus versicolor. Response surface methodology (RSM) was utilized to optimize the decolorization conditions of MG synthetic solutions by C. versicolor. Glutathione (GSH), malondialdehyde (MDA) levels and glutathione peroxidase (GP X ), catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), cytochrome P450 1A1 (CYP1A1) activities in G. pulex exposed to undecolorized (A1) and decolorized (A2) MG synthetic solution during 24 and 96 h were tested by using ELISA method. SOD and GP X enzyme activity was increased after decolorization (p > 0.05). CAT enzyme activity was increased in A2 group during 24 h (p > 0.05) but decreased during 96 h (p < 0.05). GSH levels were increased in A2 group during 24 and 96 h (p < 0.05). GST, CYP1A1 enzyme activity and MDA levels were decreased after decolorization during 96 h (p < 0.05). In this study, GSH levels, CAT, GST and CYP1A1 activities in G. pulex approved the capability of C. versicolor in MG decolorization, optimized with RSM. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Optimization of polyhydroxybutyrate production utilizing waste water as nutrient source by Botryococcus braunii Kütz using response surface methodology.

    PubMed

    Kavitha, Ganapathy; Kurinjimalar, Chidambaram; Sivakumar, Krishnan; Kaarthik, Muthukumar; Aravind, Rajamani; Palani, Perumal; Rengasamy, Ramasamy

    2016-12-01

    Investigations have been made to optimize various factors including pH, temperature, and substrate for enhanced polyhydroxybutyrate (PHB) production in Botryococcus braunii which serves as a pioneer for production of bioplastic (PHB). Polyhydroxybutyrate is a natural, decomposable polymers accumulated by the microorganism under different nutritional condition. Strain selection was done by staining method using Sudan black and Nile red dye. Using response surface methodology (RSM), three level- three variables Box Behnken design (BBD), the best potential combination of pH (4-11), temperature (30-50°C) and sewage waste water as substrate fed at different concentrations at 20%-100% for maximum PHB production was investigated. Maximum yield (247±0.42mg/L) of PHB dry weight was achieved from the 60% concentration of sewage waste water as a growth medium at pH 7.5 at 40°C. It was well in close agreement with the value predicted by RSM model yield (246± 0.32mg/L). Thus the study shows the production of PHB by B. braunii along with the basic characterization of PHB by using FTIR and TEM analysis. These preliminary studies indicated that PHB can also be produced by B. braunii utilizing waste water. There is no report on the optimization of PHB production in this microalgae have been documented. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Study of decolorisation of binary dye mixture by response surface methodology.

    PubMed

    Khamparia, Shraddha; Jaspal, Dipika

    2017-10-01

    Decolorisation of a complex mixture of two different classes of textile dyes Direct Red 81 (DR81) and Rhodamine B (RHB), simulating one of the most important condition in real textile effluent was investigated onto deoiled Argemone Mexicana seeds (A. Mexicana). The adsorption behaviour of DR81 and RHB dyes was simultaneously analyzed in the mixture using derivative spectrophotometric method. Central composite design (CCD) was employed for designing the experiments for this complex binary mixture where significance of important parameters and possible interactions were analyzed by response surface methodology (RSM). Maximum adsorption of DR81 and RHB by A. Mexicana was obtained at 53 °C after 63.33 min with 0.1 g of adsorbent and 8 × 10 -6  M DR81, 12 × 10 -6  M RHB with composite desirability of 0.99. The predicted values for percentage removal of dyes from the mixture were in good agreement with the experimental values with R 2 > 96% for both the dyes. CCD superimposed RSM confirmed that presence of different dyes in a solution created a competition for the adsorbent sites and hence interaction of dyes was one of the most important factor to be studied to simulate the real effluent. The adsorbent showed remarkable adsorption capacities for both the dyes in the mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Analytical Modelling and Optimization of the Temperature-Dependent Dynamic Mechanical Properties of Fused Deposition Fabricated Parts Made of PC-ABS.

    PubMed

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2016-11-04

    Fused deposition modeling (FDM) additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM) and multilayer feed-forward neural networks (MFNNs). The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM). Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM.

  14. Analytical Modelling and Optimization of the Temperature-Dependent Dynamic Mechanical Properties of Fused Deposition Fabricated Parts Made of PC-ABS

    PubMed Central

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2016-01-01

    Fused deposition modeling (FDM) additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM) and multilayer feed-forward neural networks (MFNNs). The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM). Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM. PMID:28774019

  15. Climate Downscaling over Nordeste, Brazil, Using the NCEP RSM97.

    NASA Astrophysics Data System (ADS)

    Sun, Liqiang; Ferran Moncunill, David; Li, Huilan; Divino Moura, Antonio; de Assis de Souza Filho, Francisco

    2005-02-01

    The NCEP Regional Spectral Model (RSM), with horizontal resolution of 60 km, was used to downscale the ECHAM4.5 AGCM (T42) simulations forced with observed SSTs over northeast Brazil. An ensemble of 10 runs for the period January-June 1971-2000 was used in this study. The RSM can resolve the spatial patterns of observed seasonal precipitation and capture the interannual variability of observed seasonal precipitation as well. The AGCM bias in displacement of the Atlantic ITCZ is partially corrected in the RSM. The RSM probability distribution function of seasonal precipitation anomalies is in better agreement with observations than that of the driving AGCM. Good potential prediction skills are demonstrated by the RSM in predicting the interannual variability of regional seasonal precipitation. The RSM can also capture the interannual variability of observed precipitation at intraseasonal time scales, such as precipitation intensity distribution and dry spells. A drought index and a flooding index were adopted to indicate the severity of drought and flooding conditions, and their interannual variability was reproduced by the RSM. The overall RSM performance in the downscaled climate of the ECHAM4.5 AGCM is satisfactory over Nordeste. The primary deficiency is a systematic dry bias for precipitation simulation.

  16. Evaluation of the effect of sulfate, alkalinity and disinfector on iron release of iron pipe and iron corrosion scale characteristics under water quality changing condition using response surface methodology

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Shi, Baoyou; Zhang, Weiyu; Guo, Jianbo; Wu, Nana; Liu, Xinyuan

    2018-02-01

    The response surface methodology (RSM), particularly Box-Behnken design model, was used in this study to evaluate the sulfate, alkalinity and free chlorine on iron release of pipe with groundwater supply history and its iron corrosion scale characteristics under water quality changing experiment. The RSM results together with response surface contour plots indicated that the iron release of pipe section reactors was positively related with Larson Ratio and free chlorine. The thin Corrosion scales with groundwater supply history upon collection site contained Fe3O4 (18%), α-FeOOH (64%), FeCO3 (9%), β-FeOOH (8%) and γ-FeOOH (5%), besides their averaged amorphous iron oxide content was 13.6%. After the RSM water quality changing experiment, Fe3O4, amorphous iron oxide and intermediate iron products (FeCO3, Green Rust (GR)) content on scale of Cl2Rs increased, while their α-FeOOH contents decreased and β-FeOOH disappeared. The high iron released Cl2Rs receiving higher LR water (1.40-2.04) contained highest FeCO3 (20%) and amorphous iron oxide (42%), while the low iron release Cl2Rs receiving lower LR water (0.52-0.73) had higher GR(6.5%) and the amorphous iron oxide (23.7%). In high LR water (>0.73), the thin and non-protective corrosion scale containing higher amorphous iron oxide, Fe(II) derived from new produced Fe3O4 or FeCO3 or GR was easy for oxidants and sulfate ions penetration, and had higher iron release. However the same unstable corrosion scale didn’t have much iron release in low LR water (≤0.73). RSM experiment indicated that iron release of these unstable corrosion scales had close relationship with water quality (Larson Ratio and disinfectant). Optimizing the water quality of new source water and using reasonable water purification measures can help to eliminate the red water case.

  17. Response Surface Model (RSM)-based Benefit Per Ton Estimates

    EPA Pesticide Factsheets

    The tables below are updated versions of the tables appearing in The influence of location, source, and emission type in estimates of the human health benefits of reducing a ton of air pollution (Fann, Fulcher and Hubbell 2009).

  18. Regulatory Network Controlling Extracellular Proteins in Erwinia carotovora subsp. carotovora: FlhDC, the Master Regulator of Flagellar Genes, Activates rsmB Regulatory RNA Production by Affecting gacA and hexA (lrhA) Expression▿

    PubMed Central

    Cui, Yaya; Chatterjee, Asita; Yang, Hailian; Chatterjee, Arun K.

    2008-01-01

    Erwinia carotovora subsp. carotovora produces an array of extracellular proteins (i.e., exoproteins), including plant cell wall-degrading enzymes and Harpin, an effector responsible for eliciting hypersensitive reaction. Exoprotein genes are coregulated by the quorum-sensing signal, N-acyl homoserine lactone, plant signals, an assortment of transcriptional factors/regulators (GacS/A, ExpR1, ExpR2, KdgR, RpoS, HexA, and RsmC) and posttranscriptional regulators (RsmA, rsmB RNA). rsmB RNA production is positively regulated by GacS/A, a two-component system, and negatively regulated by HexA (PecT in Erwinia chrysanthemi; LrhA [LysR homolog A] in Escherichia coli) and RsmC, a putative transcriptional adaptor. While free RsmA, an RNA-binding protein, promotes decay of mRNAs of exoprotein genes, binding of RsmA with rsmB RNA neutralizes the RsmA effect. In the course of studies of GacA regulation, we discovered that a locus bearing strong homology to the flhDC operon of E. coli also controls extracellular enzyme production. A transposon insertion FlhDC− mutant produces very low levels of pectate lyase, polygalacturonase, cellulase, protease, and E. carotovora subsp. carotovora Harpin (HarpinEcc) and is severely attenuated in its plant virulence. The production of these exoproteins is restored in the mutant carrying an FlhDC+ plasmid. Sequence analysis and transcript assays disclosed that the flhD operon of E. carotovora subsp. carotovora, like those of other enterobacteria, consists of flhD and flhC. Complementation analysis revealed that the regulatory effect requires functions of both flhD and flhC products. The data presented here show that FlhDC positively regulates gacA, rsmC, and fliA and negatively regulates hexA (lrhA). Evidence shows that FlhDC controls extracellular protein production through cumulative effects on hexA and gacA. Reduced levels of GacA and elevated levels of HexA in the FlhDC− mutant are responsible for the inhibition of rsmB RNA production, a condition conducive to the accumulation of free RsmA. Indeed, studies with an RsmA− FlhDC− double mutant and multiple copies of rsmB+ DNA establish that the negative effect of FlhDC deficiency is exerted via RsmA. The FlhDC-mediated regulation of fliA has no bearing on exoprotein production in E. carotovora subsp. carotovora. Our observations for the first time establish a regulatory connection between FlhDC, HexA, GacA, and rsmB RNA in the context of the exoprotein production and virulence of E. carotovora subsp. carotovora. PMID:18441056

  19. Regulatory network controlling extracellular proteins in Erwinia carotovora subsp. carotovora: FlhDC, the master regulator of flagellar genes, activates rsmB regulatory RNA production by affecting gacA and hexA (lrhA) expression.

    PubMed

    Cui, Yaya; Chatterjee, Asita; Yang, Hailian; Chatterjee, Arun K

    2008-07-01

    Erwinia carotovora subsp. carotovora produces an array of extracellular proteins (i.e., exoproteins), including plant cell wall-degrading enzymes and Harpin, an effector responsible for eliciting hypersensitive reaction. Exoprotein genes are coregulated by the quorum-sensing signal, N-acyl homoserine lactone, plant signals, an assortment of transcriptional factors/regulators (GacS/A, ExpR1, ExpR2, KdgR, RpoS, HexA, and RsmC) and posttranscriptional regulators (RsmA, rsmB RNA). rsmB RNA production is positively regulated by GacS/A, a two-component system, and negatively regulated by HexA (PecT in Erwinia chrysanthemi; LrhA [LysR homolog A] in Escherichia coli) and RsmC, a putative transcriptional adaptor. While free RsmA, an RNA-binding protein, promotes decay of mRNAs of exoprotein genes, binding of RsmA with rsmB RNA neutralizes the RsmA effect. In the course of studies of GacA regulation, we discovered that a locus bearing strong homology to the flhDC operon of E. coli also controls extracellular enzyme production. A transposon insertion FlhDC(-) mutant produces very low levels of pectate lyase, polygalacturonase, cellulase, protease, and E. carotovora subsp. carotovora Harpin (Harpin(Ecc)) and is severely attenuated in its plant virulence. The production of these exoproteins is restored in the mutant carrying an FlhDC(+) plasmid. Sequence analysis and transcript assays disclosed that the flhD operon of E. carotovora subsp. carotovora, like those of other enterobacteria, consists of flhD and flhC. Complementation analysis revealed that the regulatory effect requires functions of both flhD and flhC products. The data presented here show that FlhDC positively regulates gacA, rsmC, and fliA and negatively regulates hexA (lrhA). Evidence shows that FlhDC controls extracellular protein production through cumulative effects on hexA and gacA. Reduced levels of GacA and elevated levels of HexA in the FlhDC(-) mutant are responsible for the inhibition of rsmB RNA production, a condition conducive to the accumulation of free RsmA. Indeed, studies with an RsmA(-) FlhDC(-) double mutant and multiple copies of rsmB(+) DNA establish that the negative effect of FlhDC deficiency is exerted via RsmA. The FlhDC-mediated regulation of fliA has no bearing on exoprotein production in E. carotovora subsp. carotovora. Our observations for the first time establish a regulatory connection between FlhDC, HexA, GacA, and rsmB RNA in the context of the exoprotein production and virulence of E. carotovora subsp. carotovora.

  20. The algorithm for duration acceleration of repetitive projects considering the learning effect

    NASA Astrophysics Data System (ADS)

    Chen, Hongtao; Wang, Keke; Du, Yang; Wang, Liwan

    2018-03-01

    Repetitive project optimization problem is common in project scheduling. Repetitive Scheduling Method (RSM) has many irreplaceable advantages in the field of repetitive projects. As the same or similar work is repeated, the proficiency of workers will be correspondingly low to high, and workers will gain experience and improve the efficiency of operations. This is learning effect. Learning effect is one of the important factors affecting the optimization results in repetitive project scheduling. This paper analyzes the influence of the learning effect on the controlling path in RSM from two aspects: one is that the learning effect changes the controlling path, the other is that the learning effect doesn't change the controlling path. This paper proposes corresponding methods to accelerate duration for different types of critical activities and proposes the algorithm for duration acceleration based on the learning effect in RSM. And the paper chooses graphical method to identity activities' types and considers the impacts of the learning effect on duration. The method meets the requirement of duration while ensuring the lowest acceleration cost. A concrete bridge construction project is given to verify the effectiveness of the method. The results of this study will help project managers understand the impacts of the learning effect on repetitive projects, and use the learning effect to optimize project scheduling.

  1. Effect of pulsed electric fields on the activity of neutral trehalase from beer yeast and RSM analysis.

    PubMed

    Ye, Haiqing; Jin, Yan; Lin, Songyi; Liu, Mingyuan; Yang, Yi; Zhang, Meishuo; Zhao, Ping; Jones, Gregory

    2012-06-01

    The trehalase activity plays an important role in extraction of trehalose from beer yeast. In this study, the effect of pulsed electric field processing on neutral trehalase activity in beer yeast was investigated. In order to develop and optimize a pulsed electric field (PEF) mathematical model for activating the neutral trehalase, we have investigated three variables, including electric field intensity (10-50 kV/cm), pulse duration (2-10 μs) and liquid-solid ratio (20-50 ml/g) and subsequently optimized them by response surface methodology (RSM). The experimental data were fitted to a second-order polynomial equation and profiled into the corresponding contour plots. Optimal condition obtained by RSM is as follows: electric field intensity 42.13 kV/cm, liquid-solid ratio 30.12 ml/g and pulse duration 5.46 μs. Under these conditions, with the trehalose decreased 8.879 mg/L, the PEF treatment had great effect on activating neutral trehalase in beer yeast cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Comparison of structure and organization of cutaneous lipids in a reconstructed skin model and human skin: spectroscopic imaging and chromatographic profiling.

    PubMed

    Tfayli, Ali; Bonnier, Franck; Farhane, Zeineb; Libong, Danielle; Byrne, Hugh J; Baillet-Guffroy, Arlette

    2014-06-01

    The use of animals for scientific research is increasingly restricted by legislation, increasing the demand for human skin models. These constructs present comparable bulk lipid content to human skin. However, their permeability is significantly higher, limiting their applicability as models of barrier function, although the molecular origins of this reduced barrier function remain unclear. This study analyses the stratum corneum (SC) of one such commercially available reconstructed skin model (RSM) compared with human SC by spectroscopic imaging and chromatographic profiling. Total lipid composition was compared by chromatographic analysis (HPLC). Raman spectroscopy was used to evaluate the conformational order, lateral packing and distribution of lipids in the surface and skin/RSM sections. Although HPLC indicates that all SC lipid classes are present, significant differences are observed in ceramide profiles. Raman imaging demonstrated that the RSM lipids are distributed in a non-continuous matrix, providing a better understanding of the limited barrier function. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Molecular basis for the wide range of affinity found in Csr/Rsm protein-RNA recognition.

    PubMed

    Duss, Olivier; Michel, Erich; Diarra dit Konté, Nana; Schubert, Mario; Allain, Frédéric H-T

    2014-04-01

    The carbon storage regulator/regulator of secondary metabolism (Csr/Rsm) type of small non-coding RNAs (sRNAs) is widespread throughout bacteria and acts by sequestering the global translation repressor protein CsrA/RsmE from the ribosome binding site of a subset of mRNAs. Although we have previously described the molecular basis of a high affinity RNA target bound to RsmE, it remains unknown how other lower affinity targets are recognized by the same protein. Here, we have determined the nuclear magnetic resonance solution structures of five separate GGA binding motifs of the sRNA RsmZ of Pseudomonas fluorescens in complex with RsmE. The structures explain how the variation of sequence and structural context of the GGA binding motifs modulate the binding affinity for RsmE by five orders of magnitude (∼10 nM to ∼3 mM, Kd). Furthermore, we see that conformational adaptation of protein side-chains and RNA enable recognition of different RNA sequences by the same protein contributing to binding affinity without conferring specificity. Overall, our findings illustrate how the variability in the Csr/Rsm protein-RNA recognition allows a fine-tuning of the competition between mRNAs and sRNAs for the CsrA/RsmE protein.

  4. The Post-transcriptional Regulator rsmA/csrA Activates T3SS by Stabilizing the 5′ UTR of hrpG, the Master Regulator of hrp/hrc Genes, in Xanthomonas

    PubMed Central

    Andrade, Maxuel O.; Farah, Chuck S.; Wang, Nian

    2014-01-01

    The RsmA/CsrA family of the post-transcriptional regulators of bacteria is involved in the regulation of many cellular processes, including pathogenesis. In this study, we demonstrated that rsmA not only is required for the full virulence of the phytopathogenic bacterium Xanthomonas citri subsp. citri (XCC) but also contributes to triggering the hypersensitive response (HR) in non-host plants. Deletion of rsmA resulted in significantly reduced virulence in the host plant sweet orange and a delayed and weakened HR in the non-host plant Nicotiana benthamiana. Microarray, quantitative reverse-transcription PCR, western-blotting, and GUS assays indicated that RsmA regulates the expression of the type 3 secretion system (T3SS) at both transcriptional and post-transcriptional levels. The regulation of T3SS by RsmA is a universal phenomenon in T3SS-containing bacteria, but the specific mechanism seems to depend on the interaction between a particular bacterium and its hosts. For Xanthomonads, the mechanism by which RsmA activates T3SS remains unknown. Here, we show that RsmA activates the expression of T3SS-encoding hrp/hrc genes by directly binding to the 5′ untranslated region (UTR) of hrpG, the master regulator of the hrp/hrc genes in XCC. RsmA stabilizes hrpG mRNA, leading to increased accumulation of HrpG proteins and subsequently, the activation of hrp/hrc genes. The activation of the hrp/hrc genes by RsmA via HrpG was further supported by the observation that ectopic overexpression of hrpG in an rsmA mutant restored its ability to cause disease in host plants and trigger HR in non-host plants. RsmA also stabilizes the transcripts of another T3SS-associated hrpD operon by directly binding to the 5′ UTR region. Taken together, these data revealed that RsmA primarily activates T3SS by acting as a positive regulator of hrpG and that this regulation is critical to the pathogenicity of XCC. PMID:24586158

  5. Physical stability assessment and sensory optimization of a dairy-free emulsion using response surface methodology.

    PubMed

    Granato, Daniel; de Castro, I Alves; Ellendersen, L Souza Neves; Masson, M Lucia

    2010-04-01

    Desserts made with soy cream, which are oil-in-water emulsions, are widely consumed by lactose-intolerant individuals in Brazil. In this regard, this study aimed at using response surface methodology (RSM) to optimize the sensory attributes of a soy-based emulsion over a range of pink guava juice (GJ: 22% to 32%) and soy protein (SP: 1% to 3%). WHC and backscattering were analyzed after 72 h of storage at 7 degrees C. Furthermore, a rating test was performed to determine the degree of liking of color, taste, creaminess, appearance, and overall acceptability. The data showed that the samples were stable against gravity and storage. The models developed by RSM adequately described the creaminess, taste, and appearance of the emulsions. The response surface of the desirability function was used successfully in the optimization of the sensory properties of dairy-free emulsions, suggesting that a product with 30.35% GJ and 3% SP was the best combination of these components. The optimized sample presented suitable sensory properties, in addition to being a source of dietary fiber, iron, copper, and ascorbic acid.

  6. Optimization of Bromelain-Aided Production of Angiotensin I-Converting Enzyme Inhibitory Hydrolysates from Stone Fish Using Response Surface Methodology.

    PubMed

    Muhammad Auwal, Shehu; Zarei, Mohammad; Abdul-Hamid, Azizah; Saari, Nazamid

    2017-03-31

    The stone fish is an under-utilized sea cucumber with many nutritional and ethno-medicinal values. This study aimed to establish the conditions for its optimum hydrolysis with bromelain to generate angiotensin I-converting enzyme (ACE)-inhibitory hydrolysates. Response surface methodology (RSM) based on a central composite design was used to model and optimize the degree of hydrolysis (DH) and ACE-inhibitory activity. Process conditions including pH (4-7), temperature (40-70 °C), enzyme/substrate (E/S) ratio (0.5%-2%) and time (30-360 min) were used. A pH of 7.0, temperature of 40 °C, E/S ratio of 2% and time of 240 min were determined using a response surface model as the optimum levels to obtain the maximum ACE-inhibitory activity of 84.26% at 44.59% degree of hydrolysis. Hence, RSM can serve as an effective approach in the design of experiments to improve the antihypertensive effect of stone fish hydrolysates, which can thus be used as a value-added ingredient for various applications in the functional foods industries.

  7. A modeling study by response surface methodology and artificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated thermophilic Geobacillus sp. strain ARM.

    PubMed

    Ebrahimpour, Afshin; Abd Rahman, Raja Noor Zaliha Raja; Ean Ch'ng, Diana Hooi; Basri, Mahiran; Salleh, Abu Bakar

    2008-12-23

    Thermostable bacterial lipases occupy a place of prominence among biocatalysts owing to their novel, multifold applications and resistance to high temperature and other operational conditions. The capability of lipases to catalyze a variety of novel reactions in both aqueous and nonaqueous media presents a fascinating field for research, creating interest to isolate novel lipase producers and optimize lipase production. The most important stages in a biological process are modeling and optimization to improve a system and increase the efficiency of the process without increasing the cost. Different production media were tested for lipase production by a newly isolated thermophilic Geobacillus sp. strain ARM (DSM 21496 = NCIMB 41583). The maximum production was obtained in the presence of peptone and yeast extract as organic nitrogen sources, olive oil as carbon source and lipase production inducer, sodium and calcium as metal ions, and gum arabic as emulsifier and lipase production inducer. The best models for optimization of culture parameters were achieved by multilayer full feedforward incremental back propagation network and modified response surface model using backward elimination, where the optimum condition was: growth temperature (52.3 degrees C), medium volume (50 ml), inoculum size (1%), agitation rate (static condition), incubation period (24 h) and initial pH (5.8). The experimental lipase activity was 0.47 Uml(-1) at optimum condition (4.7-fold increase), which compared well to the maximum predicted values by ANN (0.47 Uml(-1)) and RSM (0.476 Uml(-1)), whereas R2 and AAD were determined as 0.989 and 0.059% for ANN, and 0.95 and 0.078% for RSM respectively. Lipase production is the result of a synergistic combination of effective parameters interactions. These parameters are in equilibrium and the change of one parameter can be compensated by changes of other parameters to give the same results. Though both RSM and ANN models provided good quality predictions in this study, yet the ANN showed a clear superiority over RSM for both data fitting and estimation capabilities. On the other hand, ANN has the disadvantage of requiring large amounts of training data in comparison with RSM. This problem was solved by using statistical experimental design, to reduce the number of experiments.

  8. Interactions among rsmX ncRNAs and Rsm RNA-binding proteins in the plant pathogen Pseudomonas syringae DC3000

    USDA-ARS?s Scientific Manuscript database

    In response to changing environmental stimuli, many bacterial species utilize the Csr/Rsm system of posttranscriptional gene expression regulation to control metabolism, motility, biofilm formation, and quorum sensing. Most Csr/Rsm RNA binding proteins are thought to bind near the 5’ end of mRNA tra...

  9. Electromagnet Weight Reduction in a Magnetic Levitation System for Contactless Delivery Applications

    PubMed Central

    Hong, Do-Kwan; Woo, Byung-Chul; Koo, Dae-Hyun; Lee, Ki-Chang

    2010-01-01

    This paper presents an optimum design of a lightweight vehicle levitation electromagnet, which also provides a passive guide force in a magnetic levitation system for contactless delivery applications. The split alignment of C-shaped electromagnets about C-shaped rails has a bad effect on the lateral deviation force, therefore, no-split positioning of electromagnets is better for lateral performance. This is verified by simulations and experiments. This paper presents a statistically optimized design with a high number of the design variables to reduce the weight of the electromagnet under the constraint of normal force using response surface methodology (RSM) and the kriging interpolation method. 2D and 3D magnetostatic analysis of the electromagnet are performed using ANSYS. The most effective design variables are extracted by a Pareto chart. The most desirable set is determined and the influence of each design variable on the objective function can be obtained. The generalized reduced gradient (GRG) algorithm is adopted in the kriging model. This paper’s procedure is validated by a comparison between experimental and calculation results, which shows that the predicted performance of the electromagnet designed by RSM is in good agreement with the simulation results. PMID:22163572

  10. Cellulase production in a new mutant strain of Penicillium decumbens ML-017 by solid state fermentation with rice bran.

    PubMed

    Liu, Yun-Tao; Luo, Ze-Yu; Long, Chuan-Nan; Wang, Hai-Dong; Long, Min-Nan; Hu, Zhong

    2011-10-01

    To produce cellulolytic enzyme efficiently, Penicillium decumbens strain L-06 was used to prepare mutants with ethyl methane sulfonate (EMS) and UV-irradiation. A mutant strain ML-017 is shown to have a higher cellulase activity than others. Box-Behnken's design (BBD) and response surface methodology (RSM) were adopted to optimize the conditions of cellulase (filter paper activity, FPA) production in strain ML-017 by solid-state fermentation (SSF) with rice bran as the substrate. And the result shows that the initial pH, moisture content and culture temperature all have significant effect on the production of cellulase. The optimized condition shall be initial pH 5.7, moisture content 72% and culture temperature 30°C. The maximum cellulase (FPA) production was obtained under the optimized condition, which is 5.76 IU g(-1), increased by 44.12% to its original strain. It corresponded well with the calculated results (5.15 IU g(-1)) by model prediction. The result shows that both BBD and RSM are the cellulase optimization methods with good prospects. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Process Optimization on Micro-Aeration Supply for High Production Yield of 2,3-Butanediol from Maltodextrin by Metabolically-Engineered Klebsiella oxytoca

    PubMed Central

    Jantama, Sirima Suvarnakuta; Kanchanatawee, Sunthorn

    2016-01-01

    An optimization process with a cheap and abundant substrate is considered one of the factors affecting the price of the production of economical 2,3-Butanediol (2,3-BD). A combination of the conventional method and response surface methodology (RSM) was applied in this study. The optimized levels of pH, aeration rate, agitation speed, and substrate concentration (maltodextrin) were investigated to determine the cost-effectiveness of fermentative 2,3-BD production by metabolically-engineered Klebsiella oxytoca KMS005. Results revealed that pH, aeration rate, agitation speed, and maltodextrin concentration at levels of 6.0, 0.8 vvm, 400 rpm, and 150 g/L respectively were the optimal conditions. RSM also indicated that the agitation speed was the most influential parameter when either agitation and aeration interaction or agitation and substrate concentration interaction played important roles for 2,3-BD production by the strain from maltodextrin. Under interim fed-batch fermentation, 2,3-BD concentration, yield, and productivity were obtained at 88.1±0.2 g/L, 0.412±0.001 g/g, and 1.13±0.01 g/L/h respectively within 78 h. PMID:27603922

  12. Surface topography of hydroxyapatite promotes osteogenic differentiation of human bone marrow mesenchymal stem cells.

    PubMed

    Yang, Wanlei; Han, Weiqi; He, Wei; Li, Jianlei; Wang, Jirong; Feng, Haotian; Qian, Yu

    2016-03-01

    Effective and safe induction of osteogenic differentiation is one of the key elements of bone tissue engineering. Surface topography of scaffold materials was recently found to promote osteogenic differentiation. Utilization of this topography may be a safer approach than traditional induction by growth factors or chemicals. The aim of this study is to investigate the enhancement of osteogenic differentiation by surface topography and its mechanism of action. Hydroxyapatite (HA) discs with average roughness (Ra) of surface topography ranging from 0.2 to 1.65 μm and mean distance between peaks (RSm) ranging from 89.7 to 18.6 μm were prepared, and human bone-marrow mesenchymal stem cells (hBMSCs) were cultured on these discs. Optimal osteogenic differentiation was observed on discs with surface topography characterized by Ra ranging from 0.77 to 1.09 μm and RSm ranging from 53.9 to 39.3 μm. On this surface configuration of HA, hBMSCs showed oriented attachment, F-actin arrangement, and a peak in the expression of Yes-associated protein (YAP) and PDZ binding motif (TAZ) (YAP/TAZ). These results indicated that the surface topography of HA promoted osteogenic differentiation of hBMSCs, possibly by increasing cell attachment and promoting the YAP/TAZ signaling pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. CRISPR-Cas gene-editing reveals RsmA and RsmC act through FlhDC to repress the SdhE flavinylation factor and control motility and prodigiosin production in Serratia.

    PubMed

    Hampton, Hannah G; McNeil, Matthew B; Paterson, Thomas J; Ney, Blair; Williamson, Neil R; Easingwood, Richard A; Bostina, Mihnea; Salmond, George P C; Fineran, Peter C

    2016-06-01

    SdhE is required for the flavinylation and activation of succinate dehydrogenase and fumarate reductase (FRD). In addition, SdhE is conserved in proteobacteria (α, β and γ) and eukaryotes. Although the function of this recently characterized family of proteins has been determined, almost nothing is known about how their genes are regulated. Here, the RsmA (CsrA) and RsmC (HexY) post-transcriptional and post-translational regulators have been identified and shown to repress sdhEygfX expression in Serratia sp. ATCC 39006. Conversely, the flagella master regulator complex, FlhDC, activated sdhEygfX transcription. To investigate the hierarchy of control, we developed a novel approach that utilized endogenous CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR associated) genome-editing by a type I-F system to generate a chromosomal point mutation in flhC. Mutation of flhC alleviated the ability of RsmC to repress sdhEygfX expression, whereas RsmA acted in both an FlhDC-dependent and -independent manner to inhibit sdhEygfX. Mutation of rsmA or rsmC, or overexpression of FlhDC, led to increased prodigiosin, biosurfactant, swimming and swarming. Consistent with the modulation of sdhE by motility regulators, we have demonstrated that SdhE and FRD are required for maximal flagella-dependent swimming. Together, these results demonstrate that regulators of both metabolism and motility (RsmA, RsmC and FlhDC) control the transcription of the sdhEygfX operon.

  14. CRISPR-Cas gene-editing reveals RsmA and RsmC act through FlhDC to repress the SdhE flavinylation factor and control motility and prodigiosin production in Serratia

    PubMed Central

    Paterson, Thomas J.; Ney, Blair; Williamson, Neil R.; Easingwood, Richard A.; Bostina, Mihnea; Salmond, George P. C.

    2016-01-01

    SdhE is required for the flavinylation and activation of succinate dehydrogenase and fumarate reductase (FRD). In addition, SdhE is conserved in proteobacteria (α, β and γ) and eukaryotes. Although the function of this recently characterized family of proteins has been determined, almost nothing is known about how their genes are regulated. Here, the RsmA (CsrA) and RsmC (HexY) post-transcriptional and post-translational regulators have been identified and shown to repress sdhEygfX expression in Serratia sp. ATCC 39006. Conversely, the flagella master regulator complex, FlhDC, activated sdhEygfX transcription. To investigate the hierarchy of control, we developed a novel approach that utilized endogenous CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR associated) genome-editing by a type I-F system to generate a chromosomal point mutation in flhC. Mutation of flhC alleviated the ability of RsmC to repress sdhEygfX expression, whereas RsmA acted in both an FlhDC-dependent and -independent manner to inhibit sdhEygfX. Mutation of rsmA or rsmC, or overexpression of FlhDC, led to increased prodigiosin, biosurfactant, swimming and swarming. Consistent with the modulation of sdhE by motility regulators, we have demonstrated that SdhE and FRD are required for maximal flagella-dependent swimming. Together, these results demonstrate that regulators of both metabolism and motility (RsmA, RsmC and FlhDC) control the transcription of the sdhEygfX operon. PMID:27010574

  15. Pseudomonas aeruginosa RsmA Plays an Important Role during Murine Infection by Influencing Colonization, Virulence, Persistence, and Pulmonary Inflammation▿

    PubMed Central

    Mulcahy, Heidi; O'Callaghan, Julie; O'Grady, Eoin P.; Maciá, María D.; Borrell, Nuria; Gómez, Cristina; Casey, Pat G.; Hill, Colin; Adams, Claire; Gahan, Cormac G. M.; Oliver, Antonio; O'Gara, Fergal

    2008-01-01

    The ability of Pseudomonas aeruginosa to cause a broad range of infections in humans is due, at least in part, to its adaptability and its capacity to regulate the expression of key virulence genes in response to specific environmental conditions. Multiple two-component response regulators have been shown to facilitate rapid responses to these environmental conditions, including the coordinated expression of specific virulence determinants. RsmA is a posttranscriptional regulatory protein which controls the expression of a number of virulence-related genes with relevance for acute and chronic infections. Many membrane-bound sensors, including RetS, LadS, and GacS, are responsible for the reciprocal regulation of genes associated with acute infection and chronic persistence. In P. aeruginosa this is due to sensors influencing the expression of the regulatory RNA RsmZ, with subsequent effects on the level of free RsmA. While interactions between an rsmA mutant and human airway epithelial cells have been examined in vitro, the role of RsmA during infection in vivo has not been determined yet. Here the function of RsmA in both acute and chronic models of infection was examined. The results demonstrate that RsmA is involved in initial colonization and dissemination in a mouse model of acute pneumonia. Furthermore, while loss of RsmA results in reduced colonization during the initial stages of acute infection, the data show that mutation of rsmA ultimately favors chronic persistence and results in increased inflammation in the lungs of infected mice. PMID:18025099

  16. Optimization of extraction parameters of PTP1β (protein tyrosine phosphatase 1β), inhibitory polyphenols, and anthocyanins from Zea mays L. using response surface methodology (RSM).

    PubMed

    Hwang, Seung Hwan; Kwon, Shin Hwa; Wang, Zhiqiang; Kim, Tae Hyun; Kang, Young-Hee; Lee, Jae-Yong; Lim, Soon Sung

    2016-08-26

    Protein tyrosine phosphatase expressed in insulin-sensitive tissues (such as liver, muscle, and adipose tissue) has a key role in the regulation of insulin signaling and pathway activation, making protein tyrosine phosphatase a promising target for the treatment of type 2 diabetes mellitus and obesity and response surface methodology (RSM) is an effective statistical technique for optimizing complex processes using a multi-variant approach. In this study, Zea mays L. (Purple corn kernel, PCK) and its constituents were investigated for protein tyrosine phosphatase 1β (PTP1β) inhibitory activity including enzyme kinetic study and to improve total yields of anthocyanins and polyphenols, four extraction parameters, including temperature, time, solid-liquid ratio, and solvent volume, were optimized by RSM. Isolation of seven polyphenols and five anthocyanins was achieved by PTP1β assay. Among them, cyanidin-3-(6"malonylglucoside) and 3'-methoxyhirsutrin showed the highest PTP1β inhibition with IC50 values of 54.06 and 64.04 μM, respectively and 4.52 mg gallic acid equivalent/g (GAE/g) of total polyphenol content (TPC) and 43.02 mg cyanidin-3-glucoside equivalent/100 g (C3GE/100g) of total anthocyanin content (TAC) were extracted at 40 °C for 8 h with a 33 % solid-liquid ratio and a 1:15 solvent volume. Yields were similar to predictions of 4.58 mg GAE/g of TPC and 42.28 mg C3GE/100 g of TAC. These results indicated that PCK and 3'-methoxyhirsutrin and cyanidin-3-(6"malonylglucoside) might be active natural compounds and could be apply by optimizing of extraction process using response surface methodology.

  17. Applying Central Composite Design and Response Surface Methodology to Optimize Growth and Biomass Production of Haemophilus influenzae Type b.

    PubMed

    Momen, Seyed Bahman; Siadat, Seyed Davar; Akbari, Neda; Ranjbar, Bijan; Khajeh, Khosro

    2016-06-01

    Haemophilus influenzae type b (Hib) is the leading cause of bacterial meningitis, otitis media, pneumonia, cellulitis, bacteremia, and septic arthritis in infants and young children. The Hib capsule contains the major virulence factor, and is composed of polyribosyl ribitol phosphate (PRP) that can induce immune system response. Vaccines consisting of Hib capsular polysaccharide (PRP) conjugated to a carrier protein are effective in the prevention of the infections. However, due to costly processes in PRP production, these vaccines are too expensive. To enhance biomass, in this research we focused on optimizing Hib growth with respect to physical factors such as pH, temperature, and agitation by using a response surface methodology (RSM). We employed a central composite design (CCD) and a response surface methodology to determine the optimum cultivation conditions for growth and biomass production of H. influenzae type b. The treatment factors investigated were initial pH, agitation, and temperature, using shaking flasks. After Hib cultivation and determination of dry biomass, analysis of experimental data was performed by the RSM-CCD. The model showed that temperature and pH had an interactive effect on Hib biomass production. The dry biomass produced in shaking flasks was about 5470 mg/L, which was under an initial pH of 8.5, at 250 rpm and 35° C. We found CCD and RSM very effective in optimizing Hib culture conditions, and Hib biomass production was greatly influenced by pH and incubation temperature. Therefore, optimization of the growth factors to maximize Hib production can lead to 1) an increase in bacterial biomass and PRP productions, 2) lower vaccine prices, 3) vaccination of more susceptible populations, and 4) lower risk of Hib infections.

  18. The Csr/Rsm system of Yersinia and related pathogens: a post-transcriptional strategy for managing virulence.

    PubMed

    Heroven, Ann Kathrin; Böhme, Katja; Dersch, Petra

    2012-04-01

    This review emphasizes the function and regulation of the Csr regulatory system in the human enteropathogen Yersinia pseudotuberculosis and compares its features with the homologous Csr/Rsm systems of related pathogens. The Csr/Rsm systems of eubacteria form a complex regulatory network in which redundant non-translated Csr/Rsm-RNAs bind the RNA-binding protein CsrA/RsmA, thereby preventing its interaction with mRNA targets. The Csr system is controlled by the BarA/UvrY-type of two-component sensor-regulator systems. Apart from that, common or pathogen-specific regulators control the abundance of the Csr components. The coordinate control of virulence factors and infection-linked physiological traits by the Csr/Rsm systems helps the pathogens to adapt individually to rapidly changing conditions to which they are exposed during the different stages of an infection. As Csr/Rsm function is relevant for full virulence, it represents a target suitable for antimicrobial drug development.

  19. Optimization of microwave-assisted extraction conditions for preparing lignan-rich extract from Saraca asoca bark using Box-Behnken design.

    PubMed

    Mishra, Shikha; Aeri, Vidhu

    2016-07-01

    Lyoniside is the major constituent of Saraca asoca Linn. (Caesalpiniaceae) bark. There is an immediate need to develop an efficient method to isolate its chemical constituents, since it is a therapeutically important plant. A rapid extraction method for lyoniside based on microwave-assisted extraction of S. asoca bark was developed and optimized using response surface methodology (RSM). Lyoniside was analyzed and quantified by high-performance liquid chromatography coupled with ultraviolet detection (HPLC-UV). The extraction solvent ratio (%), material solvent ratio (g/ml) and extraction time (min) were optimized using Box-Behnken design (BBD) to obtain the highest extraction efficiency. The optimal conditions were the use of 1:30 material solvent ratio with 70:30 mixture of methanol:water for 10 min duration. The optimized microwave-assisted extraction yielded 9.4 mg/g of lyoniside content in comparison to reflux extraction under identical conditions which yielded 4.2 mg/g of lyoniside content. Under optimum conditions, the experimental values agreed closely with the predicted values. The analysis of variance (ANOVA) indicated a high goodness-of-fit model and the success of the RSM method for optimizing lyoniside extraction from the bark of S. asoca. All the three variables significantly affected the lyoniside content. Increased polarity of solvent medium enhances the lyoniside yield. The present study shows the applicability of microwave-assisted extraction in extraction of lyoniside from S. asoca bark.

  20. Semi-empirical study of ortho-cresol photo degradation in manganese-doped zinc oxide nanoparticles suspensions

    PubMed Central

    2012-01-01

    The optimization processes of photo degradation are complicated and expensive when it is performed with traditional methods such as one variable at a time. In this research, the condition of ortho-cresol (o-cresol) photo degradation was optimized by using a semi empirical method. First of all, the experiments were designed with four effective factors including irradiation time, pH, photo catalyst’s amount, o-cresol concentration and photo degradation % as response by response surface methodology (RSM). The RSM used central composite design (CCD) method consists of 30 runs to obtain the actual responses. The actual responses were fitted with the second order algebraic polynomial equation to select a model (suggested model). The suggested model was validated by a few numbers of excellent statistical evidences in analysis of variance (ANOVA). The used evidences include high F-value (143.12), very low P-value (<0.0001), non-significant lack of fit, the determination coefficient (R2 = 0.99) and the adequate precision (47.067). To visualize the optimum, the validated model simulated the condition of variables and response (photo degradation %) be using a few number of three dimensional plots (3D). To confirm the model, the optimums were performed in laboratory. The results of performed experiments were quite close to the predicted values. In conclusion, the study indicated that the model is successful to simulate the optimum condition of o-cresol photo degradation under visible-light irradiation by manganese doped ZnO nanoparticles. PMID:22909072

  1. Disruption of Pseudomonas putida by high pressure homogenization: a comparison of the predictive capacity of three process models for the efficient release of arginine deiminase.

    PubMed

    Patil, Mahesh D; Patel, Gopal; Surywanshi, Balaji; Shaikh, Naeem; Garg, Prabha; Chisti, Yusuf; Banerjee, Uttam Chand

    2016-12-01

    Disruption of Pseudomonas putida KT2440 by high-pressure homogenization in a French press is discussed for the release of arginine deiminase (ADI). The enzyme release response of the disruption process was modelled for the experimental factors of biomass concentration in the broth being disrupted, the homogenization pressure and the number of passes of the cell slurry through the homogenizer. For the same data, the response surface method (RSM), the artificial neural network (ANN) and the support vector machine (SVM) models were compared for their ability to predict the performance parameters of the cell disruption. The ANN model proved to be best for predicting the ADI release. The fractional disruption of the cells was best modelled by the RSM. The fraction of the cells disrupted depended mainly on the operating pressure of the homogenizer. The concentration of the biomass in the slurry was the most influential factor in determining the total protein release. Nearly 27 U/mL of ADI was released within a single pass from slurry with a biomass concentration of 260 g/L at an operating pressure of 510 bar. Using a biomass concentration of 100 g/L, the ADI release by French press was 2.7-fold greater than in a conventional high-speed bead mill. In the French press, the total protein release was 5.8-fold more than in the bead mill. The statistical analysis of the completely unseen data exhibited ANN and SVM modelling as proficient alternatives to RSM for the prediction and generalization of the cell disruption process in French press.

  2. Modeling and optimization by particle swarm embedded neural network for adsorption of zinc (II) by palm kernel shell based activated carbon from aqueous environment.

    PubMed

    Karri, Rama Rao; Sahu, J N

    2018-01-15

    Zn (II) is one the common pollutant among heavy metals found in industrial effluents. Removal of pollutant from industrial effluents can be accomplished by various techniques, out of which adsorption was found to be an efficient method. Applications of adsorption limits itself due to high cost of adsorbent. In this regard, a low cost adsorbent produced from palm oil kernel shell based agricultural waste is examined for its efficiency to remove Zn (II) from waste water and aqueous solution. The influence of independent process variables like initial concentration, pH, residence time, activated carbon (AC) dosage and process temperature on the removal of Zn (II) by palm kernel shell based AC from batch adsorption process are studied systematically. Based on the design of experimental matrix, 50 experimental runs are performed with each process variable in the experimental range. The optimal values of process variables to achieve maximum removal efficiency is studied using response surface methodology (RSM) and artificial neural network (ANN) approaches. A quadratic model, which consists of first order and second order degree regressive model is developed using the analysis of variance and RSM - CCD framework. The particle swarm optimization which is a meta-heuristic optimization is embedded on the ANN architecture to optimize the search space of neural network. The optimized trained neural network well depicts the testing data and validation data with R 2 equal to 0.9106 and 0.9279 respectively. The outcomes indicates that the superiority of ANN-PSO based model predictions over the quadratic model predictions provided by RSM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Optimization of Serratia nematodiphila using Response surface methodology to silver nanoparticles synthesis for aquatic pathogen control

    NASA Astrophysics Data System (ADS)

    Rajeshkumar, S.; Malarkodi, C.

    2017-11-01

    In this study, we used bacterial strain Serratia nematodiphila for the synthesis of silver nanoparticles using optimized biomass growth. In this RSM study the variables such as sodium sulphate (g / L) (0.5, 1, 1.5), magnesium sulphate (g/L) (0.3, 0.5, 0.7), pH (6.4, 7.4, 8.4.), temperature (25, 30, 35°C) and Sodium lactate, Peptone have been used for the maximum production of biomass. We got very good a result for the silver nanoparticles was confirmed using UV-vis spectrophotometer and transmission electron microscope. Finally, we concluded that the using of RSM for nanoparticles synthesis may use in industrial biotechnology and related technologies for large scale production.

  4. Expression and Secretion of Endostar Protein by Escherichia Coli: Optimization of Culture Conditions Using the Response Surface Methodology.

    PubMed

    Mohajeri, Abbas; Abdolalizadeh, Jalal; Pilehvar-Soltanahmadi, Younes; Kiafar, Farhad; Zarghami, Nosratollah

    2016-10-01

    Endostar as a specific drug in treatment of the nonsmall cell lung cancer is produced using Escherichia coli expression system. Plackett-Burman design (PBD) and response surface methodology (RSM) are statistical tools for experimental design and optimization of biotechnological processes. This investigation aimed to predict and develop the optimal culture condition and its components for expression and secretion of endostar into the culture medium of E. coli. The synthetic endostar coding sequence was fused with PhoA signal peptide. The nine factors involved in the production of recombinant protein-postinduction temperature, cell density, rotation speed, postinduction time, concentration of glycerol, IPTG, peptone, glycine, and triton X-100-were evaluated using PBD. Four significant factors were selected based on PBD results for optimizing culture condition using RSM. Endostar was purified using cation exchange chromatography and size exclusion chromatography. The maximum level of endostar was obtained under the following condition: 13.57-h postinduction time, 0.76 % glycine, 0.7 % triton X-100, and 4.87 % glycerol. The predicted levels of endostar was significantly correlated with experimental levels (R 2 = 0.982, P = 0.00). The obtained results indicated that PBD and RSM are effective tools for optimization of culture condition and its components for endostar production in E. coli. The most important factors in the enhancement of the protein production are glycerol, glycine, and postinduction time.

  5. Optimisation of novel method for the extraction of steviosides from Stevia rebaudiana leaves.

    PubMed

    Puri, Munish; Sharma, Deepika; Barrow, Colin J; Tiwary, A K

    2012-06-01

    Stevioside, a diterpene glycoside, is well known for its intense sweetness and is used as a non-caloric sweetener. Its potential widespread use requires an easy and effective extraction method. Enzymatic extraction of stevioside from Stevia rebaudiana leaves with cellulase, pectinase and hemicellulase, using various parameters, such as concentration of enzyme, incubation time and temperature, was optimised. Hemicellulase was observed to give the highest stevioside yield (369.23±0.11μg) in 1h in comparison to cellulase (359±0.30μg) and pectinases (333±0.55μg). Extraction from leaves under optimised conditions showed a remarkable increase in the yield (35 times) compared with a control experiment. The extraction conditions were further optimised using response surface methodology (RSM). A central composite design (CCD) was used for experimental design and analysis of the results to obtain optimal extraction conditions. Based on RSM analysis, temperature of 51-54°C, time of 36-45min and the cocktail of pectinase, cellulase and hemicellulase, set at 2% each, gave the best results. Under the optimised conditions, the experimental values were in close agreement with the prediction model and resulted in a three times yield enhancement of stevioside. The isolated stevioside was characterised through 1 H-NMR spectroscopy, by comparison with a stevioside standard. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Buparvaquone Nanostructured Lipid Carrier: Development of an Affordable Delivery System for the Treatment of Leishmaniases.

    PubMed

    Monteiro, Lis Marie; Löbenberg, Raimar; Cotrim, Paulo Cesar; Barros de Araujo, Gabriel Lima; Bou-Chacra, Nádia

    2017-01-01

    Buparvaquone (BPQ), a veterinary drug, was formulated as nanostructured lipid carriers (NLC) for leishmaniases treatment. The formulation design addressed poor water solubility of BPQ and lack of human drug delivery system. The DSC/TG and microscopy methods were used for solid lipids screening. Softisan® 154 showed highest BPQ solubility in both methods. The BPQ solubility in liquid lipids using HPLC revealed Miglyol® 812 as the best option. Response surface methodology (RSM) was used to identify the optimal Softisan154 : Miglyol 812 ratios (7 : 10 to 2 : 1) and Kolliphor® P188 and Tween® 80 concentration (>3.0% w/w) aiming for z -average in the range of 100-300 nm for macrophage delivery. The NLC obtained by high-pressure homogenization showed low z -averages (<350 nm), polydispersity (<0.3), and encapsulation efficiency close to 100%. DSC/TG and microscopy in combination proved to be a powerful tool to select the solid lipid. The relationship among the variables, demonstrated by a linear mathematical model using RSM, allowed generating a design space. This design space showed the limits in which changes in the variables influenced the z -average. Therefore, these drug delivery systems have the potential to improve the availability of affordable medicines due to the low cost of raw materials, using well established, reliable, and feasible scale-up technology.

  7. Efficient production of Aschersonia placenta protoplasts for transformation using optimization algorithms.

    PubMed

    Wei, Xiuyan; Song, Xinyue; Dong, Dong; Keyhani, Nemat O; Yao, Lindan; Zang, Xiangyun; Dong, Lili; Gu, Zijian; Fu, Delai; Liu, Xingzhong; Qiu, Junzhi; Guan, Xiong

    2016-07-01

    The insect pathogenic fungus Aschersonia placenta is a highly effective pathogen of whiteflies and scale insects. However, few genetic tools are currently available for studying this organism. Here we report on the conditions for the production of transformable A. placenta protoplasts using an optimized protocol based on the response surface method (RSM). Critical parameters for protoplast production were modelled by using a Box-Behnken design (BBD) involving 3 levels of 3 variables that was subsequently tested to verify its ability to predict protoplast production (R(2) = 0.9465). The optimized conditions resulted in the highest yield of protoplasts ((4.41 ± 0.02) × 10(7) cells/mL of culture, mean ± SE) when fungal cells were treated with 26.1 mg/mL of lywallzyme for 4 h of digestion, and subsequently allowed to recover for 64.6 h in 0.7 mol/L NaCl-Tris buffer. The latter was used as an osmotic stabilizer. The yield of protoplasts was approximately 10-fold higher than that of the nonoptimized conditions. Generated protoplasts were transformed with vector PbarGPE containing the bar gene as the selection marker. Transformation efficiency was 300 colonies/(μg DNA·10(7) protoplasts), and integration of the vector DNA was confirmed by PCR. The results show that rational design strategies (RSM and BBD methods) are useful to increase the production of fungal protoplasts for a variety of downstream applications.

  8. Response surface methodology based on central composite design as a chemometric tool for optimization of dispersive-solidification liquid-liquid microextraction for speciation of inorganic arsenic in environmental water samples.

    PubMed

    Asadollahzadeh, Mehdi; Tavakoli, Hamed; Torab-Mostaedi, Meisam; Hosseini, Ghaffar; Hemmati, Alireza

    2014-06-01

    Dispersive-solidification liquid-liquid microextraction (DSLLME) coupled with electrothermal atomic absorption spectrometry (ETAAS) was developed for preconcentration and determination of inorganic arsenic (III, V) in water samples. At pH=1, As(III) formed complex with ammonium pyrrolidine dithiocarbamate (APDC) and extracted into the fine droplets of 1-dodecanol (extraction solvent) which were dispersed with ethanol (disperser solvent) into the water sample solution. After extraction, the organic phase was separated by centrifugation, and was solidified by transferring into an ice bath. The solidified solvent was transferred to a conical vial and melted quickly at room temperature. As(III) was determined in the melted organic phase while As(V) remained in the aqueous layer. Total inorganic As was determined after the reduction of the pentavalent forms of arsenic with sodium thiosulphate and potassium iodide. As(V) was calculated by difference between the concentration of total inorganic As and As(III). The variable of interest in the DSLLME method, such as the volume of extraction solvent and disperser solvent, pH, concentration of APDC (chelating agent), extraction time and salt effect, was optimized with the aid of chemometric approaches. First, in screening experiments, fractional factorial design (FFD) was used for selecting the variables which significantly affected the extraction procedure. Afterwards, the significant variables were optimized using response surface methodology (RSM) based on central composite design (CCD). In the optimum conditions, the proposed method has been successfully applied to the determination of inorganic arsenic in different environmental water samples and certified reference material (NIST RSM 1643e). Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Hawaii Regional Sediment Management (RSM): Regional Sediment Budget for the West Maui Region

    DTIC Science & Technology

    2016-06-01

    Increased sedimentation associated with loss of forest land, historical agriculture practices, stream channelization , and rapid development has...ER D C/ CH L TR -1 6- 5 Regional Sediment Management (RSM) Program Hawaii Regional Sediment Management (RSM): Regional Sediment Budget...acwc.sdp.sirsi.net/client/default. Regional Sediment Management (RSM) Program ERDC/CHL TR-16-5 June 2016 Hawaii Regional Sediment Management

  10. The effect of different dietary levels of rapeseed meal on growth performance, carcass traits, and meat quality in turkeys.

    PubMed

    Mikulski, D; Jankowski, J; Zdunczyk, Z; Juskiewicz, J; Slominski, B A

    2012-01-01

    The objective of this study was to determine the effect of different dietary levels of low-glucosinolate rapeseed meal (RSM) on growth performance, blood thyroid hormone concentration, carcass traits, and chemical composition, physicochemical properties, and fatty acid profile of breast meat in growing turkeys. The experiment lasted for 21 wk. Large White BIG-6 turkeys were fed isoenergetic and isonitrogenous diets containing 0, 60, 120, and 180 g/kg of RSM. Each experimental group was comprised of 7 replicates/pen of 28 birds each. There was no effect of graded levels of RSM on final BW. An increase in the inclusion rate of RSM was followed by a linear increase in feed conversion ratio, which was significantly higher (P < 0.05) in the group fed 180 g/kg of RSM. The blood levels of free triiodothyronine decreased significantly (P < 0.05) regardless of the dietary level of RSM. No significant changes in the carcass dressing percentage or the meat fat content were observed. Significant differences were found in the fatty acid composition and physicochemical properties of breast meat. The concentrations of margaroleic acid and saturated fatty acids, including myristic and palmitic acid, in meat from male turkeys fed 120 and 180 g/kg of RSM decreased linearly; whereas the levels of oleic acid and polyunsaturated fatty acids, including linoleic and linolenic acid (an n-3 fatty acid), increased linearly. An increase in RSM content of the diets was accompanied by the unfavorable changes in selected functional properties of meat, including a significant increase in drip loss in groups fed 120 g/kg of RSM (from 1.85 to 2.38%) and 180 g/kg of RSM (from 1.85 to 3.02%) and a decrease in Warner-Bratzler shear force values in turkeys fed 180 g/kg of RSM (from 19.1 to 15.8 N). The results suggest that the quality of turkey meat could be affected by impaired triiodothyronine secretion caused by dietary RSM.

  11. Recovery of Vanadium from Magnetite Ore Using Direct Acid Leaching: Optimization of Parameters by Plackett-Burman and Response Surface Methodologies

    NASA Astrophysics Data System (ADS)

    Nejad, Davood Ghoddocy; Khanchi, Ali Reza; Taghizadeh, Majid

    2018-06-01

    Recovery of vanadium from magnetite ore by direct acid leaching is discussed. The proposed process, which employs a mixture of nitric and sulfuric acids, avoids pyrometallurgical treatments since such treatment consumes a high amount of energy. To determine the optimum conditions of vanadium recovery, the leaching process is optimized through Plackett-Burman (P-B) design and response surface methodology (RSM). In this respect, temperature (80-95°C), liquid to solid ratio (L/S) (3-10 mL g-1), sulfuric acid concentration (3-6 M), nitric acid concentration (5-10 vol.%) and time (4-8 h) are considered as the independent variables. According to the P-B approach, temperature and acid concentrations are, respectively, the most effective parameters in the leaching process. These parameters are optimized using RSM to maximize recovery of vanadium by direct acid leaching. In this way, 86.7% of vanadium can be extracted from magnetic ore.

  12. Recovery of Vanadium from Magnetite Ore Using Direct Acid Leaching: Optimization of Parameters by Plackett-Burman and Response Surface Methodologies

    NASA Astrophysics Data System (ADS)

    Nejad, Davood Ghoddocy; Khanchi, Ali Reza; Taghizadeh, Majid

    2018-03-01

    Recovery of vanadium from magnetite ore by direct acid leaching is discussed. The proposed process, which employs a mixture of nitric and sulfuric acids, avoids pyrometallurgical treatments since such treatment consumes a high amount of energy. To determine the optimum conditions of vanadium recovery, the leaching process is optimized through Plackett-Burman (P-B) design and response surface methodology (RSM). In this respect, temperature (80-95°C), liquid to solid ratio (L/S) (3-10 mL g-1), sulfuric acid concentration (3-6 M), nitric acid concentration (5-10 vol.%) and time (4-8 h) are considered as the independent variables. According to the P-B approach, temperature and acid concentrations are, respectively, the most effective parameters in the leaching process. These parameters are optimized using RSM to maximize recovery of vanadium by direct acid leaching. In this way, 86.7% of vanadium can be extracted from magnetic ore.

  13. Response surface methodology applied to the study of the microwave-assisted synthesis of quaternized chitosan.

    PubMed

    dos Santos, Danilo Martins; Bukzem, Andrea de Lacerda; Campana-Filho, Sérgio Paulo

    2016-03-15

    A quaternized derivative of chitosan, namely N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride (QCh), was synthesized by reacting glycidyltrimethylammonium chloride (GTMAC) and chitosan (Ch) in acid medium under microwave irradiation. Full-factorial 2(3) central composite design and response surface methodology (RSM) were applied to evaluate the effects of molar ratio GTMAC/Ch, reaction time and temperature on the reaction yield, average degree of quaternization (DQ) and intrinsic viscosity ([η]) of QCh. The molar ratio GTMAC/Ch was the most important factor affecting the response variables and RSM results showed that highly substituted QCh (DQ = 71.1%) was produced at high yield (164%) when the reaction was carried out for 30min. at 85°C by using molar ratio GTMAC/Ch 6/1. Results showed that microwave-assisted synthesis is much faster (≤30min.) as compared to conventional reaction procedures (>4h) carried out in similar conditions except for the use of microwave irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Evaluation of the effect of yellow konjac flour-κ-carrageenan mixed gels and red koji rice extracts on the properties of restructured meat using response surface methodology.

    PubMed

    Widjanarko, Simon Bambang; Amalia, Qory; Hermanto, Mochamad Bagus; Mubarok, Ahmad Zaki

    2018-05-01

    In the present study, the effect of two independent variables, yellow konjac flour-κ-carrageenan (KFC) mixed gels and red koji rice (RKR) extracts for the development of restructured meat product, was investigated using central composite design of response surface methodology (RSM). The assessed physical characteristics were hardness, water holding capacity (WHC), and color (° hue ) of the restructured meat products. The second order regression models with high R 2 value were significantly fitted to predict the changes in hardness, WHC and color. The results showed that the predicted optimum formula of restructured meat were the addition of KFC mixed gels at 10.21% and RKR extracts at 6.11%. The experiments results validate these optimum formula and found to be not statistically different at 5% level. Thus, the RSM was successfully employed and can be used to optimize the formulation of restructured meat.

  15. Modeling and investigation of submerged fermentation process to produce extracellular polysaccharide using Lactobacillus confusus.

    PubMed

    Thirugnanasambandham, K; Sivakumar, V; Prakash Maran, J

    2014-12-19

    The main objective of the present study is to investigate and optimize the Submerged fermentation (SMF) process parameters such as addition of coconut water, NaCl dose, incubation time and temperature on the production of extracellular polysaccharide (EPS) and biomass production using Lactobacillus confuses. Response surface methodology (RSM) coupled with four factors three level Box-Behnken design (BBD) was employed to model the SMF process. RSM analysis indicated good correspondence between experimental and predicted values. Three dimentional (3D) response surface plots were used to study the interactive effects of process variables on SMF process. The optimum process conditions for the maximum production of EPS and biomass were found to be as follows; addition of coconut water of 40%, NaCl dose of 15%, incubation time of 24h and temperature of 35°C. Under these conditions, 10.57 g/L of EPS and 3.9 g/L of biomass were produced. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Optimization of antioxidant activity by response surface methodology in hydrolysates of jellyfish (Rhopilema esculentum) umbrella collagen.

    PubMed

    Zhuang, Yong-liang; Zhao, Xue; Li, Ba-fang

    2009-08-01

    To optimize the hydrolysis conditions to prepare hydrolysates of jellyfish umbrella collagen with the highest hydroxyl radical scavenging activity, collagen extracted from jellyfish umbrella was hydrolyzed with trypsin, and response surface methodology (RSM) was applied. The optimum conditions obtained from experiments were pH 7.75, temperature (T) 48.77 degrees C, and enzyme-to-substrate ratio ([E]/[S]) 3.50%. The analysis of variance in RSM showed that pH and [E]/[S] were important factors that significantly affected the process (P<0.05 and P<0.01, respectively). The hydrolysates of jellyfish umbrella collagen were fractionated by high performance liquid chromatography (HPLC), and three fractions (HF-1>3000 Da, 1000 Da

  17. Optimization of antioxidant activity by response surface methodology in hydrolysates of jellyfish (Rhopilema esculentum) umbrella collagen*

    PubMed Central

    Zhuang, Yong-liang; Zhao, Xue; Li, Ba-fang

    2009-01-01

    To optimize the hydrolysis conditions to prepare hydrolysates of jellyfish umbrella collagen with the highest hydroxyl radical scavenging activity, collagen extracted from jellyfish umbrella was hydrolyzed with trypsin, and response surface methodology (RSM) was applied. The optimum conditions obtained from experiments were pH 7.75, temperature (T) 48.77 °C, and enzyme-to-substrate ratio ([E]/[S]) 3.50%. The analysis of variance in RSM showed that pH and [E]/[S] were important factors that significantly affected the process (P<0.05 and P<0.01, respectively). The hydrolysates of jellyfish umbrella collagen were fractionated by high performance liquid chromatography (HPLC), and three fractions (HF-1>3000 Da, 1000 Da

  18. Response surface methodology to simplify calculation of wood energy potency from tropical short rotation coppice species

    NASA Astrophysics Data System (ADS)

    Haqiqi, M. T.; Yuliansyah; Suwinarti, W.; Amirta, R.

    2018-04-01

    Short Rotation Coppice (SRC) system is an option to provide renewable and sustainable feedstock in generating electricity for rural area. Here in this study, we focussed on application of Response Surface Methodology (RSM) to simplify calculation protocols to point out wood chip production and energy potency from some tropical SRC species identified as Bauhinia purpurea, Bridelia tomentosa, Calliandra calothyrsus, Fagraea racemosa, Gliricidia sepium, Melastoma malabathricum, Piper aduncum, Vernonia amygdalina, Vernonia arborea and Vitex pinnata. The result showed that the highest calorific value was obtained from V. pinnata wood (19.97 MJ kg-1) due to its high lignin content (29.84 %, w/w). Our findings also indicated that the use of RSM for estimating energy-electricity of SRC wood had significant term regarding to the quadratic model (R2 = 0.953), whereas the solid-chip ratio prediction was accurate (R2 = 1.000). In the near future, the simple formula will be promising to calculate energy production easily from woody biomass, especially from SRC species.

  19. Multi Directional Repeated Sprint Is a Valid and Reliable Test for Assessment of Junior Handball Players

    PubMed Central

    Daneshfar, Amin; Gahreman, Daniel E.; Koozehchian, Majid S.; Amani Shalamzari, Sadegh; Hassanzadeh Sablouei, Mozhgan; Rosemann, Thomas; Knechtle, Beat; Nikolaidis, Pantelis T.

    2018-01-01

    The aim of the present study was to examine the validity and reliability of a 10 × (6 × 5 m) multi-directional repeated sprint ability test (RSM) in elite young team handball (TH) players. Participants were members of the Iranian national team (n = 20, age 16.4 ± 0.7 years, weight 82.5 ± 5.5 kg, height 184.8 ± 4.6 cm, body fat 15.4 ± 4.3%). The validity of RSM was tested against a 10 × (15 + 15 m) repeated sprint ability test (RSA), Yo-Yo Intermittent Recovery test Level 1 (Yo-Yo IR1), squat jump (SJ) and countermovement jump (CMJ). To test the reliability of RSM, the participants repeated the testing sessions of RSM and RSA 1 week later. Both RSA and RSM tests showed good to excellent reliability of the total time (TT), best time (BT), and weakest time (WT). The results of the correlation analysis showed significant inverse correlations between maximum aerobic capacity and TT in RSA (r = −0.57, p ≤ 0.05) and RSM (r = −0.76, p ≤ 0.01). There was also a significant inverse correlation between maximum aerobic capacity with fatigue index (FI) in RSA test (r = −0.64, p ≤ 0.01) and in RSM test (r = −0.53, p ≤ 0.05). BT, WT, and TT of RSA was largely-to-very largely correlated with BT (r = 0.58, p ≤ 0.01), WT (r = 0.62, p ≤ 0.01), and TT (r = 0.65, p ≤ 0.01) of RSM. BT in RSM was also correlated with FI in RSM (r = 0.88, p ≤ 0.01). In conclusion, based on the findings of the current study, the recently developed RSM test is a valid and reliable test and should be utilized for assessment of repeated sprint ability in handball players. PMID:29670536

  20. Multi Directional Repeated Sprint Is a Valid and Reliable Test for Assessment of Junior Handball Players.

    PubMed

    Daneshfar, Amin; Gahreman, Daniel E; Koozehchian, Majid S; Amani Shalamzari, Sadegh; Hassanzadeh Sablouei, Mozhgan; Rosemann, Thomas; Knechtle, Beat; Nikolaidis, Pantelis T

    2018-01-01

    The aim of the present study was to examine the validity and reliability of a 10 × (6 × 5 m) multi-directional repeated sprint ability test (RSM) in elite young team handball (TH) players. Participants were members of the Iranian national team ( n = 20, age 16.4 ± 0.7 years, weight 82.5 ± 5.5 kg, height 184.8 ± 4.6 cm, body fat 15.4 ± 4.3%). The validity of RSM was tested against a 10 × (15 + 15 m) repeated sprint ability test (RSA), Yo-Yo Intermittent Recovery test Level 1 (Yo-Yo IR1), squat jump (SJ) and countermovement jump (CMJ). To test the reliability of RSM, the participants repeated the testing sessions of RSM and RSA 1 week later. Both RSA and RSM tests showed good to excellent reliability of the total time (TT), best time (BT), and weakest time (WT). The results of the correlation analysis showed significant inverse correlations between maximum aerobic capacity and TT in RSA ( r = -0.57, p ≤ 0.05) and RSM ( r = -0.76, p ≤ 0.01). There was also a significant inverse correlation between maximum aerobic capacity with fatigue index (FI) in RSA test ( r = -0.64, p ≤ 0.01) and in RSM test ( r = -0.53, p ≤ 0.05). BT, WT, and TT of RSA was largely-to-very largely correlated with BT ( r = 0.58, p ≤ 0.01), WT ( r = 0.62, p ≤ 0.01), and TT ( r = 0 .65, p ≤ 0.01) of RSM. BT in RSM was also correlated with FI in RSM ( r = 0.88, p ≤ 0.01). In conclusion, based on the findings of the current study, the recently developed RSM test is a valid and reliable test and should be utilized for assessment of repeated sprint ability in handball players.

  1. Ultrasound-assisted extraction and purification of schisandrin B from Schisandra chinensis (Turcz.) Baill seeds: optimization by response surface methodology.

    PubMed

    Zhang, Y B; Wang, L H; Zhang, D Y; Zhou, L L; Guo, Y X

    2014-03-01

    The objective of this study is to develop a process consisting of ultrasonic-assisted extraction, silica-gel column chromatography and crystallization to optimize pilot scale recovery of schisandrin B (SAB) from Schisandra chinensis seeds. The effects of five independent variables including liquid-solid ratio, ethanol concentration, ultrasonic power, extraction time, and temperature on the SAB yield were evaluated with fractional factorial design (FFD). The FFD results showed that the ethanol concentration was the only significant factor for the yield of SAB. Then, with the liquid-solid ratio 5 (mL/g) and ultrasonic power 600 W, the other three parameters were further optimized by means of response surface methodology (RSM). The RSM results revealed that the optimal conditions consisted of 95% ethanol, 60 °C and 70 min. The average experimental SAB yield under the optimum conditions was found to be 5.80 mg/g, which was consistent with the predicted value of 5.83 mg/g. Subsequently, a silica gel chromatographic process was used to prepare the SAB-enriched extract with petroleum ether/acetone (95:5, v/v) as eluents. After final crystallization, 1.46 g of SAB with the purity of 99.4% and the overall recovery of 57.1% was obtained from 400 g seeds powder. This method provides an efficient and low-cost way for SAB purification for pharmaceutical industrial applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Preliminary Design Optimization For A Supersonic Turbine For Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Papila, Nilay; Shyy, Wei; Griffin, Lisa; Huber, Frank; Tran, Ken; McConnaughey, Helen (Technical Monitor)

    2000-01-01

    In this study, we present a method for optimizing, at the preliminary design level, a supersonic turbine for rocket propulsion system application. Single-, two- and three-stage turbines are considered with the number of design variables increasing from 6 to 11 then to 15, in accordance with the number of stages. Due to its global nature and flexibility in handling different types of information, the response surface methodology (RSM) is applied in the present study. A major goal of the present Optimization effort is to balance the desire of maximizing aerodynamic performance and minimizing weight. To ascertain required predictive capability of the RSM, a two-level domain refinement approach has been adopted. The accuracy of the predicted optimal design points based on this strategy is shown to he satisfactory. Our investigation indicates that the efficiency rises quickly from single stage to 2 stages but that the increase is much less pronounced with 3 stages. A 1-stage turbine performs poorly under the engine balance boundary condition. A portion of fluid kinetic energy is lost at the turbine discharge of the 1-stage design due to high stage pressure ratio and high-energy content, mostly hydrogen, of the working fluid. Regarding the optimization technique, issues related to the design of experiments (DOE) has also been investigated. It is demonstrated that the criteria for selecting the data base exhibit significant impact on the efficiency and effectiveness of the construction of the response surface.

  3. The phzA2-G2 Transcript Exhibits Direct RsmA-Mediated Activation in Pseudomonas aeruginosa M18

    PubMed Central

    Ren, Bin; Shen, Huifeng; Lu, Zhi John; Liu, Haiming; Xu, Yuquan

    2014-01-01

    In bacteria, RNA-binding proteins of the RsmA/CsrA family act as post-transcriptional regulators that modulate translation initiation at target transcripts. The Pseudomonas aeruginosa genome contains two phenazine biosynthetic (phz) gene clusters, phzA1-G1 (phz1) and phzA2-G2 (phz2), each of which is responsible for phenazine-1-carboxylic acid (PCA) biosynthesis. In the present study, we show that RsmA exhibits differential gene regulation on two phz clusters in P. aeruginosa M18 at the post-transcriptional level. Based on the sequence analysis, four GGA motifs, the potential RsmA binding sites, are found on the 5′-untranslated region (UTR) of the phz2 transcript. Studies with a series of lacZ reporter fusions, and gel mobility shift assays suggest that the third GGA motif (S3), located 21 nucleotides upstream of the Shine-Dalgarno (SD) sequence, is involved in direct RsmA-mediated activation of phz2 expression. We therefore propose a novel model in which the binding of RsmA to the target S3 results in the destabilization of the stem-loop structure and the enhancement of ribosome access. This model could be fully supported by RNA structure prediction, free energy calculations, and nucleotide replacement studies. In contrast, various RsmA-mediated translation repression mechanisms have been identified in which RsmA binds near the SD sequence of target transcripts, thereby blocking ribosome access. Similarly, RsmA is shown to negatively regulate phz1 expression. Our new findings suggest that the differential regulation exerted by RsmA on the two phz clusters may confer an advantage to P. aeruginosa over other pseudomonads containing only a single phz cluster in their genomes. PMID:24586939

  4. Efficiency improvement by navigated safety inspection involving visual clutter based on the random search model.

    PubMed

    Sun, Xinlu; Chong, Heap-Yih; Liao, Pin-Chao

    2018-06-25

    Navigated inspection seeks to improve hazard identification (HI) accuracy. With tight inspection schedule, HI also requires efficiency. However, lacking quantification of HI efficiency, navigated inspection strategies cannot be comprehensively assessed. This work aims to determine inspection efficiency in navigated safety inspection, controlling for the HI accuracy. Based on a cognitive method of the random search model (RSM), an experiment was conducted to observe the HI efficiency in navigation, for a variety of visual clutter (VC) scenarios, while using eye-tracking devices to record the search process and analyze the search performance. The results show that the RSM is an appropriate instrument, and VC serves as a hazard classifier for navigation inspection in improving inspection efficiency. This suggests a new and effective solution for addressing the low accuracy and efficiency of manual inspection through navigated inspection involving VC and the RSM. It also provides insights into the inspectors' safety inspection ability.

  5. Determining the Influence of Granule Size on Simulation Parameters and Residual Shear Stress Distribution in Tablets by Combining the Finite Element Method into the Design of Experiments.

    PubMed

    Hayashi, Yoshihiro; Kosugi, Atsushi; Miura, Takahiro; Takayama, Kozo; Onuki, Yoshinori

    2018-01-01

    The influence of granule size on simulation parameters and residual shear stress in tablets was determined by combining the finite element method (FEM) into the design of experiments (DoE). Lactose granules were prepared using a wet granulation method with a high-shear mixer and sorted into small and large granules using sieves. To simulate the tableting process using the FEM, parameters simulating each granule were optimized using a DoE and a response surface method (RSM). The compaction behavior of each granule simulated by FEM was in reasonable agreement with the experimental findings. Higher coefficients of friction between powder and die/punch (μ) and lower by internal friction angle (α y ) were generated in the case of small granules, respectively. RSM revealed that die wall force was affected by α y . On the other hand, the pressure transmissibility rate of punches value was affected not only by the α y value, but also by μ. The FEM revealed that the residual shear stress was greater for small granules than for large granules. These results suggest that the inner structure of a tablet comprising small granules was less homogeneous than that comprising large granules. To evaluate the contribution of the simulation parameters to residual stress, these parameters were assigned to the fractional factorial design and an ANOVA was applied. The result indicated that μ was the critical factor influencing residual shear stress. This study demonstrates the importance of combining simulation and statistical analysis to gain a deeper understanding of the tableting process.

  6. Artificial Intelligence versus Statistical Modeling and Optimization of Cholesterol Oxidase Production by using Streptomyces Sp.

    PubMed Central

    Niwas, Ram; Osama, Khwaja; Khan, Saif; Haque, Shafiul; Tripathi, C. K. M.; Mishra, B. N.

    2015-01-01

    Cholesterol oxidase (COD) is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM), artificial neural network (ANN) and genetic algorithm (GA) have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD) and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL) obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500. PMID:26368924

  7. Artificial Intelligence versus Statistical Modeling and Optimization of Cholesterol Oxidase Production by using Streptomyces Sp.

    PubMed

    Pathak, Lakshmi; Singh, Vineeta; Niwas, Ram; Osama, Khwaja; Khan, Saif; Haque, Shafiul; Tripathi, C K M; Mishra, B N

    2015-01-01

    Cholesterol oxidase (COD) is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM), artificial neural network (ANN) and genetic algorithm (GA) have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD) and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL) obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500.

  8. Impact of turbulence anisotropy near walls in room airflow.

    PubMed

    Schälin, A; Nielsen, P V

    2004-06-01

    The influence of different turbulence models used in computational fluid dynamics predictions is studied in connection with room air movement. The turbulence models used are the high Re-number kappa-epsilon model and the high Re-number Reynolds stress model (RSM). The three-dimensional wall jet is selected for the work. The growth rate parallel to the wall in a three-dimensional wall jet is large compared with the growth rate perpendicular to the wall, and it is large compared with the growth rate in a free circular jet. It is shown that it is not possible to predict the high growth rate parallel with a surface in a three-dimensional wall jet by the kappa-epsilon turbulence model. Furthermore, it is shown that the growth rate can be predicted to a certain extent by the RSM with wall reflection terms. The flow in a deep room can be strongly influenced by details as the growth rate of a three-dimensional wall jet. Predictions by a kappa-epsilon model and RSM show large deviations in the occupied zone. Measurements and observations of streamline patterns in model experiments indicate that a reasonable solution is obtained by the RSM compared with the solution obtained by the kappa-epsilon model. Computational fluid dynamics (CFD) is often used for the prediction of air distribution in rooms and for the evaluation of thermal comfort and indoor air quality. The most used turbulence model in CFD is the kappa-epsilon model. This model often produces good results; however, some cases require more sophisticated models. The prediction of a three-dimensional wall jet is improved if it is made by a Reynolds stress model (RSM). This model improves the prediction of the velocity level in the jet and in some special cases it may influence the entire flow in the occupied zone.

  9. Enhancement of Chlorella vulgaris harvesting via the electro-coagulation-flotation (ECF) method.

    PubMed

    Wong, Y K; Ho, Y H; Leung, H M; Ho, K C; Yau, Y H; Yung, K K L

    2017-04-01

    This article explores the potential of using an electro-coagulation-flotation (ECF) harvester to allow flotation of microalgae cells for surface harvesting. A response surface methodology (RSM) model was used to optimize ECF harvesting by adjusting electrode plate material, electrode plate number, charge of the electrodes, electrolyte concentration, and pH value of the culture solution. The result revealed that three aluminum electrode plates (one anode and two cathodes), brine solution (8 g/L), and acidity (pH = 4) of culture solution (optimized ECF harvester) The highest flocculant concentration was measured at 2966 mg/L after 60 min and showed a 79.8 % increase of flocculation concentration. Such results can provide a basis for designing a large-scale microalgae harvester for commercial use in the future.

  10. Repeated Sprint Ability in Young Basketball Players: Multi-direction vs. One-Change of Direction (Part 1)

    PubMed Central

    Padulo, Johnny; Bragazzi, Nicola L.; Nikolaidis, Pantelis T.; Dello Iacono, Antonio; Attene, Giuseppe; Pizzolato, Fabio; Dal Pupo, Juliano; Zagatto, Alessandro M.; Oggianu, Marcello; Migliaccio, Gian M.

    2016-01-01

    The aim of the present study was to examine the reliability of a novel multi-direction repeated sprint ability (RSA) test [RSM; 10 × (6 × 5-m)] compared with a RSA with one change of direction [10 × (2 × 15-m)], and the relationship of the RSM and RSA with Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1) and jump performances [squat jump (SJ) and counter-movement-jump (CMJ)]. Thirty-six (male, n = 14, female n = 22) young basketball players (age 16.0 ± 0.9 yrs) performed the RSM, RSA, Yo-Yo IR1, SJ, and CMJ, and were re-tested only for RSM and RSA after 1 week. The absolute error of reliability (standard error of the measurement) was lower than 0.212 and 0.617-s for the time variables of the RSA and RSM test, respectively. Performance in the RSA and RSM test significantly correlated with CMJ and SJ. The best time, worst time, and total time of the RSA and RSM test were negatively correlated with Yo-Yo IR1 distance. Based on these findings, consistent with previously published studies, it was concluded that the novel RSM test was valid and reliable. PMID:27148072

  11. Ling Tao, Ph.D. | NREL

    Science.gov Websites

    | 303-384-7809 Orcid ID http://orcid.org/0000-0003-1063-1984 Research Interests Techno-economic analysis ) with Corn Stover using Response Surface Methodology (RSM) and Techno Economic Analysis (TEA)," ; Biotechnology for Biofuels (2014) "Performance and techno-economic assessment of several solid-liquid

  12. Interactive effects of aging parameters of AA6056

    NASA Astrophysics Data System (ADS)

    Dehghani, Kamran; Nekahi, Atiye

    2012-10-01

    The effect of thermomechanical treatment on the aging behavior of AA6056 aluminum alloy was modeled using response surface methodology (RSM). Two models were developed to predict the final yield stress (FYS) and elongation amounts as well as the optimum conditions of aging process. These were done based on the interactive effects of applied thermomechanical parameters. The optimum condition predicted by the model to attain the maximum strength was pre-aging at 80 °C for 15 h, followed by 70% cold work and subsequent final aging at 165 °C for 4 h, which resulted in the FYS of about 480 MPa. As for the elongation, the optimum condition was pre-aging at 80 °C for 15 h, followed by 30% cold work and final-aging at 165 °C for 4 h, which led to 21% elongation. To verify the suggested optimum conditions, the tests were carried out confirming the high accuracy (above 94%) of the RSM technique as well as the developed models. It is shown that the RSM can be used successfully to optimize the aging process, to determine the significance of aging parameters and to model the combination effect of process variables on the aging behavior of AA6056.

  13. Implementing regional sediment management to sustain navigation at an energetic tidal inlet

    USGS Publications Warehouse

    Moritz, H.R.; Gelfenbaum, G.R.; Kaminsky, G.M.; Ruggiero, P.; Oltman-shay, J.; Mckillip, D.J.

    2007-01-01

    Regional Sediment Management (RSM) is a systems-based approach for managing multiple projects involving sediment. RSM fosters balance between infrastructure and natural system processes, resulting in reduced project costs and achievement of greater benefits. This paper introduces the RSM concept and describes how RSM is being implemented at the Mouth of the Columbia River to sustain the inlet's 100-year old navigation infrastructure and adjacent shore lands. Implementing RSM at this energetic inlet involves feeding the inlet's morphology using dredged material, and letting nature do the work of dispersing the placed dredged material to supplement the inlet's sediment budget, without compromising the reliability of the navigation channel. The paper discusses the types of data that are being collected and analyzed to understand the environmental forcing affecting the inlet's morphology. The paper also addresses how dredged material disposal is being conducted to implement RSM.

  14. Processing of soybean meal and 00-rapeseed meal reduces protein digestibility and pig growth performance but does not affect nitrogen solubilization along the small intestine.

    PubMed

    Hulshof, T G; van der Poel, A F B; Hendriks, W H; Bikker, P

    2016-06-01

    An experiment was conducted to determine the effects of processing of soybean meal (SBM) and 00-rapeseed meal (RSM) on N solubilization in chyme, CP digestibility along the small intestine, metabolic load as determined by organ weight, body composition, and growth performance in growing pigs. The SBM and RSM were processed by secondary toasting (at 95°C for 30 min) in the presence of lignosulfonate, resulting in processed SBM (pSBM) and processed RSM (pRSM) as a model for overprocessed protein sources. Fifty-four growing pigs were each fed 1 of the 6 experimental diets. Four of the diets contained SBM, pSBM, RSM, or pRSM as the sole protein source. The remaining 2 experimental diets contained pSBM or pRSM and were supplemented with crystalline AA to the same standardized ileal digestible AA levels as the SBM or RSM diet. Pigs were slaughtered at 40 kg, and organ weights were recorded. The organs plus blood and empty carcass were analyzed for CP content. The small intestine was divided into 3 segments, and chyme samples were taken from the last meter of each segment. Chyme of the SBM, pSBM, RSM, and pRSM diets was centrifuged to separate the soluble and insoluble fractions, and N content was determined in the latter. The amount of insoluble N as a fraction of N in chyme at each small intestinal segment was not affected by processing. Diet type, comprising effects of processing and supplementing crystalline AA, affected ( < 0.05) the G:F and standardized ileal digestibility (SID) of CP. Processing reduced G:F from 0.56 to 0.38 for SBM and 0.49 to 0.40 for RSM, whereas supplementing crystalline AA increased G:F to the level of the SBM and RSM diets. Processing reduced the SID of CP from 87.2% to 69.2% for SBM and 71.0% to 52.2% for RSM. Diet type affected ( < 0.05) the CP content in the empty body, with processing reducing this content from 170 to 144 g/kg empty BW for SBM and 157 to 149 g/kg empty BW for RSM and supplementing crystalline AA restoring this content. Processing reduced ( < 0.05) the weight of several organs, and supplementing crystalline AA restored organ weight. In conclusion, processing increased the amount of N in the chyme, reduced organ weight, body CP content, and G:F. These effects were caused by a reduction in available AA as supplementing crystalline AA restored organ weight, body CP content, and G:F.

  15. RNA-seq reveals the RNA binding proteins, Hfq and RsmA, play various roles in virulence, antibiotic production and genomic flux in Serratia sp. ATCC 39006.

    PubMed

    Wilf, Nabil M; Reid, Adam J; Ramsay, Joshua P; Williamson, Neil R; Croucher, Nicholas J; Gatto, Laurent; Hester, Svenja S; Goulding, David; Barquist, Lars; Lilley, Kathryn S; Kingsley, Robert A; Dougan, Gordon; Salmond, George Pc

    2013-11-22

    Serratia sp. ATCC 39006 (S39006) is a Gram-negative enterobacterium that is virulent in plant and animal models. It produces a red-pigmented trypyrrole secondary metabolite, prodigiosin (Pig), and a carbapenem antibiotic (Car), as well as the exoenzymes, pectate lyase and cellulase. Secondary metabolite production in this strain is controlled by a complex regulatory network involving quorum sensing (QS). Hfq and RsmA (two RNA binding proteins and major post-transcriptional regulators of gene expression) play opposing roles in the regulation of several key phenotypes within S39006. Prodigiosin and carbapenem production was abolished, and virulence attenuated, in an S39006 ∆hfq mutant, while the converse was observed in an S39006 rsmA transposon insertion mutant. In order to define the complete regulon of Hfq and RsmA, deep sequencing of cDNA libraries (RNA-seq) was used to analyse the whole transcriptome of S39006 ∆hfq and rsmA::Tn mutants. Moreover, we investigated global changes in the proteome using an LC-MS/MS approach. Analysis of differential gene expression showed that Hfq and RsmA directly or indirectly regulate (at the level of RNA) 4% and 19% of the genome, respectively, with some correlation between RNA and protein expression. Pathways affected include those involved in antibiotic regulation, virulence, flagella synthesis, and surfactant production. Although Hfq and RsmA are reported to activate flagellum production in E. coli and an adherent-invasive E. coli hfq mutant was shown to have no flagella by electron microscopy, we found that flagellar production was increased in the S39006 rsmA and hfq mutants. Additionally, deletion of rsmA resulted in greater genomic flux with increased activity of two mobile genetic elements. This was confirmed by qPCR and analysis of rsmA culture supernatant revealed the presence of prophage DNA and phage particles. Finally, expression of a hypothetical protein containing DUF364 increased prodigiosin production and was controlled by a putative 5' cis-acting regulatory RNA element. Using a combination of transcriptomics and proteomics this study provides a systems-level understanding of Hfq and RsmA regulation and identifies similarities and differences in the regulons of two major regulators. Additionally our study indicates that RsmA regulates both core and variable genome regions and contributes to genome stability.

  16. Parametric design and analysis on the landing gear of a planet lander using the response surface method

    NASA Astrophysics Data System (ADS)

    Zheng, Guang; Nie, Hong; Luo, Min; Chen, Jinbao; Man, Jianfeng; Chen, Chuanzhi; Lee, Heow Pueh

    2018-07-01

    The purpose of this paper is to obtain the design parameter-landing response relation for designing the configuration of the landing gear in a planet lander quickly. To achieve this, parametric studies on the landing gear are carried out using the response surface method (RSM), based on a single landing gear landing model validated by experimental results. According to the design of experiment (DOE) results of the landing model, the RS (response surface)-functions of the three crucial landing responses are obtained, and the sensitivity analysis (SA) of the corresponding parameters is performed. Also, two multi-objective optimizations designs on the landing gear are carried out. The analysis results show that the RS (response surface)-model performs well for the landing response design process, with a minimum fitting accuracy of 98.99%. The most sensitive parameters for the three landing response are the design size of the buffers, struts friction and the diameter of the bending beam. Moreover, the good agreement between the simulated model and RS-model results are obtained in two optimized designs, which show that the RS-model coupled with the FE (finite element)-method is an efficient method to obtain the design configuration of the landing gear.

  17. Optimization of Bromelain-Aided Production of Angiotensin I-Converting Enzyme Inhibitory Hydrolysates from Stone Fish Using Response Surface Methodology

    PubMed Central

    Auwal, Shehu Muhammad; Zarei, Mohammad; Abdul-Hamid, Azizah; Saari, Nazamid

    2017-01-01

    The stone fish is an under-utilized sea cucumber with many nutritional and ethno-medicinal values. This study aimed to establish the conditions for its optimum hydrolysis with bromelain to generate angiotensin I-converting enzyme (ACE)-inhibitory hydrolysates. Response surface methodology (RSM) based on a central composite design was used to model and optimize the degree of hydrolysis (DH) and ACE-inhibitory activity. Process conditions including pH (4–7), temperature (40–70 °C), enzyme/substrate (E/S) ratio (0.5%–2%) and time (30–360 min) were used. A pH of 7.0, temperature of 40 °C, E/S ratio of 2% and time of 240 min were determined using a response surface model as the optimum levels to obtain the maximum ACE-inhibitory activity of 84.26% at 44.59% degree of hydrolysis. Hence, RSM can serve as an effective approach in the design of experiments to improve the antihypertensive effect of stone fish hydrolysates, which can thus be used as a value-added ingredient for various applications in the functional foods industries. PMID:28362352

  18. Amoxicillin degradation from contaminated water by solar photocatalysis using response surface methodology (RSM).

    PubMed

    Moosavi, Fatemeh Sadat; Tavakoli, Touraj

    2016-11-01

    In this study, the solar photocatalytic process in a pilot plant with compound parabolic collectors (CPCs) was performed for amoxicillin (AMX) degradation, an antibiotic widely used in the world. The response surface methodology (RSM) based on Box-Behnken statistical experiment design was used to optimize independent variables, namely TiO 2 dosage, antibiotic initial concentration, and initial pH. The results showed that AMX degradation efficiency affected by positive or negative effect of variables and their interactions. The TiO 2 dosage, pH, and interaction between AMX initial concentration and TiO 2 dosage exhibited a synergistic effect, while the linear and quadratic term of AMX initial concentration and pH showed antagonistic effect in the process response. Response surface and contour plots were used to perform process optimization. The optimum conditions found in this regard were TiO 2 dosage = 1.5 g/L, AMX initial concentration = 17 mg/L, and pH = 9.5 for AMX degradation under 240 min solar irradiation. The photocatalytic degradation of AMX after 34.95 kJ UV /L accumulated UV energy per liter of solution was 84.12 % at the solar plant.

  19. Global regulators ExpA (GacA) and KdgR modulate extracellular enzyme gene expression through the RsmA-rsmB system in Erwinia carotovora subsp. carotovora.

    PubMed

    Hyytiäinen, H; Montesano, M; Palva, E T

    2001-08-01

    The production of the main virulence determinants, the extracellular plant cell wall-degrading enzymes, and hence virulence of Erwinia carotovora subsp. carotovora is controlled by a complex regulatory network. One of the global regulators, the response regulator ExpA, a GacA homolog, is required for transcriptional activation of the extracellular enzyme genes of this soft-rot pathogen. To elucidate the mechanism of ExpA control as well as interactions with other regulatory systems, we isolated second-site transposon mutants that would suppress the enzyme-negative phenotype of an expA (gacA) mutant. Inactivation of kdgR resulted in partial restoration of extracellular enzyme production and virulence to the expA mutant, suggesting an interaction between the two regulatory pathways. This interaction was mediated by the RsmA-rsmB system. Northern analysis was used to show that the regulatory rsmB RNA was under positive control of ExpA. Conversely, the expression of rsmA encoding a global repressor was under negative control of ExpA and positive control of KdgR. This study indicates a central role for the RsmA-rsmB regulatory system during pathogenesis, integrating signals from the ExpA (GacA) and KdgR global regulators of extracellular enzyme production in E. carotovora subsp. carotovora.

  20. Assessing uncertainty in radar measurements on simplified meteorological scenarios

    NASA Astrophysics Data System (ADS)

    Molini, L.; Parodi, A.; Rebora, N.; Siccardi, F.

    2006-02-01

    A three-dimensional radar simulator model (RSM) developed by Haase (1998) is coupled with the nonhydrostatic mesoscale weather forecast model Lokal-Modell (LM). The radar simulator is able to model reflectivity measurements by using the following meteorological fields, generated by Lokal Modell, as inputs: temperature, pressure, water vapour content, cloud water content, cloud ice content, rain sedimentation flux and snow sedimentation flux. This work focuses on the assessment of some uncertainty sources associated with radar measurements: absorption by the atmospheric gases, e.g., molecular oxygen, water vapour, and nitrogen; attenuation due to the presence of a highly reflecting structure between the radar and a "target structure". RSM results for a simplified meteorological scenario, consisting of a humid updraft on a flat surface and four cells placed around it, are presented.

  1. Statistical optimization of growth medium for the production of the entomopathogenic and phytotoxic cyclic depsipeptide beauvericin from Fusarium oxysporum KFCC 11363P.

    PubMed

    Lee, Hee-Seok; Song, Hyuk-Hwan; An, Joong-Hoon; Shin, Cha-Gyun; Lee, Gung Pyo; Lee, Chan

    2008-01-01

    The production of the entomopathogenic and phytotoxic cyclic depsipeptide beauvericin (BEA) was studied in submerged cultures of Fusarium oxysporum KFCC 11363P isolated in Korea. The influences of various factors on mycelia growth and BEA production were examined in both complete and chemically defined culture media. The mycelia growth and BEA production were highest in Fusarium defined medium. The optimal carbon and nitrogen sources for maximizing BEA production were glucose and NaNO3, respectively. The carbon/ nitrogen ratio for maximal production of BEA was investigated using response surface methodology (RSM). Equations derived by differentiation of the RSM model revealed that the production of BEA was maximal when using 108 mM glucose and 25 mM NaNO3.

  2. Effects of replacing soybean meal with rubber seed meal on growth, antioxidant capacity, non-specific immune response, and resistance to Aeromonas hydrophila in tilapia (Oreochromis niloticus × O. aureus).

    PubMed

    Deng, Junming; Mai, Kangsen; Chen, Liqiao; Mi, Haifeng; Zhang, Lu

    2015-06-01

    This study evaluated the effects of replacing soybean meal (SBM) with rubber seed meal (RSM) on growth, antioxidant capacity, non-specific immune response and resistance to Aeromonas hydrophila in tilapia (Oreochromis niloticus × Oreochromis aureus). Five experimental diets were formulated with 0 (control), 10, 20, 30, and 40% RSM replacing graded levels of SBM, respectively. Fish were fed one of the five experimental diets for eight weeks, and then challenged by A. hydrophila via intraperitoneal injection and kept for seven days. Dietary RSM inclusion level up to 30% did not affect the weight gain and daily growth coefficient, whereas these were depressed by a further inclusion. Fish fed diet with 40% RSM showed the lowest serum total antioxidant capacity, lysozyme, alternative complement pathway, respiratory burst and phagocytic activities. Dietary RSM inclusion gradually depressed the post-challenge survival rate, and that was significantly lower in fish fed diet with 40% RSM compared to fish fed the control diet. Conversely, the inclusion of RSM generally increased the serum total cholesterol level, the plasma alanine aminotransferase and aspartate aminotransferase activities, and these were significantly higher in fish fed diet with 40% RSM compared to fish fed the control diet. The results indicated that RSM can be included at level up to 30% in diet for tilapia without obvious adverse effects on the growth, antioxidant capacity, non-specific immune response and resistance to A. hydrophila infection, whereas these were depressed by a further inclusion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Mining the preferences of patients for ubiquitous clinic recommendation.

    PubMed

    Chen, Tin-Chih Toly; Chiu, Min-Chi

    2018-03-06

    A challenge facing all ubiquitous clinic recommendation systems is that patients often have difficulty articulating their requirements. To overcome this problem, a ubiquitous clinic recommendation mechanism was designed in this study by mining the clinic preferences of patients. Their preferences were defined using the weights in the ubiquitous clinic recommendation mechanism. An integer nonlinear programming problem was solved to tune the values of the weights on a rolling basis. In addition, since it may take a long time to adjust the values of weights to their asymptotic values, the back propagation network (BPN)-response surface method (RSM) method is applied to estimate the asymptotic values of weights. The proposed methodology was tested in a regional study. Experimental results indicated that the ubiquitous clinic recommendation system outperformed several existing methods in improving the successful recommendation rate.

  4. Regulation of host-pathogen interactions via the post-transcriptional Csr/Rsm system.

    PubMed

    Kusmierek, Maria; Dersch, Petra

    2018-02-01

    A successful colonization of specific hosts requires a rapid and efficient adaptation of the virulence-relevant gene expression program by bacterial pathogens. An important element in this endeavor is the Csr/Rsm system. This multi-component, post-transcriptional control system forms a central hub within complex regulatory networks and coordinately adjusts virulence properties with metabolic and physiological attributes of the pathogen. A key function is elicited by the RNA-binding protein CsrA/RsmA. CsrA/RsmA interacts with numerous target mRNAs, many of which encode crucial virulence factors, and alters their translation, stability or elongation of transcription. Recent studies highlighted that important colonization factors, toxins, and bacterial secretion systems are under CsrA/RsmA control. CsrA/RsmA deficiency impairs host colonization and attenuates virulence, making this post-transcriptional regulator a suitable drug target. The CsrA/RsmA protein can be inactivated through sequestration by non-coding RNAs, or via binding to specific highly abundant mRNAs and interacting proteins. The wide range of interaction partners and RNA targets, as well as the overarching, interlinked genetic control circuits illustrate the complexity of this regulatory system in the different pathogens. Future work addressing spatio-temporal changes of Csr/Rsm-mediated control during the course of an infection will help us to understand how bacteria reprogram their expression profile to cope with continuous changes experienced in colonized niches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effects of replacing fish meal with rubber seed meal on growth, nutrient utilization, and cholesterol metabolism of tilapia (Oreochromis niloticus × O. aureus).

    PubMed

    Deng, Junming; Wang, Kun; Mai, Kangsen; Chen, Liqiao; Zhang, Lu; Mi, Haifeng

    2017-08-01

    A feeding trial was conducted to evaluate the effects of replacing fish meal with rubber seed meal (RSM) on growth, nutrient utilization, and cholesterol metabolism of tilapia (Oreochromis niloticus × Oreochromis aureus). Five experimental diets were formulated with 0, 150, 300, 450, and 600 g kg -1 RSM replacing graded levels of fish meal, respectively. Each diet was randomly assigned to triplicate groups of 25 fish (initial average weight 65.3 g) per aquarium in a rearing system maintained at 29 ± 1 °C for 8 weeks. Dietary 150 g kg -1 RSM inclusion did not affect the weight gain and daily growth coefficient, whereas these were depressed by a further inclusion. Additionally, feed efficiency ratio and protein efficiency ratio were not affected by dietary RSM inclusion regardless of inclusion level. However, the inclusion of 450 and 600 g kg -1 RSM decreased the mid-intestinal trypsin, lipase, and amylase activities; the hepatic acyl-CoA/cholesterol acyl transferase; low-density lipoprotein receptor; and 3-hydroxy-3-methyl-glutaryl-CoA reductase activities. Similarly, dietary 600 g kg -1 RSM inclusion inhibited the plasma catalase and hepatic glutathione peroxidase activities. These results indicated that 150 g kg -1 RSM can be included in tilapia diets, whereas higher inclusion of RSM inhibited the growth rate, digestive enzyme activity, antioxidant capacity, and cholesterol metabolism.

  6. Avocado Seeds: Extraction Optimization and Possible Use as Antioxidant in Food

    PubMed Central

    Gómez, Francisco Segovia; Sánchez, Sara Peiró; Gallego Iradi, Maria Gabriela; Mohd Azman, Nurul Aini; Almajano, María Pilar

    2014-01-01

    Consumption of avocado (Persea americana Mill) has increased worldwide in recent years. Part of this food (skin and seed) is lost during processing. However, a high proportion of bioactive substances, such as polyphenols, remain in this residue. The primary objective of this study was to model the extraction of polyphenols from the avocado pits. In addition, a further objective was to use the extract obtained to evaluate the protective power against oxidation in food systems, as for instance oil in water emulsions and meat products. Moreover, the possible synergy between the extracts and egg albumin in the emulsions is discussed. In Response Surface Method (RSM), the variables used are: temperature, time and ethanol concentration. The results are the total polyphenols content (TPC) and the antiradical power measured by Oxygen Radical Antioxidant Capacity (ORAC). In emulsions, the primary oxidation, by Peroxide Value and in fat meat the secondary oxidation, by TBARS (Thiobarbituric acid reactive substances), were analyzed. The RSM model has an R2 of 94.69 for TPC and 96.7 for ORAC. In emulsions, the inhibition of the oxidation is about 30% for pure extracts and 60% for the combination of extracts with egg albumin. In the meat burger oxidation, the formation of TBARS is avoided by 90%. PMID:26784880

  7. Buparvaquone Nanostructured Lipid Carrier: Development of an Affordable Delivery System for the Treatment of Leishmaniases

    PubMed Central

    Löbenberg, Raimar; Cotrim, Paulo Cesar

    2017-01-01

    Buparvaquone (BPQ), a veterinary drug, was formulated as nanostructured lipid carriers (NLC) for leishmaniases treatment. The formulation design addressed poor water solubility of BPQ and lack of human drug delivery system. The DSC/TG and microscopy methods were used for solid lipids screening. Softisan® 154 showed highest BPQ solubility in both methods. The BPQ solubility in liquid lipids using HPLC revealed Miglyol® 812 as the best option. Response surface methodology (RSM) was used to identify the optimal Softisan154 : Miglyol 812 ratios (7 : 10 to 2 : 1) and Kolliphor® P188 and Tween® 80 concentration (>3.0% w/w) aiming for z-average in the range of 100–300 nm for macrophage delivery. The NLC obtained by high-pressure homogenization showed low z-averages (<350 nm), polydispersity (<0.3), and encapsulation efficiency close to 100%. DSC/TG and microscopy in combination proved to be a powerful tool to select the solid lipid. The relationship among the variables, demonstrated by a linear mathematical model using RSM, allowed generating a design space. This design space showed the limits in which changes in the variables influenced the z-average. Therefore, these drug delivery systems have the potential to improve the availability of affordable medicines due to the low cost of raw materials, using well established, reliable, and feasible scale-up technology. PMID:28255558

  8. Ultrasound-assisted extraction of azadirachtin from dried entire fruits of Azadirachta indica A. Juss. (Meliaceae) and its determination by a validated HPLC-PDA method.

    PubMed

    de Paula, Joelma Abadia Marciano; Brito, Lucas Ferreira; Caetano, Karen Lorena Ferreira Neves; de Morais Rodrigues, Mariana Cristina; Borges, Leonardo Luiz; da Conceição, Edemilson Cardoso

    2016-01-01

    Azadirachta indica A. Juss., also known as neem, is a Meliaceae family tree from India. It is globally known for the insecticidal properties of its limonoid tetranortriterpenoid derivatives, such as azadirachtin. This work aimed to optimize the azadirachtin ultrasound-assisted extraction (UAE) and validate the HPLC-PDA analytical method for the measurement of this marker in neem dried fruit extracts. Box-Behnken design and response surface methodology (RSM) were used to investigate the effect of process variables on the UAE. Three independent variables, including ethanol concentration (%, w/w), temperature (°C), and material-to-solvent ratio (gmL(-1)), were studied. The azadirachtin content (µgmL(-1)), i.e., dependent variable, was quantified by the HPLC-PDA analytical method. Isocratic reversed-phase chromatography was performed using acetonitrile/water (40:60), a flow of 1.0mLmin(-1), detection at 214nm, and C18 column (250×4.6mm(2), 5µm). The primary validation parameters were determined according to ICH guidelines and Brazilian legislation. The results demonstrated that the optimal UAE condition was obtained with ethanol concentration range of 75-80% (w/w), temperature of 30°C, and material-to-solvent ratio of 0.55gmL(-1). The HPLC-PDA analytical method proved to be simple, selective, linear, precise, accurate and robust. The experimental values of azadirachtin content under optimal UAE conditions were in good agreement with the RSM predicted values and were superior to the azadirachtin content of percolated extract. Such findings suggest that UAE is a more efficient extractive process in addition to being simple, fast, and inexpensive. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Solvent selection and optimization of α-chymotrypsin-catalyzed synthesis of N-Ac-Phe-Tyr-NH2 using mixture design and response surface methodology.

    PubMed

    Hu, Shih-Hao; Kuo, Chia-Hung; Chang, Chieh-Ming J; Liu, Yung-Chuan; Chiang, Wen-Dee; Shieh, Chwen-Jen

    2012-01-01

    A peptide, N-Ac-Phe-Tyr-NH(2) , with angiotensin I-converting enzyme (ACE) inhibitor activity was synthesized by an α-chymotrypsin-catalyzed condensation reaction of N-acetyl phenylalanine ethyl ester (N-Ac-Phe-OEt) and tyrosinamide (Tyr-NH(2) ). Three kinds of solvents: a Tris-HCl buffer (80 mM, pH 9.0), dimethylsulfoxide (DMSO), and acetonitrile were employed in this study. The optimum reaction solvent component was determined by simplex centroid mixture design. The synthesis efficiency was enhanced in an organic-aqueous solvent (Tris-HCl buffer: DMSO: acetonitrile = 2:1:1) in which 73.55% of the yield of N-Ac-Phe-Tyr-NH(2) could be achieved. Furthermore, the effect of reaction parameters on the yield was evaluated by response surface methodology (RSM) using a central composite rotatable design (CCRD). Based on a ridge max analysis, the optimum condition for this peptide synthesis included a reaction time of 7.4 min, a reaction temperature of 28.1°C, an enzyme activity of 98.9 U, and a substrate molar ratio (Phe:Tyr) of 1:2.8. The predicted and the actual (experimental) yields were 87.6 and 85.5%, respectively. The experimental design and RSM performed well in the optimization of synthesis of N-Ac-Phe-Tyr-NH(2) , so it is expected to be an effective method for obtaining a good yield of enzymatic peptide. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  10. Repetitive and stereotyped movements in children with autism spectrum disorders late in the second year of life.

    PubMed

    Morgan, Lindee; Wetherby, Amy M; Barber, Angie

    2008-08-01

    The purpose of this study was to examine group differences and relationships with later developmental level and autism symptoms using a new clinical tool developed to measure repetitive and stereotyped movements (RSM) in young children. Videotaped behavior samples using the Communication and Symbolic Behavior Scales Developmental Profile (CSBS; Wetherby & Prizant, 2002) were coded for children with autism spectrum disorders (ASD; n = 50), developmental delays without ASD (DD; n = 25), and typical development (TD; n = 50) between 18 and 24 months of age. Children with ASD demonstrated significantly higher rate and larger inventory of RSM with objects and body during a systematic behavior sample than both the DD and TD groups. Measures of RSM were related to concurrent measures of social communication and predicted developmental outcomes and autism symptoms in the fourth year for the ASD group. None of the correlations between RSM and autism symptoms remained significant when controlling for CSBS Symbolic level. RSM with objects predicted unique variance in the severity of autism symptoms in the fourth year beyond that predicted by social communication measures alone. This study provides support for the diagnostic significance of RSM in children under 24 months of age and documents the utility of this RSM measurement tool as a companion to the CSBS.

  11. Microwave alkaline roasting-water dissolving process for germanium extraction from zinc oxide dust and its analysis by response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Wang, Wankun; Wang, Fuchun; Lu, Fanghai

    2017-12-01

    Microwave alkaline roasting-water dissolving process was proposed to improve the germanium (Ge) extraction from zinc oxide (ZnO) dust. The effects of important parameters were investigated and the process conditions were optimized using response surface methodology (RSM). The Ge extraction is consistent with the linear polynomial model type. Alkali-material ratio, microwave heating temperature and leaching temperature are the significant factors for this process. The optimized conditions are obtained as follows, alkali-material ratio of 0.9 kg/kg, aging time of 1.12 day, microwave heating at 658 K for 10 min, liquid-solid ratio of 4.31 L/kg, leaching temperature at 330 K, leaching time of 47 min with the Ge extraction about 99.38%. It is in consistence with the predictive value of 99.31%. Compared to the existed alkaline roasting process heated by electric furnace in literature, the alkaline roasting temperature and holding time. It shows a good prospect on leaching Ge from ZnO dust with microwave alkaline roasting-water dissolving process.

  12. Kinetic and isotherm analyses for thorium (IV) adsorptive removal from aqueous solutions by modified magnetite nanoparticle using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Karimi, Mohammad; Milani, Saeid Alamdar; Abolgashemi, Hossein

    2016-10-01

    In this study, the ability and the adsorption capacity of magnetite/aminopropyltriethoxysilane/glutaraldehyde (Fe3O4/APTES/GA) adsorbent were evaluated for the adsorption of thorium (IV) ions from aqueous solutions. The influence of the several variables such as pH (1-5), Th (IV) initial concentration (50-300 mg L-1) and adsorbent concentration (1-5 g L-1) on the Th (IV) adsorption were investigated by response surface methodology (RSM). The results showed that the highest absorption capacity (q) was 107.23 mg g-1 with respect to pH = 4.5, initial concentration of 250 mg L-1 and adsorbent concentration of 1 g L-1 for 90 min. Modeling equilibrium sorption data with the Langmuir, Freundlich and Dubinin-Radushkevich models pointed out that the results were in good agreement with Langmuir model. The experimental kinetic data were well fitted to pseudo-second-order equation with R2 = 0.9739. Also thermodynamic parameters (ΔGo, ΔHo, ΔSo) declared that the Th (IV) adsorption was endothermic and spontaneous.

  13. Application of response surface methodology (RSM) for optimizing coagulation process of paper recycling wastewater using Ocimum basilicum.

    PubMed

    Mosaddeghi, Mohammad Reza; Pajoum Shariati, Farshid; Vaziri Yazdi, Seyed Ali; Nabi Bidhendi, Gholamreza

    2018-06-21

    The wastewater produced in a pulp and paper industry is one of the most polluted industrial wastewaters, and therefore its treatment requires complex processes. One of the simple and feasible processes in pulp and paper wastewater treatment is coagulation and flocculation. Overusing a chemical coagulant can produce a large volume of sludge and increase costs and health concerns. Therefore, the use of natural and plant-based coagulants has been recently attracted the attention of researchers. One of the advantages of using Ocimum basilicum as a coagulant is a reduction in the amount of chemical coagulant required. In this study, the effect of basil mucilage has been investigated as a plant-based coagulant together with alum for treatment of paper recycling wastewater. Response surface methodology (RSM) was used to optimize the process of chemical coagulation based on a central composite rotatable design (CCRD). Quadratic models for colour reduction and TSS removal with coefficients of determination of R 2 >96 were obtained using the analysis of variance. Under optimal conditions, removal efficiencies of colour and total suspended solids (TSS) were 85% and 82%, respectively.

  14. Application of response surface methodology for optimization of parameters for microwave heating of rare earth carbonates

    NASA Astrophysics Data System (ADS)

    Yin, Shaohua; Lin, Guo; Li, Shiwei; Peng, Jinhui; Zhang, Libo

    2016-09-01

    Microwave heating has been applied in the field of drying rare earth carbonates to improve drying efficiency and reduce energy consumption. The effects of power density, material thickness and drying time on the weight reduction (WR) are studied using response surface methodology (RSM). The results show that RSM is feasible to describe the relationship between the independent variables and weight reduction. Based on the analysis of variance (ANOVA), the model is in accordance with the experimental data. The optimum experiment conditions are power density 6 w/g, material thickness 15 mm and drying time 15 min, resulting in an experimental weight reduction of 73%. Comparative experiments show that microwave drying has the advantages of rapid dehydration and energy conservation. Particle analysis shows that the size distribution of rare earth carbonates after microwave drying is more even than those in an oven. Based on these findings, microwave heating technology has an important meaning to energy-saving and improvement of production efficiency for rare earth smelting enterprises and is a green heating process.

  15. Color removal from distillery spent wash through coagulation using Moringa oleifera seeds: use of optimum response surface methodology.

    PubMed

    Prasad, R Krishna

    2009-06-15

    The effects of dosage, pH and concentration of salts were investigated for an optimized condition of color removal from the distillery spent wash. The optimization process was analyzed using custom response surface methodology (RSM). The design was employed to derive a statistical model for the effect of parameters studied on removal of color using Moringa oleifera coagulant (MOC). The dosage (20 and 60 ml), pH (7 and 8.5) and concentration of 0.25 M had been found to be the optimum conditions for maximum 56% and 67% color removal using sodium chloride (NaCl) and potassium chloride (KCl) salts respectively. The actual color removal at optimal conditions was found to be 53% and 64% respectively for NaCl and KCl salts which confirms close to RSM results. The effects of storage duration and temperature on MOC studied reveal that coagulation efficiency of MOC kept at room temperature was effective for 3 days and at 4 degrees C it performed coagulation up to 5 days.

  16. Application of Response Surface Methodology on Leaching of Iron from Partially Laterised Khondalite Rocks: A Bauxite Mining Waste

    NASA Astrophysics Data System (ADS)

    Swain, Ranjita; Bhima Rao, R.

    2018-04-01

    In the present investigation, response surface methodology (RSM) is used for a quadratic model that continuously controls the process parameters. This model is used to optimize the removal of iron oxide from Partially Laterised Khondalite (PLK) rocks which is influenced by several independent variables namely acid concentration, time and temperature. Second order response functions are produced for leaching of iron oxide from PLK rocks-a bauxite mining waste. In RSM, Box-Behnken design is used for the process optimization to achieve maximum removal of iron oxide. The influence of the process variables of leaching of iron oxide is presented in the form of 3-D response graphs. The results of this investigation reveals that 3 M hydrochloric acid concentration, 240 min time and 373 K temperature are found to be the best conditions for removal of 99% Fe2O3. The product obtain at this condition contain 80% brightness which is suitable for ceramic and filler industry applications. The novelity of the work is that the waste can be a value added product after suitable physical beneficiation and chemical treatment.

  17. Extraction of triterpenoids and phenolic compounds from Ganoderma lucidum: optimization study using the response surface methodology.

    PubMed

    Oludemi, Taofiq; Barros, Lillian; Prieto, M A; Heleno, Sandrina A; Barreiro, Maria F; Ferreira, Isabel C F R

    2018-01-24

    The extraction of triterpenoids and phenolic compounds from Ganoderma lucidum was optimized by using the response surface methodology (RSM), using heat and ultrasound assisted extraction techniques (HAE and UAE). The obtained results were compared with that of the standard Soxhlet procedure. RSM was applied using a circumscribed central composite design with three variables (time, ethanol content, and temperature or ultrasonic power) and five levels. The conditions that maximize the responses (extraction yield, triterpenoids and total phenolics) were: 78.9 min, 90.0 °C and 62.5% ethanol and 40 min, 100.0 W and 89.5% ethanol for HAE and UAE, respectively. The latter was the most effective, resulting in an extraction yield of 4.9 ± 0.6% comprising a content of 435.6 ± 21.1 mg g -1 of triterpenes and 106.6 ± 16.2 mg g -1 of total phenolics. The optimized extracts were fully characterized in terms of individual phenolic compounds and triterpenoids by HPLC-DAD-ESI/MS. The recovery of the above-mentioned bioactive compounds was markedly enhanced using the UAE technique.

  18. Modeling and optimization of anaerobic codigestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm.

    PubMed

    Jacob, Samuel; Banerjee, Rintu

    2016-08-01

    A novel approach to overcome the acidification problem has been attempted in the present study by codigesting industrial potato waste (PW) with Pistia stratiotes (PS, an aquatic weed). The effectiveness of codigestion of the weed and PW was tested in an equal (1:1) proportion by weight with substrate concentration of 5g total solid (TS)/L (2.5gPW+2.5gPS) which resulted in enhancement of methane yield by 76.45% as compared to monodigestion of PW with a positive synergistic effect. Optimization of process parameters was conducted using central composite design (CCD) based response surface methodology (RSM) and artificial neural network (ANN) coupled genetic algorithm (GA) model. Upon comparison of these two optimization techniques, ANN-GA model obtained through feed forward back propagation methodology was found to be efficient and yielded 447.4±21.43LCH4/kgVSfed (0.279gCH4/kgCODvs) which is 6% higher as compared to the CCD-RSM based approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Response surface methodological approach for the decolorization of simulated dye effluent using Aspergillus fumigatus fresenius.

    PubMed

    Sharma, Praveen; Singh, Lakhvinder; Dilbaghi, Neeraj

    2009-01-30

    The aim of our research was to study, effect of temperature, pH and initial dye concentration on decolorization of diazo dye Acid Red 151 (AR 151) from simulated dye solution using a fungal isolate Aspergillus fumigatus fresenius have been investigated. The central composite design matrix and response surface methodology (RSM) have been applied to design the experiments to evaluate the interactive effects of three most important operating variables: temperature (25-35 degrees C), pH (4.0-7.0), and initial dye concentration (100-200 mg/L) on the biodegradation of AR 151. The total 20 experiments were conducted in the present study towards the construction of a quadratic model. Very high regression coefficient between the variables and the response (R(2)=0.9934) indicated excellent evaluation of experimental data by second-order polynomial regression model. The RSM indicated that initial dye concentration of 150 mg/L, pH 5.5 and a temperature of 30 degrees C were optimal for maximum % decolorization of AR 151 in simulated dye solution, and 84.8% decolorization of AR 151 was observed at optimum growth conditions.

  20. The use of response surface methodology in the evaluation of captopril microparticles manufactured using an oil in oil solvent evaporation technique.

    PubMed

    Khamanga, Sandile Maswazi; Walker, Roderick B

    2012-01-01

    Captopril (CPT) microparticles were manufactured by solvent evaporation using acetone (dispersion phase) and liquid paraffin (manufacturing phase) with Eudragit® and Methocel® as coat materials. Design of experiments and response surface methodology (RSM) approaches were used to optimize the process. The microparticles were characterized based on the percent of drug released and yield, microcapsule size, entrapment efficiency and Hausner ratio. Differential scanning calorimetry (DSC), Infrared (IR) spectroscopy, scanning electron microscopy (SEM) and in vitro dissolution studies were conducted. The microcapsules were spherical, free-flowing and IR and DSC thermograms revealed that CPT was stable. The percent drug released was investigated with respect to Eudragit® RS and Methocel® K100M, Methocel® K15M concentrations and homogenizing speed. The optimal conditions for microencapsulation were 1.12 g Eudragit® RS, 0.67 g Methocel® K100M and 0.39 g Methocel® K15M at a homogenizing speed of 1643 rpm and 89% CPT was released. The value of RSM-mediated microencapsulation of CPT was elucidated.

  1. Optimization of Submerged Fermentation Medium for Matrine Production by Aspergillus terreus, an Endophytic Fungus Harboring Seeds of Sophora flavescens, Using Response Surface Methodology

    PubMed Central

    Zhang, Qiang; Li, Yujuan; Xu, Fangxue; Zheng, Mengmeng; Xi, Xiaozhi

    2017-01-01

    Different endophytes isolated from the seeds of Sophora flavescens were tested for their ability to produce matrine production. Response surface methodology (RSM) was applied to optimize the medium components for the endophytic fungus. Results indicated that endophyte Aspergillus terreus had the ability to produce matrine. The single factor tests demonstrated that potato starch was the best carbon source and the combination of peptone and NH4NO3 was the optimal nitrogen source for A. terreus. The model of RSM predicted to gain the maximal matrine production at 20.67 µg/L, when the potato starch was 160.68 g/L, peptone was 24.96 g/L and NH4NO3 was 2.11 g/L. When cultured in the optimal medium, the matrine yield was an average of 20.63 ± 0.11 µg/L, which was consistent with the model prediction. This study offered an alternative source for the matrine production by endophytic fungus fermentation and may have far-reaching prospect and value. PMID:28781541

  2. Morphological comparison of Astropecten cingulatus and a new species of Astropecten (Paxillosida, Astropectinidae) from the Gulf of Mexico.

    PubMed

    Lawrence, John M; Cobb, Janessa C; Herrera, Joan C; DurÁn-gonzÁlez, Alicia; SolÍs-marÍn, Francisco Alonso

    2018-04-09

    Astropecten cingulatus is a conspicuous species, which displays a large superomarginal plate series on the abactinal surface. Herein we describe a new species from off the Texas coast that shows the superficial appearance of A. cingulatus, including these large superomarginal plates, but with armature differing from that of typological A. cingulatus. This species shows the actinal surface of the inferomarginal plates without the squamules present on A. cingulatus. In addition, the adambulacral plates possessed but a single central large spine surrounded by a circle of spines rather than spine rows. The abactinal paxillar region was also very narrow. Statistical analysis of these and other morphological characters showed the specimens differed significantly from those of A. cingulatus. The regression of the slope of R:SM# vs. R was significant but the intercept was not. Therefore the two species are indistinguishable at small sizes based on R:SM. Compared to known Atlantic Astropecten spp. these observed characters warrant the description of a new species, Astropecten karankawai, for the specimens from off the coasts of Texas and Mexico.

  3. Optimization of Enzymatic Saccharification of Alkali Pretreated Parthenium sp. Using Response Surface Methodology

    PubMed Central

    Pandiyan, K.; Tiwari, Rameshwar; Singh, Surender; Nain, Pawan K. S.; Rana, Sarika; Arora, Anju; Singh, Shashi B.; Nain, Lata

    2014-01-01

    Parthenium sp. is a noxious weed which threatens the environment and biodiversity due to its rapid invasion. This lignocellulosic weed was investigated for its potential in biofuel production by subjecting it to mild alkali pretreatment followed by enzymatic saccharification which resulted in significant amount of fermentable sugar yield (76.6%). Optimization of enzymatic hydrolysis variables such as temperature, pH, enzyme, and substrate loading was carried out using central composite design (CCD) in response to surface methodology (RSM) to achieve the maximum saccharification yield. Data obtained from RSM was validated using ANOVA. After the optimization process, a model was proposed with predicted value of 80.08% saccharification yield under optimum conditions which was confirmed by the experimental value of 85.80%. This illustrated a good agreement between predicted and experimental response (saccharification yield). The saccharification yield was enhanced by enzyme loading and reduced by temperature and substrate loading. This study reveals that under optimized condition, sugar yield was significantly increased which was higher than earlier reports and promises the use of Parthenium sp. biomass as a feedstock for bioethanol production. PMID:24900917

  4. Optimization of Submerged Fermentation Medium for Matrine Production by Aspergillus terreus, an Endophytic Fungus Harboring Seeds of Sophora flavescens, Using Response Surface Methodology.

    PubMed

    Zhang, Qiang; Li, Yujuan; Xu, Fangxue; Zheng, Mengmeng; Xi, Xiaozhi; Zhang, Xuelan; Han, Chunchao

    2017-06-01

    Different endophytes isolated from the seeds of Sophora flavescens were tested for their ability to produce matrine production. Response surface methodology (RSM) was applied to optimize the medium components for the endophytic fungus. Results indicated that endophyte Aspergillus terreus had the ability to produce matrine. The single factor tests demonstrated that potato starch was the best carbon source and the combination of peptone and NH 4 NO 3 was the optimal nitrogen source for A. terreus . The model of RSM predicted to gain the maximal matrine production at 20.67 µg/L, when the potato starch was 160.68 g/L, peptone was 24.96 g/L and NH 4 NO 3 was 2.11 g/L. When cultured in the optimal medium, the matrine yield was an average of 20.63 ± 0.11 µg/L, which was consistent with the model prediction. This study offered an alternative source for the matrine production by endophytic fungus fermentation and may have far-reaching prospect and value.

  5. An effective vacuum assisted extraction method for the optimization of labdane diterpenoids from Andrographis paniculata by response surface methodology.

    PubMed

    Wang, Ya-Qi; Wu, Zhen-Feng; Ke, Gang; Yang, Ming

    2014-12-31

    An effective vacuum assisted extraction (VAE) technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM). Under the optimized experimental conditions, the best results were obtained using a boiling temperature of 65 °C, 50% ethanol concentration, 16 min of extraction time, one extraction cycles and a 12:1 liquid-solid ratio. Compared with conventional ultrasonic assisted extraction and heat reflux extraction, the VAE technique gave shorter extraction times and remarkable higher extraction efficiency, which indicated that a certain degree of vacuum gave the solvent a better penetration of the solvent into the pores and between the matrix particles, and enhanced the process of mass transfer. The present results demonstrated that VAE is an efficient, simple and fast method for extracting bioactive components from A. paniculata, which shows great potential for becoming an alternative technique for industrial scale-up applications.

  6. Shape Optimization of Supersonic Turbines Using Response Surface and Neural Network Methods

    NASA Technical Reports Server (NTRS)

    Papila, Nilay; Shyy, Wei; Griffin, Lisa W.; Dorney, Daniel J.

    2001-01-01

    Turbine performance directly affects engine specific impulse, thrust-to-weight ratio, and cost in a rocket propulsion system. A global optimization framework combining the radial basis neural network (RBNN) and the polynomial-based response surface method (RSM) is constructed for shape optimization of a supersonic turbine. Based on the optimized preliminary design, shape optimization is performed for the first vane and blade of a 2-stage supersonic turbine, involving O(10) design variables. The design of experiment approach is adopted to reduce the data size needed by the optimization task. It is demonstrated that a major merit of the global optimization approach is that it enables one to adaptively revise the design space to perform multiple optimization cycles. This benefit is realized when an optimal design approaches the boundary of a pre-defined design space. Furthermore, by inspecting the influence of each design variable, one can also gain insight into the existence of multiple design choices and select the optimum design based on other factors such as stress and materials considerations.

  7. Statistical optimization of medium components for the production of Antrodia cinnamomea AC0623 in submerged cultures.

    PubMed

    Chang, Chien-Yu; Lee, Chun-Lin; Pan, Tzu-Ming

    2006-10-01

    The nutritional medium requirement for biomass and triterpenoid production by Antrodia cinnamomea AC0623 strain was optimized. Box-Behnken was applied to optimize biomass and triterpenoid production. According to response surface methodology (RSM), the optimum concentrations of N-source were determined. The results indicate that when a submerged culture in shake flasks was operated at 28 degrees C, initial pH 5.5, and rotation speed 105 rpm, the biomass and triterpenoid content in dry basis could be increased to 3.20% (w/w) and 31.8 mg/g, respectively. The experiments were further scaled up to 100- and 700-l fermentors. Higher content of triterpenoids (63.0 mg/g) was obtained in 700-l fermentations by means of the control of cultural conditions and the modification of medium composition based on the RSM.

  8. A simple and cost-saving approach to optimize the production of subtilisin NAT by submerged cultivation of Bacillus subtilis natto.

    PubMed

    Ku, Ting-Wei; Tsai, Ruei-Lan; Pan, Tzu-Ming

    2009-01-14

    Subtilisin NAT, formerly designated nattokinase or subtilisin BSP, is a potent cardiovascular drug because of its strong fibrinolytic activity and safety. In this study, one Bacillus subtilis natto strain with high fibrinolytic activity was isolated. We further studied the optimal conditions for subtilisin NAT production by submerged cultivation and three variables/three levels of response surface methodology (RSM) using various inoculum densities, glucose concentrations, and defatted soybean concentrations as the three variables. According to the RSM analysis, while culturing by 2.93% defatted soybean, 1.75% glucose, and 4.00% inoculum density, we obtained an activity of 13.78 SU/mL. Processing the batch fermentation with this optimal condition, the activity reached 13.69 SU/mL, which is equal to 99.3% of the predicted value.

  9. Assessment of protein quality of soybean meal and 00-rapeseed meal toasted in the presence of lignosulfonate by amino acid digestibility in growing pigs and Maillard reaction products.

    PubMed

    Hulshof, T G; Bikker, P; van der Poel, A F B; Hendriks, W H

    2016-03-01

    An experiment was conducted to determine protein quality in processed protein sources using the content of AA, -methylisourea (OMIU)-reactive Lys, Maillard reaction products (MRP), and cross-link products; the standardized ileal digestibility (SID) of CP and AA; and growth performance in growing pigs as criteria. Differences in protein quality were created by secondary toasting (at 95°C for 30 min) of soybean meal (SBM) and rapeseed meal (RSM) in the presence of lignosulfonate resulting in processed SBM (pSBM) and processed RSM (pRSM). The processing treatment was used as a model for overprocessed protein sources. Ten growing pigs were each fed 1 of the 4 diets containing SBM, pSBM, RSM, or pRSM in each of 3 periods. Ileal chyme was collected at the end of each period and analyzed for CP, AA, and OMIU-reactive Lys. Diets were analyzed for furosine and carboxymethyllysine (CML) as an indicator for MRP and lysinoalanine (LAL), which is a cross-link product. The SBM and RSM diets contained furosine, CML, and LAL, indicating that the Maillard reaction and cross-linking had taken place in SBM and RSM, presumably during the oil extraction/desolventizing process. The amounts of furosine, CML, and LAL were elevated in pSBM and pRSM due to further processing. Processing resulted in a reduction in total and OMIU-reactive Lys contents and a decrease in G:F from 0.52 to 0.42 for SBM and 0.46 to 0.39 for RSM ( = 0.006), SID of CP from 83.9 to 71.6% for SBM and 74.9 to 64.6% for RSM ( < 0.001), and SID of AA ( < 0.001), with the largest effects for total and OMIU-reactive Lys. The effects of processing could be substantial and should be taken into account when using processed protein sources in diets for growing pigs. The extent of protein damage may be assessed by additional analyses of MRP and cross-link products.

  10. Roles of the Gac-Rsm pathway in the regulation of phenazine biosynthesis in Pseudomonas chlororaphis 30-84

    PubMed Central

    Wang, Dongping; Lee, Sung-Hee; Seeve, Candace; Yu, Jun Myoung; Pierson, Leland S; Pierson, Elizabeth A

    2013-01-01

    The GacS/GacA two-component regulatory system activates the production of secondary metabolites including phenazines crucial for biological control activity in Pseudomonas chlororaphis 30-84. To better understand the role of the Gac system on phenazine regulation, transcriptomic analyses were conducted by comparing the wild-type strain to a gacA mutant. RNA-seq analysis identified 771 genes under GacA control, including many novel genes. Consistent with previous findings, phenazine biosynthetic genes were significantly downregulated in a gacA mutant. The transcript abundances of phenazine regulatory genes such as phzI, phzR, iopA, iopB, rpoS, and pip also were reduced. Moreover, the transcript abundance of three noncoding RNAs (ncRNAs) including rsmX, rsmY, and rsmZ was significantly decreased by gacA mutation consistent with the presence of consensus GacA-binding sites associated with their promoters. Our results also demonstrated that constitutive expression of rsmZ from a non-gac regulated promoter resulted in complete restoration of N-acyl-homoserine lactone (AHL) and phenazine production as well as the expression of other gac-dependent secondary metabolites in gac mutants. The role of RsmA and RsmE in phenazine production also was investigated. Overexpression of rsmE, but not rsmA, resulted in decreased AHL and phenazine production in P. chlororaphis, and only a mutation in rsmE bypassed the requirement for GacA in phenazine gene expression. In contrast, constitutive expression of the phzI/phzR quorum sensing system did not rescue phenazine production in the gacA mutant, indicating the direct posttranscriptional control by Gac on the phenazine biosynthetic genes. On the basis of these results, we propose a model to illustrate the hierarchic role of phenazine regulators modulated by Gac in the control of phenazine production. The transcriptomic analysis also was used to identify additional genes regulated by GacA that may contribute to the biological control capability of strain 30-84. PMID:23606419

  11. Measurement of Unsteady Pressure Data on a Large HSCT Semispan Wing and Comparison with Analysis

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Silva, Walter A.; Florance, James R.; Keller, Donald F.

    2002-01-01

    Experimental data from wind-tunnel tests of the Rigid Semispan Model (RSM) performed at NASA Langley's Transonic Dynamics Tunnel (TDT) are presented. The primary focus of the paper is on data obtained from testing of the RSM on the Oscillating Turntable (OTT). The OTT is capable of oscillating models in pitch at various amplitudes and frequencies about mean angles of attack. Steady and unsteady pressure data obtained during testing of the RSM on the OTT is presented and compared to data obtained from previous tests of the RSM on a load balance and on a Pitch and Plunge Apparatus (PAPA). Testing of the RSM on the PAPA resulted in utter boundaries that were strongly dependent on angle of attack across the Mach number range. Pressure data from all three tests indicates the existence of vortical flows at moderate angles of attack. The correlation between the vortical flows and the unusual utter boundaries from the RSM/PAPA test is discussed. Comparisons of experimental data with analyses using the CFL3Dv6 computational fluid dynamics code are presented.

  12. Reinforcing Spirals Model: Conceptualizing the Relationship Between Media Content Exposure and the Development and Maintenance of Attitudes

    PubMed Central

    Slater, Michael D.

    2014-01-01

    The Reinforcing Spirals Model (RSM, Citation Withheld) has two primary purposes. First, the RSM provides a general framework for conceptualizing media use as part of a dynamic, endogenous process combining selective exposure and media effects that may be drawn on by theorists concerned with a variety of social processes and effects. Second, the RSM utilizes a systems-theory perspective to describe how patterns of mediated and interpersonal communication contribute to the development and maintenance of social identities and ideology as well as more transient attitudes and related behaviors, and how those outcomes may influence subsequent media use. The RSM suggests contingencies that may lead to homeostasis or encourage certain individuals or groups to extreme polarization of such attitudes. In addition, the RSM proposes social cognitive mechanisms that may be responsible for attitude maintenance and reinforcement. This article discusses empirical progress in testing the model, addresses misconceptions that have arisen, and provides elaborated illustrations of the model. The article also identifies potentially fruitful directions for further conceptual development and empirical testing of the RSM. PMID:26366124

  13. Evaluation of a solid matrix for collection and ambient storage of RNA from whole blood

    PubMed Central

    2014-01-01

    Background Whole blood gene expression-based molecular diagnostic tests are becoming increasingly available. Conventional tube-based methods for obtaining RNA from whole blood can be limited by phlebotomy, volume requirements, and RNA stability during transport and storage. A dried blood spot matrix for collecting high-quality RNA, called RNA Stabilizing Matrix (RSM), was evaluated against PAXgene® blood collection tubes. Methods Whole blood was collected from 25 individuals and subjected to 3 sample storage conditions: 18 hours at either room temperature (baseline arm) or 37°C, and 6 days at room temperature. RNA was extracted and assessed for integrity by Agilent Bioanalyzer, and gene expression was compared by RT-qPCR across 23 mRNAs comprising a clinical test for obstructive coronary artery disease. Results RSM produced RNA of relatively high integrity across the various tested conditions (mean RIN ± 95% CI: baseline arm, 6.92 ± 0.24; 37°C arm, 5.98 ± 0.48; 6-day arm, 6.72 ± 0.23). PAXgene samples showed comparable RNA integrity in both baseline and 37°C arms (8.42 ± 0.17; 7.92 ± 0.1 respectively) however significant degradation was observed in the 6-day arm (3.19 ± 1.32). Gene expression scores on RSM were highly correlated between the baseline and 37°C and 6-day study arms (median r = 0.96, 0.95 respectively), as was the correlation to PAXgene tubes (median r = 0.95, p < 0.001). Conclusion RNA obtained from RSM shows little degradation and comparable RT-qPCR performance to PAXgene RNA for the 23 genes analyzed. Further development of this technology may provide a convenient method for collecting, shipping, and storing RNA for gene expression assays. PMID:24855452

  14. Direct conversion from Jerusalem artichoke to hydroxymethylfurfural (HMF) using the Fenton reaction.

    PubMed

    Seo, Yeong Hwan; Han, Jong-In

    2014-05-15

    A simple method for hydroxymethylfurfural (HMF) production from non-crop biomass of the Jerusalem artichoke was developed using the Fenton reaction, in a mixture of 2-butanol and water. Four parameters (temperature, reaction time, Fe(2+) concentration, and H2O2 concentration) were identified as experimental factors, and HMF yield was selected as the response parameter. The experimental factors were optimised by employing Response Surface Methodology (RSM). The maximum HMF yield, of 46%, was obtained with a reaction time of 90 min, Fe(2+) concentration of 1.3 mM, and 0.47 M of H2O2 at 180 °C. Copyright © 2014. Published by Elsevier Ltd.

  15. Runway Safety Monitor Algorithm for Single and Crossing Runway Incursion Detection and Alerting

    NASA Technical Reports Server (NTRS)

    Green, David F., Jr.

    2006-01-01

    The Runway Safety Monitor (RSM) is an aircraft based algorithm for runway incursion detection and alerting that was developed in support of NASA's Runway Incursion Prevention System (RIPS) research conducted under the NASA Aviation Safety and Security Program's Synthetic Vision System project. The RSM algorithm provides warnings of runway incursions in sufficient time for pilots to take evasive action and avoid accidents during landings, takeoffs or when taxiing on the runway. The report documents the RSM software and describes in detail how RSM performs runway incursion detection and alerting functions for NASA RIPS. The report also describes the RIPS flight tests conducted at the Reno/Tahoe International Airport (RNO) and the Wallops Flight Facility (WAL) during July and August of 2004, and the RSM performance results and lessons learned from those flight tests.

  16. Response Surface Methodology for Optimizing the Production of Biosurfactant by Candida tropicalis on Industrial Waste Substrates

    PubMed Central

    Almeida, Darne G.; Soares da Silva, Rita de Cássia F.; Luna, Juliana M.; Rufino, Raquel D.; Santos, Valdemir A.; Sarubbo, Leonie A.

    2017-01-01

    Biosurfactant production optimization by Candida tropicalis UCP0996 was studied combining central composite rotational design (CCRD) and response surface methodology (RSM). The factors selected for optimization of the culture conditions were sugarcane molasses, corn steep liquor, waste frying oil concentrations and inoculum size. The response variables were surface tension and biosurfactant yield. All factors studied were important within the ranges investigated. The two empirical forecast models developed through RSM were found to be adequate for describing biosurfactant production with regard to surface tension (R2 = 0.99833) and biosurfactant yield (R2 = 0.98927) and a very strong, negative, linear correlation was found between the two response variables studied (r = −0.95). The maximum reduction in surface tension and the highest biosurfactant yield were 29.98 mNm−1 and 4.19 gL−1, respectively, which were simultaneously obtained under the optimum conditions of 2.5% waste frying oil, 2.5%, corn steep liquor, 2.5% molasses, and 2% inoculum size. To validate the efficiency of the statistically optimized variables, biosurfactant production was also carried out in 2 and 50 L bioreactors, with yields of 5.87 and 7.36 gL−1, respectively. Finally, the biosurfactant was applied in motor oil dispersion, reaching up to 75% dispersion. Results demonstrated that the CCRD was suitable for identifying the optimum production conditions and that the new biosurfactant is a promising dispersant for application in the oil industry. PMID:28223971

  17. Optimisation and Characterisation of Lipase-Catalysed Synthesis of a Kojic Monooleate Ester in a Solvent-Free System by Response Surface Methodology.

    PubMed

    Jumbri, Khairulazhar; Al-Haniff Rozy, Mohd Fahruddin; Ashari, Siti Efliza; Mohamad, Rosfarizan; Basri, Mahiran; Fard Masoumi, Hamid Reza

    2015-01-01

    Kojic acid is widely used to inhibit the browning effect of tyrosinase in cosmetic and food industries. In this work, synthesis of kojic monooleate ester (KMO) was carried out using lipase-catalysed esterification of kojic acid and oleic acid in a solvent-free system. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was used to optimise the main important reaction variables, such as enzyme amount, reaction temperature, substrate molar ratio, and reaction time along with immobilised lipase from Candida Antarctica (Novozym 435) as a biocatalyst. The RSM data indicated that the reaction temperature was less significant in comparison to other factors for the production of a KMO ester. By using this statistical analysis, a quadratic model was developed in order to correlate the preparation variable to the response (reaction yield). The optimum conditions for the enzymatic synthesis of KMO were as follows: an enzyme amount of 2.0 wt%, reaction temperature of 83.69°C, substrate molar ratio of 1:2.37 (mmole kojic acid:oleic acid) and a reaction time of 300.0 min. Under these conditions, the actual yield percentage obtained was 42.09%, which is comparably well with the maximum predicted value of 44.46%. Under the optimal conditions, Novozym 435 could be reused for 5 cycles for KMO production percentage yield of at least 40%. The results demonstrated that statistical analysis using RSM can be used efficiently to optimise the production of a KMO ester. Moreover, the optimum conditions obtained can be applied to scale-up the process and minimise the cost.

  18. Optimisation and Characterisation of Lipase-Catalysed Synthesis of a Kojic Monooleate Ester in a Solvent-Free System by Response Surface Methodology

    PubMed Central

    Jumbri, Khairulazhar; Al-Haniff Rozy, Mohd Fahruddin; Ashari, Siti Efliza; Mohamad, Rosfarizan; Basri, Mahiran; Fard Masoumi, Hamid Reza

    2015-01-01

    Kojic acid is widely used to inhibit the browning effect of tyrosinase in cosmetic and food industries. In this work, synthesis of kojic monooleate ester (KMO) was carried out using lipase-catalysed esterification of kojic acid and oleic acid in a solvent-free system. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was used to optimise the main important reaction variables, such as enzyme amount, reaction temperature, substrate molar ratio, and reaction time along with immobilised lipase from Candida Antarctica (Novozym 435) as a biocatalyst. The RSM data indicated that the reaction temperature was less significant in comparison to other factors for the production of a KMO ester. By using this statistical analysis, a quadratic model was developed in order to correlate the preparation variable to the response (reaction yield). The optimum conditions for the enzymatic synthesis of KMO were as follows: an enzyme amount of 2.0 wt%, reaction temperature of 83.69°C, substrate molar ratio of 1:2.37 (mmole kojic acid:oleic acid) and a reaction time of 300.0 min. Under these conditions, the actual yield percentage obtained was 42.09%, which is comparably well with the maximum predicted value of 44.46%. Under the optimal conditions, Novozym 435 could be reused for 5 cycles for KMO production percentage yield of at least 40%. The results demonstrated that statistical analysis using RSM can be used efficiently to optimise the production of a KMO ester. Moreover, the optimum conditions obtained can be applied to scale-up the process and minimise the cost. PMID:26657030

  19. Ethanol production from sweet sorghum bagasse through process optimization using response surface methodology.

    PubMed

    Lavudi, Saida; Oberoi, Harinder Singh; Mangamoori, Lakshmi Narasu

    2017-08-01

    In this study, comparative evaluation of acid- and alkali pretreatment of sweet sorghum bagasse (SSB) was carried out for sugar production after enzymatic hydrolysis. Results indicated that enzymatic hydrolysis of alkali-pretreated SSB resulted in higher production of glucose, xylose and arabinose, compared to the other alkali concentrations and also acid-pretreated biomass. Response Surface Methodology (RSM) was, therefore, used to optimize parameters, such as alkali concentration, temperature and time of pretreatment prior to enzymatic hydrolysis to maximize the production of sugars. The independent variables used during RSM included alkali concentration (1.5-4%), pretreatment temperature (125-140 °C) and pretreatment time (10-30 min) were investigated. Process optimization resulted in glucose and xylose concentration of 57.24 and 10.14 g/L, respectively. Subsequently, second stage optimization was conducted using RSM for optimizing parameters for enzymatic hydrolysis, which included substrate concentration (10-15%), incubation time (24-60 h), incubation temperature (40-60 °C) and Celluclast concentration (10-20 IU/g-dwt). Substrate concentration 15%, (w/v) temperature of 60 °C, Celluclast concentration of 20 IU/g-dwt and incubation time of 58 h led to a glucose concentration of 68.58 g/l. Finally, simultaneous saccharification fermentation (SSF) as well as separated hydrolysis and fermentation (SHF) was evaluated using Pichia kudriavzevii HOP-1 for production of ethanol. Significant difference in ethanol concentration was not found using either SSF or SHF; however, ethanol productivity was higher in case of SSF, compared to SHF. This study has established a platform for conducting scale-up studies using the optimized process parameters.

  20. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    PubMed

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (<10 min) waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows.

  1. A study on large-scale nudging effects in regional climate model simulation

    NASA Astrophysics Data System (ADS)

    Yhang, Yoo-Bin; Hong, Song-You

    2011-05-01

    The large-scale nudging effects on the East Asian summer monsoon (EASM) are examined using the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM). The NCEP/DOE reanalysis data is used to provide large-scale forcings for RSM simulations, configured with an approximately 50-km grid over East Asia, centered on the Korean peninsula. The RSM with a variant of spectral nudging, that is, the scale selective bias correction (SSBC), is forced by perfect boundary conditions during the summers (June-July-August) from 1979 to 2004. The two summers of 2000 and 2004 are investigated to demonstrate the impact of SSBC on precipitation in detail. It is found that the effect of SSBC on the simulated seasonal precipitation is in general neutral without a discernible advantage. Although errors in large-scale circulation for both 2000 and 2004 are reduced by using the SSBC method, the impact on simulated precipitation is found to be negative in 2000 and positive in 2004 summers. One possible reason for a different effect is that precipitation in the summer of 2004 is characterized by a strong baroclinicity, while precipitation in 2000 is caused by thermodynamic instability. The reduction of convective rainfall over the oceans by the application of the SSBC method seems to play an important role in modeled atmosphere.

  2. RSM 1.0 - A RESUPPLY SCHEDULER USING INTEGER OPTIMIZATION

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1994-01-01

    RSM, Resupply Scheduling Modeler, is a fully menu-driven program that uses integer programming techniques to determine an optimum schedule for replacing components on or before the end of a fixed replacement period. Although written to analyze the electrical power system on the Space Station Freedom, RSM is quite general and can be used to model the resupply of almost any system subject to user-defined resource constraints. RSM is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more computationally intensive, integer programming was required for accuracy when modeling systems with small quantities of components. Input values for component life cane be real numbers, RSM converts them to integers by dividing the lifetime by the period duration, then reducing the result to the next lowest integer. For each component, there is a set of constraints that insure that it is replaced before its lifetime expires. RSM includes user-defined constraints such as transportation mass and volume limits, as well as component life, available repair crew time and assembly sequences. A weighting factor allows the program to minimize factors such as cost. The program then performs an iterative analysis, which is displayed during the processing. A message gives the first period in which resources are being exceeded on each iteration. If the scheduling problem is unfeasible, the final message will also indicate the first period in which resources were exceeded. RSM is written in APL2 for IBM PC series computers and compatibles. A stand-alone executable version of RSM is provided; however, this is a "packed" version of RSM which can only utilize the memory within the 640K DOS limit. This executable requires at least 640K of memory and DOS 3.1 or higher. Source code for an APL2/PC workspace version is also provided. This version of RSM can make full use of any installed extended memory but must be run with the APL2 interpreter; and it requires an 80486 based microcomputer or an 80386 based microcomputer with an 80387 math coprocessor, at least 2Mb of extended memory, and DOS 3.3 or higher. The standard distribution medium for this package is one 5.25 inch 360K MS-DOS format diskette. RSM was developed in 1991. APL2 and IBM PC are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  3. Search for Quadrupole Strength in the Electroexcitation of the Delta+ (1232)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Mertz; C. Vellidis; Ricardo Alarcon

    2001-04-01

    High precision 1H(e, e'p)pi0 measurements at Q2 = 0.126. (GeV/c)2 are reported, which allow the determination of quadrupole amplitudes in the gamma*N --> Delta transition; they simultaneously test the reliability of electroproduction models. The derived quadrupole-to-dipole (I = 3/2) amplitude ratios, RSM = (-6.5 +/- 0.2stat+sys+/-2.5mod)% and REM = 9-2.1 +/-0.2stat+sys +/-2.0mod)%, are dominated by model error. Previous RSM and REM results should be reconsidered after the model uncertainties associated with the method of their extraction are taken into account.

  4. Wing shape allometry and aerodynamics in calopterygid damselflies: a comparative approach.

    PubMed

    Outomuro, David; Adams, Dean C; Johansson, Frank

    2013-06-07

    Wing size and shape have important aerodynamic implications on flight performance. We explored how wing size was related to wing shape in territorial males of 37 taxa of the damselfly family Calopterygidae. Wing coloration was also included in the analyses because it is sexually and naturally selected and has been shown to be related to wing shape. We studied wing shape using both the non-dimensional radius of the second moment of wing area (RSM) and geometric morphometrics. Lower values of the RSM result in less energetically demanding flight and wider ranges of flight speed. We also re-analyzed previously published data on other damselflies and dragonflies. The RSM showed a hump-shaped relationship with wing size. However, after correcting for phylogeny using independent contrast, this pattern changed to a negative linear relationship. The basal genus of the study family, Hetaerina, was mainly driving that change. The obtained patterns were specific for the study family and differed from other damselflies and dragonflies. The relationship between the RSM and wing shape measured by geometric morphometrics was linear, but relatively small changes along the RSM axis can result in large changes in wing shape. Our results also showed that wing coloration may have some effect on RSM. We found that RSM showed a complex relationship with size in calopterygid damselflies, probably as a result of other selection pressures besides wing size per se. Wing coloration and specific behavior (e.g. courtship) are potential candidates for explaining the complexity. Univariate measures of wing shape such as RSM are more intuitive but lack the high resolution of other multivariate techniques such as geometric morphometrics. We suggest that the relationship between wing shape and size are taxa-specific and differ among closely-related insect groups.

  5. Using Chitosan/CHPATC as coagulant to remove color and turbidity of industrial wastewater: Optimization through RSM design.

    PubMed

    Momeni, Meysam Mohammad; Kahforoushan, Davood; Abbasi, Farhang; Ghanbarian, Saeid

    2018-04-01

    One of the most important solid-liquid separation processes is coagulation and flocculation that is extensively used in the primary treatment of industrial wastewater. The biopolymers, because of biodegradable properties and low cost have been used as coagulants. In this study, chitosan as a natural coagulant of choice, was modified by (3-chloro 2-hydroxypropyl)trimethylammonium chloride and was used to remove the color and turbidity of industrial wastewater. To evaluate the effect of pH, settling time, the initial turbidity of wastewater, the amount of coagulant, and the concentration of dye (Melanoidin) were chosen to study their effects on removal of wastewater color and turbidity. The experiments were done in a batch system by using a jar test. To achieve the optimum conditions for the removal of color and turbidity, the response surface methodology (RSM) experimental design method was used. The results obtained from experiments showed that the optimum conditions for the removal of color were as: pH = 3, concentration of dye = 1000 mg/L, settling time = 78.93 min, and dose of coagulant = 3 g/L. The maximum color removal in these conditions was predicted 82.78% by the RSM model. The optimal conditions for the removal of turbidity of the waste water were as: pH = 5.66, initial turbidity = 60 NTU, settling time = 105 min, and amount of coagulant = 3 g/L. The maximum turbidity removal in these circumstances was predicted 94.19% by the model. The experimental results obtained in optimum conditions for removal of color and turbidity were 76.20% and 90.14%, respectively, indicating the high accuracy of the prediction model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Experimental design and multiple response optimization. Using the desirability function in analytical methods development.

    PubMed

    Candioti, Luciana Vera; De Zan, María M; Cámara, María S; Goicoechea, Héctor C

    2014-06-01

    A review about the application of response surface methodology (RSM) when several responses have to be simultaneously optimized in the field of analytical methods development is presented. Several critical issues like response transformation, multiple response optimization and modeling with least squares and artificial neural networks are discussed. Most recent analytical applications are presented in the context of analytLaboratorio de Control de Calidad de Medicamentos (LCCM), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242, S3000ZAA Santa Fe, ArgentinaLaboratorio de Control de Calidad de Medicamentos (LCCM), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242, S3000ZAA Santa Fe, Argentinaical methods development, especially in multiple response optimization procedures using the desirability function. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Optimizing pressurized liquid extraction of microbial lipids using the response surface method.

    PubMed

    Cescut, J; Severac, E; Molina-Jouve, C; Uribelarrea, J-L

    2011-01-21

    Response surface methodology (RSM) was used for the determination of optimum extraction parameters to reach maximum lipid extraction yield with yeast. Total lipids were extracted from oleaginous yeast (Rhodotorula glutinis) using pressurized liquid extraction (PLE). The effects of extraction parameters on lipid extraction yield were studied by employing a second-order central composite design. The optimal condition was obtained as three cycles of 15 min at 100°C with a ratio of 144 g of hydromatrix per 100 g of dry cell weight. Different analysis methods were used to compare the optimized PLE method with two conventional methods (Soxhlet and modification of Bligh and Dyer methods) under efficiency, selectivity and reproducibility criteria thanks to gravimetric analysis, GC with flame ionization detector, High Performance Liquid Chromatography linked to Evaporative Light Scattering Detector (HPLC-ELSD) and thin-layer chromatographic analysis. For each sample, the lipid extraction yield with optimized PLE was higher than those obtained with referenced methods (Soxhlet and Bligh and Dyer methods with, respectively, a recovery of 78% and 85% compared to PLE method). Moreover, the use of PLE led to major advantages such as an analysis time reduction by a factor of 10 and solvent quantity reduction by 70%, compared with traditional extraction methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Optimization of Progressive Freeze Concentration on Apple Juice via Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Samsuri, S.; Amran, N. A.; Jusoh, M.

    2018-05-01

    In this work, a progressive freeze concentration (PFC) system was developed to concentrate apple juice and was optimized by response surface methodology (RSM). The effects of various operating conditions such as coolant temperature, circulation flowrate, circulation time and shaking speed to effective partition constant (K) were investigated. Five different level of central composite design (CCD) was employed to search for optimal concentration of concentrated apple juice. A full quadratic model for K was established by using method of least squares. A coefficient of determination (R2) of this model was found to be 0.7792. The optimum conditions were found to be coolant temperature = -10.59 °C, circulation flowrate = 3030.23 mL/min, circulation time = 67.35 minutes and shaking speed = 30.96 ohm. A validation experiment was performed to evaluate the accuracy of the optimization procedure and the best K value of 0.17 was achieved under the optimized conditions.

  9. Application of response surface methodology method in designing corrosion inhibitor

    NASA Astrophysics Data System (ADS)

    Asmara, Y. P.; Athirah; Siregar, J. P.; Kurniawan, T.; Bachtiar, D.

    2017-10-01

    In oil and gas pipelines and offshore structure, inhibitors have been considered to be the first choice to reduce corrosion rate. There are many corrosion inhibitor compositions available in the market. To produce the best corrosion inhibitor requires many experimental data which is not efficient. These experiments used response surface methodology (RSM) to select corrosion inhibitor compositions. The experiments investigated effects of corrosion inhibition on corrosion rate of low carbon steel in 3% NaCl solution with different concentrations of selected main inhibitor compositions which are ethyl acetate (EA), ethylene glycol (EG) and sodium benzoate (SB). Corrosion rate were calculated using linear polarization resistance (LPR). All of the experiments were set in natural conditions at pH 7. MINITAB® version 15 was used for data analysis. It is shown that a quadratic model is a representative model can predict best corrosion inhibitor composition comprehensibly.

  10. Modeling Randomness in Judging Rating Scales with a Random-Effects Rating Scale Model

    ERIC Educational Resources Information Center

    Wang, Wen-Chung; Wilson, Mark; Shih, Ching-Lin

    2006-01-01

    This study presents the random-effects rating scale model (RE-RSM) which takes into account randomness in the thresholds over persons by treating them as random-effects and adding a random variable for each threshold in the rating scale model (RSM) (Andrich, 1978). The RE-RSM turns out to be a special case of the multidimensional random…

  11. Examining Mechanical Strength Characteristics of Selective Inhibition Sintered HDPE Specimens Using RSM and Desirability Approach

    NASA Astrophysics Data System (ADS)

    Rajamani, D.; Esakki, Balasubramanian

    2017-09-01

    Selective inhibition sintering (SIS) is a powder based additive manufacturing (AM) technique to produce functional parts with an inexpensive system compared with other AM processes. Mechanical properties of SIS fabricated parts are of high dependence on various process parameters importantly layer thickness, heat energy, heater feedrate, and printer feedrate. In this paper, examining the influence of these process parameters on evaluating mechanical properties such as tensile and flexural strength using Response Surface Methodology (RSM) is carried out. The test specimens are fabricated using high density polyethylene (HDPE) and mathematical models are developed to correlate the control factors to the respective experimental design response. Further, optimal SIS process parameters are determined using desirability approach to enhance the mechanical properties of HDPE specimens. Optimization studies reveal that, combination of high heat energy, low layer thickness, medium heater feedrate and printer feedrate yielded superior mechanical strength characteristics.

  12. The Deposition and Elimination of Glucosinolate Metabolites Derived from Rapeseed Meal in Eggs of Laying Hens.

    PubMed

    Zhu, L P; Wang, J P; Ding, X M; Bai, S P; Zeng, Q F; Su, Z W; Xuan, Y; Zhang, K Y

    2018-02-14

    This study was to investigate the deposition and elimination of glucosinolate metabolites including 5-vinyl-1,3-oxazolidine-2-thione (5-VOT) and thiocyanate ion (SCN - ) derived from rapeseed meal (RSM) in hen eggs. During 12 weeks accumulation phase, the serum triiodothyronine, thyronine, blood urea nitrogen, kidney index, and thyroid index linearly increased with the RSM at week 12 (P < 0.05). The thyroid histopathology revealed a sign of hyperplastic goiter in hens fed with 17.64-29.40% RSM. The 5-VOT content of eggs (Y, ng/g) was correlated with 5-VOT intake (X 2 , μg/d·bird) and 5-VOT feeding time (X 1 , week): Y = 54.94X 1 + 0.51X 2 - 430.34 (P < 0.01, R 2 = 0.80). The SCN - content of eggs (Y, mg/kg) was correlated with RSM intake (X 2 , μg/d·bird) and RSM feeding time (X 1 , week): Y = 0.095X 1 + 0.302X 2 - 0.4211 (P < 0.01, R 2 = 0.70). After a 4-week withdrawal of RSM, the 5-VOT and SCN - did not show in eggs. Taken together, 5.88% RSM with dietary supplements of 23.55 mg/kg 5-VOT and 10.76 mg/kg SCN - had no effects on hens with regard to serum parameters, organ index, and thyroid histopathology, and more than 4 weeks withdrawal should be considered for human and hen health.

  13. Axial Crushing of Thin-Walled Columns with Octagonal Section: Modeling and Design

    NASA Astrophysics Data System (ADS)

    Liu, Yucheng; Day, Michael L.

    This chapter focus on numerical crashworthiness analysis of straight thinwalled columns with octagonal cross sections. Two important issues in this analysis are demonstrated here: computer modeling and crashworthiness design. In the first part, this chapter introduces a method of developing simplified finite element (FE) models for the straight thin-walled octagonal columns, which can be used for the numerical crashworthiness analysis. Next, this chapter performs a crashworthiness design for such thin-walled columns in order to maximize their energy absorption capability. Specific energy absorption (SEA) is set as the design objective, side length of the octagonal cross section and wall thickness are selected as design variables, and maximum crushing force (Pm) occurs during crashes is set as design constraint. Response surface method (RSM) is employed to formulate functions for both SEA and Pm.

  14. Machinability Study on Milling Kenaf Fiber Reinforced Plastic Composite Materials using Design of Experiments

    NASA Astrophysics Data System (ADS)

    Azmi, H.; Haron, C. H. C.; Ghani, J. A.; Suhaily, M.; Yuzairi, A. R.

    2018-04-01

    The surface roughness (Ra) and delamination factor (Fd) of a milled kenaf reinforced plastic composite materials are depending on the milling parameters (spindle speed, feed rate and depth of cut). Therefore, a study was carried out to investigate the relationship between the milling parameters and their effects on a kenaf reinforced plastic composite materials. The composite panels were fabricated using vacuum assisted resin transfer moulding (VARTM) method. A full factorial design of experiments was use as an initial step to screen the significance of the parameters on the defects using Analysis of Variance (ANOVA). If the curvature of the collected data shows significant, Response Surface Methodology (RSM) is then applied for obtaining a quadratic modelling equation that has more reliable in expressing the optimization. Thus, the objective of this research is obtaining an optimum setting of milling parameters and modelling equations to minimize the surface roughness (Ra) and delamination factor (Fd) of milled kenaf reinforced plastic composite materials. The spindle speed and feed rate contributed the most in affecting the surface roughness and the delamination factor of the kenaf composite materials.

  15. Metal-free virucidal effects induced by g-C3N4 under visible light irradiation: Statistical analysis and parameter optimization.

    PubMed

    Zhang, Chi; Li, Yi; Zhang, Wenlong; Wang, Peifang; Wang, Chao

    2018-03-01

    Waterborne viruses with a low infectious dose and a high pathogenic potential pose a serious risk for humans all over the world, calling for a cost-effective and environmentally-friendly inactivation method. Optimizing operational parameters during the disinfection process is a facile and efficient way to achieve the satisfactory viral inactivation efficiency. Here, the antiviral effects of a metal-free visible-light-driven graphitic carbon nitride (g-C 3 N 4 ) photocatalyst were optimized by varying operating parameters with response surface methodology (RSM). Twenty sets of viral inactivation experiments were performed by changing three operating parameters, namely light intensity, photocatalyst loading and reaction temperature, at five levels. According to the experimental data, a semi-empirical model was developed with a high accuracy (determination coefficient R 2  = 0.9908) and then applied to predict the final inactivation efficiency of MS2 (a model virus) after 180 min exposure to the photocatalyst and visible light illumination. The corresponding optimal values were found to be 199.80 mW/cm 2 , 135.40 mg/L and 24.05 °C for light intensity, photocatalyst loading and reaction temperature, respectively. Under the optimized conditions, 8 log PFU/mL of viruses could be completely inactivated by g-C 3 N 4 without regrowth within 240 min visible light irradiation. Our study provides not only an extended application of RSM in photocatalytic viral inactivation but also a green and effective method for water disinfection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Optimization of pulsed DC PACVD parameters: Toward reducing wear rate of the DLC films

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Mansoureh; Mahboubi, Farzad; Naimi-Jamal, M. Reza

    2016-12-01

    The effect of pulsed direct current (DC) plasma-assisted chemical vapor deposition (PACVD) parameters such as temperature, duty cycle, hydrogen flow, and argon/CH4 flow ratio on the wear behavior and wear durability of the diamond-like carbon (DLC) films was studied by using response surface methodology (RSM). DLC films were deposited on nitrocarburized AISI 4140 steel. Wear rate and wear durability of the DLC films were examined with the pin-on-disk method. Field emission scanning electron microscopy, Raman spectroscopy, and nanoindentation techniques were used for studying wear mechanisms, chemical structure, and hardness of the DLC films. RSM results show that duty cycle is one of the important parameters that affect the wear rate of the DLC samples. The wear rate of the samples deposited with a duty cycle of >75% decreases with an increase in the argon/CH4 ratio. In contrast, for a duty cycle of <65%, the wear rate increases with an increase in the argon/CH4 ratio. The wear durability of the DLC samples increases with an increase in the duty cycle, hydrogen flow, and argon/CH4 flow ratio at the deposition temperature between 85 °C and 110 °C. Oxidation, fatigue, abrasive wear, and graphitization are the wear mechanisms observed on the wear scar of the DLC samples deposited with the optimum deposition conditions.

  17. In vitro mutagenicity, NMR metabolite characterization of azo and triphenylmethanes dyes by adherents bacteria and the role of the "cna" adhesion gene in activated sludge.

    PubMed

    Ayed, Lamia; Bakir, Karima; Ben Mansour, Hedi; Hammami, Saousen; Cheref, Abdelkrim; Bakhrouf, Amina

    2017-02-01

    Staphylococcus aureus, showing the greatest decolorization ability, was further investigated for Methyl Red (MR) Congo Red (CR), Crystal Violet (CV) and Malachite Green (MG) decolorization using response surface methodology (RSM). The chemometric methods use, based on statistical design of experiments (DOEs) such as RSM is becoming increasingly widespread in several sciences such as analytical chemistry, engineering and environmental chemistry. Stapphylococcus aureus ATCC 25923, Stapphylococcus aureus (S1) and Stapphylococcus aureus (S2), were isolated from textile wastewater plant located in KsarHellal, Tunisia and were tested for their decolorization capacity. PCR technique was utilized to identify the 3 bacterial strains and to detect the adhesin gene "cna". Biodegradation of MR, CR, CV and MG (750 ppm), were investigated under shaking condition in Mineral Salt Medium (MSM) solution at pH 7.5 and temperature 30 °C, using a 3.7 × 10 5  CFU/ml as inoculum size. Our results showed that Staphylococcus aureus had a high decolorization capacity. Nuclear magnetic resonance (NMR) spectroscopy analysis confirmed the biodegradation of dyes. The four dyes mutagenicity with the S9 metabolizing system decreased significantly after biodegradation and totally disappeared. Nuclear magnetic resonance (NMR) spectroscopy analysis confirmed the biodegradation of dyes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Phytase from Citrobacter koseri PM-7: Enhanced production using statistical method and application in ameliorating mineral bioaccessibility and protein digestibility of high-phytate food.

    PubMed

    Tripathi, Preeti; A, Jyothi Lakshmi; Kapoor, Mukesh

    2018-01-02

    The present study was aimed at enhancing phytase (Phy-Ck) production from Citrobacter koseri PM-7 using response surface methodology (RSM) and improving the bioaccessibility of minerals (Fe and Zn) and protein digestibility in high-phytate food using Phy-Ck. A five-variable and three-level central composite design of RSM using wheat bran (6.681%, w/v), inoculum level (2.5%, v/v), and triton X-100 (0.2%, v/v) resulted in up to 5.57-fold (1.047 U/ml) improvement in Phy-Ck yield from C. koseri PM-7 when compared with fermentation media I and II. The model was successfully validated in the design space by taking a random set of variable combinations. Treatment of high-phytate food with partially purified Phy-Ck showed improvement in mineral bioaccessibility maximally for defatted sesame flour (DSF) (Fe 45.5%; Zn 50.7%) followed by wheat flour (WF) (Fe 13.5%; Zn 14.4%), green gram flour (GGF) (Fe 0.7%; Zn 3.8%) and defatted groundnut flour (DGF) (Zn 5.6%). The in vitro protein digestibility (IVPD) of WF increased from 48.83 to 65.04%, GGF from 45.04 to 57.12%, and DSF from 47.34 to 55.7% after Phy-Ck treatment.

  19. Design of experiment approach for the process optimisation of microwave assisted extraction of lupeol from Ficus racemosa leaves using response surface methodology.

    PubMed

    Das, Anup Kumar; Mandal, Vivekananda; Mandal, Subhash C

    2013-01-01

    Triterpenoids are a group of important phytocomponents from Ficus racemosa (syn. Ficus glomerata Roxb.) that are known to possess diverse pharmacological activities and which have prompted the development of various extraction techniques and strategies for its better utilisation. To develop an effective, rapid and ecofriendly microwave-assisted extraction (MAE) strategy to optimise the extraction of a potent bioactive triterpenoid compound, lupeol, from young leaves of Ficus racemosa using response surface methodology (RSM) for industrial scale-up. Initially a Plackett-Burman design matrix was applied to identify the most significant extraction variables amongst microwave power, irradiation time, particle size, solvent:sample ratio loading, varying solvent strength and pre-leaching time on lupeol extraction. Among the six variables tested, microwave power, irradiation time and solvent-sample/loading ratio were found to have a significant effect (P < 0.05) on lupeol extraction and were fitted to a Box-Behnken-design-generated quadratic polynomial equation to predict optimal extraction conditions as well as to locate operability regions with maximum yield. The optimal conditions were microwave power of 65.67% of 700 W, extraction time of 4.27 min and solvent-sample ratio loading of 21.33 mL/g. Confirmation trials under the optimal conditions gave an experimental yield (18.52 µg/g of dry leaves) close to the RSM predicted value of 18.71 µg/g. Under the optimal conditions the mathematical model was found to be well fitted with the experimental data. The MAE was found to be a more rapid, convenient and appropriate extraction method, with a higher yield and lower solvent consumption when compared with conventional extraction techniques. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Antioxidant activity of polysaccharide extracted from Ganoderma lucidum using response surface methodology.

    PubMed

    Kan, Yongjun; Chen, Tiqiang; Wu, Yanbin; Wu, Jianguo; Wu, Jinzhong

    2015-01-01

    Superfine grinding technology was applied for polysaccharide extraction from the fruiting bodies of Ganoderma lucidum, and response surface methodology (RSM) was used to optimize the effects of processing parameters on polysaccharide extraction yield. Results showed that the maximum yield of G. lucidum polysaccharides (GLP) was obtained at an optimum condition: extraction time 137 min, extraction temperature 66 ̊C, the ratio of water to material 35 mL/g, and the GLP extracting yield reached 2.44% under this condition. GLP were precipitated into three crude polysaccharides, viz. GLP40, GLP60 and GLP80. The basic characterization of polysaccharides was determined by using HPLC and FT-IR methods. GLP, GLP80, GLP60, and GLP40 were composed of Man, Rib, Glc, Gal and Fuc with the molar ratios of 1.27:0.36:22.89:1.61:0.33, 1.40:0.31:23.02:3.46:0.91, 0.96:0.34:25.76:2.47:0.46, and 2.81:1.42:23.83:1.61:0.33, respectively. The result of FT-IR suggested that the monosaccharide residue of the four polysaccharides was β-pyranoid ring. Moreover, the antioxidant activities of these four polysaccharides were evaluated. The results showed that GLP80 had the best reducing power, DPPH radical scavenging ability and oxygen radical scavenging ability followed by GLP, GLP60 and GLP40. Our results demonstrated that RSM might be a valuable technique for optimizing the efficient extraction of GLP, and G. lucidum could be considered as sources of natural antioxidants and preservatives of food industry. Moreover, polysaccharides, especially GLP80, extracted from the fruiting bodies of G. lucidum, exhibited promising antioxidant activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Modeling BOD and COD removal from Palm Oil Mill Secondary Effluent in floating wetland by Chrysopogon zizanioides (L.) using response surface methodology.

    PubMed

    Darajeh, Negisa; Idris, Azni; Fard Masoumi, Hamid Reza; Nourani, Abolfazl; Truong, Paul; Sairi, Nor Asrina

    2016-10-01

    While the oil palm industry has been recognized for its contribution towards economic growth and rapid development, it has also contributed to environmental pollution due to the production of huge quantities of by-products from the oil extraction process. A phytoremediation technique (floating Vetiver system) was used to treat Palm Oil Mill Secondary Effluent (POMSE). A batch study using 40 L treatment tanks was carried out under different conditions and Response Surface Methodology (RSM) was applied to optimize the treatment process. A three factor central composite design (CCD) was used to predict the experimental variables (POMSE concentration, Vetiver plant density and time). An extraordinary decrease in organic matter as measured by BOD and COD (96% and 94% respectively) was recorded during the experimental duration of 4 weeks using a density of 30 Vetiver plants. The best and lowest final BOD of 2 mg/L was obtained when using 15 Vetiver plants after 13 days for low concentration POMSE (initial BOD = 50 mg/L). The next best result of BOD at 32 mg/L was obtained when using 30 Vetiver plants after 24 days for medium concentration POMSE (initial BOD = 175 mg/L). These results confirmed the validity of the model, and the experimental value was determined to be quite close to the predicted value, implying that the empirical model derived from RSM experimental design can be used to adequately describe the relationship between the independent variables and response. The study showed that the Vetiver system is an effective method of treating POMSE. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Modeling and process optimization of electrospinning of chitosan-collagen nanofiber by response surface methodology

    NASA Astrophysics Data System (ADS)

    Amiri, Nafise; Moradi, Ali; Abolghasem Sajjadi Tabasi, Sayyed; Movaffagh, Jebrail

    2018-04-01

    Chitosan-collagen composite nanofiber is of a great interest to researchers in biomedical fields. Since the electrospinning is the most popular method for nanofiber production, having a comprehensive knowledge of the electrospinning process is beneficial. Modeling techniques are precious tools for managing variables in the electrospinning process, prior to the more time- consuming and expensive experimental techniques. In this study, a central composite design of response surface methodology (RSM) was employed to develop a statistical model as well as to define the optimum condition for fabrication of chitosan-collagen nanofiber with minimum diameter. The individual and the interaction effects of applied voltage (10–25 kV), flow rate (0.5–1.5 mL h‑1), and needle to collector distance (15–25 cm) on the fiber diameter were investigated. ATR- FTIR and cell study were done to evaluate the optimized nanofibers. According to the RSM, a two-factor interaction (2FI) model was the most suitable model. The high regression coefficient value (R 2 ≥ 0.9666) of the fitted regression model and insignificant lack of fit (P = 0.0715) indicated that the model was highly adequate in predicting chitosan-collagen nanofiber diameter. The optimization process showed that the chitosan-collagen nanofiber diameter of 156.05 nm could be obtained in 9 kV, 0.2 ml h‑1, and 25 cm which was confirmed by experiment (155.92 ± 18.95 nm). The ATR-FTIR and cell study confirmed the structure and biocompatibility of the optimized membrane. The represented model could assist researchers in fabricating chitosan-collagen electrospun scaffolds with a predictable fiber diameter, and optimized chitosan-collagen nanofibrous mat could be a potential candidate for wound healing and tissue engineering.

  3. Effect of nanofillers' size on surface properties after toothbrush abrasion.

    PubMed

    Cavalcante, Larissa M; Masouras, Konstantinos; Watts, David C; Pimenta, Luiz A; Silikas, Nick

    2009-02-01

    To investigate the effect of filler-particle size of experimental and commercial resin composites, undergoing toothbrush abrasion, on three surface properties: surface roughness (SR), surface gloss (G) and color stability (CS). Four model (Ivoclar/Vivadent) and one commercial resin composite (Tokuyama) with varying filler-size from 100-1000 nm were examined. Six discs (10 mm x 2 mm) from each product were prepared and mechanically polished. The samples were then submitted to 20,000 brushing strokes in a toothbrush abrasion machine. SR parameters (Ra, Rt and RSm), G, and CS were measured before and after toothbrush abrasion. Changes in SR and G were analyzed by 2-way ANOVA, with Bonferroni post hoc test. CS values were submitted to one-way ANOVA and Bonferroni post hoc test (alpha=0.05). Initial G values ranged between 73-87 gloss units (GU) and were reduced after toothbrush abrasion to a range of 8-64 GU. Toothbrush abrasion resulted in significant modifications in SR and G amongst the materials tested, attributed to filler sizes. There was statistically significant difference in color (delta E* ranged from 0.38-0.88). Filler size did not affect color stability. Toothbrush abrasion resulted in rougher and matte surfaces for all materials tested. Although the individual differences in surface roughness among filler sizes were not always significant, the correlation showed a trend that larger filler sizes resulted in higher surface roughness after abrasion for the SR parameters Ra and Rt (r = 0.95; r = 0.93, respectively). RSm showed an increase after toothbrush abrasion for all resin composites, however no significant correlation was detected (r = 0.21).There was a significant correlation between G and Ra ratios (r = - 0.95).

  4. Examining Classification Criteria: A Comparison of Three Cut Score Methods

    ERIC Educational Resources Information Center

    DiStefano, Christine; Morgan, Grant

    2011-01-01

    This study compared 3 different methods of creating cut scores for a screening instrument, T scores, receiver operating characteristic curve (ROC) analysis, and the Rasch rating scale method (RSM), for use with the Behavioral and Emotional Screening System (BESS) Teacher Rating Scale for Children and Adolescents (Kamphaus & Reynolds, 2007).…

  5. Optimization of Milk-Based Medium for Efficient Cultivation of Bifidobacterium pseudocatenulatum G4 Using Face-Centered Central Composite-Response Surface Methodology

    PubMed Central

    Abdul Khalil, Khalilah; Mustafa, Shuhaimi; Mohammad, Rosfarizan; Bin Ariff, Arbakariya; Shaari, Yamin; Abdul Manap, Yazid; Dahalan, Farrah Aini

    2014-01-01

    This study was undertaken to optimize skim milk and yeast extract concentration as a cultivation medium for optimal Bifidobacteria pseudocatenulatum G4 (G4) biomass and β-galactosidase production as well as lactose and free amino nitrogen (FAN) balance after cultivation period. Optimization process in this study involved four steps: screening for significant factors using 23 full factorial design, steepest ascent, optimization using FCCD-RSM, and verification. From screening steps, skim milk and yeast extract showed significant influence on the biomass production and, based on the steepest ascent step, middle points of skim milk (6% wt/vol) and yeast extract (1.89% wt/vol) were obtained. A polynomial regression model in FCCD-RSM revealed that both factors were found significant and the strongest influence was given by skim milk concentration. Optimum concentrations of skim milk and yeast extract for maximum biomass G4 and β-galactosidase production meanwhile low in lactose and FAN balance after cultivation period were 5.89% (wt/vol) and 2.31% (wt/vol), respectively. The validation experiments showed that the predicted and experimental values are not significantly different, indicating that the FCCD-RSM model developed is sufficient to describe the cultivation process of G4 using skim-milk-based medium with the addition of yeast extract. PMID:24527457

  6. Multivariate optimization of a synergistic blend of oleoresin sage (Salvia officinalis L.) and ascorbyl palmitate to stabilize sunflower oil.

    PubMed

    Upadhyay, Rohit; Mishra, Hari Niwas

    2016-04-01

    The simultaneous optimization of a synergistic blend of oleoresin sage (SAG) and ascorbyl palmitate (AP) in sunflower oil (SO) was performed using central composite and rotatable design coupled with principal component analysis (PCA) and response surface methodology (RSM). The physicochemical parameters viz., peroxide value, anisidine value, free fatty acids, induction period, total polar matter, antioxidant capacity and conjugated diene value were considered as response variables. PCA reduced the original set of correlated responses to few uncorrelated principal components (PC). The PC1 (eigen value, 5.78; data variance explained, 82.53 %) was selected for optimization using RSM. The quadratic model adequately described the data (R (2) = 0. 91, p < 0.05) and lack of fit was insignificant (p > 0.05). The contour plot of PC 1 score indicated the optimal synergistic combination of 1289.19 and 218.06 ppm for SAG and AP, respectively. This combination of SAG and AP resulted in shelf life of 320 days at 25 °C estimated using linear shelf life prediction model. In conclusion, the versatility of PCA-RSM approach has resulted in an easy interpretation in multiple response optimizations. This approach can be considered as a useful guide to develop new oil blends stabilized with food additives from natural sources.

  7. Assessment of (poly)phenols in grape (Vitis vinifera L.) stems by using food/pharma industry compatible solvents and Response Surface Methodology.

    PubMed

    Domínguez-Perles, R; Teixeira, A I; Rosa, E; Barros, A I

    2014-12-01

    A Box-Behnken design of Response Surface Methodology (RSM) was conducted to analyse the effect of time (10-30 min), temperature (25-95°C), and solvents concentration (5-90%) on the extraction of total phenolics, flavonoids, ortho-diphenols, and anthocyanins as well as to assess the ABTS(+) scavenging capacity, which were considered as response variables. Values coefficients of determination (R(2)), ranging from 0.903 to 0.996, fitted for describing efficient extraction of bioactive (poly)phenols and antioxidant activity. The recorded data allowed to establish the optimal extraction conditions at 23.0 min, 95.0°C, and 57.9% of food-quality ethanol/water for Vitis vinifera L. var. 'Viosinho' (white variety), and 23.4 min, 84.2°C, and 63.8% for var. 'Touriga Nacional' (red variety). The achievement of optimal extraction conditions of phenolics from grape stems using solvents compatible with further uses in food/pharma industries demonstrated that RSM constitutes a powerful tool for deriving optimal conditions for extraction of antioxidant phenolic compounds from grape stems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Optimisation of gelatin extraction from Unicorn leatherjacket (Aluterus monoceros) skin waste: response surface approach.

    PubMed

    Hanjabam, Mandakini Devi; Kannaiyan, Sathish Kumar; Kamei, Gaihiamngam; Jakhar, Jitender Kumar; Chouksey, Mithlesh Kumar; Gudipati, Venkateshwarlu

    2015-02-01

    Physical properties of gelatin extracted from Unicorn leatherjacket (Aluterus monoceros) skin, which is generated as a waste from fish processing industries, were optimised using Response Surface Methodology (RSM). A Box-Behnken design was used to study the combined effects of three independent variables, namely phosphoric acid (H3PO4) concentration (0.15-0.25 M), extraction temperature (40-50 °C) and extraction time (4-12 h) on different responses like yield, gel strength and melting point of gelatin. The optimum conditions derived by RSM for the yield (10.58%) were 0.2 M H3PO4 for 9.01 h of extraction time and hot water extraction of 45.83 °C. The maximum achieved gel strength and melting point was 138.54 g and 22.61 °C respectively. Extraction time was found to be most influencing variable and had a positive coefficient on yield and negative coefficient on gel strength and melting point. The results indicated that Unicorn leatherjacket skins can be a source of gelatin having mild gel strength and melting point.

  9. Optimization of operating parameters in polysilicon chemical vapor deposition reactor with response surface methodology

    NASA Astrophysics Data System (ADS)

    An, Li-sha; Liu, Chun-jiao; Liu, Ying-wen

    2018-05-01

    In the polysilicon chemical vapor deposition reactor, the operating parameters are complex to affect the polysilicon's output. Therefore, it is very important to address the coupling problem of multiple parameters and solve the optimization in a computationally efficient manner. Here, we adopted Response Surface Methodology (RSM) to analyze the complex coupling effects of different operating parameters on silicon deposition rate (R) and further achieve effective optimization of the silicon CVD system. Based on finite numerical experiments, an accurate RSM regression model is obtained and applied to predict the R with different operating parameters, including temperature (T), pressure (P), inlet velocity (V), and inlet mole fraction of H2 (M). The analysis of variance is conducted to describe the rationality of regression model and examine the statistical significance of each factor. Consequently, the optimum combination of operating parameters for the silicon CVD reactor is: T = 1400 K, P = 3.82 atm, V = 3.41 m/s, M = 0.91. The validation tests and optimum solution show that the results are in good agreement with those from CFD model and the deviations of the predicted values are less than 4.19%. This work provides a theoretical guidance to operate the polysilicon CVD process.

  10. Optimization of Culture Medium for the Growth of Candida sp. and Blastobotrys sp. as Starter Culture in Fermentation of Cocoa Beans (Theobroma cacao) Using Response Surface Methodology (RSM).

    PubMed

    Mahazar, N H; Zakuan, Z; Norhayati, H; MeorHussin, A S; Rukayadi, Y

    2017-01-01

    Inoculation of starter culture in cocoa bean fermentation produces consistent, predictable and high quality of fermented cocoa beans. It is important to produce healthy inoculum in cocoa bean fermentation for better fermented products. Inoculum could minimize the length of the lag phase in fermentation. The purpose of this study was to optimize the component of culture medium for the maximum cultivation of Candida sp. and Blastobotrys sp. Molasses and yeast extract were chosen as medium composition and Response Surface Methodology (RSM) was then employed to optimize the molasses and yeast extract. Maximum growth of Candida sp. (7.63 log CFU mL-1) and Blastobotrys sp. (8.30 log CFU mL-1) were obtained from the fermentation. Optimum culture media for the growth of Candida sp., consist of 10% (w/v) molasses and 2% (w/v) yeast extract, while for Blastobotrys sp., were 1.94% (w/v) molasses and 2% (w/v) yeast extract. This study shows that culture medium consists of molasses and yeast extract were able to produce maximum growth of Candida sp. and Blastobotrys sp., as a starter culture for cocoa bean fermentation.

  11. Modelling and Optimization of Polycaprolactone Ultrafine-Fibres Electrospinning Process Using Response Surface Methodology

    PubMed Central

    Ruys, Andrew J.

    2018-01-01

    Electrospun fibres have gained broad interest in biomedical applications, including tissue engineering scaffolds, due to their potential in mimicking extracellular matrix and producing structures favourable for cell and tissue growth. The development of scaffolds often involves multivariate production parameters and multiple output characteristics to define product quality. In this study on electrospinning of polycaprolactone (PCL), response surface methodology (RSM) was applied to investigate the determining parameters and find optimal settings to achieve the desired properties of fibrous scaffold for acetabular labrum implant. The results showed that solution concentration influenced fibre diameter, while elastic modulus was determined by solution concentration, flow rate, temperature, collector rotation speed, and interaction between concentration and temperature. Relationships between these variables and outputs were modelled, followed by an optimization procedure. Using the optimized setting (solution concentration of 10% w/v, flow rate of 4.5 mL/h, temperature of 45 °C, and collector rotation speed of 1500 RPM), a target elastic modulus of 25 MPa could be achieved at a minimum possible fibre diameter (1.39 ± 0.20 µm). This work demonstrated that multivariate factors of production parameters and multiple responses can be investigated, modelled, and optimized using RSM. PMID:29562614

  12. A Statistical approach to optimize the production of Polyhydroxyalkanoates from Wickerhamomyces anomalus VIT-NN01 using Response Surface Methodology.

    PubMed

    Ojha, Nupur; Das, Nilanjana

    2018-02-01

    Polyhydroxyalkanoates (PHAs) are three-level group of biodegradable polymers and attractive substitutes over conventional plastics to avoid the pollution problems. The yeast strain isolated from sugarcane juice, identified as Wickerhamomyces anomalus VIT-NN01, was used for the production of polyhydroxyalkanoates (PHA). Response surface methodology (RSM), three-level six variables Box-Behnken design (BBD), was employed to optimize the factors such as pH 8.0, temperature 37°C, sugarcane molasses (35g/L) supplemented with co-substrate palm oil (0.5%),corn steep liquor (2%) after a period of 96h of incubation for the maximum yield (19.50±0.3g/L) of PHA. It was well in close agreement with the predicted value obtained by RSM model yield (19.55±0.1g/L).Characterization of the extracted polymer was done using FTIR, GC-MS, XRD, TGA and AFM analysis. NMR spectroscopic analysis revealed that the biopolymer was poly (3-hydroxybutyrate-co-3-hydroxyvalerate), copolymer of PHA. This is the first report on optimization of PHA production using yeast strain isolated from natural sources. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Performance characteristics of rubber seed oil biodiesel

    NASA Astrophysics Data System (ADS)

    Liu, P.; Qin, M.; Wu, J.; Chen, B. S.

    2018-01-01

    The lubricity, ignition quality, oxidative stability, low temperature flow property and elastomeric compatibility of rubber seed oil biodiesel(RSM) were evaluated and compared with conventional petro-diesel. The results indicated that RSM and its blends with petro-diesel possessed outstanding lubricity manifested by sharp decrease in wear scar diameters in the high-frequency reciprocating rig(HFRR) testing. They also provided acceptable flammability and cold flow property,although the cetane numbers (CN) and cold filter plugging points(CFPP) of biodiesel blends slightly decreased with increasing contents of petro-diesel. However, RSM proved to be very susceptible to oxidation at elevated temperatures during prolonged oxidation durations, characterized by increased peroxide values, viscosity, acid values and isooctane insolubles. The oxidation stability of RSM could be significantly improved by antioxidants such as BD100, a phenol antioxidant produced by Ciba corporation. Furthermore, RSM provided poor compatibility with some elastomeric rubbers such as polyacrylate, nitrile-butadiene and chloroprene, but was well compatible with the hydrogenated nitrile-butadiene elastomer.

  14. Abrasion Resistance of Nano Silica Modified Roller Compacted Rubbercrete: Cantabro Loss Method and Response Surface Methodology Approach

    NASA Astrophysics Data System (ADS)

    Adamu, Musa; Mohammed, Bashar S.; Shafiq, Nasir

    2018-04-01

    Roller compacted concrete (RCC) when used for pavement is subjected to skidding/rubbing by wheels of moving vehicles, this causes pavement surface to wear out and abrade. Therefore, abrasion resistance is one of the most important properties of concern for RCC pavement. In this study, response surface methodology was used to design, evaluate and analyze the effect of partial replacement of fine aggregate with crumb rubber, and addition of nano silica on the abrasion resistance of roller compacted rubbercrete (RCR). RCR is the terminology used for RCC pavement where crumb rubber was used as partial replacement to fine aggregate. The Box-Behnken design method was used to develop the mixtures combinations using 10%, 20%, and 30% crumb rubber with 0%, 1%, and 2% nano silica. The Cantabro loss method was used to measure the abrasion resistance. The results showed that the abrasion resistance of RCR decreases with increase in crumb rubber content, and increases with increase in addition of nano silica. The analysis of variance shows that the model developed using response surface methodology (RSM) has a very good degree of correlation, and can be used to predict the abrasion resistance of RCR with a percentage error of 5.44%. The combination of 10.76% crumb rubber and 1.59% nano silica yielded the best combinations of RCR in terms of abrasion resistance of RCR.

  15. [Preparation and quality control of pyridostigmine bromide orally disintegrating tablet].

    PubMed

    Zhang, Li; Tan, Qun-you; Cheng, Xun-guan; Wang, Hong; Hu, Ni-ni; Zhang, Jing-qing

    2012-05-01

    To prepare orally disintegrating tablets containing pyridostigmine bromide and optimize formulations. Solid dispersion was prepared using solvent evaporation-deposition method. The formulation was optimized by central composite design-response surface methodology (RSM plus CCD) with disintegration time as a reference parameter. The orally disintegrating tablets showed integrity and were smooth with desirable taste and feel in mouth. The disintegration time was less than 30 s. The cumulative drug dissolution was around 8.5% (around 2.5 mg which was less than bitterness threshold of pyridostigmine bromide of 3 mg) within 5 min in water while the cumulative drug dissolution was higher than 95% within 2 min in 0.1 N HCl. The orally disintegrating tablets are reasonable in formulation, feasible in technology and patient-friendly.

  16. Management of Total Pressure Recovery, Distortion and High Cycle Fatigue in Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Baust, Henry D.; Agrell, Johan

    2002-01-01

    It is the purpose of this study to demonstrate the viability and economy of Response Surface Methods (RSM) and Robustness Design Concepts (RDC) to arrive at micro-secondary flow control installation designs that maintain optimal inlet performance over a range of the mission variables. These statistical design concepts were used to investigate the robustness properties of 'low unit strength' micro-effector installations. 'Low unit strength' micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion.

  17. Effects of dietary cholesterol supplementation on growth and cholesterol metabolism of rainbow trout (Oncorhynchus mykiss) fed diets with cottonseed meal or rapeseed meal.

    PubMed

    Deng, Junming; Zhang, Xi; Long, Xiaowen; Tao, Linli; Wang, Zhen; Niu, Guoyi; Kang, Bin

    2014-12-01

    This study was conducted to evaluate the effects of cholesterol on growth and cholesterol metabolism of rainbow trout (Oncorhynchus mykiss) fed diets with cottonseed meal (CSM) or rapeseed meal (RSM). Four experimental diets were formulated to contain 550 g kg(-1) CSM or 450 g kg(-1) RSM with or without 9 g kg(-1) supplemental cholesterol. Growth rate and feed utilization efficiency of fish fed diets with 450 g kg(-1) RSM were inferior to fish fed diets with 550 g kg(-1) CSM regardless of cholesterol level. Dietary cholesterol supplementation increased the growth rate of fish fed diets with RSM, and growth rate and feed utilization efficiency of fish fed diets with CSM. Similarly, dietary cholesterol supplementation increased the plasma total cholesterol (TC), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triiodothyronine levels, but decreased the plasma triglycerides and cortisol levels of fish fed diets with RSM or CSM. In addition, supplemental cholesterol increased the free cholesterol and TC levels in intestinal contents, but decreased the hepatic 3-hydroxy-3-methyl-glutaryl-CoA reductase activity of fish fed diets with RSM or CSM. These results indicate that 9 g kg(-1) cholesterol supplementation seems to improve the growth of rainbow trout fed diets with CSM or RSM, and the growth-promoting action may be related to the alleviation of the negative effects caused by antinutritional factors and/or make up for the deficiency of endogenous cholesterol in rainbow trout.

  18. High-Resolution Subtropical Summer Precipitation Derived from Dynamical Downscaling of the NCEP-DOE Reanalysis: How Much Small-Scale Information Is Added by a Regional Model?

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon; Stefanova, Lydia B.; Chan, Steven C.; Schubert, Siegfried D.; OBrien, James J.

    2010-01-01

    This study assesses the regional-scale summer precipitation produced by the dynamical downscaling of analyzed large-scale fields. The main goal of this study is to investigate how much the regional model adds smaller scale precipitation information that the large-scale fields do not resolve. The modeling region for this study covers the southeastern United States (Florida, Georgia, Alabama, South Carolina, and North Carolina) where the summer climate is subtropical in nature, with a heavy influence of regional-scale convection. The coarse resolution (2.5deg latitude/longitude) large-scale atmospheric variables from the National Center for Environmental Prediction (NCEP)/DOE reanalysis (R2) are downscaled using the NCEP Environmental Climate Prediction Center regional spectral model (RSM) to produce precipitation at 20 km resolution for 16 summer seasons (19902005). The RSM produces realistic details in the regional summer precipitation at 20 km resolution. Compared to R2, the RSM-produced monthly precipitation shows better agreement with observations. There is a reduced wet bias and a more realistic spatial pattern of the precipitation climatology compared with the interpolated R2 values. The root mean square errors of the monthly R2 precipitation are reduced over 93 (1,697) of all the grid points in the five states (1,821). The temporal correlation also improves over 92 (1,675) of all grid points such that the domain-averaged correlation increases from 0.38 (R2) to 0.55 (RSM). The RSM accurately reproduces the first two observed eigenmodes, compared with the R2 product for which the second mode is not properly reproduced. The spatial patterns for wet versus dry summer years are also successfully simulated in RSM. For shorter time scales, the RSM resolves heavy rainfall events and their frequency better than R2. Correlation and categorical classification (above/near/below average) for the monthly frequency of heavy precipitation days is also significantly improved by the RSM.

  19. Study on the synthesis and physicochemical properties of starch acetate with low substitution under microwave assistance.

    PubMed

    Lin, Derong; Zhou, Wei; Zhao, Jingjing; Lan, Weijie; Chen, Rongming; Li, Yutong; Xing, Baoshan; Li, Zhuohao; Xiao, Mengshi; Wu, Zhijun; Li, Xindan; Chen, Rongna; Zhang, Xingwen; Chen, Hong; Zhang, Qing; Qin, Wen; Li, Suqing

    2017-10-01

    In this study, synthesis and physicochemical properties of starch acetate with low substitution under microwave were studied. A three-level-three-factorial Central Composite Design using Response Surface Methodology (RSM) was employed to optimize the reaction conditions. The optimal parameters are as follows: amount of acetic anhydride of 12%, radiation time of 11min, and microwave power of 100W. These optimal conditions predicted by RSM were confirmed that the degree of substitution (DS) of acetate starch is 0.0691mg/g and the physical and chemical properties of natural corn starch (NCS) and corn starch acetate (ACS) were further studied.The transparency, water separation, water absorption, expansion force, and solubility of ACS low substitution are better than NCS, while the NCS's hydrolysis percentage is higher than ACS, which indicate that the modified corn starch has better performance than native corn starch. The surface morphology of the corn starch acetate was examined by scanning electron microscope (SEM), which showed that it had a smooth surface and a spherical and polygonal shape. However, samples' shape is irregular. Crystal structure was observed by X-ray diffraction, and the ACS can determine the level of microwave technology that can destroy the extent of the crystal and amorphous regions. Fourier transform infrared (FTIR) spectroscopy shows that around 1750cm -1 carbonyl signal determines acetylation bonding successfully. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: response surface approach, degradation pathway, and toxicity evaluation.

    PubMed

    Li, Huiyuan; Li, Yanli; Xiang, Luojing; Huang, Qianqian; Qiu, Juanjuan; Zhang, Hui; Sivaiah, Matte Venkata; Baron, Fabien; Barrault, Joel; Petit, Sabine; Valange, Sabine

    2015-04-28

    A ferric smectite clay material was synthesized and further intercalated with Al2O3 pillars for the first time with the aim of evaluating its ability to be used as heterogeneous catalyst for the photo-Fenton decolorization of azo dye Orange II. UV irradiation was found to enhance the activity of the catalyst in the heterogeneous photo-Fenton process. Catalyst loading of 0.5g/L and hydrogen peroxide concentration of 13.5mM yielded a remarkable color removal, accompanied by excellent catalyst stability. The decolorization of Orange II followed the pseudo-first-order kinetics for initial dye concentrations from 20 to 160mg/L. The central composite design (CCD) based on the response surface methodology (RSM) was applied to evaluate the effects of several operating parameters, namely initial pH, catalyst loading and hydrogen peroxide concentration, on the decolorization efficiency. The RSM model was derived and the response surface plots were developed based on the results. Moreover, the main intermediate products were separated and identified using gas chromatography-mass spectrometry (GC-MS) and a possible degradation pathway was proposed accordingly. The acute toxicity experiments illustrated that the Daphniamagna immobilization rate continuously decreased during 150min reaction, indicating that the effluent was suitable for sequential biological treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Production of biodiesel from coastal macroalgae (Chara vulgaris) and optimization of process parameters using Box-Behnken design.

    PubMed

    Siddiqua, Shaila; Mamun, Abdullah Al; Enayetul Babar, Sheikh Md

    2015-01-01

    Renewable biodiesels are needed as an alternative to petroleum-derived transport fuels, which contribute to global warming and are of limited availability. Algae biomass, are a potential source of renewable energy, and they can be converted into energy such as biofuels. This study introduces an integrated method for the production of biodiesel from Chara vulgaris algae collected from the coastal region of Bangladesh. The Box-Behnken design based on response surface methods (RSM) used as the statistical tool to optimize three variables for predicting the best performing conditions (calorific value and yield) of algae biodiesel. The three parameters for production condition were chloroform (X1), sodium chloride concentration (X2) and temperature (X3). Optimal conditions were estimated by the aid of statistical regression analysis and surface plot chart. The optimal condition of biodiesel production parameter for 12 g of dry algae biomass was observed to be 198 ml chloroform with 0.75 % sodium chloride at 65 °C temperature, where the calorific value of biodiesel is 9255.106 kcal/kg and yield 3.6 ml.

  2. Optimization of reaction parameters of radiation induced grafting of 1-vinylimidazole onto poly(ethylene-co-tetraflouroethene) using response surface method

    NASA Astrophysics Data System (ADS)

    Nasef, Mohamed Mahmoud; Aly, Amgad Ahmed; Saidi, Hamdani; Ahmad, Arshad

    2011-11-01

    Radiation induced grafting of 1-vinylimidazole (1-VIm) onto poly(ethylene-co-tetraflouroethene) (ETFE) was investigated. The grafting parameters such as absorbed dose, monomer concentration, grafting time and temperature were optimized using response surface method (RSM). The Box-Behnken module available in the design expert software was used to investigate the effect of reaction conditions (independent parameters) varied in four levels on the degree of grafting ( G%) (response parameter). The model yielded a polynomial equation that relates the linear, quadratic and interaction effects of the independent parameters to the response parameter. The analysis of variance (ANOVA) was used to evaluate the results of the model and detect the significant values for the independent parameters. The optimum parameters to achieve a maximum G% were found to be monomer concentration of 55 vol%, absorbed dose of 100 kGy, time in the range of 14-20 h and a temperature of 61 °C. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to investigate the properties of the obtained films and provide evidence for grafting.

  3. Increasing levels of rapeseed expeller meal in diets for pigs: effects on protein and energy metabolism.

    PubMed

    Pérez de Nanclares, M; Marcussen, C; Tauson, A-H; Hansen, J Ø; Kjos, N P; Mydland, L T; Bach Knudsen, K E; Øverland, M

    2018-05-28

    The heavy reliance on imported soybean meal (SBM) as a protein source makes it necessary for the European pig industry to search for alternatives and to develop pigs that perform efficiently when fed such ingredients. Digestion and metabolism are major physiological processes contributing to variation in feed efficiency. Therefore, an experiment was conducted to assess the effects of replacing SBM with increasing levels of rapeseed meal (RSM) in diets for young pigs on apparent total tract digestibility (ATTD) of energy and nutrients, nitrogen (N) balance, energy metabolism and carbohydrate, protein and fat oxidation. Four diets were fed to 32 pigs (22.7±4.1 kg initial BW) for three weeks. The diets consisted of a control cereal grain-SBM basal diet and three test diets where SBM and wheat were partially replaced with 10%, 20%, and 30% of expeller RSM. Increasing level of RSM in the diets linearly reduced ATTD of organic matter, CP, total carbohydrates, dietary fiber and energy. Utilization of digested nitrogen (DN) for N retention and total N excretion were not affected by RSM inclusion, however, RSM inclusion induced a shift in N excretion from urine to feces. Despite a linear increase in liver to metabolic BW ratio, heat production and utilization of metabolizable energy (ME) for retention were not affected by increasing RSM inclusion. In conclusion, replacing SBM with up to 30% of expeller RSM in nutritionally balanced diets for young pigs reduced the ATTD of most nutrients and energy, but did not affect N and energy retention in the body or efficiency of utilization of DN or ME for retention.

  4. TiO2@TDI@DMAPA: an amine-modified nanoparticle, tailored to act as an economic basic heterogeneous nanocatalyst

    NASA Astrophysics Data System (ADS)

    Esfahanian, Farzane; Amoozadeh, Ali; Bitaraf, Mehrnoosh

    2018-06-01

    This study has represented an easy and inexpensive method for the synthesis of a new basic nanocatalyst. In this regard, 3-dimethylaminopropylamine (DMAPA), an economic, industrial, and readily obtainable basic compound, has been grafted onto nano-titania particles by the use of 2,4-toluene diisocyanate (TDI) as a bi-functional, inexpensive, and highly reactive linker. The prepared catalyst has been characterized using the spectroscopic FT-IR method, XRD, FE-SEM, EDX, and back titration. Furthermore, it was identified as an effective catalyst in the preparation of DHPM derivatives and pyranopyrazoles which results in high purity and high yields of products. Response surface methodology (RSM) based on a central composite design (CCD) was employed to reach the optimal conditions. The catalyst can be readily separated and recycled up to six times. [Figure not available: see fulltext.

  5. Antiplasmodial Activity and Mechanism of Action of RSM-932A, a Promising Synergistic Inhibitor of Plasmodium falciparum Choline Kinase

    PubMed Central

    Zimmerman, Tahl; Moneriz, Carlos; Diez, Amalia; Bautista, José Manuel; Gómez del Pulgar, Teresa; Cebrián, Arancha

    2013-01-01

    We have investigated the mechanism of action of inhibition of the choline kinase of P. falciparum (p.f.-ChoK) by two inhibitors of the human ChoKα, MN58b and RSM-932A, which have previously been shown to be potent antitumoral agents. The efficacy of these inhibitors against p.f.-ChoK is investigated using enzymatic and in vitro assays. While MN58b may enter the choline/phosphocholine binding site, RSM-932A appears to have an altogether novel mechanism of inhibition and is synergistic with respect to both choline and ATP. A model of inhibition for RSM-932A in which this inhibitor traps p.f.-ChoK in a phosphorylated intermediate state blocking phosphate transfer to choline is presented. Importantly, MN58b and RSM-932A have in vitro inhibitory activity in the low nanomolar range and are equally effective against chloroquine-sensitive and chloroquine-resistant strains. RSM-932A and MN58b significantly reduced parasitemia and induced the accumulation of trophozoites and schizonts, blocking intraerythrocytic development and interfering with parasite egress or invasion, suggesting a delay of the parasite maturation stage. The present data provide two new potent structures for the development of antimalarial compounds and validate p.f.-ChoK as an accessible drug target against the parasite. PMID:24041883

  6. Cell growth and proteolytic activity of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus in milk as affected by supplementation with peptide fractions.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2014-12-01

    The present investigation examined the effects of supplementation of milk peptide fractions produced by enzymatic hydrolysis on the fermentation of reconstituted skim milk (RSM). Changes in pH, cell growth, proteolytic activity, and angiotensin-converting enzyme (ACE)-inhibitory activity were monitored during fermentation of RSM by pure cultures of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus. The study showed that supplementation with peptide fractions of different molecular weights did not significantly affect the bacterial growth in RSM. All bacteria showed an increased proteolytic activity in RSM supplemented with large peptides (>10 kDa), and L. helveticus in general exhibited the highest proteolytic activity among the bacteria studied. The ACE-inhibitory activity was observed to be the maximum in RSM supplemented with larger peptides (>10 kDa) for all bacteria. The results suggest that proteolysis by bacteria leads to increased production of ACE-inhibitory peptides compared to the supplemented peptides produced by enzymatic hydrolysis.

  7. Development of experimental design approach and ANN-based models for determination of Cr(VI) ions uptake rate from aqueous solution onto the solid biodiesel waste residue.

    PubMed

    Shanmugaprakash, M; Sivakumar, V

    2013-11-01

    In the present work, the evaluation capacities of two optimization methodologies such as RSM and ANN were employed and compared for predication of Cr(VI) uptake rate using defatted pongamia oil cake (DPOC) in both batch and column mode. The influence of operating parameters was investigated through a central composite design (CCD) of RSM using Design Expert 8.0.7.1 software. The same data was fed as input in ANN to obtain a trained the multilayer feed-forward networks back-propagation algorithm using MATLAB. The performance of the developed ANN models were compared with RSM mathematical models for Cr(VI) uptake rate in terms of the coefficient of determination (R(2)), root mean square error (RMSE) and absolute average deviation (AAD). The estimated values confirm that ANN predominates RSM representing the superiority of a trained ANN models over RSM models in order to capture the non-linear behavior of the given system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The Trk Potassium Transporter Is Required for RsmB-Mediated Activation of Virulence in the Phytopathogen Pectobacterium wasabiae.

    PubMed

    Valente, Rita S; Xavier, Karina B

    2016-01-15

    Pectobacterium wasabiae (previously known as Erwinia carotovora) is an important plant pathogen that regulates the production of plant cell wall-degrading enzymes through an N-acyl homoserine lactone-based quorum sensing system and through the GacS/GacA two-component system (also known as ExpS/ExpA). At high cell density, activation of GacS/GacA induces the expression of RsmB, a noncoding RNA that is essential for the activation of virulence in this bacterium. A genetic screen to identify regulators of RsmB revealed that mutants defective in components of a putative Trk potassium transporter (trkH and trkA) had decreased rsmB expression. Further analysis of these mutants showed that changes in potassium concentration influenced rsmB expression and consequent tissue damage in potato tubers and that this regulation required an intact Trk system. Regulation of rsmB expression by potassium via the Trk system occurred even in the absence of the GacS/GacA system, demonstrating that these systems act independently and are both required for full activation of RsmB and for the downstream induction of virulence in potato infection assays. Overall, our results identified potassium as an essential environmental factor regulating the Rsm system, and the consequent induction of virulence, in the plant pathogen P. wasabiae. Crop losses from bacterial diseases caused by pectolytic bacteria are a major problem in agriculture. By studying the regulatory pathways involved in controlling the expression of plant cell wall-degrading enzymes in Pectobacterium wasabiae, we showed that the Trk potassium transport system plays an important role in the regulation of these pathways. The data presented further identify potassium as an important environmental factor in the regulation of virulence in this plant pathogen. We showed that a reduction in virulence can be achieved by increasing the extracellular concentration of potassium. Therefore, this work highlights how elucidation of the mechanisms involved in regulating virulence can lead to the identification of environmental factors that can influence the outcome of infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. The Trk Potassium Transporter Is Required for RsmB-Mediated Activation of Virulence in the Phytopathogen Pectobacterium wasabiae

    PubMed Central

    Valente, Rita S.

    2015-01-01

    ABSTRACT Pectobacterium wasabiae (previously known as Erwinia carotovora) is an important plant pathogen that regulates the production of plant cell wall-degrading enzymes through an N-acyl homoserine lactone-based quorum sensing system and through the GacS/GacA two-component system (also known as ExpS/ExpA). At high cell density, activation of GacS/GacA induces the expression of RsmB, a noncoding RNA that is essential for the activation of virulence in this bacterium. A genetic screen to identify regulators of RsmB revealed that mutants defective in components of a putative Trk potassium transporter (trkH and trkA) had decreased rsmB expression. Further analysis of these mutants showed that changes in potassium concentration influenced rsmB expression and consequent tissue damage in potato tubers and that this regulation required an intact Trk system. Regulation of rsmB expression by potassium via the Trk system occurred even in the absence of the GacS/GacA system, demonstrating that these systems act independently and are both required for full activation of RsmB and for the downstream induction of virulence in potato infection assays. Overall, our results identified potassium as an essential environmental factor regulating the Rsm system, and the consequent induction of virulence, in the plant pathogen P. wasabiae. IMPORTANCE Crop losses from bacterial diseases caused by pectolytic bacteria are a major problem in agriculture. By studying the regulatory pathways involved in controlling the expression of plant cell wall-degrading enzymes in Pectobacterium wasabiae, we showed that the Trk potassium transport system plays an important role in the regulation of these pathways. The data presented further identify potassium as an important environmental factor in the regulation of virulence in this plant pathogen. We showed that a reduction in virulence can be achieved by increasing the extracellular concentration of potassium. Therefore, this work highlights how elucidation of the mechanisms involved in regulating virulence can lead to the identification of environmental factors that can influence the outcome of infection. PMID:26483524

  10. Optimization of ultrasound-assisted extraction of phenolic compounds from grapefruit (Citrus paradisi Macf.) leaves via D-optimal design and artificial neural network design with categorical and quantitative variables.

    PubMed

    Ciğeroğlu, Zeynep; Aras, Ömür; Pinto, Carlos A; Bayramoglu, Mahmut; Kırbaşlar, Ş İsmail; Lorenzo, José M; Barba, Francisco J; Saraiva, Jorge A; Şahin, Selin

    2018-03-06

    The extraction of phenolic compounds from grapefruit leaves assisted by ultrasound-assisted extraction (UAE) was optimized using response surface methodology (RSM) by means of D-optimal experimental design and artificial neural network (ANN). For this purpose, five numerical factors were selected: ethanol concentration (0-50%), extraction time (15-60 min), extraction temperature (25-50 °C), solid:liquid ratio (50-100 g L -1 ) and calorimetric energy density of ultrasound (0.25-0.50 kW L -1 ), whereas ultrasound probe horn diameter (13 or 19 mm) was chosen as categorical factor. The optimized experimental conditions yielded by RSM were: 10.80% for ethanol concentration; 58.52 min for extraction time; 30.37 °C for extraction temperature; 52.33 g L -1 for solid:liquid ratio; 0.457 kW L -1 for ultrasonic power density, with thick probe type. Under these conditions total phenolics content was found to be 19.04 mg gallic acid equivalents g -1 dried leaf. The same dataset was used to train multilayer feed-forward networks using different approaches via MATLAB, with ANN exhibiting superior performance to RSM (differences included categorical factor in one model and higher regression coefficients), while close values were obtained for the extraction variables under study, except for ethanol concentration and extraction time. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  11. Comparison of two turbulence models in simulating an axisymmetric jet evolving into a tank

    NASA Astrophysics Data System (ADS)

    Zidouni Kendil, F.; Danciu, D.-V.; Lucas, D.; Bousbia Salah, A.; Mataoui, A.

    2011-12-01

    Experiments and computational fluid dynamics (CFD) simulations have been carried out to investigate a turbulent water jet plunging into a tank filled with the same liquid. To avoid air bubble entrainment which may be caused by surface instabilities, the free falling length of the jet is set to zero. For both impinging region and recirculation zone, measurements are made using Particle Image Velocimetry (PIV). Instantaneous- and time-averaged velocity fields are obtained. Numerical data is obtained on the basis of both κ - epsilon and SSG (Speziale, Sarkar and Gatski) of Reynolds Stresses Turbulent Model (RSM) in three dimensional frame and compared to experimental results via the axial velocity and turbulent kinetic energy. For axial distances lower than 5cm from the jet impact point, the axial velocity matches well the measurements, using both models. A progressive difference is found near the jet for higher axial distances from the jet impact point. Nevertheless, the turbulence kinetic energy agrees very well with the measurements when applying the SSG-RSM model for the lower part of the tank, whereas it is underestimated in the upper region. Inversely, the κ - epsilon model shows better results in the upper part of the water tank and underestimates results for the lower part of the water tank. From the overall results, it can be concluded that, for single phase flow, the κ - epsilon model describes well the average axial velocity, whereas the turbulence kinetic energy is better represented by the SSG-RSM model.

  12. Optimization of enzyme complexes for efficient hydrolysis of corn stover to produce glucose.

    PubMed

    Yu, Xiaoxiao; Liu, Yan; Meng, Jiatong; Cheng, Qiyue; Zhang, Zaixiao; Cui, Yuxiao; Liu, Jiajing; Teng, Lirong; Lu, Jiahui; Meng, Qingfan; Ren, Xiaodong

    2015-05-01

    Hydrolysis of cellulose to glucose is the critical step for transferring the lignocellulose to the industrial chemicals. For improving the conversion rate of cellulose of corn stover to glucose, the cocktail of celllulase with other auxiliary enzymes and chemicals was studied in this work. Single factor tests and Response Surface Methodology (RSM) were applied to optimize the enzyme mixture, targeting maximum glucose release from corn stover. The increasing rate of glucan-to-glucose conversion got the higher levels while the cellulase was added 1.7μl tween-80/g cellulose, 300μg β-glucosidase/g cellulose, 400μg pectinase/g cellulose and 0.75mg/ml sodium thiosulphate separately in single factor tests. To improve the glucan conversion, the β-glucosidase, pectinase and sodium thiosulphate were selected for next step optimization with RSM. It is showed that the maximum increasing yield was 45.8% at 377μg/g cellulose Novozyme 188, 171μg/g cellulose pectinase and 1mg/ml sodium thiosulphate.

  13. Optimization for ultrasonic-microwave synergistic extraction of polysaccharides from Cornus officinalis and characterization of polysaccharides.

    PubMed

    Yin, Xiulian; You, Qinghong; Jiang, Zhonghai; Zhou, Xinghai

    2016-02-01

    Ultrasonic-microwave synergistic extraction (UMSE) of polysaccharides from Cornus officinalis was optimized by response surface methodology (RSM). The effect of four different factors on the yield of C. officinalis polysaccharides (COP) was studied. RSM results showed that the optimal conditions were extraction time of 31.49823 min, microwave power of 99.39769 W, and water-to-raw material ratio of 28.16273. The COP yield was 11.38±0.31% using the modified optimal conditions, which was consistent with the value predicted by the model. The crude COP was purified by DEAE-Cellulose 52 chromatography and Sephadex G-100 chromatography. Five fractions, namely, crude COP, COP-1, COP-2, COP-3, and COP-4, were obtained. Monosaccharide composition analysis revealed that the COP was composed of glucose, arabinose, fucose, xylose, mannose, and rhamnose. Preliminary structural characterizations of COP were conducted by scanning electron microscopy and Fourier transform infrared spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Optimized extraction of polysaccharides from Cymbopogon citratus and its biological activities.

    PubMed

    Thangam, Ramar; Suresh, Veeraperumal; Kannan, Soundarapandian

    2014-04-01

    In this study the extraction of hot water soluble polysaccharides (HWSPs) from Cymbopogon citratus using hot water decoction was discussed. Response surface methodology (RSM) based on a three level, three variable central composite rotatable design (CCRD), was employed to obtain best possible combination of extraction time (X1: 30-180 min), extraction temperature (X2: 70-100 °C) and water to the raw material ratio (X3: 10-60) for maximum HWSPs extraction. The optimum extraction conditions were as follows: extraction time was around 113.81 min, extraction temperature at 99.66 °C and the ratio of water to raw material was 33.11 g/mL. Under these conditions, the experimental yield was 13.24±0.23%, which is well in close agreement with the value predicted by RSM model yield (13.19%). The basic characterization of HWSPs was determined by using the FTIR. These preliminary in vitro biological studies indicated that lemongrass polysaccharides were useful for anticancer therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Modeling of process parameters for enhanced production of coenzyme Q10 from Rhodotorula glutinis.

    PubMed

    Balakumaran, Palanisamy Athiyaman; Meenakshisundaram, Sankaranarayanan

    2015-01-01

    Coenzyme Q10 (CoQ10) plays an indispensable role in ATP generation through oxidative phosphorylation and helps in scavenging superoxides generated during electron transfer reactions. It finds extensive applications specifically related to oxidative damage and metabolic dysfunctions. This article reports the use of a statistical approach to optimize the concentration of key variables for the enhanced production of CoQ10 by Rhodotorula glutinis in a lab-scale fermenter. The culture conditions that promote optimum growth and CoQ10 production were optimized and the interaction of significant variables para-hydroxybenzoic acid (PHB, 819.34 mg/L) and soybean oil (7.78% [v/v]) was studied using response surface methodology (RSM). CoQ10 production increased considerably from 10 mg/L (in control) to 39.2 mg/L in batch mode with RSM-optimized precursor concentration. In the fed-batch mode, PHB and soybean oil feeding strategy enhanced CoQ10 production to 78.2 mg/L.

  16. Statistical optimization of recycled-paper enzymatic hydrolysis for simultaneous saccharification and fermentation via central composite design.

    PubMed

    Liu, Qing; Cheng, Ke-ke; Zhang, Jian-an; Li, Jin-ping; Wang, Ge-hua

    2010-01-01

    A central composite design of the response surface methodology (RSM) was employed to study the effects of temperature, enzyme concentration, and stirring rate on recycled-paper enzymatic hydrolysis. Among the three variables, temperature and enzyme concentration significantly affected the conversion efficiency of substrate, whereas stirring rate was not effective. A quadratic polynomial equation was obtained for enzymatic hydrolysis by multiple regression analysis using RSM. The results of validation experiments were coincident with the predicted model. The optimum conditions for enzymatic hydrolysis were temperature, enzyme concentration, and stirring rate of 43.1 degrees C, 20 FPU g(-1) substrate, and 145 rpm, respectively. In the subsequent simultaneous saccharification and fermentation (SSF) experiment under the optimum conditions, the highest 28.7 g ethanol l(-1) was reached in the fed-batch SSF when 5% (w/v) substrate concentration was used initially, and another 5% added after 12 h fermentation. This ethanol output corresponded to 77.7% of the theoretical yield based on the glucose content in the raw material.

  17. Isolation and characterization of hydrophobic compounds from carbohydrate matrix of Pistacia atlantica.

    PubMed

    Samavati, Vahid; Adeli, Mostafa

    2014-01-30

    The present work is focused on the optimization of hydrophobic compounds extraction process from the carbohydrate matrix of Iranian Pistacia atlantica seed at laboratory level using ultrasonic-assisted extraction. Response surface methodology (RSM) was used to optimize oil seed extraction yield. Independent variables were extraction temperature (30, 45, 60, 75 and 90°C), extraction time (10, 15, 20, 25, 30 and 35 min) and power of ultrasonic (20, 40, 60, 80 and 100 W). A second order polynomial equation was used to express the oil extraction yield as a function of independent variables. The responses and variables were fitted well to each other by multiple regressions. The optimum extraction conditions were as follows: extraction temperature of 75°C, extraction time of 25 min, and power of ultrasonic of 80 W. A comparison between seed oil composition extracted by ultrasonic waves under the optimum operating conditions determined by RSM for oil yield and by organic solvent was reported. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida.

    PubMed

    Annadurai, Gurusamy; Ling, Lai Yi; Lee, Jiunn-Fwu

    2008-02-28

    In this work, a four-level Box-Behnken factorial design was employed combining with response surface methodology (RSM) to optimize the medium composition for the degradation of phenol by pseudomonas putida (ATCC 31800). A mathematical model was then developed to show the effect of each medium composition and their interactions on the biodegradation of phenol. Response surface method was using four levels like glucose, yeast extract, ammonium sulfate and sodium chloride, which also enabled the identification of significant effects of interactions for the batch studies. The biodegradation of phenol on Pseudomonas putida (ATCC 31800) was determined to be pH-dependent and the maximum degradation capacity of microorganism at 30 degrees C when the phenol concentration was 0.2 g/L and the pH of the solution was 7.0. Second order polynomial regression model was used for analysis of the experiment. Cubic and quadratic terms were incorporated into the regression model through variable selection procedures. The experimental values are in good agreement with predicted values and the correlation coefficient was found to be 0.9980.

  19. Encapsulation of Beetroot Pomace Extract: RSM Optimization, Storage and Gastrointestinal Stability.

    PubMed

    Tumbas Šaponjac, Vesna; Čanadanović-Brunet, Jasna; Ćetković, Gordana; Jakišić, Mirjana; Djilas, Sonja; Vulić, Jelena; Stajčić, Slađana

    2016-04-30

    One of the great problems in food production are surplus by-products, usually utilized for feeding animals and for preparation of dietary fibre or biofuel. These products represent potential sources of bioactive antioxidants and colour-giving compounds which could be used in the pharmaceutical industry and as food additives. In the present study beetroot pomace extract was encapsulated in soy protein by a freeze drying method. Process parameters (core: wall ratio, extract concentration and mixing time) were optimized using response surface methodology (RSM) in order to obtain the optimum encapsulate (OE) with the highest polyphenol encapsulation efficiency (EE) and radical scavenging activity on DPPH radicals (SA). Using the calculated optimum conditions, the EE (86.14%) and SA (1668.37 μmol Trolox equivalents/100 g) of OE did not differ significantly (p < 0.05) from the predicted ones. The contents of total polyphenols (326.51 mg GAE/100 g), flavonoids (10.23 mg RE/100 g), and betalains (60.52 mg betanin/100 g and 61.33 mg vulgaxanthin-I/100 g), individual content of phenolic compounds and betalains by HPLC, and the ability to reduce Fe(3+) ions, i.e., reducing power (394.95 μmol Trolox equivalents/100 g) of OE were determined as well. During three months of storage at room temperature, polyphenol retention was much higher (76.67%) than for betalain pigments, betacyanins (17.77%) and betaxanthins (17.72%). In vitro digestion and release of phenolics from OE showed higher release rate in simulated intestinal fluid than in gastric fluid. These results suggest encapsulation as a contemporary method for valorisation of sensitive bioactive compounds from food industry by-products.

  20. Optimization of Chlorella vulgaris and bioflocculant-producing bacteria co-culture: enhancing microalgae harvesting and lipid content.

    PubMed

    Wang, Y; Yang, Y; Ma, F; Xuan, L; Xu, Y; Huo, H; Zhou, D; Dong, S

    2015-05-01

    Microalgae are a sustainable bioresource, and the biofuel they produce is widely considered to be an alternative to limited natural fuel resources. However, microalgae harvesting is a bottleneck in the development of technology. Axenic Chlorella vulgaris microalgae exhibit poor harvesting, as expressed by a flocculation efficiency of 0·2%. This work optimized the co-culture conditions of C. vulgaris and bioflocculant-producing bacteria in synthetic wastewater using response surface methodology (RSM), thus aiming to enhance C. vulgaris harvesting and lipid content. Three significant process variables- inoculation ratio of bacteria and microalgae, initial glucose concentration, and co-culture time- were proposed in the RSM model. F-values (3·98/8·46) and R(2) values (0·7817/0·8711) both indicated a reasonable prediction by the RSM model. The results showed that C. vulgaris harvesting efficiency reached 45·0-50·0%, and the lipid content was over 21·0% when co-cultured with bioflocculant-producing bacteria under the optimized culture conditions of inoculation ratio of bacteria and microalgae of 0·20-0·25, initial glucose concentration of <1·5 kg m(-3) and co-culture time of 9-14 days. This work provided new insights into microalgae harvesting and cost-effective microalgal bioproducts, and confirmed the promising prospect of introducing bioflocculant-producing bacteria into microalgae bioenergy production. This work optimized the co-culture conditions of microalgae (C. vulgaris) and bioflocculant-producing bacteria (F2, Rhizobium radiobacter) in synthetic wastewater using response surface methodology, aiming to enhance C. vulgaris harvesting and lipid produced content. Bioflocculant-producing microbes are environmentally friendly functional materials. They avoid the negative effects of traditional chemical flocculants. This work provided new insights into microalgae harvesting and cost-effective production of microalgal bioproducts, and confirmed the promising prospect of introducing bioflocculant-producing bacteria into microalgae bioenergy production. © 2015 The Society for Applied Microbiology.

  1. Palm-based medium-and-long-chain triacylglycerol (P-MLCT): production via enzymatic interesterification and optimization using response surface methodology (RSM).

    PubMed

    Lee, Yee-Ying; Tang, Teck-Kim; Phuah, Eng-Tong; Karim, Nur Azwani Ab; Alwi, Siti Maslina Mohd; Lai, Oi-Ming

    2015-02-01

    Structured lipid such as medium-and long-chain triacylglycerol (MLCT) is claimed to be able to suppress body fat accumulation and be used to manage obesity. Response surface methodology (RSM) with four factors and three levels (+1,0,-1) faced centered composite design (FCCD) was employed for optimization of the enzymatic interesterification conditions of palm-based MLCT (P-MLCT) production. The effect of the four variables namely: substrate ratio palm kernel oil: palm oil, PKO:PO (40:60-100:0 w/w), temperature (50-70 °C), reaction time (0.5-7.5 h) and enzyme load (5-15 % w/w) on the P-MLCT yield (%) and by products (%) produced were investigated. The responses were determined via acylglycerol composition obtained from high performance liquid chromatography. Well-fitted models were successfully established for both responses: P-MLCT yield (R (2) = 0.9979) and by-products (R (2) = 0.9892). The P-MLCT yield was significantly (P < 0.05) affected by substrate ratio, reaction time and reaction temperature but not enzyme load (P > 0.05). Substrate ratio PKO: PO (100:0 w/w) gave the highest yield of P-MLCT (61 %). Nonetheless, substrate ratio of PKO: PO (90:10w/w) was chosen to improve the fatty acid composition of the P-MLCT. The optimized conditions for substrate ratio PKO: PO (90:10 w/w) was 7.26 h, 50 °C and 5 % (w/w) Lipozyme TLIM lipase, which managed to give 60 % yields of P-MLCT. Up scaled results in stirred tank batch reactor gave similar yields as lab scale. A 20 % increase in P-MLCT yield was obtained via RSM. The effect of enzymatic interesterification on the physicochemical properties of PKO:PO (90:10 w/w) were also studied. Thermoprofile showed that the P-MLCT oil melted below body temperature of 37 °C.

  2. Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace.

    PubMed

    He, Bo; Zhang, Ling-Li; Yue, Xue-Yang; Liang, Jin; Jiang, Jun; Gao, Xue-Ling; Yue, Peng-Xiang

    2016-08-01

    Ultrasound-Assisted Extraction (UAE) of total anthocyanins (TA) and phenolics (TP) from Blueberry Wine Pomace (BWP) was optimized using Response Surface Methodology (RSM). A Box-Behnken design was used to predict that the optimized conditions were an extraction temperature of 61.03°C, a liquid-solid ratio of 21.70mL/g and a sonication time of 23.67min. Using the modeled optimized conditions, the predicted and experimental yields of TA and TP were within a 2% difference. The yields of TA and TP obtained through the optimized UAE method were higher than those using a Conventional Solvent Extraction (CSE) method. Seven anthocyanins, namely delphinidin-3-O-glucoside, delphindin-3-O-arabinoside, petunidin-3-O-glucoside, cyanidin-3-O-arabinoside, cyanidin-3-O-glucoside, malvidin-3-O-glucoside and malvidin-3-O-arabinoside, were found in the BWP extract from both the UAE and CSE methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Optimizing Low-Concentration Mercury Removal from Aqueous Solutions by Reduced Graphene Oxide-Supported Fe3O4 Composites with the Aid of an Artificial Neural Network and Genetic Algorithm

    PubMed Central

    Cao, Rensheng; Hu, Jiwei; Ruan, Wenqian; Xiong, Kangning; Wei, Xionghui

    2017-01-01

    Reduced graphene oxide-supported Fe3O4 (Fe3O4/rGO) composites were applied in this study to remove low-concentration mercury from aqueous solutions with the aid of an artificial neural network (ANN) modeling and genetic algorithm (GA) optimization. The Fe3O4/rGO composites were prepared by the solvothermal method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), N2-sorption, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and superconduction quantum interference device (SQUID). Response surface methodology (RSM) and ANN were employed to model the effects of different operating conditions (temperature, initial pH, initial Hg ion concentration and contact time) on the removal of the low-concentration mercury from aqueous solutions by the Fe3O4/rGO composites. The ANN-GA model results (with a prediction error below 5%) show better agreement with the experimental data than the RSM model results (with a prediction error below 10%). The removal process of the low-concentration mercury obeyed the Freudlich isotherm and the pseudo-second-order kinetic model. In addition, a regeneration experiment of the Fe3O4/rGO composites demonstrated that these composites can be reused for the removal of low-concentration mercury from aqueous solutions. PMID:29112141

  4. Design and In-vitro Evaluation of Sustained Release Floating Tablets of Metformin HCl Based on Effervescence and Swelling

    PubMed Central

    Senjoti, Faria Gias; Mahmood, Syed; Jaffri, Juliana Md; Mandal, Uttam Kumar

    2016-01-01

    An oral sustained-release floating tablet formulation of metformin HCl was designed and developed. Effervescence and swelling properties were attributed on the developed tablets by sodium bicarbonate and HPMC-PEO polymer combination, respectively. Tablet composition was optimized by response surface methodology (RSM). Seventeen (17) trial formulations were analyzed according to Box-Behnken design of experiment where polymer content of HPMC and PEO at 1: 4 ratio (A), amount of sodium bi-carbonate (B), and amount of SSG (C) were adopted as independent variables. Floating lag time in sec (Y1), cumulative percent drug released at 1 h (Y2) and 12 h (Y3) were chosen as response variables. Tablets from the optimized formulation were also stored at accelerated stability condition (40°C and 75% RH) for 3 months to assess their stability profile. RSM could efficiently optimize the tablet composition with excellent prediction ability. In-vitro drug release until 12 h, floating lag time, and duration of floating were dependent on the amount of three selected independent variables. Optimized tablets remained floating for more than 24 h with a floating lag time of less than 4 min. Based on best fitting method, optimized formulation was found to follow Korsmeyer-Peppas release kinetic. Accelerated stability study revealed that optimized formulation was stable for three months without any major changes in assay, dissolution profile, floating lag time and other physical properties. PMID:27610147

  5. Some patterns of metallic nanoparticles' combined subchronic toxicity as exemplified by a combination of nickel and manganese oxide nanoparticles.

    PubMed

    Katsnelson, Boris A; Minigaliyeva, Ilzira A; Panov, Vladimir G; Privalova, Larisa I; Varaksin, Anatoly N; Gurvich, Vladimir B; Sutunkova, Marina P; Shur, Vladimir Ya; Shishkina, Ekaterina V; Valamina, Irene E; Makeyev, Oleg H

    2015-12-01

    Stable suspensions of NiO and/or Mn3O4 nanoparticles with a mean diameter of 16.7 ± 8.2 nm and 18.4 ± 5.4 nm, respectively, prepared by laser ablation of 99.99% pure metals in de-ionized water were repeatedly injected IP to rats at a dose of 0.50 mg or 0.25 mg 3 times a week up to 18 injections, either separately or in different combinations. Many functional indices as well as histological features of the liver, spleen, kidneys and brain were evaluated for signs of toxicity. The accumulation of Ni and Mn in these organs was measured with the help of AES and EPR methods. Both metallic nanoparticles proved adversely bio-active, but those of Mn3O4 were found to be more noxious in most of the non-specific toxicity manifestations. Moreover, they induced a more marked damaging effect in the neurons of the caudate nucleus and hippocampus which may be considered an experimental correlate of manganese-induced parkinsonism. Mathematical analysis based on the Response Surface Methodology (RSM) revealed a diversity of combined toxicity types depending not only on particular effects these types are assessed for but on their level as well. The prognostic power of the RSM model proved satisfactory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A matter of hierarchy: activation of orfamide production by the post-transcriptional Gac-Rsm cascade of Pseudomonas protegens CHA0 through expression upregulation of the two dedicated transcriptional regulators.

    PubMed

    Sobrero, Patricio Martín; Muzlera, Andrés; Frescura, Julieta; Jofré, Edgardo; Valverde, Claudio

    2017-10-01

    In this work, we surveyed the genome of P. protegens CHA0 in order to identify novel mRNAs possibly under the control of the Gac-Rsm cascade that might, for their part, serve to elucidate as-yet-unknown functions involved in the biocontrol of plant pathogens and/or in cellular processes required for fitness in natural environments. In view of the experimental evidence from former studies on the Gac-Rsm cascade, we developed a computational screen supported by a combination of sequence, structural and evolutionary constraints that led to a dataset of 43 potential novel mRNA targets. We then confirmed several mRNA targets experimentally and next focused on two of the respective genes that are physically linked to the orfamide biosynthetic gene cluster and whose predicted open-reading frames resembled cognate LuxR-type transcriptional regulators of cyclic lipopeptide clusters in related pseudomonads. In this report, we demonstrate that in strain CHA0, orfamide production is stringently dependent on a functional Gac-Rsm cascade and that both mRNAs encoding transcriptional regulatory proteins are under direct translational control of the RsmA/E proteins. Our results have thus revealed a hierarchical control over the expression of orfamide biosynthetic genes with the final transcriptional control subordinated to the global Gac-Rsm post-transcriptional regulatory system. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Optimization of Enterobacter cloacae (KU923381) for diesel oil degradation using response surface methodology (RSM).

    PubMed

    Ramasamy, Sugumar; Arumugam, Arumugam; Chandran, Preethy

    2017-02-01

    Efficiency of Enterobacter cloacae KU923381 isolated from petroleum hydrocarbon contaminated soil was evaluated in batch culture and bioreactor mode. The isolate were screened for biofilm formation using qualitative and quantitative assays. Response surface methodology (RSM) was used to study the effect of pH, temperature, glucose concentration, and sodium chloride on diesel degradation. The predicted values for diesel oil degradation efficiency by the statistical designs are in a close agreement with experimental data (R 2 = 99.66%). Degradation efficiency is increased by 36.78% at pH = 7, temperature = 35°C, glucose = 5%, and sodium chloride concentration = 5%. Under the optimized conditions, the experiments were performed for diesel oil degradation by gas chromatographic mass spectrometric analysis (GC-MS). GC-MS analysis confirmed that E. cloacae had highly degrade hexadecane, heptadecane, tridecane, and docosane by 99.71%, 99.23%, 99.66%, and 98.34% respectively. This study shows that rapid bioremoval of hydrocarbons in diesel oil is acheived by E. cloacae with abet of biofilm formation. The potential use of the biofilms for preparing trickling filters (gravel particles) for the degradation of hydrocarbons from petroleum wastes before their disposal in the open environment is highly suggested. This is the first successful attempt for artificially establishing petroleum hydrocarbon degrading bacterial biofilm on solid substrates in bioreactor.

  8. Modeling the Effect of Temperature and Potential on the In Vitro Corrosion Performance of Biomedical Hydroxyapatite Coatings

    NASA Astrophysics Data System (ADS)

    Coşkun, M. İbrahim; Karahan, İsmail H.; Yücel, Yasin; Golden, Teresa D.

    2016-10-01

    CoCrMo biomedical alloys were coated with a hydroxyapatite layer to improve biocompatibility and in vitro corrosion performance. A fast electrodeposition process was completed in 5 minutes for the hydroxyapatite coating. Effect of the solution temperature and applied potential on the in vitro corrosion performance of the hydroxyapatite coatings was modeled by response surface methodology (RSM) coupled with central composite design (CCD). A 5-level-2-factor experimental plan designed by CCD was used; the experimental plan contained 13 coating experiments with a temperature range from 283 K to 347 K (10 °C to 74 °C) and potential range from -1.2 to -1.9 V. Corrosion potential ( E corr) of the coatings in a simulated body fluid solution was chosen as response for the model. Predicted and experimental values fitted well with an R 2 value of 0.9481. Response surface plots of the impedance and polarization resistance ( R P) were investigated. Optimized parameters for electrodeposition of hydroxyapatite were determined by RSM as solution temperature of 305.48 K (32.33 °C) and potential of -1.55 V. Hydroxyapatite coatings fabricated at optimized parameters showed excellent crystal formation and high in vitro corrosion resistance.

  9. Optimization of lipase-catalyzed synthesis of ginsenoside Rb1 esters using response surface methodology.

    PubMed

    Hu, Jiang-Ning; Lee, Jeung-Hee; Zhu, Xue-Mei; Shin, Jung-Ah; Adhikari, Prakash; Kim, Jae-Kyung; Lee, Ki-Teak

    2008-11-26

    In the lipase (Novozyme 435)-catalyzed synthesis of ginsenoside Rb1 esters, different acyl donors were found to affect not only the degree of conversion but also the regioselectivity. The reaction of acyl donors with short carbon chain was more effective, showing higher conversion than those with long carbon chain. Among the three solvent systems, the reaction in tert-amyl alcohol showed the highest conversion rate, while the reaction in the mixed solvent of t-BuOH and pyridine (1:1) had the lowest conversion rate. To allow the increase of GRb1 lipophilicity, we decided to further study the optimal condition of synthesis of GRb1 with vinyl decanoate with 10 carbon chain fatty acids in tert-amyl alcohol. Response surface methodology (RSM) was employed to optimize the synthesis condition. From the ridge analysis with maximum responses, the maximum GRb1 conversion was predicted to be 61.51% in a combination of factors (40.2 h, 52.95 degrees C, substrate mole ratio 275.57, and enzyme amount 39.81 mg/mL). Further, the adequacy of the predicted model was examined by additional independent experiments at the predicted maximum synthesis conditions. Results showed that the RSM was effective to optimize a combination of factors for lipase-catalyzed synthesis of ginsenoside Rb1 with vinyl decanoate.

  10. Employing response surface methodology (RSM) to improve methane production from cotton stalk.

    PubMed

    Zhang, Han; Khalid, Habiba; Li, Wanwu; He, Yanfeng; Liu, Guangqing; Chen, Chang

    2018-03-01

    China is the largest cotton producer with the cotton output accounting for 25% of the total world's cotton production. A large quantity of cotton stalk (CS) waste is generated which is burned and causes environmental and ecological problems. This study investigated the anaerobic digestibility of CS by focusing on improving the methane yield by applying central composite design of response surface methodology (RSM). The purpose of this study was to determine the best level of factors to optimize the desired output of methane production from CS. Thus, it was necessary to describe the relationship of many individual variables with one or more response values for the effective utilization of CS. The influences of feed to inoculum (F/I) ratio and organic loading (OL) on methane production were investigated. Results showed that the experimental methane yield (EMY) and volatile solid (VS) removal were calculated to be 70.22 mL/gVS and 14.33% at F/I ratio of 0.79 and organic loading of 25.61 gVS/L, respectively. Characteristics of final effluent showed that the anaerobic system was stable. This research laid a foundation for future application of CS to alleviate the problems of waste pollution and energy output.

  11. Multi-Response Optimization of Granaticinic Acid Production by Endophytic Streptomyces thermoviolaceus NT1, Using Response Surface Methodology

    PubMed Central

    Roy, Sudipta; Halder, Suman Kumar; Banerjee, Debdulal

    2016-01-01

    Streptomyces thermoviolaceus NT1, an endophytic isolate, was studied for optimization of granaticinic acid production. It is an antimicrobial metabolite active against even drug resistant bacteria. Different media, optimum glucose concentration, initial media pH, incubation temperature, incubation period, and inoculum size were among the selected parameters optimized in the one-variable-at-a-time (OVAT) approach, where glucose concentration, pH, and temperature were found to play a critical role in antibiotic production by this strain. Finally, the Box–Behnken experimental design (BBD) was employed with three key factors (selected after OVAT studies) for response surface methodological (RSM) analysis of this optimization study.RSM analysis revealed a multifactorial combination; glucose 0.38%, pH 7.02, and temperature 36.53 °C as the optimum conditions for maximum antimicrobial yield. Experimental verification of model analysis led to 3.30-fold (61.35 mg/L as compared to 18.64 mg/L produced in un-optimized condition) enhanced granaticinic acid production in ISP2 medium with 5% inoculum and a suitable incubation period of 10 days. So, the conjugated optimization study for maximum antibiotic production from Streptomyces thermoviolaceus NT1 was found to result in significantly higher yield, which might be exploited in industrial applications. PMID:28952581

  12. Application of response surface methodology (RSM) for optimisation of COD, NH3-N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR).

    PubMed

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Mohamad, Abu Bakar; Abdul Rahman, Rakmi; Hasan Kadhum, Abdul Amir

    2013-05-30

    In this study, the potential of a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR) for removing chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and 2,4-dichlorophenol (2,4-DCP) from recycled paper wastewater was assessed. For this purpose, the response surface methodology (RSM) was employed, using a central composite face-centred design (CCFD), to optimise three of the most important operating variables, i.e., hydraulic retention time (HRT), aeration rate (AR) and influent feed concentration (IFC), in the pilot-scale GAC-SBBR process for recycled paper wastewater treatment. Quadratic models were developed for the response variables, i.e., COD, NH3-N and 2,4-DCP removal, based on the high value (>0.9) of the coefficient of determination (R(2)) obtained from the analysis of variance (ANOVA). The optimal conditions were established at 750 mg COD/L IFC, 3.2 m(3)/min AR and 1 day HRT, corresponding to predicted COD, NH3-N and 2,4-DCP removal percentages of 94.8, 100 and 80.9%, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Evaluation and optimization of ethanol production from carob pod extract by Zymomonas mobilis using response surface methodology.

    PubMed

    Vaheed, Hossein; Shojaosadati, Seyed Abbas; Galip, Hasan

    2011-01-01

    In this research, ethanol production from carob pod extract (extract) using Zymomonas mobilis with medium optimized by Plackett-Burman (P-B) and response surface methodologies (RSM) was studied. Z. mobilis was recognized as useful for ethanol production from carob pod extract. The effects of initial concentrations of sugar, peptone, and yeast extract as well as agitation rate (rpm), pH, and culture time in nonhydrolyzed carob pod extract were investigated. Significantly affecting variables (P = 0.05) in the model obtained from RSM studies were: weights of bacterial inoculum, initial sugar, peptone, and yeast extract. Acid hydrolysis was useful to complete conversion of sugars to glucose and fructose. Nonhydrolyzed extract showed higher ethanol yield and residual sugar compared with hydrolyzed extract. Ethanol produced (g g(-1) initial sugar, as the response) was not significantly different (P = 0.05) when Z. mobilis performance was compared in hydrolyzed and nonhydrolyzed extract. The maximum ethanol of 0.34 ± 0.02 g g(-1) initial sugar was obtained at 30°C, initial pH 5.2, and 80 rpm, using concentrations (g per 50 mL culture media) of: inoculum bacterial dry weight, 0.017; initial sugar, 5.78; peptone, 0.43; yeast extract, 0.43; and culture time of 36 h.

  14. Enhanced styrene recovery from waste polystyrene pyrolysis using response surface methodology coupled with Box-Behnken design.

    PubMed

    Mo, Yu; Zhao, Lei; Wang, Zhonghui; Chen, Chia-Lung; Tan, Giin-Yu Amy; Wang, Jing-Yuan

    2014-04-01

    A work applied response surface methodology coupled with Box-Behnken design (RSM-BBD) has been developed to enhance styrene recovery from waste polystyrene (WPS) through pyrolysis. The relationship between styrene yield and three selected operating parameters (i.e., temperature, heating rate, and carrier gas flow rate) was investigated. A second order polynomial equation was successfully built to describe the process and predict styrene yield under the study conditions. The factors identified as statistically significant to styrene production were: temperature, with a quadratic effect; heating rate, with a linear effect; carrier gas flow rate, with a quadratic effect; interaction between temperature and carrier gas flow rate; and interaction between heating rate and carrier gas flow rate. The optimum conditions for the current system were determined to be at a temperature range of 470-505°C, a heating rate of 40°C/min, and a carrier gas flow rate range of 115-140mL/min. Under such conditions, 64.52% WPS was recovered as styrene, which was 12% more than the highest reported yield for reactors of similar size. It is concluded that RSM-BBD is an effective approach for yield optimization of styrene recovery from WPS pyrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Optimization of edible coating formulations for improving postharvest quality and shelf life of pear fruit using response surface methodology.

    PubMed

    Nandane, A S; Dave, Rudri K; Rao, T V Ramana

    2017-01-01

    The effect of composite edible films containing soy protein isolate (SPI) in combination with additives like hydroxypropyl methylcellulose (HPMC) and olive oil on 'Babughosha' pear ( Pyrus communis L.) stored at ambient temperature (28 ± 5 °C and 60 ± 10% RH) was evaluated using Response surface methodology (RSM). A total of 30 edible coating formulations comprising of SPI (2-6%, w/v), olive oil (0.7-1.1%, v/v), HPMC (0.1-0.5%, w/v) and potassium sorbate (0-0.4% w/v) were evaluated for optimizing the most suitable combination. Quality parameters like weight loss%, TSS, pH and titrable acidity of the stored pears were selected as response variables for optimization. The optimization procedure was carried out using RSM. It was observed that the response variables were mainly effected by concentration of SPI and olive oil in the formulation. Edible coating comprising of SPI 5%, HPMC 0.40%, olive oil 1% and potassium sorbate 0.22% was found to be most suitable combination for pear fruit with predicted values of response variables indicated as weight loss% 3.50, pH 3.41, TSS 11.13 and TA% 0.513.

  16. Use of response surface methodology in a fed-batch process for optimization of tricarboxylic acid cycle intermediates to achieve high levels of canthaxanthin from Dietzia natronolimnaea HS-1.

    PubMed

    Nasri Nasrabadi, Mohammad Reza; Razavi, Seyed Hadi

    2010-04-01

    In this work, we applied statistical experimental design to a fed-batch process for optimization of tricarboxylic acid cycle (TCA) intermediates in order to achieve high-level production of canthaxanthin from Dietzia natronolimnaea HS-1 cultured in beet molasses. A fractional factorial design (screening test) was first conducted on five TCA cycle intermediates. Out of the five TCA cycle intermediates investigated via screening tests, alfaketoglutarate, oxaloacetate and succinate were selected based on their statistically significant (P<0.05) and positive effects on canthaxanthin production. These significant factors were optimized by means of response surface methodology (RSM) in order to achieve high-level production of canthaxanthin. The experimental results of the RSM were fitted with a second-order polynomial equation by means of a multiple regression technique to identify the relationship between canthaxanthin production and the three TCA cycle intermediates. By means of this statistical design under a fed-batch process, the optimum conditions required to achieve the highest level of canthaxanthin (13172 + or - 25 microg l(-1)) were determined as follows: alfaketoglutarate, 9.69 mM; oxaloacetate, 8.68 mM; succinate, 8.51 mM. Copyright 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Investigation of the Process Conditions for Hydrogen Production by Steam Reforming of Glycerol over Ni/Al₂O₃ Catalyst Using Response Surface Methodology (RSM).

    PubMed

    Ebshish, Ali; Yaakob, Zahira; Taufiq-Yap, Yun Hin; Bshish, Ahmed

    2014-03-19

    In this work; a response surface methodology (RSM) was implemented to investigate the process variables in a hydrogen production system. The effects of five independent variables; namely the temperature (X₁); the flow rate (X₂); the catalyst weight (X₃); the catalyst loading (X₄) and the glycerol-water molar ratio (X₅) on the H₂ yield (Y₁) and the conversion of glycerol to gaseous products (Y₂) were explored. Using multiple regression analysis; the experimental results of the H₂ yield and the glycerol conversion to gases were fit to quadratic polynomial models. The proposed mathematical models have correlated the dependent factors well within the limits that were being examined. The best values of the process variables were a temperature of approximately 600 °C; a feed flow rate of 0.05 mL/min; a catalyst weight of 0.2 g; a catalyst loading of 20% and a glycerol-water molar ratio of approximately 12; where the H₂ yield was predicted to be 57.6% and the conversion of glycerol was predicted to be 75%. To validate the proposed models; statistical analysis using a two-sample t -test was performed; and the results showed that the models could predict the responses satisfactorily within the limits of the variables that were studied.

  18. Response surface methodology investigation into the interactions between arsenic and humic acid in water during the coagulation process.

    PubMed

    Watson, Malcolm Alexander; Tubić, Aleksandra; Agbaba, Jasmina; Nikić, Jasmina; Maletić, Snežana; Molnar Jazić, Jelena; Dalmacija, Božo

    2016-07-15

    Interactions between arsenic and natural organic matter (NOM) are key limiting factors during the optimisation of drinking water treatment when significant amounts of both must be removed. This work uses Response Surface Methodology (RSM) to investigate how they interact during their simultaneous removal by iron chloride coagulation, using humic acid (HA) as a model NOM substance. Using a three factor Box-Behnken experimental design, As and HA removals were modelled, as well as a combined removal response. ANOVA results showed the significance of the coagulant dose for all three responses. At high initial arsenic concentrations (200μg/l), As removal was significantly hindered by the presence of HA. In contrast, the HA removal response was found to be largely independent of the initial As concentration, with the optimum coagulant dose increasing at increasing HA concentrations. The combined response was similar to the HA removal response, and the interactions evident are most interesting in terms of optimising treatment processes during the preparation of drinking water, highlighting the importance of utilizing RSM for such investigations. The combined response model was successfully validated with two different groundwaters used for drinking water supply in the Republic of Serbia, showing excellent agreement under similar experimental conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Integration of the Response Surface Methodology with the Compromise Decision Support Problem in Developing a General Robust Design Procedure

    NASA Technical Reports Server (NTRS)

    Chen, Wei; Tsui, Kwok-Leung; Allen, Janet K.; Mistree, Farrokh

    1994-01-01

    In this paper we introduce a comprehensive and rigorous robust design procedure to overcome some limitations of the current approaches. A comprehensive approach is general enough to model the two major types of robust design applications, namely, robust design associated with the minimization of the deviation of performance caused by the deviation of noise factors (uncontrollable parameters), and robust design due to the minimization of the deviation of performance caused by the deviation of control factors (design variables). We achieve mathematical rigor by using, as a foundation, principles from the design of experiments and optimization. Specifically, we integrate the Response Surface Method (RSM) with the compromise Decision Support Problem (DSP). Our approach is especially useful for design problems where there are no closed-form solutions and system performance is computationally expensive to evaluate. The design of a solar powered irrigation system is used as an example. Our focus in this paper is on illustrating our approach rather than on the results per se.

  20. Utilization of Corn Cob and TiO2 Photocatalyst Thin Films for Dyes Removal.

    PubMed

    Gan, Hui-Yee; Leow, Li-Eau; Ong, Siew-Teng

    2017-01-01

    The effectiveness of using TiO2 and corn cob films to remove Malachite Green oxalate (MG) and Acid Yellow 17 (AY 17) from binary dye solution was studied. The immobilization method in this study can avoid the filtration step which is not suited for practical applications. Batch studies were performed under different experimental conditions and the parameters studied involved initial pH of dye solution, initial dye concentration and contact time and reusability. The equilibrium data of MG and AY 17 conform to Freundlich and Langmuir isotherm model, respectively. The percentage removal of MG remained high after four sorption cycles, however for AY 17, a greater reduction was observed. The removal of both dyes were optimized and modeled via Plackett- Burman design (PB) and Response Surface Methodology (RSM). IR spectrum and surface conditions analyses were carried out using fourier-transform infrared spectrophotometer (FTIR), scanning electron microscope (SEM) and atomic force microscope (AFM), respectively.

  1. Process optimization of microencapsulation of curcumin in γ-polyglutamic acid using response surface methodology.

    PubMed

    Ko, Wen-Ching; Chang, Chao-Kai; Wang, Hsiu-Ju; Wang, Shian-Jen; Hsieh, Chang-Wei

    2015-04-01

    The aim of this study was to develop an optimal microencapsulation method for an oil-soluble component (curcumin) using γ-PGA. The results show that Span80 significantly enhances the encapsulation efficiency (EE) of γ-Na(+)-PGA microcapsules. Therefore, the effects of γ-Na(+)-PGA, curcumin and Span80 concentration on EE of γ-Na(+)-PGA microcapsules were studied by means of response surface methodology (RSM). It was found that the optimal microencapsulation process is achieved by using γ-Na(+)-PGA 6.05%, curcumin 15.97% and Span80 0.61% with a high EE% (74.47 ± 0.20%). Furthermore, the models explain 98% of the variability in the responses. γ-Na(+)-PGA seems to be a good carrier for the encapsulation of curcumin. In conclusion, this simple and versatile approach can potentially be applied to the microencapsulation of various oil-soluble components for food applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. [Optimization of Formulation and Process of Paclitaxel PEGylated Liposomes by Box-Behnken Response Surface Methodology].

    PubMed

    Shi, Ya-jun; Zhang, Xiao-feil; Guo, Qiu-ting

    2015-12-01

    To develop a procedure for preparing paclitaxel encapsulated PEGylated liposomes. The membrane hydration followed extraction method was used to prepare PEGylated liposomes. The process and formulation variables were optimized by "Box-Behnken Design (BBD)" of response surface methodology (RSM) with the amount of Soya phosphotidylcholine (SPC) and PEG2000-DSPE as well as the rate of SPC to drug as independent variables and entrapment efficiency as dependent variables for optimization of formulation variables while temperature, pressure and cycle times as independent variables and particle size and polydispersion index as dependent variables for process variables. The optimized liposomal formulation was characterized for particle size, Zeta potential, morphology and in vitro drug release. For entrapment efficiency, particle size, polydispersion index, Zeta potential, and in vitro drug release of PEGylated liposomes was found to be 80.3%, (97.15 ± 14.9) nm, 0.117 ± 0.019, (-30.3 ± 3.7) mV, and 37.4% in 24 h, respectively. The liposomes were found to be small, unilamellar and spherical with smooth surface as seen in transmission electron microscopy. The Box-Behnken response surface methodology facilitates the formulation and optimization of paclitaxel PEGylated liposomes.

  3. Formal Verification of Safety Properties for Aerospace Systems Through Algorithms Based on Exhaustive State-Space Exploration

    NASA Technical Reports Server (NTRS)

    Ciardo, Gianfranco

    2004-01-01

    The Runway Safety Monitor (RSM) designed by Lockheed Martin is part of NASA's effort to reduce aviation accidents. We developed a Petri net model of the RSM protocol and used the model checking functions of our tool SMART to investigate a number of safety properties in RSM. To mitigate the impact of state-space explosion, we built a highly discretized model of the system, obtained by partitioning the monitored runway zone into a grid of smaller volumes and by considering scenarios involving only two aircraft. The model also assumes that there are no communication failures, such as bad input from radar or lack of incoming data, thus it relies on a consistent view of reality by all participants. In spite of these simplifications, we were able to expose potential problems in the RSM conceptual design. Our findings were forwarded to the design engineers, who undertook corrective action. Additionally, the results stress the efficiency attained by the new model checking algorithms implemented in SMART, and demonstrate their applicability to real-world systems. Attempts to verify RSM with NuSMV and SPIN have failed due to excessive memory consumption.

  4. Conversion of salvianolic acid B into salvianolic acid A in tissues of Radix Salviae Miltiorrhizae using high temperature, high pressure and high humidity.

    PubMed

    Xia, Hongrui; Sun, Longru; Lou, Hongxiang; Rahman, M Mukhlesur

    2014-05-15

    Salvianolic acid A (Sal A), an important constituent of Radix Salviae Miltiorrhizae (RSM), is effective for the treatment of myocardial infarction (MI) and coronary heart disease due to its potential in the improvement of acute myocardial ischemia. However, its content is very low in RSM. So it is obvious to find a rich source of Sal A or to improve its content by conversion of other related components into Sal A modifying reaction conditions. In this research we focused on the conversion of Sal B into Sal A in aqueous solutions of RSM by using different reaction conditions including pH, temperature, pressure and humidity. During the reactions, the contents of Sal A, Sal B and danshensu in the RSM were analyzed by high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LCMS). The results indicated that the conversion of Sal B into Sal A in RSM tissues under the conditions of a high temperature, high pressure and high humidity was efficient and thereby, was readily utilized to prepare rich Sal A materials in practice. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Optimization of Microencapsulation of Human Milk Fat Substitute by Response Surface Methodology.

    PubMed

    Li, Xue; Cao, Jun; Bai, Xinpeng; Jiang, Zefang; Shen, Xuanri

    2018-04-01

    Human milk fat substitutes (HMFS) are rich in polyunsaturated fatty acids which upon microencapsulation, can be used as a source of high quality lipids in infant formula. The response surface methodology (RSM) was employed to optimize the microencapsulation condition of HMFS as a functional product. The microencapsulation efficiency (MEE) of microencapsulated HMFS was investigated with respect to four variables including concentration of soy lecithin (A), ratio of demineralized whey powder to malt dextrin (B), HFMS concentration (C), and homogenizing pressure (D). The optimum conditions for efficient microencapsulation of HMFS by the spray drying technique were determined as follows: the amount of soybean lecithin-0.96%, ratio of desalted whey powder to malt dextrin-2.04:1, oil content-17.37% and homogeneous pressure-0.46MPa. Under these conditions, the MEE was 84.72%, and the basic indices of the microcapsules were good. The structure of the microcapsules, as observed by scanning electron microscopy (SEM), revealed spherical, smooth-surfaced capsules with diameters ranging between 10-50 μm. Compared with HFMS, the peroxide value (POV) and acid value (AV) of the microcapsule were significantly lower during storage indicating that the microencapsulation process increases stability and shelf life. Infrared spectroscopic analyses indicated that HFMS had the same characteristic functional groups as the oil extracted from microcapsules. Simulated in vitro digestion revealed that the microcapsules were digested completely within 2h with maximum lipid absorption rate of 64%. Furthermore, these results advocate the embedding process of HFMS by RSM due to its efficacy.

  6. Numerical investigation of airflow in an idealised human extra-thoracic airway: a comparison study

    PubMed Central

    Chen, Jie; Gutmark, Ephraim

    2013-01-01

    Large eddy simulation (LES) technique is employed to numerically investigate the airflow through an idealised human extra-thoracic airway under different breathing conditions, 10 l/min, 30 l/min, and 120 l/min. The computational results are compared with single and cross hot-wire measurements, and with time-averaged flow field computed by standard k-ω and k-ω-SST Reynolds averaged Navier-Stokes (RANS) models and the Lattice-Boltzmann method (LBM). The LES results are also compared to root-mean-square (RMS) flow field computed by the Reynolds stress model (RSM) and LBM. LES generally gives better prediction of the time-averaged flow field than RANS models and LBM. LES also provides better estimation of the RMS flow field than both the RSM and the LBM. PMID:23619907

  7. Experimental design applications for modeling and assessing carbon dioxide sequestration in saline aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, John

    2014-11-29

    This project was a computer modeling effort to couple reservoir simulation and ED/RSM using Sensitivity Analysis, Uncertainty Analysis, and Optimization Methods, to assess geologic, geochemical, geomechanical, and rock-fluid effects and factors on CO 2 injectivity, capacity, and plume migration. The project objective was to develop proxy models to simplify the highly complex coupled geochemical and geomechanical models in the utilization and storage of CO 2 in the subsurface. The goals were to investigate and prove the feasibility of the ED/RSM processes and engineering development, and bridge the gaps regarding the uncertainty and unknowns of the many geochemical and geomechanical interactingmore » parameters in the development and operation of anthropogenic CO 2 sequestration and storage sites. The bottleneck in this workflow is the high computational effort of reactive transport simulation models and large number of input variables to optimize with ED/RSM techniques. The project was not to develop the reactive transport, geomechanical, or ED/RSM software, but was to use what was commercially and/or publically available as a proof of concept to generate proxy or surrogate models. A detailed geologic and petrographic mineral assemblage and geologic structure of the doubly plunging anticline was defined using the USDOE RMOTC formations of interest data (e.g., Lower Sundance, Crow Mountain, Alcova Limestone, and Red Peak). The assemblage of 23 minerals was primarily developed from literature data and petrophysical (well log) analysis. The assemblage and structure was input into a commercial reactive transport simulator to predict the effects of CO 2 injection and complex reactions with the reservoir rock. Significant impediments were encountered during the execution phase of the project. The only known commercial reactive transport simulator was incapable of simulating complex geochemistry modeled in this project. Significant effort and project funding was expended to determine the limitations of both the commercial simulator and the Lawrence Berkeley National Laboratory (LBNL) R&D simulator, TOUGHREACT available to the project. A simplified layer cake model approximating the volume of the RMOTC targeted reservoirs was defined with 1-3 minerals eventually modeled with limited success. Modeling reactive transport in porous media requires significant computational power. In this project, up to 24 processors were used to model a limited mineral set of 1-3 minerals. In addition, geomechanical aspects of injecting CO 2 into closed, semi-open, and open systems in various well completion methods was simulated. Enhanced Oil Recovery (EOR) as a storage method was not modeled. A robust and stable simulation dataset or base case was developed and used to create a master dataset with embedded instructions for input to the ED/RSM software. Little success was achieved toward the objective of the project using the commercial simulator or the LBNL simulator versions available during the time of this project. Several hundred realizations were run with the commercial simulator and ED/RSM software, most having convergence problems and terminating prematurely. A proxy model for full field CO 2 injection sequestration utilization and storage was not capable of being developed with software available for this project. Though the chemistry is reasonably known and understood, based on the amount of effort and huge computational time required, predicting CO 2 sequestration storage capacity in geologic formations to within the program goals of ±30% proved unsuccessful.« less

  8. [Optimization of ethylene production from ethanol dehydration using Zn-Mn-Co/HZSM-5 by response surface methodology].

    PubMed

    Wang, Wei; Cheng, Keke; Xue, Jianwei; Zhang, Jian'an

    2011-03-01

    The effects of reaction temperature, ethanol concentration and weight hourly space velocity (WHSV) on the ethylene production from ethanol dehydration using zinc, manganese and cobalt modified HZSM-5 catalyst were investigated by response surface methodology (RSM). The results showed that the most significant effect among factors was reaction temperature and the factors had interaction. The optimum conditions were found as 34.4% ethanol concentration, 261.3 0 degrees C of reaction temperature and 1.18 h(-1) of WHSV, under these conditions the yield of ethylene achieved 98.69%.

  9. Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu Amr, Salem S.; Aziz, Hamidi Abdul, E-mail: cehamidi@eng.usm.my; Adlan, Mohd Nordin

    Highlights: ► Ozone and persulfate reagent (O{sub 3}/S{sub 2}O{sub 8}{sup 2-}) was used to treat stabilized leachate. ► Central composite design (CCD) with response surface methodology (RSM) was applied. ► Operating variables including ozone and persulfate dosage, pH variance, and reaction time. ► Optimum removal of COD, color, and NH{sub 3}–N was 72%, 96%, and 76%, respectively. ► A good value of ozone consumption (OC) obtained with 0.60 (kg O{sub 3}/kg COD). - Abstract: The objective of this study was to investigate the performance of employing persulfate reagent in the advanced oxidation of ozone to treat stabilized landfill leachate inmore » an ozone reactor. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as ozone and persulfate dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following four responses proved to be significant with very low probabilities (<0.0001): COD, color, NH{sub 3}–N, and ozone consumption (OC). The obtained optimum conditions included a reaction time of 210 min, 30 g/m{sup 3} ozone, 1 g/1 g COD{sub 0}/S{sub 2}O{sub 8}{sup 2-} ratio, and pH 10. The experimental results were corresponded well with predicted models (COD, color, and NH{sub 3}–N removal rates of 72%, 96%, and 76%, respectively, and 0.60 (kg O{sub 3}/kg COD OC). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as ozone only and persulfate S{sub 2}O{sub 8}{sup 2-} only, to evaluate its effectiveness. The combined method (i.e., O{sub 3}/S{sub 2}O{sub 8}{sup 2-}) achieved higher removal efficiencies for COD, color, and NH{sub 3}–N compared with other studied applications. Furthermore, the new method is more efficient than ozone/Fenton in advanced oxidation process in the treatment of the same studied leachate.« less

  10. 5 CFR 850.101 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....101 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS... processing system created by the Office of Personnel Management's (OPM's) Retirement Systems Modernization (RSM) initiative. RSM is OPM's strategic initiative to improve the quality and timeliness of services...

  11. Using Rasch rating scale model to reassess the psychometric properties of the Persian version of the PedsQLTM 4.0 Generic Core Scales in school children

    PubMed Central

    2012-01-01

    Background Item response theory (IRT) is extensively used to develop adaptive instruments of health-related quality of life (HRQoL). However, each IRT model has its own function to estimate item and category parameters, and hence different results may be found using the same response categories with different IRT models. The present study used the Rasch rating scale model (RSM) to examine and reassess the psychometric properties of the Persian version of the PedsQLTM 4.0 Generic Core Scales. Methods The PedsQLTM 4.0 Generic Core Scales was completed by 938 Iranian school children and their parents. Convergent, discriminant and construct validity of the instrument were assessed by classical test theory (CTT). The RSM was applied to investigate person and item reliability, item statistics and ordering of response categories. Results The CTT method showed that the scaling success rate for convergent and discriminant validity were 100% in all domains with the exception of physical health in the child self-report. Moreover, confirmatory factor analysis supported a four-factor model similar to its original version. The RSM showed that 22 out of 23 items had acceptable infit and outfit statistics (<1.4, >0.6), person reliabilities were low, item reliabilities were high, and item difficulty ranged from -1.01 to 0.71 and -0.68 to 0.43 for child self-report and parent proxy-report, respectively. Also the RSM showed that successive response categories for all items were not located in the expected order. Conclusions This study revealed that, in all domains, the five response categories did not perform adequately. It is not known whether this problem is a function of the meaning of the response choices in the Persian language or an artifact of a mostly healthy population that did not use the full range of the response categories. The response categories should be evaluated in further validation studies, especially in large samples of chronically ill patients. PMID:22414135

  12. Transonic Dynamics Tunnel Force and Pressure Data Acquired on the HSR Rigid Semispan Model

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Rausch, Russ D.

    1999-01-01

    This report describes the aerodynamic data acquired on the High Speed Research Rigid Semispan Model (HSR-RSM) during NASA Langley Transonic Dynamics Tunnel (TDT) Test 520 conducted from 18 March to 4 April, 1996. The purpose of this test was to assess the aerodynamic character of a rigid high speed civil transport wing. The wing was fitted with a single trailing edge control surface which was both steadily deflected and oscillated during the test to investigate the response of the aerodynamic data to steady and unsteady control motion. Angle-of-attack and control surface deflection polars at subsonic, transonic and low-supersonic Mach numbers were obtained in the tunnel?s heavy gas configuration. Unsteady pressure and steady loads data were acquired on the wing, while steady pressures were measured on the fuselage. These data were reduced using a variety of methods, programs and computer systems. The reduced data was ultimately compiled onto a CD-ROM volume which was distributed to HSR industry team members in July, 1996. This report documents the methods used to acquire and reduce the data, and provides an assessment of the quality, repeatability, and overall character of the aerodynamic data measured during this test.

  13. Expellor extracted rape and safflower oilseed meals for poultry and sheep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, V.M.; Katz, R.J.; Auld, D.A.

    1982-01-01

    The objective of these studies was to evaluate the feeding value of on-the-farm expellor extracted rape (RSM) and safflower (SM) oilseed meals for poultry and sheep. Rapeseed meal and SM contained 30.7 and 25.8% crude protein (CP) and 21.7 and 8.7% fat, respectively. Rapeseed meal contained a total glucosinolate concentration of 78.3 ..mu..moles/g. A 22-day feeding trial was conducted with 6-day-old chicks. Rapeseed meal and SM replaced 25 or 50% of the soybean meal (SBM) protein in isonitrogenous (23% CP), isocaloric (3250 kcal ME/kg) diets. Birds fed SBM and 25 or 50% SM consumed more (P < .01) daily feedmore » and gained more (P < .01) per day than those fed 25 or 50% RSM. Birds fed RSM had enlarged thyroid glands in comparison to those fed SMB. Two lamb digestion trials were conducted to evaluate the effect of replacing cottonseed meal (CSM) protein with either RSM or SM on nitrogen utilization and DM digestibility. Replacing 100% of the CSM protein with RSM had no effect (P > .05) on dry matter digestibility and N utilization. Nitrogen balance studies indicate that expellor extracted SM may replace up to 75% of the CSM protein in diets for wethers. 8 tables.« less

  14. Amino acid utilization and body composition of growing pigs fed processed soybean meal or rapeseed meal with or without amino acid supplementation.

    PubMed

    Hulshof, T G; van der Poel, A F B; Hendriks, W H; Bikker, P

    2017-07-01

    Feed ingredients used in swine diets are often processed to improve nutritional value. However, (over-)processing may result in chemical reactions with amino acids (AAs) that decrease their ileal digestibility. This study aimed to determine effects of (over-)processing of soybean meal (SBM) and rapeseed meal (RSM) on post-absorptive utilization of ileal digestible AAs for retention and on body AA composition of growing pigs. Soybean meal and RSM were processed by secondary toasting in the presence of lignosulfonate to obtain processed soybean meal (pSBM) and processed rapeseed meal (pRSM). Four diets contained SBM, pSBM, RSM or pRSM as sole protein source. Two additional diets contained pSBM or pRSM and were supplemented with crystalline AA to similar standardized ileal digestible (SID) AA level as the SBM or RSM diet. These diets were used to verify that processing affected AA retention by affecting ileal AA digestibility rather than post-absorptive AA utilization. The SID AA levels of the protein sources were determined in a previous study. In total, 59 pigs were used (initial BW of 15.6±0.7 kg) of which five were used to determine initial body composition at the start of the experiment. In total, 54 pigs were fed one of six experimental diets and were slaughtered at a BW of 40 kg. The organ fraction (i.e. empty organs plus blood) and carcass were analyzed separately for N and AA content. Post-absorptive AA utilization was calculated from AA retention and SID AA intake. An interaction between diet type, comprising effects of processing and supplementing crystalline AA, and protein source was observed for CP content in the organ fraction, carcass and empty body and for nutrient retention. Processing reduced CP content and nutrient retention more for SBM than for RSM. Moreover, processing reduced (P<0.001) the lysine content in the organ fraction for both protein sources. Supplementing crystalline AA ameliorated the effect of processing on these variables. Thus, the data indicated that processing affected retention by reducing digestibility. Correcting AA retention for SID AA intake was, therefore, expected to result in similar post-absorptive AA utilization which was observed for the RSM diets. However, post-absorptive AA utilization was lower for the pSBM diet than for the SBM diet which might be related to an imbalanced post-absorptive AA supply. In conclusion, processing negatively affected nutrient retention for both protein sources and post-absorptive utilization of SID AA for retention for SBM. Effects of processing were compensated by supplementing crystalline AA.

  15. Optimization of Synthesis Conditions of Carbon Nanotubes via Ultrasonic-Assisted Floating Catalyst Deposition Using Response Surface Methodology

    PubMed Central

    Mohammadian, Narges; Ghoreishi, Seyyed M.; Hafeziyeh, Samira; Saeidi, Samrand; Dionysiou, Dionysios D.

    2018-01-01

    The growing use of carbon nanotubes (CNTs) in a plethora of applications has provided to us a motivation to investigate CNT synthesis by new methods. In this study, ultrasonic-assisted chemical vapor deposition (CVD) method was employed to synthesize CNTs. The difficulty of controlling the size of clusters and achieving uniform distribution—the major problem in previous methods—was solved by using ultrasonic bath and dissolving ferrocene in xylene outside the reactor. The operating conditions were optimized using a rotatable central composite design (CCD), which helped optimize the operating conditions of the method. Response surface methodology (RSM) was used to analyze these experiments. Using statistical software was very effective, considering that it decreased the number of experiments needed to achieve the optimum conditions. Synthesis of CNTs was studied as a function of three independent parameters viz. hydrogen flow rate (120–280 cm3/min), catalyst concentration (2–6 wt %), and synthesis temperature (800–1200 °C). Optimum conditions for the synthesis of CNTs were found to be 3.78 wt %, 184 cm3/min, and 976 °C for catalyst concentration, hydrogen flow rate, and synthesis temperature, respectively. Under these conditions, Raman spectrum indicates high values of (IG/ID), which means high-quality CNTs. PMID:29747451

  16. Biosorption of Cr(VI) by Ceratocystis paradoxa MSR2 Using Isotherm Modelling, Kinetic Study and Optimization of Batch Parameters Using Response Surface Methodology

    PubMed Central

    Ramalingam, Chidambaram

    2015-01-01

    This study is focused on the possible use of Ceratocystis paradoxa MSR2 native biomass for Cr(VI) biosorption. The influence of experimental parameters such as initial pH, temperature, biomass dosage, initial Cr(VI) concentration and contact time were optimized using batch systems as well as response surface methodology (RSM). Maximum Cr(VI) removal of 68.72% was achieved, at an optimal condition of biomass dosage 2g L−1, initial Cr(VI) concentration of 62.5 mg L−1 and contact time of 60 min. The closeness of the experimental and the predicted values exhibit the success of RSM. The biosorption mechanism of MSR2 biosorbent was well described by Langmuir isotherm and a pseudo second order kinetic model, with a high regression coefficient. The thermodynamic study also revealed the spontaneity and exothermic nature of the process. The surface characterization using FT-IR analysis revealed the involvement of amine, carbonyl and carboxyl groups in the biosorption process. Additionally, desorption efficiency of 92% was found with 0.1 M HNO3. The Cr(VI) removal efficiency, increased with increase in metal ion concentration, biomass concentration, temperature but with a decrease in pH. The size of the MSR2 biosorbent material was found to be 80 μm using particle size analyzer. Atomic force microscopy (AFM) visualizes the distribution of Cr(VI) on the biosorbent binding sites with alterations in the MSR2 surface structure. The SEM-EDAX analysis was also used to evaluate the binding characteristics of MSR2 strain with Cr(VI) metals. The mechanism of Cr(VI) removal of MSR2 biomass has also been proposed. PMID:25822726

  17. The Impact of Sea Level Rise on Florida's Everglades

    NASA Astrophysics Data System (ADS)

    Senarath, S. U.

    2005-12-01

    Global warming and the resulting melting of polar ice sheets could increase global sea levels significantly. Some studies have predicted mean sea level increases in the order of six inches to one foot in the next 25 to 50 years. This could have severe irreversible impacts on low-lying areas of Florida's Everglades. The key objective of this study is to evaluate the effects of a one foot sea level rise on Cape Sable Seaside Sparrow (CSSS) nesting areas within the Everglades National Park (ENP). A regional-scale hydrologic model is used to assess the sensitivities of this sea-level rise scenario. Florida's Everglades supports a unique ecosystem. At present, about 50 percent of this unique ecosystem has been lost due to urbanization and farming. Today, the water flow in the remnant Everglades is also regulated to meet a variety of competing environmental, water-supply and flood-control needs. A 30-year, eight billion dollar (1999 estimate) project has been initiated to improve Everglades' water flows. The expected benefits of this restoration project will be short-lived if the predicted sea level rise causes severe impacts on the environmentally sensitive areas of the Everglades. Florida's Everglades is home to many threatened and endangered species of wildlife. The Cape Sable Seaside Sparrow population in the ENP is one such species that is currently listed as endangered. Since these birds build their nests close to the ground surface (the base of the nest is approximately six inches from the ground surface), they are directly affected by any sea level induced ponding depth, frequency or duration change. Therefore, the CSSS population serves as a good indicator species for evaluating the negative impacts of sea level rise on the Everglades' ecosystem. The impact of sea level rise on the CSSS habitat is evaluated using the Regional Simulation Model (RSM) developed by the South Florida Water Management District. The RSM is an implicit, finite-volume, continuous, distributed, and integrated surface-water and ground-water model. It can simulate one-dimensional canal/stream flow and two-dimensional overland and groundwater flow in arbitrarily shaped areas using a variable triangular mesh. The overland and groundwater flow components are fully coupled in the RSM for a more realistic representation of runoff generation.

  18. Formal Verification of the Runway Safety Monitor

    NASA Technical Reports Server (NTRS)

    Siminiceanu, Radu; Ciardo, Gianfranco

    2006-01-01

    The Runway Safety Monitor (RSM) designed by Lockheed Martin is part of NASA's effort to reduce runway accidents. We developed a Petri net model of the RSM protocol and used the model checking functions of our tool SMART to investigate a number of safety properties in RSM. To mitigate the impact of state-space explosion, we built a highly discretized model of the system, obtained by partitioning the monitored runway zone into a grid of smaller volumes and by considering scenarios involving only two aircraft. The model also assumes that there are no communication failures, such as bad input from radar or lack of incoming data, thus it relies on a consistent view of reality by all participants. In spite of these simplifications, we were able to expose potential problems in the RSM conceptual design. Our findings were forwarded to the design engineers, who undertook corrective action. Additionally, the results stress the efficiency attained by the new model checking algorithms implemented in SMART, and demonstrate their applicability to real-world systems.

  19. DNA Microarray-Based Identification of Genes Controlled by Autoinducer 2-Stimulated Quorum Sensing in Escherichia Coli

    DTIC Science & Technology

    2001-09-01

    and pathogenicity in Erwinia carotovora (rsmA) (12). Additionally, csrA has been documented to affect cell size and surface properties, which is in...machinery to cell wall 13.1 b1502 Putative adhesin; similar to FimH protein 13.0 tap Methyl-accepting chemotaxis protein IV, peptide sensor receptor...oxohexanoyl)-L-homoserine lactone 5246 DELISA ET AL. J. BACTERIOL. regulates carbapenem antibiotic production in Erwinia carotovora . Biochem. J. 288:997

  20. The optimization study on the tool wear of carbide cutting tool during milling Carbon Fibre Reinforced (CFRP) using Response Surface Methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Nor Khairusshima, M. K.; Hafiz Zakwan, B. Muhammad; Suhaily, M.; Sharifah, I. S. S.; Shaffiar, N. M.; Rashid, M. A. N.

    2018-01-01

    Carbon Fibre Reinforced Plastic (CFRP) composite has become one of famous materials in industry, such as automotive, aeronautics, aerospace and aircraft. CFRP is attractive due to its properties, which promising better strength and high specification of mechanical properties other than its high resistance to corrosion. Other than being abrasive material due to the carbon nature, CFRP is an anisotropic material, which the knowledge of machining metal and steel cannot be applied during machining CFRP. The improper technique and parameters used to machine CFRP may result in high tool wear. This paper is to study the tool wear of 8 mm diameter carbide cutting tool during milling CFRP. To predict the suitable cutting parameters within range of 3500-6220 (rev/min), 200-245 (mm/min), and 0.4-1.8 (mm) for cutting speed, speed, feed rate and depth of cut respectively, which produce optimized result (less tool wear), Response Surface Methodology (RSM) has been used. Based on the developed mathematical model, feed rate was identified as the primary significant item that influenced tool wear. The optimized cutting parameters are cutting speed, feed and depth of cut of 3500 rev/min, 200 mm/min and 0.5 mm, respectively, with tool wear of 0.0267 mm. It is also can be observed that as the cutting speed and feed rate increased the tool wear is increasing.

  1. Application of response surface methodology and semi-mechanistic model to optimize fluoride removal using crushed concrete in a fixed-bed column.

    PubMed

    Gu, Bon-Wun; Lee, Chang-Gu; Park, Seong-Jik

    2018-03-01

    The aim of this study was to investigate the removal of fluoride from aqueous solutions by using crushed concrete fines as a filter medium under varying conditions of pH 3-7, flow rate of 0.3-0.7 mL/min, and filter depth of 10-20 cm. The performance of fixed-bed columns was evaluated on the basis of the removal ratio (Re), uptake capacity (qe), degree of sorbent used (DoSU), and sorbent usage rate (SUR) obtained from breakthrough curves (BTCs). Three widely used semi-mechanistic models, that is, Bohart-Adams, Thomas, and Yoon-Nelson models, were applied to simulate the BTCs and to derive the design parameters. The Box-Behnken design of response surface methodology (RSM) was used to elucidate the individual and interactive effects of the three operational parameters on the column performance and to optimize these parameters. The results demonstrated that pH is the most important factor in the performance of fluoride removal by a fixed-bed column. The flow rate had a significant negative influence on Re and DoSU, and the effect of filter depth was observed only in the regression model for DoSU. Statistical analysis indicated that the model attained from the RSM study is suitable for describing the semi-mechanistic model parameters.

  2. Application of Response Surface Methodology for Modeling of Postweld Heat Treatment Process in a Pressure Vessel Steel ASTM A516 Grade 70.

    PubMed

    Peasura, Prachya

    2015-01-01

    This research studied the application of the response surface methodology (RSM) and central composite design (CCD) experiment in mathematical model and optimizes postweld heat treatment (PWHT). The material of study is a pressure vessel steel ASTM A516 grade 70 that is used for gas metal arc welding. PWHT parameters examined in this study included PWHT temperatures and time. The resulting materials were examined using CCD experiment and the RSM to determine the resulting material tensile strength test, observed with optical microscopy and scanning electron microscopy. The experimental results show that using a full quadratic model with the proposed mathematical model is YTS = -285.521 + 15.706X1 + 2.514X2 - 0.004X1(2) - 0.001X2(2) - 0.029X1X2. Tensile strength parameters of PWHT were optimized PWHT time of 5.00 hr and PWHT temperature of 645.75°C. The results show that the PWHT time is the dominant mechanism used to modify the tensile strength compared to the PWHT temperatures. This phenomenon could be explained by the fact that pearlite can contribute to higher tensile strength. Pearlite has an intensity, which results in increased material tensile strength. The research described here can be used as material data on PWHT parameters for an ASTM A516 grade 70 weld.

  3. Investigation of the Process Conditions for Hydrogen Production by Steam Reforming of Glycerol over Ni/Al2O3 Catalyst Using Response Surface Methodology (RSM)

    PubMed Central

    Ebshish, Ali; Yaakob, Zahira; Taufiq-Yap, Yun Hin; Bshish, Ahmed

    2014-01-01

    In this work; a response surface methodology (RSM) was implemented to investigate the process variables in a hydrogen production system. The effects of five independent variables; namely the temperature (X1); the flow rate (X2); the catalyst weight (X3); the catalyst loading (X4) and the glycerol-water molar ratio (X5) on the H2 yield (Y1) and the conversion of glycerol to gaseous products (Y2) were explored. Using multiple regression analysis; the experimental results of the H2 yield and the glycerol conversion to gases were fit to quadratic polynomial models. The proposed mathematical models have correlated the dependent factors well within the limits that were being examined. The best values of the process variables were a temperature of approximately 600 °C; a feed flow rate of 0.05 mL/min; a catalyst weight of 0.2 g; a catalyst loading of 20% and a glycerol-water molar ratio of approximately 12; where the H2 yield was predicted to be 57.6% and the conversion of glycerol was predicted to be 75%. To validate the proposed models; statistical analysis using a two-sample t-test was performed; and the results showed that the models could predict the responses satisfactorily within the limits of the variables that were studied. PMID:28788567

  4. Optimization of Process Parameters in Preparation of Nanoemulsions of CLnA Rich Oil by Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Sengupta, Avery; Gupta, Surashree Sen; Ghosh, Mahua

    2013-03-01

    The purpose of the present study was to obtain optimal processing for preparation of uniform-sized nanoemulsion of conjugated linolenic acid (CLnA) rich oil to increase the oxidative stability of CLnA by using a high-speed disperser (HSD) and ultrasonication. The emulsifiers used were egg phospholipid and soya protein isolate. The effects of oil concentration [0.05 to 1.25 % (w/w)], emulsifier ratio [0.1:0.9 to 0.9:0.1 (phospholipid:protein)], speed of the HSD (2,000 to 12,000 rpm) and times of HSD and sonication treatments (10 to 50 min) were observed. Optimization was performed with and without response surface methodology (RSM). The optimum compositional variables i.e. concentration of oil was 1 % and phospholipid:protein molar ratio was 0.5:0.5. Maximum size reduction occurred at 10,000 rpm speed of HSD. HSD should be administered for 40 min followed by 40 min ultrasonication. The range of the size of the droplets in the nanoemulsion was between 173 ± 1.20 and 183 ± 0.94 nm. Nanoemulsion is a size reduction technique where the oil present in the emulsion can be easily stabilized which increases the shelf-life of the oil. The present study derived the reaction parameters were optimized using RSM to produce nanoemulsion of CLnA rich oils of minimum size to obtain maximum stability.

  5. Characterization of triclosan metabolism in Sphingomonas sp. strain YL-JM2C

    NASA Astrophysics Data System (ADS)

    Mulla, Sikandar I.; Wang, Han; Sun, Qian; Hu, Anyi; Yu, Chang-Ping

    2016-02-01

    Triclosan (TCS) is one of the most widespread emerging contaminants and has adverse impact on aquatic ecosystem, yet little is known about its complete biodegradation mechanism in bacteria. Sphingomonas sp, strain YL-JM2C, isolated from activated sludge of a wastewater treatment plant, was very effective on degrading TCS. Response surface methodology (RSM) was applied to optimize the conditions like temperature and pH. From RSM, the optimal TCS degradation conditions were found to be 30 °C and pH 7.0. Under optimal conditions, strain YL-JM2C completely mineralized TCS (5 mg L-1) within 72 h. Gas chromatography-mass spectrometry analysis revealed that 2,4-dichlorophenol, 2-chlorohydroquinone and hydroquinone are three main by-products of TCS. Furthermore, stable isotope experimental results revealed that the 13C12-TCS was completely mineralized into CO2 and part of heavier carbon (13C) of labeled TCS was utilized by strain YL-JM2C to synthesize fatty acids (PLFAs). Cell surface hydrophobicity (CSH) and degradation test results suggested that the strain could enhance degradation capacity of TCS through increasing CSH. In addition, the bacterium also completely degraded spiked TCS (5 mg L-1) in wastewater collected from the wastewater treatment plant. Hence, these results suggest that the strain has potential to remediate TCS in the environment.

  6. Optimization of controlled release nanoparticle formulation of verapamil hydrochloride using artificial neural networks with genetic algorithm and response surface methodology.

    PubMed

    Li, Yongqiang; Abbaspour, Mohammadreza R; Grootendorst, Paul V; Rauth, Andrew M; Wu, Xiao Yu

    2015-08-01

    This study was performed to optimize the formulation of polymer-lipid hybrid nanoparticles (PLN) for the delivery of an ionic water-soluble drug, verapamil hydrochloride (VRP) and to investigate the roles of formulation factors. Modeling and optimization were conducted based on a spherical central composite design. Three formulation factors, i.e., weight ratio of drug to lipid (X1), and concentrations of Tween 80 (X2) and Pluronic F68 (X3), were chosen as independent variables. Drug loading efficiency (Y1) and mean particle size (Y2) of PLN were selected as dependent variables. The predictive performance of artificial neural networks (ANN) and the response surface methodology (RSM) were compared. As ANN was found to exhibit better recognition and generalization capability over RSM, multi-objective optimization of PLN was then conducted based upon the validated ANN models and continuous genetic algorithms (GA). The optimal PLN possess a high drug loading efficiency (92.4%, w/w) and a small mean particle size (∼100nm). The predicted response variables matched well with the observed results. The three formulation factors exhibited different effects on the properties of PLN. ANN in coordination with continuous GA represent an effective and efficient approach to optimize the PLN formulation of VRP with desired properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Optimisation of the reaction conditions for the production of cross-linked starch with high resistant starch content.

    PubMed

    Kahraman, Kevser; Koksel, Hamit; Ng, Perry K W

    2015-05-01

    The optimum reaction conditions (temperature and pH) for the preparation of cross-linked (CL) corn and wheat starches with maximum resistant starch (RS) content were investigated by using response surface methodology (RSM). According to the preliminary results, five levels were selected for reaction temperature (38-70 °C) and pH (10-12) in the main study. RS contents of the CL corn and wheat starch samples increased with increasing temperature and pH, and pH had a greater influence on RS content than had temperature. The maximum RS content (with a maximum p value of 0.4%) was obtained in wheat starch cross-linked at 38 °C and pH 12. In the case of CL corn starch, the optimum condition was 70 °C and pH 12. CL corn and wheat starch samples were also produced separately under the optimum conditions and their RS contents were 80.4% and 83.9%, respectively. These results were also in agreement with the values predicted by RSM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Optimization of thermo-alkaline disintegration of sewage sludge for enhanced biogas yield.

    PubMed

    Shehu, Muhammad Sani; Abdul Manan, Zainuddin; Alwi, Sharifah Rafidah Wan

    2012-06-01

    Optimization of thermo-alkaline disintegration of sewage sludge for enhanced biogas yield was carried out using response surface methodology (RSM) and Box-Behnken design of experiment. The individual linear and quadratic effects as well as the interactive effects of temperature, NaOH concentration and time on the degree of disintegration were investigated. The optimum degree of disintegration achieved was 61.45% at 88.50 °C, 2.29 M NaOH (24.23%w/w total solids) and 21 min retention time. Linear and quadratic effects of temperature are most significant in affecting the degree of disintegration. The coefficient of determination (R(2)) of 99.5% confirms that the model used in predicting the degree of disintegration process has a very good fitness with the experimental variables. The disintegrated sludge increased the biogas yield by 36%v/v compared to non-disintegrated sludge. The RSM with Box-Behnken design is an effective tool in predicting the optimum degree of disintegration of sewage sludge for increased biogas yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Extraction optimization and characterization of gelatine from fish dry skin of Spanish mackerel (Scomberromorus commersoni)

    NASA Astrophysics Data System (ADS)

    Kusumaningrum, I.; Pranoto, Y.; Hadiwiyoto, S.

    2018-04-01

    This work was to optimized gelatin extraction from dry skin of Spanish mackerel (Scomberromorus commersoni) using Response Surface Methodology (RSM). The aim of this study was to determine the optimal condition of temperature and time for extraction process and properties of the gelatin extracted from dry mackerel skin. The optimal condition for extraction was 59.71°C for 4.25 hours. Results showed that predicted yield by RSM was 13.69% and predicted gel strength was 291.93 Bloom, whereas the actual experiment for yield and gel strength were 13.03% and 291.33 Bloom, respectively. The gelatin extracted from dried skin were analyzed for their proximate composition, yield, gel strength, viscosity, color, and amino acid composition. The results of dried skin gelatin properties compared to the commercial gelatin. Gelatin extracted from the dried skin gave content lower moisture, ash and protein content but higher fat compared to commercial gelatin. This study also shows that the gelatin extracted from the dried skin gave higher gel strength and pH but the lower amino acid composition compared to commercial gelatin.

  10. Reliability assessment of an OVH HV power line truss transmission tower subjected to seismic loading

    NASA Astrophysics Data System (ADS)

    Winkelmann, Karol; Jakubowska, Patrycja; Soltysik, Barbara

    2017-03-01

    The study focuses on the reliability of a transmission tower OS24 ON150 + 10, an element of an OVH HV power line, under seismic loading. In order to describe the seismic force, the real-life recording of the horizontal component of the El Centro earthquake was adopted. The amplitude and the period of this excitation are assumed random, their variation is described by Weibull distribution. The possible space state of the phenomenon is given in the form of a structural response surface (RSM methodology), approximated by an ANOVA table with directional sampling (DS) points. Four design limit states are considered: stress limit criterion for a natural load combination, criterion for an accidental combination (one-sided cable snap), vertical and horizontal translation criteria. According to these cases the HLRF reliability index β is used for structural safety assessment. The RSM approach is well suited for the analysis - it is numerically efficient, not excessively time consuming, indicating a high confidence level. Given the problem conditions, the seismic excitation is shown the sufficient trigger to the loss of load-bearing capacity or stability of the tower.

  11. Enhancement of simultaneous gold and copper recovery from discarded mobile phone PCBs using Bacillus megaterium: RSM based optimization of effective factors and evaluation of their interactions.

    PubMed

    Arshadi, M; Mousavi, S M; Rasoulnia, P

    2016-11-01

    Bioleaching of Au from mobile phone printed circuit boards (MPPCBs) was studied, using Bacillus megaterium which is a cyanogenic bacterium. To maximize Au extraction, initial pH, pulp density, and glycine concentration were optimized via response surface methodology (RSM). Bioleaching of Cu, an important inhibitor on Au recovery, was also examined. To maximize Au recovery, the optimal condition suggested by the models was initial pH of 10, pulp density of 8.13g/l, and glycine concentration of 10g/l. Under the optimal condition, approximately 72% of Cu and 65g Au/ton MPPCBs, which is 7 times greater than the recovery from gold mines, was extracted. Cu elimination from the MPPCBs having a rich content of Au did not cause a significant effect on Au recovery. It was found that when the ratio of Cu to Au is high, Cu elimination can considerably improve Au recovery. B. megaterium could extract the total Au from PCBs containing 130g Au/ton MPPCBs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides

    NASA Astrophysics Data System (ADS)

    Aguilar-Méndez, Miguel A.; San Martín-Martínez, Eduardo; Ortega-Arroyo, Lesli; Cobián-Portillo, Georgina; Sánchez-Espíndola, Esther

    2011-06-01

    Colloidal silver nanoparticles were synthesized by reducing silver nitrate solutions with glucose, in the presence of gelatin as capping agent. The obtained nanoparticles were characterized by means of UV-Vis spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The response surface methodology (RSM) was also used to determine the influence of the variables on the size of the nanoparticles. The antifungal activity of the silver nanoparticles was evaluated on the phytopathogen Colletotrichum gloesporioides, which causes anthracnose in a wide range of fruits. The UV-Vis spectra indicated the formation of silver nanoparticles preferably spherical and of relatively small size (<20 nm). The above-mentioned was confirmed by TEM, observing a size distribution of 5-24 nm. According to RSM the synthesis variables influenced on the size of the silver nanoparticles. By means of FTIR spectroscopy it was determined that gelatin, through their amide and hydroxyl groups, interacts with nanoparticles preventing their agglomeration. The growth of C. gloesporioides in the presence of silver nanoparticles was significantly delayed in a dose dependent manner.

  13. Advanced oxidation of commercial herbicides mixture: experimental design and phytotoxicity evaluation.

    PubMed

    López, Alejandro; Coll, Andrea; Lescano, Maia; Zalazar, Cristina

    2017-05-05

    In this work, the suitability of the UV/H 2 O 2 process for commercial herbicides mixture degradation was studied. Glyphosate, the herbicide most widely used in the world, was mixed with other herbicides that have residual activity as 2,4-D and atrazine. Modeling of the process response related to specific operating conditions like initial pH and initial H 2 O 2 to total organic carbon molar ratio was assessed by the response surface methodology (RSM). Results have shown that second-order polynomial regression model could well describe and predict the system behavior within the tested experimental region. It also correctly explained the variability in the experimental data. Experimental values were in good agreement with the modeled ones confirming the significance of the model and highlighting the success of RSM for UV/H 2 O 2 process modeling. Phytotoxicity evolution throughout the photolytic degradation process was checked through germination tests indicating that the phytotoxicity of the herbicides mixture was significantly reduced after the treatment. The end point for the treatment at the operating conditions for maximum TOC conversion was also identified.

  14. Treatment of swine wastewater using chemically modified zeolite and bioflocculant from activated sludge.

    PubMed

    Guo, Junyuan; Yang, Chunping; Zeng, Guangming

    2013-09-01

    Sterilization, alkaline-thermal and acid-thermal treatments were applied to activated sludge and the pre-treated sludge was used as raw material for Rhodococcus R3 to produce polymeric substances. After 60 h of fermentation, bioflocculant of 2.7 and 4.2 g L(-1) were produced in sterilized and alkaline-thermal treated sludge as compared to that of 0.9 g L(-1) in acid-thermal treated sludge. Response surface methodology (RSM) was employed to optimize the treatment process of swine wastewater using the composite of bioflocculant and zeolite modified by calcining with MgO. The optimal flocculating conditions were bioflocculant of 24 mg L(-1), modified zeolite of 12 g L(-1), CaCl2 of 16 mg L(-1), pH of 8.3 and contact time of 55 min, and the corresponding removal rates of COD, ammonium and turbidity were 87.9%, 86.9%, and 94.8%. The use of the composite by RSM provides a feasible way to improve the pollutant removal efficiencies and recycle high-level of ammonium from wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Waste vinegar residue as substrate for phytase production.

    PubMed

    Wang, Zhi-Hong; Dong, Xiao-Fang; Zhang, Guo-Qing; Tong, Jian-Ming; Zhang, Qi; Xu, Shang-Zhong

    2011-12-01

    Waste vinegar residue, the by-product of vinegar processing, was used as substrate for phytase production from Aspergillus ficuum NTG-23 in solid-state fermentation to investigate the potential for the efficient re-utilization or recycling of waste vinegar residue. Statistical designs were applied in the processing of phytase production. First, a Plackett-Burman (PB) design was used to evaluate eleven parameters: glucose, starch, wheat bran, (NH(4))(2)SO(4), NH(4)NO(3), tryptone, soybean meal, MgSO(4)·7H(2)O, CaCl(2)·7H(2)O, FeSO(4)·7H(2)O, incubation time. The PB experiments showed that there were three significant factors: glucose, soybean meal and incubation time. The closest values to the optimum point were then derived by steepest ascent path. Finally, a mathematical model was created and validated to explain the behavioural process after these three significant factors were optimized using response surface methodology (RSM). The best phytase activity was attained using the following conditions: glucose (7.2%), soybean meal (5.1%), and incubation time (271 h). The phytase activity was 7.34-fold higher due to optimization by PB design, steepest ascent path design and RSM. The phytase activity was enhanced 0.26-fold in comparison with the results by the second step of steepest ascent path design. The results indicate that with waste vinegar residue as a substrate higher production of phytase from Aspergillus ficuum NTG-23 could be obtained through an optimization process and that this method might be applied to an integrated system for recycling of the waste vinegar residue.

  16. Boron removal by electrocoagulation and recovery.

    PubMed

    Isa, Mohamed Hasnain; Ezechi, Ezerie Henry; Ahmed, Zubair; Magram, Saleh Faraj; Kutty, Shamsul Rahman Mohamed

    2014-03-15

    This work investigated the removal of boron from wastewater and its recovery by electrocoagulation and hydrothermal mineralization methods respectively. The experimental design was developed using Box-Behnken Model. An initial study was performed based on four preselected variables (pH, current density, concentration and time) using synthetic wastewater. Response surface methodology (RSM) was used to evaluate the effect of process variables and their interaction on boron removal. The optimum conditions were obtained as pH 6.3, current density 17.4 mA/cm(2), and time 89 min. At these applied optimum conditions, 99.7% boron removal from an initial concentration of 10.4 mg/L was achieved. The process was effectively optimized by RSM with a desirability value of 1.0. The results showed that boron removal efficiency enhanced with increase in current density and treatment time. Removal efficiency also increased when pH was increased from 4 to 7 and subsequently decreased at pH 10. Adsorption kinetics study revealed that the reaction followed pseudo second order kinetic model; evidenced by high correlation and goodness of fit. Thermodynamics study showed that mechanism of boron adsorption was chemisorption and the reaction was endothermic in nature. Furthermore, the adsorption process was spontaneous as indicated by negative values of the adsorption free energy. Treatment of real produced water using electrocoagulation resulted in 98% boron removal. The hydrothermal mineralization study showed that borate minerals (Inyoite, Takadaite and Nifontovite) can be recovered as recyclable precipitate from electrocoagulation flocs of produced water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. "Solvent-free" ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process.

    PubMed

    Adam, Fanny; Abert-Vian, Maryline; Peltier, Gilles; Chemat, Farid

    2012-06-01

    In order to comply with criteria of green chemistry concepts and sustainability, a new procedure has been performed for solvent-free ultrasound-assisted extraction (UAE) to extract lipids from fresh Nannochloropsis oculata biomass. Through response surface methodology (RSM) parameters affecting the oil recovery were optimized. Optimum conditions for oil extraction were estimated as follows: (i) 1000 W ultrasonic power, (ii) 30 min extraction time and (iii) biomass dry weight content at 5%. Yields were calculated by the total fatty acids methyl esters amounts analyzed by GC-FID-MS. The maximum oil recovery was around 0.21%. This value was compared with the one obtained with the conventional extraction method (Bligh and Dyer). Furthermore, effect of temperature on the yield was also investigated. The overall results show an innovative and effective extraction method adapted for microalgae oil recovery, without using solvent and with an enable scaling up. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Optimum BET surface areas for activated carbon produced from textile sewage sludges and its application as dye removal.

    PubMed

    Kacan, Erdal

    2016-01-15

    The purpose of this experimental study is to determine optimum preparation conditions for activated carbons obtained from textile sewage sludge (TSS) for removal of dyes from aqueous solutions. The textile sewage sludge activated carbon (TSSAC) was prepared by chemical activation with potassium hydroxide using Response Surface Methodology (RSM). The most influential factor on each experimental design responses was identified via ANNOVA analysis. Based on the central composite design (CCD), quadratic model was developed to correlate the preparation variables for one response which is the Brunauer-Emmelt-Teller (BET) surface area. RSM based on a three-variable CCD was used to determine the effect of pyrolyzed temperature (400-700 °C), carbonization time (45-180 min) and KOH: weight of TSS (wt%) impregnation ratio (0.5:1-1.5:1) on BET surface area. According to the results, pyrolyzed temperature and impregnation ratio were found as the significant factors for maximizing the BET surface area. The major effect which influences the BET surface area was found as pyrolyzed temperature. Both carbonization time and impregnation ratio of KOH had no significant effect. The optimum conditions for preparing TSSAC, based on response surface and contour plots, were found as follows: pyrolyzed temperature 700 °C, carbonization time of 45 min and chemical impregnation ratio of 0.5. The maximum and optimum BET surface area of TSSAC were found as 336 m(2)/g and 310.62 m(2)/g, respectively. Synozol Blue reactive (RSB) and Setapers Yellow-Brown (P2RFL) industrial textile dyes adsorption capacities were investigated. As expected the TSSAC which has the biggest BET surface area (336 m(2)/g) adsorbed dye best. The maximum (RSB) and (P2RFL) uptake capacities were found as 8.5383 mg/g and 5.4 mg/g, respectively. The results of this study indicated the applicability of TSSAC for removing industrial dyes from aqueous solution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effects of rapeseed meal fiber content on phosphorus and calcium digestibility in growing pigs fed diets without or with microbial phytase.

    PubMed

    Bournazel, M; Lessire, M; Duclos, M J; Magnin, M; Même, N; Peyronnet, C; Recoules, E; Quinsac, A; Labussière, E; Narcy, A

    2018-01-01

    The optimization of dietary phosphorus (P) and calcium (Ca) supply requires a better understanding of the effect of dietary fiber content of co-products on the digestive utilization of minerals. This study was designed to evaluate the effects of dietary fiber content from 00-rapeseed meal (RSM) on P and Ca digestibility throughout the gastrointestinal tract in growing pigs fed diets without or with microbial phytase. In total, 48 castrated male pigs (initial BW=36.1±0.4 kg) were housed in metabolic crates for 29 days. After an 8-day adaptation period, pigs were allocated to one of the eight treatments. The impact of dietary fiber was modulated by adding whole RSM (wRSM), dehulled RSM (dRSM) or dRSM supplemented with 4.5% or 9.0% rapeseed hulls (dRSMh1 and dRSMh2). Diets contained 0 or 500 phytase unit of microbial phytase per kg. From day 14 to day 23, feces and urine were collected separately to determine apparent total tract digestibility (ATTD) and apparent retention (AR) of P and Ca. At the end of the experiment, femurs and digestive contents were sampled. No effect of variables of interest was observed on growth performance. Microbial phytase increased ATTD and AR of P (P<0.001) but the P equivalency with the wRSM diet was lower than expected. Moreover, stomach inorganic P (iP) solubility was improved by microbial phytase (P<0.001). The ATTD of Ca was not affected by microbial phytase which increased AR of Ca and femur characteristics (P<0.05). Ileal recovery of P was not affected by microbial phytase but cecal recovery was considerably reduced by microbial phytase (P<0.001). The decrease in digesta pH between the distal ileum and cecum (7.6 v. 5.9) enhanced the solubility of iP and may have improved its absorption, as supported by the negative relationship between soluble iP and pH (R 2=0.40, P<0.001 without microbial phytase and R 2=0.24, P=0.026 with microbial phytase). The inclusion of hulls improved the solubility of iP (P<0.05). In conclusion, dehulling does not largely increase nutrient digestibility although dRSM seems to improve the efficacy of microbial phytase in releasing phosphate in the stomach. Moreover, dietary fiber may affect solubilization process in the cecum which potentiates the effect of microbial phytase on P digestibility.

  20. Environmental impact of replacing soybean meal with rapeseed meal in diets of finishing pigs.

    PubMed

    van Zanten, H H E; Bikker, P; Mollenhorst, H; Meerburg, B G; de Boer, I J M

    2015-11-01

    The major impact of the livestock sector on the environment may be reduced by feeding agricultural co-products to animals. Since the last decade, co-products from biodiesel production, such as rapeseed meal (RSM), became increasingly available in Europe. Consequently, an increase in RSM content in livestock diets was observed at the expense of soybean meal (SBM) content. Cultivation of SBM is associated with high environmental impacts, especially when emissions related to land use change (LUC) are included. This study aims to assess the environmental impact of replacing SBM with RSM in finishing pig diets. As RSM has a lower nutritional value, we assessed the environmental impact of replacing SBM with RSM using scenarios that differed in handling changes in nutritional level. Scenario 1 (S1) was the basic scenario containing SBM. In scenario 2 (S2), RSM replaced SBM based on CP content, resulting in reduced energy and amino acid content, and hence an increased feed intake to realize the same growth rate. The diet of scenario 3 (S3) was identical to S2; however, we assumed that pigs were not able to increase their feed intake, leading to reduced growth performance. In scenario 4 (S4), the energy and amino acid content were increased to the same level of S1. Pig performances were simulated using a growth model. We analyzed the environmental impact of each scenario using life-cycle assessment, including processes of feed production, manure management, piglet production, enteric fermentation and housing. Results show that, expressed as per kg of BW, replacing SBM with RSM in finishing pig diets marginally decreased global warming potential (GWP) and energy use (EU) but decreased land use (LU) up to 12%. Between scenarios, S3 had the maximum potential to reduce the environmental impact, due to a lower impact per kg of feed and an increased body protein-to-lipid ratio of the pigs, resulting in a better feed conversion ratio. Optimization of the body protein-to-lipid ratio, therefore, might result in a reduced environmental impact of pig production. Furthermore, the impact of replacing SBM with RSM changed only marginally when emissions related to direct (up to 2.9%) and indirect LUC (up to 2.5%) were included. When we evaluated environmental impacts of feed production only, which implies excluding other processes along the chain as is generally found in the literature, GWP decreased up to 10%, including LUC, EU up to 5% and LU up to 16%.

  1. Production of a cellulase-free alkaline xylanase from Bacillus pumilus MTCC 5015 by submerged fermentation and its application in biobleaching.

    PubMed

    Thomas, Leya; Sindhu, Raveendran; Binod, Parameswaran; Pandey, Ashok

    2015-06-01

    Here, we described the production of a cellulase-free alkaline xylanase from Bacillus pumilus MTCC 5015 by submerged fermentation and its application in biobleaching. Various process parameters affecting xylanase production by B. pumilus were optimized by adopting a Plackett-Burman design (PBD) as well as Response surface methodology (RSM). These statistical methods aid in improving the enzyme yield by analysing the individual crucial components of the medium. Maximum production was obtained with 4% yeast extract, 0.08% magnesium sulphate, 30 h of inoculum age, incubation temperature of 33.5 degrees C and pH 9.0. Under optimized conditions, the xylanase activity was 372 IU/ml. Media engineering improved a 5-fold increase in the enzyme production. Scanning electron microscopy (SEM) showed significant changes on the surface of xylanase treated pulps as a result of xylan hydrolysis. Increased roughness of paper carton fibres was apparent in scanning electron micrograph due to opening of the micro fibrils present on the surface by xylanase action. The untreated pulp did not show any such change. These results demonstrated that the B. pumilus MTCC 5015 xylanase was effective in bio-bleaching of paper carton.

  2. Optimising reversed-phase liquid chromatographic separation of an acidic mixture on a monolithic stationary phase with the aid of response surface methodology and experimental design.

    PubMed

    Wang, Y; Harrison, M; Clark, B J

    2006-02-10

    An optimization strategy for the separation of an acidic mixture by employing a monolithic stationary phase is presented, with the aid of experimental design and response surface methodology (RSM). An orthogonal array design (OAD) OA(16) (2(15)) was used to choose the significant parameters for the optimization. The significant factors were optimized by using a central composite design (CCD) and the quadratic models between the dependent and the independent parameters were built. The mathematical models were tested on a number of simulated data set and had a coefficient of R(2) > 0.97 (n = 16). On applying the optimization strategy, the factor effects were visualized as three-dimensional (3D) response surfaces and contour plots. The optimal condition was achieved in less than 40 min by using the monolithic packing with the mobile phase of methanol/20 mM phosphate buffer pH 2.7 (25.5/74.5, v/v). The method showed good agreement between the experimental data and predictive value throughout the studied parameter space and were suitable for optimization studies on the monolithic stationary phase for acidic compounds.

  3. 'When operating a cafeteria, sales come before nutrition' - finding barriers and facilitators to serving reduced-sodium meals in worksite cafeterias.

    PubMed

    Park, Sohyun; Lee, Jounghee

    2016-06-01

    The present study was conducted to examine barriers to and facilitators of serving reduced-sodium meals (RSM) in worksite cafeterias. We conducted in-depth interviews with key stakeholders in food catering companies. Food catering companies at various customer sites in South Korea. A total of nineteen interviews with twenty-five participants from ten catering companies were conducted. Sixteen on-site dietitians and nine managers from the catering companies' headquarters participated in the interviews. Four main themes emerged from the interviews. First, key stakeholders' psychosocial characteristics (perception, intention and knowledge) are important in serving RSM in worksite cafeterias. Second, skills and techniques related to measuring sodium content and preparing RSM were emphasized by the interviewees. Third, the lack of various delicious low-sodium menus is a barrier to serving RSM. Lastly, a number of environmental factors were addressed, which include social support for reduced-sodium diets (a facilitator) and pressure to maintain profit margins (a barrier), that contribute to serving meals with less salt. Based on these factors, various recommendations for future sodium reduction policies and programmes were suggested. It is important to implement population-wide sodium reduction as a means of preventing CVD and stroke. The study provided important facilitators of and barriers to serving RSM in worksite cafeterias, which could be helpful in developing environmental interventions that promote low-sodium diets.

  4. Warpage minimization on wheel caster by optimizing process parameters using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Safuan, N. S.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.

    2017-09-01

    In injection moulding process, it is important to keep the productivity increase constantly with least of waste produced such as warpage defect. Thus, this study is concerning on minimizing warpage defect on wheel caster part. Apart from eliminating product wastes, this project also giving out best optimization techniques using response surface methodology. This research studied on five parameters A-packing pressure, B-packing time, C-mold temperature, D-melting temperature and E-cooling time. The optimization showed that packing pressure is the most significant parameter. Warpage have been improved 42.64% from 0.6524 mm to 0.3742mm.

  5. Preparation of nanomaterials for the ultrasound-enhanced removal of Pb2+ ions and malachite green dye: Chemometric optimization and modeling.

    PubMed

    Dil, Ebrahim Alipanahpour; Ghaedi, Mehrorang; Asfaram, Arash; Hajati, Shaaker; Mehrabi, Fatemeh; Goudarzi, Alireza

    2017-01-01

    Copper oxide nanoparticle-loaded activated carbon (CuO-NP-AC) was synthesized and characterized using different techniques such as FE-SEM, XRD and FT-IR. It was successfully applied for the ultrasound-assisted simultaneous removal of Pb 2+ ions and malachite green (MG) dye in binary system from aqueous solution. The effect of important parameters was modeled and optimized by artificial neural network (ANN) and response surface methodology (RSM). Maximum simultaneous removal percentages (>99.0%) were found at 25mgL -1 , 20mgL -1 , 0.02g, 5min and 6.0 corresponding to initial Pb 2+ concentration, initial MG concentration, CuO-NP-AC amount, ultrasonication time and pH, respectively. The precision of the equation obtained by RSM was confirmed by the analysis of variance and calculation of correlation coefficient relating the predicted and the experimental values of ultrasound-assisted simultaneous removal of the analytes. A good agreement between experimental and predicted values was observed. A feed-forward neural network with a topology optimized by response surface methodology was successfully applied for the prediction of ultrasound-assisted simultaneous removal of Pb 2+ ions and MG dye in binary system by CuO-NPs-AC. The number of hidden neurons, MSE, R 2 , number of epochs and error histogram were chosen for ANN modeling. Then, Langmuir, Freundlich, Temkin and D-R isothermal models were applied for fitting the experimental data. It was found that the Langmuir model well describes the isotherm data with a maximum adsorption capacity of 98.328 and 87.719mgg -1 for Pb 2+ and MG, respectively. Kinetic studies at optimum condition showed that maximum Pb 2+ and MG adsorption is achieved within 5min of the start of most experiments. The combination of pseudo-second-order rate equation and intraparticle diffusion model was applicable to explain the experimental data of ultrasound-assisted simultaneous removal of Pb 2+ and MG at optimum condition obtained from RSM. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. An efficient fermentation method for the degradation of cyanogenic glycosides in flaxseed.

    PubMed

    Wu, C-F; Xu, X-M; Huang, S-H; Deng, M-C; Feng, A-J; Peng, J; Yuan, J-P; Wang, J-H

    2012-01-01

    Recently, flaxseed has become increasingly popular in the health food market because it contains a considerable amount of specific beneficial nutrients such as lignans and omega-3 fatty acids. However, the presence of cyanogenic glycosides (CGs) in flaxseed severely limits the exploitation of its health benefits and nutritive value. We, therefore, developed an effective fermentation method, optimised by response surface methodology (RSM), for degrading CGs with an enzymatic preparation that includes 12.5% β-glucosidase and 8.9% cyanide hydratase. These optimised conditions resulted in a maximum CG degradation level of 99.3%, reducing the concentration of cyanide in the flaxseed power from 1.156 to 0.015 mg g(-1) after 48 h of fermentation. The avoidance of steam heat to evaporate hydrocyanic acid (HCN) results in lower energy consumption and no environmental pollution. In addition, the detoxified flaxseed retained the beneficial nutrients, lignans and fatty acids at the same level as untreated flaxseed, and this method could provide a new means of removing CGs from other edible plants, such as cassava, almond and sorghum by simultaneously expressing cyanide hydratase and β-glucosidase.

  7. The nutritional value of narrow-leafed lupine (Lupinus angustifolius) for fattening pigs.

    PubMed

    Kasprowicz-Potocka, Małgorzata; Zaworska, Anita; Kaczmarek, Sebastian Andrzej; Rutkowski, Andrzej

    2016-01-01

    The aim of this study was to determine the nutrient digestibility of seeds of four varieties of narrow-leafed lupines (Lupinus angustifolius) and the possibility of soya bean meal (SBM) substitution by lupine seeds alone and in combination with rapeseed meal (RSM) in the diets of pigs. The seeds of the lupine varieties Kalif, Sonet, Zeus and Boruta were analysed. The apparent total tract digestibility (ATTD) was determined on 50 cross-bred pigs using the difference method with titanium dioxide as a marker. The substitution of SBM by lupine seeds alone (at 0 - 100%) was tested on 60 pigs (20-105 kg body weight (BW)) and by a combination of lupine seeds and RSM on 180 fattening pigs (35-80 kg BW). The chemical composition of lupine seeds differed considerably, especially in terms of crude protein and mineral content. All seeds contained less than 0.05% alkaloids and 9.3% oligosaccharides in dry matter. The ATTD of protein ranged from 70% to 74%, those of ether extract from 36% to 55% and those of gross energy from 77% to 84%. The entire replacement of SBM by lupine seeds (var. Sonet) did not have a negative effect on the performance of grower and fattener pigs. The substitution of SBM by a combination of lupines and RSM reduced the performance of growing and finishing pigs significantly.

  8. Application and optimization of microwave-assisted extraction and dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for sensitive determination of polyamines in turkey breast meat samples.

    PubMed

    Bashiry, Moein; Mohammadi, Abdorreza; Hosseini, Hedayat; Kamankesh, Marzieh; Aeenehvand, Saeed; Mohammadi, Zaniar

    2016-01-01

    A novel method based on microwave-assisted extraction and dispersive liquid-liquid microextraction (MAE-DLLME) followed by high-performance liquid chromatography (HPLC) was developed for the determination of three polyamines from turkey breast meat samples. Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the effective factors in DLLME process. The optimum microextraction efficiency was obtained under optimized conditions. The calibration graphs of the proposed method were linear in the range of 20-200 ng g(-1), with the coefficient determination (R(2)) higher than 0.9914. The relative standard deviations were 6.72-7.30% (n = 7). The limits of detection were in the range of 0.8-1.4 ng g(-1). The recoveries of these compounds in spiked turkey breast meat samples were from 95% to 105%. The increased sensitivity in using the MAE-DLLME-HPLC-UV has been demonstrated. Compared with previous methods, the proposed method is an accurate, rapid and reliable sample-pretreatment method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Biosorptive uptake of arsenic(V) by steam activated carbon from mung bean husk: equilibrium, kinetics, thermodynamics and modeling

    NASA Astrophysics Data System (ADS)

    Mondal, Sandip; Aikat, Kaustav; Halder, Gopinath

    2017-12-01

    The present investigation emphasizes on the biosorptive removal of toxic pentavalent arsenic from water using steam activated carbon prepared from mung bean husk (SAC-MBH). Characterization of the synthesized sorbent was done using different instrumental techniques, i.e., SEM, BET and point of zero charge. Sorptive uptake of As(V) over steam activated MBH as a function of pH (3-9), agitation speed (40-200 rpm), dosage (50-1000 mg) and temperature (298-313 K) was studied by batch process at arsenic concentration of 2 mg L-1. Lower pH increases the arsenic removal over the pH range of 3-9. Among three adsorption isotherm models examined, Langmuir model was observed to show superior results over Freundlich model. The mean sorption energy (E) estimated by Dubinin-Radushkevich model suggested that the process of adsorption was chemisorption. Thermodynamic parameters confer that the sorption process was spontaneous, exothermic and feasible in nature. The pseudo-second-order rate kinetics of arsenic gave better correlation coefficients as compared to pseudo-first-order kinetics equation. Three process parameters, viz. adsorbent dosage, agitation speed and pH were opted for optimizing As(V) elimination using central composite design matrix of response surface methodology (RSM). The identical design setup was used for artificial neural network (ANN) for comparing its prediction capability with RSM towards As(V) removal. Maximum arsenic removal was observed to be 98.75% at sorbent dosage 0.75 gm L-1, pH 3.0, agitation speed 160 rpm and temperature 308 K. The study concluded that SAC-MBH could be a competent adsorbent for As(V) removal and ANN model was better in arsenic removal predictability results than RSM model.

  10. Optimization of high pressure bioactive compounds extraction from pansies (Viola × wittrockiana) by response surface methodology

    NASA Astrophysics Data System (ADS)

    Fernandes, Luana; Casal, Susana I. P.; Pereira, José A.; Ramalhosa, Elsa; Saraiva, Jorge A.

    2017-07-01

    Response surface methodology (RSM) was employed for the first time to optimize high pressure extraction (HPE) conditions of bioactive compounds from pansies, namely: pressure (X1: 0-500 MPa), time (X2: 5-15 min) and ethanol concentration (X3: 0-100%). Consistent fittings using second-order polynomial models were obtained for flavonoids, tannins, anthocyanins, total reducing capacity (TRC) and DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity. The optimum extraction conditions based on combination responses for TRC, tannins and anthocyanins were: X1 = 384 MPa, X2 = 15 min and X3 = 35% (v/v) ethanol, shortening the extraction time when compared to the classic method of stirring (approx. 24 h). When the optimum extraction conditions were applied, 65.1 mg of TRC, 42.8 mg of tannins and 56.15 mg of anthocyanins/g dried flower were obtained. Thus, HPE has shown to be a promising technique to extract bioactive compounds from pansies, by reducing the extraction time and by using green solvents (ethanol and water), for application in diverse industrial fields.

  11. Photocatalytic water splitting over titania supported copper and nickel oxide in photoelectrochemical cell; optimization of photoconversion efficiency

    NASA Astrophysics Data System (ADS)

    Muti Mohamed, Norani; Bashiri, Robabeh; Kait, Chong Fai; Sufian, Suriati

    2018-04-01

    we investigated the influence of fluctuating the preparation variables of TiO2 on the efficiency of photocatalytic water splitting in photoelectrochemical (PEC) cell. Hydrothermal associated sol-gel technique was applied to synthesis modified TiO2 with nickel and copper oxide. The variation of water (mL), acid (mL) and total metal loading (%) were mathematically modelled using central composite design (CCD) from the response surface method (RSM) to explore the single and combined effects of parameters on the system performance. The experimental data were fitted using quadratic polynomial regression model from analysis of variance (ANOVA). The coefficient of determination value of 98% confirms the linear relationship between the experimental and predicted values. The amount of water had maximum effect on the photoconversion efficiency due to a direct effect on the crystalline and the number of defects on the surface of photocatalyst. The optimal parameter ratios with maximum photoconversion efficiency were 16 mL, 3 mL and 5 % for water, acid and total metal loading, respectively.

  12. Optimization of furfural and 5-hydroxymethylfurfural production from wheat straw by a microwave-assisted process.

    PubMed

    Yemiş, Oktay; Mazza, Giuseppe

    2012-04-01

    Optimization of acid-catalyzed conversion conditions of wheat straw into furfural, 5-hydroxymethylfurfural (HMF), glucose, and xylose was studied by response surface methodology (RSM). A central composite design (CCD) was used to determine the effects of independent variables, including reaction temperature (140-200 °C), residence time (1-41 min), pH (0.1-2.1), and liquid:solid ratio (15-195 mL/g) on furan and sugar production. The surface response analysis revealed that temperature, time and pH had a strong influence on the furfural, HMF, xylose and glucose yield, whereas liquid to solid ratio was found not to be significant. The initial pH of solution was the most important variable in acid-catalyzed conversion of wheat straw to furans. The maximum predicted furfural, HMF, xylose and glucose yields were 66%, 3.4%, 100%, and 65%, respectively. This study demonstrated that the microwave-assisted process was a very effective method for the xylose production from wheat straw by diluted acid catalysis. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  13. Using Rasch rating scale model to reassess the psychometric properties of the Persian version of the PedsQL™ 4.0 Generic Core Scales in school children.

    PubMed

    Jafari, Peyman; Bagheri, Zahra; Ayatollahi, Seyyed Mohamad Taghi; Soltani, Zahra

    2012-03-13

    Item response theory (IRT) is extensively used to develop adaptive instruments of health-related quality of life (HRQoL). However, each IRT model has its own function to estimate item and category parameters, and hence different results may be found using the same response categories with different IRT models. The present study used the Rasch rating scale model (RSM) to examine and reassess the psychometric properties of the Persian version of the PedsQL™ 4.0 Generic Core Scales. The PedsQL™ 4.0 Generic Core Scales was completed by 938 Iranian school children and their parents. Convergent, discriminant and construct validity of the instrument were assessed by classical test theory (CTT). The RSM was applied to investigate person and item reliability, item statistics and ordering of response categories. The CTT method showed that the scaling success rate for convergent and discriminant validity were 100% in all domains with the exception of physical health in the child self-report. Moreover, confirmatory factor analysis supported a four-factor model similar to its original version. The RSM showed that 22 out of 23 items had acceptable infit and outfit statistics (<1.4, >0.6), person reliabilities were low, item reliabilities were high, and item difficulty ranged from -1.01 to 0.71 and -0.68 to 0.43 for child self-report and parent proxy-report, respectively. Also the RSM showed that successive response categories for all items were not located in the expected order. This study revealed that, in all domains, the five response categories did not perform adequately. It is not known whether this problem is a function of the meaning of the response choices in the Persian language or an artifact of a mostly healthy population that did not use the full range of the response categories. The response categories should be evaluated in further validation studies, especially in large samples of chronically ill patients.

  14. A Random Algorithm for Low-Rank Decomposition of Large-Scale Matrices With Missing Entries.

    PubMed

    Liu, Yiguang; Lei, Yinjie; Li, Chunguang; Xu, Wenzheng; Pu, Yifei

    2015-11-01

    A random submatrix method (RSM) is proposed to calculate the low-rank decomposition U(m×r)V(n×r)(T) (r < m, n) of the matrix Y∈R(m×n) (assuming m > n generally) with known entry percentage 0 < ρ ≤ 1. RSM is very fast as only O(mr(2)ρ(r)) or O(n(3)ρ(3r)) floating-point operations (flops) are required, compared favorably with O(mnr+r(2)(m+n)) flops required by the state-of-the-art algorithms. Meanwhile, RSM has the advantage of a small memory requirement as only max(n(2),mr+nr) real values need to be saved. With the assumption that known entries are uniformly distributed in Y, submatrices formed by known entries are randomly selected from Y with statistical size k×nρ(k) or mρ(l)×l , where k or l takes r+1 usually. We propose and prove a theorem, under random noises the probability that the subspace associated with a smaller singular value will turn into the space associated to anyone of the r largest singular values is smaller. Based on the theorem, the nρ(k)-k null vectors or the l-r right singular vectors associated with the minor singular values are calculated for each submatrix. The vectors ought to be the null vectors of the submatrix formed by the chosen nρ(k) or l columns of the ground truth of V(T). If enough submatrices are randomly chosen, V and U can be estimated accordingly. The experimental results on random synthetic matrices with sizes such as 13 1072 ×10(24) and on real data sets such as dinosaur indicate that RSM is 4.30 ∼ 197.95 times faster than the state-of-the-art algorithms. It, meanwhile, has considerable high precision achieving or approximating to the best.

  15. Group Comparisons of Mathematics Performance from a Cognitive Diagnostic Perspective

    ERIC Educational Resources Information Center

    Chen, Yi-Hsin; Ferron, John M.; Thompson, Marilyn S.; Gorin, Joanna S.; Tatsuoka, Kikumi K.

    2010-01-01

    Traditional comparisons of test score means identify group differences in broad academic areas, but fail to provide substantive description of how the groups differ on the specific cognitive attributes required for success in the academic area. The rule space method (RSM) allows for group comparisons at the cognitive attribute level, which…

  16. Automatic Estimation of Osteoporotic Fracture Cases by Using Ensemble Learning Approaches.

    PubMed

    Kilic, Niyazi; Hosgormez, Erkan

    2016-03-01

    Ensemble learning methods are one of the most powerful tools for the pattern classification problems. In this paper, the effects of ensemble learning methods and some physical bone densitometry parameters on osteoporotic fracture detection were investigated. Six feature set models were constructed including different physical parameters and they fed into the ensemble classifiers as input features. As ensemble learning techniques, bagging, gradient boosting and random subspace (RSM) were used. Instance based learning (IBk) and random forest (RF) classifiers applied to six feature set models. The patients were classified into three groups such as osteoporosis, osteopenia and control (healthy), using ensemble classifiers. Total classification accuracy and f-measure were also used to evaluate diagnostic performance of the proposed ensemble classification system. The classification accuracy has reached to 98.85 % by the combination of model 6 (five BMD + five T-score values) using RSM-RF classifier. The findings of this paper suggest that the patients will be able to be warned before a bone fracture occurred, by just examining some physical parameters that can easily be measured without invasive operations.

  17. Co-composting of green waste and food waste at low C/N ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mathava; Ou, Y.-L.; Lin, J.-G., E-mail: jglin@mail.nctu.edu.t

    2010-04-15

    In this study, co-composting of food waste and green waste at low initial carbon to nitrogen (C/N) ratios was investigated using an in-vessel lab-scale composting reactor. The central composite design (CCD) and response surface method (RSM) were applied to obtain the optimal operating conditions over a range of preselected moisture contents (45-75%) and C/N ratios (13.9-19.6). The results indicate that the optimal moisture content for co-composting of food waste and green waste is 60%, and the substrate at a C/N ratio of 19.6 can be decomposed effectively to reduce 33% of total volatile solids (TVS) in 12 days. The TVSmore » reduction can be modeled by using a second-order equation with a good fit. In addition, the compost passes the standard germination index of white radish seed indicating that it can be used as soil amendment.« less

  18. Process optimization for sensory characteristics of seriales (Flacourtia jangomas) ready-to-drink (RTD) beverage

    NASA Astrophysics Data System (ADS)

    Cimafranca, L.; Dizon, E.

    2018-01-01

    Seriales (Flacourtia jangomas) is an underutilized fruit in the Philippines. The processing of the fruit into a RTD beverage was standardized by statistical methods. Plackett-Burman Design (PB) was used to determine the most significant factors that affect the sensory characteristics of the product. Response surface methodology (RSM) was applied based on the factorial Central Composite Design (CCD) to determine the optimum conditions for the maximum sensory acceptability of the seriales RTD beverage. Results of the PB revealed that the most significant factors were blanching time, level of seriales and TSS level. With different levels of blanching time (0.5, 1.0, and 1.5 min.), seriales level (10, 20, 30 %) and TSS value (12, 15, 18ºBrix), the optimum region for sensory acceptability was perceived at 0.7 to 1.4 minutes blanching time, seriales level of not beyond 27 %, and TSS at any level.

  19. Optimization and performance improvement of an electromagnetic-type energy harvester with consideration of human walking vibration

    NASA Astrophysics Data System (ADS)

    Seo, Jongho; Kim, Jin-Su; Jeong, Un-Chang; Kim, Yong-Dae; Kim, Young-Cheol; Lee, Hanmin; Oh, Jae-Eung

    2016-02-01

    In this study, we derived an equation of motion for an electromechanical system in view of the components and working mechanism of an electromagnetic-type energy harvester (ETEH). An electromechanical transduction factor (ETF) was calculated using a finite-element analysis (FEA) based on Maxwell's theory. The experimental ETF of the ETEH measured by means of sine wave excitation was compared with and FEA data. Design parameters for the stationary part of the energy harvester were optimized in terms of the power performance by using a response surface method (RSM). With optimized design parameters, the ETEH showed an improvement in performance. We experimented with the optimized ETEH (OETEH) with respect to changes in the external excitation frequency and the load resistance by taking human body vibration in to account. The OETEH achieved a performance improvement of about 30% compared to the initial model.

  20. Artificial neural networks in evaluation and optimization of modified release solid dosage forms.

    PubMed

    Ibrić, Svetlana; Djuriš, Jelena; Parojčić, Jelena; Djurić, Zorica

    2012-10-18

    Implementation of the Quality by Design (QbD) approach in pharmaceutical development has compelled researchers in the pharmaceutical industry to employ Design of Experiments (DoE) as a statistical tool, in product development. Among all DoE techniques, response surface methodology (RSM) is the one most frequently used. Progress of computer science has had an impact on pharmaceutical development as well. Simultaneous with the implementation of statistical methods, machine learning tools took an important place in drug formulation. Twenty years ago, the first papers describing application of artificial neural networks in optimization of modified release products appeared. Since then, a lot of work has been done towards implementation of new techniques, especially Artificial Neural Networks (ANN) in modeling of production, drug release and drug stability of modified release solid dosage forms. The aim of this paper is to review artificial neural networks in evaluation and optimization of modified release solid dosage forms.

  1. Artificial Neural Networks in Evaluation and Optimization of Modified Release Solid Dosage Forms

    PubMed Central

    Ibrić, Svetlana; Djuriš, Jelena; Parojčić, Jelena; Djurić, Zorica

    2012-01-01

    Implementation of the Quality by Design (QbD) approach in pharmaceutical development has compelled researchers in the pharmaceutical industry to employ Design of Experiments (DoE) as a statistical tool, in product development. Among all DoE techniques, response surface methodology (RSM) is the one most frequently used. Progress of computer science has had an impact on pharmaceutical development as well. Simultaneous with the implementation of statistical methods, machine learning tools took an important place in drug formulation. Twenty years ago, the first papers describing application of artificial neural networks in optimization of modified release products appeared. Since then, a lot of work has been done towards implementation of new techniques, especially Artificial Neural Networks (ANN) in modeling of production, drug release and drug stability of modified release solid dosage forms. The aim of this paper is to review artificial neural networks in evaluation and optimization of modified release solid dosage forms. PMID:24300369

  2. Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis

    PubMed Central

    Bordi, Christophe; Lamy, Marie-Cécile; Ventre, Isabelle; Termine, Elise; Hachani, Abderrahman; Fillet, Sandy; Roche, Béatrice; Bleves, Sophie; Méjean, Vincent; Lazdunski, Andrée; Filloux, Alain

    2010-01-01

    Bacterial pathogenesis often depends on regulatory networks, two-component systems and small RNAs (sRNAs). In Pseudomonas aeruginosa, the RetS sensor pathway downregulates expression of two sRNAs, rsmY and rsmZ. Consequently, biofilm and the Type Six Secretion System (T6SS) are repressed, whereas the Type III Secretion System (T3SS) is activated. We show that the HptB signalling pathway controls biofilm and T3SS, and fine-tunes P. aeruginosa pathogenesis. We demonstrate that RetS and HptB intersect at the GacA response regulator, which directly controls sRNAs production. Importantly, RetS controls both sRNAs, whereas HptB exclusively regulates rsmY expression. We reveal that HptB signalling is a complex regulatory cascade. This cascade involves a response regulator, with an output domain belonging to the phosphatase 2C family, and likely an anti-anti-σ factor. This reveals that the initial input in the Gac system comes from several signalling pathways, and the final output is adjusted by a differential control on rsmY and rsmZ. This is exemplified by the RetS-dependent but HptB-independent control on T6SS. We also demonstrate a redundant action of the two sRNAs on T3SS gene expression, while the impact on pel gene expression is additive. These features underpin a novel mechanism in the fine-tuned regulation of gene expression. PMID:20398205

  3. Protein modelling of triterpene synthase genes from mangrove plants using Phyre2 and Swiss-model

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Wati, R.; Sulistiyono, N.; Hayati, R.; Sumardi; Oku, H.; Baba, S.; Sagami, H.

    2018-03-01

    Molecular cloning of five oxidosqualene cyclases (OSC) genes from Bruguiera gymnorrhiza, Kandelia candel, and Rhizophora stylosa had previously been cloned, characterized, and encoded mono and -multi triterpene synthases. The present study analyzed protein modelling of triterpene synthase genes from mangrove using Phyre2 and Swiss-model. The diversity was noted within protein modelling of triterpene synthases using Phyre2 from sequence identity (38-43%) and residue (696-703). RsM2 was distinguishable from others for template structure; it used lanosterol synthase as a template (PDB ID: w6j.1.A). By contrast, other genes used human lanosterol synthase (1w6k.1.A). The predicted bind sites were correlated with the product of triterpene synthase, the product of BgbAS was β-amyrin, while RsM1 contained a significant amount of β-amyrin. Similarly BgLUS and KcMS, both main products was lupeol, on the other hand, RsM2 with the outcome of taraxerol. Homology modelling revealed that 696 residues of BgbAS, BgLUS, RsM1, and RsM2 (91-92% of the amino acid sequence) had been modelled with 100% confidence by the single highest scoring template using Phyre2. This coverage was higher than Swiss-model (85-90%). The present study suggested that molecular cloning of triterpene genes provides useful tools for studying the protein modelling related regulation of isoprenoids biosynthesis in mangrove forests.

  4. Role of SM22 in the differential regulation of phasic vs. tonic smooth muscle

    PubMed Central

    Ali, Mehboob

    2015-01-01

    Preliminary proteomics studies between tonic vs. phasic smooth muscles identified three distinct protein spots identified to be those of transgelin (SM22). The latter was found to be distinctly downregulated in the internal anal sphincter (IAS) vs. rectal smooth muscle (RSM) SMC. The major focus of the present studies was to examine the differential molecular control mechanisms by SM22 in the functionality of truly tonic smooth muscle of the IAS vs. the adjoining phasic smooth muscle of the RSM. We monitored SMC lengths before and after incubation with pFLAG-SM22 (for SM22 overexpression), and SM22 small-interfering RNA. pFLAG-SM22 caused concentration-dependent and significantly greater relaxation in the IAS vs. the RSM SMCs. Conversely, temporary silencing of SM22 caused contraction in both types of the SMCs. Further studies revealed a significant reverse relationship between the levels of SM22 phosphorylation and the amount of SM22-actin binding in the IAS and RSM SMC. Data showed higher phospho-SM22 levels and decreased SM22-actin binding in the IAS, and reverse to be the case in the RSM SMCs. Experiments determining the mechanism for SM22 phosphorylation in these smooth muscles revealed that Y-27632 (Rho kinase inhibitor) but not Gö-6850 (protein kinase C inhibitor) caused concentration-dependent decreased phosphorylation of SM22. We speculate that SM22 plays an important role in the regulation of basal tone via Rho kinase-induced phosphorylation of SM22. PMID:25617350

  5. Effect of feeding dried distillers' grains with solubles on milk yield and milk composition of cows in mid-lactation and digestibility in sheep.

    PubMed

    Westreicher-Kristen, E; Kaiser, R; Steingass, H; Rodehutscord, M

    2014-04-01

    We evaluated the effect of three sources of dried distillers' grains with solubles (DDGS) in diets of mid-lactating dairy cows on milk production and milk composition and on digestibility in sheep. DDGS from wheat, corn and barley (DDGS1 ), wheat and corn (DDGS2 ) and wheat (DDGS3 ) were studied and compared with a rapeseed meal (RSM). RSM and DDGS were characterized through in situ crude protein (CP) degradability. Nutrient digestibility was determined in sheep. Twenty-four multiparous cows were used in a 4 × 4 Latin square design with 28-day periods. Treatments included total mixed rations containing as primary protein sources RSM (control), DDGS1 (D1), DDGS2 (D2) or DDGS3 (D3). RSM contained less rapidly degradable CP (fraction a), more potentially degradable CP (fraction b) and more rumen undegradable CP (UDP) than the three DDGS. In vivo digestibility of RSM organic matter was similar to DDGS. Calculated net energy for lactation (NEL ) was lower for RSM (7.4 MJ/kg DM) than for DDGS, which averaged 7.7 MJ/kg DM. Cows' dry matter intake did not differ between diets (21.7 kg/day). Cows fed D1 yielded more milk than those fed D3 (31.7 vs. 30.4 kg/day); no differences were found between control and DDGS diets (31.3 vs. 31.1 kg/day). Energy-corrected milk was similar among diets (31.2 kg/day). Diets affected neither milk fat concentration (4.0%) nor milk fat yield (1.24 kg/day). Milk protein yield of control (1.12 kg/day) was significantly higher than D3 (1.06 kg/day) but not different form D1 and D2 (1.08 kg/day each). Feeding DDGS significantly increased milk lactose concentration (4.91%) in relation to control (4.81%). DDGS can be a suitable feed in relation to RSM and can be fed up to 4 kg dry matter per day in rations of dairy cows in mid-lactation. However, high variation of protein and energy values of DDGS should be considered when included in diets of dairy cows. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  6. Application of Response Surface Methods To Determine Conditions for Optimal Genomic Prediction

    PubMed Central

    Howard, Réka; Carriquiry, Alicia L.; Beavis, William D.

    2017-01-01

    An epistatic genetic architecture can have a significant impact on prediction accuracies of genomic prediction (GP) methods. Machine learning methods predict traits comprised of epistatic genetic architectures more accurately than statistical methods based on additive mixed linear models. The differences between these types of GP methods suggest a diagnostic for revealing genetic architectures underlying traits of interest. In addition to genetic architecture, the performance of GP methods may be influenced by the sample size of the training population, the number of QTL, and the proportion of phenotypic variability due to genotypic variability (heritability). Possible values for these factors and the number of combinations of the factor levels that influence the performance of GP methods can be large. Thus, efficient methods for identifying combinations of factor levels that produce most accurate GPs is needed. Herein, we employ response surface methods (RSMs) to find the experimental conditions that produce the most accurate GPs. We illustrate RSM with an example of simulated doubled haploid populations and identify the combination of factors that maximize the difference between prediction accuracies of best linear unbiased prediction (BLUP) and support vector machine (SVM) GP methods. The greatest impact on the response is due to the genetic architecture of the population, heritability of the trait, and the sample size. When epistasis is responsible for all of the genotypic variance and heritability is equal to one and the sample size of the training population is large, the advantage of using the SVM method vs. the BLUP method is greatest. However, except for values close to the maximum, most of the response surface shows little difference between the methods. We also determined that the conditions resulting in the greatest prediction accuracy for BLUP occurred when genetic architecture consists solely of additive effects, and heritability is equal to one. PMID:28720710

  7. Degradation prediction model and stem cell growth of gelatin-PEG composite hydrogel.

    PubMed

    Zhou, Nan; Liu, Chang; Lv, Shijie; Sun, Dongsheng; Qiao, Qinglong; Zhang, Rui; Liu, Yang; Xiao, Jing; Sun, Guangwei

    2016-12-01

    Gelatin hydrogel has great potential in regenerative medicine. The degradation of gelatin hydrogel is important to control the release profile of encapsulated biomolecules and regulate in vivo tissue repair process. As a plasticizer, PEG can significantly improve the mechanical property of gelatin hydrogel. However, how preparation parameters affect the degradation rate of gelatin-PEG composite hydrogel is still not clear. In this study, the significant effect factor, glutaraldehyde (GA) concentration, was confirmed by means of Plackett-Burman method. Then a mathematical model was built to predict the degradation rate of composite hydrogels under different preparation conditions using the response surface method (RSM), which was helpful to prepare the certain composite hydrogel with desired degradation rate. In addition, it was found that gelatin-PEG composite hydrogel surface well supported the adhesion and growth of human mesenchymal stem cells (MSCs). Moreover, PEG concentration not only could adjust hydrogel degradation more subtly, but also might increase the cross-linking degree and affect the cell migration. Therefore, these results would be useful to optimize the preparation of gelatin-PEG composite hydrogel for drug delivery or tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3149-3156, 2016. © 2016 Wiley Periodicals, Inc.

  8. Optimization of ultrasound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition.

    PubMed

    Bimakr, Mandana; Rahman, Russly Abdul; Taip, Farah Saleena; Adzahan, Noranizan Mohd; Sarker, Md Zaidul Islam; Ganjloo, Ali

    2012-10-08

    In the present study, ultrasound-assisted extraction of crude oil from winter melon seeds was investigated through response surface methodology (RSM). Process variables were power level (25-75%), temperature (45-55 °C) and sonication time (20-40 min). It was found that all process variables have significant (p < 0.05) effects on the response variable. A central composite design (CCD) was used to determine the optimum process conditions. Optimal conditions were identified as 65% power level, 52 °C temperature and 36 min sonication time for maximum crude yield (108.62 mg-extract/g-dried matter). The antioxidant activity, total phenolic content and fatty acid composition of extract obtained under optimized conditions were determined and compared with those of oil obtained by the Soxhlet method. It was found that crude extract yield (CEY) of ultrasound-assisted extraction was lower than that of the Soxhlet method, whereas antioxidant activity and total phenolic content of the extract obtained by ultrasound-assisted extraction were clearly higher than those of the Soxhlet extract. Furthermore, both extracts were rich in unsaturated fatty acids. The major fatty acids of the both extracts were linoleic acid and oleic acid.

  9. Exploring the mechanism and kinetics of Fe-Cu-Ag trimetallic particles for p-nitrophenol reduction.

    PubMed

    Yuan, Yue; Yuan, Donghai; Zhang, Yunhong; Lai, Bo

    2017-11-01

    Preparation conditions of Fe-Cu-Ag trimetallic particles were optimized by single-factor and response surface methodology (RSM) batch experiments to obtain high-reactive Fe 0 -based materials for p-nitrophenol (PNP) removal. Under the optimal conditions (i.e., Fe 0 dosage of 34.86 g L -1 , theoretical Cu mass loading of 81.87 mg Cu/g Fe, theoretical Ag mass loading of 1.15 mg Ag/g Fe, and preparation temperature of 52.1 °C), the actual rate constant (k obs ) of PNP reduction in 5 min was 1.64 min -1 , which shows a good agreement between the model prediction (1.85 min -1 ) of RSM and the experimental data. Furthermore, the high reactivity of Fe 0 -based trimetals was mainly attributed to the plating order of transition metals (i.e., Ag and Cu). Furthermore, we propose a new theory that the pyramid trimetallic structure of Fe-Cu-Ag could improve the electron transport and create active sites with high electron density at the surface (Ag layer) that could enhance the generation of surface-bonded atomic hydrogen ([H] abs ) or the direct reduction of pollutant. Moreover, Fe-Cu-Ag trimetallic particles were characterized by SEM, EDS, and XPS, which also could confirm the proposed theory. In addition, the leached Cu 2+ (<10 μg L -1 ) and Ag + (below detection limits) in Fe-Cu-Ag system could be neglected completely, which suggests that Fe-Cu-Ag is reliable, safe, and environment friendly. Therefore, Fe-Cu-Ag trimetallic system would be promising for the removal of pollutants from industrial wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Response surface methodology optimization for sorption of malachite green dye on sugarcane bagasse biochar and evaluating the residual dye for phyto and cytogenotoxicity.

    PubMed

    Vyavahare, Govind D; Gurav, Ranjit G; Jadhav, Pooja P; Patil, Ravishankar R; Aware, Chetan B; Jadhav, Jyoti P

    2018-03-01

    In the present study, sorption and detoxification of malachite green (MG) dye was executed using biochar resulting after pyrolysis of agro-industrial waste at 400, 600 and 800 °C. Maximum sorption of MG dye (3000 mg/L) was observed on the sugarcane bagasse biochar (SCB) prepared at 800 °C. The interactive effects of different factors like dye concentration, time, pH and temperature on sorption of MG dye were investigated using response surface methodology (RSM). Optimum MG dye concentration, contact time, temperature and pH predicted through Box-Behnken based RSM model were 3000 mg/L MG dye, 51.89 min, 60 °C and 7.5, respectively. ANOVA analysis displayed the non-significant lack of fit value (0.4566), whereas, the predicted correlation coefficient values (R 2 0.8494) were reasonably in agreement with the adjusted value (R 2 0.9363) demonstrating highly significant model for MG dye sorption. The applicability of this model was also checked through F- test (30.39) with lower probability (0.0001) value. Furthermore, the characterization of SCB was performed using fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), Brunauer-Emmett-Teller surfaces (BET), total organic carbon (TOC) and atomic absorption spectroscopy (AAS). Phyto-toxicity and cytogenotoxicity studies showed successful removal of MG dye using SCB. In addition, the batch sorption studies for reutilization of SCB revealed that the SCB was effective in removal of MG for five repeated cycles. This technology would be effective for treating the toxic textile effluent released from the textile industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Assessing the nonlinear response of fine particles to precursor emissions: Development and application of an extended response surface modeling technique v1.0

    DOE PAGES

    Zhao, B.; Wang, S. X.; Xing, J.; ...

    2015-01-30

    An innovative extended response surface modeling technique (ERSM v1.0) is developed to characterize the nonlinear response of fine particles (PM₂̣₅) to large and simultaneous changes of multiple precursor emissions from multiple regions and sectors. The ERSM technique is developed based on the conventional response surface modeling (RSM) technique; it first quantifies the relationship between PM₂̣₅ concentrations and the emissions of gaseous precursors from each single region using the conventional RSM technique, and then assesses the effects of inter-regional transport of PM₂̣₅ and its gaseous precursors on PM₂̣₅ concentrations in the target region. We apply this novel technique with a widelymore » used regional chemical transport model (CTM) over the Yangtze River delta (YRD) region of China, and evaluate the response of PM₂̣₅ and its inorganic components to the emissions of 36 pollutant–region–sector combinations. The predicted PM₂̣₅ concentrations agree well with independent CTM simulations; the correlation coefficients are larger than 0.98 and 0.99, and the mean normalized errors (MNEs) are less than 1 and 2% for January and August, respectively. It is also demonstrated that the ERSM technique could reproduce fairly well the response of PM₂̣₅ to continuous changes of precursor emission levels between zero and 150%. Employing this new technique, we identify the major sources contributing to PM₂̣₅ and its inorganic components in the YRD region. The nonlinearity in the response of PM₂̣₅ to emission changes is characterized and the underlying chemical processes are illustrated.« less

  12. D-isoascorbyl palmitate: lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology.

    PubMed

    Sun, Wen-Jing; Zhao, Hong-Xia; Cui, Feng-Jie; Li, Yun-Hong; Yu, Si-Lian; Zhou, Qiang; Qian, Jing-Ya; Dong, Ying

    2013-07-08

    Isoascorbic acid is a stereoisomer of L-ascorbic acid, and widely used as a food antioxidant. However, its highly hydrophilic behavior prevents its application in cosmetics or fats and oils-based foods. To overcome this problem, D-isoascorbyl palmitate was synthesized in the present study for improving the isoascorbic acid's oil solubility with an immobilized lipase in organic media. The structural information of synthesized product was clarified using LC-ESI-MS, FT-IR, 1H and 13C NMR analysis, and process parameters for high yield of D-isoascorbyl palmitate were optimized by using One-factor-at-a-time experiments and response surface methodology (RSM). The synthesized product had the purity of 95% and its structural characteristics were confirmed as isoascorbyl palmitate by LC-ESI-MS, FT-IR, 1H, and 13C NMR analysis. Results from "one-factor-at-a-time" experiments indicated that the enzyme load, reaction temperature and D-isoascorbic-to-palmitic acid molar ratio had a significant effect on the D-isoascorbyl palmitate conversion rate. 95.32% of conversion rate was obtained by using response surface methodology (RSM) under the the optimized condition: enzyme load of 20% (w/w), reaction temperature of 53°C and D- isoascorbic-to-palmitic acid molar ratio of 1:4 when the reaction parameters were set as: acetone 20 mL, 40 g/L of molecular sieves content, 200 rpm speed for 24-h reaction time. The findings of this study can become a reference for developing industrial processes for the preparation of isoascorbic acid ester, which might be used in food additives, cosmetic formulations and for the synthesis of other isoascorbic acid derivatives.

  13. D-isoascorbyl palmitate: lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology

    PubMed Central

    2013-01-01

    Background Isoascorbic acid is a stereoisomer of L-ascorbic acid, and widely used as a food antioxidant. However, its highly hydrophilic behavior prevents its application in cosmetics or fats and oils-based foods. To overcome this problem, D-isoascorbyl palmitate was synthesized in the present study for improving the isoascorbic acid’s oil solubility with an immobilized lipase in organic media. The structural information of synthesized product was clarified using LC-ESI-MS, FT-IR, 1H and 13C NMR analysis, and process parameters for high yield of D-isoascorbyl palmitate were optimized by using One–factor-at-a-time experiments and response surface methodology (RSM). Results The synthesized product had the purity of 95% and its structural characteristics were confirmed as isoascorbyl palmitate by LC-ESI-MS, FT-IR, 1H, and 13C NMR analysis. Results from “one–factor-at-a-time” experiments indicated that the enzyme load, reaction temperature and D-isoascorbic-to-palmitic acid molar ratio had a significant effect on the D-isoascorbyl palmitate conversion rate. 95.32% of conversion rate was obtained by using response surface methodology (RSM) under the the optimized condition: enzyme load of 20% (w/w), reaction temperature of 53°C and D- isoascorbic-to-palmitic acid molar ratio of 1:4 when the reaction parameters were set as: acetone 20 mL, 40 g/L of molecular sieves content, 200 rpm speed for 24-h reaction time. Conclusion The findings of this study can become a reference for developing industrial processes for the preparation of isoascorbic acid ester, which might be used in food additives, cosmetic formulations and for the synthesis of other isoascorbic acid derivatives. PMID:23835418

  14. Medium optimization for pyrroloquinoline quinone (PQQ) production by Methylobacillus sp. zju323 using response surface methodology and artificial neural network-genetic algorithm.

    PubMed

    Wei, Peilian; Si, Zhenjun; Lu, Yao; Yu, Qingfei; Huang, Lei; Xu, Zhinan

    2017-08-09

    Methylobacillus sp. zju323 was adopted to improve the biosynthesis of pyrroloquinoline quinone (PQQ) by systematic optimization of the fermentation medium. The Plackett-Burman design was implemented to screen for the key medium components for the PQQ production. CoCl 2  · 6H 2 O, ρ-amino benzoic acid, and MgSO 4  · 7H 2 O were found capable of enhancing the PQQ production most significantly. A five-level three-factor central composite design was used to investigate the direct and interactive effects of these variables. Both response surface methodology (RSM) and artificial neural network-genetic algorithm (ANN-GA) were used to predict the PQQ production and to optimize the medium composition. The results showed that the medium optimized by ANN-GA was better than that by RSM in maximizing PQQ production and the experimental PQQ concentration in the ANN-GA-optimized medium was improved by 44.3% compared with that in the unoptimized medium. Further study showed that this ANN-GA-optimized medium was also effective in improving PQQ production by fed-batch mode, reaching the highest PQQ accumulation of 232.0 mg/L, which was about 47.6% increase relative to that in the original medium. The present work provided an optimized medium and developed a fed-batch strategy which might be potentially applicable in industrial PQQ production.

  15. Response surface methodology to optimize partition and purification of two recombinant oxidoreductase enzymes, glucose dehydrogenase and d-galactose dehydrogenase in aqueous two-phase systems.

    PubMed

    Shahbaz Mohammadi, Hamid; Mostafavi, Seyede Samaneh; Soleimani, Saeideh; Bozorgian, Sajad; Pooraskari, Maryam; Kianmehr, Anvarsadat

    2015-04-01

    Oxidoreductases are an important family of enzymes that are used in many biotechnological processes. An experimental design was applied to optimize partition and purification of two recombinant oxidoreductases, glucose dehydrogenase (GDH) from Bacillus subtilis and d-galactose dehydrogenase (GalDH) from Pseudomonas fluorescens AK92 in aqueous two-phase systems (ATPS). Response surface methodology (RSM) with a central composite rotatable design (CCRD) was performed to optimize critical factors like polyethylene glycol (PEG) concentration, concentration of salt and pH value. The best partitioning conditions was achieved in an ATPS composed of 12% PEG-6000, 15% K2HPO4 with pH 7.5 at 25°C, which ensured partition coefficient (KE) of 66.6 and 45.7 for GDH and GalDH, respectively. Under these experimental conditions, the activity of GDH and GalDH was 569.5U/ml and 673.7U/ml, respectively. It was found that these enzymes preferentially partitioned into the top PEG-rich phase and appeared as single bands on SDS-PAGE gel. Meanwhile the validity of the response model was confirmed by a good agreement between predicted and experimental results. Collectively, according to the obtained data it can be inferred that the ATPS optimization using RSM approach can be applied for recovery and purification of any enzyme from oxidoreductase family. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Development of Carbotrap B-packed needle trap device for determination of volatile organic compounds in air.

    PubMed

    Poormohammadi, Ali; Bahrami, Abdulrahman; Farhadian, Maryam; Ghorbani Shahna, Farshid; Ghiasvand, Alireza

    2017-12-08

    Carbotrap B as a highly pure surface sorbent with excellent adsorption/desorption properties was packed into a stainless steel needle to develop a new needle trap device (NTD). The performance of the prepared NTD was investigated for sampling, pre-concentration and injection of benzene, toluene, ethyl benzene, o-xylene, and p-xylene (BTEX) into the column of gas chromatography-mass spectrometry (GC-MS) device. Response surface methodology (RSM) with central composite design (CCD) was also employed in two separate consecutive steps to optimize the sampling and device parameters. First, the sampling parameters such as sampling temperature and relative humidity were optimized. Afterwards, the RSM was used for optimizing the desorption parameters including desorption temperature and time. The results indicated that the peak area responses of the analytes of interest decreased with increasing sampling temperature and relative humidity. The optimum values of desorption temperature were in the range 265-273°C, and desorption time were in the range 3.4-3.8min. The limits of detection (LODs) and limits of quantitation (LOQs) of the studied analytes were found over the range of 0.03-0.04ng/mL, and 0.1-0.13ng/mL, respectively. These results demonstrated that the NTD packed with Carbotrap B offers a high sensitive procedure for sampling and analysis of BTEX in concentration range of 0.03-25ng/mL in air. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Application of Response Surface Methodology for Modeling of Postweld Heat Treatment Process in a Pressure Vessel Steel ASTM A516 Grade 70

    PubMed Central

    Peasura, Prachya

    2015-01-01

    This research studied the application of the response surface methodology (RSM) and central composite design (CCD) experiment in mathematical model and optimizes postweld heat treatment (PWHT). The material of study is a pressure vessel steel ASTM A516 grade 70 that is used for gas metal arc welding. PWHT parameters examined in this study included PWHT temperatures and time. The resulting materials were examined using CCD experiment and the RSM to determine the resulting material tensile strength test, observed with optical microscopy and scanning electron microscopy. The experimental results show that using a full quadratic model with the proposed mathematical model is Y TS = −285.521 + 15.706X 1 + 2.514X 2 − 0.004X 1 2 − 0.001X 2 2 − 0.029X 1 X 2. Tensile strength parameters of PWHT were optimized PWHT time of 5.00 hr and PWHT temperature of 645.75°C. The results show that the PWHT time is the dominant mechanism used to modify the tensile strength compared to the PWHT temperatures. This phenomenon could be explained by the fact that pearlite can contribute to higher tensile strength. Pearlite has an intensity, which results in increased material tensile strength. The research described here can be used as material data on PWHT parameters for an ASTM A516 grade 70 weld. PMID:26550602

  18. Response surface methodology approach for the optimisation of adsorption of hydrolysed polyacrylamide from polymer-flooding wastewater onto steel slag: a good option of waste mitigation.

    PubMed

    Zhu, Mijia; Yao, Jun; Qin, Zhonghai; Lian, Luning; Zhang, Chi

    2017-08-01

    Wastewater produced from polymer flooding in oil production features high viscosity and chemical oxygen demand because of the residue of high-concentration polymer hydrolysed polyacrylamide (HPAM). In this study, steel slag, a waste from steel manufacturing, was studied as a low-cost adsorbent for HPAM in wastewater. Optimisation of HPAM adsorption by steel slag was performed with a central composite design under response surface methodology (RSM). Results showed that the maximum removal efficiency of 89.31% was obtained at an adsorbent dosage of 105.2 g/L, contact time of 95.4 min and pH of 5.6. These data were strongly correlated with the experimental values of the RSM model. Single and interactive effect analysis showed that HPAM removal efficiency increased with increasing adsorbent dosage and contact time. Efficiency increased when pH was increased from 2.6 to 5.6 and subsequently decreased from 5.6 to 9.3. It was observed that removal efficiency significantly increased (from 0% to 86.1%) at the initial stage (from 0 min to 60 min) and increased gradually after 60 min with an adsorbent dosage of 105.2 g/L, pH of 5.6. The adsorption kinetics was well correlated with the pseudo-second-order equation. Removal of HPAM from the studied water samples indicated that steel slag can be utilised for the pre-treatment of polymer-flooding wastewater.

  19. Response surface methodology optimization of partitioning of xylanase form Aspergillus Niger by metal affinity polymer-salt aqueous two-phase systems.

    PubMed

    Fakhari, Mohamad Ali; Rahimpour, Farshad; Taran, Mojtaba

    2017-09-15

    Aqueous two phase affinity partitioning system using metal ligands was applied for partitioning and purification of xylanase produced by Aspergillus Niger. To minimization the number of experiments for the design parameters and develop predictive models for optimization of the purification process, response surface methodology (RSM) with a face-centered central composite design (CCF) has been used. Polyethylene glycol (PEG) 6000 was activated using epichlorohydrin, covalently linked to iminodiacetic acid (IDA), and the specific metal ligand Cu was attached to the polyethylene glycol-iminodiacetic acid (PEG-IDA). The influence of some experimental variables such as PEG (10-18%w/w), sodium sulfate (8-12%), PEG-IDA-Cu 2+ concentration (0-50% w/w of total PEG), pH of system (4-8) and crude enzyme loading (6-18%w/w) on xylanase and total protein partitioning coefficient, enzyme yield and enzyme specific activity were systematically evaluated. Two optimal point with high enzyme partitioning factor 10.97 and yield 79.95 (including 10% PEG, 12% Na 2 SO 4 , 50% ligand, pH 8 and 6% crude enzyme loading) and high specific activity in top phase 42.21 (including 14.73% PEG, 8.02% Na 2 SO 4 , 28.43% ligand, pH 7.7 and 6.08% crude enzyme loading) were attained. The adequacy of the RSM models was verified by a good agreement between experimental and predicted results. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Regional simulation of interannual variability over South America

    NASA Astrophysics Data System (ADS)

    Misra, V.; Dirmeyer, P. A.; Kirtman, B. P.; Juang, H.-M. Henry; Kanamitsu, M.

    2002-08-01

    Three regional climate simulations covering the austral summer season during three contrasting phases of the El Niño-Southern Oscillation cycle were conducted with the Regional Spectral Model (RSM) developed at the National Centers for Environmental Prediction (NCEP). The simulated interannual variability of precipitation over the Amazon River Basin, the Intertropical Convergence Zone, the Pacific and Atlantic Ocean basins, and extratropical South America compare reasonably well with observations. The RSM optimally filters the peturbations about a time-varying base field, thereby enhancing the information content of the global NCEP reanalysis. The model is better than the reanalysis in reproducing the observed interannual variability of outgoing longwave radiation at both high frequencies (3-30 days) and intraseasonal (30-60 days) scales. The low-level jet shows a peak in its speed in 1998 and a minimum in the 1999 simulations. The lag correlation of the jet index with convection over various areas in continental South America indicates that the jet induces precipitation over the Pampas region downstream. A detailed moisture budget was conducted over various subregions. This budget reveals that moisture flux convergence determines most of the interannual variability of precipitation over the Amazon Basin, the Atlantic Intertropical Convergence Zone, and the Nordeste region of Brazil. However, both surface evaporation and surface moisture flux convergence were found to be critical in determining the interannual variability of precipitation over the southern Pampas, Gran Chaco area, and the South Atlantic Convergence Zone.

  1. Optimization of the canola oil based vitamin E nanoemulsions stabilized by food grade mixed surfactants using response surface methodology.

    PubMed

    Mehmood, Tahir

    2015-09-15

    The objective of the present study was to prepare canola oil based vitamin E nanoemulsions by using food grade mixed surfactants (Tween:80 and lecithin; 3:1) to replace some concentration of nonionic surfactants (Tween 80) with natural surfactant (soya lecithin) and to optimize their preparation conditions. RBD (Refined, Bleached and Deodorized) canola oil and vitamin E acetate were used in water/vitamin E/oil/surfactant system due to their nutritional benefits and oxidative stability, respectively. Response surface methodology (RSM) was used to optimize the preparation conditions. The effects of homogenization pressure (75-155MPa), oil concentrations (4-12% w/w), surfactant concentrations (3-11% w/w) and vitamin E acetate contents (0.4-1.2% w/w) on the particle size and emulsion stability were studied. RSM analysis has shown that the experimental data could be fitted well into second-order polynomial model with the coefficient of determinations of 0.9464 and 0.9278 for particle size and emulsion stability, respectively. The optimum values of independent variables were 135MPa homogenization pressure, 6.18% oil contents, 6.39% surfactant concentration and 1% vitamin E acetate concentration. The optimized response values for particle size and emulsion stability were 150.10nm and 0.338, respectively. Whereas, the experimental values for particle size and nanoemulsion stability were 156.13±2.3nm and 0.328±0.015, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Optimization of conditions for isolation of high quality chitin from shrimp processing raw byproducts using response surface methodology and its characterization.

    PubMed

    Nidheesh, T; Suresh, P V

    2015-06-01

    Chitin is one of the most abundant bioactive biopolymer on earth. It is commercially extracted from seafood processing crustacean shell byproducts by harsh thermochemical treatments. The extraction conditions, the source and pretreatment of raw material significantly affect its quality and bioactivity. In this investigation response surface methodology (RSM) has been applied to optimize and evaluate the interaction of variables for extraction of high quality chitin from shrimp processing raw byproducts. Variables such as, concentration of HCl (%, v/v) 4.5 (for wet) and 4.9 (for dry), reaction time 3 h, solid liquid ratio of HCl (w/v) 1:5.5 (for wet) and 1:7.9 (for dry) with two treatments achieved >98 % demineralization of shrimp byproduct. Variables such as, concentration of NaOH 3.6 % (w/v), reaction time 2.5 h, temperature 69.0 ± 1 °C, solid liquid ratio of NaOH 7.4 (w/v) and two treatments accomplished >98 % deproteinization of demineralized byproducts. Significant (p ≤ 0.05-0.001) interactive effects were observed between different variables. Chitin obtained in these conditions had residual content (%, w/w) of ash <0.4 and protein <0.8 and the degree of N-acetylation was >93 % with purity of >98 %. In conclusion, the optimized conditions by RSM can be applied for large scale preparation of high quality chitin from raw shrimp byproduct.

  3. Cost-effective approach to ethanol production and optimization by response surface methodology.

    PubMed

    Uncu, Oya Nihan; Cekmecelioglu, Deniz

    2011-04-01

    Food wastes disposed from residential and industrial kitchens have gained attention as a substrate in microbial fermentations to reduce product costs. In this study, the potential of simultaneously hydrolyzing and subsequently fermenting the mixed carbohydrate components of kitchen wastes were assessed and the effects of solid load, inoculum volume of baker's yeast, and fermentation time on ethanol production were evaluated by response surface methodology (RSM). The enzymatic hydrolysis process was complete within 6h. Fermentation experiments were conducted at pH 4.5, a temperature of 30°C, and agitated at 150 rpm without adding the traditional fermentation nutrients. The statistical analysis of the model developed by RSM suggested that linear effects of solid load, inoculum volume, and fermentation time and the quadratic effects of inoculum volume and fermentation time were significant (P<0.05). The verification experiments indicated that the developed model could be successfully used to predict ethanol concentration at >90% accuracy. An optimum ethanol concentration of 32.2g/l giving a yield of 0.40g/g, comparable to yields reported to date, was suggested by the model with 20% solid load, 8.9% inoculum volume, and 58.8h of fermentation. The results indicated that the production costs can be lowered to a large extent by using kitchen wastes having multiple carbohydrate components and eliminating the use of traditional fermentation nutrients from the recipe. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Optimization of palm fruit sterilization by microwave irradiation using response surface methodology

    NASA Astrophysics Data System (ADS)

    Sarah, M.; Madinah, I.; Salamah, S.

    2018-02-01

    This study reported optimization of palm fruit sterilization process by microwave irradiation. The results of fractional factorial experiments showed no significant external factors affecting temperature of microwave sterilization (MS). Response surface methodology (RSM) was employed and model equation of MS of palm fruit was built. Response surface plots and their corresponding contour plots were analyzed as well as solving model equation. The optimum process parameters for lipase reduction were obtained from MS of 1 kg palm fruit at microwave power of 486 Watt and heating time of 14 minutes. The experimental results showed reduction of lipase activity in the present work under MS treatment. The adequacy of the model equation for predicting the optimum response value was verified by validation data (P>0.15).

  5. Optimizing the Removal of Rhodamine B in Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zerovalent Iron (nZVI/rGO) Using an Artificial Neural Network-Genetic Algorithm (ANN-GA)

    PubMed Central

    Shi, Xuedan; Ruan, Wenqian; Hu, Jiwei; Fan, Mingyi; Cao, Rensheng; Wei, Xionghui

    2017-01-01

    Rhodamine B (Rh B) is a toxic dye that is harmful to the environment, humans, and animals, and thus the discharge of Rh B wastewater has become a critical concern. In the present study, reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) was used to treat Rh B aqueous solutions. The nZVI/rGO composites were synthesized with the chemical deposition method and were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, N2-sorption, and X-ray photoelectron spectroscopy (XPS) analysis. The effects of several important parameters (initial pH, initial concentration, temperature, and contact time) on the removal of Rh B by nZVI/rGO were optimized by response surface methodology (RSM) and artificial neural network hybridized with genetic algorithm (ANN-GA). The results suggest that the ANN-GA model was more accurate than the RSM model. The predicted optimum value of Rh B removal efficiency (90.0%) was determined using the ANN-GA model, which was compatible with the experimental value (86.4%). Moreover, the Langmuir, Freundlich, and Temkin isotherm equations were applied to fit the adsorption equilibrium data, and the Freundlich isotherm was the most suitable model for describing the process for sorption of Rh B onto the nZVI/rGO composites. The maximum adsorption capacity based on the Langmuir isotherm was 87.72 mg/g. The removal process of Rh B could be completed within 20 min, which was well described by the pseudo-second order kinetic model. PMID:28587196

  6. Optimizing the Removal of Rhodamine B in Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zerovalent Iron (nZVI/rGO) Using an Artificial Neural Network-Genetic Algorithm (ANN-GA).

    PubMed

    Shi, Xuedan; Ruan, Wenqian; Hu, Jiwei; Fan, Mingyi; Cao, Rensheng; Wei, Xionghui

    2017-06-03

    Rhodamine B (Rh B) is a toxic dye that is harmful to the environment, humans, and animals, and thus the discharge of Rh B wastewater has become a critical concern. In the present study, reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) was used to treat Rh B aqueous solutions. The nZVI/rGO composites were synthesized with the chemical deposition method and were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, N₂-sorption, and X-ray photoelectron spectroscopy (XPS) analysis. The effects of several important parameters (initial pH, initial concentration, temperature, and contact time) on the removal of Rh B by nZVI/rGO were optimized by response surface methodology (RSM) and artificial neural network hybridized with genetic algorithm (ANN-GA). The results suggest that the ANN-GA model was more accurate than the RSM model. The predicted optimum value of Rh B removal efficiency (90.0%) was determined using the ANN-GA model, which was compatible with the experimental value (86.4%). Moreover, the Langmuir, Freundlich, and Temkin isotherm equations were applied to fit the adsorption equilibrium data, and the Freundlich isotherm was the most suitable model for describing the process for sorption of Rh B onto the nZVI/rGO composites. The maximum adsorption capacity based on the Langmuir isotherm was 87.72 mg/g. The removal process of Rh B could be completed within 20 min, which was well described by the pseudo-second order kinetic model.

  7. Preliminary screening oxidative degradation methyl orange using ozone/ persulfate

    NASA Astrophysics Data System (ADS)

    Aqilah Razali, Nur; Zulzikrami Azner Abidin, Che; An, Ong Soon; Ridwan, Fahmi Muhammad; Haqi Ibrahim, Abdul; Nasuha Sabri, Siti; Huan Kow, Su

    2018-03-01

    The present study focusing on the performances of advanced oxidation process by using ozonation method towards Methyl Orange based on the efficiency of colour removal and Chemical Oxygen Demand (COD) removal. Factorial design with response surface methodology (RSM) was used to evaluate the interaction between operational conditions, such as pH, initial concentration, contact time and persulfate dosage to obtain the optimum range conditions using a semi-batch reactor. The range of independent variables investigated were pH (3-11), initial concentration (100-500mg/L), contact time (10-50min) and persulfate dosage (20-100mM) while the response variables were colour removal and COD removal of Methyl Orange. The experimental results and statistical analysis showed all the parameters were significant. Thus, from this findings, optimization of operational conditions that had been suggested from the ozone/persulfate RSM analysis were (pH 3, 100 mg/L, 50min, 60mM) that would be produced 99% Colour Removal and 80% COD Removal and help in promoting an efficient ozonation process. The effect list data that showed the most contributed effects to increase the percentages of colour removal were pH and persulfate dosage whereas the contact time and initial concentration had the highest positive effects on the COD removal. Other than that, the interaction between pH, contact time and persulfate dosage were found to be the most influencing interaction. Therefore the least influencing interaction was interaction between persulfate dosage and pH. In this study, the correlation coefficient value R2 for colour removal and COD removal of Methyl Orange were R2= 0.9976 and R2= 0.9924 which suggested a good fit of the first-order regression model with the experimental data.

  8. Statistical optimization and artificial neural network modeling for acridine orange dye degradation using in-situ synthesized polymer capped ZnO nanoparticles.

    PubMed

    Dhiman, Nitesh; Markandeya; Singh, Amrita; Verma, Neeraj K; Ajaria, Nidhi; Patnaik, Satyakam

    2017-05-01

    ZnO NPs were synthesized by a prudent green chemistry approach in presence of polyacrylamide grafted guar gum polymer (pAAm-g-GG) to ensure uniform morphology, and functionality and appraised for their ability to degrade photocatalytically Acridine Orange (AO) dye. These ZnO@pAAm-g-GG NPs were thoroughly characterized by various spectroscopic, XRD and electron microscopic techniques. The relative quantity of ZnO NPs in polymeric matrix has been estimated by spectro-analytical procedure; AAS and TGA analysis. The impact of process parameters viz. NP's dose, contact time and AO dye concentration on percentage photocatalytic degradation of AO dyes were evaluated using multivariate optimizing tools, Response Surface Methodology (RSM) involving Box-Behnken Design (BBD) and Artificial Neural Network (ANN). Congruity of the BBD statistical model was implied by R 2 value 0.9786 and F-value 35.48. At RSM predicted optimal condition viz. ZnO@pAAm-g-GG NP's dose of 0.2g/L, contact time of 210min and AO dye concentration 10mg/L, a maximum of 98% dye degradation was obtained. ANOVA indicated appropriateness of the model for dye degradation owing to "Prob.>F" less than 0.05 for variable parameters. We further, employed three layers feed forward ANN model for validating the BBD process parameters and suitability of our chosen model. The evaluation of Levenberg-Marquardt algorithm (ANN1) and Gradient Descent with adaptive learning rate (ANN2) model employed to scrutinize the best method and found experimental values of AO dye degradation were in close to those with predicated value of ANN 2 modeling with minimum error. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Integrated design and manufacturing for the high speed civil transport (a combined aerodynamics/propulsion optimization study)

    NASA Technical Reports Server (NTRS)

    Baecher, Juergen; Bandte, Oliver; DeLaurentis, Dan; Lewis, Kemper; Sicilia, Jose; Soboleski, Craig

    1995-01-01

    This report documents the efforts of a Georgia Tech High Speed Civil Transport (HSCT) aerospace student design team in completing a design methodology demonstration under NASA's Advanced Design Program (ADP). Aerodynamic and propulsion analyses are integrated into the synthesis code FLOPS in order to improve its prediction accuracy. Executing the integrated product and process development (IPPD) methodology proposed at the Aerospace Systems Design Laboratory (ASDL), an improved sizing process is described followed by a combined aero-propulsion optimization, where the objective function, average yield per revenue passenger mile ($/RPM), is constrained by flight stability, noise, approach speed, and field length restrictions. Primary goals include successful demonstration of the application of the response surface methodolgy (RSM) to parameter design, introduction to higher fidelity disciplinary analysis than normally feasible at the conceptual and early preliminary level, and investigations of relationships between aerodynamic and propulsion design parameters and their effect on the objective function, $/RPM. A unique approach to aircraft synthesis is developed in which statistical methods, specifically design of experiments and the RSM, are used to more efficiently search the design space for optimum configurations. In particular, two uses of these techniques are demonstrated. First, response model equations are formed which represent complex analysis in the form of a regression polynomial. Next, a second regression equation is constructed, not for modeling purposes, but instead for the purpose of optimization at the system level. Such an optimization problem with the given tools normally would be difficult due to the need for hard connections between the various complex codes involved. The statistical methodology presents an alternative and is demonstrated via an example of aerodynamic modeling and planform optimization for a HSCT.

  10. Optimal reentry prediction of space objects from LEO using RSM and GA

    NASA Astrophysics Data System (ADS)

    Mutyalarao, M.; Raj, M. Xavier James

    2012-07-01

    The accurate estimation of the orbital life time (OLT) of decaying near-Earth objects is of considerable importance for the prediction of risk object re-entry time and hazard assessment as well as for mitigation strategies. Recently, due to the reentries of large number of risk objects, which poses threat to the human life and property, a great concern is developed in the space scientific community all over the World. The evolution of objects in Low Earth Orbit (LEO) is determined by a complex interplay of the perturbing forces, mainly due to atmospheric drag and Earth gravity. These orbits are mostly in low eccentric (eccentricity < 0.2) and have variations in perigee and apogee altitudes due to perturbations during a revolution. The changes in the perigee and apogee altitudes of these orbits are mainly due to the gravitational perturbations of the Earth and the atmospheric density. It has become necessary to use extremely complex force models to match with the present operational requirements and observational techniques. Further the re-entry time of the objects in such orbits is sensitive to the initial conditions. In this paper the problem of predicting re-entry time is attempted as an optimal estimation problem. It is known that the errors are more in eccentricity for the observations based on two line elements (TLEs). Thus two parameters, initial eccentricity and ballistic coefficient, are chosen for optimal estimation. These two parameters are computed with response surface method (RSM) using a genetic algorithm (GA) for the selected time zones, based on rough linear variation of response parameter, the mean semi-major axis during orbit evolution. Error minimization between the observed and predicted mean Semi-major axis is achieved by the application of an optimization algorithm such as Genetic Algorithm (GA). The basic feature of the present approach is that the model and measurement errors are accountable in terms of adjusting the ballistic coefficient and eccentricity. The methodology is tested with the recently reentered objects ROSAT and PHOBOS GRUNT satellites. The study reveals a good agreement with the actual reentry time of these objects. It is also observed that the absolute percentage error in re-entry prediction time for all the two objects is found to be very less. Keywords: low eccentric, Response surface method, Genetic algorithm, apogee altitude, Ballistic coefficient

  11. Optimization of Medium Composition for the Production of Neomycin by Streptomyces fradiae NCIM 2418 in Solid State Fermentation

    PubMed Central

    Vastrad, B. M.; Neelagund, S. E.

    2014-01-01

    Neomycin production of Streptomyces fradiae NCIM 2418 was optimized by using response surface methodology (RSM), which is powerful mathematical approach comprehensively applied in the optimization of solid state fermentation processes. In the first step of optimization, with Placket-Burman design, ammonium chloride, sodium nitrate, L-histidine, and ammonium nitrate were established to be the crucial nutritional factors affecting neomycin production significantly. In the second step, a 24 full factorial central composite design and RSM were applied to determine the optimal concentration of significant variable. A second-order polynomial was determined by the multiple regression analysis of the experimental data. The optimum values for the important nutrients for the maximum were obtained as follows: ammonium chloride 2.00%, sodium nitrate 1.50%, L-histidine 0.250%, and ammonium nitrate 0.250% with a predicted value of maximum neomycin production of 20,000 g kg−1 dry coconut oil cake. Under the optimal condition, the practical neomycin production was 19,642 g kg−1 dry coconut oil cake. The determination coefficient (R 2) was 0.9232, which ensures an acceptable admissibility of the model. PMID:25009746

  12. Extraction and free radical scavenging activity of polysaccharide from 'Anji Baicha' (Camellia sinensis (L.) O. Kuntze).

    PubMed

    Zhang, Zhongshan; Wang, Xiaomei; Li, Jingfen; Wang, Guozhi; Mao, Genxiang

    2016-03-01

    In this study, the optimization of the extraction conditions of polysaccharide from 'Anji Baicha' (Camellia sinensis (L.) O. Kuntze) (AP) was investigated by response surface methodology (RSM). Three main independent variables (extraction temperature, time, ratio of water to raw material) were taken into consideration. And then the free radical scavenging activities of the sample were investigated including scavenging effects of superoxide and hydroxyl radicals. The RSM analysis showed good correspondence between experimental and predicted values.. The optimal condition to obtain the highest yield of AP was determined as follows: temperature 76.79 °C, time 2.48 h, ratio of water to material 22.53 mL/g. For the free radical scavenging activity, the IC50 values of Vc and AP were 7.78 and 83.25 μg/mL. And for the scavenging effect on hydroxyl radical, that of AP and Vc were 1.80 and 1.69 mg/mL. AP showed excellent antioxidant activity. This exhibited AP had a good potential for antioxidant. The purification and structure needs to be study in further. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Statistical optimization for improved production of cyclosporin a in solid-state fermentation.

    PubMed

    Survase, Shrikant A; Annapure, Uday S; Singhal, Rekha S

    2009-11-01

    This work evaluates the effect of different amino acids on production of CyA production in solid-state fermentation that was previously optimized for different fermentation parameters by one-factor-at-a-time for the maximum production of CyA by Tolypocladium inflatum MTCC 557. Based on the Plackett-Burman design, glycerol, ammonium sulfate, FeCl3, and inoculum size were selected for further optimization by response surface methodology (RSM). After identifying effective nutrients, RSM was used to develop mathematical model equations, study responses, and establish the optimum concentrations of the key nutrients for higher CyA production. It was observed that supplementation of medium containing (% w/w) glycerol, 1.53; ammonium sulfate, 0.95; FeCl3, 0.18; and inoculum size 6.4 ml/5g yielded a maximum of 7,106 mg/kg as compared with 6,480 mg CyA/kg substrate using one factor at a time. In the second step, the effect of amino acids on the production of CyA was studied. Addition of L-valine and L-leucine in combination after 20 h of fermentation resulted in maximum production of 8,166 mg/kg.

  14. Multi-objective optimization of oxidative desulfurization in a sono-photochemical airlift reactor.

    PubMed

    Behin, Jamshid; Farhadian, Negin

    2017-09-01

    Response surface methodology (RSM) was employed to optimize ultrasound/ultraviolet-assisted oxidative desulfurization in an airlift reactor. Ultrasonic waves were incorporated in a novel-geometry reactor to investigate the synergistic effects of sono-chemistry and enhanced gas-liquid mass transfer. Non-hydrotreated kerosene containing sulfur and aromatic compounds was chosen as a case study. Experimental runs were conducted based on a face-centered central composite design and analyzed using RSM. The effects of two categorical factors, i.e., ultrasound and ultraviolet irradiation and two numerical factors, i.e., superficial gas velocity and oxidation time were investigated on two responses, i.e., desulfurization and de-aromatization yields. Two-factor interaction (2FI) polynomial model was developed for the responses and the desirability function associate with overlay graphs was applied to find optimum conditions. The results showed enhancement in desulfurization ability corresponds to more reduction in aromatic content of kerosene in each combination. Based on desirability approach and certain criteria considered for desulfurization/de-aromatization, the optimal desulfurization and de-aromatization yields of 91.7% and 48% were obtained in US/UV/O 3 /H 2 O 2 combination, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Statistical optimization of bioprocess parameters for enhanced gallic acid production from coffee pulp tannins by Penicillium verrucosum.

    PubMed

    Bhoite, Roopali N; Navya, P N; Murthy, Pushpa S

    2013-01-01

    Gallic acid (3,4,5-trihydroxybenzoic acid) was produced by microbial biotransformation of coffee pulp tannins by Penicillium verrucosum. Gallic acid production was optimized using response surface methodology (RSM) based on central composite rotatable design. Process parameters such as pH, moisture, and fermentation period were considered for optimization. Among the various fungi isolated from coffee by-products, Penicillium verrucosum produced 35.23 µg/g of gallic acid on coffee pulp as sole carbon source in solid-state fermentation. The optimum values of the parameters obtained from the RSM were pH 3.32, moisture 58.40%, and fermentation period of 96 hr. Gallic acid production with an increase of 4.6-fold was achieved upon optimization of the process parameters. The results optimized could be translated to 1-kg tray fermentation. High-performance liquid chromatography (HPLC) analysis and spectral studies such as mass spectroscopy (MS) and (1)H-nuclear magnetic resonance (NMR) confirmed that the bioactive compound isolated was gallic acid. Thus, coffee pulp, which is available in enormous quantity, could be used for the production of value-added products that can find avenues in food, pharmaceutical, and chemical industries.

  16. Optimization of process variables for decolorization of Disperse Yellow 211 by Bacillus subtilis using Box-Behnken design.

    PubMed

    Sharma, Praveen; Singh, Lakhvinder; Dilbaghi, Neeraj

    2009-05-30

    Decolorization of textile azo dye Disperse Yellow 211 (DY 211) was carried out from simulated aqueous solution by bacterial strain Bacillus subtilis. Response surface methodology (RSM), involving Box-Behnken design matrix in three most important operating variables; temperature, pH and initial dye concentration was successfully employed for the study and optimization of decolorization process. The total 17 experiments were conducted in the study towards the construction of a quadratic model. According to analysis of variance (ANOVA) results, the proposed model can be used to navigate the design space. Under optimized conditions the bacterial strain was able to decolorize DY 211 up to 80%. Model indicated that initial dye concentration of 100 mgl(-1), pH 7 and a temperature of 32.5 degrees C were found optimum for maximum % decolorization. Very high regression coefficient between the variables and the response (R(2)=0.9930) indicated excellent evaluation of experimental data by polynomial regression model. The combination of the three variables predicted through RSM was confirmed through confirmatory experiments, hence the bacterial strain holds a great potential for the treatment of colored textile effluents.

  17. Feed additive production by fermentation of herb Polygonum hydropiper L. and cassava pulp with simultaneous flavonoid dissolution.

    PubMed

    Song, Zhen-Tao; Zhu, Ming-Jun

    2017-03-01

    Fermentation of herb Polygonum hydropiper L. (PHL) and cassava pulp (CP) for feed additive production with simultaneous flavonoid dissolution was investigated, and a two-stage response surface methodology (RSM) based on Plackett-Burman factorial design (PB design) was used to optimize the flavonoid dissolution and protein content. Using the screening function of PB design, four different significant factors for the two response variables were acquired: factors A (CP) and B (PHL) for the flavonoid dissolution versus factors G (inoculum size) and H (fermentation time) for protein content. Then, two RSMs were used sequentially to improve the values of the two response variables separately. The mutual corroboration of the experimental results in the present study confirmed the validity of the associated experimental design. The validation experiment showed a flavonoid dissolution rate of 94.00%, and a protein content of 18.20%, gaining an increase in 21.20% and 199.10% over the control, respectively. The present study confirms the feasibility of feed additive production by Saccharomyces cerevisiae with CP and PHL and simultaneous optimization of flavonoid dissolution and protein content using a two-stage RSM. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  18. Optimization and characterization of stable lipid-based, oxygen-filled microbubbles by mixture design.

    PubMed

    Polizzotti, Brian D; Thomson, Lindsay M; O'Connell, Daniel W; McGowan, Francis X; Kheir, John N

    2014-08-01

    Tissue hypoxia is a final common pathway that leads to cellular injury and death in a number of critical illnesses. Intravenous injections of self-assembling, lipid-based oxygen microbubbles (LOMs) can be used to deliver oxygen gas, preventing organ injury and death from systemic hypoxemia. However, current formulations exhibit high polydispersity indices (which may lead to microvascular obstruction) and poor shelf-lives, limiting the translational capacity of LOMs. In this study, we report our efforts to optimize LOM formulations using a mixture response surface methodology (mRSM). We study the effect of changing excipient proportions (the independent variables) on microbubble diameter and product loss (the dependent variables). By using mRSM analysis, the experimental data were fit using a reduced Scheffé linear mixture model. We demonstrate that formulations manufactured from 1,2-distearoyl-sn-glycero-3-phosphocholine, corn syrup, and water produce micron-sized microbubbles with low polydispersity indices, and decreased product loss (relative to previously described formulations) when stored at room temperature over a 30-day period. Optimized LOMs were subsequently tested for their oxygen-releasing ability and found to have similar release kinetics as prior formulations. © 2014 Wiley Periodicals, Inc.

  19. Waste-Activated Sludge Fermentation for Polyacrylamide Biodegradation Improved by Anaerobic Hydrolysis and Key Microorganisms Involved in Biological Polyacrylamide Removal.

    PubMed

    Dai, Xiaohu; Luo, Fan; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dong, Bin

    2015-07-06

    During the anaerobic digestion of dewatered sludge, polyacrylamide (PAM), a chemical conditioner, can usually be consumed as a carbon and nitrogen source along with other organic matter (e.g., proteins and carbohydrates in the sludge). However, a significant accumulation of acrylamide monomers (AMs) was observed during the PAM biodegradation process. To improve the anaerobic hydrolysis of PAM, especially the amide hydrolysis process, and to avoid the generation of the intermediate product AM, a new strategy is reported herein that uses an initial pH of 9, 200 mg COD/L of PAM and a fermentation time of 17 d. First, response surface methodology (RSM) was applied to optimize PAM removal in the anaerobic digestion of the sludge. The biological hydrolysis of PAM reached 86.64% under the optimal conditions obtained from the RSM. Then, the mechanisms for the optimized parameters that significantly improved the biological hydrolysis of PAM were investigated by the synergistic effect of the main organic compounds in the sludge, the floc size distribution, and the enzymatic activities. Finally, semi-continuous-flow experiments for a microbial community study were investigated based on the determination of key microorganisms involved in the biological hydrolysis of PAM.

  20. On the twenty-first-century wet season projections over the Southeastern United States

    USGS Publications Warehouse

    Selman, Christopher; Misra, Vasu; Stefanova, Lydia; Dinapoli, Steven; Smith, Thomas J.

    2013-01-01

    This paper reconciles the difference in the projections of the wet season over the Southeastern United States (SEUS) from a global climate model (the Community Climate System Model Version 3 [CCSM3]) and from a regional climate model (the Regional Spectral Model [RSM]) nested in the CCSM3. The CCSM3 projects a dipole in the summer precipitation anomaly: peninsular Florida dries in the future climate, and the remainder of the SEUS region becomes wetter. The RSM forced with CCSM3 projects a universal drying of the SEUS in the late twenty-first century relative to the corresponding twentieth-century summer. The CCSM3 pattern is attributed to the “upped-ante” mechanism, whereby the atmospheric boundary layer moisture required for convection increases in a warm, statically stable global tropical environment. This criterion becomes harder to meet along convective margins, which include peninsular Florida, resulting in its drying. CCSM3 also projects a southwestward expansion of the North Atlantic subtropical high that leads to further stabilizing of the atmosphere above Florida, inhibiting convection. The RSM, because of its high (10-km grid) resolution, simulates diurnal variations in summer rainfall over SEUS reasonably well. The RSM improves upon CCSM3 through the RSM’s depiction of the diurnal variance of precipitation, which according to observations accounts for up to 40 % of total seasonal precipitation variance. In the future climate, the RSM projects a significant reduction in the diurnal variability of convection. The reduction is attributed to large-scale stabilization of the atmosphere in the CCSM3 projections.

  1. Signal Integration in Quorum Sensing Enables Cross-Species Induction of Virulence in Pectobacterium wasabiae

    PubMed Central

    Valente, Rita S.; Nadal-Jimenez, Pol; Carvalho, André F. P.; Vieira, Filipe J. D.

    2017-01-01

    ABSTRACT Bacterial communities can sense their neighbors, regulating group behaviors in response to cell density and environmental changes. The diversity of signaling networks in a single species has been postulated to allow custom responses to different stimuli; however, little is known about how multiple signals are integrated and the implications of this integration in different ecological contexts. In the plant pathogen Pectobacterium wasabiae (formerly Erwinia carotovora), two signaling networks—the N-acyl homoserine lactone (AHL) quorum-sensing system and the Gac/Rsm signal transduction pathway—control the expression of secreted plant cell wall-degrading enzymes, its major virulence determinants. We show that the AHL system controls the Gac/Rsm system by affecting the expression of the regulatory RNA RsmB. This regulation is mediated by ExpR2, the quorum-sensing receptor that responds to the P. wasabiae cognate AHL but also to AHLs produced by other bacterial species. As a consequence, this level of regulation allows P. wasabiae to bypass the Gac-dependent regulation of RsmB in the presence of exogenous AHLs or AHL-producing bacteria. We provide in vivo evidence that this pivotal role of RsmB in signal transduction is important for the ability of P. wasabiae to induce virulence in response to other AHL-producing bacteria in multispecies plant lesions. Our results suggest that the signaling architecture in P. wasabiae was coopted to prime the bacteria to eavesdrop on other bacteria and quickly join the efforts of other species, which are already exploiting host resources. PMID:28536283

  2. The mechanisms of the protective effects of reconstituted skim milk during convective droplet drying of lactic acid bacteria.

    PubMed

    Zheng, Xufeng; Fu, Nan; Duan, Manlei; Woo, Meng Wai; Selomulya, Cordelia; Chen, Xiao Dong

    2015-10-01

    Reconstituted skim milk (RSM) is a reputed protective carrier for improving the survival ratio of lactic acid bacteria (LAB) after spray drying; however the underlying mechanisms of the prominent protection remains unclear. In this study, the inactivation histories of two LAB strains during droplet drying with four carriers were experimentally determined, and the effects of droplet drying parameters on LAB inactivation were investigated. For the first time, the possible contribution of each RSM components to the maintenance of LAB viability during drying was discussed. Rapid inactivation of LAB cells only started at the later stage of drying, where RSM could maintain viability better upon both high droplet temperature and low moisture content than the other three carriers tested. Such protective effects was attributed to calcium and milk proteins rather than lactose. Upon the rapidly increasing droplet temperature at the later stage, calcium might enhance the heat resistance of LAB cells, whereas proteins might lead to a mild temperature variation rate which was beneficial to cell survival. LAB cells dried in the reconstituted whole milk showed the most advanced transition of rapid viability loss, with transition temperature at around 60°C, in contrast to 65-70°C in lactose and MRS carriers and 75°C in the RSM carrier. The detrimental effects could be due to the high level of milk fat content. The proposed effects of each RSM components on LAB viability would be useful for constructing more powerful protectants for production of active dry LAB cells via spray drying. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. 2D DIGE Does Not Reveal all: A Scotopic Report Suggests Differential Expression of a Single "Calponin Family Member" Protein for Tetany of Sphincters!

    PubMed

    Chaudhury, Arun

    2015-01-01

    Using 2D differential gel electrophoresis (DIGE) and mass spectrometry (MS), a recent report by Rattan and Ali (2015) compared proteome expression between tonically contracted sphincteric smooth muscles of the internal anal sphincter (IAS), in comparison to the adjacent rectum [rectal smooth muscles (RSM)] that contracts in a phasic fashion. The study showed the differential expression of a single 23 kDa protein SM22, which was 1.87 fold, overexpressed in RSM in comparison to IAS. Earlier studies have shown differences in expression of different proteins like Rho-associated protein kinase II, myosin light chain kinase, myosin phosphatase, and protein kinase C between IAS and RSM. The currently employed methods, despite its high-throughput potential, failed to identify these well-characterized differences between phasic and tonic muscles. This calls into question the fidelity and validatory potential of the otherwise powerful technology of 2D DIGE/MS. These discrepancies, when redressed in future studies, will evolve this recent report as an important baseline study of "sphincter proteome." Proteomics techniques are currently underutilized in examining pathophysiology of hypertensive/hypotensive disorders involving gastrointestinal sphincters, including achalasia, gastroesophageal reflux disease (GERD), spastic pylorus, seen during diabetes or chronic chemotherapy, intestinal pseudo-obstruction, and recto-anal incontinence. Global proteome mapping may provide instant snapshot of the complete repertoire of differential proteins, thus expediting to identify the molecular pathology of gastrointestinal motility disorders currently labeled "idiopathic" and facilitating practice of precision medicine.

  4. Extraction condition optimization and effects of drying methods on physicochemical properties and antioxidant activities of polysaccharides from comfrey (Symphytum officinale L.) root.

    PubMed

    Shang, Hongmei; Zhou, Haizhu; Duan, Mengying; Li, Ran; Wu, Hongxin; Lou, Yujie

    2018-06-01

    This study was designed to investigate the extraction conditions of polysaccharides from comfrey (Symphytum officinale L.) root (CRPs) using response surface methodology (RSM). The effects of three variables including liquid-solid ratio, extraction time and extraction temperature on the extraction yield of CRPs were taken into consideration. Moreover, the effects of drying methods including hot air drying (HD), vacuum drying (VD) and freeze drying (FD) on the physicochemical properties and antioxidant activities of CRPs were evaluated. The optimal conditions to extract the polysaccharides were as follows: liquid-solid ratio (15mL/g), extraction time (74min), and extraction temperature (95°C), allowed a maximum polysaccharides yield of 22.87%. Different drying methods had significant effects on the physicochemical properties of CRPs such as the chemical composition (contents of total polysaccharides and uronic acid), relative viscosity, solubility and molecular weight. CRPs drying with FD method showed stronger reducing power and radical scavenging capacities against DPPH and ABTS radicals compared with CRPs drying with HD and VD methods. Therefore, freeze drying served as a good method for keeping the antioxidant activities of polysaccharides from comfrey root. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Application of machine/statistical learning, artificial intelligence and statistical experimental design for the modeling and optimization of methylene blue and Cd(ii) removal from a binary aqueous solution by natural walnut carbon.

    PubMed

    Mazaheri, H; Ghaedi, M; Ahmadi Azqhandi, M H; Asfaram, A

    2017-05-10

    Analytical chemists apply statistical methods for both the validation and prediction of proposed models. Methods are required that are adequate for finding the typical features of a dataset, such as nonlinearities and interactions. Boosted regression trees (BRTs), as an ensemble technique, are fundamentally different to other conventional techniques, with the aim to fit a single parsimonious model. In this work, BRT, artificial neural network (ANN) and response surface methodology (RSM) models have been used for the optimization and/or modeling of the stirring time (min), pH, adsorbent mass (mg) and concentrations of MB and Cd 2+ ions (mg L -1 ) in order to develop respective predictive equations for simulation of the efficiency of MB and Cd 2+ adsorption based on the experimental data set. Activated carbon, as an adsorbent, was synthesized from walnut wood waste which is abundant, non-toxic, cheap and locally available. This adsorbent was characterized using different techniques such as FT-IR, BET, SEM, point of zero charge (pH pzc ) and also the determination of oxygen containing functional groups. The influence of various parameters (i.e. pH, stirring time, adsorbent mass and concentrations of MB and Cd 2+ ions) on the percentage removal was calculated by investigation of sensitive function, variable importance rankings (BRT) and analysis of variance (RSM). Furthermore, a central composite design (CCD) combined with a desirability function approach (DFA) as a global optimization technique was used for the simultaneous optimization of the effective parameters. The applicability of the BRT, ANN and RSM models for the description of experimental data was examined using four statistical criteria (absolute average deviation (AAD), mean absolute error (MAE), root mean square error (RMSE) and coefficient of determination (R 2 )). All three models demonstrated good predictions in this study. The BRT model was more precise compared to the other models and this showed that BRT could be a powerful tool for the modeling and optimizing of removal of MB and Cd(ii). Sensitivity analysis (calculated from the weight of neurons in ANN) confirmed that the adsorbent mass and pH were the essential factors affecting the removal of MB and Cd(ii), with relative importances of 28.82% and 38.34%, respectively. A good agreement (R 2 > 0.960) between the predicted and experimental values was obtained. Maximum removal (R% > 99) was achieved at an initial dye concentration of 15 mg L -1 , a Cd 2+ concentration of 20 mg L -1 , a pH of 5.2, an adsorbent mass of 0.55 g and a time of 35 min.

  6. Ocean Turbulence, III: New GISS Vertical Mixing Scheme

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Howard, A. M.; Cheng, Y.; Muller, C. J.; Leboissetier, A.; Jayne, S. R.

    2010-01-01

    We have found a new way to express the solutions of the RSM (Reynolds Stress Model) equations that allows us to present the turbulent diffusivities for heat, salt and momentum in a way that is considerably simpler and thus easier to implement than in previous work. The RSM provides the dimensionless mixing efficiencies Gamma-alpha (alpha stands for heat, salt and momentum). However, to compute the diffusivities, one needs additional information, specifically, the dissipation Epsilon. Since a dynamic equation for the latter that includes the physical processes relevant to the ocean is still not available, one must resort to different sources of information outside the RSM to obtain a complete Mixing Scheme usable in OGCMs. As for the RSM results, we show that the Gamma-alpha s are functions of both Ri and Rq (Richardson number and density ratio representing double diffusion, DD); the Gamma-alpha are different for heat, salt and momentum; in the case of heat, the traditional value Gamma-h = 0.2 is valid only in the presence of strong shear (when DD is inoperative) while when shear subsides, NATRE data show that Gamma-h can be three times as large, a result that we reproduce. The salt Gamma-s is given in terms of Gamma-h. The momentum Gamma-m has thus far been guessed with different prescriptions while the RSM provides a well defined expression for Gamma-m(Ri,R-rho). Having tested Gamma-h, we then test the momentum Gamma-m by showing that the turbulent Prandtl number Gamma-m/Gamma-h vs. Ri reproduces the available data quite well. As for the dissipation epsilon, we use different representations, one for the mixed layer (ML), one for the thermocline and one for the ocean;s bottom. For the ML, we adopt a procedure analogous to the one successfully used in PB (planetary boundary layer) studies; for the thermocline, we employ an expression for the variable epsilon/N(exp 2) from studies of the internal gravity waves spectra which includes a latitude dependence; for the ocean bottom, we adopt the enhanced bottom diffusivity expression used by previous authors but with a state of the art internal tidal energy formulation and replace the fixed Gamma-alpha = 0.2 with the RSM result that brings into the problem the Ri, R-rho dependence of the Gamma-alpha; the unresolved bottom drag, which has thus far been either ignored or modeled with heuristic relations, is modeled using a formalism we previously developed and tested in PBL studies. We carried out several tests without an OGCM. Prandtl and flux Richardson numbers vs. Ri. The RSM model reproduces both types of data satisfactorily. DD and Mixing efficiency Gamma-h(Ri,Rq). The RSM model reproduces well the NATRE data. Bimodal epsilon-distribution. NATRE data show that epsilon (Ri < 1) approximately equals 10epsilon(Ri > 1), which our model reproduces. Heat to salt flux ratio. In the Ri much greater than 1 regime, the RSM predictions reproduce the data satisfactorily. NATRE mass diffusivity. The z-profile of the mass diffusivity reproduces well the measurements at NATRE. The local form of the mixing scheme is algebraic with one cubic equation to solve.

  7. Measurement and analysis of thrust force in drilling sisal-glass fiber reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Ramesh, M.; Gopinath, A.

    2017-05-01

    Drilling of composite materials is difficult when compared to the conventional materials because of its in-homogeneous nature. The force developed during drilling play a major role in the surface quality of the hole and minimizing the damages around the surface. This paper focuses the effect of drilling parameters on thrust force in drilling of sisal-glass fiber reinforced polymer composite laminates. The quadratic response models are developed by using response surface methodology (RSM) to predict the influence of cutting parameters on thrust force. The adequacy of the models is checked by using the analysis of variance (ANOVA). A scanning electron microscope (SEM) analysis is carried out to analyze the quality of the drilled surface. From the results, it is found that, the feed rate is the most influencing parameter followed by spindle speed and the drill diameter is the least influencing parameter on the thrust force.

  8. Optimization of the photoelectrocatalytic oxidation of landfill leachate using copper and nitrate co-doped TiO2 (Ti) by response surface methodology

    PubMed Central

    Zhou, Shaoqi; Feng, Xinbin

    2017-01-01

    In this paper, a statistically-based experimental design with response surface methodology (RSM) was employed to examine the effects of functional conditions on the photoelectrocatalytic oxidation of landfill leachate using a Cu/N co-doped TiO2 (Ti) electrode. The experimental design method was applied to response surface modeling and the optimization of the operational parameters of the photoelectro-catalytic degradation of landfill leachate using TiO2 as a photo-anode. The variables considered were the initial chemical oxygen demand (COD) concentration, pH and the potential bias. Two dependent parameters were either directly measured or calculated as responses: chemical oxygen demand (COD) removal and total organic carbon (TOC) removal. The results of this investigation reveal that the optimum conditions are an initial pH of 10.0, 4377.98mgL-1 initial COD concentration and 25.0 V of potential bias. The model predictions and the test data were in satisfactory agreement. COD and TOC removals of 67% and 82.5%, respectively, were demonstrated. Under the optimal conditions, GC/MS showed 73 organic micro-pollutants in the raw landfill leachate which included hydrocarbons, aromatic compounds and esters. After the landfill leachate treatment processes, 38 organic micro-pollutants disappeared completely in the photoelectrocatalytic process. PMID:28671943

  9. [Optimization of vacuum belt drying process of Gardeniae Fructus in Reduning injection by Box-Behnken design-response surface methodology].

    PubMed

    Huang, Dao-sheng; Shi, Wei; Han, Lei; Sun, Ke; Chen, Guang-bo; Wu Jian-xiong; Xu, Gui-hong; Bi, Yu-an; Wang, Zhen-zhong; Xiao, Wei

    2015-06-01

    To optimize the belt drying process conditions optimization of Gardeniae Fructus extract from Reduning injection by Box-Behnken design-response surface methodology, on the basis of single factor experiment, a three-factor and three-level Box-Behnken experimental design was employed to optimize the drying technology of Gardeniae Fructus extract from Reduning injection. With drying temperature, drying time, feeding speed as independent variables and the content of geniposide as dependent variable, the experimental data were fitted to a second order polynomial equation, establishing the mathematical relationship between the content of geniposide and respective variables. With the experimental data analyzed by Design-Expert 8. 0. 6, the optimal drying parameter was as follows: the drying temperature was 98.5 degrees C , the drying time was 89 min, the feeding speed was 99.8 r x min(-1). Three verification experiments were taked under this technology and the measured average content of geniposide was 564. 108 mg x g(-1), which was close to the model prediction: 563. 307 mg x g(-1). According to the verification test, the Gardeniae Fructus belt drying process is steady and feasible. So single factor experiments combined with response surface method (RSM) could be used to optimize the drying technology of Reduning injection Gardenia extract.

  10. Multidisciplinary Design Optimization of a Full Vehicle with High Performance Computing

    NASA Technical Reports Server (NTRS)

    Yang, R. J.; Gu, L.; Tho, C. H.; Sobieszczanski-Sobieski, Jaroslaw

    2001-01-01

    Multidisciplinary design optimization (MDO) of a full vehicle under the constraints of crashworthiness, NVH (Noise, Vibration and Harshness), durability, and other performance attributes is one of the imperative goals for automotive industry. However, it is often infeasible due to the lack of computational resources, robust simulation capabilities, and efficient optimization methodologies. This paper intends to move closer towards that goal by using parallel computers for the intensive computation and combining different approximations for dissimilar analyses in the MDO process. The MDO process presented in this paper is an extension of the previous work reported by Sobieski et al. In addition to the roof crush, two full vehicle crash modes are added: full frontal impact and 50% frontal offset crash. Instead of using an adaptive polynomial response surface method, this paper employs a DOE/RSM method for exploring the design space and constructing highly nonlinear crash functions. Two NMO strategies are used and results are compared. This paper demonstrates that with high performance computing, a conventionally intractable real world full vehicle multidisciplinary optimization problem considering all performance attributes with large number of design variables become feasible.

  11. Investigating the Release of a Hydrophobic Peptide from Matrices of Biodegradable Polymers: An Integrated Method Approach

    PubMed Central

    Gubskaya, Anna V.; Khan, I. John; Valenzuela, Loreto M.; Lisnyak, Yuriy V.; Kohn, Joachim

    2013-01-01

    The objectives of this work were: (1) to select suitable compositions of tyrosine-derived polycarbonates for controlled delivery of voclosporin, a potent drug candidate to treat ocular diseases, (2) to establish a structure-function relationship between key molecular characteristics of biodegradable polymer matrices and drug release kinetics, and (3) to identify factors contributing in the rate of drug release. For the first time, the experimental study of polymeric drug release was accompanied by a hierarchical sequence of three computational methods. First, suitable polymer compositions used in subsequent neural network modeling were determined by means of response surface methodology (RSM). Second, accurate artificial neural network (ANN) models were built to predict drug release profiles for fifteen polymers located outside the initial design space. Finally, thermodynamic properties and hydrogen-bonding patterns of model drug-polymer complexes were studied using molecular dynamics (MD) technique to elucidate a role of specific interactions in drug release mechanism. This research presents further development of methodological approaches to meet challenges in the design of polymeric drug delivery systems. PMID:24039300

  12. Cupriavidus metallidurans biomineralization ability and its application as a bioconsolidation enhancer for ornamental marble stone.

    PubMed

    Daskalakis, Markos I; Magoulas, Antonis; Kotoulas, Georgios; Katsikis, Ioannis; Bakolas, Asterios; Karageorgis, Aristomenis P; Mavridou, Athena; Doulia, Danae; Rigas, Fotis

    2014-08-01

    Bacterially induced calcium carbonate precipitation of a Cupriavidus metallidurans isolate was investigated to develop an environmentally friendly method for restoration and preservation of ornamental stones. Biomineralization performance was carried out in a growth medium via a Design of Experiments (DoE) approach using, as design factors, the temperature, growth medium concentration, and inoculum concentration. The optimum conditions were determined with the aid of consecutive experiments based on response surface methodology (RSM) and were successfully validated thereafter. Statistical analysis can be utilized as a tool for screening bacterial bioprecipitation as it considerably reduced the experimental time and effort needed for bacterial evaluation. Analytical methods provided an insight to the biomineral characteristics, and sonication tests proved that our isolate could create a solid new layer of vaterite on marble substrate withstanding sonication forces. C. metallidurans ACA-DC 4073 provided a compact vaterite layer on the marble substrate with morphological characteristics that assisted in its differentiation. The latter proved valuable during spraying minimum amount of inoculated media on marble substrate under conditions close to an in situ application. A sufficient and clearly distinguishable layer was identified.

  13. A method for the preparation of curcumin by ultrasonic-assisted ammonium sulfate/ethanol aqueous two phase extraction.

    PubMed

    Xu, Guangkuan; Hao, Changchun; Tian, Suyang; Gao, Feng; Sun, Wenyuan; Sun, Runguang

    2017-01-15

    This study investigated a new and easy-to-industrialized extracting method for curcumin from Curcuma longa rhizomes using ultrasonic extraction technology combined with ammonium sulfate/ethanol aqueous two-phase system (ATPS), and the preparation of curcumin using the semi-preparative HPLC. The single-factor experiments and response surface methodology (RSM) were utilized to determine the optimal material-solvent ratio, ultrasonic intensity (UI) and ultrasonic time. The optimum extraction conditions were finally determined to be material-solvent rate of 3.29:100, ultrasonic intensity of 33.63W/cm 2 and ultrasonic time of 17min. At these optimum conditions, the extraction yield could reach 46.91mg/g. And the extraction yields of curcumin remained stable in the case of amplification, which indicated that scale-up extraction was feasible and efficient. Afterwards, the semi-preparative HPLC experiment was carried out, in which optimal preparation conditions were elected according to the single factor experiment. The prepared curcumin was obtained and the purity could up to 85.58% by the semi-preparative HPLC. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Controlled surface morphology and hydrophilicity of polycaprolactone toward human retinal pigment epithelium cells.

    PubMed

    Shahmoradi, Saleheh; Yazdian, Fatemeh; Tabandeh, Fatemeh; Soheili, Zahra-Soheila; Hatamian Zarami, Ashraf Sadat; Navaei-Nigjeh, Mona

    2017-04-01

    Applying scaffolds as a bed to enhance cell proliferation and even differentiation is one of the treatment of retina diseases such as age-related macular degeneration (AMD) which deteriorating photoreceptors and finally happening blindness. In this study, aligned polycaprolactone (PCL) nanofibers were electrospun and at different conditions and their characteristics were measured by scanning electron microscope (SEM) and contact angle. Response surface methodology (RSM) was used to optimize the diameter of fabricated nanofibers. Two factors as solution concentration and voltage value were considered as independent variables and their effects on nanofibers' diameters were evaluated by central composite design and the optimum conditions were obtained as 0.12g/mL and 20kV, respectively. In order to decrease the hydrophobicity of PCL, the surface of the fabricated scaffolds was modified by alkaline hydrolysis method. Contact time of the scaffolds and alkaline solution and concentration of alkaline solution were optimized using Box Behnken design and (120min and 5M were the optimal, respectively). Contact angle measurement showed the high hydrophilicity of treated scaffolds (with contact angle 7.48°). Plasma surface treatment was applied to compare the effect of using two kinds of surface modification methods simultaneously on hydrolyzed scaffolds. The RPE cells grown on scaffolds were examined by immunocytochemistry (ICC), MTT and continuous inspection of cellular morphology. Interestingly, Human RPE cells revealed their characteristic morphology on hydrolyzed scaffold well. As a result, we introduced a culture substrate with low diameter (185.8nm), high porosity (82%) and suitable hydrophilicity (with contact angle 7.48 degree) which can be promising for hRPE cell transplantation. Copyright © 2016. Published by Elsevier B.V.

  15. Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy

    PubMed Central

    2012-01-01

    Background Nanoparticle based delivery of anticancer drugs have been widely investigated. However, a very important process for Research & Development in any pharmaceutical industry is scaling nanoparticle formulation techniques so as to produce large batches for preclinical and clinical trials. This process is not only critical but also difficult as it involves various formulation parameters to be modulated all in the same process. Methods In our present study, we formulated curcumin loaded poly (lactic acid-co-glycolic acid) nanoparticles (PLGA-CURC). This improved the bioavailability of curcumin, a potent natural anticancer drug, making it suitable for cancer therapy. Post formulation, we optimized our process by Reponse Surface Methodology (RSM) using Central Composite Design (CCD) and scaled up the formulation process in four stages with final scale-up process yielding 5 g of curcumin loaded nanoparticles within the laboratory setup. The nanoparticles formed after scale-up process were characterized for particle size, drug loading and encapsulation efficiency, surface morphology, in vitro release kinetics and pharmacokinetics. Stability analysis and gamma sterilization were also carried out. Results Results revealed that that process scale-up is being mastered for elaboration to 5 g level. The mean nanoparticle size of the scaled up batch was found to be 158.5 ± 9.8 nm and the drug loading was determined to be 10.32 ± 1.4%. The in vitro release study illustrated a slow sustained release corresponding to 75% drug over a period of 10 days. The pharmacokinetic profile of PLGA-CURC in rats following i.v. administration showed two compartmental model with the area under the curve (AUC0-∞) being 6.139 mg/L h. Gamma sterilization showed no significant change in the particle size or drug loading of the nanoparticles. Stability analysis revealed long term physiochemical stability of the PLGA-CURC formulation. Conclusions A successful effort towards formulating, optimizing and scaling up PLGA-CURC by using Solid-Oil/Water emulsion technique was demonstrated. The process used CCD-RSM for optimization and further scaled up to produce 5 g of PLGA-CURC with almost similar physicochemical characteristics as that of the primary formulated batch. PMID:22937885

  16. Impact of soil moisture on regional spectral model simulations for South America

    Treesearch

    Shyh-Chin Chen; John Roads

    2005-01-01

    A regional simulation using the regional spectral model (RSM) with 50-km grid space increment over South America is described. NCEP/NCAR 28 vertical levels T62 spectral resolution reanalyses were used to initialize and force the regional model for a two-year period from March 1997 through March 1999. Initially, the RSM had a severe drying trend in the soil moisture...

  17. Regional Spectral Model simulations of the summertime regional climate over Taiwan and adjacent areas

    Treesearch

    Ching-Teng Lee; Ming-Chin Wu; Shyh-Chin Chen

    2005-01-01

    The National Centers for Environmental Prediction (NCEP) regional spectral model (RSM) version 97 was used to investigate the regional summertime climate over Taiwan and adjacent areas for June-July-August of 1990 through 2000. The simulated sea-level-pressure and wind fields of RSM1 with 50-km grid space are similar to the reanalysis, but the strength of the...

  18. Nearshore Placement Techniques in Southern Lake Michigan

    DTIC Science & Technology

    2018-03-01

    ER D C /C HL T R- 18 -3 Regional Sediment Management (RSM) Program Nearshore Placement Techniques in Southern Lake Michigan Co as ta...online library at http://acwc.sdp.sirsi.net/client/default. Regional Sediment Management (RSM) Program ERDC/CHL TR-18-3 March 2018 Nearshore...This study was conducted for Headquarters, U.S. Army Corps of Engineers (HQUSACE), Washington, DC, under the USACE Regional Sediment Management

  19. USACE Regional Sediment Management and Engineering with Nature 2013 Workshop Summary

    DTIC Science & Technology

    2014-08-01

    Tools into HEC-RAS St. Louis Kaskaskia River Navigation Channel Mobile Biodegradable Containment Structures for RSM Honolulu Hawaii RSM – Haleiwa...sediment from USACE to private entities for use. Share successes and lessons learned.  Increase the use of vegetation and other biodegradable ...beaches, and submerged mounds) and construction materials (e.g., reef balls, combination of rock sills and oyster bags , native plants, and

  20. Application of an IRT Polytomous Model for Measuring Health Related Quality of Life

    ERIC Educational Resources Information Center

    Tejada, Antonio J. Rojas; Rojas, Oscar M. Lozano

    2005-01-01

    Background: The Item Response Theory (IRT) has advantages for measuring Health Related Quality of Life (HRQOL) as opposed to the Classical Tests Theory (CTT). Objectives: To present the results of the application of a polytomous model based on IRT, specifically, the Rating Scale Model (RSM), to measure HRQOL with the EORTC QLQ-C30. Methods: 103…

Top