Photolithographic surface micromachining of polydimethylsiloxane (PDMS).
Chen, Weiqiang; Lam, Raymond H W; Fu, Jianping
2012-01-21
A major technical hurdle in microfluidics is the difficulty in achieving high fidelity lithographic patterning on polydimethylsiloxane (PDMS). Here, we report a simple yet highly precise and repeatable PDMS surface micromachining method using direct photolithography followed by reactive ion etching (RIE). Our method to achieve surface patterning of PDMS applied an O(2) plasma treatment to PDMS to activate its surface to overcome the challenge of poor photoresist adhesion on PDMS for photolithography. Our photolithographic PDMS surface micromachining technique is compatible with conventional soft lithography techniques and other silicon-based surface and bulk micromachining methods. To illustrate the general application of our method, we demonstrated fabrication of large microfiltration membranes and free-standing beam structures in PDMS.
Photolithographic surface micromachining of polydimethylsiloxane (PDMS)
Chen, Weiqiang; Lam, Raymond H. W.
2014-01-01
A major technical hurdle in microfluidics is the difficulty in achieving high fidelity lithographic patterning on polydimethylsiloxane (PDMS). Here, we report a simple yet highly precise and repeatable PDMS surface micromachining method using direct photolithography followed by reactive ion etching (RIE). Our method to achieve surface patterning of PDMS applied an O2 plasma treatment to PDMS to activate its surface to overcome the challenge of poor photoresist adhesion on PDMS for photolithography. Our photolithographic PDMS surface micromachining technique is compatible with conventional soft lithography techniques and other silicon-based surface and bulk micromachining methods. To illustrate the general application of our method, we demonstrated fabrications of large microfiltration membranes and free-standing beam structures in PDMS. PMID:22089984
Microfabrication Techniques for Plastic Microelectromechanical Systems (MEMS)
2003-07-01
micromachining techniques were investigated. Surface micromachining techniques include deposition of thin and thick polymer films using vacuum and spin ...1 2.0 Introduction ...100 4.3.1 Nozzle-diffuser pumps theory
Single neuronal recordings using surface micromachined polysilicon microelectrodes.
Muthuswamy, Jit; Okandan, Murat; Jackson, Nathan
2005-03-15
Bulk micromachining techniques of silicon have been used successfully in the past several years to microfabricate microelectrodes for monitoring single neurons in acute and chronic experiments. In this study we report for the first time a novel surface micromachining technique to microfabricate a very thin polysilicon microelectrode that can be used for monitoring single-unit activity in the central nervous system. The microelectrodes are 3 mm long and 50 microm x 3.75 microm in cross-section. Excellent signal to noise ratios in the order of 25-35 dB were obtained while recording neuronal action potentials. The microelectrodes successfully penetrated the brains after a microincision of the dura mater. Chronic implantation of the microprobe for up to 33 days produced only minor gliosis. Since the polysilicon shank acts as a conductor, additional processing steps involved in laying conductor lines on silicon substrates are avoided. Further, surface micromachining allows for fabricating extremely thin microelectrodes which could result in decreased inflammatory responses. We conclude that the polysilicon microelectrode reported here could be a complementary approach to bulk-micromachined silicon microelectrodes for chronic monitoring of single neurons in the central nervous system.
Method of drying passivated micromachines by dewetting from a liquid-based process
Houston, Michael R.; Howe, Roger T.; Maboudian, Roya; Srinivasan, Uthara
2000-01-01
A method of fabricating a micromachine includes the step of constructing a low surface energy film on the micromachine. The micromachine is then rinsed with a rinse liquid that has a high surface energy, relative to the low surface energy film, to produce a contact angle of greater than 90.degree. between the low surface energy film and the rinse liquid. This relatively large contact angle causes any rinse liquid on the micromachine to be displaced from the micromachine when the micromachine is removed from the rinse liquid. In other words, the micromachine is dried by dewetting from a liquid-based process. Thus, a separate evaporative drying step is not required, as the micromachine is removed from the liquid-based process in a dry state. The relatively large contact angle also operates to prevent attractive capillary forces between micromachine components, thereby preventing contact and adhesion between adjacent microstructure surfaces. The low surface energy film may be constructed with a fluorinated self-assembled monolayer film. The processing of the invention avoids the use of environmentally harmful, health-hazardous chemicals.
Micromachined patch-clamp apparatus
Okandan, Murat
2012-12-04
A micromachined patch-clamp apparatus is disclosed for holding one or more cells and providing electrical, chemical, or mechanical stimulation to the cells during analysis with the patch-clamp technique for studying ion channels in cell membranes. The apparatus formed on a silicon substrate utilizes a lower chamber formed from silicon nitride using surface micromachining and an upper chamber formed from a molded polymer material. An opening in a common wall between the chambers is used to trap and hold a cell for analysis using the patch-clamp technique with sensing electrodes on each side of the cell. Some embodiments of the present invention utilize one or more electrostatic actuators formed on the substrate to provide mechanical stimulation to the cell being analyzed, or to provide information about mechanical movement of the cell in response to electrical or chemical stimulation.
NASA Astrophysics Data System (ADS)
Wang, Ziyang; Fiorini, Paolo; Leonov, Vladimir; Van Hoof, Chris
2009-09-01
This paper presents the material characterization methods, characterization results and the optimization scheme for polycrystalline Si70%Ge30% (poly-SiGe) from the perspective of its application in a surface micromachined thermopile. Due to its comparative advantages, such as lower thermal conductivity and ease of processing, over other materials, poly-SiGe is chosen to fabricate a surface micromachined thermopile and eventually a wearable thermoelectric generator (TEG) to be used on a human body. To enable optimal design of advanced thermocouple microstructures, poly-SiGe sample materials prepared by two different techniques, namely low-pressure chemical vapor deposition (LPCVD) with in situ doping and rapid thermal chemical vapor deposition (RTCVD) with ion implantation, have been characterized. Relevant material properties, including electrical resistivity, Seebeck coefficient, thermal conductivity and specific contact resistance, have been reported. For the determination of thermal conductivity, a novel surface-micromachined test structure based on the Seebeck effect is designed, fabricated and measured. Compared to the traditional test structures, it is more advantageous for sample materials with a relatively large Seebeck coefficient, such as poly-SiGe. Based on the characterization results, a further optimization scheme is suggested to allow independent respective optimization of the figure of merit and the specific contact resistance.
NASA Astrophysics Data System (ADS)
Stepak, Bogusz D.; Antończak, Arkadiusz J.; Szustakiewicz, Konrad; Pezowicz, Celina; Abramski, Krzysztof M.
2016-03-01
The main advantage of laser processing is a non-contact character of material removal and high precision attainable thanks to low laser beam dimensions. This technique enables forming a complex, submillimeter geometrical shapes such as vascular stents which cannot be manufactured using traditional techniques e.g. injection moulding or mechanical treatment. In the domain of nanosecond laser sources, an ArF excimer laser appears as a good candidate for laser micromachining of bioresorbable polymers such as poly(L-lactide). Due to long pulse duration, however, there is a risk of heat diffusion and accumulation in the material. In addition, due to short wavelength (193 nm) photochemical process can modify the chemical composition of ablated surfaces. The motivation for this research was to evaluate the influence of laser micromachining on physicochemical properties of poly(L-lactide). We performed calorimetric analysis of laser machined samples by using differential scanning calorimetry (DSC). It allowed us to find the optimal process parameters for heat affected zone (HAZ) reduction. The chemical composition of the ablated surface was investigated by FTIR in attenuated total reflectance (ATR) mode.
Vibration measurement by atomic force microscopy with laser readout
NASA Astrophysics Data System (ADS)
Snitka, Valentinas J.; Mizariene, Vida; Kalinauskas, Margiris; Lucinskas, Paulius
1998-06-01
Micromachined cantilever beams are widely used for different microengineering and nanotechnology actuators and sensors applications. The micromechanical cantilever tip-based data storage devices with reading real data at the rates exceeding 1Mbit/s have been demonstrated. The vibrational noise spectrum of a cantilever limits the data storage resolution. Therefore the possibility to measure the microvibrations and acoustic fields in different micromachined devices are of great interest. We describe a method to study a micromechanical cantilever and surface vibrations based on laser beam deflection measurements. The influence of piezoelectric plate vibrations and the tip- surface contact condition on the cantilever vibrations were investigated in the frequency range of 1-200 kHz. The experiments were performed using the measurement results. The V-shaped cantilevers exited by the normal vibrations due to the non-linearity at the tip-surface contact vibrates with a complex motion and has a lateral vibration mode coupled with normal vibration mode. The possibility to use laser deflection technique for the vibration measurements in micromachined structures with nano resolution is shown.
Cui, Feng; Liu, Wu; Chen, Wenyuan; Zhang, Weiping; Wu, Xiaosheng
2011-01-01
A micromachined electrostatically suspended six-axis accelerometer, with a square plate as proof mass housed by a top stator and bottom stator, is presented. The device structure and related techniques concerning its operating principles, such as calculation of capacitances and electrostatic forces/moments, detection and levitation control of the proof mass, acceleration measurement, and structural parameters design, are described. Hybrid MEMS manufacturing techniques, including surface micromachining fabrication of thin film electrodes and interconnections, integration fabrication of thick nickel structures about 500 μm using UV-LIGA by successful removal of SU-8 photoresist mold, DRIE of silicon proof mass in thickness of 450 μm, microassembly and solder bonding, were employed to fabricate this prototype microdevice. A levitation experiment system for the fabricated microaccelerometer chip is introduced, and levitation results show that fast initial levitation within 10 ms and stable full suspension of the proof mass have been successfully demonstrated. PMID:22247662
Review on the importance of measurement technique in micromachine technology
NASA Astrophysics Data System (ADS)
Umeda, Akira
1996-09-01
In the beginning stage of MITI micromachine project, the committee on the standardization established in Micromachine Center recognized the importance of measurement technique for the promotion and the systemization of the micromachine technology. Micromachine Center is the organizing body for private sectors working in the MITI micromachine project which started in 1991. MITI stands for Ministry of International Trade and Industry in Japan. In order to known the requirements on the measurement technologies, the questionnaire was organized by the measurement working group in the committee. This talk covers the questionnaire and its results, and some research results obtained at National Research Laboratory of Metrology working as a member in the project.
Wafer scale micromachine assembly method
Christenson, Todd R.
2001-01-01
A method for fusing together, using diffusion bonding, micromachine subassemblies which are separately fabricated is described. A first and second micromachine subassembly are fabricated on a first and second substrate, respectively. The substrates are positioned so that the upper surfaces of the two micromachine subassemblies face each other and are aligned so that the desired assembly results from their fusion. The upper surfaces are then brought into contact, and the assembly is subjected to conditions suited to the desired diffusion bonding.
Ultrasonic actuation for MEMS dormancy-related stiction reduction
NASA Astrophysics Data System (ADS)
Kaajakari, Ville; Kan, Shyi-Herng; Lin, Li-Jen; Lal, Amit; Rodgers, M. Steven
2000-08-01
The use of ultrasonic pulses incident on surface micromachines has been shown to reduce dormancy-related failure. We applied ultrasonic pulses from the backside of a silicon substrate carrying SUMMiT processed surface micromachined rotors, used earlier as ultrasonic motors. The amplitude of the pulses was less than what is required to actuate the rotor (sub-threshold actuation). By controlling the ultrasonic pulse exposure time it was found that pulsed samples had smaller actuation voltages as compared to non-pulsed samples after twelve-hour dormancy. This result indicates that the micromachine stiction to surfaces during dormant period can be effectively eliminated, resulting in long-term stability of surface micromachines in critical applications.
Surface micromachined microengine as the driver for micromechanical gears
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, E.J.; Sniegowski, J.J.
1995-05-01
The transmission of mechanical power is often accomplished through the use of gearing. The recently developed surface micromachined microengine provides us with an actuator which is suitable for driving surface micromachined geared systems. In this paper we will present aspects of the microengine as they relate to the driving of geared mechanisms, issues relating to the design of micro gear mechanisms, and details of a design of a microengine-driven geared shutter mechanism.
Surface-micromachined chain for use in microelectromechanical structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vernon, Sr., George E.
2001-01-01
A surface-micromachined chain and a microelectromechanical (MEM) structure incorporating such a chain are disclosed. The surface-micromachined chain can be fabricated in place on a substrate (e.g. a silicon substrate) by depositing and patterning a plurality of alternating layers of a chain-forming material (e.g. polycrystalline silicon) and a sacrificial material (e.g. silicon dioxide or a silicate glass). The sacrificial material is then removed by etching to release the chain for movement. The chain has applications for forming various types of MEM devices which include a microengine (e.g. an electrostatic motor) connected to rotate a drive sprocket, with the surface-micromachined chain beingmore » connected between the drive sprocket and one or more driven sprockets.« less
High peak power solid-state laser for micromachining of hard materials
NASA Astrophysics Data System (ADS)
Herbst, Ludolf; Quitter, John P.; Ray, Gregory M.; Kuntze, Thomas; Wiessner, Alexander O.; Govorkov, Sergei V.; Heglin, Mike
2003-06-01
Laser micromachining has become a key enabling technology in the ever-continuing trend of miniaturization in microelectronics, micro-optics, and micromechanics. New applications have become commercially viable due to the emergence of innovative laser sources, such as diode pumped solid-state lasers (DPSSL), and the progress in processing technology. Examples of industrial applications are laser-drilled micro-injection nozzles for highly efficient automobile engines, or manufacturing of complex spinnerets for production of synthetic fibers. The unique advantages of laser-based techniques stem from their ability to produce high aspect ratio holes, while yielding low heat affected zones with exceptional surface quality, roundness and taper tolerances. Additionally, the ability to drill blind holes and slots in very hard materials such as diamond, silicon, sapphire, ceramics and steel is of great interest for many applications in microelectronics, semiconductor and automotive industry. This kind of high quality, high aspect ratio micromachining requires high peak power and short pulse durations.
NASA Astrophysics Data System (ADS)
Antoszewski, B.; Tofil, S.; Scendo, M.; Tarelnik, W.
2017-08-01
Elastomeric plastics belong to a wide range of polymeric materials with special properties. They are used as construction material for seals and other components in many branches of industry and, in particular, in the biomedical industry, mechatronics, electronics and chemical equipment. The micromachining of surfaces of these materials can be used to build micro-flow, insulating, dispensing systems and chemical and biological reactors. The paper presents results of research on the effects of micro-machining of selected elastomeric plastics using a UV laser emitting picosecond pulses. The authors see the prospective application of the developed technology in the sealing technique in particular to shaping the sealing pieces co-operating with the surface of the element. The result of the study is meant to show parameters of the UV laser’s performance when producing typical components such as grooves, recesses for optimum ablation in terms of quality and productivity.
Gage for micromachining system
Miller, Donald M.
1979-02-27
A gage for measuring the contour of the surface of an element of a micromachining tool system and of a work piece machined by the micromachining tool system. The gage comprises a glass plate containing two electrical contacts and supporting a steel ball resting against the contacts. As the element or workpiece is moved against the steel ball, the very slight contact pressure causes an extremely small movement of the steel ball which breaks the electrical circuit between the two contacts. The contour information is supplied to a dedicated computer controlling the micromachining tool so that the computer knows the contour of the element and the work piece to an accuracy of .+-. 25 nm. The micromachining tool system with X- and omega-axes is used to machine spherical, aspherical, and irregular surfaces with a maximum contour error of 100 nanometers (nm) and surface waviness of no more than 0.8 nm RMS.
Okandan, Murat; Galambos, Paul
2007-11-06
A micromachined spinneret is disclosed which has one or more orifices through which a fiber-forming material can be extruded to form a fiber. Each orifice is surrounded by a concentric annular orifice which allows the fiber to be temporarily or permanently coated with a co-extrudable material. The micromachined spinneret can be formed by a combination of surface and bulk micromachining.
High definition surface micromachining of LiNbO 3 by ion implantation
NASA Astrophysics Data System (ADS)
Chiarini, M.; Bentini, G. G.; Bianconi, M.; De Nicola, P.
2010-10-01
High Energy Ion Implantation (HEII) of both medium and light mass ions has been successfully applied for the surface micromachining of single crystal LiNbO 3 (LN) substrates. It has been demonstrated that the ion implantation process generates high differential etch rates in the LN implanted areas, when suitable implantation parameters, such as ion species, fluence and energy, are chosen. In particular, when traditional LN etching solutions are applied to suitably ion implanted regions, etch rates values up to three orders of magnitude higher than the typical etching rates of the virgin material, are registered. Further, the enhancement in the etching rate has been observed on x, y and z-cut single crystalline material, and, due to the physical nature of the implantation process, it is expected that it can be equivalently applied also to substrates with different crystallographic orientations. This technique, associated with standard photolithographic technologies, allows to generate in a fast and accurate way very high aspect ratio relief micrometric structures on LN single crystal surface. In this work a description of the developed technology is reported together with some examples of produced micromachined structures: in particular very precisely defined self sustaining suspended structures, such as beams and membranes, generated on LN substrates, are presented. The developed technology opens the way to actual three dimensional micromachining of LN single crystals substrates and, due to the peculiar properties characterising this material, (pyroelectric, electro-optic, acousto-optic, etc.), it allows the design and the production of complex integrated elements, characterised by micrometric features and suitable for the generation of advanced Micro Electro Optical Systems (MEOS).
Three-dimensional polymer MEMS with functionalized carbon nanotubes by microstereolithography
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.; Xie, Jining
2003-04-01
Microfabrication techniques such as bulk micromachining and surface micromachining currently employed to conceive MEMS are largely derived from the standard IC and microelectronics technology. Even though many MEMS devices with integrated electronics have been achieved by using the traditional micromachining techniques, some limitations have nevertheless to be underlined: 1) these techniques are very expensive and need specific installations as well as a cleanroom environment, 2) the materials that can be used up to now are restricted to silicon and metals, 3) the manufacture of 3D parts having curved surfaces or an important number of layers is not possible. Moreover, for some biological applications, the materials used for sensors must be compatible with human body and the actuators need to have high strain and displacement which the current silicon based MEMS do not provide. It is thus natural for the researchers to look for alternative methods such as Microstereolithography (MSL) to make 3D sensors and actuators using polymeric based materials. For MSL techniques to be successful as their silicon counterparts, one has to come up with multifunctional polymers with electrical properties comparable to silicon. These multifunctional polymers should not only have a high sensing capability but also a high strain and actuation performance. A novel UV-curable polymer uniformly bonded with functionalised nanotubes was synthesized via a modified three-step in-situ polymerization. Purified multi-walled nanotubes, gained from the microwave chemical vapor deposition method, were functionalised by oxidation. The UV curable polymer was prepared from toluene diisocyantae (TDI), functionalised nanotubes, and 2-hydroxyethyl methacrylate (HEMA). The chemical bonds between -NCO groups of TDI and -OH, -COOH groups of functionalised nanotubes help for conceiving polymeric based MEMS devices. A cost effective fabrication techniques was presented using Micro Stereo Lithography and an example of a micropump was also described. The wireless concept of the device has many applications including implanted medical delivery systems, chemical and biological instruments, fluid delivery in engines, pump coolants and refrigerants for local cooling of electronic components.
Three-dimensional polymer MEMS with functionalized carbon nanotubes by microstereolithography
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.; Xie, Jining
2002-11-01
Microfabrication techniques such as bulk micromachining and surface micromachining currently employed to conceive MEMS are largely derived from the standard IC and microelectronics technology. Even though many MEMS devices with integrated electronics have been achieved by using the traditional micromachining techniques, some limitations have nevertheless to be underlined: 1) these techniques are very expensive and need specific installations as well as a cleanroom environment, 2) the materials that can be used up to now are restricted to silicon and metals, 3) the manufacture of 3D parts having curved surfaces or an important numberof layers is not possible. Moreover, for some biological applications, the materials used for sensors must be compatible with human body and the actuators need to have high strain and displacement which the current silicon based MEMS do not provide. It is thus natural for the researchers to 'look' for alternative methods such as Microstereolithography (MSL) to make 3D sensors and actuators using polymeric based materials. For MSL techniques to be successful as their silicon counterparts, one has to come up with multifunctional polyers with electrical properties comparable to silicon. These multifunctional polymers should not only have a high sensing capability but also a high strain and actuation performance. A novel UV-curable polymer uniformly bonded with functionalized nanotubes was synthesized via a modified three-step in-sity polumerization. Purified multi-walled nanotubes, gained from the microwave chemical vapor deposition method, were functionalized by oxidation. The UV curable polymer was prepared from toluene diisocyanate (TDI), functionalized nanotubes, and 2-hydroxyethyl methacrylate (HEMA). The chemical bonds between -NCO groups of TDI and -OH, -COOH groups of functionalized nanotubes help for conceiving polymeric based MEMS devices. A cost effective fabrication techniques was presented using Micro Stereo Lithography and an example of a micropump was also described. The wireless concept of the device has many applications including implanted medical delivery systems, chemical and biological instruments, fluid delivery engines, pump coolants and refrigerants for local cooling of electronic components.
Three-dimensional polymer MEMS with functionalized carbon nanotubes by microstereolithography
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.; Xie, Jining
2003-01-01
Microfabrication techniques such as bulk micromachining and surface micromachining currently employed to conceive MEMS are largely derived from the standard IC and microelectronics technology. Even though many MEMS devices with integrated electronics have been achieved by using the traditional micromachining techniques, some limitations have nevertheless to be underlined: 1) these techniques are very expensive and need specific installations as well as a cleanroom environment, 2) the materials that can be used up to now are restricted to silicon and metals, 3) the manufacture of 3D parts having curved surfaces or an important number of layers is not possible. Moreover, for some biological applications, the materials used for sensors must be compatible with human body and the actuators need to have high strain and displacement which the current silicon based MEMS do not provide. It is thus natural for the researchers to look for alternative methods such as Microstereolithography (MSL) to make 3D sensors and actuators using polymeric based materials. For MSL techniques to be successful as their silicon counterparts, one has to come up with multifunctional polymers with electrical properties comparable to silicon. These multifunctional polymers should not only have a high sensing capability but also a high strain and actuation performance. A novel UV-curable polymer uniformly bonded with functionalized nanotubes was synthesized via a modified three-step in-situ polymerization. Purified multi-walled nanotubes, gained from the microwave chemical vapor deposition method, were functionalized by oxidation. The UV curable polymer was prepared from toluene diisocyanate (TDI), functionalized nanotubes, and 2 hydroxyethyl methacrylate (HEMA). The chemical bonds between NCO groups of TDI and OH, COOH groups of functionalized nanotubes help for conceiving polymeric based MEMS devices. A cost effective fabrication techniques was presented using Micro Stereo Lithography and an example of a micropump was also described. The wireless concept of the device has many applications including implanted medical delivery systems, chemical and biological instruments, fluid delivery in engines, pump coolants and refrigerants for local cooling of electronic components.
Microstereolithography for polymer-based based MEMS
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.; Xie, Jining
2003-07-01
Microfabrication techniques such as bulk micromachining and surface micromachining currently employed to conceive MEMS are largely derived from the standard IC and microelectronics technology. Even though many MEMS devices with integrated electronics have been achieved by using the traditional micromachining techniques, some limitations have nevertheless to be underlined: 1) these techniques are very expensive and need specific installations as well as a cleanroom environment, 2) the materials that can be used up to now are restricted to silicon and metals, 3) the manufacture of 3D parts having curved surfaces or an important number of layers is not possible. Moreover, for some biological applications, the materials used for sensors must be compatible with human body and the actuators need to have high strain and displacement which the current silicon based MEMS do not provide. It is thus natural for the researchers to 'look' for alternative methods such as Microstereolithography (MSL) to make 3D sensors and actuators using polymeric based materials. For MSL techniques to be successful as their silicon counterparts, one has to come up with multifunctional polymers with electrical properties comparable to silicon. These multifunctional polymers should not only have a high sensing capability but also a high strain and actuation performance. A novel UV-curable polymer uniformly bonded with functionalized nanotubes was synthesized via a modified three-step in-situ polymerization. Purified multi-walled nanotubes, gained from the microwave chemical vapor deposition method, were functionalized by oxidation. The UV curable polymer was prepared from toluene diisocyanate (TDI), functionalized nanotubes, and 2-hydroxyethyl methacrylate (HEMA). The chemical bonds between -NCO groups of TDI and -OH, -COOH groups of functionalized nanotubes help for conceiving polymeric based MEMS devices. A cost effective fabrication techniques was presented using Micro Stereo Lithography and an example of a micropump was also described. The wireless concept of the device has many applications including implanted medical delivery systems, chemical and biological instruments, fluid delivery in engines, pump coolants and refrigerants for local cooling of electronic components.
NASA Astrophysics Data System (ADS)
Staple, Bevan D.; Muller, Lilac; Miller, David C.
2003-01-01
We introduce the Network Photonics" CrossWave as the first commercially-available, MEMS-based wavelength selective switch. The CrossWave combines the functionality of signal de-multiplexing, switching and re-multiplexing in a single all-optical operation using a dispersive element and 1-D MEMS. 1-D MEMS, where micromirrors are configured in a single array with a single mirror per wavelength, are fabricated in a standard surface micromachining process. In this paper we present three generations of micromirror designs. With proper design optimization and process improvements we have demonstrated exceptional mirror flatness (<16.2m-1 curvature), surface error (
Micro thrust and heat generator
Garcia, Ernest J.
1998-01-01
A micro thrust and heat generator has a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator's ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA).
Micro thrust and heat generator
Garcia, E.J.
1998-11-17
A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.
Integration of Electrodeposited Ni-Fe in MEMS with Low-Temperature Deposition and Etch Processes
Schiavone, Giuseppe; Murray, Jeremy; Perry, Richard; Mount, Andrew R.; Desmulliez, Marc P. Y.; Walton, Anthony J.
2017-01-01
This article presents a set of low-temperature deposition and etching processes for the integration of electrochemically deposited Ni-Fe alloys in complex magnetic microelectromechanical systems, as Ni-Fe is known to suffer from detrimental stress development when subjected to excessive thermal loads. A selective etch process is reported which enables the copper seed layer used for electrodeposition to be removed while preserving the integrity of Ni-Fe. In addition, a low temperature deposition and surface micromachining process is presented in which silicon dioxide and silicon nitride are used, respectively, as sacrificial material and structural dielectric. The sacrificial layer can be patterned and removed by wet buffered oxide etch or vapour HF etching. The reported methods limit the thermal budget and minimise the stress development in Ni-Fe. This combination of techniques represents an advance towards the reliable integration of Ni-Fe components in complex surface micromachined magnetic MEMS. PMID:28772683
The Development of Micromachined Gyroscope Structure and Circuitry Technology
Xia, Dunzhu; Yu, Cheng; Kong, Lun
2014-01-01
This review surveys micromachined gyroscope structure and circuitry technology. The principle of micromachined gyroscopes is first introduced. Then, different kinds of MEMS gyroscope structures, materials and fabrication technologies are illustrated. Micromachined gyroscopes are mainly categorized into micromachined vibrating gyroscopes (MVGs), piezoelectric vibrating gyroscopes (PVGs), surface acoustic wave (SAW) gyroscopes, bulk acoustic wave (BAW) gyroscopes, micromachined electrostatically suspended gyroscopes (MESGs), magnetically suspended gyroscopes (MSGs), micro fiber optic gyroscopes (MFOGs), micro fluid gyroscopes (MFGs), micro atom gyroscopes (MAGs), and special micromachined gyroscopes. Next, the control electronics of micromachined gyroscopes are analyzed. The control circuits are categorized into typical circuitry and special circuitry technologies. The typical circuitry technologies include typical analog circuitry and digital circuitry, while the special circuitry consists of sigma delta, mode matching, temperature/quadrature compensation and novel special technologies. Finally, the characteristics of various typical gyroscopes and their development tendency are discussed and investigated in detail. PMID:24424468
Laser-induced patterns on metals and polymers for biomimetic surface engineering
NASA Astrophysics Data System (ADS)
Kietzig, Anne-Marie; Lehr, Jorge; Matus, Luke; Liang, Fang
2014-03-01
One common feature of many functional surfaces found in nature is their modular composition often exhibiting several length scales. Prominent natural examples for extreme behaviors can be named in various plant leaf (rose, peanut, lotus) or animal toe surfaces (Gecko, tree frog). Influence factors of interest are the surface's chemical composition, its microstructure, its organized or random roughness and hence the resulting surface wetting and adhesion character. Femtosecond (fs) laser micromachining offers a possibility to render all these factors in one single processing step on metallic and polymeric surfaces. Exemplarily, studies on Titanium and PTFE are shown, where the dependence of the resulting feature sizes on lasing intensity is investigated. While Ti surfaces show rigid surface patterns of micrometer scaled features with superimposed nanostructures, PTFE exhibits elastic hairy structures of nanometric diameter, which upon a certain threshold tend to bundle to larger features. Both surface patterns can be adjusted to mimic specific wetting and flow behaviour as seen on natural examples. Therefore, fs-laser micromachining is suggested as an interesting industrially scalable technique to pattern and fine-tune the surface wettability of a surface to the desired extends in one process step. Possible applications can be seen with surfaces, which require specific wetting, fouling, icing, friction or cell adhesion behaviour.
NASA Astrophysics Data System (ADS)
Su, John G.; Patterson, Pamela R.; Wu, Ming C.
2001-05-01
We have developed a novel wafer-scale single-crystalline silicon micromirror bonding process to fabricate optically flat micromirrors on polysilicon surface-micromachined 2D scanners. The electrostatically actuated 2D scanner has a mirror area of 450 micrometers x 450 micrometers and an optical scan angle of +/- +/-7.5 degree(s). Compared to micromirrors made with a standard polysilicon surface-micromachining process, the radius of curvature of the micromirror has been improved by 1 50 times from 1.8 cm to 265 cm, with surface roughness < 10 nm. Besides, single-crystalline honeycomb micromirrors derived from silicon on insulator (SOI) have been developed to reduce the mass of the bonded mirror.
NASA Technical Reports Server (NTRS)
Wang, P. K. C.; Hadaegh, F. Y.
1996-01-01
In modeling micromachined deformable mirrors with electrostatic actuators whose gap spacings are of the same order of magnitude as those of the surface deformations, it is necessary to use nonlinear models for the actuators. In this paper, we consider micromachined deformable mirrors modeled by a membrane or plate equation with nonlinear electrostatic actuator characteristics. Numerical methods for computing the mirror deformation due to given actuator voltages and the actuator voltages required for producing the desired deformations at the actuator locations are presented. The application of the proposed methods to circular deformable mirrors whose surfaces are modeled by elastic membranes is discussed in detail. Numerical results are obtained for a typical circular micromachined mirror with electrostatic actuators.
Hybrid Micro-Electro-Mechanical Tunable Filter
2007-09-01
Figure 2.10), one can see the developers have used surface micromachining techniques to build the micromirror structure over the CMOS addressing...DBRs, microcavity composition, initial air gap, contact layers, substrate Dispersion Data Curve -fit dispersion data or generate dispersion function...measurements • Curve -fit the dispersion data or generate a continuous, wavelength-dependent, representation of material dispersion • Manually design the
A broad-band microseismometer for planetary operations
NASA Technical Reports Server (NTRS)
Banerdt, W. B.; Vanzandt, T.; Kaiser, W. J.; Kenny, T. W.
1993-01-01
There has recently been renewed interest in the development of instrumentation for making measurements on the surface of Mars. This is due to the Mars Environmental Survey (MESUR) Mission, for which approximately 16 small, long-lived (2-10 years), relatively inexpensive surface stations will be deployed in a planet-wide network. This will allow the investigation of processes (such as seismology and meteorology) which require the simultaneous measurement of phenomena at many widely spaced locations on the surface over a considerable length of time. Due to the large number of vehicles involved, the mass, power, and cost of the payload will be severely constrained. A seismometer has been identified as one of the highest priority instruments in the MESUR straw-man payload. The requirements for an effective seismic experiment on Mars place a number of constraints on any viable sensor design. First, a large number of sensors must be deployed in a long-lived global network in order to be able to locate many events reliably, provide good spatial sampling of the interior, and increase the probability of seismic detection in the event of localized seismicity and/or high attenuation. From a practical standpoint, this means that individual surface stations will necessarily be constrained in terms of cost, mass, and power. Landing and thermal control systems will probably be simple, in order to minimize cost, resulting in large impact accelerations and wide daily and seasonal thermal swings. The level of seismic noise will determine the maximum usable sensitivity for seismometer. Unfortunately, the ambient seismic noise level for Mars is not well known. However lunar seismic noise levels are several orders of magnitude below that of the Earth. Sensitivities on the order of 10(exp -11)g over a bandwidth of .04 to 20 Hz are thought to be necessary to fulfill the science objectives for a seimometer placed on the Martian surface. Silicon micromachined sensor technology offers techniques for the fabrication of monolithic, robust, compact, lower power and mass accelerometers. Conventional micro-machined accelerometers have been developed and are commercially available for high frequency and large acceleration measurements. The new seismometer we are developing incorporates certain principles of conventional silicon micromachined accelerometer technology. However, currently available silicon micromachined sensors offer inadequate sensitivity and bandwidth for the Mars seismometer application. Our implementation of an advanced silicon micromachined seismometer is based on principles recently developed at JPL for high-sensitivity position sensor technology.
NASA Astrophysics Data System (ADS)
Stolze, M.; Herrmann, T.; L'huillier, J. A.
2016-03-01
Ridge waveguides in ferroelectric materials like LiNbO3 attended great interest for highly efficient integrated optical devices, for instance, electro-optic modulators, frequency converters and ring resonators. The main challenges are the realization of high index barrier towards the substrate and the processing of smooth ridges for minimized scattering losses. For fabricating ridges a variety of techniques, like chemical and wet etching as well as optical grade dicing, have been investigated in detail. Among them, laser micromachining offers a versatile and flexible processing technology, but up to now only a limited side wall roughness has been achieved by this technique. Here we report on laser micromachining of smooth ridges for low-loss optical waveguides in LiNbO3. The ridges with a top width of 7 µm were fabricated in z-cut LiNbO3 by a combination of UV picosecond micromachining and thermal annealing. The laser processing parameters show a strong influence on the achievable sidewall roughness of the ridges and were systematically investigated and optimized. Finally, the surface quality is further improved by an optimized thermal post-processing. The roughness of the ridges were analysed with confocal microscopy and the scattering losses were measured at an optical characterization wavelength of 632.8 nm by using the end-fire coupling method. In these investigations the index barrier was formed by multi-energy low dose oxygen ion implantation technology in a depth of 2.7 μm. With optimized laser processing parameters and thermal post-processing a scattering loss as low as 0.1 dB/cm has been demonstrated.
Microfabricated ion trap array
Blain, Matthew G [Albuquerque, NM; Fleming, James G [Albuquerque, NM
2006-12-26
A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.
Micromachined electrical cauterizer
Lee, Abraham P.; Krulevitch, Peter A.; Northrup, M. Allen
1999-01-01
A micromachined electrical cauterizer. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 .mu.m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures.
Micromachined electrical cauterizer
Lee, A.P.; Krulevitch, P.A.; Northrup, M.A.
1999-08-31
A micromachined electrical cauterizer is disclosed. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 {mu}m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures. 7 figs.
NASA Astrophysics Data System (ADS)
Kuo, Ju-Nan; Chen, Kuan-Yu
2010-11-01
In this paper, we present a single-beam optical tweezer integrated with a planar curved diffraction grating for microbead manipulation. Various curvatures of the surface micromachined planar curved grating are systematically investigated. The planar curved grating was fabricated using multiuser micro-electro-mechanical-system (MEMS) processes (MUMPs). The angular separation and the number of diffracted orders were determined. Experimental results indicate that the diffraction patterns and curvature of the planar curved grating are closely related. As the curvature of the planar curved grating increases, the vertical diffraction angle increases, resulting in the strip patterns of the planar curved grating. A single-beam optical tweezer integrated with a planar curved diffraction grating was developed. We demonstrate a technique for creating multiple optical traps from a single laser beam using the developed planar curved grating. The strip patterns of the planar curved grating that resulted from diffraction were used to trap one row of polystyrene beads.
Silicon Micromachined Microlens Array for THz Antennas
NASA Technical Reports Server (NTRS)
Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, IImran; Gill, John J.; Jung-Kubiak, Cecile D.; Llombart, Nuria
2013-01-01
5 5 silicon microlens array was developed using a silicon micromachining technique for a silicon-based THz antenna array. The feature of the silicon micromachining technique enables one to microfabricate an unlimited number of microlens arrays at one time with good uniformity on a silicon wafer. This technique will resolve one of the key issues in building a THz camera, which is to integrate antennas in a detector array. The conventional approach of building single-pixel receivers and stacking them to form a multi-pixel receiver is not suited at THz because a single-pixel receiver already has difficulty fitting into mass, volume, and power budgets, especially in space applications. In this proposed technique, one has controllability on both diameter and curvature of a silicon microlens. First of all, the diameter of microlens depends on how thick photoresist one could coat and pattern. So far, the diameter of a 6- mm photoresist microlens with 400 m in height has been successfully microfabricated. Based on current researchers experiences, a diameter larger than 1-cm photoresist microlens array would be feasible. In order to control the curvature of the microlens, the following process variables could be used: 1. Amount of photoresist: It determines the curvature of the photoresist microlens. Since the photoresist lens is transferred onto the silicon substrate, it will directly control the curvature of the silicon microlens. 2. Etching selectivity between photoresist and silicon: The photoresist microlens is formed by thermal reflow. In order to transfer the exact photoresist curvature onto silicon, there needs to be etching selectivity of 1:1 between silicon and photoresist. However, by varying the etching selectivity, one could control the curvature of the silicon microlens. The figure shows the microfabricated silicon microlens 5 x5 array. The diameter of the microlens located in the center is about 2.5 mm. The measured 3-D profile of the microlens surface has a smooth curvature. The measured height of the silicon microlens is about 280 microns. In this case, the original height of the photoresist was 210 microns. The change was due to the etching selectivity of 1.33 between photoresist and silicon. The measured surface roughness of the silicon microlens shows the peak-to-peak surface roughness of less than 0.5 microns, which is adequate in THz frequency. For example, the surface roughness should be less than 7 microns at 600 GHz range. The SEM (scanning electron microscope) image of the microlens confirms the smooth surface. The beam pattern at 550 GHz shows good directivity.
A simultaneous deep micromachining and surface passivation method suitable for silicon-based devices
NASA Astrophysics Data System (ADS)
Babaei, E.; Gharooni, M.; Mohajerzadeh, S.; Soleimani, E. A.
2018-07-01
Three novel methods for simultaneous micromachining and surface passivation of silicon are reported. A thin passivation layer is achieved using continuous and sequential plasma processes based on SF6, H2 and O2 gases. Reducing the recombination by surface passivation is crucial for the realization of high-performance nanosized optoelectronic devices. The passivation of the surface as an important step, is feasible by plasma processing based on hydrogen pulses in proper time-slots or using a mixture of H2 and O2, and SF6 gases. The passivation layer which is formed in situ during the micromachining process obviates a separate passivation step needed in conventional methods. By adjusting the plasma parameters such as power, duration, and flows of gases, the process can be controlled for the best results and acceptable under-etching at the same time. Moreover, the pseudo-oxide layer which is formed during the micromachining processes will also improve the electrical characteristics of the surface, which can be used as an add-on for micro and nanowire applications. To quantify the effect of surface passivation in our method, ellipsometry, lifetime measurements, x-ray photoelectron spectroscopy, current–voltage and capacitance–voltage measurements and solar cell testing have been employed.
MEMS: A new approach to micro-optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sniegowski, J.J.
1997-12-31
MicroElectroMechanical Systems (MEMS) and their fabrication technologies provide great opportunities for application to micro-optical systems (MOEMS). Implementing MOEMS technology ranges from simple, passive components to complicated, active systems. Here, an overview of polysilicon surface micromachining MEMS combined with optics is presented. Recent advancements to the technology, which may enhance its appeal for micro-optics applications are emphasized. Of all the MEMS fabrication technologies, polysilicon surface micromachining technology has the greatest basis in and leverages the most the infrastructure for silicon integrated circuit fabrication. In that respect, it provides the potential for very large volume, inexpensive production of MOEMS. This paper highlightsmore » polysilicon surface micromachining technology in regards to its capability to provide both passive and active mechanical elements with quality optical elements.« less
Differential surface stress sensor for detection of chemical and biological species
NASA Astrophysics Data System (ADS)
Kang, K.; Nilsen-Hamilton, M.; Shrotriya, P.
2008-10-01
We report a sensor consisting of two micromachined cantilevers (a sensing/reference pair) that is suitable for detection of chemical and biological species. The sensing strategy involves coating the sensing cantilever with receptors that have high affinities for the analyte. The presence of analyte is detected by determining the differential surface stress associated with its adsorption/absorption to the sensing cantilever. An interferometric technique is utilized to measure the differential bending of the sensing cantilever with respect to reference. Surface stress associated with hybridization of single stranded DNA is measured to demonstrate the unique advantages of the sensor.
Silicon Micromachining for Terahertz Component Development
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam; Reck, Theodore J.; Jung-Kubiak, Cecile; Siles, Jose V.; Lee, Choonsup; Lin, Robert; Mehdi, Imran
2013-01-01
Waveguide component technology at terahertz frequencies has come of age in recent years. Essential components such as ortho-mode transducers (OMT), quadrature hybrids, filters, and others for high performance system development were either impossible to build or too difficult to fabricate with traditional machining techniques. With micromachining of silicon wafers coated with sputtered gold it is now possible to fabricate and test these waveguide components. Using a highly optimized Deep Reactive Ion Etching (DRIE) process, we are now able to fabricate silicon micromachined waveguide structures working beyond 1 THz. In this paper, we describe in detail our approach of design, fabrication, and measurement of silicon micromachined waveguide components and report the results of a 1 THz canonical E-plane filter.
Surface--micromachined rotatable member having a low-contact-area hub
Rodgers, M. Steven; Sniegowski, Jeffry J.
2002-01-01
A surface-micromachined rotatable member formed on a substrate and a method for manufacturing thereof are disclosed. The surface-micromachined rotatable member, which can be a gear or a rotary stage, has a central hub, and an annulus connected to the central hub by an overarching bridge. The hub includes a stationary axle support attached to the substrate and surrounding an axle. The axle is retained within the axle support with an air-gap spacing therebetween of generally 0.3 .mu.m or less. The rotatable member can be formed by alternately depositing and patterning layers of a semiconductor (e.g. polysilicon or a silicon-germanium alloy) and a sacrificial material and then removing the sacrificial material, at least in part. The present invention has applications for forming micromechanical or microelectromechanical devices requiring lower actuation forces, and providing improved reliability.
Surface-micromachined rotatable member having a low-contact-area hub
Rodgers, M. Steven; Sniegowski, Jeffry J.; Krygowski, Thomas W.
2003-11-18
A surface-micromachined rotatable member formed on a substrate and a method for manufacturing thereof are disclosed. The surface-micromachined rotatable member, which can be a gear or a rotary stage, has a central hub, and an annulus connected to the central hub by an overarching bridge. The hub includes a stationary axle support attached to the substrate and surrounding an axle. The axle is retained within the axle support with an air-gap spacing therebetween of generally 0.3 .mu.m or less. The rotatable member can be formed by alternately depositing and patterning layers of a semiconductor (e.g. polysilicon or a silicon-germanium alloy) and a sacrificial material and then removing the sacrificial material, at least in part. The present invention has applications for forming micromechanical or microelectromechanical devices requiring lower actuation forces, and providing improved reliability.
Qiu, Huacheng; Min, Fu; Zhong, Shaolong; Song, Xin; Yang, Yanguang
2018-03-01
Force measurements using wind tunnel balance are necessary for determining a variety of aerodynamic performance parameters, while the harsh environment in hypersonic flows requires that the measurement instrument should be reliable and robust, in against strong electromagnetic interference, high vacuum, or metal (oxide) dusts. In this paper, we demonstrated a three-component internal balance for hypersonic aerodynamic force measurements, using novel optical micromachined Fabry-Perot interferometric (FPI) strain gauges as sensing elements. The FPI gauges were fabricated using Micro-Opto-Electro-Mechanical Systems (MOEMS) surface and bulk fabrication techniques. High-reflectivity coatings are used to form a high-finesse Fabry-Perot cavity, which benefits a high resolution. Antireflective and passivation coatings are used to reduce unwanted interferences. The FPI strain gauge based balance has been calibrated and evaluated in a Mach 5 hypersonic flow. The results are compared with the traditional technique using the foil resistive strain gauge balance, indicating that the proposed balance based on the MOEMS FPI strain gauge is reliable and robust and is potentially suitable for the hypersonic wind tunnel harsh environment.
NASA Astrophysics Data System (ADS)
Qiu, Huacheng; Min, Fu; Zhong, Shaolong; Song, Xin; Yang, Yanguang
2018-03-01
Force measurements using wind tunnel balance are necessary for determining a variety of aerodynamic performance parameters, while the harsh environment in hypersonic flows requires that the measurement instrument should be reliable and robust, in against strong electromagnetic interference, high vacuum, or metal (oxide) dusts. In this paper, we demonstrated a three-component internal balance for hypersonic aerodynamic force measurements, using novel optical micromachined Fabry-Perot interferometric (FPI) strain gauges as sensing elements. The FPI gauges were fabricated using Micro-Opto-Electro-Mechanical Systems (MOEMS) surface and bulk fabrication techniques. High-reflectivity coatings are used to form a high-finesse Fabry-Perot cavity, which benefits a high resolution. Antireflective and passivation coatings are used to reduce unwanted interferences. The FPI strain gauge based balance has been calibrated and evaluated in a Mach 5 hypersonic flow. The results are compared with the traditional technique using the foil resistive strain gauge balance, indicating that the proposed balance based on the MOEMS FPI strain gauge is reliable and robust and is potentially suitable for the hypersonic wind tunnel harsh environment.
Laser Micromachining Fabrication of THz Components
NASA Technical Reports Server (NTRS)
DrouetdAubigny, C.; Walker, C.; Jones, B.; Groppi, C.; Papapolymerou, J.; Tavenier, C.
2001-01-01
Laser micromachining techniques can be used to fabricate high-quality waveguide structures and quasi-optical components to micrometer accuracies. Successful GHz designs can be directly scaled to THz frequencies. We expect this promising technology to allow the construction of the first fully integrated THz heterodyne imaging arrays. At the University of Arizona, construction of the first laser micromachining system designed for THz waveguide components fabrication has been completed. Once tested and characterized our system will be used to construct prototype THz lx4 focal plane mixer arrays, magic tees, AR coated silicon lenses, local oscillator source phase gratings, filters and more. Our system can micro-machine structures down to a few microns accuracy and up to 6 inches across in a short time. This paper discusses the design and performance of our micromachining system, and illustrates the type, range and performance of components this exciting new technology will make accessible to the THz community.
Effect of CO2 laser micromachining on physicochemical properties of poly(L-lactide)
NASA Astrophysics Data System (ADS)
Antończak, Arkadiusz J.; Stepak, Bogusz; Szustakiewicz, Konrad; Wójcik, Michał; Kozioł, Paweł E.; Łazarek, Łukasz; Abramski, Krzysztof M.
2014-08-01
In this paper, we present some examples of micromachining of poly(L-lactide) with a CO2 laser and an analysis of changes in material properties in the heat affected HAZ induced by the fluence well above the ablation threshold. The complexity of the processes of decomposition implies the need for simultaneous use of many selective analytical techniques which complement each other to give a full image of the changes. Introduced changes were characterized using Differential Scanning Calorimetry (DSC), Gel Permeation Chromatography (GPC), X-ray Photoelectron Spectroscopy (XPS) and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR). It turns out that CO2 laser processing of poly(L-lactide) mainly induces surface changes. However, oxidation of the surface was not observed. We recorded a bimodal distribution and some reduction in the molecular weight. Infrared spectroscopy in turn revealed the existence of absorption bands, characteristic for the vinyl groups (RCH=CH2). The appearance of these bands indicates that the decomposition of the polymer occurred, among others, by means of the cis-elimination reaction.
Development of a Novel Transparent Flexible Capacitive Micromachined Ultrasonic Transducer
Pang, Da-Chen; Chang, Cheng-Min
2017-01-01
This paper presents the world’s first transparent flexible capacitive micromachined ultrasonic transducer (CMUT) that was fabricated through a roll-lamination technique. This polymer-based CMUT has advantages of transparency, flexibility, and non-contacting detection which provide unique functions in display panel applications. Comprising an indium tin oxide-polyethylene terephthalate (ITO-PET) substrate, SU-8 sidewall and vibrating membranes, and silver nanowire transparent electrode, the transducer has visible-light transmittance exceeding 80% and can operate on curved surfaces with a 40 mm radius of curvature. Unlike the traditional silicon-based high temperature process, the CMUT can be fabricated on a flexible substrate at a temperature below 100 °C to reduce residual stress introduced at high temperature. The CMUT on the curved surfaces can detect a flat target and finger at distances up to 50 mm and 40 mm, respectively. The transparent flexible CMUT provides a better human-machine interface than existing touch panels because it can be integrated with a display panel for non-contacting control in a health conscious environment and the flexible feature is critical for curved display and wearable electronics. PMID:28632157
Surface-Micromachined Planar Arrays of Thermopiles
NASA Technical Reports Server (NTRS)
Foote, Marc C.
2003-01-01
Planar two-dimensional arrays of thermopiles intended for use as thermal-imaging detectors are to be fabricated by a process that includes surface micromachining. These thermopile arrays are designed to perform better than do prior two-dimensional thermopile arrays. The lower performance of prior two-dimensional thermopile arrays is attributed to the following causes: The thermopiles are made from low-performance thermoelectric materials. The devices contain dielectric supporting structures, the thermal conductances of which give rise to parasitic losses of heat from detectors to substrates. The bulk-micromachining processes sometimes used to remove substrate material under the pixels, making it difficult to incorporate low-noise readout electronic circuitry. The thermoelectric lines are on the same level as the infrared absorbers, thereby reducing fill factor. The improved pixel design of a thermopile array of the type under development is expected to afford enhanced performance by virtue of the following combination of features: Surface-micromachined detectors are thermally isolated through suspension above readout circuitry. The thermopiles are made of such high-performance thermoelectric materials as Bi-Te and Bi-Sb-Te alloys. Pixel structures are supported only by the thermoelectric materials: there are no supporting dielectric structures that could leak heat by conduction to the substrate.
Micromachined fragment capturer for biomedical applications.
Choi, Young-Soo; Lee, Dong-Weon
2011-11-01
Due to changes in modern diet, a form of heart disease called chronic total occlusion has become a serious disease to be treated as an emergency. In this study, we propose a micromachined capturer that is designed and fabricated to collect plaque fragments generated during surgery to remove the thrombus. The fragment capturer consists of a plastic body made by rapid prototyping, SU-8 mesh structures using MEMS techniques, and ionic polymer metal composite (IPMC) actuators. An array of IPMC actuators combined with the SU-8 net structure was optimized to effectively collect plaque fragments. The evaporation of solvent through the actuator's surface was prevented using a coating of SU-8 and polydimethylsiloxane thin film on the actuator. This approach improved the available operating time of the IPMC, which primarily depends on solvent loss. Our preliminary results demonstrate the possibility of using the capturer for biomedical applications. © 2011 American Institute of Physics
Micromachined ultrasonic transducers: 11.4 MHz transmission in air and more
NASA Astrophysics Data System (ADS)
Ladabaum, Igal; Khuri-Yakub, B. T.; Spoliansky, Dimitri
1996-01-01
The fabrication and modeling of novel, capacitive, ultrasonic air transducers is reported. Transmission experiments in air at 11.4, 9.2, and 3.1 MHz are shown to correspond with theory. The transducers are made using surface micromachining techniques, which enable the realization of center frequencies ranging from 1.8 to 11.6 MHz. The bandwidth of the transducers ranges from 5% to 20%, depending on processing parameters. Custom circuitry is able to detect 10 MHz capacitance fluctuations as small as 10-18 F, which correspond to displacements on the order of 10-3 Å, in a bandwidth of 2 MHz with a signal to noise ratio of 20 dB. Such detection sensitivity is shown to yield air transducer systems capable of withstanding over 100 dB of signal attenuation, a figure of merit that has significant implications for ultrasonic imaging, nondestructive evaluation, gas flow and composition measurements, and range sensing.
A 5 meter range non-planar CMUT array for Automotive Collision Avoidance
NASA Astrophysics Data System (ADS)
Hernandez Aguirre, Jonathan
A discretized hyperbolic paraboloid geometry capacitive micromachined ultrasonic transducer (CMUT) array has been designed and fabricated for automotive collision avoidance. The array is designed to operate at 40 kHz, beamwidth of 40° with a maximum sidelobe intensity of -10dB. An SOI based fabrication technology has been used for the 5x5 array with 5 sensing surfaces along each x and y axis and 7 elevation levels. An assembly and packaging technique has been developed to realize the non-planar geometry in a PGA-68 package. A highly accurate mathematical method has been presented for analytical characterization of capacitive micromachined ultrasonic transducers (CMUTs) built with square diaphragms. The method uses a new two-dimensional polynomial function to more accurately predict the deflection curve of a multilayer square diaphragm subject to both mechanical and electrostatic pressure and a new capacitance model that takes into account the contribution of the fringing field capacitances.
Modelling of micromachining of human tooth enamel by erbium laser radiation
NASA Astrophysics Data System (ADS)
Belikov, A. V.; Skrypnik, A. V.; Shatilova, K. V.
2014-08-01
We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained.
A cochlear implant fabricated using a bulk silicon-surface micromachining process
NASA Astrophysics Data System (ADS)
Bell, Tracy Elizabeth
1999-11-01
This dissertation presents the design and fabrication of two generations of a silicon microelectrode array for use in a cochlear implant. A cochlear implant is a device that is inserted into the inner ear and uses electrical stimulation to provide sound sensations to the profoundly deaf. The first-generation silicon cochlear implant is a passive device fabricated using silicon microprobe technology developed at the University of Michigan. It contains twenty-two iridium oxide (IrO) stimulating sites that are 250 mum in diameter and spaced at 750 mum intervals. In-vivo recordings were made in guinea pig auditory cortex in response to electrical stimulation with this device, verifying its ability to electrically evoke an auditory response. Auditory thresholds as low as 78 muA were recorded. The second-generation implant is a thirty-two site, four-channel device with on-chip CMOS site-selection circuitry and integrated position sensing. It was fabricated using a novel bulk silicon surface micromachining process which was developed as a part of this dissertation work. While the use of semiconductor technology offers many advantages in fabricating cochlear implants over the methods currently used, it was felt that even further advantages could be gained by developing a new micromachining process which would allow circuitry to be distributed along the full length of the cochlear implant substrate. The new process uses electropolishing of an n+ bulk silicon sacrificial layer to undercut and release n- epitaxial silicon structures from the wafer. An extremely abrupt etch-stop between the n+ and n- silicon is obtained, with no electropolishing taking place in the n-type silicon that is doped lower than 1 x 1017 cm-3 in concentration. Lateral electropolishing rates of up to 50 mum/min were measured using this technique, allowing one millimeter-wide structures to be fully undercut in as little as 10 minutes. The new micromachining process was integrated with a standard p-well CMOS integrated circuit process to fabricate the second-generation active silicon cochlear implants.
Cost-effective MEMS piezoresistive cantilever-based sensor fabrication for gait movement analysis
NASA Astrophysics Data System (ADS)
Saadon, Salem; Anuar, A. F. M.; Wahab, Yufridin
2017-03-01
The conventional photolithography of crystalline silicon technique is limited to two-dimensional and structure scaling. It's also requiring a lot of time and chemical involves for the whole process. These problems can be overcome by using laser micromachining technique, that capable to produce three-dimensional structure and simultaneously avoiding the photo mask needs. In this paper, we reported on the RapidX-250 Excimer laser micromachining with 248 nm KrF to create in-time mask design and assisting in the fabrication process of piezo-resistive micro cantilever structures. Firstly, laser micromachining parameters have been investigated in order to fabricate the acceleration sensor to analyzing human gait movement. Preliminary result shows that the fabricated sensor able to define the movement difference of human motion regarding the electrical characteristic of piezo-resistor.
The Cooling and Lubrication Performance of Graphene Platelets in Micro-Machining Environments
NASA Astrophysics Data System (ADS)
Chu, Bryan
The research presented in this thesis is aimed at investigating the use of graphene platelets (GPL) to address the challenges of excessive tool wear, reduced part quality, and high specific power consumption encountered in micro-machining processes. There are two viable methods of introducing GPL into micro-machining environments, viz., the embedded delivery method, where the platelets are embedded into the part being machined, and the external delivery method, where graphene is carried into the cutting zone by jetting or atomizing a carrier fluid. The study involving the embedded delivery method is focused on the micro-machining performance of hierarchical graphene composites. The results of this study show that the presence of graphene in the epoxy matrix improves the machinability of the composite. In general, the tool wear, cutting forces, surface roughness, and extent of delamination are all seen to be lower for the hierarchical composite when compared to the conventional two-phase glass fiber composite. These improvements are attributed to the fact that graphene platelets improve the thermal conductivity of the matrix, provide lubrication at the tool-chip interface and also improve the interface strength between the glass fibers and the matrix. The benefits of graphene are seen to also carry over to the external delivery method. The platelets provide improved cooling and lubrication performance to both environmentally-benign cutting fluids as well as to semi-synthetic cutting fluids used in micro-machining. The cutting performance is seen to be a function of the geometry (i.e., lateral size and thickness) and extent of oxygen-functionalization of the platelet. Ultrasonically exfoliated platelets (with 2--3 graphene layers and lowest in-solution characteristic lateral length of 120 nm) appear to be the most favorable for micro-machining applications. Even at the lowest concentration of 0.1 wt%, they are capable of providing a 51% reduction in the cutting temperature and a 25% reduction in the surface roughness value over that of the baseline semi-synthetic cutting fluid. For the thermally-reduced platelets (with 4--8 graphene layers and in-solution characteristic lateral length of 562--2780 nm), a concentration of 0.2 wt% appears to be optimal. An investigation into the impingement dynamics of the graphene-laden colloidal solutions on a heated substrate reveals that the most important criterion dictating their machining performance is their ability to form uniform, submicron thick films of the platelets upon evaporation of the carrier fluid. As such, the characterization of the residual platelet film left behind on a heated substrate may be an effective technique for evaluating different graphene colloidal solutions for cutting fluids applications in micromachining. Graphene platelets have also recently been shown to reduce the aggressive chemical wear of diamond tools during the machining of transition metal alloys. However, the specific mechanisms responsible for this improvement are currently unknown. The modeling work presented in this thesis uses molecular dynamics techniques to shed light on the wear mitigation mechanisms that are active during the diamond cutting of steel when in the presence of graphene platelets. The dual mechanisms responsible for graphene-induced chemical wear mitigation are: 1) The formation of a physical barrier between the metal and tool atoms, preventing graphitization; and 2) The preferential transfer of carbon from the graphene platelet rather than from the diamond tool. The results of the simulations also provide new insight into the behavior of the 2D graphene platelets in the cutting zone, specifically illustrating the mechanisms of cleaving and interlayer sliding in graphene platelets under the high pressures in cutting zones.
Modelling of micromachining of human tooth enamel by erbium laser radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belikov, A V; Skrypnik, A V; Shatilova, K V
We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength betweenmore » the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained. (laser biophotonics)« less
Micromachined evaporators for AMTEC cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izenson, M.G.; Crowley, C.J.
1996-12-31
To achieve high cell efficiency and reliability, the capillary pumping system for Alkali Metal Thermal to Electric Conversion (AMTEC) must have three key characteristics: (1) very small pores to achieve a high capillary pumping head, (2) high permeability for the flow of liquid sodium to minimize internal losses, and (3) be made from a material that is exceptionally stable at high temperatures in a sodium environment. The authors have developed micromachining techniques to manufacture high performance evaporators for AMTEC cells. The evaporators have been fabricated from stainless steel, molybdenum, and a niobium alloy (Nb-1Zr). The regular, micromachined structure leads tomore » very high capillary pumping head with high permeability for liquid flow. Data from tests performed with common fluids at room temperature characterize the capillary pumping head and permeability of these structures. Three micromachined evaporators have been built into AMTEC cells and operated at temperatures up to 1,100 K. Results from these tests confirm the excellent pumping capabilities of the micromachined evaporators.« less
Separation and Detection of Toxic Gases with a Silicon Micromachined Gas Chromatography System
NASA Technical Reports Server (NTRS)
Kolesar, Edward S.; Reston, Rocky R.
1995-01-01
A miniature gas chromatography (GC) system was designed and fabricated using silicon micromachining and integrated circuit (IC) processing techniques. The silicon micromachined gas chromatography system (SMGCS) is composed of a miniature sample injector that incorporates a 10 microliter sample loop; a 0.9 meter long, rectangular shaped (300 micrometer width and 10 micrometer height) capillary column coated with a 0.2 micrometer thick copper phthalocyanine (CuPc) stationary phase; and a dual detector scheme based upon a CuPc-coated chemiresistor and a commercially available 125 micrometer diameter thermal conductivity detector (TCD) bead. Silicon micromachining was employed to fabricate the interface between the sample injector and the GC column, the column itself, and the dual detector cavity. A novel IC thin-film processing technique was developed to sublime the CuPc stationary phase coating on the column walls that were micromachined in the host silicon wafer substrate and Pyrex (r) cover plate, which were then electrostatically bonded together. The SMGCS can separate binary gas mixtures composed of parts-per-million (ppm) concentrations of ammonia (NH3) and nitrogen dioxide (NO2) when isothermally operated (55-80 degrees C). With a helium carrier gas and nitrogen diluent, a 10 microliter sample volume containing ammonia and nitrogen dioxide injected at 40 psi ((2.8 x 10(exp 5)Pa)) can be separated in less than 30 minutes.
Optical properties of micromachined polysilicon reflective surfaces with etching holes
NASA Astrophysics Data System (ADS)
Zou, Jun; Byrne, Colin; Liu, Chang; Brady, David J.
1998-08-01
MUMPS (Multi-User MEMS Process) is receiving increasingly wide use in micro optics. We have investigated the optical properties of the polysilicon reflective surface in a typical MUMPS chip within the visible light spectrum. The effect of etching holes on the reflected laser beam is studied. The reflectivity and diffraction patterns at five different wavelengths have been measured. The optical properties of the polysilicon reflective surface are greatly affected by the surface roughness, the etching holes, as well as the material. The etching holes contribute to diffraction and reduction of reflectivity. This study provides a basis for optimal design of micromachined free-space optical systems.
Use of chemical mechanical polishing in micromachining
Nasby, Robert D.; Hetherington, Dale L.; Sniegowski, Jeffry J.; McWhorter, Paul J.; Apblett, Christopher A.
1998-01-01
A process for removing topography effects during fabrication of micromachines. A sacrificial oxide layer is deposited over a level containing functional elements with etched valleys between the elements such that the sacrificial layer has sufficient thickness to fill the valleys and extend in thickness upwards to the extent that the lowest point on the upper surface of the oxide layer is at least as high as the top surface of the functional elements in the covered level. The sacrificial oxide layer is then polished down and planarized by chemical-mechanical polishing. Another layer of functional elements is then formed upon this new planarized surface.
NASA Astrophysics Data System (ADS)
Yang, Zhuoqing; Wang, Hong; Zhang, Zhenjie; Ding, Guifu; Zhao, Xiaolin
A novel ordered-reinforced microscale polymer matrix composite based on electrophoresis and surface micromachining technologies has been proposed in the present work. The braid angle, volume content and width of the reinforcement in the composite has been designed and simulated by ANSYS finite element software. Based on the simulation and optimization, the Ni fibers reinforced polymer matrix composite sample (3 mm length × 0.6 mm width × 0.04 mm thickness) was successfully fabricated utilizing the surface micromachining process. The fabricated samples were characterized by microtensile test on the dynamic mechanical analysis (DMA) equipment. It is indicated that the tested tensile strength and Young's modulus are 285 MPa and 6.8 GPa, respectively. In addition, the fracture section of the composite sample has been observed by scanning electron microscope (SEM) and the corresponding fracture process was also explained and analyzed in detail. The new presented composite is promising for hot embossing mold in microfluidic chip and several transducers used in accurately controlled biomedical systems.
Micromachined peristaltic pumps
NASA Technical Reports Server (NTRS)
Hartley, Frank T. (Inventor)
1999-01-01
Micromachined pumps including a channel formed between a first membrane and a substrate or between first and second flexible membranes. A series of electrically conductive strips is applied to a surface of the substrate or one of the membranes. Application of a sequential voltage to the series of strips causes a region of closure to progress down the channel to achieve a pumping action.
NASA Astrophysics Data System (ADS)
Wang, Hong-Yuan; Zhu, Rui-Fu; Lu, Yu-Peng; Xiao, Gui-Yong; He, Kun; Yuan, Y. F.; Ma, Xiao-Ni; Li, Ying
2014-02-01
Sandblasting is one of the most effective methods to modify a metal surface and improve its properties for application. Micro-arc oxidation (MAO) could produce a ceramic coating on a dental implant, facilitating cellular differentiation and osseocomposite on it. This study aims to deposit bioceramic Ca- and P-containing coatings on sandblasted commercially pure titanium by an optimum composite technique to improve the bioactive performance. The effect of sandblasting intensity on microstructures and properties of the implant coatings is examined, and the modified surfaces are characterized in terms of their topography, phase, chemical composition, mechanical properties and hydroxyapatite (HA)-inducing ability. The results show that a moderate sandblasting micromachines the substrate in favorable combination of rough and residual stresses; its MAO coating deposits nano-hydroxyapatite after immersion in simulated body fluid (SBF) for 5 days exhibiting better bioactivity. The further improvement of the implant surface performance is attributed to an optimized composite technique.
NASA Astrophysics Data System (ADS)
Paula, Kelly T.; Gaál, Gabriel; Almeida, G. F. B.; Andrade, M. B.; Facure, Murilo H. M.; Correa, Daniel S.; Riul, Antonio; Rodrigues, Varlei; Mendonça, Cleber R.
2018-05-01
There is an increasing interest in the last years towards electronic applications of graphene-based materials and devices fabricated from patterning techniques, with the ultimate goal of high performance and temporal resolution. Laser micromachining using femtosecond pulses is an attractive methodology to integrate graphene-based materials into functional devices as it allows changes to the focal volume with a submicrometer spatial resolution due to the efficient nonlinear nature of the absorption, yielding rapid prototyping for innovative applications. We present here the patterning of PLA-graphene films spin-coated on a glass substrate using a fs-laser at moderate pulse energies to fabricate interdigitated electrodes having a minimum spatial resolution of 5 μm. Raman spectroscopy of the PLA-graphene films indicated the presence of multilayered graphene fibers. Subsequently, the PLA-graphene films were micromachined using a femtosecond laser oscillator delivering 50-fs pulses and 800 nm, where the pulse energy and scanning speed was varied in order to determine the optimum irradiation parameters (16 nJ and 100 μm/s) to the fabrication of microstructures. The micromachined patterns were characterized by optical microscopy and submitted to electrical measurements in liquid samples, clearly distinguishing all tastes tested. Our results confirm the femtosecond laser micromachining technique as an interesting approach to efficiently pattern PLA-graphene filaments with high precision and minimal mechanical defects, allowing the easy fabrication of interdigitated structures and an alternative method to those produced by conventional photolithography.
Microfabricated cylindrical ion trap
Blain, Matthew G.
2005-03-22
A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.
Micromechanical Signal Processors
NASA Astrophysics Data System (ADS)
Nguyen, Clark Tu-Cuong
Completely monolithic high-Q micromechanical signal processors constructed of polycrystalline silicon and integrated with CMOS electronics are described. The signal processors implemented include an oscillator, a bandpass filter, and a mixer + filter--all of which are components commonly required for up- and down-conversion in communication transmitters and receivers, and all of which take full advantage of the high Q of micromechanical resonators. Each signal processor is designed, fabricated, then studied with particular attention to the performance consequences associated with miniaturization of the high-Q element. The fabrication technology which realizes these components merges planar integrated circuit CMOS technologies with those of polysilicon surface micromachining. The technologies are merged in a modular fashion, where the CMOS is processed in the first module, the microstructures in a following separate module, and at no point in the process sequence are steps from each module intermixed. Although the advantages of such modularity include flexibility in accommodating new module technologies, the developed process constrained the CMOS metallization to a high temperature refractory metal (tungsten metallization with TiSi _2 contact barriers) and constrained the micromachining process to long-term temperatures below 835^circC. Rapid-thermal annealing (RTA) was used to relieve residual stress in the mechanical structures. To reduce the complexity involved with developing this merged process, capacitively transduced resonators are utilized. High-Q single resonator and spring-coupled micromechanical resonator filters are also investigated, with particular attention to noise performance, bandwidth control, and termination design. The noise in micromechanical filters is found to be fairly high due to poor electromechanical coupling on the micro-scale with present-day technologies. Solutions to this high series resistance problem are suggested, including smaller electrode-to-resonator gaps to increase the coupling capacitance. Active Q-control techniques are demonstrated which control the bandwidth of micromechanical filters and simulate filter terminations with little passband distortion. Noise analysis shows that these active techniques are relatively quiet when compared with other resistive techniques. Modulation techniques are investigated whereby a single resonator or a filter constructed from several such resonators can provide both a mixing and a filtering function, or a filtering and amplitude modulation function. These techniques center around the placement of a carrier signal on the micromechanical resonator. Finally, micro oven stabilization is investigated in an attempt to null the temperature coefficient of a polysilicon micromechanical resonator. Here, surface micromachining procedures are utilized to fabricate a polysilicon resonator on a microplatform--two levels of suspension--equipped with heater and temperature sensing resistors, which are then imbedded in a feedback loop to control the platform (and resonator) temperature. (Abstract shortened by UMI.).
Tool calibration system for micromachining system
Miller, Donald M.
1979-03-06
A tool calibration system including a tool calibration fixture and a tool height and offset calibration insert for calibrating the position of a tool bit in a micromachining tool system. The tool calibration fixture comprises a yokelike structure having a triangular head, a cavity in the triangular head, and a port which communicates a side of the triangular head with the cavity. Yoke arms integral with the triangular head extend along each side of a tool bar and a tool head of the micromachining tool system. The yoke arms are secured to the tool bar to place the cavity around a tool bit which may be mounted to the end of the tool head. Three linear variable differential transformer's (LVDT) are adjustably mounted in the triangular head along an X axis, a Y axis, and a Z axis. The calibration insert comprises a main base which can be mounted in the tool head of the micromachining tool system in place of a tool holder and a reference projection extending from a front surface of the main base. Reference surfaces of the calibration insert and a reference surface on a tool bar standard length are used to set the three LVDT's of the calibration fixture to the tool reference position. These positions are transferred permanently to a mastering station. The tool calibration fixture is then used to transfer the tool reference position of the mastering station to the tool bit.
Use of chemical mechanical polishing in micromachining
Nasby, R.D.; Hetherington, D.L.; Sniegowski, J.J.; McWhorter, P.J.; Apblett, C.A.
1998-09-08
A process for removing topography effects during fabrication of micromachines. A sacrificial oxide layer is deposited over a level containing functional elements with etched valleys between the elements such that the sacrificial layer has sufficient thickness to fill the valleys and extend in thickness upwards to the extent that the lowest point on the upper surface of the oxide layer is at least as high as the top surface of the functional elements in the covered level. The sacrificial oxide layer is then polished down and planarized by chemical-mechanical polishing. Another layer of functional elements is then formed upon this new planarized surface. 4 figs.
Silicon micromachined waveguides for millimeter and submillimeter wavelengths
NASA Technical Reports Server (NTRS)
Yap, Markus; Tai, Yu-Chong; Mcgrath, William R.; Walker, Christopher
1992-01-01
The majority of radio receivers, transmitters, and components operating at millimeter and submillimeter wavelengths utilize rectangular waveguides in some form. However, conventional machining techniques for waveguides operating above a few hundred GHz are complicated and costly. This paper reports on the development of silicon micromachining techniques to create silicon-based waveguide circuits which can operate at millimeter and submillimeter wavelengths. As a first step, rectangular WR-10 waveguide structures have been fabricated from (110) silicon wafers using micromachining techniques. The waveguide is split along the broad wall. Each half is formed by first etching a channel completely through a wafer. Potassium hydroxide is used to etch smooth mirror-like vertical walls and LPCVD silicon nitride is used as a masking layer. This wafer is then bonded to another flat wafer using a polyimide bonding technique and diced into the U-shaped half wavelengths. Finally, a gold layer is applied to the waveguide walls. Insertion loss measurements show losses comparable to those of standard metal waveguides. It is suggested that active devices and planar circuits can be integrated with the waveguides, solving the traditional mounting problems. Potential applications in terahertz instrumentation technology are further discussed.
NASA Astrophysics Data System (ADS)
Muralidhara, .; Vasa, Nilesh J.; Singaperumal, M.
2010-02-01
A micro-electro-discharge machine (Micro EDM) was developed incorporating a piezoactuated direct drive tool feed mechanism for micromachining of Silicon using a copper tool. Tool and workpiece materials are removed during Micro EDM process which demand for a tool wear compensation technique to reach the specified depth of machining on the workpiece. An in-situ axial tool wear and machining depth measurement system is developed to investigate axial wear ratio variations with machining depth. Stepwise micromachining experiments on silicon wafer were performed to investigate the variations in the silicon removal and tool wear depths with increase in tool feed. Based on these experimental data, a tool wear compensation method is proposed to reach the desired depth of micromachining on silicon using copper tool. Micromachining experiments are performed with the proposed tool wear compensation method and a maximum workpiece machining depth variation of 6% was observed.
Godshall, N.A.; Koehler, D.R.; Liang, A.Y.; Smith, B.K.
1993-03-30
A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.
Godshall, Ned A.; Koehler, Dale R.; Liang, Alan Y.; Smith, Bradley K.
1993-01-01
A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.
Micromachined pressure sensors: Review and recent developments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eaton, W.P.; Smith, J.H.
1997-03-01
Since the discovery of piezoresistivity in silicon in the mid 1950s, silicon-based pressure sensors have been widely produced. Micromachining technology has greatly benefited from the success of the integrated circuits industry, burrowing materials, processes, and toolsets. Because of this, microelectromechanical systems (MEMS) are now poised to capture large segments of existing sensor markets and to catalyze the development of new markets. Given the emerging importance of MEMS, it is instructive to review the history of micromachined pressure sensors, and to examine new developments in the field. Pressure sensors will be the focus of this paper, starting from metal diaphragm sensorsmore » with bonded silicon strain gauges, and moving to present developments of surface-micromachined, optical, resonant, and smart pressure sensors. Considerations for diaphragm design will be discussed in detail, as well as additional considerations for capacitive and piezoresistive devices.« less
Micromachined integrated quantum circuit containing a superconducting qubit
NASA Astrophysics Data System (ADS)
Brecht, Teresa; Chu, Yiwen; Axline, Christopher; Pfaff, Wolfgang; Blumoff, Jacob; Chou, Kevin; Krayzman, Lev; Frunzio, Luigi; Schoelkopf, Robert
We demonstrate a functional multilayer microwave integrated quantum circuit (MMIQC). This novel hardware architecture combines the high coherence and isolation of three-dimensional structures with the advantages of integrated circuits made with lithographic techniques. We present fabrication and measurement of a two-cavity/one-qubit prototype, including a transmon coupled to a three-dimensional microwave cavity micromachined in a silicon wafer. It comprises a simple MMIQC with competitive lifetimes and the ability to perform circuit QED operations in the strong dispersive regime. Furthermore, the design and fabrication techniques that we have developed are extensible to more complex quantum information processing devices.
NASA Astrophysics Data System (ADS)
Belwanshi, Vinod; Topkar, Anita
2016-05-01
Finite element analysis study has been carried out to optimize the design parameters for bulk micro-machined silicon membranes for piezoresistive pressure sensing applications. The design is targeted for measurement of pressure up to 200 bar for nuclear reactor applications. The mechanical behavior of bulk micro-machined silicon membranes in terms of deflection and stress generation has been simulated. Based on the simulation results, optimization of the membrane design parameters in terms of length, width and thickness has been carried out. Subsequent to optimization of membrane geometrical parameters, the dimensions and location of the high stress concentration region for implantation of piezoresistors have been obtained for sensing of pressure using piezoresistive sensing technique.
Phase-sensitive techniques applied to a micromachined vacuum sensor
NASA Astrophysics Data System (ADS)
Chapman, Glenn H.; Sawadsky, N.; Juneja, P. P.
1996-09-01
Phase sensitive AC measurement techniques are particularly applicable to micromachined sensors detecting temperature changes at a sensor caused by a microheater. The small mass produces rapid thermal response to AC signals which are easily detectable with lock-in amplifiers. Phase sensitive measurements were applied to a CMOS compatible micromachined pressure sensor consisting a polysilicon sense line, 760 microns long, on an oxide microbridge separated by 6 microns on each horizontal side from similar polysilicon heaters, all over a micromachined cavity. Sinusoidal heater signals at 32 Hz induced temperature caused sense line resistance changes at 64 Hz. The lock-in detected this as a first harmonic sense resistor voltage from a DC constant sense current. By observing the first harmonic the lock-in rejects all AC coupling of noise by capacitance or inductance, by measuring only those signals at the 64 Hz frequency and with a fixed phase relationship to the heater driver signals. This sensor produces large signals near atmospheric pressure, declining to 7 (mu) V below 0.1 mTorr. Phase measurements between 760 and 100 Torr where the air's thermal conductivity changes little, combined with amplitude changes at low pressure generate a pressure measurement accurate at 5 percent from 760 Torr to 10 mTorr, sensing of induced temperature changes of 0.001 degree C.
NASA Astrophysics Data System (ADS)
Remund, Stefan M.; Jaeggi, Beat; Kramer, Thorsten; Neuenschwander, Beat
2017-03-01
The resulting surface roughness and waviness after processing with ultra-short pulsed laser radiation depend on the laser parameters as well as on the machining strategy and the scanning system. However the results depend on the material and its initial surface quality and finishing as well. The improvement of surface finishing represents effort and produces additional costs. For industrial applications it is important to reduce the preparation of a workpiece for laser micro-machining to optimize quality and reduce costs. The effects of the ablation process and the influence of the machining strategy and scanning system onto the surface roughness and waviness can be differenced due to their separate manner. By using the optimal laser parameters on an initially perfect surface, the ablation process mainly increases the roughness to a certain value for most metallic materials. However, imperfections in the scanning system causing a slight variation in the scanning speed lead to a raise of the waviness on the sample surface. For a basic understanding of the influence of grinding marks, the sample surfaces were initially furnished with regular grooves of different depths and spatial frequencies to gain a homogenous and well-defined original surface. On these surfaces the effect of different beam waists and machining strategy are investigated and the results are compared with a simulation of the process. Furthermore the behaviors of common surface finishes used in industrial applications for laser micro-machining are studied and the relation onto the resulting surface roughness and waviness is presented.
Microelectromechanical gyroscope
Garcia, Ernest J.
1999-01-01
A gyroscope powered by an engine, all fabricated on a common substrate in the form of an integrated circuit. Preferably, both the gyroscope and the engine are fabricated in the micrometer domain, although in some embodiments of the present invention, the gyroscope can be fabricated in the millimeter domain. The engine disclosed herein provides torque to the gyroscope rotor for continuous rotation at varying speeds and direction. The present invention is preferably fabricated of polysilicon or other suitable materials on a single wafer using surface micromachining batch fabrication techniques or millimachining techniques that are well known in the art. Fabrication of the present invention is preferably accomplished without the need for assembly of multiple wafers which require alignment and bonding, and without piece-part assembly.
Thermoelectric Device Fabrication Using Thermal Spray and Laser Micromachining
NASA Astrophysics Data System (ADS)
Tewolde, Mahder; Fu, Gaosheng; Hwang, David J.; Zuo, Lei; Sampath, Sanjay; Longtin, Jon P.
2016-02-01
Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are used in many engineering applications such as vehicle and industrial waste-heat recovery systems to provide electrical power, improve operating efficiency and reduce costs. State-of-art TEG manufacturing is based on prefabricated materials and a labor-intensive process involving soldering, epoxy bonding, and mechanical clamping for assembly. This reduces their durability and raises costs. Additive manufacturing technologies, such as thermal spray, present opportunities to overcome these challenges. In this work, TEGs have been fabricated for the first time using thermal spray technology and laser micromachining. The TEGs are fabricated directly onto engineering component surfaces. First, current fabrication techniques of TEGs are presented. Next, the steps required to fabricate a thermal spray-based TEG module, including the formation of the metallic interconnect layers and the thermoelectric legs are presented. A technique for bridging the air gap between two adjacent thermoelectric elements for the top layer using a sacrificial filler material is also demonstrated. A flat 50.8 mm × 50.8 mm TEG module is fabricated using this method and its performance is experimentally characterized and found to be in agreement with expected values of open-circuit voltage based on the materials used.
Monolithic Micromachined Quartz Resonator based Infrared Focal Plane Arrays
2012-05-05
following categories: PaperReceived Ping Kao, Srinivas Tadigadapa. Micromachined quartz resonator based infrared detector array, Sensors and...0. doi: 10.1088/0957-0233/20/12/124007 2012/05/08 19:47:37 6 S Tadigadapa, K Mateti. Piezoelectric MEMS sensors : state-of-the-art and perspectives...Ping Kao, David L. Allara, Srinivas Tadigadapa. Study of Adsorption of Globular Proteins on Hydrophobic Surfaces, IEEE Sensors Journal, (11 2011): 0
Nanosecond pulsed laser micromachining for experimental fatigue life study of Ti-3Al-2.5V tubes
NASA Astrophysics Data System (ADS)
Lin, Yaomin; Gupta, Mool C.; Taylor, Robert E.; Lei, Charles; Stone, William; Spidel, Tom; Yu, Michael; Williams, Reanne
2009-01-01
Defects on external surface of in-service hydraulic tubes can reduce total life cycles for operation. Evaluation of fatigue life of the tubes with damage is thus critical for safety reasons. A methodology of generating defects in the Ti-3Al-2.5V tube—a widely used pipeline in hydraulic systems of aircrafts—using nanosecond pulsed laser for experimental fatigue life study is described in this paper. Straight tubes of five different sizes were laser micromachined to generate notches of given length and depths on the outside surface. Approaches were developed to precisely control the notch dimensions. The laser-notched tubes were tested with cyclic internal impulse pressure and fatigue life was measured. The laser notches and fatigue cracks were characterized after the test. It is concluded that laser micromachining generated consistent notches, and the influence of notch depth on fatigue life of the tube is significant. Based on the experimental test results, the relationship between the fatigue life of the Ti-3Al-2.5V tube and the notch depth was revealed. The research demonstrated that laser micromachining is applicable for experimental fatigue life study of titanium tubes. The presented test data are useful for estimating the damage limits of the titanium tubes in service environment and for further theoretical studies.
NASA Astrophysics Data System (ADS)
Wu, Mingching; Fang, Weileun
2006-02-01
This work attempts to integrate poly-Si thin film and single-crystal-silicon (SCS) structures in a monolithic process. The process integrated multi-depth DRIE (deep reactive ion etching), trench-refilled molding, a two poly-Si MUMPs process and (1 1 1) Si bulk micromachining to accomplish multi-thickness and multi-depth structures for superior micro-optical devices. In application, a SCS scanning mirror driven by self-aligned vertical comb-drive actuators was demonstrated. The stiffness of the mirror was significantly increased by thick SCS structures. The thin poly-Si film served as flexible torsional springs and electrical routings. The depth difference of the vertical comb electrodes was tuned by DRIE to increase the devices' stroke. Finally, a large moving space was available after the bulk Si etching. In summary, the present fabrication process, named (1 1 1) MOSBE (molded surface-micromachining and bulk etching release on (1 1 1) Si substrate), can further integrate with the MUMPs devices to establish a more powerful platform.
Micromachined High Frequency PMN-PT/Epoxy 1-3 Composite Ultrasonic Annular Array
Liu, Changgeng; Djuth, Frank; Li, Xiang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk
2013-01-01
This paper reports the design, fabrication, and performance of miniature micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular arrays. The PMN-PT single crystal 1-3 composites were made with micromachining techniques. The area of a single crystal pillar was 9 μm × 9 μm. The width of the kerf among pillars was ~ 5 μm and the kerfs were filled with a polymer. The composite thickness was 25 μm. A six-element annular transducer of equal element area of 0.2 mm2 with 16 μm kerf widths between annuli was produced. The aperture size the array transducer is about 1.5 mm in diameter. A novel electrical interconnection strategy for high density array elements was implemented. After the transducer was attached to the electric connection board and packaged, the array transducer was tested in a pulse/echo arrangement, whereby the center frequency, bandwidth, two-way insertion loss (IL), and cross talk between adjacent elements were measured for each annulus. The center frequency was 50 MHz and -6 dB bandwidth was 90%. The average insertion loss was 19.5 dB at 50 MHz and the crosstalk between adjacent elements was about -35 dB. The micromachining techniques described in this paper are promising for the fabrication of other types of high frequency transducers e.g. 1D and 2D arrays. PMID:22119324
Surface-micromachined microfluidic devices
Galambos, Paul C.; Okandan, Murat; Montague, Stephen; Smith, James H.; Paul, Phillip H.; Krygowski, Thomas W.; Allen, James J.; Nichols, Christopher A.; Jakubczak, II, Jerome F.
2003-01-01
Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators.
Micro-electro-optical devices in a five-level polysilicon surface-micromachining technology
NASA Astrophysics Data System (ADS)
Smith, James H.; Rodgers, M. Steven; Sniegowski, Jeffry J.; Miller, Samuel L.; Hetherington, Dale L.; McWhorter, Paul J.; Warren, Mial E.
1998-09-01
We recently reported on the development of a 5-level polysilicon surface micromachine fabrication process consisting of four levels of mechanical poly plus an electrical interconnect layer and its application to complex mechanical systems. This paper describes the application of this technology to create micro-optical systems-on-a-chip. These are demonstration systems, which show that give levels of polysilicon provide greater performance, reliability, and significantly increased functionality. This new technology makes it possible to realize levels of system complexity that have so far only existed on paper, while simultaneously adding to the robustness of many of the individual subassemblies.
Applications of picosecond lasers and pulse-bursts in precision manufacturing
NASA Astrophysics Data System (ADS)
Knappe, Ralf
2012-03-01
Just as CW and quasi-CW lasers have revolutionized the materials processing world, picosecond lasers are poised to change the world of micromachining, where lasers outperform mechanical tools due to their flexibility, reliability, reproducibility, ease of programming, and lack of mechanical force or contamination to the part. Picosecond lasers are established as powerful tools for micromachining. Industrial processes like micro drilling, surface structuring and thin film ablation benefit from a process, which provides highest precision and minimal thermal impact for all materials. Applications such as microelectronics, semiconductor, and photovoltaic industries use picosecond lasers for maximum quality, flexibility, and cost efficiency. The range of parts, manufactured with ps lasers spans from microscopic diamond tools over large printing cylinders with square feet of structured surface. Cutting glass for display and PV is a large application, as well. With a smart distribution of energy into groups of ps-pulses at ns-scale separation (known as burst mode) ablation rates can be increased by one order of magnitude or more for some materials, also providing a better surface quality under certain conditions. The paper reports on the latest results of the laser technology, scaling of ablation rates, and various applications in ps-laser micromachining.
Miller, Donald M.
1978-01-01
A micromachining tool system with X- and omega-axes is used to machine spherical, aspherical, and irregular surfaces with a maximum contour error of 100 nonometers (nm) and surface waviness of no more than 0.8 nm RMS. The omega axis, named for the angular measurement of the rotation of an eccentric mechanism supporting one end of a tool bar, enables the pulse increments of the tool toward the workpiece to be as little as 0 to 4.4 nm. A dedicated computer coordinates motion in the two axes to produce the workpiece contour. Inertia is reduced by reducing the mass pulsed toward the workpiece to about one-fifth of its former value. The tool system includes calibration instruments to calibrate the micromachining tool system. Backlash is reduced and flexing decreased by using a rotary table and servomotor to pulse the tool in the omega-axis instead of a ball screw mechanism. A thermally-stabilized spindle rotates the workpiece and is driven by a motor not mounted on the micromachining tool base through a torque-smoothing pulley and vibrationless rotary coupling. Abbe offset errors are almost eliminated by tool setting and calibration at spindle center height. Tool contour and workpiece contour are gaged on the machine; this enables the source of machining errors to be determined more readily, because the workpiece is gaged before its shape can be changed by removal from the machine.
Optical micromachined ultrasound transducers (OMUT)--a new approach for high-frequency transducers.
Tadayon, Mohammad Amin; Ashkenazi, Shai
2013-09-01
The sensitivity and reliability of piezoelectric ultrasound transducers severely degrade in applications requiring high frequency and small element size. Alternative technologies such as capacitive micromachined ultrasound transducers (CMUT) and optical sensing and generation of ultrasound have been proposed and studied for several decades. In this paper, we present a new type of device based on optical micromachined ultrasound transducer (OMUT) technology. OMUTs rely on microfabrication techniques to construct micrometerscale air cavities capped by an elastic membrane. A modified photoresist bonding process has been developed to facilitate the fabrication of these devices. We will describe the design, fabrication, and testing of prototype OMUT devices which implement a receive-only function. Future design modifications are proposed for incorporating complete transmit¿receive functionality in a single element.
Project: Micromachined High-Frequency Circuits For Sub-mm-wave Sensors
NASA Technical Reports Server (NTRS)
Papapolymerou, Ioannis John
2004-01-01
A novel micromachined resonator at 45 GHz based on a defect in a periodic electromagnetic bandgap structure (EBG) and a two-pole Tchebysbev filter with 1.4% 0.15 dB equiripple bandwidth and 2.3 dB loss employing this resonator are presented in this letter. The periodic bandgap structure is realized on a 400 micron thick high-resistivity silicon wafer using deep reactive ion etching techniques. The resonator and filter can be accessed via coplanar waveguide feeds.
Wang, Zhuochen; Zhe, Jiang
2011-04-07
Manipulation of microscale particles and fluid liquid droplets is an important task for lab-on-a-chip devices for numerous biological researches and applications, such as cell detection and tissue engineering. Particle manipulation techniques based on surface acoustic waves (SAWs) appear effective for lab-on-a-chip devices because they are non-invasive, compatible with soft lithography micromachining, have high energy density, and work for nearly any type of microscale particles. Here we review the most recent research and development of the past two years in SAW based particle and liquid droplet manipulation for lab-on-a-chip devices including particle focusing and separation, particle alignment and patterning, particle directing, and liquid droplet delivery.
NASA Astrophysics Data System (ADS)
Michalicek, M. Adrian; Comtois, John H.; Schriner, Heather K.
1998-04-01
This paper describes the design and characterization of several types of micromirror devices to include process capabilities, device modeling, and test data resulting in deflection versus applied potential curves and surface contour measurements. These devices are the first to be fabricated in the state-of-the-art four-level planarized polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology. This enabling process permits the development of micromirror devices with near-ideal characteristics which have previously been unrealizable in standard three-layer polysilicon processes. This paper describes such characteristics which have previously been unrealizable in standard three-layer polysilicon processes. This paper describes such characteristics as elevated address electrodes, various address wiring techniques, planarized mirror surfaces suing Chemical Mechanical Polishing, unique post-process metallization, and the best active surface area to date.
Micromachined Precision Inertial Instruments
2003-11-01
vol. 40, pp. 903-908, 1993. [9] J. D. Zook, D. W. Burns, H. Guckel, J. J. Sniegowski, R . L. Engelstad, and Z. Feng, "Characteristics of polysilicon...285-288, 2000. [14] B. E. Boser and R . T. Howe, "Surface micromachined accelerometers," IEEE Journal of Solid-State Circuits, vol. 31, pp. 366-375...pp. 81-84, 2003. [23] I. O. Inc., "Si-Flex 1500-ULND Evaluation Board, Single Channel Digital Output," 2003. [24] H. Luo, G. K. Fedder, and L. R
NASA Astrophysics Data System (ADS)
Kozak, J.; Gulbinowicz, D.; Gulbinowicz, Z.
2009-05-01
The need for complex and accurate three dimensional (3-D) microcomponents is increasing rapidly for many industrial and consumer products. Electrochemical machining process (ECM) has the potential of generating desired crack-free and stress-free surfaces of microcomponents. This paper reports a study of pulse electrochemical micromachining (PECMM) using ultrashort (nanoseconds) pulses for generating complex 3-D microstructures of high accuracy. A mathematical model of the microshaping process with taking into consideration unsteady phenomena in electrical double layer has been developed. The software for computer simulation of PECM has been developed and the effects of machining parameters on anodic localization and final shape of machined surface are presented.
Stress-induced curvature engineering in surface-micromachined devices
NASA Astrophysics Data System (ADS)
Aksyuk, Vladimir A.; Pardo, Flavio; Bishop, David J.
1999-03-01
Residual stress and stress gradients play an important role in determining equilibrium shape and behavior of various Si surface-micromachined devices under applied loads. This is particularly true for system having large-area plates and long beams where curvature resulting from stress can lead to significant deviations from stress-free shape. To gain better understanding of these properties, we have measured the equilibrium shapes of various structures built on the MCNC MUMPs using an interferometric profiler. The structures were square plates and long beams composed of various combinations of polysilicon an oxide layers. Some of the structures had additional MUMPs metal layer on top, while on others in-house chromium-gold stacks of varying thickness have been deposited. Temperature dependence of the curvature was measured for some plates. We have used these data in conjunction with simple models to significantly improve the performance of our micromachined devices. While for some structures such as large area reflectors the curvature had to be minimized, it could be advantageously exploited by others, for example vertical actuators for self-assembly.
Process for laser machining and surface treatment
Neil, George R.; Shinn, Michelle D.
2004-10-26
An improved method and apparatus increasing the accuracy and reducing the time required to machine materials, surface treat materials, and allow better control of defects such as particulates in pulsed laser deposition. The speed and quality of machining is improved by combining an ultrashort pulsed laser at high average power with a continuous wave laser. The ultrashort pulsed laser provides an initial ultrashort pulse, on the order of several hundred femtoseconds, to stimulate an electron avalanche in the target material. Coincident with the ultrashort pulse or shortly after it, a pulse from a continuous wave laser is applied to the target. The micromachining method and apparatus creates an initial ultrashort laser pulse to ignite the ablation followed by a longer laser pulse to sustain and enlarge on the ablation effect launched in the initial pulse. The pulse pairs are repeated at a high pulse repetition frequency and as often as desired to produce the desired micromachining effect. The micromachining method enables a lower threshold for ablation, provides more deterministic damage, minimizes the heat affected zone, minimizes cracking or melting, and reduces the time involved to create the desired machining effect.
Free-form machining for micro-imaging systems
NASA Astrophysics Data System (ADS)
Barkman, Michael L.; Dutterer, Brian S.; Davies, Matthew A.; Suleski, Thomas J.
2008-02-01
While mechanical ruling and single point diamond turning has been a mainstay of optical fabrication for many years, many types of micro-optical devices and structures are not conducive to simple diamond turning or ruling, such as, for example, microlens arrays, and optical surfaces with non-radial symmetry. More recent developments in machining technology have enabled significant expansion of fabrication capabilities. Modern machine tools can generate complex three-dimensional structures with optical quality surface finish, and fabricate structures across a dynamic range of dimensions not achievable with lithographic techniques. In particular, five-axis free-form micromachining offers a great deal of promise for realization of essentially arbitrary surface structures, including surfaces not realizable through binary or analog lithographic techniques. Furthermore, these machines can generate geometric features with optical finish on scales ranging from centimeters to micrometers with accuracies of 10s of nanometers. In this paper, we discuss techniques and applications of free-form surface machining of micro-optical elements. Aspects of diamond machine tool design to realize desired surface geometries in specific materials are discussed. Examples are presented, including fabrication of aspheric lens arrays in germanium for compact infrared imaging systems. Using special custom kinematic mounting equipment and the additional axes of the machine, the lenses were turned with surface finish better than 2 nm RMS and center to center positioning accuracy of +/-0.5 μm.
Functionalised polyurethane for efficient laser micromachining
NASA Astrophysics Data System (ADS)
Brodie, G. W. J.; Kang, H.; MacMillan, F. J.; Jin, J.; Simpson, M. C.
2017-02-01
Pulsed laser ablation is a valuable tool that offers a much cleaner and more flexible etching process than conventional lithographic techniques. Although much research has been undertaken on commercially available polymers, many challenges still remain, including contamination by debris on the surface, a rough etched appearance and high ablation thresholds. Functionalizing polymers with a photosensitive group is a novel way and effective way to improve the efficiency of laser micromachining. In this study, several polyurethane films grafted with different concentrations of the chromophore anthracene have been synthesized which are specifically designed for 248 nm KrF excimer laser ablation. A series of lines etched with a changing number of pulses and fluences by the nanosecond laser were applied to each polyurethane film. The resultant ablation behaviours were studied through optical interference tomography and Scanning Electron Microscopy. The anthracene grafted polyurethanes showed a vast improvement in both edge quality and the presence of debris compared with the unmodified polyurethane. Under the same laser fluence and number of pulses the spots etched in the anthracene contained polyurethane show sharp depth profiles and smooth surfaces, whereas the spots etched in polyurethane without anthracene group grafted present rough cavities with debris according to the SEM images. The addition of a small amount of anthracene (1.47%) shows a reduction in ablation threshold from unmodified polyurethane showing that the desired effect can be achieved with very little modification to the polymer.
NASA Astrophysics Data System (ADS)
Muhammad, Noorhafiza; Li, Lin
2012-06-01
Microprofiling of medical coronary stents has been dominated by the use of Nd:YAG lasers with pulse lengths in the range of a few milliseconds, and material removal is based on the melt ejection with a high-pressure gas. As a result, recast and heat-affected zones are produced, and various post-processing procedures are required to remove these defects. This paper reports a new approach of machining stents in submerged conditions using a 100-fs pulsed laser. A comparison is given of dry and underwater femtosecond laser micromachining techniques of nickel-titanium alloy (nitinol) typically used as the material for coronary stents. The characteristics of laser interactions with the material have been studied. A femtosecond Ti:sapphire laser system (wavelength of 800 nm, pulse duration of 100 fs, repetition rate of 1 kHz) was used to perform the cutting process. It is observed that machining under a thin water film resulted in no presence of heat-affected zone, debris, spatter or recast with fine-cut surface quality. At the optimum parameters, the results obtained with dry cutting showed nearly the same cut surface quality as with cutting under water. However, debris and recast formation still appeared on the dry cut, which is based on material vaporization. Physical processes involved during the cutting process in a thin water film, i.e. bubble formation and shock waves, are discussed.
Vascular tissue engineering by computer-aided laser micromachining.
Doraiswamy, Anand; Narayan, Roger J
2010-04-28
Many conventional technologies for fabricating tissue engineering scaffolds are not suitable for fabricating scaffolds with patient-specific attributes. For example, many conventional technologies for fabricating tissue engineering scaffolds do not provide control over overall scaffold geometry or over cell position within the scaffold. In this study, the use of computer-aided laser micromachining to create scaffolds for vascular tissue networks was investigated. Computer-aided laser micromachining was used to construct patterned surfaces in agarose or in silicon, which were used for differential adherence and growth of cells into vascular tissue networks. Concentric three-ring structures were fabricated on agarose hydrogel substrates, in which the inner ring contained human aortic endothelial cells, the middle ring contained HA587 human elastin and the outer ring contained human aortic vascular smooth muscle cells. Basement membrane matrix containing vascular endothelial growth factor and heparin was to promote proliferation of human aortic endothelial cells within the vascular tissue networks. Computer-aided laser micromachining provides a unique approach to fabricate small-diameter blood vessels for bypass surgery as well as other artificial tissues with complex geometries.
Surface-Micromachined Microfluidic Devices
Galambos, Paul C.; Okandan, Murat; Montague, Stephen; Smith, James H.; Paul, Phillip H.; Krygowski, Thomas W.; Allen, James J.; Nichols, Christopher A.; Jakubczak, II, Jerome F.
2004-09-28
Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators. Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators.
NASA Astrophysics Data System (ADS)
Criales Escobar, Luis Ernesto
One of the most frequently evolving areas of research is the utilization of lasers for micro-manufacturing and additive manufacturing purposes. The use of laser beam as a tool for manufacturing arises from the need for flexible and rapid manufacturing at a low-to-mid cost. Laser micro-machining provides an advantage over mechanical micro-machining due to the faster production times of large batch sizes and the high costs associated with specific tools. Laser based additive manufacturing enables processing of powder metals for direct and rapid fabrication of products. Therefore, laser processing can be viewed as a fast, flexible, and cost-effective approach compared to traditional manufacturing processes. Two types of laser processing techniques are studied: laser ablation of polymers for micro-channel fabrication and selective laser melting of metal powders. Initially, a feasibility study for laser-based micro-channel fabrication of poly(dimethylsiloxane) (PDMS) via experimentation is presented. In particular, the effectiveness of utilizing a nanosecond-pulsed laser as the energy source for laser ablation is studied. The results are analyzed statistically and a relationship between process parameters and micro-channel dimensions is established. Additionally, a process model is introduced for predicting channel depth. Model outputs are compared and analyzed to experimental results. The second part of this research focuses on a physics-based FEM approach for predicting the temperature profile and melt pool geometry in selective laser melting (SLM) of metal powders. Temperature profiles are calculated for a moving laser heat source to understand the temperature rise due to heating during SLM. Based on the predicted temperature distributions, melt pool geometry, i.e. the locations at which melting of the powder material occurs, is determined. Simulation results are compared against data obtained from experimental Inconel 625 test coupons fabricated at the National Institute for Standards & Technology via response surface methodology techniques. The main goal of this research is to develop a comprehensive predictive model with which the effect of powder material properties and laser process parameters on the built quality and integrity of SLM-produced parts can be better understood. By optimizing process parameters, SLM as an additive manufacturing technique is not only possible, but also practical and reproducible.
Process for manufacture of semipermeable silicon nitride membranes
Galambos, Paul Charles; Shul, Randy J.; Willison, Christi Gober
2003-12-09
A new class of semipermeable membranes, and techniques for their fabrication, have been developed. These membranes, formed by appropriate etching of a deposited silicon nitride layer, are robust, easily manufacturable, and compatible with a wide range of silicon micromachining techniques.
NASA Astrophysics Data System (ADS)
Gott, Shannon C.; Jabola, Benjamin A.; Rao, Masaru P.
2015-08-01
Herein, we report progress towards realization of vascular stents that will eventually provide opportunity for evaluating cellular response to rationally-designed, submicrometer-scale surface patterning in physiologically-relevant contexts, i.e. those that provide exposure to the complex multicellular milieu, flow-induced shear, and tissue-device interactions present in vivo. Specifically, using our novel titanium deep reactive ion etching technique (Ti DRIE), we discuss recent advances that have enabled: (a) fabrication of precisely-defined, grating-based surface patterns on planar Ti foils with minimum feature sizes as small as 0.15 μm (b) creation of cylindrical stents from micromachined planar Ti foils; and (c) integration of these processes to produce the first submicrometer-scale surface-patterned Ti stents that are compatible with conventional balloon catheter deployment techniques. We also discuss results from elastoplastic finite element simulations and preliminary mechanical testing of these devices to assess their mechanical performance. These efforts represent key steps towards our long-term goal of developing a new paradigm in stenting, where rationally-designed surface patterning provides a physical means for facilitating healing, and thus, improving outcomes in vascular intervention applications.
Research on the effect of coverage rate on the surface quality in laser direct writing process
NASA Astrophysics Data System (ADS)
Pan, Xuetao; Tu, Dawei
2017-07-01
Direct writing technique is usually used in femtosecond laser two-photon micromachining. The size of the scanning step is an important factor affecting the surface quality and machining efficiency of micro devices. According to the mechanism of two-photon polymerization, combining the distribution function of light intensity and the free radical concentration theory, we establish the mathematical model of coverage of solidification unit, then analyze the effect of coverage on the machining quality and efficiency. Using the principle of exposure equivalence, we also obtained the analytic expressions of the relationship among the surface quality characteristic parameters of microdevices and the scanning step, and carried out the numerical simulation and experiment. The results show that the scanning step has little influence on the surface quality of the line when it is much smaller than the size of the solidification unit. However, with increasing scanning step, the smoothness of line surface is reduced rapidly, and the surface quality becomes much worse.
Air Bearings Machined On Ultra Precision, Hydrostatic CNC-Lathe
NASA Astrophysics Data System (ADS)
Knol, Pierre H.; Szepesi, Denis; Deurwaarder, Jan M.
1987-01-01
Micromachining of precision elements requires an adequate machine concept to meet the high demand of surface finish, dimensional and shape accuracy. The Hembrug ultra precision lathes have been exclusively designed with hydrostatic principles for main spindle and guideways. This concept is to be explained with some major advantages of hydrostatics compared with aerostatics at universal micromachining applications. Hembrug has originally developed the conventional Mikroturn ultra precision facing lathes, for diamond turning of computer memory discs. This first generation of machines was followed by the advanced computer numerically controlled types for machining of complex precision workpieces. One of these parts, an aerostatic bearing component has been succesfully machined on the Super-Mikroturn CNC. A case study of airbearing machining confirms the statement that a good result of the micromachining does not depend on machine performance alone, but also on the technology applied.
Micro-machined calorimetric biosensors
Doktycz, Mitchel J.; Britton, Jr., Charles L.; Smith, Stephen F.; Oden, Patrick I.; Bryan, William L.; Moore, James A.; Thundat, Thomas G.; Warmack, Robert J.
2002-01-01
A method and apparatus are provided for detecting and monitoring micro-volumetric enthalpic changes caused by molecular reactions. Micro-machining techniques are used to create very small thermally isolated masses incorporating temperature-sensitive circuitry. The thermally isolated masses are provided with a molecular layer or coating, and the temperature-sensitive circuitry provides an indication when the molecules of the coating are involved in an enthalpic reaction. The thermally isolated masses may be provided singly or in arrays and, in the latter case, the molecular coatings may differ to provide qualitative and/or quantitative assays of a substance.
Experimental Performance of a Micromachined Heat Flux Sensor
NASA Technical Reports Server (NTRS)
Stefanescu, S.; DeAnna, R. G.; Mehregany, M.
1998-01-01
Steady-state and frequency response calibration of a microfabricated heat-flux sensor have been completed. This sensor is batch fabricated using standard, micromachining techniques, allowing both miniaturization and the ability to create arrays of sensors and their corresponding interconnects. Both high-frequency and spatial response is desired, so the sensors are both thin and of small cross-sectional area. Thin-film, temperature-sensitive resistors are used as the active gauge elements. Two sensor configurations are investigated: (1) a Wheatstone-bridge using four resistors; and (2) a simple, two-resistor design. In each design, one resistor (or pair) is covered by a thin layer (5000 A) thermal barrier; the other resistor (or pair) is covered by a thick (5 microns) thermal barrier. The active area of a single resistor is 360 microns by 360 microns; the total gauge area is 1.5 mm square. The resistors are made of 2000 A-thick metal; and the entire gauge is fabricated on a 25 microns-thick flexible, polyimide substrate. Heat flux through the surface changes the temperature of the resistors and produces a corresponding change in resistance. Sensors were calibrated using two radiation heat sources: (1) a furnace for steady-state, and (2) a light and chopper for frequency response.
Packaging of electro-microfluidic devices
Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.
2003-04-15
A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.
Packaging of electro-microfluidic devices
Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Watson, Robert D.
2002-01-01
A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.
Micromachine friction test apparatus
deBoer, Maarten P.; Redmond, James M.; Michalske, Terry A.
2002-01-01
A microelectromechanical (MEM) friction test apparatus is disclosed for determining static or dynamic friction in MEM devices. The friction test apparatus, formed by surface micromachining, is based on a friction pad supported at one end of a cantilevered beam, with the friction pad overlying a contact pad formed on the substrate. A first electrostatic actuator can be used to bring a lower surface of the friction pad into contact with an upper surface of the contact pad with a controlled and adjustable force of contact. A second electrostatic actuator can then be used to bend the cantilevered beam, thereby shortening its length and generating a relative motion between the two contacting surfaces. The displacement of the cantilevered beam can be measured optically and used to determine the static or dynamic friction, including frictional losses and the coefficient of friction between the surfaces. The test apparatus can also be used to assess the reliability of rubbing surfaces in MEM devices by producing and measuring wear of those surfaces. Finally, the friction test apparatus, which is small in size, can be used as an in situ process quality tool for improving the fabrication of MEM devices.
Micromachined Tunable Fabry-Perot Filters for Infrared Astronomy
NASA Technical Reports Server (NTRS)
Barclay, Richard; Bier, Alexander; Chen, Tina; DiCamillo, Barbara; Deming, Drake; Greenhouse, Matthew; Henry, Ross; Hewagama, Tilak; Jacobson, Mindy; Loughlin, James;
2002-01-01
Micromachined Fabry-Perot tunable filters with a large clear aperture (12.5 to 40 mm) are being developed as an optical component for wide-field imaging 1:1 spectroscopy. This program applies silicon micromachining fabrication techniques to miniaturize Fabry-Perot filters for astronomical science instruments. The filter assembly consists of a stationary etalon plate mated to a plate in which the etalon is free to move along the optical axis on silicon springs attached to a stiff silicon support ring. The moving etalon is actuated electrostatically by electrode pairs on the fixed and moving etalons. To reduce mass, both etalons are fabricated by applying optical coatings to a thin freestanding silicon nitride film held flat in drumhead tension rather than to a thick optical substrate. The design, electro-mechanical modeling, fabrication, and initial results will be discussed. The potential application of the miniature Fabry-Perot filters will be briefly discussed with emphasis on the detection of extra-solar planets.
Biomimetic wall-shaped hierarchical microstructure for gecko-like attachment.
Kasem, Haytam; Tsipenyuk, Alexey; Varenberg, Michael
2015-04-21
Most biological hairy adhesive systems involved in locomotion rely on spatula-shaped terminal elements, whose operation has been actively studied during the last decade. However, though functional principles underlying their amazing performance are now well understood, due to technical difficulties in manufacturing the complex structure of hierarchical spatulate systems, a biomimetic surface structure featuring true shear-induced dynamic attachment still remains elusive. To try bridging this gap, a novel method of manufacturing gecko-like attachment surfaces is devised based on a laser-micromachining technology. This method overcomes the inherent disadvantages of photolithography techniques and opens wide perspectives for future production of gecko-like attachment systems. Advanced smart-performance surfaces featuring thin-film-based hierarchical shear-activated elements are fabricated and found capable of generating friction force of several tens of times the contact load, which makes a significant step forward towards a true gecko-like adhesive.
Modeling of solid-state and excimer laser processes for 3D micromachining
NASA Astrophysics Data System (ADS)
Holmes, Andrew S.; Onischenko, Alexander I.; George, David S.; Pedder, James E.
2005-04-01
An efficient simulation method has recently been developed for multi-pulse ablation processes. This is based on pulse-by-pulse propagation of the machined surface according to one of several phenomenological models for the laser-material interaction. The technique allows quantitative predictions to be made about the surface shapes of complex machined parts, given only a minimal set of input data for parameter calibration. In the case of direct-write machining of polymers or glasses with ns-duration pulses, this data set can typically be limited to the surface profiles of a small number of standard test patterns. The use of phenomenological models for the laser-material interaction, calibrated by experimental feedback, allows fast simulation, and can achieve a high degree of accuracy for certain combinations of material, laser and geometry. In this paper, the capabilities and limitations of the approach are discussed, and recent results are presented for structures machined in SU8 photoresist.
NASA Astrophysics Data System (ADS)
Tewolde, Mahder
Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are well suited for waste-heat energy harvesting applications as opposed to primary energy generation. Commercially available thermoelectric modules are flat, inflexible and have limited sizes available. State-of-art manufacturing of TEG devices relies on assembling prefabricated parts with soldering, epoxy bonding, and mechanical clamping. Furthermore, efforts to incorporate them onto curved surfaces such as exhaust pipes, pump housings, steam lines, mixing containers, reaction chambers, etc. require custom-built heat exchangers. This is costly and labor-intensive, in addition to presenting challenges in terms of space, thermal coupling, added weight and long-term reliability. Additive manufacturing technologies are beginning to address many of these issues by reducing part count in complex designs and the elimination of sub-assembly requirements. This work investigates the feasibility of utilizing such novel manufacturing routes for improving the manufacturing process of thermoelectric devices. Much of the research in thermoelectricity is primarily focused on improving thermoelectric material properties by developing of novel materials or finding ways to improve existing ones. Secondary to material development is improving the manufacturing process of TEGs to provide significant cost benefits. To improve the device fabrication process, this work explores additive manufacturing technologies to provide an integrated and scalable approach for TE device manufacturing directly onto engineering component surfaces. Additive manufacturing techniques like thermal spray and ink-dispenser printing are developed with the aim of improving the manufacturing process of TEGs. Subtractive manufacturing techniques like laser micromachining are also studied in detail. This includes the laser processing parameters for cutting the thermal spray materials efficiently by optimizing cutting speed and power while maintaining surface quality and interface properties. Key parameters are obtained from these experiments and used to develop a process that can be used to fabricate a working TEG directly onto the waste-heat component surface. A TEG module has been fabricated for the first time entirely by using thermal spray technology and laser micromachining. The target applications include automotive exhaust systems and other high-volume industrial waste heat sources. The application of TEGs for thermoelectrically powered sensors for Small Modular Reactors (SMRs) is presented. In conclusion, more ways to improve the fabrication process of TEGs are suggested.
Bartlett, Philip N; Guerin, Samuel
2003-01-01
Palladium films with regular nanoarchitectures were electrochemically deposited from the hexagonal (H1) lyotropic liquid crystalline phase of the nonionic surfactant octaethyleneglycol monohexadecyl ether (C16EO8) onto micromachined silicon hotplate structures. The H1-e Pd films were shown to have high surface areas (approximately 28 m2 g(-1)) and to act as effective and stable catalysts for the detection of methane in air on heating to 500 degrees C. The response of the H1-e Pd-coated planar pellistors was found to be linearly proportional to the concentration of methane between 0 and 2.5% in air with a detection limit below 0.125%. Our results show that the electrochemical deposition of nanostructured metal films offers a promising approach to the fabrication of micromachined calorimetric gas sensors for combustible gases.
Yeh, Po Ying; Le, Yevgeniya; Kizhakkedathu, Jayachandran N; Chiao, Mu
2008-10-01
A micromachined vibrating membrane is used to remove adsorbed proteins on a surface. A lead zirconate titanate (PZT) composite (3 x 1 x 0.5 mm) is attached to a silicon membrane (2,000 x 500 x 3 microm) and vibrates in a flexural plate wave (FPW) mode with wavelength of 4,000/3 microm at a resonant frequency of 308 kHz. The surface charge on the membrane and fluid shear stress contribute in minimizing the protein adsorption on the SiO(2) surface. In vitro characterization shows that 57 +/- 10% of the adsorbed bovine serum albumin (BSA), 47 +/- 13% of the immunoglobulin G (IgG), and 55.3~59.2 +/- 8% of the proteins from blood plasma are effectively removed from the vibrating surface. A simulation study of the vibration-frequency spectrum and vibrating amplitude distribution matches well with the experimental data. Potentially, a microelectromechanical system (MEMS)-based vibrating membrane could be the tool to minimize biofouling of in vivo MEMS devices.
Method Of Packaging And Assembling Electro-Microfluidic Devices
Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.
2004-11-23
A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.
Passive tire pressure sensor and method
Pfeifer, Kent Bryant; Williams, Robert Leslie; Waldschmidt, Robert Lee; Morgan, Catherine Hook
2006-08-29
A surface acoustic wave device includes a micro-machined pressure transducer for monitoring tire pressure. The device is configured having a micro-machined cavity that is sealed with a flexible conductive membrane. When an external tire pressure equivalent to the cavity pressure is detected, the membrane makes contact with ridges on the backside of the surface acoustic wave device. The ridges are electrically connected to conductive fingers of the device. When the detected pressure is correct, selected fingers on the device will be grounded producing patterned acoustic reflections to an impulse RF signal. When the external tire pressure is less than the cavity reference pressure, a reduced reflected signal to the receiver results. The sensor may further be constructed so as to identify itself by a unique reflected identification pulse series.
Passive tire pressure sensor and method
Pfeifer, Kent Bryant; Williams, Robert Leslie; Waldschmidt, Robert Lee; Morgan, Catherine Hook
2007-09-04
A surface acoustic wave device includes a micro-machined pressure transducer for monitoring tire pressure. The device is configured having a micro-machined cavity that is sealed with a flexible conductive membrane. When an external tire pressure equivalent to the cavity pressure is detected, the membrane makes contact with ridges on the backside of the surface acoustic wave device. The ridges are electrically connected to conductive fingers of the device. When the detected pressure is correct, selected fingers on the device will be grounded producing patterned acoustic reflections to an impulse RF signal. When the external tire pressure is less than the cavity reference pressure, a reduced reflected signal to the receiver results. The sensor may further be constructed so as to identify itself by a unique reflected identification pulse series.
Wang, Zhihong; Zhu, Weiguang; Zhu, Hong; Miao, Jianmin; Chao, Chen; Zhao, Changlei; Tan, Ooi Kiang
2005-12-01
Ferroelectric microelectromechanical systems (MEMS) has been a growing area of research in past decades, in which ferroelectric films are combined with silicon technology for a variety of applications, such as piezo-electric micromachined ultrasonic transducers (pMUTs), which represent a new approach to ultrasound detection and generation. For ultrasound-radiating applications, thicker PZT films are preferred because generative force and response speed of the diaphragm-type transducers increase with increasing film thickness. However, integration of 4- to 20-microm thick PZT films on silicon wafer, either the deposition or the patterning, is still a bottleneck in the micromachining process. This paper reports on a diaphragm-type pMUT. A composite coating technique based on chemical solution deposition and high-energy ball milled powder has been used to fabricate thick PZT films. Micromachining of the pMUTs using such thick films has been investigated. The fabricated pMUT with crack-free PZT films up to 7-microm thick was evaluated as an ultrasonic transmitter. The generated sound pressure level of up to 120 dB indicates that the fabricated pMUT has very good ultrasound-radiating performance and, therefore, can be used to compose pMUT arrays for generating ultrasound beam with high directivity in numerous applications. The pMUT arrays also have been demonstrated.
NASA Astrophysics Data System (ADS)
Huerta-Murillo, D.; Aguilar-Morales, A. I.; Alamri, S.; Cardoso, J. T.; Jagdheesh, R.; Lasagni, A. F.; Ocaña, J. L.
2017-11-01
In this work, hierarchical surface patterns fabricated on Ti-6Al-4V alloy combining two laser micro-machining techniques are presented. The used technologies are based on nanosecond Direct Laser Writing and picosecond Direct Laser Interference Patterning. Squared shape micro-cells with different hatch distances were produced by Direct Laser Writing with depths values in the micro-scale, forming a well-defined closed packet. Subsequently, cross-like periodic patterns were fabricated by means of Direct Laser Interference Patterning using a two-beam configuration, generating a dual-scale periodic surface structure in both micro- and nano-scale due to the formation of Laser-Induced Periodic Surface Structure after the picosecond process. As a result a triple hierarchical periodic surface structure was generated. The surface morphology of the irradiated area was characterized with scanning electron microscopy and confocal microscopy. Additionally, static contact angle measurements were made to analyze the wettability behavior of the structures, showing a hydrophobic behavior for the hierarchical structures.
NASA Astrophysics Data System (ADS)
Singh, Ramandeep
2018-04-01
The machining of materials on micro-meter and sub-micrometre is considered the technology of future. Due to challenging applications of biomedical and aerospace industries, the traditional manufacturing techniques lacks in dimensional accuracy. Thus for such industries, the technique that can control micron tolerances is Electrochemical Micromachining (EMM). Hard metals and alloys can also be machined by this technique. Thus to develop a novel EMM system setup and to investigate the effect of three different electrolytes i.e NaCl, NaNO3 and HCl with their different concentrations, the current study was conducted. Stainless Steel-304 and copper were chosen as the work piece material in the present study. Taguchi L18 orthogonal array was used for the best combination of experiment. According to the present investigation most prominent factor affecting the material removal (MR) comes out was electrolyte. HCl provides the better MR among other electrolytes i.e. NaNO3 and NaCl. The amount of MR increased with the increase in the concentration of electrolyte.
Design and Realization of 3D Printed AFM Probes.
Alsharif, Nourin; Burkatovsky, Anna; Lissandrello, Charles; Jones, Keith M; White, Alice E; Brown, Keith A
2018-05-01
Atomic force microscope (AFM) probes and AFM imaging by extension are the product of exceptionally refined silicon micromachining, but are also restricted by the limitations of these fabrication techniques. Here, the nanoscale additive manufacturing technique direct laser writing is explored as a method to print monolithic cantilevered probes for AFM. Not only are 3D printed probes found to function effectively for AFM, but they also confer several advantages, most notably the ability to image in intermittent contact mode with a bandwidth approximately ten times larger than analogous silicon probes. In addition, the arbitrary structural control afforded by 3D printing is found to enable programming the modal structure of the probe, a capability that can be useful in the context of resonantly amplifying nonlinear tip-sample interactions. Collectively, these results show that 3D printed probes complement those produced using conventional silicon micromachining and open the door to new imaging techniques. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fabricating micro-instruments in surface-micromachined polycrystalline silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comtois, J.H.; Michalicek, M.A.; Barron, C.C.
1997-04-01
Smaller, lighter instruments can be fabricated as Micro-Electro-Mechanical Systems (MEMS), having micron scale moving parts packaged together with associated control and measurement electronics. Batch fabrication of these devices will make economical applications such as condition-based machine maintenance and remote sensing. The choice of instrumentation is limited only by the designer`s imagination. This paper presents one genre of MEMS fabrication, surface-micromachined polycrystalline silicon (polysilicon). Two currently available but slightly different polysilicon processes are presented. One is the ARPA-sponsored ``Multi-User MEMS ProcesS`` (MUMPS), available commercially through MCNC; the other is the Sandia National Laboratories ``Sandia Ultra-planar Multilevel MEMS Technology`` (SUMMiT). Example componentsmore » created in both processes will be presented, with an emphasis on actuators, actuator force testing instruments, and incorporating actuators into larger instruments.« less
MEMS deformable mirror embedded wavefront sensing and control system
NASA Astrophysics Data System (ADS)
Owens, Donald; Schoen, Michael; Bush, Keith
2006-01-01
Electrostatic Membrane Deformable Mirror (MDM) technology developed using silicon bulk micro-machining techniques offers the potential of providing low-cost, compact wavefront control systems for diverse optical system applications. Electrostatic mirror construction using bulk micro-machining allows for custom designs to satisfy wavefront control requirements for most optical systems. An electrostatic MDM consists of a thin membrane, generally with a thin metal or multi-layer high-reflectivity coating, suspended over an actuator pad array that is connected to a high-voltage driver. Voltages applied to the array elements deflect the membrane to provide an optical surface capable of correcting for measured optical aberrations in a given system. Electrostatic membrane DM designs are derived from well-known principles of membrane mechanics and electrostatics, the desired optical wavefront control requirements, and the current limitations of mirror fabrication and actuator drive electronics. MDM performance is strongly dependent on mirror diameter and air damping in meeting desired spatial and temporal frequency requirements. In this paper, we present wavefront control results from an embedded wavefront control system developed around a commercially available high-speed camera and an AgilOptics Unifi MDM driver using USB 2.0 communications and the Linux development environment. This new product, ClariFast TM, combines our previous Clarifi TM product offering into a faster more streamlined version dedicated strictly to Hartmann Wavefront sensing.
Material removal effect of microchannel processing by femtosecond laser
NASA Astrophysics Data System (ADS)
Zhang, Pan; Chen, Lei; Chen, Jianxiong; Tu, Yiliu
2017-11-01
Material processing using ultra-short-pulse laser is widely used in the field of micromachining, especially for the precision processing of hard and brittle materials. This paper reports a theoretical and experimental study of the ablation characteristics of a silicon wafer under micromachining using a femtosecond laser. The ablation morphology of the silicon wafer surface is surveyed by a detection test with an optical microscope. First, according to the relationship between the diameter of the ablation holes and the incident laser power, the ablation threshold of the silicon wafer is found to be 0.227 J/cm2. Second, the influence of various laser parameters on the size of the ablation microstructure is studied and the ablation morphology is analyzed. Furthermore, a mathematical model is proposed that can calculate the ablation depth per time for a given laser fluence and scanning velocity. Finally, a microchannel milling test is carried out on the micromachining center. The effectiveness and accuracy of the proposed models are verified by comparing the estimated depth to the actual measured results.
NASA Astrophysics Data System (ADS)
Paul, Sujoy; Gierl, Christian; Gründl, Tobias; Zogal, Karolina; Meissner, Peter; Amann, Markus-Christian; Küppers, Franko
2013-03-01
In this paper, we demonstrate for the first time the far-field experimental results and the linewidth characteris- tics for widely tunable surface-micromachined micro-electro-mechanical system (MEMS) vertical-cavity surface- emitting lasers (VCSELs) operating at 1550 nm. The fundamental Gaussian mode emission is confirmed by optimizing the radius of curvature of top distributed Bragg reflector (DBR) membrane and by choosing an ap- propriate diameter of circular buried tunnel junctions (BTJs) so that only the fundamental Gaussian mode can sustain. For these VCSELs, a mode-hop free continuous tuning over 100 nm has already been demonstrated, which is achieved by electro-thermal tuning of the MEMS mirror. The fiber-coupled optical power of 2mW over the entire tuning range has been reported. The singlemode laser emission has more than 40 dB of side-mode suppression ratio (SMSR). The smallest linewidth achieved with these of MEMS tunable VCSELs is 98MHz which is one order of magnitude higher than that of fixed-wavelength VCSELs.
Process Development and Micro-Machining of MARBLE Foam-Cored Rexolite Hemi-Shell Ablator Capsules
Randolph, Randall Blaine; Oertel, John A.; Schmidt, Derek William; ...
2016-06-30
For this study, machined CH hemi-shell ablator capsules have been successfully produced by the MST-7 Target Fabrication Team at Los Alamos National Laboratory. Process development and micro-machining techniques have been developed to produce capsules for both the Omega and National Ignition Facility (NIF) campaigns. These capsules are gas filled up to 10 atm and consist of a machined plastic hemi-shell outer layer that accommodates various specially engineered low-density polystyrene foam cores. Machining and assembly of the two-part, step-jointed plastic hemi-shell outer layer required development of new techniques, processes, and tooling while still meeting very aggressive shot schedules for both campaigns.more » Finally, problems encountered and process improvements will be discussed that describe this very unique, complex capsule design approach through the first Omega proof-of-concept version to the larger NIF version.« less
Fabrication of Cantilever-Bump Type Si Probe Card
NASA Astrophysics Data System (ADS)
Park, Jeong-Yong; Lee, Dong-Seok; Kim, Dong-Kwon; Lee, Jong-Hyun
2000-12-01
Probe card is most important part in the test system which selects the good or bad chip of integrated circuit (IC) chips. Silicon vertical probe card is able to test multiple semiconductor chips simultaneously. We presented cantilever-bump type vertical probe card. It was fabricated by dry etching using RIE(reactive ion etching) technique and porous silicon micromachining using silicon direct bonded (SDB) wafer. Cantilevers and bumps were fabricated by isotropic etching using RIE@. 3-dimensional structures were formed by porous silicon micromachining technique using SDB wafer. Contact resistance of fabricated probe card was less than 2 Ω and its life time was more than 200,000 turns. The process used in this work is very simple and reproducible, which has good controllability in the tip dimension and spacing. It is expected that the fabricated probe card can reduce testing time, can promote productivity and enables burn-in test.
Acceleration sensitivity of micromachined pressure sensors
NASA Astrophysics Data System (ADS)
August, Richard; Maudie, Theresa; Miller, Todd F.; Thompson, Erik
1999-08-01
Pressure sensors serve a variety of automotive applications, some which may experience high levels of acceleration such as tire pressure monitoring. To design pressure sensors for high acceleration environments it is important to understand their sensitivity to acceleration especially if thick encapsulation layers are used to isolate the device from the hostile environment in which they reside. This paper describes a modeling approach to determine their sensitivity to acceleration that is very general and is applicable to different device designs and configurations. It also describes the results of device testing of a capacitive surface micromachined pressure sensor at constant acceleration levels from 500 to 2000 g's.
New test structures and techniques for measurement of mechanical properties of MEMS materials
NASA Astrophysics Data System (ADS)
Sharpe, William N., Jr.; Yuan, Bin; Vaidyanathan, Ranji; Edwards, Richard L.
1996-09-01
This paper presents techniques and procedures for addressing the three major problems of mechanical testing of the thin films used in surface micromachined microelectromechanical systems--specimen handling, friction, and strain measurement. The polysilicon tensile specimens are fabricated with two supporting side strips on silicon wafers at the Microelectronic Center of North Carolina. The tensile specimen is released by etching away the wafer, and the two support strips are cut after the specimen is glued in the test machine. Friction is reduced by a linear air bearing in the load train, and strain is measured with a noncontacting technique based on laser interferometry between two gold lines on the tensile specimen. The Young's modulus of polysilicon is 170 +/- 7 GPa and the strength is 1.21 +/- 0.16 GPa from a series of 29 tests. preliminary measurements have been made of Poisson's ratio and the fatigue behavior, and an attempt is underway to measure the fracture toughness.
Cost-effective rapid prototyping and assembly of poly(methyl methacrylate) microfluidic devices.
Matellan, Carlos; Del Río Hernández, Armando E
2018-05-03
The difficulty in translating conventional microfluidics from laboratory prototypes to commercial products has shifted research efforts towards thermoplastic materials for their higher translational potential and amenability to industrial manufacturing. Here, we present an accessible method to fabricate and assemble polymethyl methacrylate (PMMA) microfluidic devices in a "mask-less" and cost-effective manner that can be applied to manufacture a wide range of designs due to its versatility. Laser micromachining offers high flexibility in channel dimensions and morphology by controlling the laser properties, while our two-step surface treatment based on exposure to acetone vapour and low-temperature annealing enables improvement of the surface quality without deformation of the device. Finally, we demonstrate a capillarity-driven adhesive delivery bonding method that can produce an effective seal between PMMA devices and a variety of substrates, including glass, silicon and LiNbO 3 . We illustrate the potential of this technique with two microfluidic devices, an H-filter and a droplet generator. The technique proposed here offers a low entry barrier for the rapid prototyping of thermoplastic microfluidics, enabling iterative design for laboratories without access to conventional microfabrication equipment.
Lu, Yue; Geng, Jiguo; Wang, Kuan; Zhang, Wei; Ding, Wenqiang; Zhang, Zhenhua; Xie, Shaohua; Dai, Hongxing; Chen, Fu-Rong; Sui, Manling
2017-08-22
Dissolution of metal oxides is fundamentally important for understanding mineral evolution and micromachining oxide functional materials. In general, dissolution of metal oxides is a slow and inefficient chemical reaction. Here, by introducing oxygen deficiencies to modify the surface chemistry of oxides, we can boost the dissolution kinetics of metal oxides in water, as in situ demonstrated in a liquid environmental transmission electron microscope (LETEM). The dissolution rate constant significantly increases by 16-19 orders of magnitude, equivalent to a reduction of 0.97-1.11 eV in activation energy, as compared with the normal dissolution in acid. It is evidenced from the high-resolution TEM imaging, electron energy loss spectra, and first-principle calculations where the dissolution route of metal oxides is dynamically changed by local interoperability between altered water chemistry and surface oxygen deficiencies via electron radiolysis. This discovery inspires the development of a highly efficient electron lithography method for metal oxide films in ecofriendly water, which offers an advanced technique for nanodevice fabrication.
Terahertz-Regime, Micro-VEDs: Evaluation of Micromachined TWT Conceptual Designs
NASA Technical Reports Server (NTRS)
Booske, John H.; Kory, Carol L.; Gallagher, D.; van der Weide, Daniel W.; Limbach, S; Gustafson, P; Lee, W.-J.; Gallagher, S.; Jain, K.
2001-01-01
Summary form only given. The Terahertz (THz) region of the electromagnetic spectrum (approx.300-3000 GHz) has enormous potential for high-data-rate communications, spectroscopy, astronomy, space research, medicine, biology, surveillance, remote sensing, industrial process control, etc. The most critical roadblock to full exploitation of the THz band is lack of coherent radiation sources that are powerful (0.01-10.0 W continuous wave), efficient (>1 %), frequency agile (instantaneously tunable over 1% bandwidths or more), reliable, and relatively inexpensive. Micro-machined Vacuum Electron Devices (micro-VEDs) represent a promising solution. We describe prospects for miniature, THz-regime TWTs fabricated using micromachining techniques. Several approx.600 GHz conceptual designs are compared. Their expected performance has been analyzed using SD, 2.51), and 3D TWT codes. A folded waveguide (FWG) TWT forward-wave amplifier design is presented based on a Northrop Grumman (NGC) optimized design procedure. This conceptual device is compared to the simulated performance of a novel, micro-VED helix TWT. Conceptual FWG TWT backward-wave amplifiers and oscillators are also discussed. A scaled (100 GHz) FWG TWT operating at a relatively low voltage (-12 kV) is under development at NGC. Also, actual-size micromachining experiments are planned to evaluate the feasibility of arrays of micro-VED TWTs. Progress and results of these efforts are described. This work was supported, in part by AFOSR, ONR, and NSF.
Moberlychan, Warren J
2009-06-03
Focused ion beam (FIB) tools have become a mainstay for processing and metrology of small structures. In order to expand the understanding of an ion impinging a surface (Sigmund sputtering theory) to our processing of small structures, the significance of 3D boundary conditions must be realized. We consider ion erosion for patterning/lithography, and optimize yields using the angle of incidence and chemical enhancement, but we find that the critical 3D parameters are aspect ratio and redeposition. We consider focused ion beam sputtering for micromachining small holes through membranes, but we find that the critical 3D considerations are implantation and redeposition. We consider ion beam self-assembly of nanostructures, but we find that control of the redeposition by ion and/or electron beams enables the growth of nanostructures and picostructures.
Surface micromachined counter-meshing gears discrimination device
Polosky, Marc A.; Garcia, Ernest J.; Allen, James J.
2000-12-12
A surface micromachined Counter-Meshing Gears (CMG) discrimination device which functions as a mechanically coded lock. Each of two CMG has a first portion of its perimeter devoted to continuous driving teeth that mesh with respective pinion gears. Each EMG also has a second portion of its perimeter devoted to regularly spaced discrimination gear teeth that extend outwardly on at least one of three levels of the CMG. The discrimination gear teeth are designed so as to pass each other without interference only if the correct sequence of partial rotations of the CMG occurs in response to a coded series of rotations from the pinion gears. A 24 bit code is normally input to unlock the device. Once unlocked, the device provides a path for an energy or information signal to pass through the device. The device is designed to immediately lock up if any portion of the 24 bit code is incorrect.
Fabrication of micromachined focusing mirrors with seamless reflective surface
NASA Astrophysics Data System (ADS)
Hou, Max Ti-Kuang; Liao, Ke-Min; Yeh, Hong-Zhen; Cheng, Bo-Wen; Hong, Pei-Yuan; Chen, Rongshun
2003-01-01
A surface-micromachined focusing mirror with variable focal length, which is controlled by adjusting the mirror"s curvature, is fabricated and characterized. The bowl-shaped micromirror, which is fabricated from the micro bilayer circular plate, focuses light beam through thermal actuation of the external heat source. Both the initial and operational curvatures are manipulated by the residual stresses in two layers of the mirror. Improper stresses would lead to the failure of the bowl-shaped structure. We analyze and design geometrical dimensions for simultaneously avoiding the structure failure and increasing the tuning range of the focal length. The interferometer has been used to measure the focal length and the focusing ability. Mirrors with nominal focal lengths approximately 730 μm, and tuning ranges of about 50 microns were demonstrated. The measurement directly through optical approach has also been tried, but requires further investigation, because the laser beam affects the focusing of the micromirror seriously.
Laser-assisted electrochemical micromachining of mould cavity on the stainless steel surface
NASA Astrophysics Data System (ADS)
Li, Xiaohai; Wang, Shuming; Wang, Dong; Tong, Han
2018-02-01
In order to fabricate the micro mould cavities with complex structures on 304 stainless steel, laser-assisted electrochemical micromachining (EMM) based on surface modification by fiber laser masking was studied,and a new device of laser-assisted EMM was developed. Laser marking on the surface of 304 stainless steel can first be realized by fiber laser heating scanning. Through analysis of X ray diffraction analysis (XRD), metal oxide layer with predefined pattern can be formed by laser marking, and phase transformation can also occur on the 304 stainless steel surface, which produce the laser masking layer with corrosion resistance. The stainless steel surface with laser masking layer is subsequently etched by EMM, the laser masking layer severs as the temporary protective layer without relying on lithography mask, the fabrication of formed electrodes is also avoided, so micro pattern cavities can fast be fabricated. The impacts on machining accuracy during EMM with laser masking were discussed to optimize machining parameters, such as machining voltage, electrolyte concentration, duty cycle of pulse power supply and electrode gap size, the typical mould cavities 23μm deep were fabricated under the optimized parameters.
MEMS reliability: The challenge and the promise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, W.M.; Tanner, D.M.; Miller, S.L.
1998-05-01
MicroElectroMechanical Systems (MEMS) that think, sense, act and communicate will open up a broad new array of cost effective solutions only if they prove to be sufficiently reliable. A valid reliability assessment of MEMS has three prerequisites: (1) statistical significance; (2) a technique for accelerating fundamental failure mechanisms, and (3) valid physical models to allow prediction of failures during actual use. These already exist for the microelectronics portion of such integrated systems. The challenge lies in the less well understood micromachine portions and its synergistic effects with microelectronics. This paper presents a methodology addressing these prerequisites and a description ofmore » the underlying physics of reliability for micromachines.« less
Micromachined 1-3 composites for ultrasonic air transducers
NASA Astrophysics Data System (ADS)
Haller, M. I.; Khuri-Yakub, B. T.
1994-06-01
Airborne ultrasound has many applications, such as robotic sensing, NDE, and gas flow measurements. Coupling of ultrasound into air from plane piston piezoelectric transducers is inefficient because of the large impedance mismatch between the piezoelectric and air, and the lack of appropriate matching materials. Standard design practice requires the use of a matching layer material with an acoustic impedance of approximately 0.02 MRayls and a thickness of a quarter-wavelength. Such materials are not readily available. A method to manufacture low impedance materials using micromachining techniques for matching piezoelectrics into air are presented here. These materials are capped 1-3 composites of air and Kapton(R). The acoustic effect of the cap is significant and necessitates a modified design technique. This technique involves the use of two matching layers with inverted acoustic impedances. Using the new fabrication technology and the new design technique, an 860-kHz transducer was fabricated with a one-way insertion loss of 17 dB and a fractional 3 dB bandwidth of 6%. It is believed that, using this technology, a transducer with a one-way insertion loss of 10 dB and a fractional bandwidth of 10% is possible.
Integrated Arrays on Silicon at Terahertz Frequencies
NASA Technical Reports Server (NTRS)
Chattopadhayay, Goutam; Lee, Choonsup; Jung, Cecil; Lin, Robert; Peralta, Alessandro; Mehdi, Imran; Llombert, Nuria; Thomas, Bertrand
2011-01-01
In this paper we explore various receiver font-end and antenna architecture for use in integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies and use of novel integrated antennas with silicon micromachining are reported. We report novel stacking of micromachined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages which easily leads to the development of 2- dimensioanl multi-pixel receiver front-ends in the terahertz frequency range. We also report an integrated micro-lens antenna that goes with the silicon micro-machined front-end. The micro-lens antenna is fed by a waveguide that excites a silicon lens antenna through a leaky-wave or electromagnetic band gap (EBG) resonant cavity. We utilized advanced semiconductor nanofabrication techniques to design, fabricate, and demonstrate a super-compact, low-mass submillimeter-wave heterodyne frontend. When the micro-lens antenna is integrated with the receiver front-end we will be able to assemble integrated heterodyne array receivers for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.
ZnO thin film piezoelectric micromachined microphone with symmetric composite vibrating diaphragm
NASA Astrophysics Data System (ADS)
Li, Junhong; Wang, Chenghao; Ren, Wei; Ma, Jun
2017-05-01
Residual stress is an important factor affecting the sensitivity of piezoelectric micromachined microphone. A symmetric composite vibrating diaphragm was adopted in the micro electro mechanical systems piezoelectric microphone to decrease the residual stress and improve the sensitivity of microphone in this paper. The ZnO film was selected as piezoelectric materials of microphone for its higher piezoelectric coefficient d 31 and lower relative dielectric constant. The thickness optimization of piezoelectric film on square diaphragm is difficult to be fulfilled by analytic method. To optimize the thickness of ZnO films, the stress distribution in ZnO film was analyzed by finite element method and the average stress in different thickness of ZnO films was given. The ZnO films deposited using dc magnetron sputtering exhibits a densely packed structure with columnar crystallites preferentially oriented along (002) plane. The diaphragm of microphone fabricated by micromachining techniques is flat and no wrinkling at corners, and the sensitivity of microphone is higher than 1 mV Pa-1. These results indicate the diaphragm has lower residual stress.
Physics-based signal processing algorithms for micromachined cantilever arrays
Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W
2013-11-19
A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.
Microelectromechanical reciprocating-tooth indexing apparatus
Allen, James J.
1999-01-01
An indexing apparatus is disclosed that can be used to rotate a gear or move a rack in a precise, controllable manner. The indexing apparatus, based on a reciprocating shuttle driven by one or more actuators, can be formed either as a micromachine, or as a millimachine. The reciprocating shuttle of the indexing apparatus can be driven by a thermal, electrostatic or electromagnetic actuator, with one or more wedge-shaped drive teeth of the shuttle being moveable to engage and slide against indexing teeth on the gear or rack, thereby moving the gear or rack. The indexing apparatus can be formed by either surface micromachining processes or LIGA processes, depending on the size of the apparatus that is to be formed.
Silicon microfabricated beam expander
NASA Astrophysics Data System (ADS)
Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.
2015-03-01
The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.
Microfabricated packed gas chromatographic column
Kottenstette, Richard; Matzke, Carolyn M.; Frye-Mason, Gregory C.
2003-12-16
A new class of miniaturized gas chromatographic columns has been invented. These chromatographic columns are formed using conventional micromachining techniques, and allow packed columns having lengths on the order of a meter to be fabricated with a footprint on the order of a square centimeter.
Repulsive force actuated rotary micromirror
NASA Astrophysics Data System (ADS)
He, Siyuan; Ben Mrad, Ridha
2004-09-01
In this paper, a novel repulsive force based rotary micromirror is proposed. A repulsive force is produced in the rotary micromirror and the mirror plate is pushed up and away from the substrate. Therefore the rotation angle of the micromirror is not limited to the space underneath the mirror plate and thus the "pull-in" effect is completely circumvented. The novel rotary micromirror can achieve a large rotation angle with a large mirror plate. In addition the novel micromirror has a very simple structure and can be fabricated by standard surface micromachining technology. Numerical simulation is used to verify the working principle of the novel micromirror. A prototype of the novel rotary micromirror is fabricated by a commercially available surface microfabrication process called MUMPs. The prototype has a mirror size of 300μm x 300μm. The experimental measurements show that the prototype can achieve a mechanical rotation of 2.25 degrees (an optical angle of 4.5 degrees) at a driving voltage of 170 volts. A conventional surface micromachined attractive force based rotary micromirror of the same size can only achieve an angle of 0.1~0.2 degree.
Laser patterning of platinum electrodes for safe neurostimulation
NASA Astrophysics Data System (ADS)
Green, R. A.; Matteucci, P. B.; Dodds, C. W. D.; Palmer, J.; Dueck, W. F.; Hassarati, R. T.; Byrnes-Preston, P. J.; Lovell, N. H.; Suaning, G. J.
2014-10-01
Objective. Laser surface modification of platinum (Pt) electrodes was investigated for use in neuroprosthetics. Surface modification was applied to increase the surface area of the electrode and improve its ability to transfer charge within safe electrochemical stimulation limits. Approach. Electrode arrays were laser micromachined to produce Pt electrodes with smooth surfaces, which were then modified with four laser patterning techniques to produce surface structures which were nanosecond patterned, square profile, triangular profile and roughened on the micron scale through structured laser interference patterning (SLIP). Improvements in charge transfer were shown through electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and biphasic stimulation at clinically relevant levels. A new method was investigated and validated which enabled the assessment of in vivo electrochemically safe charge injection limits. Main results. All of the modified surfaces provided electrical advantage over the smooth Pt. The SLIP surface provided the greatest benefit both in vitro and in vivo, and this surface was the only type which had injection limits above the threshold for neural stimulation, at a level shown to produce a response in the feline visual cortex when using an electrode array implanted in the suprachoroidal space of the eye. This surface was found to be stable when stimulated with more than 150 million clinically relevant pulses in physiological saline. Significance. Critical to the assessment of implant devices is accurate determination of safe usage limits in an in vivo environment. Laser patterning, in particular SLIP, is a superior technique for improving the performance of implant electrodes without altering the interfacial electrode chemistry through coating. Future work will require chronic in vivo assessment of these electrode patterns.
Shi, Xuesong; Li, Xin; Jiang, Lan; Qu, Liangti; Zhao, Yang; Ran, Peng; Wang, Qingsong; Cao, Qiang; Ma, Tianbao; Lu, Yongfeng
2015-01-01
We developed a simple, scalable and high-throughput method for fabrication of large-area three-dimensional rose-like microflowers with controlled size, shape and density on graphene films by femtosecond laser micromachining. The novel biomimetic microflower that composed of numerous turnup graphene nanoflakes can be fabricated by only a single femtosecond laser pulse, which is efficient enough for large-area patterning. The graphene films were composed of layer-by-layer graphene nanosheets separated by nanogaps (~10–50 nm), and graphene monolayers with an interlayer spacing of ~0.37 nm constituted each of the graphene nanosheets. This unique hierarchical layering structure of graphene films provides great possibilities for generation of tensile stress during femtosecond laser ablation to roll up the nanoflakes, which contributes to the formation of microflowers. By a simple scanning technique, patterned surfaces with controllable densities of flower patterns were obtained, which can exhibit adhesive superhydrophobicity. More importantly, this technique enables fabrication of the large-area patterned surfaces at centimeter scales in a simple and efficient way. This study not only presents new insights of ultrafast laser processing of novel graphene-based materials but also shows great promise of designing new materials combined with ultrafast laser surface patterning for future applications in functional coatings, sensors, actuators and microfluidics. PMID:26615800
A miniature Joule-Thomson cooler for optical detectors in space.
Derking, J H; Holland, H J; Tirolien, T; ter Brake, H J M
2012-04-01
The utilization of single-stage micromachined Joule-Thomson (JT) coolers for cooling small optical detectors is investigated. A design of a micromachined JT cold stage-detector system is made that focuses on the interface between a JT cold stage and detector, and on the wiring of the detector. Among various techniques, adhesive bonding is selected as most suitable technique for integrating the detector with the JT cold stage. Also, the optimum wiring of the detector is discussed. In this respect, it is important to minimize the heat conduction through the wiring. Therefore, each wire should be optimized in terms of acceptable impedance and thermal heat load. It is shown that, given a certain impedance, the conductive heat load of electrically bad conducting materials is about twice as high as that of electrically good conducting materials. A micromachined JT cold stage is designed and integrated with a dummy detector. The JT cold stage is operated at 100 K with nitrogen as the working fluid and at 140 K with methane. Net cooling powers of 143 mW and 117 mW are measured, respectively. Taking into account a radiative heat load of 40 mW, these measured values make the JT cold stage suitable for cooling a photon detector with a power dissipation up to 50 mW, allowing for another 27 to 53 mW heat load arising from the electrical leads. © 2012 American Institute of Physics
Apparatus to collect, classify, concentrate, and characterize gas-borne particles
Rader, Daniel J.; Torczynski, John R.; Wally, Karl; Brockmann, John E.
2002-01-01
An aerosol lab-on-a-chip (ALOC) integrates one or more of a variety of aerosol collection, classification, concentration (enrichment), and characterization processes onto a single substrate or layered stack of such substrates. By taking advantage of modern micro-machining capabilities, an entire suite of discrete laboratory aerosol handling and characterization techniques can be combined in a single portable device that can provide a wealth of data on the aerosol being sampled. The ALOC offers parallel characterization techniques and close proximity of the various characterization modules helps ensure that the same aerosol is available to all devices (dramatically reducing sampling and transport errors). Micro-machine fabrication of the ALOC significantly reduces unit costs relative to existing technology, and enables the fabrication of small, portable ALOC devices, as well as the potential for rugged design to allow operation in harsh environments. Miniaturization also offers the potential of working with smaller particle sizes and lower pressure drops (leading to reduction of power consumption).
NASA Astrophysics Data System (ADS)
Demir, Ali Gökhan; Previtali, Barbara; Colombo, Daniele; Ge, Qiang; Vedani, Maurizio; Petrini, Lorenza; Wu, Wei; Biffi, Carlo Alberto
2012-02-01
Magnesium alloys constitute an attractive solution for cardiovascular stent applications due to their intrinsic properties of biocompatibility and relatively low corrosion resistance in human-body fluids, which results in as a less intrusive treatment. Laser micromachining is the conventional process used to cut the stent mesh, which plays the key role for the accurate reproduction of the mesh design and the surface quality of the produced stent that are important factors in ensuring the mechanical and corrosion resistance properties of such a kind of devices. Traditionally continuous or pulsed laser systems working in microsecond pulse regime are employed for stent manufacturing. Pulsed fiber lasers on the other hand, are a relatively new solution which could balance productivity and quality aspects with shorter ns pulse durations and pulse energies in the order of mJ. This work reports the study of laser micromachining and of AZ31 magnesium alloy for the manufacturing of cardiovascular stents with a novel mesh design. A pulsed active fiber laser system operating in nanosecond pulse regime was employed for the micromachining. Laser parameters were studied for tubular cutting on a common stent material, AISI 316L tubes with 2 mm in diameter and 0.2 mm in thickness and on AZ31 tubes with 2.5 mm in diameter and 0.2 in thickness. In both cases process parameters conditions were examined for reactive and inert gas cutting solutions and the final stent quality is compared.
NASA Astrophysics Data System (ADS)
Nan, Hao; Boyle, Kevin C.; Apte, Nikhil; Aliroteh, Miaad S.; Bhuyan, Anshuman; Nikoozadeh, Amin; Khuri-Yakub, Butrus T.; Arbabian, Amin
2015-02-01
A radio frequency (RF)/ultrasound hybrid imaging system using airborne capacitive micromachined ultrasonic transducers (CMUTs) is proposed for the remote detection of embedded objects in highly dispersive media (e.g., water, soil, and tissue). RF excitation provides permittivity contrast, and ultra-sensitive airborne-ultrasound detection measures thermoacoustic-generated acoustic waves that initiate at the boundaries of the embedded target, go through the medium-air interface, and finally reach the transducer. Vented wideband CMUTs interface to 0.18 μm CMOS low-noise amplifiers to provide displacement detection sensitivity of 1.3 pm at the transducer surface. The carefully designed vented CMUT structure provides a fractional bandwidth of 3.5% utilizing the squeeze-film damping of the air in the cavity.
NASA Astrophysics Data System (ADS)
Malyutenko, V. K.; Malyutenko, O. Yu.; Leonov, V.; Van Hoof, C.
2009-05-01
The technology for self-supported membraneless polycrystalline SiGe thermal microemitters, their design, and performance are presented. The 128-element arrays with a fill factor of 88% and a 2.5-μm-thick resonant cavity have been grown by low-pressure chemical vapor deposition and fabricated using surface micromachining technology. The 200-nm-thick 60×60 μm2 emitting pixels enforced with a U-shape profile pattern demonstrate a thermal time constant of 2-7 ms and an apparent temperature of 700 K in the 3-5 and 8-12 μm atmospheric transparency windows. The application of the devices to the infrared dynamic scene simulation and their benefit over conventional planar membrane-supported emitters are discussed.
Okandan, Murat; Wessendorf, Kurt O.
2007-12-11
An electrode array is disclosed which has applications for neural stimulation and sensing. The electrode array, in certain embodiments, can include a plurality of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. In other embodiments of the electrode array, the electrodes can be fixed to the substrate. The electrode array can be formed from a combination of bulk and surface micromachining, and can include electrode tips having an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis.
The application of micromachined sensors to manned space systems
NASA Technical Reports Server (NTRS)
Bordano, Aldo; Havey, Gary; Wald, Jerry; Nasr, Hatem
1993-01-01
Micromachined sensors promise significant system advantages to manned space vehicles. Vehicle Health Monitoring (VHM) is a critical need for most future space systems. Micromachined sensors play a significant role in advancing the application of VHM in future space vehicles. This paper addresses the requirements that future VHM systems place on micromachined sensors such as: system integration, performance, size, weight, power, redundancy, reliability and fault tolerance. Current uses of micromachined sensors in commercial, military and space systems are used to document advantages that are gained and lessons learned. Based on these successes, the future use of micromachined sensors in space programs is discussed in terms of future directions and issues that need to be addressed such as how commercial and military sensors can meet future space system requirements.
Nanostructure Engineered Chemical Sensors for Hazardous Gas and Vapor Detection
NASA Technical Reports Server (NTRS)
Li, Jing; Lu, Yijiang
2005-01-01
A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs) and metal oxides nanowires or nanobelts, on a pair of interdigitated electrodes (IDE) processed with a silicon based microfabrication and micromachining technique. The IDE fingers were fabricated using thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to hazardous gases and vapors, such as acetone, benzene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing in our sensor platform can be understood by electron modulation between the nanostructure engineered device and gas molecules. As a result of the electron modulation, the conductance of nanodevice will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost.
NASA Astrophysics Data System (ADS)
Harrison, Jere; Joshi, Abhijeet; Lake, Jonathan; Candler, Rob; Musumeci, Pietro
2012-07-01
A technological gap exists between the μm-scale wiggling periods achieved using electromagnetic waves of high intensity laser pulses and the mm scale of permanent-magnet and superconducting undulators. In the sub-mm range, surface-micromachined soft-magnetic micro-electro-mechanical system inductors with integrated solenoidal coils have already experimentally demonstrated 100 to 500 mT field amplitude across air gaps as large as 15μm. Simulations indicate that magnetic fields as large as 1.5 T across 50μm inductor gaps are feasible. A simple rearranging of the yoke and pole geometry allows for fabrication of 10+ cm long undulator structures with period lengths between 12.5μm and 1 mm. Such undulators find application both in high average power spontaneous emission sources and, if used in combination with ultrahigh-brightness electron beams, could lead to the realization of low energy compact free-electron lasers. Challenges include electron energy broadening due to wakefields and Joule heating in the electromagnet.
Micromachined electron tunneling infrared sensors
NASA Technical Reports Server (NTRS)
Kenny, T. W.; Kaiser, W. J.; Podosek, J. A.; Rockstad, H. K.; Reynolds, J. K.
1993-01-01
The development of an improved Golay cell is reported. This new sensor is constructed entirely from micromachined silicon components. A silicon oxynitride (SiO(x)N(y)) membrane is deflected by the thermal expansion of a small volume of trapped gas. To detect the motion of the membrane, an electron tunneling transducer is used. This sensor detects electrons which tunnel through the classically forbidden barrier between a tip and a surface; the electron current is exponentially dependent on the separation between the tip and the surface. The sensitivity of tunneling transducers constructed was typically better than 10(exp -3) A/square root of Hz. Through use of the electron tunneling transducer, the scaling laws which have prevented the miniaturization of the Golay cell are avoided. This detector potentially offers low cost fabrication, compatibility with silicon readout electronics, and operation without cooling. Most importantly, this detector may offer better sensitivity than any other uncooled infrared sensor, with the exception of the original Golay cell.
New optoelectronic methodology for nondestructive evaluation of MEMS at the wafer level
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Ferguson, Curtis F.; Melson, Michael J.
2004-02-01
One of the approaches to fabrication of MEMS involves surface micromachining to define dies on single crystal silicon wafers, dicing of the wafers to separate the dies, and electronic packaging of the individual dies. Dicing and packaging of MEMS accounts for a large fraction of the fabrication costs, therefore, nondestructive evaluation at the wafer level, before dicing, can have significant implications on improving production yield and costs. In this paper, advances in development of optoelectronic holography (OEH) techniques for nondestructive, noninvasive, full-field of view evaluation of MEMS at the wafer level are described. With OEH techniques, quantitative measurements of shape and deformation of MEMS, as related to their performance and integrity, are obtained with sub-micrometer spatial resolution and nanometer measuring accuracy. To inspect an entire wafer with OEH methodologies, measurements of overlapping regions of interest (ROI) on a wafer are recorded and adjacent ROIs are stitched together through efficient 3D correlation analysis algorithms. Capabilities of the OEH techniques are illustrated with representative applications, including determination of optimal inspection conditions to minimize inspection time while achieving sufficient levels of accuracy and resolution.
Sorting Rotating Micromachines by Variations in Their Magnetic Properties
NASA Astrophysics Data System (ADS)
Howell, Taylor A.; Osting, Braxton; Abbott, Jake J.
2018-05-01
We consider sorting for the broad class of micromachines (also known as microswimmers, microrobots, micropropellers, etc.) propelled by rotating magnetic fields. We present a control policy that capitalizes on the variation in magnetic properties between otherwise-homogeneous micromachines to enable the sorting of a select fraction of a group from the remainder and prescribe its net relative movement, using a uniform magnetic field that is applied equally to all micromachines. The method enables us to accomplish this sorting task using open-loop control, without relying on a structured environment or localization information of individual micromachines. With our method, the control time to perform the sort is invariant to the number of micromachines. The method is verified through simulations and scaled experiments. Finally, we include an extended discussion about the limitations of the method and address open questions related to its practical application.
Development of microchannel plate x-ray optics
NASA Technical Reports Server (NTRS)
Kaaret, Philip
1995-01-01
The goal of this research program was to develop a novel technique for focusing x-rays based on the optical system of a lobster's eye. A lobster eye employs many closely packed reflecting surfaces arranged within a spherical or cylindrical shell. These optics have two unique properties: they have unlimited fields of view and can be manufactured via replication of identical structures. Because the angular resolution is given by the ratio of the size of the individual optical elements to the focal length, optical elements with size on the order of one hundred microns are required to achieve good angular resolution with a compact telescope. We employed anisotropic etching of single crystal silicon wafers for the fabrication of micron-scale optical elements. This technique, commonly referred to as silicon micromachining, is based on silicon fabrication techniques developed by the microelectronics industry. We have succeeded in producing silicon lenses with a geometry suitable for a 1-d focusing x-ray optics. These lenses have an aspect ratio (40:1) suitable for x-ray reflection and have very good optical surface alignment. We have developed a number of process refinements which improved the quality of the lens geometry and the repeatability of the etch process. In addition to the silicon fabrication, an x-ray beam line was constructed at Columbia for testing the optics. Most recently, we have done several experiments to find the fundamental limits that the anisotropic etch process placed on the etched surface roughness.
NASA Astrophysics Data System (ADS)
Chang, Hung-Pin; Qian, Jiangyuan; Bachman, Mark; Congdon, Philip; Li, Guann-pyng
2002-07-01
A novel planarization technique, compressive molding planarization (CMP) is developed for implementation of a multi-layered micro coil device. Applying CMP and other micromachining techniques, a multi-layered micro coil device has been designed and fabricated, and its use in the magnetic micro actuators for hard disk drive applications has been demonstrated, showing that it can produce milli-Newton of magnetic force suitable for driving a micro actuator. The novel CMP technique can be equally applicable in other MEMS devices fabrication to ease the process integration for the complicated structure.
Optimization of Neutral Atom Imagers
NASA Technical Reports Server (NTRS)
Shappirio, M.; Coplan, M.; Balsamo, E.; Chornay, D.; Collier, M.; Hughes, P.; Keller, J.; Ogilvie, K.; Williams, E.
2008-01-01
The interactions between plasma structures and neutral atom populations in interplanetary space can be effectively studied with energetic neutral atom imagers. For neutral atoms with energies less than 1 keV, the most efficient detection method that preserves direction and energy information is conversion to negative ions on surfaces. We have examined a variety of surface materials and conversion geometries in order to identify the factors that determine conversion efficiency. For chemically and physically stable surfaces smoothness is of primary importance while properties such as work function have no obvious correlation to conversion efficiency. For the noble metals, tungsten, silicon, and graphite with comparable smoothness, conversion efficiency varies by a factor of two to three. We have also examined the way in which surface conversion efficiency varies with the angle of incidence of the neutral atom and have found that the highest efficiencies are obtained at angles of incidence greater then 80deg. The conversion efficiency of silicon, tungsten and graphite were examined most closely and the energy dependent variation of conversion efficiency measured over a range of incident angles. We have also developed methods for micromachining silicon in order to reduce the volume to surface area over that of a single flat surface and have been able to reduce volume to surface area ratios by up to a factor of 60. With smooth micro-machined surfaces of the optimum geometry, conversion efficiencies can be increased by an order of magnitude over instruments like LENA on the IMAGE spacecraft without increase the instruments mass or volume.
Development and characterization of a microheater array device for real-time DNA mutation detection
NASA Astrophysics Data System (ADS)
Williams, Layne; Okandan, Murat; Chagovetz, Alex; Blair, Steve
2008-04-01
DNA analysis, specifically single nucleotide polymorphism (SNP) detection, is becoming increasingly important in rapid diagnostics and disease detection. Temperature is often controlled to help speed reaction rates and perform melting of hybridized oligonucleotides. The difference in melting temperatures, Tm, between wild-type and SNP sequences, respectively, to a given probe oligonucleotide, is indicative of the specificity of the reaction. We have characterized Tm's in solution and on a solid substrate of three sequences from known mutations associated with Cystic Fibrosis. Taking advantage of Tm differences, a microheater array device was designed to enable individual temperature control of up to 18 specific hybridization events. The device was fabricated at Sandia National Laboratories using surface micromachining techniques. The microheaters have been characterized using an IR camera at Sandia and show individual temperature control with minimal thermal cross talk. Development of the device as a real-time DNA detection platform, including surface chemistry and associated microfluidics, is described.
Development and characterization of a microheater array device for real-time DNA mutation detection
NASA Astrophysics Data System (ADS)
Williams, Layne; Okandan, Murat; Chagovetz, Alex; Blair, Steve
2008-02-01
DNA analysis, specifically single nucleotide polymorphism (SNP) detection, is becoming increasingly important in rapid diagnostics and disease detection. Temperature is often controlled to help speed reaction rates and perform melting of hybridized oligonucleotides. The difference in melting temperatures, Tm, between wild-type and SNP sequences, respectively, to a given probe oligonucleotide, is indicative of the specificity of the reaction. We have characterized Tm's in solution and on a solid substrate of three sequences from known mutations associated with Cystic Fibrosis. Taking advantage of Tm differences, a microheater array device was designed to enable individual temperature control of up to 18 specific hybridization events. The device was fabricated at Sandia National Laboratories using surface micromachining techniques. The microheaters have been characterized using an IR camera at Sandia and show individual temperature control with minimal thermal cross talk. Development of the device as a real-time DNA detection platform, including surface chemistry and associated microfluidics, is described.
Integrated Multiple Device CMOS-MEMS IMU Systems and RF MEMS Applications
2002-12-17
microstructures [7]~[9]. The success of the surface-micromachined electrostatic micromotor in the late 80’s [10] stimulated the industry and government...processed electrostatic synchronous micromotors ,” Sensors Actuators, vol. 20, pp. 48-56, 1989. [11] “ADXL05-monolithic accelerometer with signal
Compact Micromachined Infrared Bandpass Filters for Planetary Spectroscopy
NASA Technical Reports Server (NTRS)
Merrell, Willie C., II; Aslam, Shahid; Brown, Ari D.; Chervenak, James A.; Huang, Wei-Chung; Quijada, Manuel; Wollack, Edward
2011-01-01
The future needs of space based observational planetary and astronomy missions include low mass and small volume radiometric instruments that can operate in high radiation and low temperature environments. Here we focus on a central spectroscopic component, the bandpass filter. We model the bandpass response of the filters to target the wavelength of the resonance peaks at 20, 40, and 60 micrometers and report good agreement between the modeled and measured response. We present a technique of using common micromachining processes for semiconductor fabrication to make compact, free standing resonant metal mesh filter arrays with silicon support frames. The process can accommodate multiple detector array architectures and the silicon frame provides lightweight mechanical support with low form factor. We also present a conceptual hybridization of the filters with a detector array.
A Micromachined Piezoresistive Pressure Sensor with a Shield Layer
Cao, Gang; Wang, Xiaoping; Xu, Yong; Liu, Sheng
2016-01-01
This paper presents a piezoresistive pressure sensor with a shield layer for improved stability. Compared with the conventional piezoresistive pressure sensors, the new one reported in this paper has an n-type shield layer that covers p-type piezoresistors. This shield layer aims to minimize the impact of electrical field and reduce the temperature sensitivity of piezoresistors. The proposed sensors have been successfully fabricated by bulk-micromachining techniques. A sensitivity of 0.022 mV/V/kPa and a maximum non-linearity of 0.085% FS are obtained in a pressure range of 1 MPa. After numerical simulation, the role of the shield layer has been experimentally investigated. It is demonstrated that the shield layer is able to reduce the drift caused by electrical field and ambient temperature variation. PMID:27529254
Review: Semiconductor Piezoresistance for Microsystems.
Barlian, A Alvin; Park, Woo-Tae; Mallon, Joseph R; Rastegar, Ali J; Pruitt, Beth L
2009-01-01
Piezoresistive sensors are among the earliest micromachined silicon devices. The need for smaller, less expensive, higher performance sensors helped drive early micromachining technology, a precursor to microsystems or microelectromechanical systems (MEMS). The effect of stress on doped silicon and germanium has been known since the work of Smith at Bell Laboratories in 1954. Since then, researchers have extensively reported on microscale, piezoresistive strain gauges, pressure sensors, accelerometers, and cantilever force/displacement sensors, including many commercially successful devices. In this paper, we review the history of piezoresistance, its physics and related fabrication techniques. We also discuss electrical noise in piezoresistors, device examples and design considerations, and alternative materials. This paper provides a comprehensive overview of integrated piezoresistor technology with an introduction to the physics of piezoresistivity, process and material selection and design guidance useful to researchers and device engineers.
CMOS micromachined capacitive cantilevers for mass sensing
NASA Astrophysics Data System (ADS)
Li, Ying-Chung; Ho, Meng-Han; Hung, Shi-Jie; Chen, Meng-Huei; S-C Lu, Michael
2006-12-01
In this paper, we present the design, fabrication and characterization of the CMOS micromachined cantilevers for mass sensing in the femtogram range. The cantilevers consisting of multiple metal and dielectric layers are fabricated after completion of a conventional CMOS process by dry etching steps. The cantilevers are electrostatically actuated to resonance by in-plane electrodes. The mechanical resonant frequency is detected capacitively with on-chip circuitry, where the modulation technique is applied to eliminate capacitive feedthrough from the driving port and to lessen the effect of flicker noise. The highest resonant frequency of the cantilevers is measured at 396.46 kHz with a quality factor of 2600 at 10 mTorr. The resonant frequency shift after deposition of a 0.1 µm SiO2 layer is 140 Hz, averaging 353 fg Hz-1.
Shear Stress Sensing using Elastomer Micropillar Arrays
NASA Technical Reports Server (NTRS)
Wohl, Christopher J.; Palmieri, Frank L.; Lin, Yi; Jackson, Allen M.; Cissoto, Alexxandra; Sheplak, Mark; Connell, John W.
2013-01-01
The measurement of shear stress developed as a fluid moves around a solid body is difficult to measure. Stresses at the fluid-solid interface are very small and the nature of the fluid flow is easily disturbed by introducing sensor components to the interface. To address these challenges, an array of direct and indirect techniques have been investigated with various advantages and challenges. Hot wire sensors and other indirect sensors all protrude significantly into the fluid flow. Microelectromechanical systems (MEMS) devices, although facilitating very accurate measurements, are not durable, are prone to contamination, and are difficult to implement into existing model geometries. One promising approach is the use of engineered surfaces that interact with fluid flow in a detectable manner. To this end, standard lithographic techniques have been utilized to generate elastomeric micropillar arrays of various lengths and diameters. Micropillars of controlled length and width were generated in polydimethylsiloxane (PDMS) elastomer using a soft-lithography technique. The 3D mold for micropillar replication was fabricated using laser ablative micromachining and contact lithography. Micropillar dimensions and mechanical properties were characterized and compared to shear sensing requirements. The results of this characterization as well as shear stress detection techniques will be discussed.
Development of amorphous SiC for MEMS-based microbridges
NASA Astrophysics Data System (ADS)
Summers, James B.; Scardelletti, Maximilian; Parro, Rocco; Zorman, Christian A.
2007-02-01
This paper reports our effort to develop amorphous hydrogenated silicon carbide (a-SiC:H) films specifically designed for MEMS-based microbridges using methane and silane as the precursor gases. In our work, the a-SiC:H films were deposited in a simple, commercial PECVD system at a fixed temperature of 300°C. Films with thicknesses from 100 nm to 1000 nm, a typical range for many MEMS applications, were deposited. Deposition parameters such as deposition pressure and methane-to-silane ratio were varied in order to obtain films with suitable residual stresses. Average residual stress in the as-deposited films selected for device fabrication was found by wafer curvature measurements to be -658 +/- 22 MPa, which could be converted to 177 +/- 40 MPa after thermal annealing at 450°C, making them suitable for micromachined bridges, membranes and other anchored structures. Bulk micromachined membranes were constructed to determine the Young's modulus of the annealed films, which was found to be 205 +/- 6 GPa. Chemical inertness was tested in aggressive solutions such as KOH and HF. Prototype microbridge actuators were fabricated using a simple surface micromachining process to assess the potential of the a-SiC:H films as structural layers for MEMS applications.
Influence of micromachined targets on laser accelerated proton beam profiles
NASA Astrophysics Data System (ADS)
Dalui, Malay; Permogorov, Alexander; Pahl, Hannes; Persson, Anders; Wahlström, Claes-Göran
2018-03-01
High intensity laser-driven proton acceleration from micromachined targets is studied experimentally in the target-normal-sheath-acceleration regime. Conical pits are created on the front surface of flat aluminium foils of initial thickness 12.5 and 3 μm using series of low energy pulses (0.5-2.5 μJ). Proton acceleration from such micromachined targets is compared with flat foils of equivalent thickness at a laser intensity of 7 × 1019 W cm-2. The maximum proton energy obtained from targets machined from 12.5 μm thick foils is found to be slightly lower than that of flat foils of equivalent remaining thickness, and the angular divergence of the proton beam is observed to increase as the depth of the pit approaches the foil thickness. Targets machined from 3 μm thick foils, on the other hand, show evidence of increasing the maximum proton energy when the depths of the structures are small. Furthermore, shallow pits on 3 μm thick foils are found to be efficient in reducing the proton beam divergence by a factor of up to three compared to that obtained from flat foils, while maintaining the maximum proton energy.
Feng, Guo-Hua; Liu, Kim-Min
2014-05-12
This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation.
Feng, Guo-Hua; Liu, Kim-Min
2014-01-01
This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation. PMID:24824370
Wettability modification of porous PET by atmospheric femtosecond PLD
NASA Astrophysics Data System (ADS)
Assaf, Youssef; Forstmann, Guillaume; Kietzig, Anne-Marie
2018-04-01
In this study, porous structures were created on poly(ethylene terephthalate) (PET) by femtosecond (fs) laser micromachining. While such structures offer a texture that is desirable for several applications, their wettability does not always match the application in question. The aim of this investigation is to tune the wettability of such surfaces by incorporating a controlled amount of nanoparticles into the structure. The machined PET samples were thus used as substrates for fs pulsed laser deposition (PLD) of titanium under ambient conditions. The nanoparticles were deposited as nanochain clusters due to the formation of an oxide layer between individual nanoparticles. The stability of nanoparticle incorporation was tested by placing the samples in an ultrasonic ethanol bath. Results indicated that nanoparticles were still successfully incorporated into the microstructure after sonication. Nanoparticle surface coverage was observed to be controllable through the operating fluence. The dynamic contact angles of the resulting composite surface were observed to decrease with increasing titanium incorporation. Therefore, this work highlights atmospheric fs PLD as a method for wettability modification of high surface area microstructures without undermining their topology. In addition, this technique uses almost the same equipment as the machining process by which the microstructures are initially created, further highlighting its practicality.
Micro Dot Patterning on the Light Guide Panel Using Powder Blasting
Jang, Ho Su; Cho, Myeong Woo; Park, Dong Sam
2008-01-01
This study is to develop a micromachining technology for a light guide panel(LGP) mold, whereby micro dot patterns are formed on a LGP surface by a single injection process instead of existing screen printing processes. The micro powder blasting technique is applied to form micro dot patterns on the LGP mold surface. The optimal conditions for masking, laminating, exposure, and developing processes to form the micro dot patterns are first experimentally investigated. A LGP mold with masked micro patterns is then machined using the micro powder blasting method and the machinability of the micro dot patterns is verified. A prototype LGP is test- injected using the developed LGP mold and a shape analysis of the patterns and performance testing of the injected LGP are carried out. As an additional approach, matte finishing, a special surface treatment method, is applied to the mold surface to improve the light diffusion characteristics, uniformity and brightness of the LGP. The results of this study show that the applied powder blasting method can be successfully used to manufacture LGPs with micro patterns by just single injection using the developed mold and thereby replace existing screen printing methods. PMID:27879740
Method for forming precision clockplate with pivot pins
Wild, Ronald L [Albuquerque, NM
2010-06-01
Methods are disclosed for producing a precision clockplate with rotational bearing surfaces (e.g. pivot pins). The methods comprise providing an electrically conductive blank, conventionally machining oversize features comprising bearing surfaces into the blank, optionally machining of a relief on non-bearing surfaces, providing wire accesses adjacent to bearing surfaces, threading the wire of an electrical discharge machine through the accesses and finishing the bearing surfaces by wire electrical discharge machining. The methods have been shown to produce bearing surfaces of comparable dimension and tolerances as those produced by micro-machining methods such as LIGA, at reduced cost and complexity.
Formation of porous networks on polymeric surfaces by femtosecond laser micromachining
NASA Astrophysics Data System (ADS)
Assaf, Youssef; Kietzig, Anne-Marie
2017-02-01
In this study, porous network structures were successfully created on various polymer surfaces by femtosecond laser micromachining. Six different polymers (poly(tetrafluoroethylene) (PTFE), poly(methyl methacrylate) (PMMA), high density poly(ethylene) (HDPE), poly(lactic acid) (PLA), poly(carbonate) (PC), and poly(ethylene terephthalate) (PET)) were machined at different fluences and pulse numbers, and the resulting structures were identified and compared by lacunarity analysis. At low fluence and pulse numbers, porous networks were confirmed to form on all materials except PLA. Furthermore, all networks except for PMMA were shown to bundle up at high fluence and pulse numbers. In the case of PC, a complete breakdown of the structure at such conditions was observed. Operation slightly above threshold fluence and at low pulse numbers is therefore recommended for porous network formation. Finally, the thickness over which these structures formed was measured and compared to two intrinsic material dependent parameters: the single pulse threshold fluence and the incubation coefficient. Results indicate that a lower threshold fluence at operating conditions favors material removal over structure formation and is hence detrimental to porous network formation. Favorable machining conditions and material-dependent parameters for the formation of porous networks on polymer surfaces have thus been identified.
A mechanical analysis of woodpecker drumming and its application to shock-absorbing systems.
Yoon, Sang-Hee; Park, Sungmin
2011-03-01
A woodpecker is known to drum the hard woody surface of a tree at a rate of 18 to 22 times per second with a deceleration of 1200 g, yet with no sign of blackout or brain damage. As a model in nature, a woodpecker is studied to find clues to develop a shock-absorbing system for micromachined devices. Its advanced shock-absorbing mechanism, which cannot be explained merely by allometric scaling, is analyzed in terms of endoskeletal structures. In this analysis, the head structures (beak, hyoid, spongy bone, and skull bone with cerebrospinal fluid) of the golden-fronted woodpecker, Melanerpes aurifrons, are explored with x-ray computed tomography images, and their shock-absorbing mechanism is analyzed with a mechanical vibration model and an empirical method. Based on these analyses, a new shock-absorbing system is designed to protect commercial micromachined devices from unwanted high-g and high-frequency mechanical excitations. The new shock-absorbing system consists of close-packed microglasses within two metal enclosures and a viscoelastic layer fastened by steel bolts, which are biologically inspired from a spongy bone contained within a skull bone encompassed with the hyoid of a woodpecker. In the experimental characterizations using a 60 mm smoothbore air-gun, this bio-inspired shock-absorbing system shows a failure rate of 0.7% for the commercial micromachined devices at 60 000 g, whereas a conventional hard-resin method yields a failure rate of 26.4%, thus verifying remarkable improvement in the g-force tolerance of the commercial micromachined devices.
Post-CMOS Micromachining of Surface and Bulk Structures
2002-05-06
Structures iii Acknowledgements I would like to thank my advisors, Professor Gary K. Fedder and Professor Dave W. Greve, for their continuing support...Donnelly, Plasma Chem. Plasma Process, vol. 1, pp. 37, 1981. [54] J. L. Mauer, J. S. Logan, L. B. Zielinski , and G. S. Schwartz, J. Vac. Sci. Technol
A flexible ultrasound transducer array with micro-machined bulk PZT.
Wang, Zhe; Xue, Qing-Tang; Chen, Yuan-Quan; Shu, Yi; Tian, He; Yang, Yi; Xie, Dan; Luo, Jian-Wen; Ren, Tian-Ling
2015-01-23
This paper proposes a novel flexible piezoelectric micro-machined ultrasound transducer, which is based on PZT and a polyimide substrate. The transducer is made on the polyimide substrate and packaged with medical polydimethylsiloxane. Instead of etching the PZT ceramic, this paper proposes a method of putting diced PZT blocks into holes on the polyimide which are pre-etched. The device works in d31 mode and the electromechanical coupling factor is 22.25%. Its flexibility, good conformal contacting with skin surfaces and proper resonant frequency make the device suitable for heart imaging. The flexible packaging ultrasound transducer also has a good waterproof performance after hundreds of ultrasonic electric tests in water. It is a promising ultrasound transducer and will be an effective supplementary ultrasound imaging method in the practical applications.
The Microstructural Evolution of Fatigue Cracks in FCC Metals
NASA Astrophysics Data System (ADS)
Gross, David William
The microstructural evolution during fatigue crack propagation was investigated in a variety of planar and wavy slip FCC metals. The planar materials included Haynes 230, Nitronic 40, and 316 stainless steel, and the wavy materials included pure nickel and pure copper. Three different sets of experiments were performed to fully characterize the microstructural evolution. The first, performed on Haynes 230, mapped the strain field ahead a crack tip using digital image correlation and electron backscatter diffraction techniques. Focused ion beam (FIB) lift-out techniques were then utilized to extract transmission electron microscopy (TEM) samples at specific distances from the crack tip. TEM investigations compared the measured strain to the microstructure. Overall, the strain measured via DIC and EBSD was only weakly correlated to the density of planar slip bands in the microstructure. The second set of experiments concerned the dislocation structure around crack tips. This set of experiments was performed on all the materials. The microstructure at arrested fatigue cracks on the free surface was compared to the microstructure found beneath striations on the fracture surfaces by utilizing FIB micromachining to create site-specific TEM samples. The evolved microstructure depended on the slip type. Strong agreement was found between the crack tip microstructure at the free surface and the fracture surface. In the planar materials, the microstructure in the plastic zone consisted of bands of dislocations or deformation twins, before transitioning to a refined sub-grain microstructure near the crack flank. The sub-grain structure extended 300-500 nm away from the crack flank in all the planar slip materials studied. In contrast, the bulk structure in the wavy slip material consisted of dislocation cells and did not transition to a different microstructure as the crack tip was approached. The strain in wavy slip was highest near the crack tip, as the misorientations between the dislocation cells increased and the cell size decreased as the crack flank was approached. The final set of experiments involved reloading the arrested crack tips in monotonic tension. This was performed on both the Haynes 230 and 316 stainless steel. This technique exposed the fracture surface and location of the arrested crack tip away from the free surface, allowing for a sample to be extracted via FIB micromachining and TEM evaluation of the microstructure. This permitted the crack tip microstructure to be investigated without exposing the microstructure to crack closure or free surface effects. These experiments confirmed what was inferred from the earlier experiments, namely that the banded structure was a product of the crack tip plastic zone and the refined structure was a product of the strain associated with crack advance. Overall the microstructural complexity presented in this work was much higher than would be predicted by current models of fatigue crack propagation. It is recommended that future models attempt to simulate interactions between the dislocations emitted during fatigue crack growth and the pre-existing microstructure to more accurately simulate the processes occurring at the crack tip during crack growth.
High-power visible laser effect on a Boston Micromachines' MEMS deformable mirror
NASA Astrophysics Data System (ADS)
Norton, Andrew; Gavel, Donald; Dillon, Daren; Cornelissen, Steven
2010-07-01
Continuous-facesheet and segmented Boston Micromachines Corporations' (BMC) Micro-Electrical Mechanical Systems (MEMS) Deformable Mirrors (DM) have been tested for their response to high-power visible-wavelength laser light. The deformable mirrors, coated with either protected silver or bare aluminum, were subjected to a maximum of 2 Watt laser-light at a wavelength of 532 nanometers. The laser light was incident on a ~ 3.5×3.5 cm area for time periods from minutes to 7 continuous hours. Spot heating from the laser-light is measured to induce a local bulge in the surface of each DM. For the aluminum-coated continuous facesheet DM, the induced spot heating changes the surface figure by 16 nm rms. The silver-coated continuous-facesheet and segmented (spatial light modulator) DMs experience a 6 and 8 nm surface rms change in surface quality with the laser at 2 Watts. For spatial frequencies less than the actuator spacing (300 mm), the laser induced surface bulge is shown to be removable, as the DMs continued to be fully functional during and after their exposure. Over the full 10 mm aperture one could expect the same results with a 15 Watt laser guide star (LGS). These results are very promising for use of the MEMS DM to pre-correct the outgoing laser light in the Laboratory for Adaptive Optics' (LAO) laser uplink application.
Design of electrostatically levitated micromachined rotational gyroscope based on UV-LIGA technology
NASA Astrophysics Data System (ADS)
Cui, Feng; Chen, Wenyuan; Su, Yufeng; Zhang, Weiping; Zhao, Xiaolin
2004-12-01
The prevailing micromachined vibratory gyroscope typically has a proof mass connected to the substrate by a mechanical suspension system, which makes it face a tough challenge to achieve tactical or inertial grade performance levels. With a levitated rotor as the proof mass, a micromachined rotational gyroscope will potentially have higher performance than vibratory gyroscope. Besides working as a moment rebalance dual-axis gyroscope, the micromachined rotational gyroscope based on a levitated rotor can simultaneously work as a force balance tri-axis accelerometer. Micromachined rotational gyroscope based on an electrostatically levitated silicon micromachined rotor has been notably developed. In this paper, factors in designing a rotational gyro/accelerometer based on an electrostatically levitated disc-like rotor, including gyroscopic action of micro rotor, methods of stable levitation, micro displacement detection and control, rotation drive and speed control, vacuum packaging and microfabrication, are comprehensively considered. Hence a design of rotational gyro/accelerometer with an electroforming nickel rotor employing low cost UV-LIGA technology is presented. In this design, a wheel-like flat rotor is proposed and its basic dimensions, diameter and thickness, are estimated according to the required loading capability. Finally, its micromachining methods based on UV-LIGA technology and assembly technology are discussed.
Silicon Alignment Pins: An Easy Way to Realize a Wafer-to-Wafer Alignment
NASA Technical Reports Server (NTRS)
Jung-Kubiak, Cecile; Reck, Theodore J.; Lin, Robert H.; Peralta, Alejandro; Gill, John J.; Lee, Choonsup; Siles, Jose; Toda, Risaku; Chattopadhyay, Goutam; Cooper, Ken B.;
2013-01-01
Submillimeter heterodyne instruments play a critical role in addressing fundamental questions regarding the evolution of galaxies as well as being a crucial tool in planetary science. To make these instruments compatible with small platforms, especially for the study of the outer planets, or to enable the development of multi-pixel arrays, it is essential to reduce the mass, power, and volume of the existing single-pixel heterodyne receivers. Silicon micromachining technology is naturally suited for making these submillimeter and terahertz components, where precision and accuracy are essential. Waveguide and channel cavities are etched in a silicon bulk material using deep reactive ion etching (DRIE) techniques. Power amplifiers, multiplier and mixer chips are then integrated and the silicon pieces are stacked together to form a supercompact receiver front end. By using silicon micromachined packages for these components, instrument mass can be reduced and higher levels of integration can be achieved. A method is needed to assemble accurately these silicon pieces together, and a technique was developed here using etched pockets and silicon pins to align two wafers together.
Ridge waveguide laser in Nd:LiNbO3 by Zn-diffusion and femtosecond-laser structuring
NASA Astrophysics Data System (ADS)
Martínez de Mendívil, Jon; del Hoyo, Jesús; Solís, Javier; Lifante, Ginés
2016-12-01
Ridge waveguide lasers have been fabricated on Nd3+ doped LiNbO3 crystals. The fs-laser writing technique was used to define ridge structures on a gradient-index planar waveguide fabricated by Zn-diffusion. This planar waveguide was formed in a z-cut LiNbO3 substrate homogeneously doped with a 0.23% of Nd3+ ions. To obtain lateral light confinement, the surface was then micromachined using a multiplexed femtosecond laser writing beam, forming the ridge structures. By butting two mirrors at the channel waveguide end-facets, forming a waveguide laser cavity, TM-polarized laser action at 1085 nm was achieved by end-fire TM-pumping at 815 nm. The waveguide laser shows a threshold of 31 mW, with a 7% of slope efficiency.
Fabrication of 3D surface structures using grayscale lithography
NASA Astrophysics Data System (ADS)
Stilson, Christopher; Pal, Rajan; Coutu, Ronald A.
2014-03-01
The ability to design and develop 3D microstructures is important for microelectromechanical systems (MEMS) fabrication. Previous techniques used to create 3D devices included tedious steps in direct writing and aligning patterns onto a substrate followed by multiple photolithography steps using expensive, customized equipment. Additionally, these techniques restricted batch processing and placed limits on achievable shapes. Gray-scale lithography enables the fabrication of a variety of shapes using a single photolithography step followed by reactive ion etching (RIE). Micromachining 3D silicon structures for MEMS can be accomplished using gray-scale lithography along with dry anisotropic etching. In this study, we investigated: using MATLAB for mask designs; feasibility of using 1 μm Heidelberg mask maker to direct write patterns onto photoresist; using RIE processing to etch patterns into a silicon substrate; and the ability to tailor etch selectivity for precise fabrication. To determine etch rates and to obtain desired etch selectivity, parameters such as gas mixture, gas flow, and electrode power were studied. This process successfully demonstrates the ability to use gray-scale lithography and RIE for use in the study of micro-contacts. These results were used to produce a known engineered non-planer surface for testing micro-contacts. Surface structures are between 5 μm and 20 μm wide with varying depths and slopes based on mask design and etch rate selectivity. The engineered surfaces will provide more insight into contact geometries and failure modes of fixed-fixed micro-contacts.
Sniegowski, Jeffrey J.; Rodgers, Murray S.; McWhorter, Paul J.; Aeschliman, Daniel P.; Miller, William M.
2002-01-01
A microturbine fabricated by a three-level semiconductor batch-fabrication process based on polysilicon surface-micromachining. The microturbine comprises microelectromechanical elements formed from three polysilicon multi-layer surfaces applied to a silicon substrate. Interleaving sacrificial oxide layers provides electrical and physical isolation, and selective etching of both the sacrificial layers and the polysilicon layers allows formation of individual mechanical and electrical elements as well as the required space for necessary movement of rotating turbine parts and linear elements.
Review: Semiconductor Piezoresistance for Microsystems
Barlian, A. Alvin; Park, Woo-Tae; Mallon, Joseph R.; Rastegar, Ali J.; Pruitt, Beth L.
2010-01-01
Piezoresistive sensors are among the earliest micromachined silicon devices. The need for smaller, less expensive, higher performance sensors helped drive early micromachining technology, a precursor to microsystems or microelectromechanical systems (MEMS). The effect of stress on doped silicon and germanium has been known since the work of Smith at Bell Laboratories in 1954. Since then, researchers have extensively reported on microscale, piezoresistive strain gauges, pressure sensors, accelerometers, and cantilever force/displacement sensors, including many commercially successful devices. In this paper, we review the history of piezoresistance, its physics and related fabrication techniques. We also discuss electrical noise in piezoresistors, device examples and design considerations, and alternative materials. This paper provides a comprehensive overview of integrated piezoresistor technology with an introduction to the physics of piezoresistivity, process and material selection and design guidance useful to researchers and device engineers. PMID:20198118
Techniques For Mass Production Of Tunneling Electrodes
NASA Technical Reports Server (NTRS)
Kenny, Thomas W.; Podosek, Judith A.; Reynolds, Joseph K.; Rockstad, Howard K.; Vote, Erika C.; Kaiser, William J.
1993-01-01
Techniques for mass production of tunneling electrodes developed from silicon-micromachining, lithographic patterning, and related microfabrication processes. Tunneling electrodes named because electrons travel between them by quantum-mechanical tunneling; tunneling electrodes integral parts of tunneling transducer/sensors, which act in conjunction with feedback circuitry to stabilize tunneling currents by maintaining electrode separations of order of 10 Angstrom. Essential parts of scanning tunneling microscopes and related instruments, and used as force and position transducers in novel microscopic accelerometers and infrared detectors.
Generation of programmable temporal pulse shape and applications in micromachining
NASA Astrophysics Data System (ADS)
Peng, X.; Jordens, B.; Hooper, A.; Baird, B. W.; Ren, W.; Xu, L.; Sun, L.
2009-02-01
In this paper we presented a pulse shaping technique on regular solid-state lasers and the application in semiconductor micromachining. With a conventional Q-switched laser, all of the parameters can be adjusted over only limited ranges, especially the pulse width and pulse shape. However, some laser link processes using traditional laser pulses with pulse widths of a few nanoseconds to a few tens of nanoseconds tend to over-crater in thicker overlying passivation layers and thereby cause IC reliability problems. Use of a laser pulse with a special shape and a fast leading edge, such as tailored pulse, is one technique for controlling link processing. The pulse shaping technique is based on light-loop controlled optical modulation to shape conventional Q-switched solid-state lasers. One advantage of the pulse shaping technique is to provide a tailored pulse shape that can be programmed to have more than one amplitude value. Moreover, it has the capability of providing programmable tailored pulse shapes with discrete amplitude and time duration components. In addition, it provides fast rising and fall time of each pulse at fairly high repetition rate at 355nm with good beam quality. The regular-to-shaped efficiency is up to 50%. We conclude with a discussion of current results for laser processing of semiconductor memory link structures using programmable temporal pulse shapes. The processing experiments showed promising results with shaped pulse.
Fabrication of a Silicon Backshort Assembly for Waveguide-Coupled Superconducting Detectors
NASA Technical Reports Server (NTRS)
Crowe, Erik J.; Bennett, Charles L.; Chuss, David T.; Denis, Kevin L.; Eimer, Joseph; Lourie, Nathan; Marriage, Tobias; Moseley, Samuel H.; Rostem, Karwan; Stevenson, Thomas R.;
2012-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microwave background to search for evidence for gravitational waves from a posited epoch of inflation early in the Universe s history. This measurement will require integration of superconducting transition-edge sensors with microwave waveguide inputs with excellent control of systematic errors, such as unwanted coupling to stray signals at frequencies outside of a precisely defined microwave band. To address these needs we present work on the fabrication of micromachined silicon, producing conductive quarter-wave backshort assemblies for the CLASS 40 GHz focal plane. Each 40 GHz backshort assembly consists of three degeneratively doped silicon wafers. Two spacer wafers are micromachined with through-wafer vias to provide a 2.04 mm long square waveguide delay section. The third wafer terminates the waveguide delay in a short. The three wafers are bonded at the wafer level by Au-Au thermal compression bonding then aligned and flip chip bonded to the CLASS detector at the chip level. The micromachining techniques used have been optimized to create high aspect ratio waveguides, silicon pillars, and relief trenches with the goal of providing improved out of band signal rejection. We will discuss the fabrication of integrated CLASS superconducting detector chips with the quarter-wave backshort assemblies.
Evaluation of microfabricated deformable mirror systems
NASA Astrophysics Data System (ADS)
Cowan, William D.; Lee, Max K.; Bright, Victor M.; Welsh, Byron M.
1998-09-01
This paper presents recent result for aberration correction and beam steering experiments using polysilicon surface micromachined piston micromirror arrays. Microfabricated deformable mirrors offer a substantial cost reduction for adaptive optic systems. In addition to the reduced mirror cost, microfabricated mirrors typically require low control voltages, thus eliminating high voltage amplifiers. The greatly reduced cost per channel of adaptive optic systems employing microfabricated deformable mirrors promise high order aberration correction at low cost. Arrays of piston micromirrors with 128 active elements were tested. Mirror elements are on a 203 micrometers 12 by 12 square grid. The overall array size is 2.4 mm square. The arrays were fabricated in the commercially available DARPA supported MUMPs surface micromachining foundry process. The cost per mirror array in this prototyping process is less than 200 dollars. Experimental results are presented for a hybrid correcting element comprised of a lenslet array and piston micromirror array, and for a piston micromirror array only. Also presented is a novel digital deflection micromirror which requires no digital to analog converters, further reducing the cost of adaptive optics system.
Surface Micromachined Silicon Carbide Accelerometers for Gas Turbine Applications
NASA Technical Reports Server (NTRS)
DeAnna, Russell G.
1998-01-01
A finite-element analysis of possible silicon carbide (SIC) folded-beam, lateral-resonating accelerometers is presented. Results include stiffness coefficients, acceleration sensitivities, resonant frequency versus temperature, and proof-mass displacements due to centripetal acceleration of a blade-mounted sensor. The surface micromachined devices, which are similar to the Analog Devices Inc., (Norwood, MA) air-bag crash detector, are etched from 2-pm thick, 3C-SiC films grown at 1600 K using atmospheric pressure chemical vapor deposition (APCVD). The substrate is a 500 gm-thick, (100) silicon wafer. Polysilicon or silicon dioxide is used as a sacrificial layer. The finite element analysis includes temperature-dependent properties, shape change due to volume expansion, and thermal stress caused by differential thermal expansion of the materials. The finite-element results are compared to experimental results for a SiC device of similar, but not identical, geometry. Along with changes in mechanical design, blade-mounted sensors would require on-chip circuitry to cancel displacements due to centripetal acceleration and improve sensitivity and bandwidth. These findings may result in better accelerometer designs for this application.
Passive front-ends for wideband millimeter wave electronic warfare
NASA Astrophysics Data System (ADS)
Jastram, Nathan Joseph
This thesis presents the analysis, design and measurements of novel passive front ends of interest to millimeter wave electronic warfare systems. However, emerging threats in the millimeter waves (18 GHz and above) has led to a push for new systems capable of addressing these threats. At these frequencies, traditional techniques of design and fabrication are challenging due to small size, limited bandwidth and losses. The use of surface micromachining technology for wideband direction finding with multiple element antenna arrays for electronic support is demonstrated. A wideband tapered slot antenna is first designed and measured as an array element for the subsequent arrays. Both 18--36 GHz and 75--110 GHz amplitude only and amplitude/phase two element direction finding front ends are designed and measured. The design of arrays using Butler matrix and Rotman lens beamformers for greater than two element direction finding over W band and beyond using is also presented. The design of a dual polarized high power capable front end for electronic attack over an 18--45 GHz band is presented. To combine two polarizations into the same radiating aperture, an orthomode transducer (OMT) based upon a new double ridge waveguide cross section is developed. To provide greater flexibility in needed performance characteristics, several different turnstile junction matching sections are tested. A modular horn section is proposed to address flexible and ever changing operational requirements, and is designed for performance criteria such as constant gain, beamwidth, etc. A multi-section branch guide coupler and low loss Rotman lens based upon the proposed cross section are also developed. Prototyping methods for the herein designed millimeter wave electronic warfare front ends are investigated. Specifically, both printed circuit board (PCB) prototyping of micromachined systems and 3D printing of conventionally machined horns are presented. A 4--8 GHz two element array with integrated beamformer fabricated using the stacking of PCB boards is shown, and measured results compare favorably with the micromachined front ends. A 3D printed small aperture horn is compared with a conventionally machined horn, and measured results show similar performance with a ten-fold reduction in cost and weight.
NASA Technical Reports Server (NTRS)
2003-01-01
Topics covered include: Using Diffusion Bonding in Making Piezoelectric Actuators; Wireless Temperature-Monitoring System; Analog Binaural Circuits for Detecting and Locating Leaks; Mirrors Containing Biomimetic Shape-Control Actuators; Surface-Micromachined Planar Arrays of Thermopiles; Cascade Back-Propagation Learning in Neural Networks; Perovskite Superlattices as Tunable Microwave Devices; Rollable Thin-Shell Nanolaminate Mirrors; Flight Tests of a Ministick Controller in an F/A-18 Airplane; Piezoelectrically Actuated Shutter for High Vacuum; Bio-Inspired Engineering of Exploration Systems; Microscope Cells Containing Multiple Micromachined Wells; Electrophoretic Deposition for Fabricating Microbatteries; Integrated Arrays of Ion-Sensitive Electrodes; Model of Fluidized Bed Containing Reacting Solids and Gases; Membrane Mirrors With Bimorph Shape Actuators; Using Fractional Clock-Period Delays in Telemetry Arraying; Developing Generic Software for Spacecraft Avionics; Numerical Study of Pyrolysis of Biomass in Fluidized Beds; and Assessment of Models of Chemically Reacting Granular Flows.
Li, Chunyan; Wu, Pei-Ming; Hartings, Jed A; Wu, Zhizhen; Cheyuo, Cletus; Wang, Ping; LeDoux, David; Shutter, Lori A; Ramaswamy, Bharat Ram; Ahn, Chong H; Narayan, Raj K
2012-08-01
This work describes the development of a micromachined lab-on-a-tube device for simultaneous measurement of brain temperature and regional cerebral blood flow. The device consists of two micromachined gold resistance temperature detectors with a 4-wire configuration. One is used as a temperature sensor and the other as a flow sensor. The temperature sensor operates with AC excitation current of 500 μA and updates its outputs at a rate of 5 Hz. The flow sensor employs a periodic heating and cooling technique under constant-temperature mode and updates its outputs at a rate of 0.1 Hz. The temperature sensor is also used to compensate for temperature changes during the heating period of the flow sensor to improve the accuracy of flow measurements. To prevent thermal and electronic crosstalk between the sensors, the temperature sensor is located outside the "thermal influence" region of the flow sensor and the sensors are separated into two different layers with a thin-film Copper shield. We evaluated the sensors for accuracy, crosstalk and long-term drift in human blood-stained cerebrospinal fluid. These in vitro experiments showed that simultaneous temperature and flow measurements with a single lab-on-a-tube device are accurate and reliable over the course of 5 days. It has a resolution of 0.013 °C and 0.18 ml/100 g/min; and achieves an accuracy of 0.1 °C and 5 ml/100 g/min for temperature and flow sensors respectively. The prototype device and techniques developed here establish a foundation for a multi-sensor lab-on-a-tube, enabling versatile multimodality monitoring applications.
High-intensity fibre laser design for micro-machining applications
NASA Astrophysics Data System (ADS)
Ortiz-Neria, D. I.; Martinez-Piñón, F.; Hernandez-Escamilla, H.; Alvarez-Chavez, J. A.
2010-11-01
This work is focused on the design of a 250W high-intensity continuous-wave fibre optic laser with a 15μm spot size beam and a beam parameter product (BPP) of 1.8 for its use on Laser-assisted Cold Spray process (LCS) in the micro-machining areas. The metal-powder deposition process LCS, is a novel method based on Cold Spray technique (CS) assisted by laser technology. The LCS accelerates metal powders by the use of a high-pressure gas in order to achieve flash welding of particles over substrate. In LCS, the critical velocity of impact is lower with respect with CS while the powder particle is heated before the deposition by a laser beam. Furthermore, LCS does not heat the powder to achieve high temperatures as it happens in plasma processes. This property puts aside cooling problems which normally happen in sintered processes with high oxygen/nitrogen concentration levels. LCS will be used not only in deposition of thin layers. After careful design, proof of concept, experimental data, and prototype development, it should be feasible to perform micro-machining precise work with the use of the highintensity fibre laser presented in this work, and selective deposition of particles, in a similar way to the well-known Direct Metal Laser Sintering process (DMLS). The fibre laser consists on a large-mode area, Yb3+-doped, semi-diffraction limited, 25-m fibre laser cavity, operating in continuous wave regime. The fibre shows an arguably high slope-efficiency with no signs of roll-over. The measured M2 value is 1.8 and doping concentration of 15000ppm. It was made with a slight modification of the traditional MCVD technique. A full optical characterization will be presented.
Wafer Scale Integration of CMOS Chips for Biomedical Applications via Self-Aligned Masking.
Uddin, Ashfaque; Milaninia, Kaveh; Chen, Chin-Hsuan; Theogarajan, Luke
2011-12-01
This paper presents a novel technique for the integration of small CMOS chips into a large area substrate. A key component of the technique is the CMOS chip based self-aligned masking. This allows for the fabrication of sockets in wafers that are at most 5 µm larger than the chip on each side. The chip and the large area substrate are bonded onto a carrier such that the top surfaces of the two components are flush. The unique features of this technique enable the integration of macroscale components, such as leads and microfluidics. Furthermore, the integration process allows for MEMS micromachining after CMOS die-wafer integration. To demonstrate the capabilities of the proposed technology, a low-power integrated potentiostat chip for biosensing implemented in the AMI 0.5 µm CMOS technology is integrated in a silicon substrate. The horizontal gap and the vertical displacement between the chip and the large area substrate measured after the integration were 4 µm and 0.5 µm, respectively. A number of 104 interconnects are patterned with high-precision alignment. Electrical measurements have shown that the functionality of the chip is not affected by the integration process.
A micro-machined source transducer for a parametric array in air.
Lee, Haksue; Kang, Daesil; Moon, Wonkyu
2009-04-01
Parametric array applications in air, such as highly directional parametric loudspeaker systems, usually rely on large radiators to generate the high-intensity primary beams required for nonlinear interactions. However, a conventional transducer, as a primary wave projector, requires a great deal of electrical power because its electroacoustic efficiency is very low due to the large characteristic mechanical impedance in air. The feasibility of a micro-machined ultrasonic transducer as an efficient finite-amplitude wave projector was studied. A piezoelectric micro-machined ultrasonic transducer array consisting of lead zirconate titanate uni-morph elements was designed and fabricated for this purpose. Theoretical and experimental evaluations showed that a micro-machined ultrasonic transducer array can be used as an efficient source transducer for a parametric array in air. The beam patterns and propagation curves of the difference frequency wave and the primary wave generated by the micro-machined ultrasonic transducer array were measured. Although the theoretical results were based on ideal parametric array models, the theoretical data explained the experimental results reasonably well. These experiments demonstrated the potential of micro-machined primary wave projector.
Soft micromachines with programmable motility and morphology
Huang, Hen-Wei; Sakar, Mahmut Selman; Petruska, Andrew J.; Pané, Salvador; Nelson, Bradley J.
2016-01-01
Nature provides a wide range of inspiration for building mobile micromachines that can navigate through confined heterogenous environments and perform minimally invasive environmental and biomedical operations. For example, microstructures fabricated in the form of bacterial or eukaryotic flagella can act as artificial microswimmers. Due to limitations in their design and material properties, these simple micromachines lack multifunctionality, effective addressability and manoeuvrability in complex environments. Here we develop an origami-inspired rapid prototyping process for building self-folding, magnetically powered micromachines with complex body plans, reconfigurable shape and controllable motility. Selective reprogramming of the mechanical design and magnetic anisotropy of body parts dynamically modulates the swimming characteristics of the micromachines. We find that tail and body morphologies together determine swimming efficiency and, unlike for rigid swimmers, the choice of magnetic field can subtly change the motility of soft microswimmers. PMID:27447088
Soft micromachines with programmable motility and morphology.
Huang, Hen-Wei; Sakar, Mahmut Selman; Petruska, Andrew J; Pané, Salvador; Nelson, Bradley J
2016-07-22
Nature provides a wide range of inspiration for building mobile micromachines that can navigate through confined heterogenous environments and perform minimally invasive environmental and biomedical operations. For example, microstructures fabricated in the form of bacterial or eukaryotic flagella can act as artificial microswimmers. Due to limitations in their design and material properties, these simple micromachines lack multifunctionality, effective addressability and manoeuvrability in complex environments. Here we develop an origami-inspired rapid prototyping process for building self-folding, magnetically powered micromachines with complex body plans, reconfigurable shape and controllable motility. Selective reprogramming of the mechanical design and magnetic anisotropy of body parts dynamically modulates the swimming characteristics of the micromachines. We find that tail and body morphologies together determine swimming efficiency and, unlike for rigid swimmers, the choice of magnetic field can subtly change the motility of soft microswimmers.
Oh, Boram; Lam, Raymond H. W.; Fan, Rong; Cornell, Timothy T.; Shanley, Thomas P.; Kurabayashi, Katsuo; Fu, Jianping
2015-01-01
An accurate measurement of the immune status in patients with immune system disorders is critical in evaluating the stage of diseases and tailoring drug treatments. The functional cellular immunity test is a promising method to establish the diagnosis of immune dysfunctions. The conventional functional cellular immunity test involves measurements of the capacity of peripheral blood mononuclear cells to produce pro-inflammatory cytokines when stimulated ex vivo. However, this “bulk” assay measures the overall reactivity of a population of lymphocytes and monocytes, making it difficult to pinpoint the phenotype or real identity of the reactive immune cells involved. In this research, we develop a large surface micromachined polydimethylsiloxane (PDMS) microfiltration membrane (PMM) with high porosity, which is integrated in a microfluidic microfiltration platform. Using the PMM with functionalized microbeads conjugated with antibodies against specific cell surface proteins, we demonstrated rapid, efficient and high-throughput on-chip isolation, enrichment, and stimulation of subpopulations of immune cells from blood specimens. Furthermore, the PMM-integrated microfiltration platform, coupled with a no-wash homogeneous chemiluminescence assay (“AlphaLISA”), enables us to demonstrate rapid and sensitive on-chip immunophenotyping assays for subpopulations of immune cells isolated directly from minute quantities of blood samples. PMID:23335389
Evolution from MEMS-based Linear Drives to Bio-based Nano Drives
NASA Astrophysics Data System (ADS)
Fujita, Hiroyuki
The successful extension of semiconductor technology to fabricate mechanical parts of the sizes from 10 to 100 micrometers opened wide ranges of possibilities for micromechanical devices and systems. The fabrication technique is called micromachining. Micromachining processes are based on silicon integrated circuits (IC) technology and used to build three-dimensional structures and movable parts by the combination of lithography, etching, film deposition, and wafer bonding. Microactuators are the key devices allowing MEMS to perform physical functions. Some of them are driven by electric, magnetic, and fluidic forces. Some others utilize actuator materials including piezoelectric (PZT, ZnO, quartz) and magnetostrictive materials (TbFe), shape memory alloy (TiNi) and bio molecular motors. This paper deals with the development of MEMS based microactuators, especially linear drives, following my own research experience. They include an electrostatic actuator, a superconductive levitated actuator, arrayed actuators, and a bio-motor-driven actuator.
Compact Micromachined Bandpass Filters for Infrared Planetary Spectroscopy
NASA Technical Reports Server (NTRS)
Brown, Ari D.; Aslam, Shahid; Chervenak, James A.; Huang, Wei-Chung; Merrell, Willie; Quijada, Manuel
2011-01-01
The thermal instrument strawman payload of the Jupiter Europa Orbiter on the Europa Jupiter Science Mission will map out thermal anomalies, the structure, and atmospheric conditions of Europa and Jupiter within the 7-100 micron spectral range. One key requirement for the payload is that the mass cannot exceed 3.7 kg. Consequently, a new generation of light-weight miniaturized spectrometers needs to be developed. On the path toward developing these spectrometers is development of ancillary miniaturized spectroscopic components. In this paper, we present a strategy for making radiation hard and low mass FIR band pass metal mesh filters. Our strategy involves using MEMS-based fabrication techniques, which will permit the quasi-optical filter structures to be made with micron-scale precision. This will enable us to achieve tight control over both the pass band of the filter and the micromachined silicon support structure architecture, which will facilitate integration of the filters for a variety of applications.
Improved Electromechanical Infrared Sensor
NASA Technical Reports Server (NTRS)
Kenny, Thomas W.; Kaiser, William J.
1994-01-01
Proposed electromechanical infrared detector improved version of device described in "Micromachined Electron-Tunneling Infrared Detectors" (NPO-18413). Fabrication easier, and undesired sensitivity to acceleration reduced. In devices, diaphragms and other components made of micromachined silicon, and displacements of diaphragms measured by electron tunneling displacement transducer {see "Micromachined Tunneling Accelerometer" (NPO-18513)}. Improved version offers enhanced frequency response and less spurious response to acceleration.
Wideband Feedback Circuit For Tunneling Sensor
NASA Technical Reports Server (NTRS)
Kaiser, William J.; Kenny, Thomas W.; Rockstad, Howard K.; Reynolds, Joseph K.
1994-01-01
Improved feedback circuit designed for use in controlling tunneling displacement transducer. Features include stability and nearly flat frequency response up to 50 kHz. Transducer could be that in scanning tunneling microscope, or any of micromachined electromechanical transducers described in "Micromachined Electron-Tunneling Infrared Detectors" (NPO-18413), "Micromachined Tunneling Accelerometer" (NPO-18513), and "Improved Electromechanical Infrared Sensor" (NPO-18560).
Microscale out-of-plane anemometer
NASA Technical Reports Server (NTRS)
Liu, Chang (Inventor); Chen, Jack (Inventor)
2005-01-01
A microscale out-of-plane thermal sensor. A resistive heater is suspended over a substrate by supports raised with respect to the substrate to provide a clearance underneath the resistive heater for fluid flow. A preferred fabrication process for the thermal sensor uses surface micromachining and a three-dimensional assembly to raise the supports and lift the resistive heater over the substrate.
Etching radical controlled gas chopped deep reactive ion etching
Olynick, Deidre; Rangelow, Ivo; Chao, Weilun
2013-10-01
A method for silicon micromachining techniques based on high aspect ratio reactive ion etching with gas chopping has been developed capable of producing essentially scallop-free, smooth, sidewall surfaces. The method uses precisely controlled, alternated (or chopped) gas flow of the etching and deposition gas precursors to produce a controllable sidewall passivation capable of high anisotropy. The dynamic control of sidewall passivation is achieved by carefully controlling fluorine radical presence with moderator gasses, such as CH.sub.4 and controlling the passivation rate and stoichiometry using a CF.sub.2 source. In this manner, sidewall polymer deposition thicknesses are very well controlled, reducing sidewall ripples to very small levels. By combining inductively coupled plasmas with controlled fluorocarbon chemistry, good control of vertical structures with very low sidewall roughness may be produced. Results show silicon features with an aspect ratio of 20:1 for 10 nm features with applicability to nano-applications in the sub-50 nm regime. By comparison, previous traditional gas chopping techniques have produced rippled or scalloped sidewalls in a range of 50 to 100 nm roughness.
NASA Astrophysics Data System (ADS)
Smith, Ross A.; Fleischman, Aaron J.; Fissell, William H.; Zorman, Christian A.; Roy, Shuvo
2011-04-01
We report an automated system for measuring the hydraulic permeability of nanoporous membranes in a tangential-flow configuration. The system was designed and built specifically for micromachined silicon nanoporous membranes (SNM) with monodisperse slit-shaped pores. These novel membranes are under development for water filtration, artificial organ and drug delivery applications. The filtration cell permits non-destructive testing of the membrane over many remove-modify-replace testing cycles, allowing for direct experiments into the effects of surface modifications on such membranes. The experimental apparatus was validated using microfluidic tubing with circular cross sections that provided similar fluidic resistances to SNM. Further validation was performed with SNM chips for which the pore dimensions were known from scanning electron microscopy measurements. The system was then used to measure the hydraulic permeability of nanoporous membranes before and after surface modification. The system yields measurements with low variance and excellent agreement with predicted values, providing a platform for determining pore sizes in micro/nanofluidic systems with tight pore size distributions to a higher degree of precision than can be achieved with traditional techniques.
Soft-Matter Printed Circuit Board with UV Laser Micropatterning.
Lu, Tong; Markvicka, Eric J; Jin, Yichu; Majidi, Carmel
2017-07-05
When encapsulated in elastomer, micropatterned traces of Ga-based liquid metal (LM) can function as elastically deformable circuit wiring that provides mechanically robust electrical connectivity between solid-state elements (e.g., transistors, processors, and sensor nodes). However, LM-microelectronics integration is currently limited by challenges in rapid fabrication of LM circuits and the creation of vias between circuit terminals and the I/O pins of packaged electronics. In this study, we address both with a unique layup for soft-matter electronics in which traces of liquid-phase Ga-In eutectic (EGaIn) are patterned with UV laser micromachining (UVLM). The terminals of the elastomer-sealed LM circuit connect to the surface mounted chips through vertically aligned columns of EGaIn-coated Ag-Fe 2 O 3 microparticles that are embedded within an interfacial elastomer layer. The processing technique is compatible with conventional UVLM printed circuit board (PCB) prototyping and exploits the photophysical ablation of EGaIn on an elastomer substrate. Potential applications to wearable computing and biosensing are demonstrated with functional implementations in which soft-matter PCBs are populated with surface-mounted microelectronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, J., E-mail: radiant@ferrodevices.com; Chapman, S., E-mail: radiant@ferrodevices.com
Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude ofmore » the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided.« less
Microfabricated teeter-totter resonator
Adkins, Douglas Ray; Heller, Edwin J.; Shul, Randy J.
2004-11-23
A microfabricated teeter-totter resonator comprises a frame, a paddle pivotably anchored to the frame by pivot arms that define an axis of rotation, a current conductor line on a surface of the paddle, means for applying a static magnetic field substantially perpendicular to the rotational axis and in the plane of the paddle, and means for energizing the current conductor line with an alternating current. A Lorentz force is generated by the interaction of the magnetic field with the current flowing in the conductor line, causing the paddle to oscillate about the axis of rotation. The teeter-totter resonator can be fabricated with micromachining techniques with materials used in the integrated circuits manufacturing industry. The microfabricated teeter-totter resonator has many varied applications, both as an actuation device and as a sensor. When used as a chemical sensor, a chemically sensitive coating can be disposed on one or both surfaces of the paddle to enhance the absorption of chemical analytes from a fluid stream. The resulting mass change can be detected as a change in the resonant frequency or phase of the oscillatory motion of the paddle.
Fabrication of a novel quartz micromachined gyroscope
NASA Astrophysics Data System (ADS)
Xie, Liqiang; Xing, Jianchun; Wang, Haoxu; Wu, Xuezhong
2015-04-01
A novel quartz micromachined gyroscope is proposed in this paper. The novel gyroscope is realized by quartz anisotropic wet etching and 3-dimensional electrodes deposition. In the quartz wet etching process, the quality of Cr/Au mask films affecting the process are studied by experiment. An excellent mask film with 100 Å Cr and 2000 Å Au is achieved by optimization of experimental parameters. Crystal facets after etching seriously affect the following sidewall electrodes deposition process and the structure's mechanical behaviours. Removal of crystal facets is successfully implemented by increasing etching time based on etching rate ratios between facets and crystal planes. In the electrodes deposition process, an aperture mask evaporation method is employed to prepare electrodes on 3-dimensional surfaces of the gyroscope structure. The alignments among the aperture masks are realized by the ABM™ Mask Aligner System. Based on the processes described above, a z-axis quartz gyroscope is fabricated successfully.
NASA Astrophysics Data System (ADS)
Vescovo, P.; Joseph, E.; Bourbon, G.; Le Moal, P.; Minotti, P.; Hibert, C.; Pont, G.
2003-09-01
This paper focuses on recent advances in the field of MEMS-based actuators and distributed microelectromechanical systems (MEMS). IC-processed actuators (e.g. actuators that are machined using integrated circuit batch processes) are expected to open a wide range of industrial applications on the near term. The most promising investigations deal with high-aspect ratio electric field driven microactuators suitable for use in numerous technical fields such as aeronautics and space industry. Because the silicon micromachining technology have the potential to integrate both mechanical components and control circuits within a single process, MEMS-based active control of microscopic and macroscopic structures appears to be one of the most promising challenges for the next decade. As a first step towards new generations of MEMS-based smart structures, recent investigations dealing with silicon mechanisms involving MEMS-based actuators are briefly discussed in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aronson, Igor
2009-01-01
Thousands of tiny Bacillus subtillis bacteria turn a single gear, just 380 microns across. (A human hair is about 100 microns across.) The method could be used to create micro-machines. Argonne National Laboratory scientist Igor Aronson pioneered this technique. Read more at the New York Times: http://ow.ly/ODfI or at Argonne: http://ow.ly/ODfa Video courtesy Igor Aronson.
Feng, Guo-Hua; Liu, Wei-Fan
2013-10-09
This paper presents the microfabrication of an acoustic impedance gradient matching layer on a spherically-shaped piezoelectric ultrasonic transducer. The acoustic matching layer can be designed to achieve higher acoustic energy transmission and operating bandwidth. Also included in this paper are a theoretical analysis of the device design and a micromachining technique to produce the novel transducer. Based on a design of a lead titanium zirconium (PZT) micropillar array, the constructed gradient acoustic matching layer has much better acoustic transmission efficiency within a 20-50 MHz operation range compared to a matching layer with a conventional quarter-wavelength thickness Parylene deposition. To construct the transducer, periodic microcavities are built on a flexible copper sheet, and then the sheet forms a designed curvature with a ball shaping. After PZT slurry deposition, the constructed PZT micropillar array is released onto a curved thin PZT layer. Following Parylene conformal coating on the processed PZT micropillars, the PZT micropillars and the surrounding Parylene comprise a matching layer with gradient acoustic impedance. By using the proposed technique, the fabricated transducer achieves a center frequency of 26 MHz and a -6 dB bandwidth of approximately 65%.
Low-loss LIGA-micromachined conductor-backed coplanar waveguide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forman, Michael A.
2004-12-01
A mesoscale low-loss LIGA-micromachined conductor-backed coplanar waveguide is presented. The 517 {micro}m lines are the tallest uniplanar LIGA-fabricated microwave transmission lines to date, as well as the first to be constructed of copper rather than nickel. The conductor-backed micromachined CPW on quartz achieves a measured attenuation of 0.064 dB/cm at 15.5 GHz.
Micro-machined thermo-conductivity detector
Yu, Conrad
2003-01-01
A micro-machined thermal conductivity detector for a portable gas chromatograph. The detector is highly sensitive and has fast response time to enable detection of the small size gas samples in a portable gas chromatograph which are in the order of nanoliters. The high sensitivity and fast response time are achieved through micro-machined devices composed of a nickel wire, for example, on a silicon nitride window formed in a silicon member and about a millimeter square in size. In addition to operating as a thermal conductivity detector, the silicon nitride window with a micro-machined wire therein of the device can be utilized for a fast response heater for PCR applications.
Rough surface adhesion in the presence of capillary condensation
DelRio, Frank W.; Dunn, Martin L.; Phinney, Leslie M.; ...
2007-04-17
Capillary condensation of water can have a significant effect on rough surface adhesion. Here, to explore this phenomenon between micromachined surfaces, the authors perform microcantilever experiments as a function of surface roughness and relative humidity (RH). Below a threshold RH, the adhesion is mainly due to van der Waals forces across extensive noncontacting areas. Above the threshold RH, the adhesion jumps due to capillary condensation and increases towards the upper limit of Γ=144mJ/m 2. Lastly, a detailed model based on the measured surface topography qualitatively agrees with the experimental data only when the topographic correlations between the upper and lowermore » surfaces are considered.« less
Optical network of silicon micromachined sensors
NASA Astrophysics Data System (ADS)
Wilson, Mark L.; Burns, David W.; Zook, J. David
1996-03-01
The Honeywell Technology Center, in collaboration with the University of Wisconsin and the Mobil Corporation, and under funding from this ARPA sponsored program, are developing a new type of `hybrid' micromachined silicon/fiber optic sensor that utilizes the best attributes of each technology. Fiber optics provide a noise free method to read out the sensor without electrical power required at the measurement point. Micromachined silicon sensor techniques provide a method to design many different types of sensors such as temperature, pressure, acceleration, or magnetic field strength and report the sensor data using FDM methods. Our polysilicon resonant microbeam structures have a built in Fabry-Perot interferometer that offers significant advantages over other configurations described in the literature. Because the interferometer is an integral part of the structure, the placement of the fiber becomes non- critical, and packaging issues become considerably simpler. The interferometer spacing are determined by the thin-film fabrication processes and therefore can be extremely well controlled. The main advantage, however, is the integral vacuum cavity that ensures high Q values. Testing results have demonstrated relaxed alignment tolerances in packaging these devices, with an excellent Signal to Noise Ratio. Networks of 16 or more sensors are currently being developed. STORM (Strain Transduction by Optomechanical Resonant Microbeams) sensors can also provide functionality and self calibration information which can be used to improve the overall system reliability. Details of the sensor and network design, as well as test results, are presented.
Tunable Patch Antennas Using Microelectromechanical Systems
2011-05-11
Figure 28, was selected as most suitable to this application. MetalMUMPs is a surface micromachining process with polysilicon , silicon nitride, nickel...yields. MEMS Variable Capacitor Design The MEMS capacitors reported here were an original design that features nickel and polysilicon layers as...the movable plates of a variable parallel plate capacitor. The polysilicon layer was embedded in silicon nitride for electrical isolation and suspended
Design and simulation of a tactile display based on a CMUT array
NASA Astrophysics Data System (ADS)
Chouvardas, Vasilios G.; Hatalis, Miltiadis K.; Miliou, Amalia N.
2012-10-01
In this article, we present the design of a tactile display based on a CMUT-phased array. The array implements a 'pixel' of the display and is used to focus airborne ultrasound energy on the skin surface. The pressure field, generated by the focused ultrasound waves, is used to excite the mechanoreceptors under the skin and transmit tactile information. The results of Finite Element Analysis (FEA) of the Capacitive Micromachined Ultrasonic Transducer (CMUT) and the CMUT-phased array for ultrasound emission are presented. The 3D models of the device and the array were developed using a commercial FEA package. Modelling and simulations were performed using the parameters from the POLYMUMPS surface micromachining technology from MEMSCAP. During the analysis of the phased array, several parameters were studied in order to determine their importance in the design of the tactile display. The output of the array is compared with the acoustic intensity thresholds in order to prove the feasibility of the design. Taking into account the density of the mechanoreceptors in the skin, we conclude that there should be at least one receptor under the excitation area formed on the skin.
Freeze-tolerant condenser for a closed-loop heat-transfer system
NASA Technical Reports Server (NTRS)
Crowley, Christopher J. (Inventor); Elkouh, Nabil A. (Inventor)
2002-01-01
A freeze tolerant condenser (106) for a two-phase heat transfer system is disclosed. The condenser includes an enclosure (110) and a porous artery (112) located within and extending along the length of the enclosure. A vapor space (116) is defined between the enclosure and the artery, and a liquid space (114) is defined by a central passageway within the artery. The artery includes a plurality of laser-micromachined capillaries (130) extending from the outer surface of the artery to its inner surface such that the vapor space is in fluid communication with the liquid space. In one embodiment of the invention, the capillaries (130) are cylindrical holes having a diameter of no greater than 50 microns. In another embodiment, the capillaries (130') are slots having widths of no greater than 50 microns. A method of making an artery in accordance with the present invention is also disclosed. The method includes providing a solid-walled tube and laser-micromachining a plurality of capillaries into the tube along a longitudinal axis, wherein each capillary has at least one cross-sectional dimension transverse to the longitudinal axis of less than 50 microns.
Linkage design effect on the reliability of surface-micromachined microengines driving a load
NASA Astrophysics Data System (ADS)
Tanner, Danelle M.; Peterson, Kenneth A.; Irwin, Lloyd W.; Tangyunyong, Paiboon; Miller, William M.; Eaton, William P.; Smith, Norman F.; Rodgers, M. Steven
1998-09-01
The reliability of microengines is a function of the design of the mechanical linkage used to connect the electrostatic actuator to the drive. We have completed a series of reliability stress tests on surface micromachined microengines driving an inertial load. In these experiments, we used microengines that had pin mechanisms with guides connecting the drive arms to the electrostatic actuators. Comparing this data to previous results using flexure linkages revealed that the pin linkage design was less reliable. The devices were stressed to failure at eight frequencies, both above and below the measured resonance frequency of the microengine. Significant amounts of wear debris were observed both around the hub and pin joint of the drive gear. Additionally, wear tracks were observed in the area where the moving shuttle rubbed against the guides of the pin linkage. At each frequency, we analyzed the statistical data yielding a lifetime (t50) for median cycles to failure and (sigma) , the shape parameter of the distribution. A model was developed to describe the failure data based on fundamental wear mechanisms and forces exhibited in mechanical resonant systems. The comparison to the model will be discussed.
Choi, Sungjoon; Lee, Haksue; Moon, Wonkyu
2010-09-01
Although an air-backed thin plate is an effective sound receiver structure, it is easily damaged via pressure unbalance caused by external hydrostatic pressure. To overcome this difficulty, a simple pressure-balancing module is proposed. Despite its small size and relative simplicity, with proper design and operation, micro-channel structure provides a solution to the pressure-balancing problem. If the channel size is sufficiently small, the gas-liquid interface may move back and forth without breach by the hydrostatic pressure since the surface tension can retain the interface surface continuously. One input port of the device is opened to an intermediate liquid, while the other port is connected to the air-backing chamber. As the hydrostatic pressure increases, the liquid in the micro-channel compresses the air, and the pressure in the backing chamber is then equalized to match the external hydrostatic pressure. To validate the performance of the proposed mechanism, a micro-channel prototype is designed and integrated with the piezoelectric micro-machined flexural sensor developed in our previous work. The working principle of the mechanism is experimentally verified. In addition, the effect of hydrostatic pressure on receiving sensitivity is evaluated and compared with predicted behavior.
NASA Astrophysics Data System (ADS)
Rao, A. V. Narasimha; Swarnalatha, V.; Pal, P.
2017-12-01
Anisotropic wet etching is a most widely employed for the fabrication of MEMS/NEMS structures using silicon bulk micromachining. The use of Si{110} in MEMS is inevitable when a microstructure with vertical sidewall is to be fabricated using wet anisotropic etching. In most commonly employed etchants (i.e. TMAH and KOH), potassium hydroxide (KOH) exhibits higher etch rate and provides improved anisotropy between Si{111} and Si{110} planes. In the manufacturing company, high etch rate is demanded to increase the productivity that eventually reduces the cost of end product. In order to modify the etching characteristics of KOH for the micromachining of Si{110}, we have investigated the effect of hydroxylamine (NH2OH) in 20 wt% KOH solution. The concentration of NH2OH is varied from 0 to 20% and the etching is carried out at 75 °C. The etching characteristics which are studied in this work includes the etch rates of Si{110} and silicon dioxide, etched surface morphology, and undercutting at convex corners. The etch rate of Si{110} in 20 wt% KOH + 15% NH2OH solution is measured to be four times more than that of pure 20 wt% KOH. Moreover, the addition of NH2OH increases the undercutting at convex corners and enhances the etch selectivity between Si and SiO2.
Exploration of MEMS G-Switches at 100-10,000 G-Levels with Redundancy
2014-04-01
Muntz, A.D. Ketsdever, “Kinetic Modeling of Temperature -Driven Flows in Short Microchannels,” International Journal of Thermal Sciences, Vol. 45, No...switches silicon DRIE Unclassified Unclassified Unclassified UU 59 Suhithi Peiris 703-767-4732 CONVERSION...designed. The devices were fabricated on low resistivity (ɘ.01 Ω-cm) silicon on insulator wafers (SOI) using standard micromachining techniques. Fixed
Comparing the Robustness of High-Frequency Traveling-Wave Tube Slow-Wave Circuits
NASA Technical Reports Server (NTRS)
Chevalier, Christine T.; Wilson, Jeffrey D.; Kory, Carol L.
2007-01-01
A three-dimensional electromagnetic field simulation software package was used to compute the cold-test parameters, phase velocity, on-axis interaction impedance, and attenuation, for several high-frequency traveling-wave tube slow-wave circuit geometries. This research effort determined the effects of variations in circuit dimensions on cold-test performance. The parameter variations were based on the tolerances of conventional micromachining techniques.
Method and apparatus for precision laser micromachining
Chang, Jim; Warner, Bruce E.; Dragon, Ernest P.
2000-05-02
A method and apparatus for micromachining and microdrilling which results in a machined part of superior surface quality is provided. The system uses a near diffraction limited, high repetition rate, short pulse length, visible wavelength laser. The laser is combined with a high speed precision tilting mirror and suitable beam shaping optics, thus allowing a large amount of energy to be accurately positioned and scanned on the workpiece. As a result of this system, complicated, high resolution machining patterns can be achieved. A cover plate may be temporarily attached to the workpiece. Then as the workpiece material is vaporized during the machining process, the vapors condense on the cover plate rather than the surface of the workpiece. In order to eliminate cutting rate variations as the cutting direction is varied, a randomly polarized laser beam is utilized. A rotating half-wave plate is used to achieve the random polarization. In order to correctly locate the focus at the desired location within the workpiece, the position of the focus is first determined by monitoring the speckle size while varying the distance between the workpiece and the focussing optics. When the speckle size reaches a maximum, the focus is located at the first surface of the workpiece. After the location of the focus has been determined, it is repositioned to the desired location within the workpiece, thus optimizing the quality of the machined area.
Carbon Nanotube Based Chemical Sensors for Space and Terrestrial Applications
NASA Technical Reports Server (NTRS)
Li, Jing; Lu, Yijiang
2009-01-01
A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs), on a pair of interdigitated electrodes (IDE) processed with a silicon-based microfabrication and micromachining technique. The IDE fingers were fabricated using photolithography and thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to nitrogen dioxide, acetone, benzene, nitrotoluene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing of carbon nanotubes in our sensor platform can be understood by intra- and inter-tube electron modulation in terms of charge transfer mechanisms. As a result of the charge transfer, the conductance of p-type or hole-richer SWNTs in air will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost. Additionally, a wireless capability of such a sensor chip can be used for networked mobile and fixed-site detection and warning systems for military bases, facilities and battlefield areas.
Dual axis operation of a micromachined rate gyroscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juneau, T.; Pisano, A.P.; Smith, J.
Since micromachining technology has raised the prospect of fabricating high performance sensors without the associated high cost and large size, many researchers have investigated micromachined rate gyroscopes. The vast majority of research has focused on single input axis rate gyroscopes, but this paper presents work on a dual input axis micromachined rate gyroscope. The key to successful simultaneous dual axis operation is the quad symmetry of the circular oscillating rotor design. Untuned gyroscopes with mismatched modes yielded random walk as low as 10{degrees}/{radical}hour with cross sensitivity ranging from 6% to 16%. Mode frequency matching via electrostatic tuning allowed performance bettermore » than 2{degrees}/{radical}hour, but at the expense of excessive cross sensitivity.« less
Resonant-type MEMS transducers excited by two acoustic emission simulation techniques
NASA Astrophysics Data System (ADS)
Ozevin, Didem; Greve, David W.; Oppenheim, Irving J.; Pessiki, Stephen
2004-07-01
Acoustic emission testing is a passive nondestructive testing technique used to identify the onset and characteristics of damage through the detection and analysis of transient stress waves. Successful detection and implementation of acoustic emission requires good coupling, high transducer sensitivity and ability to discriminate noise from real signals. We report here detection of simulated acoustic emission signals using a MEMS chip fabricated in the multi-user polysilicon surface micromachining (MUMPs) process. The chip includes 18 different transducers with 10 different resonant frequencies in the range of 100 kHz to 1 MHz. It was excited by two different source simulation techniques; pencil lead break and impact loading. The former simulation was accomplished by breaking 0.5 mm lead on the ceramic package. Four transducer outputs were collected simultaneously using a multi-channel oscilloscope. The impact loading was repeated for five different diameter ball bearings. Traditional acoustic emission waveform analysis methods were applied to both data sets to illustrate the identification of different source mechanisms. In addition, a sliding window Fourier transform was performed to differentiate frequencies in time-frequency-amplitude domain. The arrival and energy contents of each resonant frequency were investigated in time-magnitude plots. The advantages of the simultaneous excitation of resonant transducers on one chip are discussed and compared with broadband acoustic emission transducers.
Fabrication of five-level ultraplanar micromirror arrays by flip-chip assembly
NASA Astrophysics Data System (ADS)
Michalicek, M. Adrian; Bright, Victor M.
2001-10-01
This paper reports a detailed study of the fabrication of various piston, torsion, and cantilever style micromirror arrays using a novel, simple, and inexpensive flip-chip assembly technique. Several rectangular and polar arrays were commercially prefabricated in the MUMPs process and then flip-chip bonded to form advanced micromirror arrays where adverse effects typically associated with surface micromachining were removed. These arrays were bonded by directly fusing the MUMPs gold layers with no complex preprocessing. The modules were assembled using a computer-controlled, custom-built flip-chip bonding machine. Topographically opposed bond pads were designed to correct for slight misalignment errors during bonding and typically result in less than 2 micrometers of lateral alignment error. Although flip-chip micromirror performance is briefly discussed, the means used to create these arrays is the focus of the paper. A detailed study of flip-chip process yield is presented which describes the primary failure mechanisms for flip-chip bonding. Studies of alignment tolerance, bonding force, stress concentration, module planarity, bonding machine calibration techniques, prefabrication errors, and release procedures are presented in relation to specific observations in process yield. Ultimately, the standard thermo-compression flip-chip assembly process remains a viable technique to develop highly complex prototypes of advanced micromirror arrays.
Development of microchannel plate x-ray optics
NASA Technical Reports Server (NTRS)
Kaaret, Philip; Chen, Andrew
1994-01-01
The goal of this research program was to develop a novel technique for focusing x-rays based on the optical system of a lobster's eye. A lobster eye employs many closely packed reflecting surfaces arranged within a spherical or cylindrical shell. These optics have two unique properties: they have unlimited fields of view and can be manufactured via replication of identical structures. Because the angular resolution is given by the ratio of the size of the individual optical elements to the focal length, optical elements with sizes on the order of one hundred microns are required to achieve good angular resolution with a compact telescope. We employed anisotropic etching of single crystal silicon wafers for the fabrication of micron-scale optical elements. This technique, commonly referred to as silicon micromachining, is based on silicon fabrication techniques developed by the microelectronics industry. An anisotropic etchant is a chemical which etches certain silicon crystal planes much more rapidly than others. Using wafers in which the slowly etched crystal planes are aligned perpendicularly to the wafer surface, it is possible to etch a pattern completely through a wafer with very little distortion. Our optics consist of rectangular pores etched completely through group of zone axes (110) oriented silicon wafers. The larger surfaces of the pores (the mirror elements) were aligned with the group of zone axes (111) planes of the crystal perpendicular to the wafer surface. We have succeeded in producing silicon lenses with a geometry suitable for 1-d focusing x-ray optics. These lenses have an aspect ratio (40:1) suitable for x-ray reflection and have very good optical surface alignment. We have developed a number of process refinements which improved the quality of the lens geometry and the repeatability of the etch process. A significant progress was made in obtaining good optical surface quality. The RMS roughness was decreased from 110 A for our initial lenses to 30 A in the final lenses. A further factor of three improvement in surface quality is required for the production of efficient x-ray optics. In addition to the silicon fabrication, an x-ray beam line was constructed at Columbia for testing the optics.
An evaluation of a combined scanning probe and optical microscope for lunar regolith studies
NASA Astrophysics Data System (ADS)
Yang, S.; Pike, W. T.; Staufer, U.; Claus, D.; Rodenburg, J. M.
2011-12-01
The microscopic properties of the lunar regolith such as the shape, the surface texture and the size distribution are required for an understanding of both past surface processes and potential hazards for future human exploration [1]. To reveal the particle morphology at the sub micrometer scale, scanning-probe microscopy (SPM), first used on the 2008 Phoenix mission [1], is a proven approach; however, there are two main challenges for the measurement of lunar particles. Firstly, the SPM tip is liable to move particles during scanning, even when using the lower contact forces of the dynamic-mode imaging. Hence the particles need to be stabilised during imaging. Secondly, typically the AFM tip extends about 10 μm from its cantilever, so larger particles protruding more than this height above their substrates cannot be scanned completely. To immobilize particles and eliminate large particles during SPM scanning, micromachined Si substrates, which have been successfully applied in the Phoenix project for Mars investigation in 2008 [2], have been investigated for lunar analogue material. On these substrates micrometer pits are patterned and serve as traps to enhance the stability of the AFM scanning by grasping the particles. In addition, the diameter of pits can determine the size of dusts to be captured and reduce the adhesion for the larger dust and so eliminate the oversized particles. To extend the imaging range and assist in selecting scan areas for the SPM, we use a type of lensless optical imaging (LOM) which uses ptychographic diffractive imaging [3] to eliminate the restrictions and performance limitations of conventional focusing devices. As a reference, scanning electron microscopy (SEM) which minimizes particle-probe interactions and has the advantage of an extended depth of field, is employed to image the same particle fields at resolutions covering both the SPM and LOM. By comparing the differences and the similarities between SEM and LOM images, the ability of LOM for illuminating the details about the lunar particles sample, is demonstrated. The analysis of SEM and SPM images of the same particles of JSC-LunarA analogue soil reveals the potential of the SPM to obtain reliable microscopic images of lunar dusts including detailed morphology with the help of the micromachined Si substrates. [1] J. D. Carpenter, O. Angerer, M. Durante, D. Linnarson, W. T. Pike, "Life Sciences Investigations for ESA's First Lunar Lander," Earth, Moon, and Planets, Vol.107, pp. 11-23, 2010. [2] S. Vijendran, H.Sykulska, and W. T. Pike, "AFM investigation of Martian soil simulant on micromachined Si substrates," Journal of Microscopy, Vol.227, pp.236-245, Sep. 2007. [3] J.M. Rodenburg, "Ptychography and related diffractive imaging techniques," Advances in Imaging and Electron Physics, Vol.150, pp. 87-184, 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric
We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphousmore » boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here.« less
A Novel Silicon Micromachined Integrated MCM Thermal Management System
NASA Technical Reports Server (NTRS)
Kazmierczak, M. J.; Henderson, H. T.; Gerner, F. M.
1997-01-01
"Micromachining" is a chemical means of etching three-dimensional structures, typically in single- crystalline silicon. These techniques are leading toward what is coming to be referred to as MEMS (Micro Electro Mechanical Systems), where in addition to the ordinary two-dimensional (planar) microelectronics, it is possible to build three-dimensional n-ticromotors, electrically- actuated raicrovalves, hydraulic systems and much more on the same microchip. These techniques become possible because of differential etching rates of various crystallographic planes and materials used for semiconductor n-ticrofabfication. The University of Cincinnati group in collaboration with Karl Baker at NASA Lewis were the first to form micro heat pipes in silicon by the above techniques. Current work now in progress using MEMS technology is now directed towards the development of the next generation in MCM (Multi Chip Module) packaging. Here we propose to develop a complete electronic thermal management system which will allow densifica6on in chip stacking by perhaps two orders of magnitude. Furthermore the proposed technique will allow ordinary conu-nercial integrated chips to be utilized. Basically, the new technique involves etching square holes into a silicon substrate and then inserting and bonding commercially available integrated chips into these holes. For example, over a 100 1/4 in. by 1 /4 in. integrated chips can be placed on a 4 in. by 4 in. silicon substrate to form a Multi-Chip Module (MCM). Placing these MCM's in-line within an integrated rack then allows for three-diniensional stacking. Increased miniaturization of microelectronic circuits will lead to very high local heat fluxes. A high performance thermal management system will be specifically designed to remove the generated energy. More specifically, a compact heat exchanger with milli / microchannels will be developed and tested to remove the heat through the back side of this MCM assembly for moderate and high heat flux applications, respectively. The high heat load application of particular interest in mind is the motor controller developed by Martin Marietta for Nasa to control the thruster's directional actuators on space vechicles. Work is also proposed to develop highly advanced and improved porous wick structures for use in advanced heat loops. The porous wick will be micromachined from silicon using MEMS technology, thus permitting far superior control of pore size and pore distribution (over wicks made from sintered n-ietals), which in turn is expected to led to significantly improved heat loop performance.
Microfabricated biocapsules for the immunoisolation of pancreatic islets of Langerhans
NASA Astrophysics Data System (ADS)
Desai, Tejal Ashwin
1998-08-01
A silicon-based microfabricated biocapsule was developed and evaluated for use in the immunoisolation of transplanted cells, specifically pancreatic islets of Langerhans for the treatment of Type I diabetes. The transplantation of cells with specific functions is a promising therapy for a wide variety of pathologies including diabetes, Parkinson's, and hemophilia. Such transplanted cells, however, are sensitive to both cellular and humoral immune rejection as well as damage by autoimmune activity, without chronic immunosuppression. The research presented in this dissertation investigated whether microfabricated silicon-based biocapsules, with uniform membrane pore sizes in the tens of nanometer range, could provide an immunoprotective environment for pancreatic islets and other insulin-secreting cell lines, while maintaining cell viability and functionality. By utilizing fabrication techniques commonly employed in the microelectronics industry (MEMS), membranes were fabricated with precisely controlled and uniform pore sizes, allowing the optimization of biocapsule membrane parameters for the encapsulation of specific hormone-secreting cell types. The biocapsule-forming process employed bulk micromachining to define cell-containing chambers within single crystalline silicon wafers. These chambers interface with the surrounding biological environment through polycrystalline silicon filter membranes, which were surface micromachined to present a high density of uniform pores to allow sufficient permeability to oxygen, glucose, and insulin. Both in vitro and in vivo experiments established the biocompatibility of the microfabricated biocapsule, and demonstrated that encapsulated cells could live and function normally in terms of insulin-secretion within microfabricated environments for extended periods of time. This novel research shows the potential of using microfabricated biocapsules for the encapsulation of several different cell xenografts. The semipermeability of microfabricated biocapsules, their biocompatibility, along with their thermal and chemical stability, may provide an improved encapsulation device for the immunoisolation of cell xenografts in hormone-replacement and cell-based therapies.
Xu, Lisen; Knox, Wayne H; DeMagistris, Margaret; Wang, Nadan; Huxlin, Krystel R
2011-10-17
To test the feasibility of intratissue refractive index shaping (IRIS) in living corneas by using 400-nm femtosecond (fs) laser pulses (blue-IRIS). To test the hypothesis that the intrinsic two-photon absorption of the cornea allows blue-IRIS to be performed with greater efficacy than when using 800-nm femtosecond laser pulses. Fresh cat corneas were obtained postmortem and cut into six wedges. Blue laser pulses at 400 nm, with 100-fs pulse duration at 80 MHz were used to micromachine phase gratings into each corneal wedge at scanning speeds from 1 to 15 mm/s. Grating lines were 1 μm wide, 5 μm apart, and 150 μm below the anterior corneal surface. Refractive index (RI) changes in micromachined regions were measured immediately by recording the diffraction efficiency of inscribed gratings. Six hours later, the corneas were processed for histology, and TUNEL staining was performed to assess whether blue-IRIS causes cell death. Scanning at 1 and 2 mm/s caused overt corneal damage in the form of bubbles and burns. At faster scanning speeds (5, 10, and 15 mm/s), phase gratings were created in the corneal stroma, which were shown to be pure RI changes ranging from 0.037 to 0.021 in magnitude. The magnitude of RI change was inversely related to scanning speed. TUNEL staining showed cell death only around bubbles and burns. Blue-IRIS can be performed safely and effectively in living cornea. Compared with near-infrared laser pulses, blue-IRIS enhances both achievable RI change and scanning speed without the need to dope the tissue with two-photon sensitizers, increasing the clinical applicability of this technique.
Xu, Lisen; Knox, Wayne H.; DeMagistris, Margaret; Wang, Nadan
2011-01-01
Purpose. To test the feasibility of intratissue refractive index shaping (IRIS) in living corneas by using 400-nm femtosecond (fs) laser pulses (blue-IRIS). To test the hypothesis that the intrinsic two-photon absorption of the cornea allows blue-IRIS to be performed with greater efficacy than when using 800-nm femtosecond laser pulses. Methods. Fresh cat corneas were obtained postmortem and cut into six wedges. Blue laser pulses at 400 nm, with 100-fs pulse duration at 80 MHz were used to micromachine phase gratings into each corneal wedge at scanning speeds from 1 to 15 mm/s. Grating lines were 1 μm wide, 5 μm apart, and 150 μm below the anterior corneal surface. Refractive index (RI) changes in micromachined regions were measured immediately by recording the diffraction efficiency of inscribed gratings. Six hours later, the corneas were processed for histology, and TUNEL staining was performed to assess whether blue-IRIS causes cell death. Results. Scanning at 1 and 2 mm/s caused overt corneal damage in the form of bubbles and burns. At faster scanning speeds (5, 10, and 15 mm/s), phase gratings were created in the corneal stroma, which were shown to be pure RI changes ranging from 0.037 to 0.021 in magnitude. The magnitude of RI change was inversely related to scanning speed. TUNEL staining showed cell death only around bubbles and burns. Conclusions. Blue-IRIS can be performed safely and effectively in living cornea. Compared with near-infrared laser pulses, blue-IRIS enhances both achievable RI change and scanning speed without the need to dope the tissue with two-photon sensitizers, increasing the clinical applicability of this technique. PMID:21931133
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert G. Baca; Edwin J. Heller; Gregory C. Frye-Mason
High sensitivity acoustic wave chemical microsensors are being developed on GaAs substrates. These devices take advantage of the piezoelectric properties of GaAs as well as its mature microelectronics fabrication technology and nascent micromachining technology. The design, fabrication, and response of GaAs SAW chemical microsensors are reported. Functional integrated GaAs SAW oscillators, suitable for chemical sensing, have been produced. The integrated oscillator requires 20 mA at 3 VK, operates at frequencies up to 500 MHz, and occupies approximately 2 mmz. Discrete GaAs sensor components, including IC amplifiers, SAW delay lines, and IC phase comparators have been fabricated and tested. A temperaturemore » compensation scheme has been developed that overcomes the large temperature dependence of GaAs acoustic wave devices. Packaging issues related to bonding miniature flow channels directly to the GaAs substrates have been resolved. Micromachining techniques for fabricating FPW and TSM microsensors on thin GaAs membranes are presented and GaAs FPW delay line performance is described. These devices have potentially higher sensitivity than existing GaAs and quartz SAW sensors.« less
Microelectromechanical Systems for Aerodynamics Applications
NASA Technical Reports Server (NTRS)
Mehregany, Mehran; DeAnna, Russell G.; Reshotko, Eli
1996-01-01
Microelectromechanical systems (MEMS) embody the integration of sensors, actuators, and electronics on a single substrate using integrated circuit fabrication techniques and compatible micromachining processes. Silicon and its derivatives form the material base for the MEMS technology. MEMS devices, including micro-sensors and micro-actuators, are attractive because they can be made small (characteristic dimension about microns), be produced in large numbers with uniform performance, include electronics for high performance and sophisticated functionality, and be inexpensive. MEMS pressure sensors, wall-shear-stress sensors, and micromachined hot-wires are nearing application in aeronautics. MEMS actuators face a tougher challenge since they have to be scaled (up) to the physical phenomena that are being controlled. MEMS actuators are proposed, for example, for controlling the small structures in a turbulent boundary layer, for aircraft control, for cooling, and for mixing enhancement. Data acquisition or control logistics require integration of electronics along with the transducer elements with appropriate consideration of analog-to-digital conversion, multiplexing, and telemetry. Altogether, MEMS technology offers exciting opportunities for aerodynamics applications both in wind tunnels and in flight
Dual-beam optical trapping of cells in an optofluidic device fabricated by femtosecond lasers
NASA Astrophysics Data System (ADS)
Bellini, N.; Bragheri, F.; Vishnubhatla, K. C.; Ferrara, L.; Minzioni, P.; Cerullo, G.; Ramponi, R.; Cristiani, I.; Osellame, R.
2010-02-01
We present design and optimization of an optofluidic monolithic chip, able to provide optical trapping and controlled stretching of single cells. The chip is fabricated in a fused silica glass substrate by femtosecond laser micromachining, which can produce both optical waveguides and microfluidic channels with great accuracy. Versatility and three-dimensional capabilities of this fabrication technology provide the possibility to fabricate circular cross-section channels with enlarged access holes for an easy connection with an external fluidic circuit. Moreover, a new fabrication procedure adopted allows the demonstration of microchannels with a square cross-section, thus guaranteeing an improved quality of the trapped cell images. Optical trapping and stretching of single red blood cells are demonstrated, thus proving the effectiveness of the proposed device as a monolithic optical stretcher. We believe that femtosecond laser micromachining represents a promising technique for the development of multifunctional integrated biophotonic devices that can be easily coupled to a microscope platform, thus enabling a complete characterization of the cells under test.
Torque Studies of Quantum Oscillations in Anisotropic Metals and Superconductors
NASA Astrophysics Data System (ADS)
Julian, Stephen
1998-03-01
Quantum oscillations provide unique information about the properties of charged quasiparticles at the Fermi surface, but their measurement demands both very pure samples and extremely high measurement sensitivity. Shoenberg first used a torque method to study de Haas van Alphen oscillations in 1937. Since then, under the combined influence of the development of competing techniques, the evolution of magnet technology, and the changing frontiers of condensed matter physics, the technique has come in and out of vogue a number of times. Today the method is undergoing a renaissance for two reasons. Firstly it is ideally suited to the study of quantum oscillations in highly anisotropic metals such as organic metals,( C. Lupien, L. Taillefer, et al., to be published.) two dimensional electron gases in semiconductor heterostructures,( S.A.J. Wiegers, M. Specht, L.P. Lévy, M.Y. Simmons, D.A. Ritchie, A. Cavanna, B. Etienne, G. Martinez and P. Wyder, Phys. Rev. Lett. 79) (1997) 3238, and references therein. and strongly correlated oxides,( C. Bergemann, S.R. Julian, A.P. Mackenzie, et al., to be published.) all of which have become subjects of intense interest. Secondly, the development of micromachined levers allows the observation of quantum oscillations in nanogram sized samples. It is hoped that this will allow the study of quasiparticle Fermi surfaces in the large number of materials for which only very small single crystals are available. In this talk the information available from quantum oscillation measurements, and the historical development of the torque technique, will be reviewed. An overview will then be given of recent measurements, emphasising the advantages and disadvantages of the torque method as compared with competing techniques.
Cable attachment for a radioactive brachytherapy source capsule
Gross, Ian G; Pierce, Larry A
2006-07-18
In cancer brachytherapy treatment, a small californium-252 neutron source capsule is attached to a guide cable using a modified crimping technique. The guide cable has a solid cylindrical end, and the attachment employs circumferential grooves micromachined in the solid cable end. The attachment was designed and tested, and hardware fabricated for use inside a radioactive hot cell. A welding step typically required in other cable attachments is avoided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiechtner, Gregory J; Singh, Anup K; Wiedenman, Boyd J
2008-03-18
The present embodiment describes a laminar-mixing embodiment that utilizes simple, three-dimensional injection. Also described is the use of the embodiment in combination with wide and shallow sections of channel to affect rapid mixing in microanalytical systems. The shallow channel sections are constructed using all planar micromachining techniques, including those based on isotropic etching. The planar construction enables design using minimum dispersion concepts that, in turn, enable simultaneous mixing and injection into subsequent chromatography channels.
Feng, Guo-Hua; Liu, Wei-Fan
2013-01-01
This paper presents the microfabrication of an acoustic impedance gradient matching layer on a spherically-shaped piezoelectric ultrasonic transducer. The acoustic matching layer can be designed to achieve higher acoustic energy transmission and operating bandwidth. Also included in this paper are a theoretical analysis of the device design and a micromachining technique to produce the novel transducer. Based on a design of a lead titanium zirconium (PZT) micropillar array, the constructed gradient acoustic matching layer has much better acoustic transmission efficiency within a 20–50 MHz operation range compared to a matching layer with a conventional quarter-wavelength thickness Parylene deposition. To construct the transducer, periodic microcavities are built on a flexible copper sheet, and then the sheet forms a designed curvature with a ball shaping. After PZT slurry deposition, the constructed PZT micropillar array is released onto a curved thin PZT layer. Following Parylene conformal coating on the processed PZT micropillars, the PZT micropillars and the surrounding Parylene comprise a matching layer with gradient acoustic impedance. By using the proposed technique, the fabricated transducer achieves a center frequency of 26 MHz and a −6 dB bandwidth of approximately 65%. PMID:24113683
A batch process micromachined thermoelectric energy harvester: fabrication and characterization
NASA Astrophysics Data System (ADS)
Su, J.; Leonov, V.; Goedbloed, M.; van Andel, Y.; de Nooijer, M. C.; Elfrink, R.; Wang, Z.; Vullers, R. J. M.
2010-10-01
Micromachined thermopiles are considered as a cost-effective solution for energy harvesters working at a small temperature difference and weak heat flows typical for, e.g., the human body. They can be used for powering autonomous wireless sensor nodes in a body area network. In this paper, a micromachined thermoelectric energy harvester with 6 µm high polycrystalline silicon germanium (poly-SiGe) thermocouples fabricated on a 6 inch wafer is presented. An open circuit voltage of 1.49 V and an output power of 0.4 µW can be generated with 3.5 K temperature difference in a model of a wearable micromachined energy harvester of the discussed design, which has a die size of 1.0 mm × 2.5 mm inside a watch-size generator.
Micromachined Millimeter- and Submillimeter-Wave SIS Heterodyne Receivers for Remote Sensing
NASA Technical Reports Server (NTRS)
Hu, Qing
1998-01-01
A heterodyne mixer with a micromachined horn antenna and a superconductor -insulator-superconductor (SIS) tunnel junction as mixing element is tested in the W-band (75-115 GHz) frequency range. Micromachined integrated horn antennas consist of a dipole antenna suspended on a thin Si3N4 dielectric membrane inside a pyramidal cavity etched in silicon. The mixer performance is optimized by using a backing plane behind the dipole antenna to tune out the capacitance of the tunnel junction. The lowest receiver noise temperature of 30+/-3 K without any correction) is measured at 106 GHz with a 3-dB bandwidth of 8 GHz. This sensitivity is comparable to the state-of-the-art waveguide and quasi-optical SIS receivers, showing the potential use of micromachined horn antennas in imaging arrays.
Optical wireless communications for micromachines
NASA Astrophysics Data System (ADS)
O'Brien, Dominic C.; Yuan, Wei Wen; Liu, Jing Jing; Faulkner, Grahame E.; Elston, Steve J.; Collins, Steve; Parry-Jones, Lesley A.
2006-08-01
A key challenge for wireless sensor networks is minimizing the energy required for network nodes to communicate with each other, and this becomes acute for self-powered devices such as 'smart dust'. Optical communications is a potentially attractive solution for such devices. The University of Oxford is currently involved in a project to build optical wireless links to smart dust. Retro-reflectors combined with liquid crystal modulators can be integrated with the micro-machine to create a low power transceiver. When illuminated from a base station a modulated beam is returned, transmitting data. Data from the base station can be transmitted using modulation of the illuminating beam and a receiver at the micro-machine. In this paper we outline the energy consumption and link budget considerations in the design of such micro-machines, and report preliminary experimental results.
Silicon micromachined vibrating gyroscopes
NASA Astrophysics Data System (ADS)
Voss, Ralf
1997-09-01
This work gives an overview of silicon micromachined vibrating gyroscopes. Market perspectives and fields of application are pointed out. The advantage of using silicon micromachining is discussed and estimations of the desired performance, especially for automobiles are given. The general principle of vibrating gyroscopes is explained. Vibrating silicon gyroscopes can be divided into seven classes. for each class the characteristic principle is presented and examples are given. Finally a specific sensor, based on a tuning fork for automotive applications with a sensitivity of 250(mu) V/degrees is described in detail.
Solid polymer electrolyte composite membrane comprising laser micromachined porous support
Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA
2011-01-11
A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lan; Lu, Jian, E-mail: jian-lu@aist.go.jp; Takagi, Hideki
2014-01-15
Using a surface piezoresistor diffusion method and front-side only micromachining process, a planar piezoresistive vibration sensor was successfully developed with a simple structure, lower processing cost and fewer packaging difficulties. The vibration sensor had a large sector proof mass attached to a narrow flexure. Optimization of the boron diffusion piezoresistor placed on the edge of the narrow flexure greatly improved the sensitivity. Planar vibration sensors were fabricated and measured in order to analyze the effects of the sensor dimensions on performance, including the values of flexure width and the included angle of the sector. Sensitivities of fabricated planar sensors ofmore » 0.09–0.46 mV/V/g were measured up to a test frequency of 60 Hz. The sensor functioned at low voltages (<3 V) and currents (<1 mA) with a high sensitivity and low drift. At low background noise levels, the sensor had performance comparable to a commercial device.« less
Advanced RF Front End Technology
NASA Technical Reports Server (NTRS)
Herman, M. I.; Valas, S.; Katehi, L. P. B.
2001-01-01
The ability to achieve low-mass low-cost micro/nanospacecraft for Deep Space exploration requires extensive miniaturization of all subsystems. The front end of the Telecommunication subsystem is an area in which major mass (factor of 10) and volume (factor of 100) reduction can be achieved via the development of new silicon based micromachined technology and devices. Major components that make up the front end include single-pole and double-throw switches, diplexer, and solid state power amplifier. JPL's Center For Space Microsystems - System On A Chip (SOAC) Program has addressed the challenges of front end miniaturization (switches and diplexers). Our objectives were to develop the main components that comprise a communication front end and enable integration in a single module that we refer to as a 'cube'. In this paper we will provide the latest status of our Microelectromechanical System (MEMS) switches and surface micromachined filter development. Based on the significant progress achieved we can begin to provide guidelines of the proper system insertion for these emerging technologies. Additional information is contained in the original extended abstract.
Some aspects of precise laser machining - Part 2: Experimental
NASA Astrophysics Data System (ADS)
Grabowski, Marcin; Wyszynski, Dominik; Ostrowski, Robert
2018-05-01
The paper describes the role of laser beam polarization on quality of laser beam machined cutting tool edge. In micromachining the preparation of the cutting tools in play a key role on dimensional accuracy, sharpness and the quality of the cutting edges. In order to assure quality and dimensional accuracy of the cutting tool edge it is necessary to apply laser polarization control. In the research diode pumped Nd:YAG 532nm pulse laser was applied. Laser beam polarization used in the research was linear (horizontal, vertical). The goal of the carried out research was to describe impact of laser beam polarization on efficiency of the cutting process and quality of machined parts (edge, surface) made of polycrystalline diamond (PCD) and cubic boron nitride (cBN). Application of precise cutting tool in micromachining has significant impact on the minimum uncut chip thickness and quality of the parts. The research was carried within the INNOLOT program funded by the National Centre for Research and Development.
Electro-rheological finishing for optical surfaces
NASA Astrophysics Data System (ADS)
Cheng, Haobo; Wang, Peng
2009-05-01
Many polishing techniques such as fixed-abrasive polishing, abrasive-free polishing and magnetorheological finishing etc., have been developed. Meanwhile, a new technique is proposed using the mixture of the electro-rheological (Er) fluid with abrasives as polishing slurry, which is a special process does not require pad. Electrorheological fluid is a special suspension liquid, whose viscosity has an approximate proportional relation with the electric strength applied. When the field strength reaches a certain limit, the phase transition occurs and the liquid acquires a solid like character, and while the electric field is removed, the fluid regains its original viscosity during the order of milliseconds. In this research work, we employed the characteristics of viscosity change of Er fluid to hold the polishing particles for micromachining. A point-contact electro-rheological finishing (Erf) tool was designed with a tip diameter 0.5~1mm. Both the anode and the cathode of the electric field were combined in the tool. The electric field could be controllable. When the tool moves across the profile of the work piece, by controlling the electric field strength as well as the other manufacturing parameters we can assure the deterministic material removal. Furthermore, the electro-rheological finishing process has been planned in detailed.
Ultrashort laser pulse processing of wave guides for medical applications
NASA Astrophysics Data System (ADS)
Ashkenasi, David; Rosenfeld, Arkadi; Spaniol, Stefan B.; Terenji, Albert
2003-06-01
The availability of ultra short (ps and sub-ps) pulsed lasers has stimulated a growing interest in exploiting the enhanced flexibility of femtosecond and/or picosecond laser technology for micro-machining. The high peak powers available at relatively low single pulse energies potentially allow for a precise localization of photon energy, either on the surface or inside (transparent) materials. Three dimensional micro structuring of bulk transparent media without any sign of mechanical cracking has been demonstrated. In this study, the potential of ultra short laser processing was used to modify the cladding-core interface in normal fused silica wave guides. The idea behind this technique is to enforce a local mismatch for total reflection at the interface at minimal mechanic stress. The laser-induced modifications were studied in dependence of pulse width, focal alignment, single pulse energy and pulse overlap. Micro traces with a thickness between 3 and 8 μm were generated with a spacing of 10 μm in the sub-surface region using sub-ps and ps laser pulses at a wavelength of 800 nm. The optical leakage enforced by a micro spiral pattern is significant and can be utilized for medical applications or potentially also for telecommunications and fiber laser technology.
Micromachined silicon electrostatic chuck
Anderson, R.A.; Seager, C.H.
1996-12-10
An electrostatic chuck is faced with a patterned silicon plate, created by micromachining a silicon wafer, which is attached to a metallic base plate. Direct electrical contact between the chuck face (patterned silicon plate`s surface) and the silicon wafer it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands that protrude less than 5 micrometers from the otherwise flat surface of the chuck face. The islands may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face and wafer contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face, typically 0.5 to 5 percent. The pattern of the islands, together with at least one hole bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas. 6 figs.
NASA Astrophysics Data System (ADS)
Walewyns, Thomas; Reckinger, Nicolas; Ryelandt, Sophie; Pardoen, Thomas; Raskin, Jean-Pierre; Francis, Laurent A.
2013-09-01
The interest of using polyimide as a sacrificial and anchoring layer is demonstrated for post-processing surface micromachining and for the incorporation of metallic nanowires into microsystems. In addition to properties like a high planarization factor, a good resistance to most non-oxidizing acids and bases, and CMOS compatibility, polyimide can also be used as a mold for nanostructures after ion track-etching. Moreover, specific polyimide grades, such as PI-2611 from HD Microsystems™, involve a thermal expansion coefficient similar to silicon and low internal stress. The process developed in this study permits higher gaps compared to the state-of-the-art, limits stiction problems with the substrate and is adapted to various top-layer materials. Most metals, semiconductors or ceramics will not be affected by the oxygen plasma required for polyimide etching. Released structures with vertical gaps from one to several tens of μm have been obtained, possibly using multiple layers of polyimide. Furthermore, patterned freestanding nanowires have been synthesized with diameters from 20 to 60 nm and up to 3 μm in length. These results have been applied to the fabrication of two specific devices: a generic nanomechanical testing lab-on-chip platform and a miniaturized ionization sensor.
Method for forming suspended micromechanical structures
Fleming, James G.
2000-01-01
A micromachining method is disclosed for forming a suspended micromechanical structure from {111} crystalline silicon. The micromachining method is based on the use of anisotropic dry etching to define lateral features of the structure which are etched down into a {111}-silicon substrate to a first etch depth, thereby forming sidewalls of the structure. The sidewalls are then coated with a protection layer, and the substrate is dry etched to a second etch depth to define a spacing of the structure from the substrate. A selective anisotropic wet etchant (e.g. KOH, EDP, TMAH, NaOH or CsOH) is used to laterally undercut the structure between the first and second etch depths, thereby forming a substantially planar lower surface of the structure along a {111} crystal plane that is parallel to an upper surface of the structure. The lateral extent of undercutting by the wet etchant is controlled and effectively terminated by either timing the etching, by the location of angled {111}-silicon planes or by the locations of preformed etch-stops. This present method allows the formation of suspended micromechanical structures having large vertical dimensions and large masses while allowing for detailed lateral features which can be provided by dry etch definition. Additionally, the method of the present invention is compatible with the formation of electronic circuitry on the substrate.
A Low-noise Micromachined Millimeter-Wave Heterodyne Mixer using Nb Superconducting Tunnel Junctions
NASA Technical Reports Server (NTRS)
DeLange, Gert; Jacobson, Brian R.; Hu, Qing
1996-01-01
A heterodyne mixer with a micromachined horn antenna and a superconductor-insulator-superconductor (SIS) tunnel junction as mixing element is tested in the W-band (75-115 GHz) frequency range. Micromachined integrated horn antennas consist of a dipole antenna suspended on a thin Si3N4 dielectric membrane inside a pyramidal cavity etched in silicon. The mixer performance is optimized by using a backing plane behind the dipole antenna to tune out the capacitance of the tunnel junction. The lowest receiver noise temperature of 30 +/- 3 K (without any correction) is measured at 106 GHz with a 3-dB bandwidth of 8 GHz. This sensitivity is comparable to the state-of-the-art waveguide and quasi-optical SIS receivers, showing the potential use of micromachined horn antennas in imaging arrays.
Micromachined cutting blade formed from {211}-oriented silicon
Fleming, James G.; Sniegowski, Jeffry J.; Montague, Stephen
2003-09-09
A cutting blade is disclosed fabricated of micromachined silicon. The cutting blade utilizes a monocrystalline silicon substrate having a {211} crystalline orientation to form one or more cutting edges that are defined by the intersection of {211} crystalline planes of silicon with {111} crystalline planes of silicon. This results in a cutting blade which has a shallow cutting-edge angle .theta. of 19.5.degree.. The micromachined cutting blade can be formed using an anisotropic wet etching process which substantially terminates etching upon reaching the {111} crystalline planes of silicon. This allows multiple blades to be batch fabricated on a common substrate and separated for packaging and use. The micromachined cutting blade, which can be mounted to a handle in tension and optionally coated for increased wear resistance and biocompatibility, has multiple applications including eye surgery (LASIK procedure).
Micromachined cutting blade formed from {211}-oriented silicon
Fleming, James G [Albuquerque, NM; Fleming, legal representative, Carol; Sniegowski, Jeffry J [Tijeras, NM; Montague, Stephen [Albuquerque, NM
2011-08-09
A cutting blade is disclosed fabricated of micromachined silicon. The cutting blade utilizes a monocrystalline silicon substrate having a {211} crystalline orientation to form one or more cutting edges that are defined by the intersection of {211} crystalline planes of silicon with {111} crystalline planes of silicon. This results in a cutting blade which has a shallow cutting-edge angle .theta. of 19.5.degree.. The micromachined cutting blade can be formed using an anisotropic wet etching process which substantially terminates etching upon reaching the {111} crystalline planes of silicon. This allows multiple blades to be batch fabricated on a common substrate and separated for packaging and use. The micromachined cutting blade, which can be mounted to a handle in tension and optionally coated for increased wear resistance and biocompatibility, has multiple applications including eye surgery (LASIK procedure).
Fluid pumping using magnetic cilia
NASA Astrophysics Data System (ADS)
Hanasoge, Srinivas; Ballard, Matt; Alexeev, Alexander; Hesketh, Peter; Woodruff School of Mechanical Engineering Team
2016-11-01
Using experiments and computer simulations, we examine fluid pumping by artificial magnetic cilia fabricated using surface micromachining techniques. An asymmetry in forward and recovery strokes of the elastic cilia causes the net pumping in a creeping flow regime. We show this asymmetry in the ciliary strokes is due to the change in magnetization of the elastic cilia combined with viscous force due to the fluid. Specifically, the time scale for forward stroke is mostly governed by the magnetic forces, whereas the time scale for the recovery stroke is determined by the elastic and viscous forces. These different time scales result in different cilia deformation during forward and backward strokes which in turn lead to the asymmetry in the ciliary motion. To disclose the physics of magnetic cilia pumping we use a hybrid lattice Boltzmann and lattice spring method. We validate our model by comparing the simulation results with the experimental data. The results of our study will be useful to design microfluidic systems for fluid mixing and particle manipulation including different biological particles. USDA and NSF.
All-Optical Cantilever-Enhanced Photoacoustic Spectroscopy in the Open Environment
NASA Astrophysics Data System (ADS)
Wei, Wei; Zhu, Yong; Lin, Cheng; Tian, Li; Xu, Zhuwen; Nong, Jinpeng
2015-06-01
A novel all-optical cantilever-enhanced photoacoustic spectroscopy technique for trace gas detection in the open environment is proposed. A cantilever is set off-beam to "listen to" the photoacoustic signal, and an improved quadrature-point stabilization Fabry-Perot demodulation unit is used to pick up the vibration signal of the acoustic transducer instead of a complicated Michelson interferometer. The structure parameters of the cantilever are optimized to make the sensing system work more stably and reliably using a finite element method, which is then fabricated by surface micro-machining technology. Finally, related experiments are carried out to detect the absorption of water vapor at one atmosphere in the open environment. It was found that the normalized noise-equivalent absorption coefficient obtained by a traditional Fabry-Perot demodulation unit is , while that by a quadrature- point stabilization Fabry-Perot demodulation unit is , which indicates that the sensitivity is increased by a factor of 3.1 using improved cantilever-enhanced photoacoustic spectroscopy.
Takahata, Kenichi; Gianchandani, Yogesh B.
2008-01-01
This paper reports a micromachined capacitive pressure sensor intended for applications that require mechanical robustness. The device is constructed with two micromachined metal plates and an intermediate polymer layer that is soft enough to deform in a target pressure range. The plates are formed of micromachined stainless steel fabricated by batch-compatible micro-electro-discharge machining. A polyurethane room-temperature-vulcanizing liquid rubber of 38-μm thickness is used as the deformable material. This structure eliminates both the vacuum cavity and the associated lead transfer challenges common to micromachined capacitive pressure sensors. For frequency-based interrogation of the capacitance, passive inductor-capacitor tanks are fabricated by combining the capacitive sensor with an inductive coil. The coil has 40 turns of a 127-μm-diameter copper wire. Wireless sensing is demonstrated in liquid by monitoring the variation in the resonant frequency of the tank via an external coil that is magnetically coupled with the tank. The sensitivity at room temperature is measured to be 23-33 ppm/KPa over a dynamic range of 340 KPa, which is shown to match a theoretical estimation. Temperature dependence of the tank is experimentally evaluated. PMID:27879824
Micromachined Fluid Inertial Sensors
Liu, Shiqiang; Zhu, Rong
2017-01-01
Micromachined fluid inertial sensors are an important class of inertial sensors, which mainly includes thermal accelerometers and fluid gyroscopes, which have now been developed since the end of the last century for about 20 years. Compared with conventional silicon or quartz inertial sensors, the fluid inertial sensors use a fluid instead of a solid proof mass as the moving and sensitive element, and thus offer advantages of simple structures, low cost, high shock resistance, and large measurement ranges while the sensitivity and bandwidth are not competitive. Many studies and various designs have been reported in the past two decades. This review firstly introduces the working principles of fluid inertial sensors, followed by the relevant research developments. The micromachined thermal accelerometers based on thermal convection have developed maturely and become commercialized. However, the micromachined fluid gyroscopes, which are based on jet flow or thermal flow, are less mature. The key issues and technologies of the thermal accelerometers, mainly including bandwidth, temperature compensation, monolithic integration of tri-axis accelerometers and strategies for high production yields are also summarized and discussed. For the micromachined fluid gyroscopes, improving integration and sensitivity, reducing thermal errors and cross coupling errors are the issues of most concern. PMID:28216569
Technical Digest of the 1998 Summer Topical Meeting on Organic Optics and Optoelectronics
1998-07-01
substantially larger voltages (~2x), however, signal distortion and inter- symbol interference due to multiple RF reflections limit their...technology as data page composers. Texas Instrument’s DMD 0-7803-4953-9/98$10.00©1998 IEEE system has already been used in this capacity in several... lithography for fabricating and integrating the heads and sliders. The application of MEMS components and micromachined optical bench packaging techniques
Thermal Switch for Satellite Temperature Control
NASA Technical Reports Server (NTRS)
Ziad, H.; Slater, T.; vanGerwen, P.; Masure, E.; Preudhomme, F.; Baert, K.
1995-01-01
An active radiator tile (ART) thermal valve has been fabricated using silicon micromachining. Intended for orbital satellite heat control applications, the operational principal of the ART is to control heat flow between two thermally isolated surfaces by bring the surfaces into intimate mechanical contact using electrostatic actuation. Prototype devices have been tested in a vacuum and demonstrate thermal actuation voltages as low as 40 volts, very good thermal insulation in the OFF state, and a large increase in radiative heat flow in the ON state. Thin, anodized aluminum was developed as a coating for high infrared emissivity and high solar reflectance.
Micromachined electrostatic vertical actuator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.
A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less
Micromachined electrostatic vertical actuator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.P.; Sommargren, G.E.; McConaghy, C.F.
A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion, micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less
NASA Astrophysics Data System (ADS)
Kamei, Toshihiro; Wada, Takehito
2006-09-01
A 5.8-μm-thick SiO2/Ta2O5 multilayer optical interference filter was monolithically integrated and micromachined on a hydrogenated amorphous Si (a-Si :H) pin photodiode to form a fluorescence detector. A microfluidic electrophoresis device was mounted on a detection platform comprising a fluorescence-collecting half-ball lens and the micromachined fluorescence detector. The central aperture of the fluorescence detector allows semiconductor laser light to pass up through the detector and to irradiate an electrophoretic separation channel. The limit of detection is as low as 7nM of the fluorescein solution, and high-speed DNA fragment sizing can be achieved with high separation efficiency. The micromachined a-Si :H fluorescence detector exhibits high sensitivity for practical fluorescent labeling dyes as well as integration flexibility on various substances, making it ideal for application to portable microfluidic bioanalysis devices.
The Laser MicroJet (LMJ): a multi-solution technology for high quality micro-machining
NASA Astrophysics Data System (ADS)
Mai, Tuan Anh; Richerzhagen, Bernold; Snowdon, Paul C.; Wood, David; Maropoulos, Paul G.
2007-02-01
The field of laser micromachining is highly diverse. There are many different types of lasers available in the market. Due to their differences in irradiating wavelength, output power and pulse characteristic they can be selected for different applications depending on material and feature size [1]. The main issues by using these lasers are heat damages, contamination and low ablation rates. This report examines on the application of the Laser MicroJet(R) (LMJ), a unique combination of a laser beam with a hair-thin water jet as a universal tool for micro-machining of MEMS substrates, as well as ferrous and non-ferrous materials. The materials include gallium arsenide (GaAs) & silicon wafers, steel, tantalum and alumina ceramic. A Nd:YAG laser operating at 1064 nm (infra red) and frequency doubled 532 nm (green) were employed for the micro-machining of these materials.
A front-end wafer-level microsystem packaging technique with micro-cap array
NASA Astrophysics Data System (ADS)
Chiang, Yuh-Min
2002-09-01
The back-end packaging process is the remaining challenge for the micromachining industry to commercialize microsystem technology (MST) devices at low cost. This dissertation presents a novel wafer level protection technique as a final step of the front-end fabrication process for MSTs. It facilitates improved manufacturing throughput and automation in package assembly, wafer level testing of devices, and enhanced device performance. The method involves the use of a wafer-sized micro-cap array, which consists of an assortment of small caps micro-molded onto a material with adjustable shapes and sizes to serve as protective structures against the hostile environments during packaging. The micro-cap array is first constructed by a micromachining process with micro-molding technique, then sealed to the device wafer at wafer level. Epoxy-based wafer-level micro cap array has been successfully fabricated and showed good compatibility with conventional back-end packaging processes. An adhesive transfer technique was demonstrated to seal the micro cap array with a MEMS device wafer. No damage or gross leak was observed while wafer dicing or later during a gross leak test. Applications of the micro cap array are demonstrated on MEMS, microactuators fabricated using CRONOS MUMPS process. Depending on the application needs, the micro-molded cap can be designed and modified to facilitate additional component functions, such as optical, electrical, mechanical, and chemical functions, which are not easily achieved in the device by traditional means. Successful fabrication of a micro cap array comprised with microlenses can provide active functions as well as passive protection. An optical tweezer array could be one possibility for applications of a micro cap with microlenses. The micro cap itself could serve as micro well for DNA or bacteria amplification as well.
Novel CAD/CAM rapid prototyping of next-generation biomedical devices
NASA Astrophysics Data System (ADS)
Doraiswamy, Anand
An aging population with growing healthcare needs demands multifaceted tools for diagnosis and treatment of health conditions. In the near-future, drug-administration devices, implantable devices/sensors, enhanced prosthesis, artificial and unique functional tissue constructs will become increasingly significant. Conventional technologies for mass-produced implants do not adequately take individual patient anatomy into consideration. Development of novel CAD/CAM rapid prototyping techniques may significantly accelerate progress of these devices for next-generation patient-care. In this dissertation, several novel rapid prototyping techniques have been introduced for next-generation biomedical applications. Two-photon polymerization was developed to microfabricate scaffolds for tissue engineering, microneedles for drug-delivery and ossicular replacement prostheses. Various photoplymers were evaluated for feasibility, mechanical properties, cytotoxicity, and surface properties. Laser direct write using MDW was utilized for developing microstructures of bioceramics such as hydroxyapatite, and viable mammalian osteosarcoma cells. CAD/CAM laser micromachining (CLM) was developed to engineer biointerfaces as surface recognition regions for differential adherence of cells and growth into tissue-like networks. CLM was also developed for engineering multi-cellular vascular networks. Cytotoxic evaluations and growth studies demonstrated VEGF-induced proliferation of HAAE-1 human aortic endothelial cells with inhibition of HA-VSMC human aortic smooth muscle cells. Finally, piiezoelectric inkjet printing was developed for controlled administration of natural and synthetic adhesives to overcome several problems associated with conventional tissue bonding materials, and greatly improve wound-repair in next generation eye repair, fracture fixation, organ fixation, wound closure, tissue engineering, and drug delivery devices.
Effect of Axial Force on the Performance of Micromachined Vibratory Rate Gyroscopes
Hou, Zhanqiang; Xiao, Dingbang; Wu, Xuezhong; Dong, Peitao; Chen, Zhihua; Niu, Zhengyi; Zhang, Xu
2011-01-01
It is reported in the published literature that the resonant frequency of a silicon micromachined gyroscope decreases linearly with increasing temperature. However, when the axial force is considerable, the resonant frequency might increase as the temperature increases. The axial force is mainly induced by thermal stress due to the mismatch between the thermal expansion coefficients of the structure and substrate. In this paper, two types of micromachined suspended vibratory gyroscopes with slanted beams were proposed to evaluate the effect of the axial force. One type was suspended with a clamped-free (C-F) beam and the other one was suspended with a clamped-clamped (C-C) beam. Their drive modes are the bending of the slanted beam, and their sense modes are the torsion of the slanted beam. The relationships between the resonant frequencies of the two types were developed. The prototypes were packaged by vacuum under 0.1 mbar and an analytical solution for the axial force effect on the resonant frequency was obtained. The temperature dependent performances of the operated mode responses of the micromachined gyroscopes were measured. The experimental values of the temperature coefficients of resonant frequencies (TCF) due to axial force were 101.5 ppm/°C for the drive mode and 21.6 ppm/°C for the sense mode. The axial force has a great influence on the modal frequency of the micromachined gyroscopes suspended with a C-C beam, especially for the flexure mode. The quality factors of the operated modes decreased with increasing temperature, and changed drastically when the micromachined gyroscopes worked at higher temperatures. PMID:22346578
NASA Astrophysics Data System (ADS)
Dean, Robert; Flowers, George; Sanders, Nicole; MacAllister, Ken; Horvath, Roland; Hodel, A. S.; Johnson, Wayne; Kranz, Michael; Whitley, Michael
2005-05-01
Some harsh environments, such as those encountered by aerospace vehicles and various types of industrial machinery, contain high frequency/amplitude mechanical vibrations. Unfortunately, some very useful components are sensitive to these high frequency mechanical vibrations. Examples include MEMS gyroscopes and resonators, oscillators and some micro optics. Exposure of these components to high frequency mechanical vibrations present in the operating environment can result in problems ranging from an increased noise floor to component failure. Passive micromachined silicon lowpass filter structures (spring-mass-damper) have been demonstrated in recent years. However, the performance of these filter structures is typically limited by low damping (especially if operated in near-vacuum environments) and a lack of tunability after fabrication. Active filter topologies, such as piezoelectric, electrostrictive-polymer-film and SMA have also been investigated in recent years. Electrostatic actuators, however, are utilized in many micromachined silicon devices to generate mechanical motion. They offer a number of advantages, including low power, fast response time, compatibility with silicon micromachining, capacitive position measurement and relative simplicity of fabrication. This paper presents an approach for realizing active micromachined mechanical lowpass vibration isolation filters by integrating an electrostatic actuator with the micromachined passive filter structure to realize an active mechanical lowpass filter. Although the electrostatic actuator can be used to adjust the filter resonant frequency, the primary application is for increasing the damping to an acceptable level. The physical size of these active filters is suitable for use in or as packaging for sensitive electronic and MEMS devices, such as MEMS vibratory gyroscope chips.
Assessment of laser ablation techniques in a-si technologies for position-sensor development
NASA Astrophysics Data System (ADS)
Molpeceres, C.; Lauzurica, S.; Ocana, J. L.; Gandia, J. J.; Urbina, L.; Carabe, J.
2005-07-01
Laser micromachining of semiconductor and Transparent Conductive Oxides (TCO) materials is very important for the practical applications in photovoltaic industry. In particular, a problem of controlled ablation of those materials with minimum of debris and small heat affected zone is one of the most vital for the successful implementation of laser micromachining. In particular, selective ablation of thin films for the development of new photovoltaic panels and sensoring devices based on amorphous silicon (a-Si) is an emerging field, in which laser micromachining systems appear as appropriate tools for process development and device fabrication. In particular, a promising application is the development of purely photovoltaic position sensors. Standard p-i-n or Schottky configurations using Transparent Conductive Oxides (TCO), a-Si and metals are especially well suited for these applications, appearing selective laser ablation as an ideal process for controlled material patterning and isolation. In this work a detailed study of laser ablation of a widely used TCO, Indium-tin-oxide (ITO), and a-Si thin films of different thicknesses is presented, with special emphasis on the morphological analysis of the generated grooves. The profiles of ablated grooves have been studied in order to determine the best processing conditions, i.e. laser pulse energy and wavelength, and to asses this technology as potentially competitive to standard photolithographic processes. The encouraging results obtained, with well defined ablation grooves having thicknesses in the order of 10 μm both in ITO and a-Si, open up the possibility of developing a high-performance double Schottky photovoltaic matrix position sensor.
A novel electron tunneling infrared detector
NASA Technical Reports Server (NTRS)
Kenny, T. W.; Waltman, S. B.; Reynolds, J. K.; Kaiser, W. J.
1990-01-01
The pneumatic infrared detector, originally developed by Golay in the late 1940s, uses the thermal expansion of one cm(exp 3) of xenon at room temperature to detect the heat deposited by infrared radiation. This detector was limited by thermal fluctuations within a 10 Hz bandwidth, but suffered from long thermal time constants and a fragile structure. Nevertheless, it represents the most sensitive room temperature detector currently available in the long wavelength infrared (LWIR). Fabrication of this type of detector on smaller scales has been limited by the lack of a suitably sensitive transducer. Researchers designed a detector based on this principle, but which is constructed entirely from micromachined silicon, and uses a vacuum tunneling transducer to detect the expansion of the trapped gas. Because this detector is fabricated using micromachining techniques, miniaturization and integration into one and two-dimensional arrays is feasible. The extreme sensitivity of vacuum tunneling to changes in electrode separation will allow a prototype of this detector to operate in the limit of thermal fluctuations over a 10 kHz bandwidth. A calculation of the predicted response and noise of the prototype is presented with the general formalism of thermal detectors. At present, most of the components of the prototype have been fabricated and tested independently. In particular, a characterization of the micromachined electron tunneling transducer has been carried out. The measured noise in the tunnel current is within a decade of the limit imposed by shot noise, and well below the requirements for the operation of an infrared detector with the predicted sensitivity. Assembly and characterization of the prototype infrared detector will be carried out promptly.
NASA Astrophysics Data System (ADS)
Liang, Q.; Wu, W.; Zhang, D.; Wei, B.; Sun, W.; Wang, Y.; Ge, Y.
2015-10-01
Roughness, which can represent the trade-off between manufacturing cost and performance of mechanical components, is a critical predictor of cracks, corrosion and fatigue damage. In order to measure polished or super-finished surfaces, a novel touch probe based on three-component force sensor for characterizing and quantifying surface roughness is proposed by using silicon micromachining technology. The sensor design is based on a cross-beam structure, which ensures that the system possesses high sensitivity and low coupling. The results show that the proposed sensor possesses high sensitivity, low coupling error, and temperature compensation function. The proposed system can be used to investigate micromechanical structures with nanometer accuracy.
A 100 electrode intracortical array: structural variability.
Campbell, P K; Jones, K E; Normann, R A
1990-01-01
A technique has been developed for fabricating three dimensional "hair brush" electrode arrays from monocrystalline silicon blocks. Arrays consist of a square pattern of 100 penetrating electrodes, with 400 microns interelectrode spacing. Each electrode is 1.5mm in length and tapers from about 100 microns at its base to a sharp point at the tip. The tips of each electrode are coated with platinum and the entire structure, with the exception of the tips, is insulated with polyimide. Electrical connection to selected electrodes is made by wire bonding polyimide insulated 25 microns diameter gold lead wires to bonding pads on the rear surface of the array. As the geometrical characteristics of the electrodes in such an aray will influence their electrical properties (such as impedance, capacitance, spreading resistance in an electrolyte, etc.) it is desirable that such an array have minimal variability in geometry from electrode to electrode. A study was performed to determine the geometrical variability resulting from our micromachining techniques. Measurements of the diameter of each of the 100 electrodes were made at various planes above the silicon substrate of the array. For the array that was measured, the standard deviation of the diameters was approximately 9% of the mean diameter near the tip, 8% near the middle, and 6% near the base. We describe fabrication techniques which should further reduce these variabilities.
Silicon sample holder for molecular beam epitaxy on pre-fabricated integrated circuits
NASA Technical Reports Server (NTRS)
Hoenk, Michael E. (Inventor); Grunthaner, Paula J. (Inventor); Grunthaner, Frank J. (Inventor)
1994-01-01
The sample holder of the invention is formed of the same semiconductor crystal as the integrated circuit on which the molecular beam expitaxial process is to be performed. In the preferred embodiment, the sample holder comprises three stacked micro-machined silicon wafers: a silicon base wafer having a square micro-machined center opening corresponding in size and shape to the active area of a CCD imager chip, a silicon center wafer micro-machined as an annulus having radially inwardly pointing fingers whose ends abut the edges of and center the CCD imager chip within the annulus, and a silicon top wafer micro-machined as an annulus having cantilevered membranes which extend over the top of the CCD imager chip. The micro-machined silicon wafers are stacked in the order given above with the CCD imager chip centered in the center wafer and sandwiched between the base and top wafers. The thickness of the center wafer is about 20% less than the thickness of the CCD imager chip. Preferably, four titanium wires, each grasping the edges of the top and base wafers, compress all three wafers together, flexing the cantilever fingers of the top wafer to accommodate the thickness of the CCD imager chip, acting as a spring holding the CCD imager chip in place.
NASA Astrophysics Data System (ADS)
Makimura, Tetsuya; Urai, Hikari; Niino, Hiroyuki
2017-03-01
Polydimethylsiloxane (PDMS) is a material used for cell culture substrates / bio-chips and micro total analysis systems / lab-on-chips due to its flexibility, chemical / thermo-dynamic stability, bio-compatibility, transparency and moldability. For further development, it is inevitable to develop a technique to fabricate precise three dimensional structures on micrometer-scale at high aspect ratio. In the previous works, we reported a technique for high-quality micromachining of PDMS without chemical modification, by means of photo direct machining using laser plasma EUV sources. In the present work, we have investigated fabrication of through holes. The EUV radiations around 10 nm were generated by irradiation of Ta targets with Nd:YAG laser light (10 ns, 500 mJ/pulse). The generated EUV radiations were focused using an ellipsoidal mirror. It has a narrower incident angle than those in the previous works in order to form a EUV beam with higher directivity, so that higher aspect structures can be fabricated. The focused EUV beam was incident on PDMS sheets with a thickness of 15 micrometers, through holes in a contact mask placed on top of them. Using a contact mask with holes with a diameter of three micrometers, complete through holes with a diameter of two micrometers are fabricated in the PDMS sheet. Using a contact mask with two micrometer holes, however, ablation holes almost reaches to the back side of the PDMS sheet. The fabricated structures can be explained in terms of geometrical optics. Thus, we have developed a technique for micromachining of PDMS sheets at high aspect ratios.
Hampton, Christina Y.; Forbes, Thomas P.; Varady, Mark J.; Meacham, J. Mark; Fedorov, Andrei G.; Degertekin, F. Levent; Fernández, Facundo M.
2008-01-01
The analytical characterization of a novel ion source for mass spectrometry named Array of Micromachined UltraSonic Electrosprays (AMUSE) is presented here. This is a fundamentally different type of ion generation device, consisting of three major components: 1) a piezoelectric transducer that creates ultrasonic waves at one of the resonant frequencies of the sample-filled device, 2) an array of pyramidally-shaped nozzles micromachined on a silicon wafer, and 3) a spacer which prevents contact between the array and transducer ensuring the transfer of acoustic energy to the sample. A high pressure gradient generated at the apices of the nozzle pyramids forces the periodic ejection of multiple droplet streams from the device. With this device, the processes of droplet formation and droplet charging are separated, hence, the limitations of conventional electrospray-type ion sources, including the need for high charging potentials and the addition of organic solvent to decrease surface tension can be avoided. In this work, a Venturi device is coupled with AMUSE in order to increase desolvation, droplet focusing, and signal stability. Results show that ionization of model peptides and small tuning molecules is possible with DC charging potentials of 100 VDC or less. Ionization in RF-only mode (without DC biasing) was also possible. It was observed that, when combined with AMUSE, the Venturi device provides a 10-fold gain in signal-to-noise ratio for 90% aqueous sample solutions. Further reduction in the diameter of the orifices of the micromachined arrays, led to an additional signal gain of at least 3 orders of magnitude, a 2- to 10-fold gain in the signal-to-noise ratio, and an improvement in signal stability from 47% to 8.5% RSD. The effectiveness of this device for the soft ionization of model proteins in aqueous media, such as cytochrome C was also examined, yielding spectra with an average charge state of 8.8 when analyzed with a 100 VDC charging potential. Ionization of model proteins was also possible in RF-only mode. PMID:17914864
Qiu, Yongqiang; Gigliotti, James V.; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E. M.; Cochran, Sandy; Trolier-McKinstry, Susan
2015-01-01
Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed. PMID:25855038
Qiu, Yongqiang; Gigliotti, James V; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E M; Cochran, Sandy; Trolier-McKinstry, Susan
2015-04-03
Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed.
Microfluidic systems with embedded materials and structures and method thereof
Morse, Jeffrey D [Martinez, CA; Rose, Klint A [Boston, MA; Maghribi, Mariam [Livermore, CA; Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Hamilton, Julie [Tracy, CA; Graff, Robert T [Modesto, CA; Jankowski, Alan [Livermore, CA
2007-03-06
Described herein is a process for fabricating microfluidic systems with embedded components in which micron-scale features are molded into the polymeric material polydimethylsiloxane (PDMS). Micromachining is used to create a mold master and the liquid precursors for PDMS are poured over the mold and allowed to cure. The PDMS is then removed form the mold and bonded to another material such as PDMS, glass, or silicon after a simple surface preparation step to form sealed microchannels.
Development of a novel translation micromirror for adaptive optics
NASA Astrophysics Data System (ADS)
He, Siyuan; Ben Mrad, Ridha
2003-10-01
Conventional translation micromirrors for adaptive optics use attractive electrostatic force and therefore have two limitations: 1) the stroke is limited to less than one third of the initial gap distance between the mirror plate and the substrate. Normally the stroke is in the range of submicrometers; 2) stiction happens during operation. A novel translation micromirror, which uses a repulsive electrostatic force, is presented in this paper. This novel translation micromirror completely overcomes the limitations associated with conventional translation micromirrors and its stroke is not limited by the initial gap distance between the mirror plate and the substrate and therefore is able to achieve a much larger vertical stroke to modulate lights over a wider spectrum than that achieved by conventional translation micromirrors. The novel translation micromirror has no stiction problem and is highly compatible with mature surface micromachining technology. An analytical model is derived for the novel translation micromirror and prototypes are fabricated. The prototype of the novel translation micromirror, which is deliberately not optimized so it could be fabricated using MUMPS, achieved a vertical stroke of 1.75μm using a driving voltage of 50 volts, which is three times the stroke of conventional MUMPS translation micromirrors. It is expected that if standard surface micromachining is used instead of MUMPs, the design of the novel translation micromirror can be optimized and a much larger vertical stroke can be achieved.
Micromachined silicon electrostatic chuck
Anderson, Robert A.; Seager, Carleton H.
1996-01-01
An electrostatic chuck is faced with a patterned silicon plate 11, created y micromachining a silicon wafer, which is attached to a metallic base plate 13. Direct electrical contact between the chuck face 15 (patterned silicon plate's surface) and the silicon wafer 17 it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands 19 that protrude less than 5 micrometers from the otherwise flat surface of the chuck face 15. The islands 19 may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face 15 and wafer 17 contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands 19 are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face 15, typically 0.5 to 5 percent. The pattern of the islands 19, together with at least one hole 12 bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas.
Curve micromachining on the edges of nitinol biliary stent by ultrashort pulses laser
NASA Astrophysics Data System (ADS)
Hung, Chia-Hung; Chang, Fuh-Yu
2017-05-01
In this study, a curve micromaching process on the edges of nitinol biliary stent was proposed by a femtosecond laser system with a galvano-mirror scanner. Furthermore, the outer diameter of nitinol tube was 5.116 mm, its inner diameter was 4.648 mm, and its length was 100 mm. The initial fabricated results of nitinol biliary stent represented that the edges of nitinol biliary stent were steep and squared by femtosecond laser. However, the results also indicated that if the laser movement path was precisely programmed by utilizing the unique characteristic of Gaussian beam of femtosecond laser with aligning the edges of stent, the radius of edges enhanced significantly from 9 μm to 42.5 μm. As a result, the edges of nitinol biliary stent can be successfully fabricated from squared edges to rounded-shaped edges with precise dimension, clean surface morphology, and minimal heat-affected zone remained. Hence, the nitinol biliary stent, after femtosecond laser micromachining, would not need any further post-process to remove heat-affected zone and the squared edges.
Plastic Deformation of Micromachined Silicon Diaphragms with a Sealed Cavity at High Temperatures
Ren, Juan; Ward, Michael; Kinnell, Peter; Craddock, Russell; Wei, Xueyong
2016-01-01
Single crystal silicon (SCS) diaphragms are widely used as pressure sensitive elements in micromachined pressure sensors. However, for harsh environments applications, pure silicon diaphragms are hardly used because of the deterioration of SCS in both electrical and mechanical properties. To survive at the elevated temperature, the silicon structures must work in combination with other advanced materials, such as silicon carbide (SiC) or silicon on insulator (SOI), for improved performance and reduced cost. Hence, in order to extend the operating temperatures of existing SCS microstructures, this work investigates the mechanical behavior of pressurized SCS diaphragms at high temperatures. A model was developed to predict the plastic deformation of SCS diaphragms and was verified by the experiments. The evolution of the deformation was obtained by studying the surface profiles at different anneal stages. The slow continuous deformation was considered as creep for the diaphragms with a radius of 2.5 mm at 600 °C. The occurrence of plastic deformation was successfully predicted by the model and was observed at the operating temperature of 800 °C and 900 °C, respectively. PMID:26861332
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp; Research Center for Advanced Science and Technology; Miura, Atsushi
Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed tomore » the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics.« less
Apparatus for precision micromachining with lasers
Chang, J.J.; Dragon, E.P.; Warner, B.E.
1998-04-28
A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialographic sections of machined parts show little (submicron scale) recast layer and heat affected zone. 1 fig.
Apparatus for precision micromachining with lasers
Chang, Jim J.; Dragon, Ernest P.; Warner, Bruce E.
1998-01-01
A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialogroaphic sections of machined parts show little (submicron scale) recast layer and heat affected zone.
Modeling and experimental study on characterization of micromachined thermal gas inertial sensors.
Zhu, Rong; Ding, Henggao; Su, Yan; Yang, Yongjun
2010-01-01
Micromachined thermal gas inertial sensors based on heat convection are novel devices that compared with conventional micromachined inertial sensors offer the advantages of simple structures, easy fabrication, high shock resistance and good reliability by virtue of using a gaseous medium instead of a mechanical proof mass as key moving and sensing elements. This paper presents an analytical modeling for a micromachined thermal gas gyroscope integrated with signal conditioning. A simplified spring-damping model is utilized to characterize the behavior of the sensor. The model relies on the use of the fluid mechanics and heat transfer fundamentals and is validated using experimental data obtained from a test-device and simulation. Furthermore, the nonideal issues of the sensor are addressed from both the theoretical and experimental points of view. The nonlinear behavior demonstrated in experimental measurements is analyzed based on the model. It is concluded that the sources of nonlinearity are mainly attributable to the variable stiffness of the sensor system and the structural asymmetry due to nonideal fabrication.
Zero dead volume tube to surface seal
Benett, William J.; Folta, James A.
2000-01-01
A method and apparatus for connecting a tube to a surface that creates a dead volume seal. The apparatus is composed of three components, a body, a ferrule, and a threaded fitting. The ferrule is compressed onto a tube and a seal is formed between the tube and a device retained in the body by threading the fitting into the body which provides pressure that seals the face of the ferrule to a mating surface on the device. This seal can be used at elevated temperatures depending on the materials used. While the invention has been developed for use with micro-machined silicon wafers used in Capillary Gas Chromatograph (GC), it can be utilized anywhere for making a gas or fluid face seal to the surface of a device that has near zero dead volume.
Liu, Changgeng; Djuth, Frank T.; Zhou, Qifa; Shung, K. Kirk
2014-01-01
Several micromachining techniques for the fabrication of high-frequency piezoelectric composite ultrasonic array transducers are described in this paper. A variety of different techniques are used in patterning the active piezoelectric material, attaching backing material to the transducer, and assembling an electronic interconnection board for transmission and reception from the array. To establish the feasibility of the process flow, a hybrid test ultrasound array transducer consisting of a 2-D array having an 8 × 8 element pattern and a 5-element annular array was designed, fabricated, and assessed. The arrays are designed for a center frequency of ~60 MHz. The 2-D array elements are 105 × 105 μm in size with 5-μm kerfs between elements. The annular array surrounds the square 2-D array and provides the option of transmitting from the annular array and receiving with the 2-D array. Each annular array element has an area of 0.71 mm2 with a 16-μm kerf between elements. The active piezoelectric material is (1 − x) Pb(Mg1/3Nb2/3)O3−xPbTiO3 (PMN-PT)/epoxy 1–3 composite with a PMN-PT pillar lateral dimension of 8 μm and an average gap width of ~4 μm, which was produced by deep reactive ion etching (DRIE) dry etching techniques. A novel electric interconnection strategy for high-density, small-size array elements was proposed. After assembly, the array transducer was tested and characterized. The capacitance, pulse–echo responses, and crosstalk were measured for each array element. The desired center frequency of ~60 MHz was achieved and the −6-dB bandwidth of the received signal was ~50%. At the center frequency, the crosstalk between adjacent 2-D array elements was about −33 dB. The techniques described herein can be used to build larger arrays containing smaller elements. PMID:24297027
Micromachined Thin-Film Sensors for SOI-CMOS Co-Integration
NASA Astrophysics Data System (ADS)
Laconte, Jean; Flandre, D.; Raskin, Jean-Pierre
Co-integration of sensors with their associated electronics on a single silicon chip may provide many significant benefits regarding performance, reliability, miniaturization and process simplicity without significantly increasing the total cost. Micromachined Thin-Film Sensors for SOI-CMOS Co-integration covers the challenges and interests and demonstrates the successful co-integration of gas flow sensors on dielectric membrane, with their associated electronics, in CMOS-SOI technology. We firstly investigate the extraction of residual stress in thin layers and in their stacking and the release, in post-processing, of a 1 μm-thick robust and flat dielectric multilayered membrane using Tetramethyl Ammonium Hydroxide (TMAH) silicon micromachining solution.
Crabtree, H J; Bay, S J; Lewis, D F; Zhang, J; Coulson, L D; Fitzpatrick, G A; Delinger, S L; Harrison, D J; Dovichi, N J
2000-04-01
A capillary array electrophoresis DNA sequencer is reported based on a micromachined sheath-flow cuvette as the detection chamber. This cuvette is equipped with a set of micromachined features that hold the capillaries in precise registration to ensure uniform spacing between the capillaries, in order to generate uniform hydrodynamic flow in the cuvette. A laser beam excites all of the samples simultaneously, and a microscope objective images fluorescence onto a set of avalanche photodiodes, which operate in the analog mode. A high-gain transimpedance amplifier is used for each photodiode, providing high duty-cycle detection of fluorescence.
A silicon micromachined resonant pressure sensor
NASA Astrophysics Data System (ADS)
Tang, Zhangyang; Fan, Shangchun; Cai, Chenguang
2009-09-01
This paper describes the design, fabrication and test of a silicon micromachined resonant pressure sensor. A square membrane and a doubly clamped resonant beam constitute a compound structure. The former senses the pressure directly, while the latter changes its resonant frequency according to deformation of the membrane. The final output relation between the resonant frequency and the applied pressure is deducted according to the structure mechanical properties. Sensors are fabricated by micromachining technology, and then sealed in vaccum. These sensors are tested by open-loop and close-loop system designed on purpose. The experiment results demonstrate that the sensor has a sensitivity of 49.8Hz/kPa and repeatability of 0.08%.
Modeling topology formation during laser ablation
NASA Astrophysics Data System (ADS)
Hodapp, T. W.; Fleming, P. R.
1998-07-01
Micromachining high aspect-ratio structures can be accomplished through ablation of surfaces with high-powered lasers. Industrial manufacturers now use these methods to form complex and regular surfaces at the 10-1000 μm feature size range. Despite its increasingly wide acceptance on the manufacturing floor, the underlying photochemistry of the ablation mechanism, and hence the dynamics of the machining process, is still a question of considerable debate. We have constructed a computer model to investigate and predict the topological formation of ablated structures. Qualitative as well as quantitative agreement with excimer-laser machined polyimide substrates has been demonstrated. This model provides insights into the drilling process for high-aspect-ratio holes.
Simple method enabling pulse on command from high power, high frequency lasers
NASA Astrophysics Data System (ADS)
Baer, David J.; Marshall, Graham D.; Coutts, David W.; Mildren, Richard P.; Withford, Michael J.
2006-09-01
A method for addressing individual laser pulses in high repetition frequency systems using an intracavity optical chopper and novel electronic timing system is reported. This "pulse on command" capability is shown to enable free running and both subharmonic pulse rate and burst mode operation of a high power, high pulse frequency copper vapor laser while maintaining a fixed output pulse energy. We demonstrate that this technique can be used to improve feature finish when laser micromachining metal.
Micromachined Resonators of High Q-factor Based on Atomic Layer Deposited Alumina
2009-01-01
control. These characteristics are appeal- ing for nano -scale mechanical devices. Previously, ALD Al2O3 has been used in MEMS as a protective coating [3...electrostatically actuated nano -membrane made of ALD Al2O3 has been demon- strated [5]. With an ALD hydrophobic coating , the ALD Al2O3 has been demonstrated as a... nano -devices made of ALD alumina coated with Cr metallic layer. Furthermore, the fabrication and characterization techniques developed here are
Micromachined Artificial Haircell
NASA Technical Reports Server (NTRS)
Liu, Chang (Inventor); Engel, Jonathan (Inventor); Chen, Nannan (Inventor); Chen, Jack (Inventor)
2010-01-01
A micromachined artificial sensor comprises a support coupled to and movable with respect to a substrate. A polymer, high-aspect ratio cilia-like structure is disposed on and extends out-of-plane from the support. A strain detector is disposed with respect to the support to detect movement of the support.
Fluorescence of silicon nanoparticles prepared by nanosecond pulsed laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chunyang, E-mail: chunyangliu@126.com; Sui, Xin; Yang, Fang
2014-03-15
A pulsed laser fabrication method is used to prepare fluorescent microstructures on silicon substrates in this paper. A 355 nm nanosecond pulsed laser micromachining system was designed, and the performance was verified and optimized. Fluorescence microscopy was used to analyze the photoluminescence of the microstructures which were formed using the pulsed laser processing technique. Photoluminescence spectra of the microstructure reveal a peak emission around 500 nm, from 370 nm laser irradiation. The light intensity also shows an exponential decay with irradiation time, which is similar to attenuation processes seen in porous silicon. The surface morphology and chemical composition of themore » microstructure in the fabricated region was also analyzed with multifunction scanning electron microscopy. Spherical particles are produced with diameters around 100 nm. The structure is compared with porous silicon. It is likely that these nanoparticles act as luminescence recombination centers on the silicon surface. The small diameter of the particles modifies the band gap of silicon by quantum confinement effects. Electron-hole pairs recombine and the fluorescence emission shifts into the visible range. The chemical elements of the processed region are also changed during the interaction between laser and silicon. Oxidation and carbonization play an important role in the enhancement of fluorescence emission.« less
NASA Astrophysics Data System (ADS)
Cunningham, Brian T.; Regan, Robert A.; Clapp, Christopher; Hildebrant, Eric; Weinberg, Marc S.; Williams, John
1999-07-01
Assessing the medical condition of battlefield personnel requires the development of rapid, portable biological diagnostic assays for a wide variety of antigens and enzymes. Ideally, such an assay would be inexpensive, small, and require no added reagents while maintaining the sensitivity and accuracy of laboratory-based assays. In this work, a microelectromechanical (MEMS) based biological assay sensor is presented which is expected to meet the above requirements. The sensor is a thin silicon membrane resonator (SMR) which registers a decrease in resonant frequency when mass is adsorbed onto its surface. By coating the sensor surface with a monolayer of antibody, for example, we have detected the corresponding antigen with a detection resolution of 0.25 ng/ml in phosphate buffer solution. Micromachining techniques are being used to integrate many (64 elements on the first test chip) identical SMR sensors into a single silicon chip which would be capable of simultaneously performing a wide variety of biomedical assays. The sensors require only a small printed circuit board and 8V power supply to operate and provide a readout. The presentation will describe the operation of the SMR sensor, the fabrication of the sensor array, and initial test results using commercially available animal immunoglobulins in laboratory-prepared test solutions.
Acoustic backing in 3-D integration of CMUT with front-end electronics.
Berg, Sigrid; Rønnekleiv, Arne
2012-07-01
Capacitive micromachined ultrasonic transducers (CMUTs) have shown promising qualities for medical imaging. However, there are still some problems to be investigated, and some challenges to overcome. Acoustic backing is necessary to prevent SAWs excited in the surface of the silicon substrate from affecting the transmit pattern from the array. In addition, echoes resulting from bulk waves in the substrate must be removed. There is growing interest in integrating electronic circuits to do some of the beamforming directly below the transducer array. This may be easier to achieve for CMUTs than for traditional piezoelectric transducers. We will present simulations showing that the thickness of the silicon substrate and thicknesses and acoustic properties of the bonding material must be considered, especially when designing highfrequency transducers. Through simulations, we compare the acoustic properties of 3-D stacks bonded with three different bonding techniques; solid-liquid interdiffusion (SLID) bonding, direct fusion bonding, and anisotropic conductive adhesives (ACA). We look at a CMUT array with a center frequency of 30 MHz and three silicon wafers underneath, having a total silicon thickness of 100 μm. We find that fusion bonding is most beneficial if we want to prevent surface waves from damaging the array response, but SLID and ACA are also promising if bonding layer thicknesses can be reduced.
NASA Astrophysics Data System (ADS)
Bartnik, Andrzej; Fiedorowicz, Henryk; Jarocki, Roman; Kostecki, Jerzy; Rakowski, Rafał; Szczurek, Mirosław
2005-09-01
Organic polymers (PMMA, PTFE, PET, and PI) are considered as the important materials in microengineering, especially for biological and medical applications. Micromachining of such materials is possible with the use of different techniques that involve electromagnetic radiation or charged particle beams. Another possibility of high aspect ratio micromachining of PTFE is direct photo-etching using synchrotron radiation. X-ray and ultraviolet radiation from other sources, for micromachining of materials by direct photo-etching can be also applied. In this paper we present the results of investigation of a wide band soft X-ray source and its application for direct photo-etching of organic polymers. X-ray radiation in the wavelength range from about 3 nm to 20 nm was produced as a result of irradiation of a double-stream gas puff target with laser pulses of energy 0.8 J and time duration of about 3 ns. The spectra, plasma size and absolute energies of soft X-ray pulses for different gas puff targets were measured. Photo-etching process of polymers irradiated with the use of the soft X-ray radiation was analyzed and investigated. Samples of organic polymers were placed inside a vacuum chamber of the x-ray source, close to the gas puff target at the distance of about 2 cm from plasmas created by focused laser pulses. A fine metal grid placed in front of the samples was used as a mask to form structures by x-ray ablation. The results of photo-etching process for several minutes exposition with l0Hz repetition rate were presented. High ablation efficiency was obtained with the use of the gas puff target containing xenon surrounded by helium.
Biasing of Capacitive Micromachined Ultrasonic Transducers.
Caliano, Giosue; Matrone, Giulia; Savoia, Alessandro Stuart
2017-02-01
Capacitive micromachined ultrasonic transducers (CMUTs) represent an effective alternative to piezoelectric transducers for medical ultrasound imaging applications. They are microelectromechanical devices fabricated using silicon micromachining techniques, developed in the last two decades in many laboratories. The interest for this novel transducer technology relies on its full compatibility with standard integrated circuit technology that makes it possible to integrate on the same chip the transducers and the electronics, thus enabling the realization of extremely low-cost and high-performance devices, including both 1-D or 2-D arrays. Being capacitive transducers, CMUTs require a high bias voltage to be properly operated in pulse-echo imaging applications. The typical bias supply residual ripple of high-quality high-voltage (HV) generators is in the millivolt range, which is comparable with the amplitude of the received echo signals, and it is particularly difficult to minimize. The aim of this paper is to analyze the classical CMUT biasing circuits, highlighting the features of each one, and to propose two novel HV generator architectures optimized for CMUT biasing applications. The first circuit proposed is an ultralow-residual ripple (<5 [Formula: see text]) HV generator that uses an extremely stable sinusoidal power oscillator topology. The second circuit employs a commercially available integrated step-up converter characterized by a particularly efficient switching topology. The circuit is used to bias the CMUT by charging a buffer capacitor synchronously with the pulsing sequence, thus reducing the impact of the switching noise on the received echo signals. The small area of the circuit (about 1.5 cm 2 ) makes it possible to generate the bias voltage inside the probe, very close to the CMUT, making the proposed solution attractive for portable applications. Measurements and experiments are shown to demonstrate the effectiveness of the new approaches presented.
MicroCantilever (MC) based nanomechanical sensor for detection of molecular interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Kyung
Specific aims of this study are to investigate the mechanism governing surface stress generation associated with chemical or molecular binding on functionalized microcantilevers. Formation of affinity complexes on cantilever surfaces leads to charge redistribution, configurational change and steric hindrance between neighboring molecules resulting in surface stress change and measureable cantilever deformation. A novel interferometry technique employing two adjacent micromachined cantilevers (a sensing/reference pair) was utilized to measure the cantilever deformation. The sensing principle is that binding/reaction of specific chemical or biological species on the sensing cantilever transduces to mechanical deformation. The differential bending of the sensing cantilever respect to themore » reference cantilever ensures that measured response is insensitive to environmental disturbances. As a proof of principle for the measurement technique, surface stress changes associated with: self-assembly of alkanethiol, hybridization of ssDNA, and the formation of cocaine-aptamer complexes were measured. Dissociation constant (K d) for each molecular reaction was utilized to estimate the surface coverage of affinity complexes. In the cases of DNA hybridization and cocaine-aptamer binding, measured surface stress was found to be dependent on the surface coverage of the affinity complexes. In order to achieve a better sensitivity for DNA hybridization, immobilization of receptor molecules was modified to enhance the deformation of underlying surface. Single-stranded DNA (ssDNA) strands with thiol-modification on both 3-foot and 5-foot ends were immobilized on the gold surface such that both ends are attached to the gold surface. Immobilization condition was controlled to obtain similar receptor density as single-thiolated DNA strands. Hybridization of double-thiolated DNA strands leads to an almost two orders of magnitude increase in cantilever deformation. In both DNA hybridization and the conventional mode for cocaine detection, the lowest detectable concentration was determined by binding activity between the ligand and receptor molecules. In order to overcome this limitation for cocaine detection, a novel competition sensing mode that relies on rate of aptamers unbinding from the cantilever due to either diffusion or reaction with cocaine as target ligands in solution was investigated. The rate of unbinding is found to be dependent on the concentration of cocaine molecules. A model based on diffusion-reaction equation was developed to explain the experimental observation. Experimental results indicate that the competition mode reduces the lowest detectable threshold to 200 nM which is comparable to that achieved analytical techniques such as mass spectrometry.« less
Microactuateur electrothermique bistable: Etude d'implementation avec une technologie standard CMOS
NASA Astrophysics Data System (ADS)
Ressejac, Isabelle
The general objective of this Ph.D. thesis was to study the implementation of a new type of eletrothermal microactuator. This actuator presents the advantages to be bistable and fabricated in a standard CMOS process, allowing the integration of a microelectronics addressing circuit on the same substrate. Experimental research work, presented in this thesis, relate to the different steps carried out in order to implement this CMOS MEMS device: its theoretical conception, its fabrication with a standard CMOS technology, its micromachining as a post-process, its characterization and its electro-thermo-mechanical modeling. The device was designed and fabricated by using Mitel 1,5 mum CMOS technology and the Can-MEMS service which are both available via the Canadian Microelectronics Corporation. Fabricated monolithically within a standard CMOS process, our microactuator is suitable for large-scale integration due to its small dimensions (length ˜1000 mum and width ˜150 mum). It constitutes the basic component of a N by N matrix controlled by a microelectronic addressing system built on the same substrate. Initially, only one micromachining technique (involving TMAH) was used, and long etching times (>9 h) were requires} in order to release the microstructures. However, the passivation layer from the CMOS process could protect the underlying metal from the TMAH for a sufficient time (only ˜1--2 h). Consequently, we had to develop a micromachining strategy with shorter etching times to allow the complete release of the microstructures without damaging them. Post-processing begins with deposition (by sputtering) of a platinum layer intended to protect the abutment from subsequent etching. Our micromachining strategy is mainly based on the use of a hybrid etching process starting with a first anisotropic TMAH etching followed by a XeF2 isotropic etching. After micromachining, the released microactuator has a significant initial deflection with its tip reaching a height up to a hundred times higher than its thickness. This natural deflection results from the relaxation of internal stresses inside the thin films which are part of the microactuator. These internal stresses are intrinsics to the host CMOS process. We have developed a model of the microactuator's initial deflection using mechanical properties of thin films and dimensions of the structure. Actuation experiments were performed in order to characterize the deflection of the microactuator with respect to the heating of the bilayers (separately and together). We have developed a thermal actuation analytical model for an n-layers multimorph structure, which takes into account the initial deflection resulting from the relaxation of stresses as well as the deflection due to the temperature increase during the electrothermal activation of the bilayers. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; VanderWal, Randall L.; Tomasek, Aaron J.; Sayir, Ali; Farmer, Serene C.
2004-01-01
The prime driving force for using microsystem and micromachine technologies in transport vehicles, such as spacecraft, aircraft, and automobiles, is to reduce the weight, power consumption, and volume of components and systems to lower costs and increase affordability and reliability. However, a number of specific issues need to be addressed with respect to using microsystems and micromachines in aerospace applications--such as the lack of understanding of material characteristics; methods for producing and testing the materials in small batches; the limited proven durability and lifetime of current microcomponents, packaging, and interconnections; a cultural change with respect to system designs; and the use of embedded software, which will require new product assurance guidelines. In regards to material characteristics, there are significant adhesion, friction, and wear issues in using microdevices. Because these issues are directly related to surface phenomena, they cannot be scaled down linearly and they become increasingly important as the devices become smaller. When microsystems have contacting surfaces in relative motion, the adhesion and friction affect performance, energy consumption, wear damage, maintenance, lifetime and catastrophic failure, and reliability. Ceramics, for the most part, do not have inherently good friction and wear properties. For example, coefficients of friction in excess of 0.7 have been reported for ceramics and ceramic composite materials. Under Alternate Fuels Foundation Technologies funding, two-phase oxide ceramics developed for superior high-temperature wear resistance in NASA's High Operating Temperature Propulsion Components (HOTPC) project and new two-layered carbon nanotube (CNT) coatings (CNT topcoat/iron bondcoat/quartz substrate) developed in NASA's Revolutionary Aeropropulsion Concepts (RAC) project have been chosen as a materials couple for aerospace applications, including micromachines, in the nanotechnology lubrication task because of their potential for superior friction and wearf properties in air and in an ultrahigh vacuum, spacelike environment. At the NASA Glenn Research Center, two-phase oxide ceramic eutectics, Al2O3/ZrO2(Y2O3), were directionally solidified using the laser-float-zone process, and carbon nanotubes were synthesized within a high-temperature tube furnace at 800 C. Physical vapor deposition was used to coat all quartz substrates with 5-nm-thick iron as catalyst and bondcoat, which formed iron islands resembling droplets and serving as catalyst particles on the quartz. A series of scanning electron micrographs showing multiwalled carbon nanotubes directionally grown as aligned "nanograss" on quartz is presented. Unidirectional sliding friction eperiments were conducted at Glenn with the two-layered CNT coatings in contact with the two-phase Al2O3/ZrO2(Y2O3) eutectics in air and in ultrachigh vacuum. The main criteria for judging the performance of the materials couple for solid lubrication and antistick applications in a space environment were the coefficient of friction and the wear resistance (reciprocal of wear rate), which had to be less than 0.2 and greater than 10(exp 5) N(raised dot)/cubic millimetes, respectively, in ultrahigh vacuum. In air, the coefficient of friction for the CNT coatings in contact with Al2O3/ZrO2 (Y2O3) eutectics was 0.04, one-fourth of that for quartz. In an ultrahigh vacuum, the coefficient of friction for CNT coatings in contact with Al2O3/ZrO2 (Y2O3) was one-third of that for quartz. The two-phase Al2O3/ZrO2 (Y2O3) eutectic coupled with the two-layered CNT coating met the coefficient of friction and wear resistance criteria both in air and in an ultrahigh vacuum, spacelike environment. This material's couple can dramatically improve the stiction (or adhesion), friction, and wear resistance of the contacting surfaces, which are major issues for microdevices and micromachines.
Microfluidic fuel cell systems with embedded materials and structures and method thereof
Morse, Jeffrey D.; Rose, Klint A; Maghribi, Mariam; Benett, William; Krulevitch, Peter; Hamilton, Julie; Graff, Robert T.; Jankowski, Alan
2005-07-26
Described herein is a process for fabricating microfluidic systems with embedded components in which micron-scale features are molded into the polymeric material polydimethylsiloxane (PDMS). Micromachining is used to create a mold master and the liquid precursors for PDMS are poured over the mold and allowed to cure. The PDMS is then removed form the mold and bonded to another material such as PDMS, glass, or silicon after a simple surface preparation step to form sealed microchannels.
Micromachined TWTs for THz Radiation Sources
NASA Technical Reports Server (NTRS)
Booske, John H.; vanderWeide, Daniel W.; Kory, Carol L.; Limbach, S.; Downey, Alan (Technical Monitor)
2001-01-01
The Terahertz (THz) region of the electromagnetic spectrum (about 300 - 3000 GHz in frequency or about 0.1 - 1 mm free space wavelength) has enormous potential for high-data-rate communications, spectroscopy, astronomy, space research, medicine, biology, surveillance, remote sensing, industrial process control, etc. It has been characterized as the most scientifically rich, yet under-utilized, region of the electromagnetic spectrum. The most critical roadblock to full exploitation of the THz band is lack of coherent radiation sources that are powerful (0.001 - 1.0 W continuous wave), efficient (> 1%), frequency agile (instantaneously tunable over 1% bandwidths or more), reliable, and comparatively inexpensive. To develop vacuum electron device (VED) radiation sources satisfying these requirements, fabrication and packaging approaches must be heavily considered to minimize costs, in addition to the basic interaction physics and circuit design. To minimize size of the prime power supply, beam voltage must be minimized, preferably 10 kV. Solid state sources satisfy the low voltage requirement, but are many orders of magnitude below power, efficiency, and bandwidth requirements. On the other hand, typical fast-wave VED sources in this regime (e.g., gyrotrons, FELs) tend to be large, expensive, high voltage and very high power devices unsuitable for most of the applications cited above. VEDs based on grating or inter-digital (ID) circuits have been researched and developed. However, achieving forward-wave amplifier operation with instantaneous fractional bandwidths > 1% is problematic for these devices with low-energy (< 15 kV) electron beams. Moreover, the interaction impedance is quite low unless the beam-circuit spacing is kept particularly narrow, often leading to significant beam interception. One solution to satisfy the THz source requirements mentioned above is to develop micromachined VEDs, or "micro-VEDs". Among other benefits, micro-machining technologies provide superior high frequency wall conductivity as a result of superior surface smoothness compared with conventional mechanical or electric discharge machining approaches. Micro-VED technologies are already being applied to the development of millimeter-wave klystrons at Stanford Linear Accelerator Center and submillimeter-wave klystrons at the University of Leeds. We are investigating the use of micro-machining technologies to develop THz regime TWTs, with emphasis on folded-waveguide TWTs. The folded-waveguide TWT (FW-TWT) has several features that make it attractive for THz-regime micro-VED applications. It is a relatively simple circuit to design and fabricate, it is amenable to precision pattern replication by micro-machining, and it is has been demonstrated capable of forward-wave amplification with appreciable bandwidth. We are conducting experimental and computational studies of micro-VED FW-TWTs to examine their feasibility for applications at frequencies from 200 - 1000 GHz.
Understanding the electrical characteristics of micromotors
NASA Astrophysics Data System (ADS)
Emadi, Ali; Irudayaraj, Sujay S.
2005-06-01
This paper presents a comprehensive list of issues related to the electrical characteristics of both electrostatic and electromagnetic micromotors and aims at understanding the behavior of the micromotor from the electrical standpoint. The paper takes the step-by-step approach by first presenting an overview of the laws of electrostatics and electromagnetism for micromachines, their applicability, features and limitations, and then progresses to independently analyze some of the important machine related quantities like electromotive torque, force-output, angular frequencies, supply conditions and requirements, for different types of electrostatic and electromagnetic micromotor constructions. A thorough study on the electric machine parameters that affect the performance of the micromotor need to be performed, since it would serve as a useful link in integrating the micromachine output performance with the fabrication process and challenges associated with it. Achieving such integration would then determine the optimized working condition for the micromotor. The main reason for this study is that although significant advancements have fostered the growth of micromotors in the recent past which has led to the establishment of the micromotor as quite a remarkable machine for powering micromechanical devices, and also as an industrial requirement for various applications, there has always been a concern about the optimal performance of the micromotor, since there is more than just one technology that is being incorporated to realize the micromotor. With fields ranging from surface engineering and chemistry to material science engineering exerting influence on the micromotor design, it becomes very important to completely comprehend the electrophysics of the micromachine that would in turn interact with the science of fabrication to result in the development of better micromotors with considerably less functional complexity.
Recent Developments in Microsystems Fabricated by the Liga-Technique
NASA Technical Reports Server (NTRS)
Schulz, J.; Bade, K.; El-Kholi, A.; Hein, H.; Mohr, J.
1995-01-01
As an example of microsystems fabricated by the LIGA-technique (x-ray lithography, electroplating and molding), three systems are described and characterized: a triaxial acceleration sensor system, a micro-optical switch, and a microsystem for the analysis of pollutants. The fabrication technologies are reviewed with respect to the key components of the three systems: an acceleration sensor, and electrostatic actuator, and a spectrometer made by the LIGA-technique. Aa micro-pump and micro-valve made by using micromachined tools for molding and optical fiber imaging are made possible by combining LIGA and anisotropic etching of silicon in a batch process. These examples show that the combination of technologies and components is the key to complex microsystems. The design of such microsystems will be facilitated is standardized interfaces are available.
Low cost, patterning of human hNT brain cells on parylene-C with UV & IR laser machining.
Raos, Brad J; Unsworth, C P; Costa, J L; Rohde, C A; Doyle, C S; Delivopoulos, E; Murray, A F; Dickinson, M E; Simpson, M C; Graham, E S; Bunting, A S
2013-01-01
This paper describes the use of 800nm femtosecond infrared (IR) and 248nm nanosecond ultraviolet (UV) laser radiation in performing ablative micromachining of parylene-C on SiO2 substrates for the patterning of human hNT astrocytes. Results are presented that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells while UV laser radiation produces photo-oxidation of the parylene-C and destroys cell patterning. The findings demonstrate how IR laser ablative micromachining of parylene-C on SiO2 substrates can offer a low cost, accessible alternative for rapid prototyping, high yield cell patterning.
Micromachined peristaltic pump
NASA Technical Reports Server (NTRS)
Hartley, Frank T. (Inventor)
1998-01-01
A micromachined pump including a channel formed in a semiconductor substrate by conventional processes such as chemical etching. A number of insulating barriers are established in the substrate parallel to one another and transverse to the channel. The barriers separate a series of electrically conductive strips. An overlying flexible conductive membrane is applied over the channel and conductive strips with an insulating layer separating the conductive strips from the conductive membrane. Application of a sequential voltage to the series of strips pulls the membrane into the channel portion of each successive strip to achieve a pumping action. A particularly desirable arrangement employs a micromachined push-pull dual channel cavity employing two substrates with a single membrane sandwiched between them.
Fiber optic and laser sensors IV; Proceedings of the Meeting, Cambridge, MA, Sept. 22-24, 1986
NASA Technical Reports Server (NTRS)
De Paula, Ramon P. (Editor); Udd, Eric (Editor)
1987-01-01
The conference presents papers on industrial uses of fiber optic sensors, point and distributed polarimetric optical fiber sensors, fiber optic electric field sensor technology, micromachined resonant structures, single-mode fibers for sensing applications, and measurement techniques for magnetic field gradient detection. Consideration is also given to electric field meter and temperature measurement techniques for the power industry, the calibration of high-temperature fiber-optic microbend pressure transducers, and interferometric sensors for dc measurands. Other topics include the recognition of colors and collision avoidance in robotics using optical fiber sensors, the loss compensation of intensity-modulating fiber-optic sensors, and an embedded optical fiber strain tensor for composite structure applications.
Shrinking the apparatus size for DNA analysis
NASA Astrophysics Data System (ADS)
Zimmer, Klaus-Peter; Braun, Alexander; Kostrzewa, M.
2001-03-01
Miniaturization of chemical and/or biological analytical systems requires an innovative design and new manufacturing methods. This includes the fabrication of components or structures, the assembly of these parts, and a testing strategy. The separation of an entire device into a disposable microfluidic system and a multi-use supply unit and housing allows an easy fabrication as well as low cost of operation. A simple, replicated, micro-sized, and disposable unit guarantees the same initial conditions for every analytic cycle, whereas, on the other hand all microfluidic actuators and other key elements can remain outside of the microsystem. In order to drive the implemented passive elements of the microfluidic system by external forces of the base unit, elasticity is a crucial material property. Thus silicone was used as material for the microsystem. A microfluidic system intended for use in DNA analysis employing the principles of the polymerase chain reaction (PCR) is presented. All functional units have been integrated into a complex module using a CAD-program. The 3D-drawing was converted into several machining layers for a direct laser writing CNC-code. A focussed excimer laser beam was used in order to micromachine the negative channel and reservoir system in a polycarbonate slab employing ablative photo-decomposition. Excimer laser micromachining proofed to be an ideal prototyping technique for this purpose with sufficient lateral and depth control. Its rather low throughput was bypassed with an additional hot embossed intermediate positive polyethylene master which, in turn, replicated produces the negative fluidic system in the target material PDMS (polydimethylsiloxane) as an elastomeric material. The components of the fluidic systems have been sealed with flat slabs or other microsystem parts of either PDMS or glass. In either case both parts were exposed to a plasma discharge for some seconds in order to clean, oxidize and activate the surface. This enabled an irreversible seal when two oxidized
Investigation on micromachining technologies for the realization of LTCC devices and systems
NASA Astrophysics Data System (ADS)
Haas, T.; Zeilmann, C.; Bittner, A.; Schmid, U.
2011-06-01
Low temperature co-fired ceramics (LTCC) has established as a widespread platform for advanced functional ceramic devices in different applications, such as in the space and aviation sector, for micro machined sensors as well as in micro fluidics. This is due to high reliability, excellent physical properties, especially in the high frequency range, and the possibility to integrate passive components in the monolithic LTCC body, offering the potential for a high degree of miniaturisation. However, for further improvement of this technology and for an ongoing increase of the integration level, the realization of miniaturized structures is of utmost importance. Therefore, novel techniques for micro-machining are required providing channel structures and cavities inside the glass-ceramic body, enabling for further application scenarios. Those techniques are punching, laser cutting and embossing. One of the most limitations of LTCC is the poor thermal conductivity. Hence, the possibility to integrate channels enables innovative active cooling approaches using fluidic media for heat critical devices. Doing so, a by far better cooling effect can be achieved than by passive devices as heat spreaders or heat sinks. Furthermore, the realization of mechanic devices as integrated pressure sensors for operation under harsh environmental conditions can be realized by integrating the membrane directly into the ceramic body. Finally, for high power devices substantial improvement can be provided by filling those channel structures with electrical conductive material, so that the resistivity can be decreased drastically without affecting the topography of the ceramics.
VIEW OF MICROMACHINING, HIGH PRECISION EQUIPMENT USED TO CUSTOM MAKE ...
VIEW OF MICRO-MACHINING, HIGH PRECISION EQUIPMENT USED TO CUSTOM MAKE SMALL PARTS. LUMPS OF CLAY; SHOWN IN THE PHOTOGRAPH, WERE USED TO STABILIZE PARTS BEING MACHINED. (11/1/87) - Rocky Flats Plant, Stainless Steel & Non-Nuclear Components Manufacturing, Southeast corner of intersection of Cottonwood & Third Avenues, Golden, Jefferson County, CO
Zhou, Chao; Zhang, H P; Tang, Jinyao; Wang, Wei
2018-03-13
Micromotors are an emerging class of micromachines that could find potential applications in biomedicine, environmental remediation, and microscale self-assembly. Understanding their propulsion mechanisms holds the key to their future development. This is especially true for a popular category of micromotors that are driven by asymmetric surface photochemical reactions. Many of these micromotors release ionic species and are propelled via a mechanism termed "ionic self-diffusiophoresis". However, exactly how it operates remains vague. To address this fundamental yet important issue, we have developed a dielectric-AgCl Janus micromotor that clearly moves away from the AgCl side when exposed to UV or strong visible light. Taking advantage of numerical simulations and acoustic levitation techniques, we have provided tentative explanations for its speed decay over time as well as its directionality. In addition, photoactive AgCl micromotors demonstrate interesting gravitactic behaviors that hint at three-dimensional transport or sensing applications. The current work presents a well-controlled and easily fabricated model system to understand chemically powered micromotors, highlighting the usefulness of acoustic levitation for studying active matter free from the effect of boundaries.
NASA Astrophysics Data System (ADS)
Wu, Lei; Xie, Huikai
2008-02-01
This paper reports the design, fabrication and measurements of a dual-reflective, single-crystal silicon based micromirror that can perform full circumferential scanning (FCS) for endoscopic optical coherence tomography (EOCT). In the proposed FCS-EOCT probe, two optical fibers are used to deliver light beams to either surface of the micromirror, which can rotate +/-45° (or 90°) and thus a 180° optical scanning is obtained from each mirror surface, resulting in full circumferential scans. A novel surface- and bulk-combined micromachining process based on SOI wafers is developed for fabricating the dual reflective micromirror. The single-crystal-silicon device layer of SOI wafers is used for mirror flatness, and Al is coated on both sides for high reflectivity. With one light beam delivered to each mirror surface, full 360° scans have been observed. Other measured data include the resonant frequency: 328Hz, radius of curvatures: - 124 mm (front surface) and 127 mm (back surface), and the reflectances: 81.3% (front surface) and 79.0% (back surface).
NASA Astrophysics Data System (ADS)
Yin, K.; Song, Y. X.; Dong, X. R.; Wang, C.; Duan, J. A.
2016-11-01
Reported here is the bio-inspired and robust function of underwater superoleophobic, anti-oil metallic surfaces with ultra-broadband enhanced optical absorption obtained through femtosecond laser micromachining. Three distinct surface structures are fabricated using a wide variety of processing parameters. Underwater superoleophobic and anti-oil surfaces containing coral-like microstructures with nanoparticles and mount-like microstructures are achieved. These properties of the as-prepared surfaces exhibit good chemical stability when exposed to various types of oils and when immersed in water with a wide range of pH values. Moreover, coral-like microstructures with nanoparticle surfaces show strongly enhanced optical absorption over a broadband wavelength range from 0.2-25 μm. The potential mechanism for the excellent performance of the coral-like microstructures with a nanoparticle surface is also discussed. This multifunctional surface has potential applications in military submarines, amphibious military aircraft and tanks, and underwater anti-oil optical counter-reconnaissance devices.
NASA Astrophysics Data System (ADS)
Lin, Yuehe; Wen, Jenny; Fan, Xiang; Matson, Dean W.; Smith, Richard D.
1999-08-01
A microfabricated device for isoelectric focusing (IEF) incorporating an optimized electrospray ionization (ESI) tip was constructed on polycarbonate plates using a laser micromachining technique. The separation channels on an IEF chip were 16 cm long, 50 micrometers wide and 30 micrometers deep. Electrical potentials used for IEF focusing and electrospray were applied through platinum electrodes placed in the buffer reservoirs, and which were isolated from the separation channel by molecular porous membranes. On-line ESI produced directly from a sharp `tip' on the microchip was evaluated. The results indicate that this design can produce a stable electrospray that is further improved and made more flexible with the assistance of sheath gas and sheath liquid. Error analysis of the spectral data shows that the standard deviation in signal intensity for an analyte peak was less than approximately 5% over 3 hours. The production of stable electrosprays directly from microchip IEF devices represents a step towards easily- fabricated microanalytical devices. IEF separations of protein mixtures were demonstrated for uncoated polycarbonate microchips. On-line IEF/ESI-MS was demonstrated using the microfabricated chip with an ion-trap ESI mass spectrometer for characterization of protein mixtures.
NASA Astrophysics Data System (ADS)
Gupta, Amita; Singh, Ranvir; Ahmad, Amir; Kumar, Mahesh
2003-10-01
Today, vibration sensors with low and medium sensitivities are in great demand. Their applications include robotics, navigation, machine vibration monitoring, isolation of precision equipment & activation of safety systems e.g. airbags in automobiles. Vibration sensors have been developed at SSPL, using silicon micromachining to sense vibrations in a system in the 30 - 200 Hz frequency band. The sensing element in the silicon vibration sensor is a seismic mass suspended by thin silicon hinges mounted on a metallized glass plate forming a parallel plate capacitor. The movement of the seismic mass along the vertical axis is monitored to sense vibrations. This is obtained by measuring the change in capacitance. The movable plate of the parallel plate capacitor is formed by a block connected to a surrounding frame by four cantilever beams located on sides or corners of the seismic mass. This element is fabricated by silicon micromachining. Several sensors in the chip sizes 1.6 cm x 1.6 cm, 1 cm x 1 cm and 0.7 cm x 0.7 cm have been fabricated. Work done on these sensors, techniques used in processing and silicon to glass bonding are presented in the paper. Performance evaluation of these sensors is also discussed.
Reliable bonding using indium-based solders
NASA Astrophysics Data System (ADS)
Cheong, Jongpil; Goyal, Abhijat; Tadigadapa, Srinivas; Rahn, Christopher
2004-01-01
Low temperature bonding techniques with high bond strengths and reliability are required for the fabrication and packaging of MEMS devices. Indium and indium-tin based bonding processes are explored for the fabrication of a flextensional MEMS actuator, which requires the integration of lead zirconate titanate (PZT) substrate with a silicon micromachined structure at low temperatures. The developed technique can be used either for wafer or chip level bonding. The lithographic steps used for the patterning and delineation of the seed layer limit the resolution of this technique. Using this technique, reliable bonds were achieved at a temperature of 200°C. The bonds yielded an average tensile strength of 5.41 MPa and 7.38 MPa for samples using indium and indium-tin alloy solders as the intermediate bonding layers respectively. The bonds (with line width of 100 microns) showed hermetic sealing capability of better than 10-11 mbar-l/s when tested using a commercial helium leak tester.
Reliable bonding using indium-based solders
NASA Astrophysics Data System (ADS)
Cheong, Jongpil; Goyal, Abhijat; Tadigadapa, Srinivas; Rahn, Christopher
2003-12-01
Low temperature bonding techniques with high bond strengths and reliability are required for the fabrication and packaging of MEMS devices. Indium and indium-tin based bonding processes are explored for the fabrication of a flextensional MEMS actuator, which requires the integration of lead zirconate titanate (PZT) substrate with a silicon micromachined structure at low temperatures. The developed technique can be used either for wafer or chip level bonding. The lithographic steps used for the patterning and delineation of the seed layer limit the resolution of this technique. Using this technique, reliable bonds were achieved at a temperature of 200°C. The bonds yielded an average tensile strength of 5.41 MPa and 7.38 MPa for samples using indium and indium-tin alloy solders as the intermediate bonding layers respectively. The bonds (with line width of 100 microns) showed hermetic sealing capability of better than 10-11 mbar-l/s when tested using a commercial helium leak tester.
NASA Astrophysics Data System (ADS)
Ma, Wenying; Ma, Changwei; Wang, Weimin
2018-03-01
Deformable mirrors (DM) based on microelectromechanical system (MEMS) technology are being applied in adaptive optics (AO) system for astronomical telescopes and human eyes more and more. In this paper a MEMS DM with hexagonal actuator is proposed and designed. The relationship between structural design and performance parameters, mainly actuator coupling, is analyzed carefully and calculated. The optimum value of actuator coupling is obtained. A 7-element DM prototype is fabricated using a commercial available standard three-layer polysilicon surface multi-user-MEMS-processes (PolyMUMPs). Some key performances, including surface figure and voltage-displacement curve, are measured through a 3D white light profiler. The measured performances are very consistent with the theoretical values. The proposed DM will benefit the miniaturization of AO systems and lower their cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galambos, Paul C.
This is the latest in a series of LDRD's that we have been conducting with Florida State University/Florida A&M University (FSU/FAMU) under the campus executive program. This research builds on the earlier projects; ''Development of Highly Integrated Magnetically and Electrostatically Actuated Micropumps'' (SAND2003-4674) and ''Development of Magnetically and Electrostatically Driven Surface Micromachined Pumps'' (SAND2002-0704P). In this year's LDRD we designed 2nd generation of surface micromachined (SMM) gear and viscous pumps. Two SUMMiT{trademark} modules full of design variations of these pumps were fabricated and one SwIFT{trademark} module is still in fabrication. The SwIFT{trademark} fabrication process results in a transparent pump housingmore » cover that will enable visualization inside the pumps. Since the SwIFT{trademark} pumps have not been tested as they are still in fabrication, this report will focus on the 2nd generation SUMMiT{trademark} designs. Pump testing (pressure vs. flow) was conducted on several of the SUMMiT{trademark} designs resulting in the first pump curve for this class of SMM pumps. A pump curve was generated for the higher torque 2nd generation gear pump designed by Jason Hendrix of FSU. The pump maximum flow rate at zero head was 6.5 nl/s for a 30V, 30 Hz square wave signal. This level of flow rate would be more than adequate for our typical SMM SUMMiT{trademark} or SwIFT{trademark} channels which have typical volumes on the order of 50 pl.« less
Micromachined force-balance feedback accelerometer with optical displacement detection
Nielson, Gregory N.; Langlois, Eric; Baker, Michael; Okandan, Murat; Anderson, Robert
2014-07-22
An accelerometer includes a proof mass and a frame that are formed in a handle layer of a silicon-on-an-insulator (SOI). The proof mass is separated from the frame by a back-side trench that defines a boundary of the proof mass. The accelerometer also includes a reflector coupled to a top surface of the proof mass. An optical detector is located above the reflector at the device side. The accelerometer further includes at least one suspension spring. The suspension spring has a handle anchor that extends downwards from the device side to the handle layer to mechanically support upward and downward movement of the proof mass relative to a top surface of the proof mass.
Micromachined magnetohydrodynamic actuators and sensors
Lee, Abraham P.; Lemoff, Asuncion V.
2000-01-01
A magnetohydrodynamic (MHD) micropump and microsensor which utilizes micromachining to integrate the electrodes with microchannels and includes a magnet for producing magnetic fields perpendicular to both the electrical current direction and the fluid flow direction. The magnet can also be micromachined and integrated with the micropump using existing technology. The MHD micropump, for example, can generate continuous, reversible flow, with readily controllable flow rates. The flow can be reversed by either reversing the electrical current flow or reversing the magnetic field. By mismatching the electrodes, a swirling vortex flow can be generated for potential mixing applications. No moving parts are necessary and the dead volume is minimal. The micropumps can be placed at any position in a fluidic circuit and a combination of micropumps can generate fluidic plugs and valves.
Micro benchtop optics by bulk silicon micromachining
Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.
2000-01-01
Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.
Micro-sensors for in-situ meteorological measurements
NASA Technical Reports Server (NTRS)
Crisp, David; Kaiser, William J.; Vanzandt, Thomas R.; Tillman, James E.
1993-01-01
Improved in-situ meteorological measurements are needed for monitoring the weather and climate of the terrestrial and Martian atmospheres. We have initiated a program to assess the feasibility and utility of micro-sensors for precise in-situ meteorological measurements in these environments. Sensors are being developed for measuring pressure, temperature, wind velocity, humidity, and aerosol amounts. Silicon micro-machining and large scale integration technologies are being used to make sensors that are small, rugged, lightweight, and require very little power. Our long-term goal is to develop very accurate miniaturized sensors that can be incorporated into complete instrument packages or 'micro weather stations,' and deployed on a variety of platforms. If conventional commercially available silicon production techniques can be used to fabricate these sensor packages, it will eventually be possible to mass-produce them at low cost. For studies of the Earth's troposphere and stratosphere, they could be deployed on aircraft, dropsondes, radiosondes, or autonomous surface stations at remote sites. Improved sensor accuracy and reduced sensor cost are the primary challenges for these applications. For studies of the Martian atmosphere, these sensor packages could be incorporated into the small entry probes and surface landers that are being planned for the Mars Environmental SURvey (MESUR) Mission. That decade-long program will deploy a global network of small stations on the Martian surface for monitoring meteorological and geological processes. Low mass, low power, durability, large dynamic range and calibration stability are the principal challenges for this application. Our progress on each of these sensor types is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalicek, M.A.; Comtois, J.H.; Barron, C.C.
This paper describes the design and characterization of several types of micromirror devices to include process capabilities, device modeling, and test data resulting in deflection versus applied potential curves. These micromirror devices are the first to be fabricated in the state-of-the-art four-level planarized polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics which have previously been unrealizable in standard three-layer polysilicon processes. This paper describes such characteristics as elevated address electrodes, individual address wiring beneath the device, planarized mirror surfaces usingmore » Chemical Mechanical Polishing (CMP), unique post-process metallization, and the best active surface area to date. This paper presents the design, fabrication, modeling, and characterization of several variations of Flexure-Beam (FBMD) and Axial-Rotation Micromirror Devices (ARMD). The released devices are first metallized using a standard sputtering technique relying on metallization guards and masks that are fabricated next to the devices. Such guards are shown to enable the sharing of bond pads between numerous arrays of micromirrors in order to maximize the number of on-chip test arrays. The devices are modeled and then empirically characterized using a laser interferometer setup located at the Air Force Institute of Technology (AFIT) at Wright-Patterson AFB in Dayton, Ohio. Unique design considerations for these devices and the process are also discussed.« less
Development of a femtosecond micromachining workstation by use of spectral interferometry.
Bera, Sudipta; Sabbah, A J; Durfee, Charles G; Squier, Jeff A
2005-02-15
A workstation that permits real-time measurement of ablation depth while micromachining with femtosecond laser pulses is demonstrated. This method incorporates the unamplified pulse train that is available in a chirped-pulse amplification system as the probe in an arrangement that uses spectral interferometry to measure the ablation depth while cutting with the amplified pulse in thin metal films.
High speed micromachining with high power UV laser
NASA Astrophysics Data System (ADS)
Patel, Rajesh S.; Bovatsek, James M.
2013-03-01
Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aderogba, S.; Meacham, J.M.; Degertekin, F.L.
2005-05-16
Ultrasonic electrospray ionization (ESI) for high-throughput mass spectrometry is demonstrated using a silicon micromachined microarray. The device uses a micromachined ultrasonic atomizer operating in the 900 kHz-2.5 MHz range for droplet generation and a metal electrode in the fluid cavity for ionization. Since the atomization and ionization processes are separated, the ultrasonic ESI source shows the potential for operation at low voltages with a wide range of solvents in contrast with conventional capillary ESI technology. This is demonstrated using the ultrasonic ESI microarray to obtain the mass spectrum of a 10 {mu}M reserpine sample on a time of flight massmore » spectrometer with 197:1 signal-to-noise ratio at an ionization potential of 200 V.« less
UV laser-assisted wire stripping and micro-machining
NASA Astrophysics Data System (ADS)
Martyniuk, Jerry
1994-02-01
Results are reported for the use of a 266 nm frequency quadrupled Nd:YAG ultraviolet laser in the areas of wire stripping of small coaxial type transmission lines and for micro-machining of various materials including copper, glass, polyimide and DuPont TEFLONTM. This new laser is typically run with a 2 KHz repetition rate, 40 ns FWHM pulse and a fluence of about 50 joules/cm2 which makes it possible to micro-machine metals, polymers, glasses and ceramics. The high fluence of this laser allows shielding structures such as Al-MylarTM, Al-KaptonTM or the plated copper used in small coaxial cables to be precisely cut. Cut rates are reported for the above materials as well as results and photos of wire stripping and micro- machining.
A Micromachined Geometric Moire Interferometric Floating-Element Shear Stress Sensor
NASA Technical Reports Server (NTRS)
Horowitz, S.; Chen, T.; Chandrasekaran, V.; Tedjojuwono, K.; Nishida, T.; Cattafesta, L.; Sheplak, M.
2004-01-01
This paper presents the development of a floating-element shear stress sensor that permits the direct measurement of skin friction based on geometric Moir interferometry. The sensor was fabricated using an aligned wafer-bond/thin-back process producing optical gratings on the backside of a floating element and on the top surface of the support wafer. Experimental characterization indicates a static sensitivity of 0.26 microns/Pa, a resonant frequency of 1.7 kHz, and a noise floor of 6.2 mPa/(square root)Hz.
Advancing MEMS Technology Usage through the MUMPS (Multi-User MEMS Processes) Program
NASA Technical Reports Server (NTRS)
Koester, D. A.; Markus, K. W.; Dhuler, V.; Mahadevan, R.; Cowen, A.
1995-01-01
In order to help provide access to advanced micro-electro-mechanical systems (MEMS) technologies and lower the barriers for both industry and academia, the Microelectronic Center of North Carolina (MCNC) and ARPA have developed a program which provides users with access to both MEMS processes and advanced electronic integration techniques. The four distinct aspects of this program, the multi-user MEMS processes (MUMP's), the consolidated micro-mechanical element library, smart MEMS, and the MEMS technology network are described in this paper. MUMP's is an ARPA-supported program created to provide inexpensive access to MEMS technology in a multi-user environment. It is both a proof-of-concept and educational tool that aids in the development of MEMS in the domestic community. MUMP's technologies currently include a 3-layer poly-silicon surface micromachining process and LIGA (lithography, electroforming, and injection molding) processes that provide reasonable design flexibility within set guidelines. The consolidated micromechanical element library (CaMEL) is a library of active and passive MEMS structures that can be downloaded by the MEMS community via the internet. Smart MEMS is the development of advanced electronics integration techniques for MEMS through the application of flip chip technology. The MEMS technology network (TechNet) is a menu of standard substrates and MEMS fabrication processes that can be purchased and combined to create unique process flows. TechNet provides the MEMS community greater flexibility and enhanced technology accessibility.
Hybrid membrane-microfluidic components using a novel ceramic MEMS technology
NASA Astrophysics Data System (ADS)
Lutz, Brent J.; Polyakov, Oleg; Rinaldo, Chris
2012-03-01
A novel hybrid nano/microfabrication technology has been employed to produce unique MEMS and microfluidic components that integrate nanoporous membranes. The components are made by micromachining a self-organized nanostructured ceramic material that is biocompatible and amenable to surface chemistry modification. Microfluidic structures, such as channels and wells, can be made with a precision of <2 microns. Thin-film membranes can be integrated into the bottom of these structures, featuring a wide range of possible thicknesses, from 100 micron to <50 nm. Additionally, these membranes may be non-porous or porous (with controllable pore sizes from 200 nm to <5 nm), for sophisticated size-based separations. With previous and current support from the NIH SBIR program, we have built several unique devices, and demonstrated improved separations, cell culturing, and imaging (optical and electron microscopy) versus standard products. Being ceramic, the material is much more robust to demanding environments (e.g. high and low temperatures and organic solvents), compared to polymer-based devices. Additionally, we have applied multiple surface modification techniques, including atomic layer deposition, to manipulate properties such as electrical conductivity. This microfabrication technology is highly scaleable, and thus can yield low-cost, reliable, disposable microcomponents and devices. Specific applications that can benefit from this technology includes cell culturing and assays, imaging by cryo-electron tomography, environmental sample processing, as well as many others.
Optimization of micromachined membrane switches
NASA Astrophysics Data System (ADS)
Hiltmann, Kai; Lang, Walter
1997-09-01
We have determined the minimum dimensions for micromachined membrane switches in several experiments, both regarding the strength of the membranes themselves and the elongations required for safe switching performance. Based on these data, pressure switches for voltages of 10 - 100 V were made as single and multiple elements and tested. Test results, with scatter of pressure threshold data in the ten per cent range, prove very encouraging for further development.
Micromachined Parts Advance Medicine, Astrophysics, and More
NASA Technical Reports Server (NTRS)
2015-01-01
In the mid-1990s, Marshall Space Flight Center awarded two SBIR contracts to Potomac Photonics, now based in Baltimore, for the development of computerized workstations capable of mass-producing tiny, intricate, diffractive optical elements. While the company has since discontinued the workstations, those contracts set the stage for Potomac Photonics to be a leader in the micromachining industry, where NASA remains one of its clients.
3-D laser patterning process utilizing horizontal and vertical patterning
Malba, Vincent; Bernhardt, Anthony F.
2000-01-01
A process which vastly improves the 3-D patterning capability of laser pantography (computer controlled laser direct-write patterning). The process uses commercially available electrodeposited photoresist (EDPR) to pattern 3-D surfaces. The EDPR covers the surface of a metal layer conformally, coating the vertical as well as horizontal surfaces. A laser pantograph then patterns the EDPR, which is subsequently developed in a standard, commercially available developer, leaving patterned trench areas in the EDPR. The metal layer thereunder is now exposed in the trench areas and masked in others, and thereafter can be etched to form the desired pattern (subtractive process), or can be plated with metal (additive process), followed by a resist stripping, and removal of the remaining field metal (additive process). This improved laser pantograph process is simpler, faster, move manufacturable, and requires no micro-machining.
An overview of thin film nitinol endovascular devices.
Shayan, Mahdis; Chun, Youngjae
2015-07-01
Thin film nitinol has unique mechanical properties (e.g., superelasticity), excellent biocompatibility, and ultra-smooth surface, as well as shape memory behavior. All these features along with its low-profile physical dimension (i.e., a few micrometers thick) make this material an ideal candidate in developing low-profile medical devices (e.g., endovascular devices). Thin film nitinol-based devices can be collapsed and inserted in remarkably smaller diameter catheters for a wide range of catheter-based procedures; therefore, it can be easily delivered through highly tortuous or narrow vascular system. A high-quality thin film nitinol can be fabricated by vacuum sputter deposition technique. Micromachining techniques were used to create micro patterns on the thin film nitinol to provide fenestrations for nutrition and oxygen transport and to increase the device's flexibility for the devices used as thin film nitinol covered stent. In addition, a new surface treatment method has been developed for improving the hemocompatibility of thin film nitinol when it is used as a graft material in endovascular devices. Both in vitro and in vivo test data demonstrated a superior hemocompatibility of the thin film nitinol when compared with commercially available endovascular graft materials such as ePTFE or Dacron polyester. Promising features like these have motivated the development of thin film nitinol as a novel biomaterial for creating endovascular devices such as stent grafts, neurovascular flow diverters, and heart valves. This review focuses on thin film nitinol fabrication processes, mechanical and biological properties of the material, as well as current and potential thin film nitinol medical applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Weaves as an Interconnection Fabric for ASIM's and Nanosatellites
NASA Technical Reports Server (NTRS)
Gorlick, Michael M.
1995-01-01
Many of the micromachines under consideration require computer support, indeed, one of the appeals of this technology is the ability to intermix mechanical, optical, analog, and digital devices on the same substrate. The amount of computer power is rarely an issue, the sticking point is the complexity of the software required to make effective use of these devices. Micromachines are the nano-technologist's equivalent of 'golden screws'. In other words, they will be piece parts in larger assemblages. For example, a nano-satellite may be composed of stacked silicon wafers where each wafer contains hundreds to thousands of micromachines, digital controllers, general purpose computers, memories, and high-speed bus interconnects. Comparatively few of these devices will be custom designed, most will be stock parts selected from libraries and catalogs. The novelty will lie in the interconnections. For example, a digital accelerometer may be a component part in an adaptive suspension, a monitoring element embedded in the wrapper of a package, or a portion of the smart skin of a launch vehicle. In each case, this device must inter-operate with other devices and probes for the purposes of command, control, and communication. We propose a software technology called 'weaves' that will permit large collections of micromachines and their attendant computers to freely intercommunicate while preserving modularity, transparency, and flexibility. Weaves are composed of networks of communicating software components. The network, and the components comprising it, may be changed even while the software, and the devices it controls, are executing. This unusual degree of software plasticity permits micromachines to dynamically adapt the software to changing conditions and allows system engineers to rapidly and inexpensively develop special purpose software by assembling stock software components in custom configurations.
Systematic analysis of CMOS-micromachined inductors with application to mixer matching circuits
NASA Astrophysics Data System (ADS)
Wu, Jerry Chun-Li
The growing demand for consumer voice and data communication systems and military communication applications has created a need for low-power, low-cost, high-performance radio-frequency (RF) front-end. To achieve this goal, bringing passive components, especially inductors, to silicon is imperative. On-chip passive components such as inductors and capacitors generally enhance the reliability and efficiency of silicon-integrated RF cells. They can provide circuit solutions with superior performance and contribute to a higher level of integration. With passive components on chip, there is a great opportunity to have transformers, filters, and matching networks on chip. However, inductors on silicon have a low quality factor (Q) due to both substrate and metal loss. This dissertation demonstrates the systematic analysis of inductors fabricated using standard complementary metal-oxide-semiconductor (CMOS) and micro-electro-mechanical (MEMS) system technologies. We report system-on-chip inductor modeling, simulation, and measurements of effective inductance and quality factors. In this analysis methodology, a number of systematic simulations are performed on regular and micromachined inductors with different parameters such as spiral topology, number of turns, outer diameter, thickness, and percentage of substrate removed by using micromachining technologies. Three different novel support structures of the micromachined spiral inductor are proposed, analyzed, and implemented for larger size suspended inductors. The sensitivity of the structure support and different degree of substrate etching by post-processing is illustrated. The results provide guidelines for the selection of inductor parameters, post-processing methodologies, and its spiral supports to meet the RF design specifications and the stability requirements for mobile communication. The proposed CMOS-micromachined inductor is used in a low cost-effective double-balanced Gilbert mixer with on-chip matching network. The integrated mixer inductor was implemented and tested to prove the concept.
Micromachined ultrasonic droplet generator based on a liquid horn structure
NASA Astrophysics Data System (ADS)
Meacham, J. M.; Ejimofor, C.; Kumar, S.; Degertekin, F. L.; Fedorov, A. G.
2004-05-01
A micromachined ultrasonic droplet generator is developed and demonstrated for drop-on-demand fluid atomization. The droplet generator comprises a bulk ceramic piezoelectric transducer for ultrasound generation, a reservoir for the ejection fluid, and a silicon micromachined liquid horn structure as the nozzle. The nozzles are formed using a simple batch microfabrication process that involves wet etching of (100) silicon in potassium hydroxide solution. Device operation is demonstrated by droplet ejection of water through 30 μm orifices at 1.49 and 2.30 MHz. The finite-element simulations of the acoustic fields in the cavity and electrical impedance of the device are in agreement with the measurements and indicate that the device utilizes cavity resonances in the 1-5 MHz range in conjunction with acoustic wave focusing by the pyramidally shaped nozzles to achieve low power operation.
Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.
Alapan, Yunus; Hasan, Muhammad Noman; Shen, Richang; Gurkan, Umut A
2015-05-01
Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing.
Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices
Shen, Richang; Gurkan, Umut A.
2016-01-01
Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing. PMID:27512530
NASA Astrophysics Data System (ADS)
Modafe, Alireza
This dissertation summarizes the research activities that led to the development of the first microball-bearing-supported linear electrostatic micromotor with benzocyclobutene (BCB) low-k polymer insulating layers. The primary application of this device is long-range, high-speed linear micropositioning. The future generations of this device include rotary electrostatic micromotors and microgenerators. The development of the first generation of microball-bearing-supported micromachines, including device theory, design, and modeling, material characterization, process development, device fabrication, and device test and characterization is presented. The first generation of these devices is based on a 6-phase, bottom-drive, linear, variable-capacitance micromotor (B-LVCM). The design of the electrical and mechanical components of the micromotor, lumped-circuit modeling of the device and electromechanical characteristics, including variable capacitance, force, power, and speed are presented. Electrical characterization of BCB polymers, characterization of BCB chemical mechanical planarization (CMP), development of embedded BCB in silicon (EBiS) process, and integration of device components using microfabrication techniques are also presented. The micromotor consists of a silicon stator, a silicon slider, and four stainless-steel microballs. The aligning force profile of the micromotor was extracted from simulated and measured capacitances of all phases. An average total aligning force of 0.27 mN with a maximum of 0.41 mN, assuming a 100 V peak-to-peak square-wave voltage, was measured. The operation of the micromotor was verified by applying square-wave voltages and characterizing the slider motion. An average slider speed of 7.32 mm/s when excited by a 40 Hz, 120 V square-wave voltage was reached without losing the synchronization. This research has a pivotal impact in the field of power microelectromechanical systems (MEMS). It establishes the foundation for the development of more reliable, efficient electrostatic micromachines with variety of applications such as micropropulsion, high-speed micropumping, microfluid delivery, and microsystem power generation.
Huang, Tian-Yun; Sakar, Mahmut Selman; Mao, Angelo; Petruska, Andrew J; Qiu, Famin; Chen, Xue-Bo; Kennedy, Stephen; Mooney, David; Nelson, Bradley J
2015-11-01
Functional compound micromachines are fabricated by a design methodology using 3D direct laser writing and selective physical vapor deposition of magnetic materials. Microtransporters with a wirelessly controlled Archimedes screw pumping mechanism are engineered. Spatiotemporally controlled collection, transport, and delivery of micro particles, as well as magnetic nanohelices inside microfluidic channels are demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
OSA Trends in Optics and Photonics Series, Volume 14 Spatial Light Modulators
1998-05-26
Extreme Ultraviolet Lithography Glenn D. Kubiak andDon R. Kania, eds. Vol. 5 Optical Amplifiers and Their Applications (1996) Edited by...micromirror device ( DMD ), and photorefractive crystal. Note that other devices not discussed in this article have been developed, such as the charge...earlier. DMDs are fabricated by micromachining a silicon wafer.7 Tiny (16 um X 16 um) suspended mirrors are micromachined on cantilevers. The
Micromachined capacitive ultrasonic immersion transducer array
NASA Astrophysics Data System (ADS)
Jin, Xuecheng
Capacitive micromachined ultrasonic transducers (cMUTs) have emerged as an attractive alternative to conventional piezoelectric ultrasonic transducers. They offer performance advantages of wide bandwidth and sensitivity that have heretofore been attainable. In addition, micromachining technology, which has benefited from the fast-growing microelectronics industry, enables cMUT array fabrication and electronics integration. This thesis describes the design and fabrication of micromachined capacitive ultrasonic immersion transducer arrays. The basic transducer electrical equivalent circuit is derived from Mason's theory. The effects of Lamb waves and Stoneley waves on cross coupling and acoustic losses are discussed. Electrical parasitics such as series resistance and shunt capacitance are also included in the model of the transducer. Transducer fabrication technology is systematically studied. Device dimension control in both vertical and horizontal directions, process alternatives and variations in membrane formation, via etch and cavity sealing, and metalization as well as their impact on transducer performance are summarized. Both 64 and 128 element 1-D array transducers are fabricated. Transducers are characterized in terms of electrical input impedance, bandwidth, sensitivity, dynamic range, impulse response and angular response, and their performance is compared with theoretical simulation. Various schemes for cross coupling reduction is analyzed, implemented, and verified with both experiments and theory. Preliminary results of immersion imaging are presented using 64 elements 1-D array transducers for active source imaging.
Measurement of phase difference for micromachined gyros driven by rotating aircraft.
Zhang, Zengping; Zhang, Fuxue; Zhang, Wei
2013-08-21
This paper presents an approach for realizing a phase difference measurement of a new gyro. A silicon micromachined gyro was mounted on rotating aircraft for aircraft attitude control. Aircraft spin drives the silicon pendulum of a gyro rotating at a high speed so that it can sense the transverse angular velocity of the rotating aircraft based on the gyroscopic precession principle when the aircraft has transverse rotation. In applications of the rotating aircraft single channel control system, such as damping in the attitude stabilization loop, the gyro signal must be kept in sync with the control signal. Therefore, the phase difference between both signals needs to be measured accurately. Considering that phase difference is mainly produced by both the micromachined part and the signal conditioning circuit, a mathematical model has been established and analyzed to determine the gyro's phase frequency characteristics. On the basis of theoretical analysis, a dynamic simulation has been done for a case where the spin frequency is 15 Hz. Experimental results with the proposed measurement method applied to a silicon micromachined gyro driven by a rotating aircraft demonstrate that it is effective in practical applications. Measured curve and numerical analysis of phase frequency characteristic are in accordance, and the error between measurement and simulation is only 5.3%.
Micromachined microfluidic chemiluminescent system for explosives detection
NASA Astrophysics Data System (ADS)
Park, Yoon; Neikirk, Dean P.; Anslyn, Eric V.
2007-04-01
Results will be reported from efforts to develop a self-contained micromachined microfluidic detection system for the presence of specific target analytes under the US Office of Naval Research Counter IED Basic Research Program. Our efforts include improving/optimizing a dedicated micromachined sensor array with integrated photodetectors and the synthesis of chemiluminescent receptors for nitramine residues. Our strategy for developing chemiluminescent synthetic receptors is to use quenched peroxyoxalate chemiluminescence; the presence of the target analyte would then trigger chemiluminescence. Preliminary results are encouraging as we have been able to measure large photo-currents from the reaction. We have also fabricated and demonstrated the feasibility of integrating photodiodes within an array of micromachined silicon pyramidal cavities. One particular advantage of such approach over a conventional planar photodiode would be its collection efficiency without the use of external optical components. Unlike the case of a normal photodetector coupled to a focused or collimated light source, the photodetector for such a purpose must couple to an emitting source that is approximately hemispherical; hence, using the full sidewalls of the bead's confining cavity as the detector allows the entire structure to act as its own integrating sphere. At the present time, our efforts are concentrating on improving the signal-to-noise ratio by reducing the leakage current by optimizing the fabrication sequence and the design.
Thermoelectric Measurements of Magnetic Nanostructures Using Thermal Isolation Platforms
NASA Astrophysics Data System (ADS)
Avery, A. D.; Sultan, R.; Bassett, D.; Pufall, M. R.; Zink, B. L.
2010-03-01
The effective design of next-generation memory storage and logic devices based on spin necessitates a thorough understanding of transport properties of their potential components. Although electrical transport in magnetic materials is well-understood, thermal transport is historically difficult to measure. Using micromachined thermal isolation structures, we make direct measurements of thermal and electrical transport in these systems. Our technique offers a method for accurately measuring films and other low-dimensional geometries from the microscale down to the nano regime. We will present in-plane thermal conductivity, resistivity, and thermopower results, as well as direct comparisons with the Wiedemann-Franz law for films of various thicknesses and preparation techniques. We will also present the extension of our technique to explore an evaporated multilayer film. Finally, we discuss the application of our method to examining the fundamental physics underlying thermoelectric effects, such as thermally driven spin currents, to further the emerging sub-field of spin caloritronics.
MEMS Applications in Aerodynamic Measurement Technology
NASA Technical Reports Server (NTRS)
Reshotko, E.; Mehregany, M.; Bang, C.
1998-01-01
Microelectromechanical systems (MEMS) embodies the integration of sensors, actuators, and electronics on a single substrate using integrated circuit fabrication techniques and compatible bulk and surface micromachining processes. Silicon and its derivatives form the material base for the MEMS technology. MEMS devices, including microsensors and microactuators, are attractive because they can be made small (characteristic dimension about 100 microns), be produced in large numbers with uniform performance, include electronics for high performance and sophisticated functionality, and be inexpensive. For aerodynamic measurements, it is preferred that sensors be small so as to approximate measurement at a point, and in fact, MEMS pressure sensors, wall shear-stress sensors, heat flux sensors and micromachined hot wires are nearing application. For the envisioned application to wind tunnel models, MEMS sensors can be placed on the surface or in very shallow grooves. MEMS devices have often been fabricated on stiff, flat silicon substrates, about 0.5 mm thick, and therefore were not easily mounted on curved surfaces. However, flexible substrates are now available and heat-flux sensor arrays have been wrapped around a curved turbine blade. Electrical leads can also be built into the flexible substrate. Thus MEMS instrumented wind tunnel models do not require deep spanwise grooves for tubes and leads that compromise the strength of conventionally instrumented models. With MEMS, even the electrical leads can potentially be eliminated if telemetry of the signals to an appropriate receiver can be implemented. While semiconductor silicon is well known for its electronic properties, it is also an excellent mechanical material for MEMS applications. However, silicon electronics are limited to operations below about 200 C, and silicon's mechanical properties start to diminish above 400 C. In recent years, silicon carbide (SiC) has emerged as the leading material candidate for applications in high temperature environments and can be used for high-temperature MEMS applications. With SiC, diodes and more complex electronics have been shown to operate to about 600 C, while the mechanical properties of SiC are maintained to much higher temperatures. Even when MEMS devices show benefits in the laboratory, there are many packaging challenges for any aeronautics application. Incorporating MEMS into these applications requires new approaches to packaging that goes beyond traditional integrated circuit (IC) packaging technologies. MEMS must interact mechanically, as well as electrically with their environment, making most traditional chip packaging and mounting techniques inadequate. Wind tunnels operate over wide temperature ranges in an environment that is far from being a 'clean-room.' In flight, aircraft are exposed to natural elements (e.g. rain, sun, ice, insects and dirt) and operational interferences(e.g. cleaning and deicing fluids, and maintenance crews). In propulsion systems applications, MEMS devices will have to operate in environments containing gases with very high temperatures, abrasive particles and combustion products. Hence deployment and packaging that maintains the integrity of the MEMS system is crucial. This paper presents an overview of MEMS fabrication and materials, descriptions of available sensors with more details on those being developed in our laboratories, and a discussion of sensor deployment options for wind tunnel and flight applications.
Leinders, S M; Westerveld, W J; Pozo, J; van Neer, P L M J; Snyder, B; O'Brien, P; Urbach, H P; de Jong, N; Verweij, M D
2015-09-22
With the increasing use of ultrasonography, especially in medical imaging, novel fabrication techniques together with novel sensor designs are needed to meet the requirements for future applications like three-dimensional intercardiac and intravascular imaging. These applications require arrays of many small elements to selectively record the sound waves coming from a certain direction. Here we present proof of concept of an optical micro-machined ultrasound sensor (OMUS) fabricated with a semi-industrial CMOS fabrication line. The sensor is based on integrated photonics, which allows for elements with small spatial footprint. We demonstrate that the first prototype is already capable of detecting pressures of 0.4 Pa, which matches the performance of the state of the art piezo-electric transducers while having a 65 times smaller spatial footprint. The sensor is compatible with MRI due to the lack of electronical wiring. Another important benefit of the use of integrated photonics is the easy interrogation of an array of elements. Hence, in future designs only two optical fibers are needed to interrogate an entire array, which minimizes the amount of connections of smart catheters. The demonstrated OMUS has potential applications in medical ultrasound imaging, non destructive testing as well as in flow sensing.
NASA Technical Reports Server (NTRS)
Crowe, Erik J.; Bennett, Charles L.; Chuss, David T.; Denis, Kevin L.; Eimer, Joseph; Lourie, Nathan; Marriage, Tobias; Moseley, Samuel H.; Rostem, Karwan; Stevenson, Thomas R.;
2012-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microqave background to search for gravitational waves form a posited epoch of inflation early in the universe's history. This measurement will require integration of superconducting transition-edge sensors with microwave waveguide inputs with good conrol of systematic errors, such as unwanted coupling to stray signals at frequencies outside of a precisely defined microwave band. To address these needs we will present work on the fabrication of silicon quarter-wave backshorts for the CLASS 40GHz focal plane. The 40GHz backshort consists of three degeneratively doped silicon wafers. Two spacer wafers are micromachined with through wafer vins to provide a 2.0mm long square waveguide. The third wafer acts as the backshort cap. The three wafers are bonded at the wafer level by Au-Au thermal compression bonding then aligned and flip chip bonded to the CLASS detector at the chip level. The micromachining techniques used have been optimized to create high aspect ratio waveguides, silicon pillars, and relief trenches with the goal of providing improved out of band signal rejection. We will discuss the fabrication of integrated CLASS superconducting detectors with silicon quarter wave backshorts and present current measurement results.
Hadamard spectrometer for passive LWIR standoff surveillance
NASA Astrophysics Data System (ADS)
Kruzelecky, Roman V.; Wong, Brian; Zou, Jing; Mohammad, Najeeb; Jamroz, Wes; Soltani, Mohammed; Chaker, Mohamed; Haddad, Emile; Laou, Philips; Paradis, Suzanne
2007-06-01
Based on the principle of the Integrated Optical Spectrometer (IOSPEC), a waveguide-based, longwave infrared (LWIR) dispersive spectrometer with multiple input slits for Hadamard spectroscopy was designed and built intended for passive standoff chemical agent detection in 8 to 12μm spectral range. This prototype unit equips with a three-inch input telescope providing a field-of-view of 1.2 degrees, a 16-microslit array (each slit 60 μm by 1.8 mm) module for Hadamard binary coding, a 2-mm core ZnS/ZnSe/ZnS slab waveguide with a 2 by 2 mm2 optical input and micro-machined integrated optical output condensor, a Si micro-machined blazing grating, a customized 128-pixel LWIR mercury-cadmium-telluride (MCT) LN2 cooled detector array, proprietary signal processing technique, software and electronics. According to the current configuration, it was estimated that the total system weight to be ~4 kg, spectral resolution <4cm -1 and Noise Equivalent Spectral Radiance (NESR) <10 -8 Wcm -2 sr -1cm -1 in 8 to 12 μm. System design and preliminary test results of some components will be presented. Upon the arrival of the MCT detector array, the prototype unit will be further tested and its performance validated in fall of 2007.
Microminiature thermionic converters
King, Donald B.; Sadwick, Laurence P.; Wernsman, Bernard R.
2001-09-25
Microminiature thermionic converts (MTCs) having high energy-conversion efficiencies and variable operating temperatures. Methods of manufacturing those converters using semiconductor integrated circuit fabrication and micromachine manufacturing techniques are also disclosed. The MTCs of the invention incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. Existing prior art thermionic converter technology has energy conversion efficiencies ranging from 5-15%. The MTCs of the present invention have maximum efficiencies of just under 30%, and thousands of the devices can be fabricated at modest costs.
Fiber in-line Mach-Zehnder interferometer based on an inner air-cavity for high-pressure sensing.
Talataisong, W; Wang, D N; Chitaree, R; Liao, C R; Wang, C
2015-04-01
We demonstrate a fiber in-line Mach-Zehnder interferometer based on an inner air-cavity with open micro-channel for high-pressure sensing applications. The inner air-cavity is fabricated by combining femtosecond laser micromachining and the fusion splicing technique. The micro-channel is drilled on the top of the inner air-cavity to allow the high-pressure gas to flow in. The fiber in-line device is miniature, robust, and stable in operation and exhibits a high pressure sensitivity of ∼8,239 pm/MPa.
Microscope Cells Containing Multiple Micromachined Wells
NASA Technical Reports Server (NTRS)
Turner, Walter; Skupinski, Robert
2003-01-01
Tech Briefs, May 2003 19 Manufacturing Microscope Cells Containing Multiple Micromachined Wells The cost per cell has been reduced substantially. John H. Glenn Research Center, Cleveland, Ohio An improved design for multiple-well microscope cells and an associated improved method of fabricating them have been devised. [As used here, "well" denotes a cavity that has a volume of about 1 or 2 L and that is used to hold a sample for examination under a microscope. As used here, "cell" denotes a laminate, based on a standard 1- by 3-in. (2.54- by 7.62-cm) microscope slide, that comprises (1) the slide as the lower layer, (2) an intermediate layer that contains holes that serve as the wells, and (3) a top layer that either consists of, or is similar to, a standard microscope-slide cover slip.] The improved design and method of fabrication make it possible to increase (relative to a prior design and method of fabrication) the number of wells per cell while reducing the fabrication loss and reducing the cost per cell to about one-tenth of the prior value. In the prior design and method, the slide, well, and cover-slip layers were made from silicate glass. The fabrication of each cell was a labor-intensive process that included precise cutting and grinding of the glass components, fusing of the glass components, and then more grinding and polishing to obtain desired dimensions. Cells of the prior design were expensive and fragile, the rate of loss in fabrication was high, and the nature of the glass made it difficult to increase the number of cells per well. Efforts to execute alternative prior designs in plastic have not yielded satisfactory results because, for typical applications, plastics are not sufficiently thermally or chemically stable, not sufficiently optically clear, and/or not hard enough to resist scratching. The figure depicts a cell of the present improved type. The slide and cover-slip layers are made of a low-thermal-expansion glass (Pyrex(TradeMark) or equivalent) and the intermediate (well layer) is made of SiO2 - a combination of materials that results in a laminate stronger than one made from layers of silicate glass. Before the layers are assembled into the laminate, the SiO2 layer is micromachined to form the wells plus shallow grooves that, when subsequently covered with the cover slip, become capillary channels that are used to fill the wells with samples. The micromachining is accomplished by use of the same patterning and etching techniques used to fabricate microelectromechanical systems (MEMS).
A GENERIC PACKAGING TECHNIQUE USING FLUIDIC ISOLATION FOR LOW-DRIFT IMPLANTABLE PRESSURE SENSORS.
Kim, A; Powell, C R; Ziaie, B
2015-06-01
This paper reports on a generic packaging method for reducing drift in implantable pressure sensors. The described technique uses fluidic isolation by encasing the pressure sensor in a liquid-filled medical-grade polyurethane balloon; thus, isolating it from surrounding aqueous environment that is the major source of baseline drift. In-vitro tests using commercial micromachined piezoresistive pressure sensors show an average baseline drift of 0.006 cmH 2 O/day (0.13 mmHg/month) for over 100 days of saline soak test, as compared to 0.101 cmH 2 O/day (2.23 mmHg/month) for a non-fluidic-isolated one soaked for 18 days. To our knowledge, this is the lowest reported drift for an implantable pressure sensor.
New Deep Reactive Ion Etching Process Developed for the Microfabrication of Silicon Carbide
NASA Technical Reports Server (NTRS)
Evans, Laura J.; Beheim, Glenn M.
2005-01-01
Silicon carbide (SiC) is a promising material for harsh environment sensors and electronics because it can enable such devices to withstand high temperatures and corrosive environments. Microfabrication techniques have been studied extensively in an effort to obtain the same flexibility of machining SiC that is possible for the fabrication of silicon devices. Bulk micromachining using deep reactive ion etching (DRIE) is attractive because it allows the fabrication of microstructures with high aspect ratios (etch depth divided by lateral feature size) in single-crystal or polycrystalline wafers. Previously, the Sensors and Electronics Branch of the NASA Glenn Research Center developed a DRIE process for SiC using the etchant gases sulfur hexafluoride (SF6) and argon (Ar). This process provides an adequate etch rate of 0.2 m/min and yields a smooth surface at the etch bottom. However, the etch sidewalls are rougher than desired, as shown in the preceding photomicrograph. Furthermore, the resulting structures have sides that slope inwards, rather than being precisely vertical. A new DRIE process for SiC was developed at Glenn that produces smooth, vertical sidewalls, while maintaining an adequately high etch rate.
Introduction to Micro/Nanofabrication
NASA Astrophysics Data System (ADS)
Ziaie, Babak; Baldi, Antonio; Atashbar, Massood
This chapter outlines and discusses important micro- and nanofabrication techniques. We start with the most basic methods borrowed from the integrated circuit (IC) industry, such as thin film deposition, lithography and etching, and then move on to look at MEMS and nanofabrication technologies. We cover a broad range of dimensions, from the micron to the nanometer scale. Although most of the current research is geared towards the nanodomain, a good understanding of top-down methods for fabricating micron-sized objects can aid our understanding of this research. Due to space constraints, we have focused here on the most important technologies; in the microdomain these include surface, bulk and high aspect ratio micromachining; in the nanodomain we concentrate on e-beam lithography, epitaxial growth, template manufacturing and self-assembly. MEMS technology is maturing rapidly, with some new technologies displacing older ones that have proven to be unsuited to manufacture on a commercial scale. However, the jury is still out on methods used in the nanodomain, although it appears that bottom-up methods are the most feasible, and these will have a major impact in a variety of application areas such as biology, medicine, environmental monitoring and nanoelectronics.
Fernádez-Morales, Flavio H; Duarte, Julio E; Samitier-Martí, Josep
2008-12-01
This paper describes the modeling and experimental verification of a castellated microelectrode array intended to handle biocells, based on common dielectrophoresis. The proposed microsystem was developed employing platinum electrodes deposited by lift-off, silicon micromachining, and photoresin patterning techniques. Having fabricated the microdevice it was tested employing Escherichia coli as bioparticle model. Positive dielectrophoresis could be verified with the selected cells for frequencies above 100 kHz, and electrohydrodynamic effects were observed as the dominant phenomena when working at lower frequencies. As a result, negative dielectrophoresis could not be observed because its occurrence overlaps with electrohydrodynamic effects; i.e. the viscous drag force acting on the particles is greater than the dielectrophoretic force at frequencies where negative dielectrophoresis should occur. The experiments illustrate the convenience of this kind of microdevices to micro handling biological objects, opening the possibility for using these microarrays with other bioparticles. Additionally, liquid motion as a result of electrohydrodynamic effects must be taken into account when designing bioparticle micromanipulators, and could be used as mechanism to clean the electrode surfaces, that is one of the most important problems related to this kind of devices.
Precision laser processing for micro electronics and fiber optic manufacturing
NASA Astrophysics Data System (ADS)
Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.
2008-02-01
The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.
Feng, Guo-Hua; Huang, Wei-Lun
2016-01-01
This paper presents an innovative tuning fork-shaped ionic polymer metal composite (IPMC) actuator. With an integrated soft strain gauge and water supply mechanism (WSM), the surface strain of the actuator can be sensed in situ, and providing a continuous water supply maintains the water content inside the IPMC for long-term operation in air. The actuator was fabricated using a micromachining technique and plated with a nickel electrode. The device performance was experimentally characterized and compared with an actuator without a WSM. A large displacement of 1.5 mm was achieved for a 6 mm-long prong with 7-V dc actuation applied for 30 s. The measured current was analyzed using an electrochemical model. The results revealed that the faradaic current plays a crucial role during operation, particularly after 10 s. The measured strain confirms both the bending and axial strain generation during the open-and-close motion of the actuator prongs. Most of the water loss during device operation was due to evaporation rather than hydrolysis. The constructed WSM effectively maintained the water content inside the IPMC for long-term continuous operation. PMID:27023549
Feng, Guo-Hua; Huang, Wei-Lun
2016-03-25
This paper presents an innovative tuning fork-shaped ionic polymer metal composite (IPMC) actuator. With an integrated soft strain gauge and water supply mechanism (WSM), the surface strain of the actuator can be sensed in situ, and providing a continuous water supply maintains the water content inside the IPMC for long-term operation in air. The actuator was fabricated using a micromachining technique and plated with a nickel electrode. The device performance was experimentally characterized and compared with an actuator without a WSM. A large displacement of 1.5 mm was achieved for a 6 mm-long prong with 7-V dc actuation applied for 30 s. The measured current was analyzed using an electrochemical model. The results revealed that the faradaic current plays a crucial role during operation, particularly after 10 s. The measured strain confirms both the bending and axial strain generation during the open-and-close motion of the actuator prongs. Most of the water loss during device operation was due to evaporation rather than hydrolysis. The constructed WSM effectively maintained the water content inside the IPMC for long-term continuous operation.
Metal Alloy ICF Capsules Created by Electrodeposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horwood, Corie; Stadermann, Michael; Bunn, Thomas L.
Electrochemical deposition is an attractive alternative to physical vapor deposition and micromachining to produce metal capsules for inertial confinement fusion (ICF). Electrochemical deposition (also referred to as electrodeposition or plating) is expected to produce full-density metal capsules without seams or inclusions of unwanted atomic constituents, the current shortcomings of micromachine and physical vapor deposition, respectively. In this paper, we discuss new cathode designs that allow for the rapid electrodeposition of gold and copper alloys on spherical mandrels by making transient contact with the constantly moving spheres. Electrodeposition of pure gold, copper, platinum, and alloys of gold-copper and gold-silver are demonstrated,more » with nonporous coatings of >40 µm achieved in only a few hours of plating. The surface roughness of the spheres after electrodeposition is comparable to the starting mandrel, and the coatings appear to be fully dense with no inclusions. A detailed understanding of the electrodeposition conditions that result in different alloy compositions and plating rates will allow for the electrodeposition of graded alloys on spheres in the near future. Finally, this report on the electrodeposition of metals on spherical mandrels is an important first step toward the fabrication of graded-density metal capsules for ICF experiments at the National Ignition Facility.« less
Picosecond laser micromachining prior to FIB milling for electronic microscopy sample preparation
NASA Astrophysics Data System (ADS)
Sikora, Aurélien; Fares, Lahouari; Adrian, Jérôme; Goubier, Vincent; Delobbe, Anne; Corbin, Antoine; Sentis, Marc; Sarnet, Thierry
2017-10-01
In order to check the manufacturing quality of electronic components using electron microscopy, the area of interest must be exposed. This requires the removal of a large quantity of matter without damaging the surrounding area. This step can be accomplished using ion milling but the processing can last a few hours. In order to accelerate the preparation of the samples, picosecond laser micromachining prior to Focused Ion Beam polishing is envisioned. Laser ablation allows the fast removal of matter but induces damages around the ablated area. Therefore the process has to be optimized in order to limit the size of both the heat affected zone and induced dislocation zone. For this purpose, cavities have been engraved in silicon and in electronic components, using a linearly polarized picosecond laser (∼50 ps) at three different wavelengths (343, 515 and 1030 nm). Results showed that the cross sectional shapes and the surface topologies can be tuned by the laser fluence and the number of pulses. Clear cross sections of bumps and cavity openings, exposing multilayer interfaces, are demonstrated. The silicon removal rates, tuned by the applied energy density, have been measured. Removal rates achieved at 200 kHz were typically hundred times higher than those achieved by ion milling and the best efficiency was obtained at 343 nm.
Metal Alloy ICF Capsules Created by Electrodeposition
Horwood, Corie; Stadermann, Michael; Bunn, Thomas L.
2017-12-04
Electrochemical deposition is an attractive alternative to physical vapor deposition and micromachining to produce metal capsules for inertial confinement fusion (ICF). Electrochemical deposition (also referred to as electrodeposition or plating) is expected to produce full-density metal capsules without seams or inclusions of unwanted atomic constituents, the current shortcomings of micromachine and physical vapor deposition, respectively. In this paper, we discuss new cathode designs that allow for the rapid electrodeposition of gold and copper alloys on spherical mandrels by making transient contact with the constantly moving spheres. Electrodeposition of pure gold, copper, platinum, and alloys of gold-copper and gold-silver are demonstrated,more » with nonporous coatings of >40 µm achieved in only a few hours of plating. The surface roughness of the spheres after electrodeposition is comparable to the starting mandrel, and the coatings appear to be fully dense with no inclusions. A detailed understanding of the electrodeposition conditions that result in different alloy compositions and plating rates will allow for the electrodeposition of graded alloys on spheres in the near future. Finally, this report on the electrodeposition of metals on spherical mandrels is an important first step toward the fabrication of graded-density metal capsules for ICF experiments at the National Ignition Facility.« less
Micromachining of silicon carbide on silicon fabricated by low-pressure chemical vapour deposition
NASA Astrophysics Data System (ADS)
Behrens, Ingo; Peiner, Erwin; Bakin, Andrey S.; Schlachetzki, Andreas
2002-07-01
We describe the fabrication of silicon carbide layers for micromechanical applications using low-pressure metal-organic chemical vapour deposition at temperatures below 1000 °C. The layers can be structured by lift-off using silicon dioxide as a sacrificial layer. A large selectivity with respect to silicon can be exploited for bulk micromachining. Thin membranes are fabricated which exhibit high mechanical quality, as necessary for applications in harsh environments.
NASA Astrophysics Data System (ADS)
Chan, M. L.; Tay, Francis E.; Logeeswaran, V. J.; Zeng, Kaiyang; Shen, Lu; Chau, Fook S.
2002-04-01
A rapid and accurate static and quasi-static method for determining the out-of-plane spring constraints of cantilevers and a micromachined vibratory sensor is presented. In the past, much of the effort in nanoindentation application was to investigate the thin-film mechanical properties. In this paper, we have utilized the nanoindentation method to measure directly some micromachined device (e.g. microgyroscope) spring constants. The cantilevers and devices tested were fabricated using the MUMPS process and an SOI process (patent pending). Spring constants are determined using a commercial nanoindentation apparatus UMIS-2000 configured with both Berkovich and spherical indenter tip that can be placed onto the device with high accuracy. Typical load resolution is 20micrometers N to 0.5N and a displacement resolution of 0.05nm. Information was deduced from the penetration depth versus load curves during both loading and unloading.
Femtosecond laser micromachining of compound parabolic concentrator fiber tipped glucose sensors.
Hassan, Hafeez Ul; Lacraz, Amédée; Kalli, Kyriacos; Bang, Ole
2017-03-01
We report on highly accurate femtosecond (fs) laser micromachining of a compound parabolic concentrator (CPC) fiber tip on a polymer optical fiber (POF). The accuracy is reflected in an unprecedented correspondence between the numerically predicted and experimentally found improvement in fluorescence pickup efficiency of a Förster resonance energy transfer-based POF glucose sensor. A Zemax model of the CPC-tipped sensor predicts an optimal improvement of a factor of 3.96 compared to the sensor with a plane-cut fiber tip. The fs laser micromachined CPC tip showed an increase of a factor of 3.5, which is only 11.6% from the predicted value. Earlier state-of-the-art fabrication of the CPC-shaped tip by fiber tapering was of so poor quality that the actual improvement was 43% lower than the predicted improvement of the ideal CPC shape.
Femtosecond laser micromachining of compound parabolic concentrator fiber tipped glucose sensors
NASA Astrophysics Data System (ADS)
Hassan, Hafeez Ul; Lacraz, Amédée; Kalli, Kyriacos; Bang, Ole
2017-03-01
We report on highly accurate femtosecond (fs) laser micromachining of a compound parabolic concentrator (CPC) fiber tip on a polymer optical fiber (POF). The accuracy is reflected in an unprecedented correspondence between the numerically predicted and experimentally found improvement in fluorescence pickup efficiency of a Förster resonance energy transfer-based POF glucose sensor. A Zemax model of the CPC-tipped sensor predicts an optimal improvement of a factor of 3.96 compared to the sensor with a plane-cut fiber tip. The fs laser micromachined CPC tip showed an increase of a factor of 3.5, which is only 11.6% from the predicted value. Earlier state-of-the-art fabrication of the CPC-shaped tip by fiber tapering was of so poor quality that the actual improvement was 43% lower than the predicted improvement of the ideal CPC shape.
Fabrication of an Absorber-Coupled MKID Detector
NASA Technical Reports Server (NTRS)
Brown, Ari; Hsieh, Wen-Ting; Moseley, Samuel; Stevenson, Thomas; U-Yen, Kongpop; Wollack, Edward
2012-01-01
Absorber-coupled microwave kinetic inductance detector (MKID) arrays were developed for submillimeter and far-infrared astronomy. These sensors comprise arrays of lambda/2 stepped microwave impedance resonators patterned on a 1.5-mm-thick silicon membrane, which is optimized for optical coupling. The detector elements are supported on a 380-mm-thick micro-machined silicon wafer. The resonators consist of parallel plate aluminum transmission lines coupled to low-impedance Nb microstrip traces of variable length, which set the resonant frequency of each resonator. This allows for multiplexed microwave readout and, consequently, good spatial discrimination between pixels in the array. The transmission lines simultaneously act to absorb optical power and employ an appropriate surface impedance and effective filling fraction. The fabrication techniques demonstrate high-fabrication yield of MKID arrays on large, single-crystal membranes and sub-micron front-to-back alignment of the micro strip circuit. An MKID is a detector that operates upon the principle that a superconducting material s kinetic inductance and surface resistance will change in response to being exposed to radiation with a power density sufficient to break its Cooper pairs. When integrated as part of a resonant circuit, the change in surface impedance will result in a shift in its resonance frequency and a decrease of its quality factor. In this approach, incident power creates quasiparticles inside a superconducting resonator, which is configured to match the impedance of free space in order to absorb the radiation being detected. For this reason MKIDs are attractive for use in large-format focal plane arrays, because they are easily multiplexed in the frequency domain and their fabrication is straightforward. The fabrication process can be summarized in seven steps: (1) Alignment marks are lithographically patterned and etched all the way through a silicon on insulator (SOI) wafer, which consists of a thin silicon membrane bonded to a thick silicon handle wafer. (2) The metal microwave circuitry on the front of the membrane is patterned and etched. (3) The wafer is then temporarily bonded with wafer wax to a Pyrex wafer, with the SOI side abutting the Pyrex. (4) The silicon handle component of the SOI wafer is subsequently etched away so as to expose the membrane backside. (5) The wafer is flipped over, and metal microwave circuitry is patterned and etched on the membrane backside. Furthermore, cuts in the membrane are made so as to define the individual detector array chips. (6) Silicon frames are micromachined and glued to the silicon membrane. (7) The membranes, which are now attached to the frames, are released from the Pyrex wafer via dissolution of the wafer wax in acetone.
Gilkey, Jeffrey C [Albuquerque, NM; Duesterhaus, Michelle A [Albuquerque, NM; Peter, Frank J [Albuquerque, NM; Renn, Rosemarie A [Alburquerque, NM; Baker, Michael S [Albuquerque, NM
2006-08-15
A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.
Gilkey, Jeffrey C [Albuquerque, NM; Duesterhaus, Michelle A [Albuquerque, NM; Peter, Frank J [Albuquerque, NM; Renn, Rosemarie A [Albuquerque, NM; Baker, Michael S [Albuquerque, NM
2006-05-16
A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.
Fiber-optical switch using cam-micromotor driven by scratch drive actuators
NASA Astrophysics Data System (ADS)
Kanamori, Y.; Aoki, Y.; Sasaki, M.; Hosoya, H.; Wada, A.; Hane, K.
2005-01-01
We fabricated a 1 × 1 fiber-optic switch using a cam-micromotor driven by scratch drive actuators (SDAs). Using the cam-micromotor, mechanical translation and precise positioning of an optical fiber were performed. An optical fiber of diameter 50 µm was bent and pushed out with a cam-mechanism driven by the SDAs fabricated by surface micromachining. The maximum rotation speed of the cam-micromotor was 7.5 rpm at a driving frequency of 1.5 kHz. The transient time of the switch to attenuate coupling efficiency less than -40 dB was around 10 ms.
Electrically-programmable diffraction grating
Ricco, Antonio J.; Butler, Michael A.; Sinclair, Michael B.; Senturia, Stephen D.
1998-01-01
An electrically-programmable diffraction grating. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers).
Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers.
Ding, Li; Blackwell, Richard I; Künzler, Jay F; Knox, Wayne H
2008-06-10
By tightly focusing 27 fs laser pulses from a Ti:sapphire oscillator with 1.3 nJ pulse energy at 93 MHz repetition rate, we are able to fabricate optical waveguides inside hydrogel polymers containing approximately 36% water by weight. A tapered lensed fiber is used to couple laser light at a wavelength of 632.8 nm into these waveguides within a water environment. Strong waveguiding is observed due to large refractive index changes. A large waveguide propagation loss is found, and we show that this is caused by surface roughness which can be reduced by optimizing the waveguides.
Modified TMAH based etchant for improved etching characteristics on Si{1 0 0} wafer
NASA Astrophysics Data System (ADS)
Swarnalatha, V.; Narasimha Rao, A. V.; Ashok, A.; Singh, S. S.; Pal, P.
2017-08-01
Wet bulk micromachining is a popular technique for the fabrication of microstructures in research labs as well as in industry. However, increasing the throughput still remains an active area of research, and can be done by increasing the etching rate. Moreover, the release time of a freestanding structure can be reduced if the undercutting rate at convex corners can be improved. In this paper, we investigate a non-conventional etchant in the form of NH2OH added in 5 wt% tetramethylammonium hydroxide (TMAH) to determine its etching characteristics. Our analysis is focused on a Si{1 0 0} wafer as this is the most widely used in the fabrication of planer devices (e.g. complementary metal oxide semiconductors) and microelectromechanical systems (e.g. inertial sensors). We perform a systematic and parametric analysis with concentrations of NH2OH varying from 5% to 20% in step of 5%, all in 5 wt% TMAH, to obtain the optimum concentration for achieving improved etching characteristics including higher etch rate, undercutting at convex corners, and smooth etched surface morphology. Average surface roughness (R a), etch depth, and undercutting length are measured using a 3D scanning laser microscope. Surface morphology of the etched Si{1 0 0} surface is examined using a scanning electron microscope. Our investigation has revealed a two-fold increment in the etch rate of a {1 0 0} surface with the addition of NH2OH in the TMAH solution. Additionally, the incorporation of NH2OH significantly improves the etched surface morphology and the undercutting at convex corners, which is highly desirable for the quick release of microstructures from the substrate. The results presented in this paper are extremely useful for engineering applications and will open a new direction of research for scientists in both academic and industrial laboratories.
Micromachined devices: the impact of controlled geometry from cell-targeting to bioavailability.
Tao, Sarah L; Desai, Tejal A
2005-12-05
Advances in microelectomechanical systems (MEMS) have allowed the microfabrication of polymeric substrates and the development of a novel class of controlled delivery devices. These vehicles have specifically tailored three-dimensional physical and chemical features which, together, provide the capacity to target cells, promote unidirectional controlled release, and enhance permeation across the intestinal epithelial barrier. Examining the biological response at the microdevice biointerface may provide insight into the benefits of customized surface chemistry and structure in terms of complex drug delivery vehicle design. Therefore, the aim of this work was to determine the interfacial effects of selective surface chemistry and architecture of tomato lectin (TL)-modified poly(methyl methacrylate) (PMMA) drug delivery microdevices on the Caco-2 cell line, a model of the gastrointestinal tract.
A high-average-power FEL for industrial applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dylla, H.F.; Benson, S.; Bisognano, J.
1995-12-31
CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt UV (150-1000 nm) and IR (2-25 micron) FEL driven by a recirculating, energy-recovering 200 MeV superconducting radio-frequency (SRF) accelerator. FEL users{endash}CEBAF`s partners in the Laser Processing Consortium, including AT&T, DuPont, IBM, Northrop-Grumman, 3M, and Xerox{endash}plan to develop applications such as polymer surface processing, metals and ceramics micromachining, and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunabilitymore » and pulse structure. 4 refs., 3 figs., 2 tabs.« less
Sammoura, Firas; Smyth, Katherine; Kim, Sang-Gook
2013-09-01
An electric circuit model for a clamped circular bimorph piezoelectric micromachined ultrasonic transducer (pMUT) was developed for the first time. The pMUT consisted of two piezoelectric layers sandwiched between three thin electrodes. The top and bottom electrodes were separated into central and annular electrodes by a small gap. While the middle electrode was grounded, the central and annular electrodes were biased with two independent voltage sources. The strain mismatch between the piezoelectric layers caused the plate to vibrate and transmit a pressure wave, whereas the received echo generated electric charges resulting from plate deformation. The clamped pMUT plate was separated into a circular and an annular plate, and the respective electromechanical transformation matrices were derived. The force and velocity vectors were properly selected using Hamilton's principle and the necessary boundary conditions were invoked. The electromechanical transformation matrix for the clamped circular pMUT was deduced using simple matrix manipulation techniques. The pMUT performance under three biasing schemes was elaborated: 1) central electrode only, 2) central and annular electrodes with voltages of the same magnitude and polarity, and 3) central and annular electrodes with voltages of the same magnitude and opposite polarity. The circuit parameters of the pMUT were extracted for each biasing scheme, including the transformer ratio, the clamped electric impedance, and the open-circuit mechanical impedance. Each pMUT scheme was characterized under different acoustic loadings using the theoretically developed model, which was verified with finite element modeling (FEM) simulation. The electrode size was optimized to maximize the electromechanical transformer ratio. As such, the developed model could provide more insight into the design, optimization, and characterization of pMUTs and allow for performance comparison with their cMUT counterparts.
Development of ultrasonic electrostatic microjets for distributed propulsion and microflight
NASA Astrophysics Data System (ADS)
Amirparviz, Babak
This dissertation details the first attempt to design and fabricate a distributed micro propulsion system based on acoustic streaming. A novel micro propulsion method is suggested by combining Helmholtz resonance, acoustic streaming and flow entrainment and thrust augmentation. In this method, oscillatory motion of an electrostatically actuated diaphragm creates a high frequency acoustic field inside the cavity of a Helmholtz resonator. The initial fluid motion velocity is amplified by the Helmholtz resonator structure and creates a jet flow at the exit nozzle. Acoustic streaming is the phenomenon responsible for primary jet stream creation. Primary jets produced by a few resonators can be combined in an ejector configuration to induce flow entrainment and thrust augmentation. Basic governing equations for the electrostatic actuator, deformation of the diaphragm and the fluid flow inside the resonator are derived. These equations are linearized and used to derive an equivalent electrical circuit model for the operation of the device. Numerical solution of the governing equations and simulation of the circuit model are used to predict the performance of the experimental systems. Thrust values as high as 30.3muN are expected per resonator. A micro machined electrostatically-driven high frequency Helmholtz resonator prototype is designed and fabricated. A new micro fabrication technique is developed for bulk micromachining and in particular fabrication of the resonator. Geometric stops for wet anisotropic etching of silicon are introduced for the fist time for structure formation. Arrays of high frequency (>60kHz) micro Helmholtz resonators are fabricated. In one sample more than 1000 resonators cover the surface of a four-inch silicon wafer and in effect convert it to a distributed propulsion system. A high yield (>85%) micro fabrication process is presented for realization of this propulsion system taking advantage of newly developed deep glass micromachining and lithography on thin (15mum) silicon methods. Extensive test and characterization are performed on the micro jets using current frequency component analysis, laser interferometry, acoustic measurements, hot-wire anemometers, video particle imaging and load cells. The occurrence of acoustic streaming at jet nozzles is verified and flow velocities exceeding 1m/s are measured at the 15mum x 330mum jet exit nozzle.
NASA Astrophysics Data System (ADS)
Kim, Sangho Sam
High-power laser technology has a number of applications, whether for the military (i.e., anti-missile weaponry) or for material processing, medical surgery, laser-induced nuclear fusion, and high-density data storage. However, external obstacles could cause a laser to problematically change its direction. Optical components such as mirrors already address this problem by deflecting a laser beam, but can be damaged easily due to the intensity of the laser. Therefore, this dissertation examines how to improve reliability of high power laser application systems by three significant standards. First, we demonstrate that an atomic layer deposition (ALD) of Al2O3 can stabilize novel dielectric optical mirrors composed of SiO2 nanorods, whose porosity makes it attractive for use as a low refractive index material. Such a deposition can stabilize material properties in dry versus humid atmospheres, where both the refractive index and coefficient of thermal expansion (CTE) vary dramatically. This encapsulation ability is demonstrated in dielectric multilayers as a Distributed Bragg Reflector (DBR). Second, we show that the difference in hydroxyl signatures of micromachined dielectric membranes can make detection of optical materials' laser damage more accurate. This signature difference, appearing as the decrease in post-laser absorption peaks associated with hydroxyl groups (OH), is measured by Fourier transform infrared spectroscopy and corresponds to regions of high fluence from a Nd:YAG laser. This detection technique will be useful to determine the lifespan of the optical components used in a high power laser. Third, we find that heterogeneous thermoluminescent (TL) multilayers composed of LiF:Mg,Ti and CaF2:Dy with Kapton as an interlayer can enhance reconstruction of laser heating events through thermal gradients that penetrate deep into a material, thereby preserving memory of the temperature history of the surface. Using the finite-difference time-domain method (FDTD) and the first order kinetics model of TL, we estimate dynamic heat transfer and then populate the final luminescent intensity. A thermal contact conductance between the critical layers is also introduced to better simulate experimental results, thereby resolving dynamic temperatures by hundreds of milliseconds.
NASA Astrophysics Data System (ADS)
Kuo, C.-Y.; Chen, P.-S.; Chen, H.-T.; Lu, C.-J.; Tian, W.-C.
2017-03-01
In this study, a simple process for fabricating a novel micromachined preconcentrator (μPCT) and a gas chromatographic separation column (μSC) for use in a micro gas chromatograph (μGC) using one photomask is described. By electroless gold plating, a high-surface-area gold layer was deposited on the surface of channels inside the μPCT and μSC. For this process, (3-aminopropyl) trimethoxysilane (APTMS) was used as a promoter for attaching gold nanoparticles on a silicon substrate to create a seed layer. For this purpose, a gold sodium sulfite solution was used as reagent for depositing gold to form heating structures. The microchannels of the μPCT and μSC were coated with the adsorbent and stationary phase, Tenax-TA and polydimethylsiloxane (DB-1), respectively. μPCTs were heated at temperatures greater than 280 °C under an applied electrical power of 24 W and a heating rate of 75 °C s-1. Repeatable thermal heating responses for μPCTs were achieved; good linearity (R 2 > 0.9997) was attained at three heating rates for the temperature programme for the μSC (0.2, 0.5 and 1 °C s-1). The volatile organic compounds (VOCs) toluene and m-xylene were concentrated over the μPCT by rapid thermal desorption (peak width of half height (PWHH) <1.5 s) preconcentration factors for both VOCs are >7900. The VOCs acetone, benzene, toluene, m-xylene and 1,3,5-trimethylbenzene were also separated on the μSC as evidenced by their different retention times (47-184 s).
Development of Silicon Micromirrors for the Next Generation Space Telescope
NASA Astrophysics Data System (ADS)
Garcia, E. J.; Polosky, M. A.; Sleefe, G. E.; Habbit, R.; Zamora, J. C.; Greenhouse, M. A.
2001-12-01
This paper describes how advanced surface micromachining (SMM) technology is being used to develop prototype cryogenic micromirror arrays for evaluation as an instrument optical component for the NGST. When used as a spectrograph reflective slit mask, these arrays can yield a factor of 1000 reduction in mass and power over, traditional motor-driven slit wheels used on HST instruments. The advantage of micromirrors as a new approach to instrument aperture control is particularly apparent when it is coupled with new large format focal plane arrays to enable multi-object spectroscopy. In this application, the micromirror-enabled capability goes beyond mass and power reduction to offer increased observing efficiency (targets/hour). In the case of NGST, a factor of 100 improvement in efficiency relative to traditional instrument designs has been estimated. Surface micromachining uses fabrication processes adapted from integrated circuit manufacturing to build microscopic-sized electromechanical devices from polycrystalline silicon. Because these devices can be batch fabricated thousands or even millions of devices can be constructed on a single wafer at costs several orders of magnitude less than conventionally fabricated devices. This paper will describe the design and operation of prototype mirror devices that are currently under development. We have recently demonstrated the feasibility of operating micromirrors at cryogenic temperatures. A packaged unit with its associated interconnects has been successfully operated at temperatures less than 30 K. The ability to function at the cryogenic temperatures encountered in certain space applications is a major milestone for microsystems. This work is funded by NASA Goddard Space Flight Center. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Dept. of Energy under Contract DE-AC04-94AL85000.
Micromachined modulator arrays for use in free-space optical communication systems
NASA Astrophysics Data System (ADS)
Lewis, Keith L.; Ridley, Kevin D.; McNie, Mark E.; Smith, Gilbert W.; Scott, Andrew M.
2004-12-01
A summary is presented of some of the design criteria relevant to the realisation of silicon micromachined modulator arrays for use in free-space optical communication systems. Theoretical performance levels achievable are compared with values measured on experimental devices produced using a modified Multi-User MEMS Process (MUMPS). Devices capable of realising modulation rates in excess of 300 kHz are described and their optical characteristics compared with published data on devices based on multiple quantum well technology.
NASA Astrophysics Data System (ADS)
Logsdon, James
2002-03-01
This presentation will provide a brief history of the development of MEMS products and technology, beginning with the manifold absolute pressure sensor in the late seventies through the current variety of Delphi Delco Electronics sensors available today. The technology development of micromachining from uncompensated P plus etch stops to deep reactive ion etching and the technology development of wafer level packaging from electrostatic bonding to glass frit sealing and silicon to silicon direct bonding will be reviewed.
MEMS testing and applications in automotive and aerospace industries
NASA Astrophysics Data System (ADS)
Ma, Zhichun; Chen, Xuyuan
2009-05-01
MEMS technology combines micromachining and integrated circuit fabrication technologies to produce highly reliable MEMS transducers. This paper presents an overview of MEMS transducers applications, particularly in automotive and aerospace industries, which includes inertia sensors for safety, navigation, and guidance control, thermal anemometer for temperature and heat-flux sensors in engine applications, MEMS atomizers for fuel injection, and micromachined actuators for flow control applications. Design examples for the devices in above mentioned applications are also presented and test results are given.
A Broadband Micro-Machined Far-Infrared Absorber
NASA Technical Reports Server (NTRS)
Wollack, E. J.; Datesman, A. M.; Jhabvala, C. A.; Miller, K. H.; Quijada, M. A.
2016-01-01
The experimental investigation of a broadband far-infrared meta-material absorber is described. The observed absorptance is greater than 0.95 from 1 to 20 terahertz (300-15 microns) over a temperature range spanning 5-300 degrees Kelvin. The meta-material, realized from an array of tapers approximately 100 microns in length, is largely insensitive to the detailed geometry of these elements and is cryogenically compatible with silicon-based micro-machined technologies. The electromagnetic response is in general agreement with a physically motivated transmission line model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randolph, Randall Blaine; Oertel, John A.; Schmidt, Derek William
For this study, machined CH hemi-shell ablator capsules have been successfully produced by the MST-7 Target Fabrication Team at Los Alamos National Laboratory. Process development and micro-machining techniques have been developed to produce capsules for both the Omega and National Ignition Facility (NIF) campaigns. These capsules are gas filled up to 10 atm and consist of a machined plastic hemi-shell outer layer that accommodates various specially engineered low-density polystyrene foam cores. Machining and assembly of the two-part, step-jointed plastic hemi-shell outer layer required development of new techniques, processes, and tooling while still meeting very aggressive shot schedules for both campaigns.more » Finally, problems encountered and process improvements will be discussed that describe this very unique, complex capsule design approach through the first Omega proof-of-concept version to the larger NIF version.« less
NASA Astrophysics Data System (ADS)
McKinney, Luke; Frank, Felix; Graper, David; Dean, Jesse; Forrester, Paul; Rioblanc, Maxence; Nantel, Marc; Marjoribanks, Robin
2005-09-01
Ultrafast-laser micromachining has promise as an approach to trimming and 'healing' small laser-produced damage sites in laser-system optics--a common experience in state-of-the-art high-power laser systems. More-conventional approaches currently include mechanical micromachining, chemical modification, and treatment using cw and long-pulse lasers. Laser-optics materials of interest include fused silica, multilayer dielectric stacks for anti-reflection coatings or high-reflectivity mirrors, and inorganic crystals such as KD*P, used for Pockels cells and frequency-doubling. We report on novel efforts using ultrafast-laser pulsetrain-burst processing (microsecond bursts at 133 MHz) to mitigate damage in fused silica, dielectric coatings, and KD*P crystals. We have established the characteristics of pulsetrain-burst micromachining in fused silica, multilayer mirrors, and KD*P, and determined the etch rates and morphology under different conditions of fluence-delivery. From all of these, we have begun to identify new means to optimize the laser-repair of optics defects and damage.
A micromachined device describing over a hundred orders of parametric resonance
NASA Astrophysics Data System (ADS)
Jia, Yu; Du, Sijun; Arroyo, Emmanuelle; Seshia, Ashwin A.
2018-04-01
Parametric resonance in mechanical oscillators can onset from the periodic modulation of at least one of the system parameters, and the behaviour of the principal (1st order) parametric resonance has long been well established. However, the theoretically predicted higher orders of parametric resonance, in excess of the first few orders, have mostly been experimentally elusive due to the fast diminishing instability intervals. A recent paper experimentally reported up to 28 orders in a micromachined membrane oscillator. This paper reports the design and characterisation of a micromachined membrane oscillator with a segmented proof mass topology, in an attempt to amplify the inherent nonlinearities within the membrane layer. The resultant oscillator device exhibited up to over a hundred orders of parametric resonance, thus experimentally validating these ultra-high orders as well as overlapping instability transitions between these higher orders. This research introduces design possibilities for the transducer and dynamic communities, by exploiting the behaviour of these previously elusive higher order resonant regimes.
GaAs micromachining in the 1 H2SO4:1 H2O2:8 H2O system. From anisotropy to simulation
NASA Astrophysics Data System (ADS)
Tellier, C. R.
2011-02-01
The bulk micromachining on (010), (110) and (111)A GaAs substrates in the 1 H2SO4:1 H2O2:8 H2O system is investigated. Focus is placed on anisotropy of 3D etching shapes with a special emphasis on convex and concave undercuts which are of prime importance in the wet micromachining of mechanical structures. Etched structures exhibit curved contours and more and less rounded sidewalls showing that the anisotropy is of type 2. This anisotropy can be conveniently described by a kinematic and tensorial model. Hence, a database composed of dissolution constants is further determined from experiments. A self-elaborated simulator which works with the proposed database is used to derive theoretical 3D shapes. Simulated shapes agree well with observed shapes of microstructures. The successful simulations open up two important applications for MEMS: CAD of mask patterns and meshing of simulated shapes for FEM simulation tools.
Micromachined Thermoelectric Sensors and Arrays and Process for Producing
NASA Technical Reports Server (NTRS)
Foote, Marc C. (Inventor); Jones, Eric W. (Inventor); Caillat, Thierry (Inventor)
2000-01-01
Linear arrays with up to 63 micromachined thermopile infrared detectors on silicon substrates have been constructed and tested. Each detector consists of a suspended silicon nitride membrane with 11 thermocouples of sputtered Bi-Te and Bi-Sb-Te thermoelectric elements films. At room temperature and under vacuum these detectors exhibit response times of 99 ms, zero frequency D* values of 1.4 x 10(exp 9) cmHz(exp 1/2)/W and responsivity values of 1100 V/W when viewing a 1000 K blackbody source. The only measured source of noise above 20 mHz is Johnson noise from the detector resistance. These results represent the best performance reported to date for an array of thermopile detectors. The arrays are well suited for uncooled dispersive point spectrometers. In another embodiment, also with Bi-Te and Bi-Sb-Te thermoelectric materials on micromachined silicon nitride membranes, detector arrays have been produced with D* values as high as 2.2 x 10(exp 9) cm Hz(exp 1/2)/W for 83 ms response times.
Micro-machined resonator oscillator
Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.
1994-01-01
A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.
Micromachined Millimeter- and Submillimeter-wave SIS Heterodyne Receivers for Remote Sensing
NASA Technical Reports Server (NTRS)
Hu, Qing
1997-01-01
This is a progress report for the second year of a NASA-sponsored project. The report discusses the design and fabrication of micromachined Superconductor Insulator Superconductor (SIS) heterodyne receivers with integrated tuning elements. These receivers tune out the functional capacitance at desired frequencies, resulting in less noise, lower temperatures and broader bandwidths. The report also discusses the design and fabrication of the first monolithic 3x3 focal-plane arrays for a frequency range of 170-210 GHz. Also addressed is the construction of a 9-channel bias and read-out system, as well as the redesign of the IF connections to reduce cross talk between SIS junctions, which become significant a frequency of 1.5 GHz IF. Uniformity of the junction arrays were measured and antenna beam patterns of several array elements under operating conditions also were measured. Finally, video and heterodyne responses of our focal-plane arrays were measured as well. Attached is a paper on: 'Development of a 170-210 GHz 3x3 micromachined SIS imaging array'.
Precision Control Module For UV Laser 3D Micromachining
NASA Astrophysics Data System (ADS)
Wu, Wen-Hong; Hung, Min-Wei; Chang, Chun-Li
2011-01-01
UV laser has been widely used in various micromachining such as micro-scribing or patterning processing. At present, most of the semiconductors, LEDs, photovoltaic solar panels and touch panels industries need the UV laser processing system. However, most of the UV laser processing applications in the industries utilize two dimensional (2D) plane processing. And there are tremendous business opportunities that can be developed, such as three dimensional (3D) structures of micro-electromechanical (MEMS) sensor or the precision depth control of indium tin oxide (ITO) thin films edge insulation in touch panels. This research aims to develop a UV laser 3D micromachining module that can create the novel applications for industries. By special designed beam expender in optical system, the focal point of UV laser can be adjusted quickly and accurately through the optical path control lens of laser beam expender optical system. Furthermore, the integrated software for galvanometric scanner and focal point adjustment mechanism is developed as well, so as to carry out the precise 3D microstructure machining.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Robert Clark
2003-12-01
Present methods of air sampling for low concentrations of chemicals like explosives and bioagents involve noisy and power hungry collectors with mechanical parts for moving large volumes of air. However there are biological systems that are capable of detecting very low concentrations of molecules with no mechanical moving parts. An example is the silkworm moth antenna which is a highly branched structure where each of 100 branches contains about 200 sensory 'hairs' which have dimensions of 2 microns wide by 100 microns long. The hairs contain about 3000 pores which is where the gas phase molecules enter the aqueous (lymph)more » phase for detection. Simulations of diffusion of molecules indicate that this 'forest' of hairs is 'designed' to maximize the extraction of the vapor phase molecules. Since typical molecules lose about 4 decades in diffusion constant upon entering the liquid phase, it is important to allow air diffusion to bring the molecule as close to the 'sensor' as possible. The moth acts on concentrations as low as 1000 molecules per cubic cm. (one part in 1e16). A 3-D collection system of these dimensions could be fabricated by micromachining techniques available at Sandia. This LDRD addresses the issues involved with extracting molecules from air onto micromachined structures and then delivering those molecules to microsensors for detection.« less
Review of piezoelectric micromachined ultrasonic transducers and their applications
NASA Astrophysics Data System (ADS)
Jung, Joontaek; Lee, Wonjun; Kang, Woojin; Shin, Eunjung; Ryu, Jungho; Choi, Hongsoo
2017-11-01
In recent decades, micromachined ultrasonic transducers (MUTs) have been investigated as an alternative to conventional piezocomposite ultrasonic transducers, primarily due to the advantages that microelectromechanical systems provide. Miniaturized ultrasonic systems require ultrasonic transducers integrated with complementary metal-oxide-semiconductor circuits. Hence, piezoelectric MUTs (pMUTs) and capacitive MUTs (cMUTs) have been developed as the most favorable solutions. This paper reviews the basic equations to understand the characteristics of thin-film-based piezoelectric devices and presents recent research on pMUTs, including current approaches and limitations. Methods to improve the coupling coefficient of pMUTs are also investigated, such as device structure, materials, and fabrication techniques. The device structure improvements include multielectrode pMUTs, partially clamped boundary conditions, and 3D pMUTs (curved and domed types), where the latter can provide an electromechanical coupling coefficient of up to 45%. The piezoelectric coefficient (e 31) can be increased by controlling the crystal texture (seed layer of γ-Al2O3), using single-crystal (PMN-PT) materials, or control of residual stresses (using SiO2 layer). Arrays of pMUTs can be implemented for various applications including intravascular ultrasound, fingerprint sensors, rangefinders in air, and wireless power supply systems. pMUTs are expected to be an ideal solution for applications such as mobile biometric security (fingerprint sensors) and rangefinders due to their superior power efficiency and compact size.
NASA Astrophysics Data System (ADS)
Yang, Junyan; Martin, David
2003-03-01
Micromachined neural prosthetic devices facilitate the functional stimulation of and recording from the central nervous system (CNS). These devices have been fabricated to consist of silicon shanks that have gold or iridium sites along their surface. Our goal is to improve the biocompatibility and long-term performance of the neural prosthetic probes when they are implanted chronically in the brain. In our most recent efforts we have established that electrochemical polymerization can be used to deposit fuzzy coatings of conducting polymers specifically on the electrode sites. For neural prosthetic devices that are intended for long term implantation, we need to develop surfaces that provide intimate contact and promote efficient signal transport at the interface of the microelectrode array and brain tissue. We have developed methods to rapidly and reliably fabricate nanostructured conducting polymer coatings on the electrode probes using templated and surfactant-mediated techniques. Conducting polymer nanomushrooms and nanohairs of polypyrrole (PPy) were electrochemically polymerized onto the functional sites of neural probes by using either nanoporous block copolymers thin films, "track-etched" polycarbonate films or anodic aluminium oxide membranes as templates. Nanofibers of conducting polymers have also been successfully obtained by polymerizations in the presence of surfactants. The influence of current density, monomer concentration, surfactant concentration, and deposition charge on the thickness and morphology of the nanostructured conducting polymer coatings has been studied by optical, scanned probe, scanning electron and transmission electron microscopy. As compared with the normal nodular morphology of polypyrrole, the nanostructured morphologies grown from the neural electrode result in fuzzy coatings with extremely high surface area. The electrical properties of the polymer coatings were studied by Impedance Spectroscopy (IS) and Cyclic Voltammetry (CV). The significant drop in impedance in magnitude and phase angle is consistent with an increase of the surface area due to the roughened surface morphology.
Gautam, Gayatri P; Burger, Tobias; Wilcox, Andrew; Cumbo, Michael J; Graves, Steven W; Piyasena, Menake E
2018-05-01
We introduce a new method to construct microfluidic devices especially useful for bulk acoustic wave (BAW)-based manipulation of cells and microparticles. To obtain efficient acoustic focusing, BAW devices require materials that have high acoustic impedance mismatch relative to the medium in which the cells/microparticles are suspended and materials with a high-quality factor. To date, silicon and glass have been the materials of choice for BAW-based acoustofluidic channel fabrication. Silicon- and glass-based fabrication is typically performed in clean room facilities, generates hazardous waste, and can take several hours to complete the microfabrication. To address some of the drawbacks in fabricating conventional BAW devices, we explored a new approach by micromachining microfluidic channels in aluminum substrates. Additionally, we demonstrate plasma bonding of poly(dimethylsiloxane) (PDMS) onto micromachined aluminum substrates. Our goal was to achieve an approach that is both low cost and effective in BAW applications. To this end, we micromachined aluminum 6061 plates and enclosed the systems with a thin PDMS cover layer. These aluminum/PDMS hybrid microfluidic devices use inexpensive materials and are simply constructed outside a clean room environment. Moreover, these devices demonstrate effectiveness in BAW applications as demonstrated by efficient acoustic focusing of polystyrene microspheres, bovine red blood cells, and Jurkat cells and the generation of multiple focused streams in flow-through systems. Graphical abstract The aluminum acoustofluidic device and the generation of multinode focusing of particles.
Magnetohydrodynamic pump with a system for promoting flow of fluid in one direction
Lemoff, Asuncion V [Union City, CA; Lee, Abraham P [Irvine, CA
2010-07-13
A magnetohydrodynamic pump for pumping a fluid. The pump includes a microfluidic channel for channeling the fluid, a MHD electrode/magnet system operatively connected to the microfluidic channel, and a system for promoting flow of the fluid in one direction in the microfluidic channel. The pump has uses in the medical and biotechnology industries for blood-cell-separation equipment, biochemical assays, chemical synthesis, genetic analysis, drug screening, an array of antigen-antibody reactions, combinatorial chemistry, drug testing, medical and biological diagnostics, and combinatorial chemistry. The pump also has uses in electrochromatography, surface micromachining, laser ablation, inkjet printers, and mechanical micromilling.
Microfabricated microengine with constant rotation rate
Romero, Louis A.; Dickey, Fred M.
1999-01-01
A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into constant rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque at a constant rotation to a micromechanism. The output gear can have gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication.
Microelectromechanical ratcheting apparatus
Barnes, Stephen M.; Miller, Samuel L.; Jensen, Brian D.; Rodgers, M. Steven; Burg, Michael S.
2001-01-01
A microelectromechanical (MEM) ratcheting apparatus is disclosed which includes an electrostatic or thermal actuator that drives a moveable member in the form of a ring gear, stage, or rack. Motion is effected by one or more reciprocating pawls driven by the actuator in a direction that is parallel to, in line with, or tangential to the path. The reciprocating pawls engage indexing elements (e.g. teeth or pins) on the moveable member to incrementally move the member along a curved or straight path with the ability to precisely control and determine the position of the moveable member. The MEM apparatus can be formed on a silicon substrate by conventional surface micromachining methods.
Electrically-programmable diffraction grating
Ricco, A.J.; Butler, M.A.; Sinclair, M.B.; Senturia, S.D.
1998-05-26
An electrically-programmable diffraction grating is disclosed. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers). 14 figs.
Botulinum toxin type B micromechanosensor
Liu, W.; Montana, Vedrana; Chapman, Edwin R.; Mohideen, U.; Parpura, Vladimir
2003-01-01
Botulinum neurotoxin (BoNT) types A, B, E, and F are toxic to humans; early and rapid detection is essential for adequate medical treatment. Presently available tests for detection of BoNTs, although sensitive, require hours to days. We report a BoNT-B sensor whose properties allow detection of BoNT-B within minutes. The technique relies on the detection of an agarose bead detachment from the tip of a micromachined cantilever resulting from BoNT-B action on its substratum, the synaptic protein synaptobrevin 2, attached to the beads. The mechanical resonance frequency of the cantilever is monitored for the detection. To suspend the bead off the cantilever we use synaptobrevin's molecular interaction with another synaptic protein, syntaxin 1A, that was deposited onto the cantilever tip. Additionally, this bead detachment technique is general and can be used in any displacement reaction, such as in receptor-ligand pairs, where the introduction of one chemical leads to the displacement of another. The technique is of broad interest and will find uses outside toxicology. PMID:14573702
Botulinum toxin type B micromechanosensor.
Liu, W; Montana, Vedrana; Chapman, Edwin R; Mohideen, U; Parpura, Vladimir
2003-11-11
Botulinum neurotoxin (BoNT) types A, B, E, and F are toxic to humans; early and rapid detection is essential for adequate medical treatment. Presently available tests for detection of BoNTs, although sensitive, require hours to days. We report a BoNT-B sensor whose properties allow detection of BoNT-B within minutes. The technique relies on the detection of an agarose bead detachment from the tip of a micromachined cantilever resulting from BoNT-B action on its substratum, the synaptic protein synaptobrevin 2, attached to the beads. The mechanical resonance frequency of the cantilever is monitored for the detection. To suspend the bead off the cantilever we use synaptobrevin's molecular interaction with another synaptic protein, syntaxin 1A, that was deposited onto the cantilever tip. Additionally, this bead detachment technique is general and can be used in any displacement reaction, such as in receptor-ligand pairs, where the introduction of one chemical leads to the displacement of another. The technique is of broad interest and will find uses outside toxicology.
Fabricating and using a micromachined magnetostatic relay or switch
NASA Technical Reports Server (NTRS)
Tai, Yu-Chong (Inventor); Wright, John A. (Inventor)
2001-01-01
A micromachined magnetostatic relay or switch includes a springing beam on which a magnetic actuation plate is formed. The springing beam also includes an electrically conductive contact. In the presence of a magnetic field, the magnetic material causes the springing beam to bend, moving the electrically conductive contact either toward or away from another contact, and thus creating either an electrical short-circuit or an electrical open-circuit. The switch is fabricated from silicon substrates and is particularly useful in forming a MEMs commutation and control circuit for a miniaturized DC motor.
NASA Technical Reports Server (NTRS)
1998-01-01
Under an SBIR (Small Business Innovative Research) with Marshall Space Flight Center, Potomac Photonics, Inc., constructed and demonstrated a unique tool that fills a need in the area of diffractive and refractive micro-optics. It is an integrated computer-aided design and computer-aided micro-machining workstation that will extend the benefits of diffractive and micro-optic technology to optical designers. Applications of diffractive optics include sensors and monitoring equipment, analytical instruments, and fiber optic distribution and communication. The company has been making diffractive elements with the system as a commercial service for the last year.
Micromachined microphone array on a chip for turbulent boundary layer measurements
NASA Astrophysics Data System (ADS)
Krause, Joshua Steven
A surface micromachined microphone array on a single chip has been successfully designed, fabricated, characterized, and tested for aeroacoustic purposes. The microphone was designed to have venting through the diaphragm, 64 elements (8x8) on the chip, and used a capacitive transduction scheme. The microphone was fabricated using the MEMSCAP PolyMUMPs process (a foundry polysilicon surface micromachining process) along with facilities at Tufts Micro and Nano Fabrication Facility (TMNF) where a Parylene-C passivation layer deposition and release of the microstructures were performed. The devices are packaged with low profile interconnects, presenting a maximum of 100 mum of surface topology. The design of an individual microphone was completed through the use of a lumped element model (LEM) to determine the theoretical performance of the microphone. Off-chip electronics were created to allow the microphone array outputs to be redirected to one of two channels, allowing dynamic reconfiguration of the effective transducer shape in software and provide 80 dB off isolation. The characterization was completed through the use of laser Doppler vibrometry (LDV), acoustic plane wave tube and free-field calibration, and electrical noise floor testing in a Faraday cage. Measured microphone sensitivity is 0.15 mV/Pa for an individual microphone and 8.7 mV/Pa for the entire array, in close agreement with model predictions. The microphones and electronics operate over the 200--40 000 Hz band. The dynamic range extends from 60 dB SPL in a 1 Hz band to greater than 150 dB SPL. Element variability was +/-0.05 mV/Pa in sensitivity with an array yield of 95%. Wind tunnel testing at flow rates of up to 205.8 m/s indicates that the devices continue to operate in flow without damage, and can be successfully reconfigured on the fly. Care has been taken to systematically remove contaminating signals (acoustic, vibration, and noise floor) from the wind tunnel data to determine actual turbulent pressure fluctuations beneath the turbulent boundary layer to an uncertainty level of 1 dB. Analysis of measured boundary layer pressure spectra at six flow rates from 34.3 m/s to 205.8 m/s indicate single point wall spectral measurements in close agreement to the empirical models of Goody, Chase-Howe, and Efimtsov above Mach 0.4. The MEMS data more closely resembles the magnitude of the Efimtsov model at higher frequencies (25% higher above 3 kHz for the Mach 0.6 case); however, the shape of the spectral model is closer to the model of Goody (50% lower for the Mach 0.6 case for all frequencies). The Chase-Howe model does fall directly on the MEMS data starting at 6 kHz, but has a sharper slope and does not resemble the data at below 6 kHz.
Array Technology for Terahertz Imaging
NASA Technical Reports Server (NTRS)
Reck, Theodore; Siles, Jose; Jung, Cecile; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, Imran; Cooper, Ken
2012-01-01
Heterodyne terahertz (0.3 - 3THz) imaging systems are currently limited to single or a low number of pixels. Drastic improvements in imaging sensitivity and speed can be achieved by replacing single pixel systems with an array of detectors. This paper presents an array topology that is being developed at the Jet Propulsion Laboratory based on the micromachining of silicon. This technique fabricates the array's package and waveguide components by plasma etching of silicon, resulting in devices with precision surpassing that of current metal machining techniques. Using silicon increases the versatility of the packaging, enabling a variety of orientations of circuitry within the device which increases circuit density and design options. The design of a two-pixel transceiver utilizing a stacked architecture is presented that achieves a pixel spacing of 10mm. By only allowing coupling from the top and bottom of the package the design can readily be arrayed in two dimensions with a spacing of 10mm x 18mm.
Improved cost-effective fabrication of arbitrarily shaped μIPMC transducers
NASA Astrophysics Data System (ADS)
Feng, Guo-Hua; Chen, Ri-Hong
2008-01-01
Conventional ionic polymer-metal composite (IPMC) production cuts individual transducers from bulk IPMC sheets. This paper presents a novel photolithographic technique that grows a large array of identical devices on a thin (~µm range) parylene diaphragm supported on a perforated substrate of material that is immune to the subsequent processing liquids. In particular, the new technique relies on a unique wax fill-up and removal concept that can produce arbitrarily shaped Nafion films with micron feature size. The developed process is cheap and results in devices of high uniformity and reliability, with greater design flexibility. Microtensile testing characterizes the fracture profiles of the non-electroded Nafion film and IPMC. Young's modulus is characterized, as well as maximum displacement and current consumption under various loading, driving voltages, waveforms and frequencies. High product quality and low process costs make this process of interest for mass production of micromachined IPMC transducers.
A self-tuning automatic voltage regulator designed for an industrial environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, D.; Hogg, B.W.; Swidenbank, E.
Examination of the performance of fixed parameter controllers has resulted in the development of self-tuning strategies for excitation control of turbogenerator systems. In conjunction with the advanced control algorithms, sophisticated measurement techniques have previously been adopted on micromachine systems to provide generator terminal quantities. In power stations, however, a minimalist hardware arrangement would be selected leading to relatively simple measurement techniques. The performance of a range of self-tuning schemes is investigated on an industrial test-bed, employing a typical industrial hardware measurement system. Individual controllers are implemented on a standard digital automatic voltage regulator, as installed in power stations. This employsmore » a VME platform, and the self-tuning algorithms are introduced by linking to a transputer network. The AVR includes all normal features, such as field forcing, VAR limiting and overflux protection. Self-tuning controller performance is compared with that of a fixed gain digital AVR.« less
Lab-on-CMOS Integration of Microfluidics and Electrochemical Sensors
Huang, Yue; Mason, Andrew J.
2013-01-01
This paper introduces a CMOS-microfluidics integration scheme for electrochemical microsystems. A CMOS chip was embedded into a micro-machined silicon carrier. By leveling the CMOS chip and carrier surface to within 100 nm, an expanded obstacle-free surface suitable for photolithography was achieved. Thin film metal planar interconnects were microfabricated to bridge CMOS pads to the perimeter of the carrier, leaving a flat and smooth surface for integrating microfluidic structures. A model device containing SU-8 microfluidic mixers and detection channels crossing over microelectrodes on a CMOS integrated circuit was constructed using the chip-carrier assembly scheme. Functional integrity of microfluidic structures and on-CMOS electrodes was verified by a simultaneous sample dilution and electrochemical detection experiment within multi-channel microfluidics. This lab-on-CMOS integration process is capable of high packing density, is suitable for wafer-level batch production, and opens new opportunities to combine the performance benefits of on-CMOS sensors with lab-on-chip platforms. PMID:23939616
Lab-on-CMOS integration of microfluidics and electrochemical sensors.
Huang, Yue; Mason, Andrew J
2013-10-07
This paper introduces a CMOS-microfluidics integration scheme for electrochemical microsystems. A CMOS chip was embedded into a micro-machined silicon carrier. By leveling the CMOS chip and carrier surface to within 100 nm, an expanded obstacle-free surface suitable for photolithography was achieved. Thin film metal planar interconnects were microfabricated to bridge CMOS pads to the perimeter of the carrier, leaving a flat and smooth surface for integrating microfluidic structures. A model device containing SU-8 microfluidic mixers and detection channels crossing over microelectrodes on a CMOS integrated circuit was constructed using the chip-carrier assembly scheme. Functional integrity of microfluidic structures and on-CMOS electrodes was verified by a simultaneous sample dilution and electrochemical detection experiment within multi-channel microfluidics. This lab-on-CMOS integration process is capable of high packing density, is suitable for wafer-level batch production, and opens new opportunities to combine the performance benefits of on-CMOS sensors with lab-on-chip platforms.
Laser induced periodic surface structuring on Si by temporal shaped femtosecond pulses.
Almeida, G F B; Martins, R J; Otuka, A J G; Siqueira, J P; Mendonca, C R
2015-10-19
We investigated the effect of temporal shaped femtosecond pulses on silicon laser micromachining. By using sinusoidal spectral phases, pulse trains composed of sub-pulses with distinct temporal separations were generated and applied to the silicon surface to produce Laser Induced Periodic Surface Structures (LIPSS). The LIPSS obtained with different sub-pulse separation were analyzed by comparing the intensity of the two-dimensional fast Fourier Transform (2D-FFT) of the AFM images of the ripples (LIPSS). It was observed that LIPSS amplitude is more emphasized for the pulse train with sub-pulses separation of 128 fs, even when compared with the Fourier transform limited pulse. By estimating the carrier density achieved at the end of each pulse train, we have been able to interpret our results with the Sipe-Drude model, that predicts that LIPSS efficacy is higher for a specific induced carrier density. Hence, our results indicate that temporal shaping of the excitation pulse, performed by spectral phase modulation, can be explored in fs-laser microstructuring.
Ablation of steel by microsecond pulse trains
NASA Astrophysics Data System (ADS)
Windeler, Matthew Karl Ross
Laser micromachining is an important material processing technique used in industry and medicine to produce parts with high precision. Control of the material removal process is imperative to obtain the desired part with minimal thermal damage to the surrounding material. Longer pulsed lasers, with pulse durations of milli- and microseconds, are used primarily for laser through-cutting and welding. In this work, a two-pulse sequence using microsecond pulse durations is demonstrated to achieve consistent material removal during percussion drilling when the delay between the pulses is properly defined. The light-matter interaction moves from a regime of surface morphology changes to melt and vapour ejection. Inline coherent imaging (ICI), a broadband, spatially-coherent imaging technique, is used to monitor the ablation process. The pulse parameter space is explored and the key regimes are determined. Material removal is observed when the pulse delay is on the order of the pulse duration. ICI is also used to directly observe the ablation process. Melt dynamics are characterized by monitoring surface changes during and after laser processing at several positions in and around the interaction region. Ablation is enhanced when the melt has time to flow back into the hole before the interaction with the second pulse begins. A phenomenological model is developed to understand the relationship between material removal and pulse delay. Based on melt refilling the interaction region, described by logistic growth, and heat loss, described by exponential decay, the model is fit to several datasets. The fit parameters reflect the pulse energies and durations used in the ablation experiments. For pulse durations of 50 us with pulse energies of 7.32 mJ +/- 0.09 mJ, the logisitic growth component of the model reaches half maximum after 8.3 mus +/- 1.1 us and the exponential decays with a rate of 64 mus +/- 15 us. The phenomenological model offers an interpretation of the material removal process.
Micro Dot Patterning on the Light Guide Panel Using Powder Blasting.
Jang, Ho Su; Cho, Myeong Woo; Park, Dong Sam
2008-02-08
This study is to develop a micromachining technology for a light guidepanel(LGP) mold, whereby micro dot patterns are formed on a LGP surface by a singleinjection process instead of existing screen printing processes. The micro powder blastingtechnique is applied to form micro dot patterns on the LGP mold surface. The optimalconditions for masking, laminating, exposure, and developing processes to form the microdot patterns are first experimentally investigated. A LGP mold with masked micro patternsis then machined using the micro powder blasting method and the machinability of themicro dot patterns is verified. A prototype LGP is test- injected using the developed LGPmold and a shape analysis of the patterns and performance testing of the injected LGP arecarried out. As an additional approach, matte finishing, a special surface treatment method,is applied to the mold surface to improve the light diffusion characteristics, uniformity andbrightness of the LGP. The results of this study show that the applied powder blastingmethod can be successfully used to manufacture LGPs with micro patterns by just singleinjection using the developed mold and thereby replace existing screen printing methods.
Ion mobility spectrometer using frequency-domain separation
Martin, Stephen J.; Butler, Michael A.; Frye, Gregory C.; Schubert, W. Kent
1998-01-01
An apparatus and method is provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine).
Ultraviolet laser ablation as technique for defect repair of GaN-based light-emitting diodes
NASA Astrophysics Data System (ADS)
Passow, Thorsten; Kunzer, Michael; Pfeuffer, Alexander; Binder, Michael; Wagner, Joachim
2018-03-01
Defect repair of GaN-based light-emitting diodes (LEDs) by ultraviolet laser micromachining is reported. Percussion and helical drilling in GaN by laser ablation were investigated using 248 nm nanosecond and 355 nm picosecond pulses. The influence of laser ablation including different laser parameters on electrical and optical properties of GaN-based LED chips was evaluated. The results for LEDs on sapphire with transparent conductive oxide p-type contact on top as well as for thin-film LEDs are reported. A reduction of leakage current by up to six orders in magnitude and homogeneous luminance distribution after proper laser defect treatment were achieved.
Boutte, Ronald W; Blair, Steve
2016-12-01
Borrowing from the wafer-level fabrication techniques of the Utah Electrode Array, an optical array capable of delivering light for neural optogenetic studies is presented in this paper: the Utah Optrode Array. Utah Optrode Arrays are micromachined out of sheet soda-lime-silica glass using standard backend processes of the semiconductor and microelectronics packaging industries such as precision diamond grinding and wet etching. 9 × 9 arrays with 1100μ m × 100μ m optrodes and a 500μ m back-plane are repeatably reproduced on 2i n wafers 169 arrays at a time. This paper describes the steps and some of the common errors of optrode fabrication.
Mechanical Properties of Materials with Nanometer Scale Microstructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
William D. Nix
2004-10-31
We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations,more » talks and publications completed on this grant during the past 15 years.« less
Thermal-Performance Instability in Piezoresistive Sensors: Inducement and Improvement
Liu, Yan; Wang, Hai; Zhao, Wei; Qin, Hongbo; Fang, Xuan
2016-01-01
The field of piezoresistive sensors has been undergoing a significant revolution in terms of design methodology, material technology and micromachining process. However, the temperature dependence of sensor characteristics remains a hurdle to cross. This review focuses on the issues in thermal-performance instability of piezoresistive sensors. Based on the operation fundamental, inducements to the instability are investigated in detail and correspondingly available ameliorative methods are presented. Pros and cons of each improvement approach are also summarized. Though several schemes have been proposed and put into reality with favorable achievements, the schemes featuring simple implementation and excellent compatibility with existing techniques are still emergently demanded to construct a piezoresistive sensor with excellent comprehensive performance. PMID:27886125
Monolithic microfabricated valves and pumps by multilayer soft lithography.
Unger, M A; Chou, H P; Thorsen, T; Scherer, A; Quake, S R
2000-04-07
Soft lithography is an alternative to silicon-based micromachining that uses replica molding of nontraditional elastomeric materials to fabricate stamps and microfluidic channels. We describe here an extension to the soft lithography paradigm, multilayer soft lithography, with which devices consisting of multiple layers may be fabricated from soft materials. We used this technique to build active microfluidic systems containing on-off valves, switching valves, and pumps entirely out of elastomer. The softness of these materials allows the device areas to be reduced by more than two orders of magnitude compared with silicon-based devices. The other advantages of soft lithography, such as rapid prototyping, ease of fabrication, and biocompatibility, are retained.
Song, Jiangxin; Lin, Jintian; Tang, Jialei; Liao, Yang; He, Fei; Wang, Zhaohui; Qiao, Lingling; Sugioka, Koji; Cheng, Ya
2014-06-16
We report on fabrication of a microtoroid resonator of a high-quality factor (i.e., Q-factor of ~3.24 × 10(6) measured under the critical coupling condition) integrated in a microfluidic channel using femtosecond laser three-dimensional (3D) micromachining. Coupling of light into and out of the microresonator has been realized with a fiber taper that is reliably assembled with the microtoroid. The assembly of the fiber to the microtoroid is achieved by welding the fiber taper onto the sidewall of the microtoroid using CO2 laser irradiation. The integrated microresonator maintains a high Q-factor of 3.21 × 10(5) as measured in air, which should still be sufficient for many sensing applications. We test the functionality of the integrated optofluidic sensor by performing bulk refractive index sensing of purified water doped with tiny amount of salt. It is shown that a detection limit of ~1.2 × 10(-4) refractive index unit can be achieved. Our result showcases the capability of integration of high-Q microresonators with complex microfluidic systems using femtosecond laser 3D micromachining.
Leccardi, Matteo; Decarli, Massimiliano; Lorenzelli, Leandro; Milani, Paolo; Mettala, Petteri; Orava, Risto; Barborini, Emanuele
2012-01-01
We have fabricated and tested in long-term field operating conditions a wireless unit for outdoor air quality monitoring. The unit is equipped with two multiparametric sensors, one miniaturized thermo-hygrometer, front-end analogical and digital electronics, and an IEEE 802.15.4 based module for wireless data transmission. Micromachined platforms were functionalized with nanoporous metal-oxides to obtain multiparametric sensors, hosting gas-sensitive, anemometric and temperature transducers. Nanoporous metal-oxide layer was directly deposited on gas sensing regions of micromachined platform batches by hard-mask patterned supersonic cluster beam deposition. An outdoor, roadside experiment was arranged in downtown Milan (Italy), where one wireless sensing unit was continuously operated side by side with standard gas chromatographic instrumentation for air quality measurements. By means of a router PC, data from sensing unit and other instrumentation were collected, merged, and sent to a remote data storage server, through an UMTS device. The whole-system robustness as well as sensor dataset characteristics were continuously characterized over a run-time period of 18 months. PMID:22969394
Micro-machined resonator oscillator
Koehler, D.R.; Sniegowski, J.J.; Bivens, H.M.; Wessendorf, K.O.
1994-08-16
A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a telemetered sensor beacon'' that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20--100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available. 21 figs.
Laser micromachining of biofactory-on-a-chip devices
NASA Astrophysics Data System (ADS)
Burt, Julian P.; Goater, Andrew D.; Hayden, Christopher J.; Tame, John A.
2002-06-01
Excimer laser micromachining provides a flexible means for the manufacture and rapid prototyping of miniaturized systems such as Biofactory-on-a-Chip devices. Biofactories are miniaturized diagnostic devices capable of characterizing, manipulating, separating and sorting suspension of particles such as biological cells. Such systems operate by exploiting the electrical properties of microparticles and controlling particle movement in AC non- uniform stationary and moving electric fields. Applications of Biofactory devices are diverse and include, among others, the healthcare, pharmaceutical, chemical processing, environmental monitoring and food diagnostic markets. To achieve such characterization and separation, Biofactory devices employ laboratory-on-a-chip type components such as complex multilayer microelectrode arrays, microfluidic channels, manifold systems and on-chip detection systems. Here we discuss the manufacturing requirements of Biofactory devices and describe the use of different excimer laser micromachined methods both in stand-alone processes and also in conjunction with conventional fabrication processes such as photolithography and thermal molding. Particular attention is given to the production of large area multilayer microelectrode arrays and the manufacture of complex cross-section microfluidic channel systems for use in simple distribution and device interfacing.
MEMS high-speed angular-position sensing system with rf wireless transmission
NASA Astrophysics Data System (ADS)
Sun, Winston; Li, Wen J.
2001-08-01
A novel surface-micromachined non-contact high-speed angular-position sensor with total surface area under 4mm2 was developed using the Multi-User MEMS Processes (MUMPs) and integrated with a commercial RF transmitter at 433MHz carrier frequency for wireless signal detection. Currently, a 2.3 MHz internal clock of our data acquisition system and a sensor design with a 13mg seismic mass is sufficient to provide visual observation of a clear sinusoidal response wirelessly generated by the piezoresistive angular-position sensing system within speed range of 180 rpm to around 1000 rpm. Experimental results showed that the oscillation frequency and amplitude are related to the input angular frequency of the rotation disk and the tilt angle of the rotation axis, respectively. These important results could provide groundwork for MEMS researchers to estimate how gravity influences structural properties of MEMS devices under different circumstances.
Multifunctional-layered materials for creating membrane-restricted nanodomains and nanoscale imaging
NASA Astrophysics Data System (ADS)
Srinivasan, P.
2016-01-01
Experimental platform that allows precise spatial positioning of biomolecules with an exquisite control at nanometer length scales is a valuable tool to study the molecular mechanisms of membrane bound signaling. Using micromachined thin film gold (Au) in layered architecture, it is possible to add both optical and biochemical functionalities in in vitro. Towards this goal, here, I show that docking of complementary DNA tethered giant phospholiposomes on Au surface can create membrane-restricted nanodomains. These nanodomains are critical features to dissect molecular choreography of membrane signaling complexes. The excited surface plasmon resonance modes of Au allow label-free imaging at diffraction-limited resolution of stably docked DNA tethered phospholiposomes, and lipid-detergent bicelle structures. Such multifunctional building block enables realizing rigorously controlled in vitro set-up to model membrane anchored biological signaling, besides serving as an optical tool for nanoscale imaging.
Apparatus and method for sensing motion in a microelectro-mechanical system
Dickey, Fred M.; Holswade, Scott C.
1999-01-01
An apparatus and method are disclosed for optically sensing motion in a microelectromechanical system (also termed a MEMS device) formed by surface micromachining or LIGA. The apparatus operates by reflecting or scattering a light beam off a corrugated surface (e.g. gear teeth or a reference feature) of a moveable member (e.g. a gear, rack or linkage) within the MEMS device and detecting the reflected or scattered light. The apparatus can be used to characterize a MEMS device, measuring one or more performance characteristic such as spring and damping coefficients, torque and friction, or uniformity of motion of the moveable member. The apparatus can also be used to determine the direction and extent of motion of the moveable member; or to determine a particular mechanical state that a MEMS device is in. Finally, the apparatus and method can be used for providing feedback to the MEMS device to improve performance and reliability.
NASA Astrophysics Data System (ADS)
Teixidor, D.; Ferrer, I.; Ciurana, J.
2012-04-01
This paper reports the characterization of laser machining (milling) process to manufacture micro-channels in order to understand the incidence of process parameters on the final features. Selection of process operational parameters is highly critical for successful laser micromachining. A set of designed experiments is carried out in a pulsed Nd:YAG laser system using AISI H13 hardened tool steel as work material. Several micro-channels have been manufactured as micro-mold cavities varying parameters such as scanning speed (SS), pulse intensity (PI) and pulse frequency (PF). Results are obtained by evaluating the dimensions and the surface finish of the micro-channel. The dimensions and shape of the micro-channels produced with laser-micro-milling process exhibit variations. In general the use of low scanning speeds increases the quality of the feature in both surface finishing and dimensional.
Micromachined piconewton force sensor for biophysics investigations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Steven J.; Thayer, Gayle E.; Corwin, Alex D.
2006-10-23
We describe a micromachined force sensor that is able to measure forces as small as 1 pN in both air and water. First, we measured the force field produced by an electromagnet on individual 2.8 {mu}m magnetic beads glued to the sensor. By repeating with 11 different beads, we measured a 9% standard deviation in saturation magnetization. We next demonstrated that the sensor was fully functional when immersed in physiological buffer. These results show that the force sensors can be useful for magnetic force calibration and also for measurement of biophysical forces on chip.
Clogging in micromachined Joule-Thomson coolers: Mechanism and preventive measures
NASA Astrophysics Data System (ADS)
Cao, H. S.; Vanapalli, S.; Holland, H. J.; Vermeer, C. H.; ter Brake, H. J. M.
2013-07-01
Micromachined Joule-Thomson coolers can be used for cooling small electronic devices. However, a critical issue for long-term operation of these microcoolers is the clogging caused by the deposition of water that is present as impurity in the working fluid. We present a model that describes the deposition process considering diffusion and kinetics of water molecules. In addition, the deposition and sublimation process was imaged, and the experimental observation fits well to the modeling predictions. By changing the temperature profile along the microcooler, the operating time of the microcooler under test at 105 K extends from 11 to 52 h.
Using laser technological unit ALTI "Karavella" for precision components of IEP production
NASA Astrophysics Data System (ADS)
Labin, N. A.; Chursin, A. D.; Paramonov, V. S.; Klimenko, V. I.; Paramonova, G. M.; Kolokolov, I. S.; Vinogradov, K. Y.; Betina, L. L.; Bulychev, N. A.; Dyakov, Yu. A.; Zakharyan, R. A.; Kazaryan, M. A.; Koshelev, K. K.; Kosheleva, O. K.; Grigoryants, A. G.; Shiganov, I. N.; Krasovskii, V. I.; Sachkov, V. I.; Plyaka, P. S.; Feofanov, I. N.; Chen, C.
2015-12-01
The paper revealed the using of industrial production equipment ALTI "Karavella-1", "Karavella-1M", "Karavella-2" and "Karavella-2M" precision components of IEP production [1-4]. The basis for the ALTI using in the IEP have become the positive results of research and development of technologies of foil (0.01-0.2 mm) and thin sheets (0.3-1 mm) materials micromachining by pulsed radiation CVL [5, 6]. To assess the micromachining quality and precision the measuring optical microscope (UHL VMM200), projection microscope (Mitutoyo PV5100) and Carl Zeiss microscope were used.
Micromachined needles and lancets with design adjustable bevel angles
NASA Astrophysics Data System (ADS)
Sparks, Douglas; Hubbard, Timothy
2004-08-01
A new method of micromachining hollow needles and two-dimensional needle arrays from single crystal silicon is described. The process involves a combination of fusion bonding, photolithography and anisotropic plasma etching. The cannula produced with this process can have design adjustable bevel angles, wall thickness and channel dimensions. A subset of processing steps can be employed to produce silicon blades and lancets with design adjustable bevel angles and shaft dimensions. Applications for this technology include painless drug infusion, blood diagnosis, glucose monitoring, cellular injection and the manufacture of microkeratomes for ocular, vascular and neural microsurgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yong-Ho; Maeng, Jwa-Young; Park, Dongho
2007-07-23
This letter reports a module for airborne particle classification, which consists of a micromachined three-stage virtual impactor for classifying airborne particles according to their size and a flow rate distributor for supplying the required flow rate to the virtual impactor. Dioctyl sebacate particles, 100-600 nm in diameter, and carbon particles, 0.6-10 {mu}m in diameter, were used for particle classification. The collection efficiency and cutoff diameter were examined. The measured cutoff diameters of the first, second, and third stages were 135 nm, 1.9 {mu}m, and 4.8 {mu}m, respectively.
Andrei, Alexandru; Welkenhuysen, Marleen; Ameye, Lieveke; Nuttin, Bart; Eberle, Wolfgang
2011-01-01
Understanding the mechanical interactions between implants and the surrounding tissue is known to have an important role for improving the bio-compatibility of such devices. Using a recently developed model, a particular micro-machined neural implant design aiming the reduction of insertion forces dependence on the insertion speed was optimized. Implantations with 10 and 100 μm/s insertion speeds showed excellent agreement with the predicted behavior. Lesion size, gliosis (GFAP), inflammation (ED1) and neuronal cells density (NeuN) was evaluated after 6 week of chronic implantation showing no insertion speed dependence.
193nm high power lasers for the wide bandgap material processing
NASA Astrophysics Data System (ADS)
Fujimoto, Junichi; Kobayashi, Masakazu; Kakizaki, Koji; Oizumi, Hiroaki; Mimura, Toshio; Matsunaga, Takashi; Mizoguchi, Hakaru
2017-02-01
Recently infrared laser has faced resolution limit of finer micromachining requirement on especially semiconductor packaging like Fan-Out Wafer Level Package (FO-WLP) and Through Glass Via hole (TGV) which are hard to process with less defect. In this study, we investigated ablation rate with deep ultra violet excimer laser to explore its possibilities of micromachining on organic and glass interposers. These results were observed with a laser microscopy and Scanning Electron Microscope (SEM). As the ablation rates of both materials were quite affordable value, excimer laser is expected to be put in practical use for mass production.
High-power ultrashort fiber laser for solar cells micromachining
NASA Astrophysics Data System (ADS)
Lecourt, J.-B.; Duterte, C.; Liegeois, F.; Lekime, D.; Hernandez, Y.; Giannone, D.
2012-02-01
We report on a high-power ultra-short fiber laser for thin film solar cells micromachining. The laser is based on Chirped Pulse Amplification (CPA) scheme. The pulses are stretched to hundreds of picoseconds prior to amplification and can be compressed down to picosecond at high energy. The repetition rate is adjustable from 100 kHz to 1 MHz and the optical average output power is close to 13 W (before compression). The whole setup is fully fibred, except the compressor achieved with bulk gratings, resulting on a compact and reliable solution for cold ablation.
High-performance mushroom plasmonic metamaterial absorbers for infrared polarimetric imaging
NASA Astrophysics Data System (ADS)
Ogawa, Shinpei; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Kuboyama, Takafumi; Kimata, Masafumi
2017-02-01
Infrared (IR) polarimetric imaging is a promising approach to enhance object recognition with conventional IR imaging for applications such as artificial object recognition from the natural environment and facial recognition. However, typical infrared polarimetric imaging requires the attachment of polarizers to an IR camera or sensor, which leads to high cost and lower performance caused by their own IR radiation. We have developed asymmetric mushroom plasmonic metamaterial absorbers (A-MPMAs) to address this challenge. The A-MPMAs have an all-Al construction that consists of micropatches and a reflector layer connected with hollow rectangular posts. The asymmetric-shaped micropatches lead to strong polarization-selective IR absorption due to localized surface plasmon resonance at the micropatches. The operating wavelength region can be controlled mainly by the micropatch and the hollow rectangular post size. AMPMAs are complicated three-dimensional structures, the fabrication of which is challenging. Hollow rectangular post structures are introduced to enable simple fabrication using conventional surface micromachining techniques, such as sacrificial layer etching, with no degradation of the optical properties. The A-MPMAs have a smaller thermal mass than metal-insulator-metal based metamaterials and no influence of the strong non-linear dispersion relation of the insulator materials constant, which produces a gap in the wavelength region and additional absorption insensitive to polarization. A-MPMAs are therefore promising candidates for uncooled IR polarimetric image sensors in terms of both their optical properties and ease of fabrication. The results presented here are expected to contribute to the development of highperformance polarimetric uncooled IR image sensors that do not require polarizers.
Variable Emissivity Through MEMS Technology
NASA Technical Reports Server (NTRS)
Darrin, Ann Garrison; Osiander, Robert; Champion, John; Swanson, Ted; Douglas, Donya; Grob, Lisa M.; Powers, Edward I. (Technical Monitor)
2000-01-01
This paper discusses a new technology for variable emissivity (vari-e) radiator surfaces, which has significant advantages over traditional radiators and promises an alternative design technique for future spacecraft thermal control systems. All spacecraft rely on radiative surfaces to dissipate waste heat. These radiators have special coatings, typically with a low solar absorptivity and a high infrared-red emissivity, that are intended to optimize performance under the expected heat load and thermal sink environment. The dynamics of the heat loads and thermal environment make it a challenge to properly size the radiator and often require some means of regulating the heat rejection rate of the radiators in order to achieve proper thermal balance. Specialized thermal control coatings, which can passively or actively adjust their emissivity offer an attractive solution to these design challenges. Such systems would allow intelligent control of the rate of heat loss from a radiator in response to heat load and thermal environmental variations. Intelligent thermal control through variable emissivity systems is well suited for nano and pico spacecraft applications where large thermal fluctuations are expected due to the small thermal mass and limited electric resources. Presently there are three different types of vari-e technologies under development: Micro ElectroMechanical Systems (MEMS) louvers, Electrochromic devices, and Electrophoretic devices. This paper will describe several prototypes of micromachined (MEMS) louvers and experimental results for the emissivity variations measured on theses prototypes. It will further discuss possible actuation mechanisms and space reliability aspects for different designs. Finally, for comparison parametric evaluations of the thermal performances of the new vari-e technology and standard thermal control systems are presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CRESSWELL,M.W.; ALLEN,R.A.; GHOSHTAGORE,R.N.
This paper describes the fabrication and measurement of the linewidths of the reference segments of cross-bridge resistors patterned in (100) Bonded and Etched Back Silicon-on-Insulator (BESOI) material. The critical dimensions (CD) of the reference segments of a selection of the cross-bridge resistor test structures were measured both electrically and by Scanning-Electron Microscopy (SEM) cross-section imaging. The reference-segment features were aligned with <110> directions in the BESOI surface material and had drawn linewidths ranging from 0.35 to 3.0 {micro}m. They were defined by a silicon micro-machining process which results in their sidewalls being atomically-planar and smooth and inclined at 54.737{degree} tomore » the surface (100) plane of the substrate. This (100) implementation may usefully complement the attributes of the previously-reported vertical-sidewall one for selected reference-material applications. For example, the non-orthogonal intersection of the sidewalls and top-surface planes of the reference-segment features may alleviate difficulties encountered with atomic-force microscope measurements. In such applications it has been reported that it may be difficult to maintain probe-tip control at the sharp 90{degree} outside corner of the sidewalls and the upper surface. A second application is refining to-down image-processing algorithms and checking instrument performance. Novel aspects of the (100) SOI implementation that are reported here include the cross-bridge resistor test-structure architecture and details of its fabrication. The long-term goal is to develop a technique for the determination of the absolute dimensions of the trapezoidal cross-sections of the cross-bridge resistors' reference segments, as a prelude to developing them for dimensional reference applications. This is believed to be the first report of electrical CD measurements made on test structures of the cross-bridge resistor type that have been patterned in (100) SOI material. The electrical CD results are compared with cross-section SEM measurements made on the same features.« less
Measurement of optical scattered power from laser-induced shallow pits on silica
Feigenbaum, Eyal; Nielsen, Norman; Matthews, Manyalibo J.
2015-10-01
We describe a model for far-field scattered power and irradiance by a silica glass slab with a shallow-pitted exit surface and is experimentally validated. The comparison to the model is performed using a precisely micromachined ensemble of ~11 μm wide laser ablated shallow pits producing 1% of the incident beam scatter in a 10 mrad angle. This series of samples with damage initiations and laser-induced shallow pits resulting from 351 nm, 5 ns pulsed laser cleaning of metal microparticles at different fluences between 2 J/cm 2 and 11 J/cm 2 are characterized as well and found in good agreement withmore » model predictions.« less
Operating principles of an electrothermal vibrometer for optical switching applications
NASA Astrophysics Data System (ADS)
Pai, Min-fan; Tien, Norman C.
1999-09-01
A compact polysilicon surface-micromachined microactuator designed for optical switching applications is described. This actuator is fabricated using the foundry MUMPs process provided by Cronos Integrated Microsystems Inc. Actuated electrothermally, the microactuator allows fast switching speeds and can be operated with a low voltage square-wave signal. The design, operation mechanisms for this long-range and high frequency thermal actuation are described. A vertical micromirror integrated with this actuator can be operated with a 10.5 V, 20 kHz 15% duty-cycle pulse signal, achieving a lateral moving speed higher than 15.6 mm/sec. The optical switch has been operated to frequencies as high as 30 kHz.
Enhanced electrochemical etching of ion irradiated silicon by localized amorphization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dang, Z. Y.; Breese, M. B. H.; Lin, Y.
2014-05-12
A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such asmore » cesium over a wide range of fluences and irradiation geometries.« less
A Label-Free Detection of Biomolecules Using Micromechanical Biosensors
NASA Astrophysics Data System (ADS)
Meisam, Omidi; A. Malakoutian, M.; Mohammadmehdi, Choolaei; Oroojalian, F.; Haghiralsadat, F.; Yazdian, F.
2013-06-01
A Microcantilevers resonator is used to detect a protein biomarker called prostate specific antigen (PSA), which is associated with prostate cancer. Different concentrations of PSA in a buffer solution are detected as a function of deflection of the beams. For this purpose, we use a surface micromachined, antibody-coated polycrystalline silicon micromechanical cantilever beam. Cantilevers have mass sensitivities of the order of 10-17 g/Hz, which result from their small mass. This matter allows them to detect an immobilized antibody monolayer corresponding to a mass of about 70 fg. With these devices, concentrations as low as 150 fg/mL, or 4.5 fM, could be detected from the realistic samples.
Cheng, Jian; Chen, Mingjun; Liao, Wei; Wang, Haijun; Xiao, Yong; Li, Mingquan
2013-07-15
Micro-machining is the most promising method for KH(2)PO(4) crystal to mitigate the surface damage growth in high power laser system. In this work, spherical mitigation pit is fabricated by micro-milling with an efficient machining procedure. The light intensification caused by rear surface features before and after mitigation is numerically modeled based on the finite-difference time-domain method. The results indicate that the occurrence of total internal reflections should be responsible for the largest light intensification inside the crystal. For spherical pits after mitigation, the light intensification can be greatly alleviated by preventing the occurrence of total internal reflections. The light intensification caused by spherical mitigation pit is strongly dependent on the width-depth ratio and it is suggested that the width-depth ratio of spherical mitigation pit must be devised to be larger than 5.0 to achieve the minimal light intensification for the mitigation of surface damage growth. Laser damage tests for KH(2)PO(4) crystal validate that the laser damage resistance of initially damaged surface can be retrieved to near the level of ideal surface by replacing initial damage site with predesigned mitigation pit.
Conformal and embedded IDT microsensors for health monitoring of structures
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.; Varadan, Vasundara V.
2000-06-01
MEMS are currently being applied to the structural health monitoring of critical aircraft components and composites. The approach integrates acoustic emission, strain gauges, MEMS accelerometers and vibration monitoring aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ aircraft structural health monitoring system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensor and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State wireless communication systems suitable for condition monitoring of aircraft structures in-flight. The main application areas of this investigation include continuos monitoring of a) structural integrity of aging aircraft, b) fatigue cracking, c) corrosion, d) deflection and strain of aircraft structures, wings, and rotorblades, e) impact damage, f) delamination and g) location and propagation of cracks. In this paper we give an overview of wireless programmable microsensors and MEMS and their associated driving electronics for such applications.
Femtosecond-laser fabrication of cyclic structures in the bulk of transparent dielectrics
NASA Astrophysics Data System (ADS)
Vartapetov, S. K.; Ganin, D. V.; Lapshin, K. E.; Obidin, A. Z.
2015-08-01
We report the results of the experiments on developing precision micromachining technology, obtained under the conditions of focusing the pulses of a femtosecond (FS) laser into the volume of a transparent material, which is important, particularly, in the processing of biomaterials in ophthalmology. The implementation conditions and some characteristic features of the special regime of micromachining are determined, when at a definite relation between the sample scanning velocity and the repetition rate of FS pulses the region, destroyed by the laser radiation, is shifted along the optical axis towards the objective and back, forming cyclic patterns inside the sample. It is supposed that the main causes of the damage region shift are the induced modification of the refractive index and the reduction of the damage threshold due to the change in the material density and structure in the microscopic domain, adjacent to the boundary of the cavity produced by the previous pulse. The results of the performed study with the above regime taken into account were used in the technology of precision cutting of crystals, glasses and polymers. The best quality of the cut surface is achieved under the conditions, eliminating the appearance of the cyclic regime. In the samples of polycarbonate, polymethyl methacrylate and fused silica the cylindrical cavities were obtained with the aspect ratio higher than 200, directed along the laser beam, and microcapillaries with the diameter 1 - 2 μm in the direction, perpendicular to this beam.
Monolithic CMUT on CMOS Integration for Intravascular Ultrasound Applications
Zahorian, Jaime; Hochman, Michael; Xu, Toby; Satir, Sarp; Gurun, Gokce; Karaman, Mustafa; Degertekin, F. Levent
2012-01-01
One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter based volumetric imaging arrays where the elements need to be small. Furthermore, optimization of the available silicon area and minimized number of connections occurs when the CMUTs are fabricated directly above the associated electronics. Here, we describe successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom designed CMOS receiver electronics from a commercial IC foundry. The CMUT on CMOS process starts with surface isolation and mechanical planarization of the CMOS electronics to reduce topography. The rest of the CMUT fabrication is achieved by modifying a low temperature micromachining process through the addition of a single mask and developing a dry etching step to produce sloped sidewalls for simple and reliable CMUT to CMOS interconnection. This CMUT to CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire bonding method. Characterization experiments indicate that the CMUT on CMOS elements are uniform in frequency response and are similar to CMUTs simultaneously fabricated on standard silicon wafers without electronics integration. Experiments on a 1.6 mm diameter dual-ring CMUT array with a 15 MHz center frequency show that both the CMUTs and the integrated CMOS electronics are fully functional. The SNR measurements indicate that the performance is adequate for imaging CTOs located 1 cm away from the CMUT array. PMID:23443701
NASA Astrophysics Data System (ADS)
Labin, N. A.; Bulychev, N. A.; Kazaryan, M. A.; Grigoryants, A. G.; Shiganov, I. N.; Krasovskii, V. I.; Sachkov, V. I.; Plyaka, P. S.; Feofanov, I. N.
2015-12-01
Research on CVL installations with an average power of 20-25 W of cutting and drilling has shown wide range of applications of these lasers for micromachining of metals and a wide range of non-metallic materials up to 1-2 mm. From the analysis indicated that peak power density in the focused light spot of 10-30 μm diameter must be 109 -1012 W/cm2 the productivity and quality micromachining, when the treatment material is preferably in the evaporative mode micro explosions, followed by the expansion of the superheated vapor and the liquid. To achieve such levels of power density, a minimum heat affected zone (5- 10 μm) and a minimum surface roughness of the cut (1-2 μm), the quality of the output beam of radiation should be as high. Ideally, to ensure the quality of the radiation, the structure of CVL output beam must be single-beam, diffraction divergence and have at duration pulses τi = 20-40 ns. The pulse energy should have low values of 0.1-1 mJ at pulse repetition rates of 10-20 kHz. Axis of the radiation beam instability of the pattern to be three orders of magnitude smaller than the diffraction limit of the divergence. The spot of the focused radiation beam must have a circular shape with clear boundary, and a Gaussian intensity distribution.
NASA Astrophysics Data System (ADS)
Tankut, Firat; Cologlu, Mustafa H.; Askar, Hidir; Ozturk, Hande; Dumanli, Hilal K.; Oruc, Feyza; Tilkioglu, Bilge; Ugur, Beril; Akar, Orhan Sevket; Tepegoz, Murat; Akin, Tayfun
2017-02-01
This paper introduces an 80x80 microbolometer array with a 35 μm pixel pitch operating in the 8-12 μm wavelength range, where the detector is fabricated with the LWIR-band CMOS infrared technology, shortly named as CIR, which is a novel microbolometer implementation technique developed to reduce the detector cost in order to enable the use of microbolometer type sensors in high volume markets, such as the consumer market and IoT. Unlike the widely used conventional surface micromachined microbolometer approaches, MikroSens' CIR detector technology does not require the use of special high TCR materials like VOx or a-Si, instead, it allows to implement microbolometers with standard CMOS layers, where the suspended bulk micromachined structure is obtained by only few consecutive selective MEMS etching steps while protecting the wirebond pads with a simple lithograpy step. This approach not only reduces the fabrication cost but also increases the production yield. In addition, needing simple subtractive post-CMOS fabrication steps allows the CIR technology to be carried out in any CMOS and MEMS foundry in a truly fabless fashion, where industrially mature and Au-free wafer level vacuum packaging technologies can also be carried out, leading to cost advantage, simplicity, scalability, and flexibility. The CIR approach is used to implement an 80x80 FPA with 35 μm pixel pitch, namely MS0835A, using a 0.18 μm CMOS process. The fabricated sensor is measured to provide NETD (Noise Equivalent Temperature Difference) value of 163 mK at 17 fps (frames per second) and 71 mK at 4 fps with F/1.0 optics in a dewar environment. The measurement results of the wafer level vacuum packaged sensors with one side AR coating shows an NETD values of 112 mK at 4 fps with F/1.1 optics, i.e., demonstrates a good performance for high volume low-cost applications like advanced presence detection and human counting applications. The CIR approach of MikroSens is scalable and can be used to reduce the pixel pitch even further while increasing the array size if necessary for various other low-cost, high volume applications.
Development of micromachine tool prototypes for microfactories
NASA Astrophysics Data System (ADS)
Kussul, E.; Baidyk, T.; Ruiz-Huerta, L.; Caballero-Ruiz, A.; Velasco, G.; Kasatkina, L.
2002-11-01
At present, many areas of industry have strong tendencies towards miniaturization of products. Mechanical components of these products as a rule are manufactured using conventional large-scale equipment or micromechanical equipment based on microelectronic technology (MEMS). The first method has some drawbacks because conventional large-scale equipment consumes much energy, space and material. The second method seems to be more advanced but has some limitations, for example, two-dimensional (2D) or 2.5-dimensional shapes of components and materials compatible with silicon technology. In this paper, we consider an alternative technology of micromechanical device production. This technology is based on micromachine tools (MMT) and microassembly devices, which can be produced as sequential generations of microequipment. The first generation can be produced by conventional large-scale equipment. The machine tools of this generation can have overall sizes of 100-200 mm. Using microequipment of this generation, second generation microequipment having smaller overall sizes can be produced. This process can be repeated to produce generations of micromachine tools having overall sizes of some millimetres. In this paper we describe the efforts and some results of first generation microequipment prototyping. A micromachining centre having an overall size of 130 × 160 × 85 mm3 was produced and characterized. This centre has allowed us to manufacture micromechanical details having sizes from 50 µm to 5 mm. These details have complex three-dimensional shapes (for example, screw, gear, graduated shaft, conic details, etc), and are made from different materials, such as brass, steel, different plastics etc. We have started to investigate and to make prototypes of the assembly microdevices controlled by a computer vision system. In this paper we also describe an example of the applications (microfilters) for the proposed technology.
A 2 THz Heterodyne Array Receiver for SOFIA
NASA Technical Reports Server (NTRS)
Walker, Christopher K.
1998-01-01
We proposed to perform a comprehensive design study of a 16-element heterodyne array receiver for SOFIA. The array was designed to utilize hot-electron bolometers in an efficient, low-cost waveguide mount to achieve low noise performance between approx. 1500 and 2400 GHz. Due to the prevailing physical conditions in the interstellar medium, this frequency range is one of the richest in the FIR portion of the spectrum. An array designed for this wavelength range will make excellent use of the telescope and the available atmospheric transmission, and will provide a new perspective on stellar, chemical, and galaxy evolution in the present as well as past epochs. A few of the most important molecular and atomic species which the instrument will sample are CII, OI, CO, OH, NII, and CH. The system used the most sensitive detectors available in an efficient optical system. The local oscillator was a compact CO2 pumped far-infrared laser currently under development for SOFIA. The backend spectrometer was an array acousto-optic spectrometer (aAOS). The spectrometer utilizes proven hardware and technologies to provide broadband performance (greater than or equal to 1 GHz per AOS channel) and high spectral resolution (1 MHz) with the maximum sensitivity and minimum complexity and cost. The proposed instrument would be the fastest and most sensitive heterodyne receiver ever to operate in the 1.5 - 2.4 THz band. One of the key technologies developed for the proposed instrument is the laser micromachining of waveguide structures. These structures provide both the optical link between the instrument and the telescope (via an array of efficient feedhorns) and the impedance transformation between the detectors and free space. With the assistance of funds provided from this grant, we were able to fabricate and test the world's first laser micromachined feedhorns. Figure 1 is a photograph of the 2 THz double feedhorn structure designed and constructed under the auspices of this grant. The quality of the waveguide structure is far better than that obtainable using any other fabrication technique. Figure 2 is the beam pattern obtained from it. The beam parameters are an excellent match to what is expected from theory. The success of this experiment demonstrates the viability of using laser micromachined components in the development of high performance, large format array receivers. Figure 3 is an illustration of the focal plane array concept we developed lot- SOFIA base upon this work. Un- fortunately, our instrument proposal was not selected as a first generation SOFIA instrument. However, we have continued our development efforts and will propose to build a 2nd generation instrument based on the same design concepts. Our work under NAG 2-1057 was very rewarding and we appreciate the opportunity provided by NASA to pursue it. The research led directly to publishing 2 papers (listed below) and the award of an NSF grant to our group to construct a laser micromachining system on the University of Arizona campus.
Diagnostic Techniques to Elucidate the Aerodynamic Performance of Acoustic Liners
NASA Technical Reports Server (NTRS)
June, Jason; Bertolucci, Brandon; Ukeiley, Lawrence; Cattafesta, Louis N., III; Sheplak, Mark
2017-01-01
In support of Topic A.2.8 of NASA NRA NNH10ZEA001N, the University of Florida (UF) has investigated the use of flow field optical diagnostic and micromachined sensor-based techniques for assessing the wall shear stress on an acoustic liner. Stereoscopic particle image velocimetry (sPIV) was used to study the velocity field over a liner in the Grazing Flow Impedance Duct (GFID). The results indicate that the use of a control volume based method to determine the wall shear stress is prone to significant error. The skin friction over the liner as measured using velocity curve fitting techniques was shown to be locally reduced behind an orifice, relative to the hard wall case in a streamwise plane centered on the orifice. The capacitive wall shear stress sensor exhibited a linear response for a range of shear stresses over a hard wall. PIV over the liner is consistent with lifting of the near wall turbulent structure as it passes over an orifice, followed by a region of low wall shear stress.
Experimental and Theoretical Study on Minimum Achievable Foil Thickness during Asymmetric Rolling
Tang, Delin; Liu, Xianghua; Song, Meng; Yu, Hailiang
2014-01-01
Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the ‘cross-shear’ zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling. PMID:25203265
Next-Generation Microshutter Arrays for Large-Format Imaging and Spectroscopy
NASA Technical Reports Server (NTRS)
Moseley, Samuel; Kutyrev, Alexander; Brown, Ari; Li, Mary
2012-01-01
A next-generation microshutter array, LArge Microshutter Array (LAMA), was developed as a multi-object field selector. LAMA consists of small-scaled microshutter arrays that can be combined to form large-scale microshutter array mosaics. Microshutter actuation is accomplished via electrostatic attraction between the shutter and a counter electrode, and 2D addressing can be accomplished by applying an electrostatic potential between a row of shutters and a column, orthogonal to the row, of counter electrodes. Microelectromechanical system (MEMS) technology is used to fabricate the microshutter arrays. The main feature of the microshutter device is to use a set of standard surface micromachining processes for device fabrication. Electrostatic actuation is used to eliminate the need for macromechanical magnet actuating components. A simplified electrostatic actuation with no macro components (e.g. moving magnets) required for actuation and latching of the shutters will make the microshutter arrays robust and less prone to mechanical failure. Smaller-size individual arrays will help to increase the yield and thus reduce the cost and improve robustness of the fabrication process. Reducing the size of the individual shutter array to about one square inch and building the large-scale mosaics by tiling these smaller-size arrays would further help to reduce the cost of the device due to the higher yield of smaller devices. The LAMA development is based on prior experience acquired while developing microshutter arrays for the James Webb Space Telescope (JWST), but it will have different features. The LAMA modular design permits large-format mosaicking to cover a field of view at least 50 times larger than JWST MSA. The LAMA electrostatic, instead of magnetic, actuation enables operation cycles at least 100 times faster and a mass significantly smaller compared to JWST MSA. Also, standard surface micromachining technology will simplify the fabrication process, increasing yield and reducing cost.
Development of Minimally Invasive Medical Tools Using Laser Processing on Cylindrical Substrates
NASA Astrophysics Data System (ADS)
Haga, Yoichi; Muyari, Yuta; Goto, Shoji; Matsunaga, Tadao; Esashi, Masayoshi
This paper reports micro-fabrication techniques using laser processing on cylindrical substrates for the realization of high-performance multifunctional minimally invasive medical tools with small sizes. A spring-shaped shape memory alloy (SMA) micro-coil with a square cross section has been fabricated by spiral cutting of a Ti-Ni SMA tube with a femtosecond laser. Small diameter active bending catheter which is actuated by hydraulic suction mechanism for intravascular minimally invasive diagnostics and therapy has also been developed. The catheter is made of a Ti-Ni super elastic alloy (SEA) tube which is processed by laser micromachining and a silicone rubber tube which covers the outside of the SEA tube. The active catheter is effective for insertion in branch of blood vessel which diverse in acute angle which is difficult to proceed. Multilayer metallization and patterning have been performed on glass tubes with 2 and 3 mm external diameters using maskless lithography techniques using a laser exposure system. Using laser soldering technique, a integrated circuit parts have been mounted on a multilayer circuit patterned on a glass tube. These fabrication techniques will effective for realization of high-performance multifunctional catheters, endoscopic tools, and implanted small capsules.
Response of capacitive micromachined ultrasonic transducers
NASA Astrophysics Data System (ADS)
Ge, Lifeng
2008-10-01
Capacitive micromachined ultrasonic transducers (CMUTs) have been developed for airborne ultrasonic applications, acoustic imaging, and chemical and biological detections. Much attention is also paid how to optimize their performance, so that the accurate simulation of the transmitting response of the CMUTs becomes extremely significant. This paper focuses on determining the total input mechanical impedance accountings for damping, and its resistance part is obtained by the calculated natural frequency and equivalent lumped parameters, and the typical 3-dB bandwidth. Thus, the transmitting response can be calculated by using the input mechanical impedance. Moreover, the equivalent electrical circuit can be also established by the determined lumped parameters.
Micromachined microwave signal control device and method for making same
Forman, Michael A [San Francisco, CA
2008-09-02
A method for fabricating a signal controller, e.g., a filter or a switch, for a coplanar waveguide during the LIGA fabrication process of the waveguide. Both patterns for the waveguide and patterns for the signal controllers are created on a mask. Radiation travels through the mask and reaches a photoresist layer on a substrate. The irradiated portions are removed and channels are formed on the substrate. A metal is filled into the channels to form the conductors of the waveguide and the signal controllers. Micromachined quasi-lumped elements are used alone or together as filters. The switch includes a comb drive, a spring, a metal plunger, and anchors.
Micromachined actuators/sensors for intratubular positioning/steering
Lee, Abraham P.; Krulevitch, Peter A.; Northrup, M. Allen; Trevino, Jimmy C.
1998-01-01
Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems.
A low-power, high-sensitivity micromachined optical magnetometer
NASA Astrophysics Data System (ADS)
Mhaskar, R.; Knappe, S.; Kitching, J.
2012-12-01
We demonstrate an optical magnetometer based on a microfabricated 87Rb vapor cell in a micromachined silicon sensor head. The alkali atom density in the vapor cell is increased by heating the cell with light brought to the sensor through an optical fiber, and absorbed by colored filters attached to the cell windows. A second fiber-optically coupled beam optically pumps and interrogates the atoms. The magnetometer operates on 140 mW of heating power and achieves a sensitivity below 20 fT/√Hz throughout most of the frequency band from 15 Hz to 100 Hz. Such a sensor can measure magnetic fields from the human heart and brain.
Active micromachines: Microfluidics powered by mesoscale turbulence
Thampi, Sumesh P.; Doostmohammadi, Amin; Shendruk, Tyler N.; Golestanian, Ramin; Yeomans, Julia M.
2016-01-01
Dense active matter, from bacterial suspensions and microtubule bundles driven by motor proteins to cellular monolayers and synthetic Janus particles, is characterized by mesoscale turbulence, which is the emergence of chaotic flow structures. By immersing an ordered array of symmetric rotors in an active fluid, we introduce a microfluidic system that exploits spontaneous symmetry breaking in mesoscale turbulence to generate work. The lattice of rotors self-organizes into a spin state where neighboring discs continuously rotate in permanent alternating directions due to combined hydrodynamic and elastic effects. Our virtual prototype demonstrates a new research direction for the design of micromachines powered by the nematohydrodynamic properties of active turbulence. PMID:27419229
Liao, C R; Hu, T Y; Wang, D N
2012-09-24
We demonstrate a fiber in-line Fabry-Perot interferometer cavity sensor for refractive index measurement. The interferometer cavity is formed by drilling a micro-hole at the cleaved fiber end facet, followed by fusion splicing. A micro-channel is inscribed by femtosecond laser micromachining to vertically cross the cavity to allow liquid to flow in. The refractive index sensitivity obtained is ~994 nm/RIU (refractive index unit). Such a device is simple in configuration, easy for fabrication and reliable in operation due to extremely low temperature cross sensitivity of ~4.8 × 10(-6) RIU/°C.
Focused ion beam direct micromachining of DOEs
NASA Astrophysics Data System (ADS)
Khan Malek, Chantal; Hartley, Frank T.; Neogi, Jayant
2000-09-01
We discuss here the capability of direct manufacture of various high- resolution diffractive optics, in particular regarding micromachining of DOEs in 3D. Preliminary demonstrations were made in 2-D using an automated FIB system operated at 30 KeV with a Gallium liquid metal ion source and equipped with a gas injection system (GIS). Gratings with a 20 nm line width and zone plates with 32 nm outer ring were milled in a reactive atmosphere (iodine) directly through 3.5 (mu) m and 800 nm of gold respectively. Plans for combining FIB and X-ray lithography to make diffractive optical elements (DOEs) for JPL are also mentioned.
Method for making a micromachined microwave signal control device
Forman, Michael A [Mountain House, CA
2011-02-15
A method for fabricating a signal controller, e.g., a filter or a switch, for a coplanar waveguide during the LIGA fabrication process of the waveguide. Both patterns for the waveguide and patterns for the signal controllers are created on a mask. Radiation travels through the mask and reaches a photoresist layer on a substrate. The irradiated portions are removed and channels are formed on the substrate. A metal is filled into the channels to form the conductors of the waveguide and the signal controllers. Micromachined quasi-lumped elements are used alone or together as filters. The switch includes a comb drive, a spring, a metal plunger, and anchors.
Micromachined low frequency rocking accelerometer with capacitive pickoff
Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.
2001-01-01
A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.
NASA Astrophysics Data System (ADS)
Savoy, Steven M.; Lavigne, John J.; Yoo, J. S.; Wright, John; Rodriguez, Marc; Goodey, Adrian; McDoniel, Bridget; McDevitt, John T.; Anslyn, Eric V.; Shear, Jason B.; Ellington, Andrew D.; Neikirk, Dean P.
1998-12-01
A micromachined sensor array has been developed for the rapid characterization of multi-component mixtures in aqueous media. The sensor functions in a manner analogous to that of the mammalian tongue, using an array composed of individually immobilized polystyrene-polyethylene glycol composite microspheres selectively arranged in micromachined etch cavities localized o n silicon wafers. Sensing occurs via colorimetric or fluorometric changes to indicator molecules that are covalently bound to amine termination sites on the polymeric microspheres. The hybrid micromachined structure has been interfaced directly to a charged-coupled-device that is used for the simultaneous acquisition of the optical data from the individually addressable `taste bud' elements. With the miniature sensor array, acquisition of data streams composed of red, green, and blue color patterns distinctive for the analytes in the solution are rapidly acquired. The unique combination of carefully chosen reporter molecules with water permeable microspheres allows for the simultaneous detection and quantification of a variety of analytes. The fabrication of the sensor structures and the initial colorimetric and fluorescent responses for pH, Ca+2, Ce+3, and sugar are reported. Interface to microfluidic components should also be possible, producing a complete sampling/sensing system.
Park, Jongcheol; Park, Jae Yeong
2013-10-01
A piezoelectric vibration energy harvester with inter-digital IrO(x) electrode was developed by using silicon bulk micromachining technology. Most PZT cantilever based energy harvesters have utilized platinum electrode material. However, the PZT fatigue characteristics and adhesion/delamination problems caused by the platinum electrode might be serious problem in reliability of energy harvester. To address these problems, the iridium oxide was newly applied. The proposed energy harvester was comprised of bulk micromachined silicon cantilever with 800 x 1000 x 20 microm3, which having a silicon supporting membrane, sol-gel-spin coated Pb(Zr52, Ti48)O3 thin film, and sputtered inter-digitally shaped IrO(x) electrodes, and silicon inertial mass with 1000 x 1000 x 500 microm3 to adjust its resonant frequency. The fabricated energy harvester generated 1 microW of electrical power to 470 komega of load resistance and 1.4 V(peak-to-peak) from a vibration of 0.4 g at 1.475 kHz. The corresponding power density was 6.25 mW x cm(-3) x g(-2). As expected, its electrical failure was significantly improved.
Microdrilling of PCB substrate using DPSS 3rd harmonic laser
NASA Astrophysics Data System (ADS)
Kim, J. G.; Chang, Won Seok; Yoon, Kyung Ku; Jeong, Sungho; Shin, Bo Sung; Whang, Kyung Hyun
2003-02-01
Micromachining using the DPSS 3rd Harmonic Laser (355nm) has outstanding advantages as a UV source in comparison with Excimer lasers in various aspects such as maintenance cost, maskless machining, high repetition rate and so on. It also has the greater absorptivity of many materials in contrast to other IR sources. In this paper, the process for micro-drilling of through and blind hope in Cu/PI/Cu substrate with the UV DPSSL and a scanning device is investigated by both experimental and numerical methods. It is known that there is a large gap between the ablation threshold of copper and that of PI. We use the multi path for through hole with high energy density and we use Archimedes spiral path for blind hole with different energy densities to ablate different material. Furthermore, Matlab simulations considering the energy threshold of material is performed to anticipate the ablation shape according to the duplication of pulse, and FEM thermal analysis is used to predict the ablation depth of copper. This study would be widely applicable to various laser micromachining applications including through and blind hole micro-drilling of PCB, and micromachining of semiconductor components, medical parts and printer nozzles amongst others.
Trends in laser micromachining
NASA Astrophysics Data System (ADS)
Gaebler, Frank; van Nunen, Joris; Held, Andrew
2016-03-01
Laser Micromachining is well established in industry. Depending on the application lasers with pulse length from μseconds to femtoseconds and wavelengths from 1064nm and its harmonics up to 5μm or 10.6μm are used. Ultrafast laser machining using pulses with pico or femtosecond duration pulses is gaining traction, as it offers very precise processing of materials with low thermal impact. Large-scale industrial ultrafast laser applications show that the market can be divided into various sub segments. One set of applications demand low power around 10W, compact footprint and are extremely sensitive to the laser price whilst still demanding 10ps or shorter laser pulses. A second set of applications are very power hungry and only become economically feasible for large scale deployments at power levels in the 100+W class. There is also a growing demand for applications requiring fs-laser pulses. In our presentation we would like to describe these sub segments by using selected applications from the automotive and electronics industry e.g. drilling of gas/diesel injection nozzles, dicing of LED substrates. We close the presentation with an outlook to micromachining applications e.g. glass cutting and foil processing with unique new CO lasers emitting 5μm laser wavelength.
Micromachined Integrated Quantum Circuit Containing a Superconducting Qubit
NASA Astrophysics Data System (ADS)
Brecht, T.; Chu, Y.; Axline, C.; Pfaff, W.; Blumoff, J. Z.; Chou, K.; Krayzman, L.; Frunzio, L.; Schoelkopf, R. J.
2017-04-01
We present a device demonstrating a lithographically patterned transmon integrated with a micromachined cavity resonator. Our two-cavity, one-qubit device is a multilayer microwave-integrated quantum circuit (MMIQC), comprising a basic unit capable of performing circuit-QED operations. We describe the qubit-cavity coupling mechanism of a specialized geometry using an electric-field picture and a circuit model, and obtain specific system parameters using simulations. Fabrication of the MMIQC includes lithography, etching, and metallic bonding of silicon wafers. Superconducting wafer bonding is a critical capability that is demonstrated by a micromachined storage-cavity lifetime of 34.3 μ s , corresponding to a quality factor of 2 ×106 at single-photon energies. The transmon coherence times are T1=6.4 μ s , and T2echo=11.7 μ s . We measure qubit-cavity dispersive coupling with a rate χq μ/2 π =-1.17 MHz , constituting a Jaynes-Cummings system with an interaction strength g /2 π =49 MHz . With these parameters we are able to demonstrate circuit-QED operations in the strong dispersive regime with ease. Finally, we highlight several improvements and anticipated extensions of the technology to complex MMIQCs.
Hybrid micromachining using a nanosecond pulsed laser and micro EDM
NASA Astrophysics Data System (ADS)
Kim, Sanha; Kim, Bo Hyun; Chung, Do Kwan; Shin, Hong Shik; Chu, Chong Nam
2010-01-01
Micro electrical discharge machining (micro EDM) is a well-known precise machining process that achieves micro structures of excellent quality for any conductive material. However, the slow machining speed and high tool wear are main drawbacks of this process. Though the use of deionized water instead of kerosene as a dielectric fluid can reduce the tool wear and increase the machine speed, the material removal rate (MRR) is still low. In contrast, laser ablation using a nanosecond pulsed laser is a fast and non-wear machining process but achieves micro figures of rather low quality. Therefore, the integration of these two processes can overcome the respective disadvantages. This paper reports a hybrid process of a nanosecond pulsed laser and micro EDM for micromachining. A novel hybrid micromachining system that combines the two discrete machining processes is introduced. Then, the feasibility and characteristics of the hybrid machining process are investigated compared to conventional EDM and laser ablation. It is verified experimentally that the machining time can be effectively reduced in both EDM drilling and milling by rapid laser pre-machining prior to micro EDM. Finally, some examples of complicated 3D micro structures fabricated by the hybrid process are shown.
Ion mobility spectrometer using frequency-domain separation
Martin, S.J.; Butler, M.A.; Frye, G.C.; Schubert, W.K.
1998-08-04
An apparatus and method are provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine). 6 figs.
An alternative method of fabricating sub-micron resolution masks using excimer laser ablation
NASA Astrophysics Data System (ADS)
Hayden, C. J.; Eijkel, J. C. T.; Dalton, C.
2004-06-01
In the work presented here, an excimer laser micromachining system has been used successfully to fabricate high-resolution projection and contact masks. The contact masks were subsequently used to produce chrome-gold circular ac electro-osmotic pump (cACEOP) microelectrode arrays on glass substrates, using a conventional contact photolithography process. The contact masks were produced rapidly (~15 min each) and were found to be accurate to sub-micron resolution, demonstrating an alternative route for mask fabrication. Laser machined masks were also used in a laser-projection system, demonstrating that such fabrication techniques are also suited to projection lithography. The work addresses a need for quick reproduction of high-resolution contact masks, given their rapid degradation when compared to non-contact masks.
1-MHz high power femtosecond Yb-doped fiber chirped-pulse amplifier
NASA Astrophysics Data System (ADS)
Hu, Zhong-Qi; Yang, Pei-Long; Teng, Hao; Zhu, Jiang-Feng; Wei, Zhi-Yi
2018-01-01
A practical femtosecond polarization-maintaining Yb-doped fiber amplifier enabling 153 fs transform-limited pulse duration with 32 μJ pulse energy at 1 MHz repetition rate corresponding to a peak power of 0.21 GW is demonstrated. The laser system based on chirped-pulse amplification (CPA) technique is seeded by a dispersion managed, nonlinear polarization evolution (NPE) mode-locked oscillator with spectrum bandwidth of 31 nm at 1040 nm and amplified by three fiber pre-amplifying stages and a rod type fiber main amplifying stage. The laser works with beam quality of M2 of 1.3 and power stability of 0.63% (root mean square, RMS) over 24 hours will be stable sources for industrial micromachining, medical therapy and scientific research.
Fabrication of microchannels in fused silica using femtosecond Bessel beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashunin, D. A., E-mail: yashuninda@yandex.ru; Nizhny Novgorod State Technical University, 24 Minin St., Nizhny Novgorod 603950; Malkov, Yu. A.
Extended birefringent waveguiding microchannels up to 15 mm long were created inside fused silica by single-pulse irradiation with femtosecond Bessel beams. The birefringent refractive index change of 2–4 × 10{sup −4} is attributed to residual mechanical stress. The microchannels were chemically etched in KOH solution to produce 15 mm long microcapillaries with smooth walls and a high aspect ratio of 1:250. Bessel beams provide higher speed of material processing compared to conventional multipulse femtosecond laser micromachining techniques and permit simple control of the optical axis direction of the birefringent waveguides, which is important for practical applications [Corrielli et al., “Rotated waveplates inmore » integrated waveguide optics,” Nat. Commun. 5, 4249 (2014)].« less
NASA Astrophysics Data System (ADS)
Sinha, Dhiraj
2017-04-01
We report on a novel technique of wireless actuation of a micromembrane mounted on a piezoelectric stack using radio frequency magnetic fields. The magnetic field component of the radio frequency field induces time varying voltage across the leads of the piezoelectric stack which results in vibrations of the piezoelectric stack which are eventually transferred to a micromembrane of silicon nitride mounted on top of it. Thus, wireless actuation of micromembranes is achieved which is measured using a laser-photodetector system. Wireless actuation of micromembranes has applications in controlled drug delivery with rates of the order of tens of nanolitres per second. It can also be used in controlling capsule endoscopes, in vivo sensors, and micromachines for biomedical applications.
NASA Astrophysics Data System (ADS)
Zhang, Ping
Microelectromechanical systems (MEMS) have a wide range of applications. In the field of wireless and microwave technology, considerable attention has been given to the development and integration of MEMS-based RF (radio frequency) components. An RF MEMS switch requires low insertion loss, high isolation, and low actuation voltage - electrical aspects that have been extensively studied. The mechanical requirements of the switch, such as low sensitivity to built-in stress and high reliability, greatly depend on the micromechanical properties of the switch materials, and have not been thoroughly explored. RF MEMS switches are typically in the form of a free-standing thin film structure. Large stress gradients and across-wafer stress variations developed during fabrication severely degrade their electrical performance. A micromachined stress measurement sensor has been developed that can potentially be employed for in-situ monitoring of stress evolution and stress variation. The sensors were micromachined using five masks on two wafer levels, each measuring 5x3x1 mm. They function by means of an electron tunneling mechanism, where a 2x2 mm silicon nitride membrane elastically deflects under an applied deflection voltage via an external feedback circuitry. For the current design, the sensors are capable of measuring tensile stresses up to the GPa range under deflection voltages of 50--100 V. Sensor functionality was studied by finite element modeling and a theoretical analysis of square membrane deflection. While the mechanical properties of thin films on substrates have been extensively studied, studies of free-standing thin films have been limited due to the practical difficulties in sample handling and testing. Free-standing Al and Al-Ti thin films specimens have been successfully fabricated and microtensile and stress relaxation tests have been performed using a custom-designed micromechanical testing apparatus. A dedicated TEM (transmission electron microscopy) sample preparation technique allows the investigation of the microstructures of these thin films both before and after mechanical testing to correlate the microstructural findings with the mechanical behavior. Major studies include grain boundary strengthening in pure Al, plastic deformation in pure Al by inhomogeneous deformation and localized grain thinning, solid solution and precipitate strengthening in Al-Ti alloys, and stress relaxation of Al and Al-Ti.
A 2 THz Heterodyne Array Receiver for SOFIA: Summary of Research
NASA Technical Reports Server (NTRS)
Walker, Christopher K.
1998-01-01
We proposed to perform a comprehensive design study of a 16-element heterodyne array receiver for SOFIA. The array was designed to utilize hot-electron bolometers in an efficient, low-cost waveguide mount to achieve low noise performance between approximately 1500 and 2400 GHz. Due to the prevailing physical conditions in the interstellar medium, this frequency range is one of the richest in the Far-Infra Red (FIR) portion of the spectrum. An array designed for this wavelength range will make excellent use of the telescope and the available atmospheric transmission, and will provide a new perspective on stellar, chemical, and galactic evolution in the present as well as past epochs. A few of the most important molecular and atomic species which the instrument will sample are CII, OI, CO, OH, NII, and CH. The system used the most sensitive detectors available in an efficient optical system. The local oscillator was a compact CO2 pumped far-infrared laser currently under development for SOFIA. The backend spectrometer was an array acousto-optic spectrometer (aAOS). The spectrometer utilizes proven hardware and technologies to provide broadband performance (> 1 GHz per AOS channel) and high spectral resolution (1 MHz) with the maximum sensitivity and minimum complexity and cost. The proposed instrument would be the fastest and most sensitive heterodyne receiver ever to operate in the 1.5 - 2.4 THz band. One of the key technologies developed for the proposed instrument is the laser micromachining of waveguide structures. These structures provide both the optical link between the instrument and the telescope (via an array of efficient feedhorns) and the impedance transformation between the detectors and free space. With the assistance of funds provided from this grant, we were able to fabricate and test the world's first laser micromachined feedhorns. The quality of the waveguide structure is far better than that obtainable using any other fabrication technique. The beam parameters are an excellent match to what is expected from theory. The success of this experiment demonstrates the viability of using laser micromachined components in the development of high performance, large format array receivers. We have continued our development efforts and will propose to build a 2nd generation instrument based on the same design concepts.
A 2 THz Heterodyne Array Receiver for SOFIA
NASA Technical Reports Server (NTRS)
Walker, Christopher K.
1996-01-01
We proposed to perform a comprehensive design study of a 16-element heterodyne array receiver for SOFIA. The array was designed to utilize hot-electron bolometers in an efficient, low-cost waveguide mount to achieve low noise performance between approx. 1500 and 2400 GHz. Due to the prevailing physical conditions in the interstellar medium, this frequency range is one of the richest in the FIR portion of the spectrum. An array designed for this wavelength range will make excellent use of the telescope and the available atmospheric transmission, and will provide a new perspective on stellar, chemical, and galaxy evolution in the present as well as past epochs. A few of the most important molecular and atomic species which the instrument will sample are CII, OI, CO, OH, NII, and CH. The system used the most sensitive detectors available in an efficient optical system. The local oscillator was a compact CO2 pumped far-infrared laser currently under development for SOFIA. The backend spectrometer was an array acousto-optic spectrometer (aAOS). The spectrometer utilizes proven hardware and technologies to provide broadband performance (greater than or equal to 1 GHz per AOS channel) and high spectral resolution (1 MHz) with the maximum sensitivity and minimum complexity and cost. The proposed instrument would be the fastest and most sensitive heterodyne receiver ever to operate in the 1.5 - 2.4 THz band. One of the key technologies developed for the proposed instrument is the laser micromachining of waveguide structures. These structures provide both the optical link between the instrument and the telescope (via an array of efficient feedhorns) and the impedance transformation between the detectors and free space. With the assistance of funds provided from this grant, we were able to fabricate and test the world's first laser micromachined feedhorns. The quality of the waveguide structure is far better than that obtainable using any other fabrication technique. The beam parameters are an excellent match to what is expected from theory. The success of this experiment demonstrates the viability of using laser micromachined components in the development of high performance, large format array receivers. Unfortunately, our instrument proposal was not selected as a first generation SOFIA instrument. However, we have continued our development efforts and will propose to build a 2nd generation instrument based on the same design concepts.
NASA Astrophysics Data System (ADS)
Laude, Lucien D.; Rauscher, Gerhard
The use of lasers in industrial material processing is discussed in reviews and reports. Sections are devoted to high-precision laser machining, deposition methods, ablation and polymers, and synthesis and oxidation. Particular attention is given to laser cutting of steel sheets, laser micromachining of material surfaces, process control in laser soldering, laser-induced CVD of doped Si stripes on SOS and their characterization by piezoresistivity measurements, laser CVD of Pt spots on glass, laser deposition of GaAs, UV-laser photoablation of polymers, ArF excimer-laser ablation of HgCdTe semiconductor, pulsed laser synthesis of Ti silicides and nitrides, the kinetics of laser-assisted oxidation of metallic films, and excimer-laser-assisted etching of solids for microelectronics.
A method to measure cellular adhesion utilizing a polymer micro-cantilever
NASA Astrophysics Data System (ADS)
Gaitas, Angelo; Malhotra, Ricky; Pienta, Kenneth
2013-09-01
In the present study we engineered a micro-machined polyimide cantilever with an embedded sensing element to investigate cellular adhesion, in terms of its relative ability to stick to a cross-linker, 3,3'-dithiobis[sulfosuccinimidylpropionate], coated on the cantilever surface. To achieve this objective, we investigated adhesive properties of three human prostate cancer cell lines, namely, a bone metastasis derived human prostate cancer cell line (PC3), a brain metastasis derived human prostate cancer cell line (DU145), and a subclone of PC3 (PC3-EMT14). We found that PC3-EMT14, which displays a mesenchymal phenotype, has the least adhesion compared to PC3 and DU145, which exhibit an epithelial phenotype.