Modification of porous silicon rugate filters through thiol-yne photochemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soeriyadi, Alexander H., E-mail: alexander.soeriyadi@unsw.edu.au; Zhu, Ying, E-mail: alexander.soeriyadi@unsw.edu.au; Gooding, J. Justin, E-mail: justin.gooding@unsw.edu.au
2014-02-24
Porous silicon (PSi) has a considerable potential as biosensor platform. In particular, the ability to modify the surface chemistry of porous silicon is of interest. Here we present a generic method to modify the surface of porous silicon through thiol-yne photochemistry initiated by a radical initiator. Firstly, a freshly etched porous silicon substrate is modified through thermal hydrosilylation with 1,8-nonadiyne to passivate the surface and introduce alkyne functionalities. The alkyne functional surface could then be further reacted with thiol species in the presence of a radical initiator and UV light. Functionalization of the PSi rugate filter is followed with opticalmore » reflectivity measurements as well as high resolution X-ray photoelectron spectroscopy (XPS)« less
Dielectric dispersion of porous media as a fractal phenomenon
NASA Astrophysics Data System (ADS)
Thevanayagam, S.
1997-09-01
It is postulated that porous media is made up of fractal solid skeleton structure and fractal pore surface. The model thus developed satisfies measured anomalous dielectric behavior of three distinctly different porous media: kaolin, montmorillonite, and shaly sand rock. It is shown that the underlying mechanism behind dielectric dispersion in the kHz range to high MHz range is indeed Maxwell-Wagner mechanism but modified to take into account the multiphase nature of the porous media as opposed to the traditional two-phase Maxwell-Wagner charge accumulation effect. The conductivity of the surface water associated with the solid surface and charge accumulation across the surface irregularities, asperity, and bridging between particles at the micro-scale-level pores are shown to contribute to this modified Maxwell-Wagner mechanism. The latter is dominant at low frequencies. The surface water thickness is calculated to be about 2-6 nm for a variety of porous media.
Conductive super-hydrophobic surfaces of polyaniline modified porous anodic alumina membranes.
Chen, Xinhua; Chen, Guangming; Ma, Yongmei; Li, Xinhong; Jiang, Lei; Wang, Fosong
2006-03-01
A conductive polymer polyaniline (PANI) was employed to achieve surfaces of both super-hydrophobic and conductive on NaOH etched porous anodic alumina (PAA) membranes. The surfaces exhibit micro- and nanostructures. In the PANI modified PAA membrane, PANI is mainly emeraldine. After the membrane was immersed in HCl, the content of the protonated nitrogen increased, which increased the conductivity.
Porous polymer coatings on metal microneedles for enhanced drug delivery
NASA Astrophysics Data System (ADS)
Ullah, Asad; Kim, Chul Min; Kim, Gyu Man
2018-04-01
We present a simple method to coat microneedles (MNs) uniformly with a porous polymer (PLGA) that can deliver drugs at high rates. Stainless steel (SS) MNs of high mechanical strength were coated with a thin porous polymer layer to enhance their delivery rates. Additionally, to improve the interfacial adhesion between the polymer and MNs, the MN surface was modified by plasma treatment followed by dip coating with polyethyleneimine, a polymer with repeating amine units. The average failure load (the minimum force sufficient for detaching the polymer layer from the surface of SS) recorded for the modified surface coating was 25 N, whereas it was 2.2 N for the non-modified surface. Calcein dye was successfully delivered into porcine skin to a depth of 750 µm by the porous polymer-coated MNs, demonstrating that the developed MNs can pierce skin easily without deformation of MNs; additional skin penetration tests confirmed this finding. For visual comparison, rhodamine B dye was delivered using porous-coated and non-coated MNs in gelatin gel which showed that delivery with porous-coated MNs penetrate deeper when compared with non-coated MNs. Finally, lidocaine and rhodamine B dye were delivered in phosphate-buffered saline (PBS) medium by porous polymer-coated and non-coated MNs. For rhodamine B, drug delivery with the porous-coated MNs was five times higher than that with the non-coated MNs, whereas 25 times more lidocaine was delivered by the porous-coated MNs compared with the non-coated MNs.
Sciacca, Beniamino; Alvarez, Sara D.; Geobaldo, Francesco; Sailor, Michael J.
2011-01-01
The high stability of Salonen’s thermally carbonized porous silicon (TCPSi) has attracted attention for environmental and biochemical sensing applications, where corrosion-induced zero point drift of porous silicon-based sensor elements has historically been a significant problem. Prepared by the high temperature reaction of porous silicon with acetylene gas, the stability of this silicon carbide-like material also poses a challenge—many sensor applications require a functionalized surface, and the low reactivity of TCPSi has limited the ability to chemically modify its surface. This work presents a simple reaction to modify the surface of TCPSi with an alkyl carboxylate. The method involves radical coupling of a dicarboxylic acid (sebacic acid) to the TCPSi surface using a benzoyl peroxide initiator. The grafted carboxylic acid species provides a route for bioconjugate chemical modification, demonstrated in this work by coupling propylamine to the surface carboxylic acid group through the intermediacy of pentafluorophenol and 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC). The stability of the carbonized porous Si surface, both before and after chemical modification, is tested in phosphate buffered saline solution and found to be superior to either hydrosilylated (with undecylenic acid) or thermally oxidized porous Si surfaces. PMID:20967329
Grafting of functionalized polymer on porous silicon surface using Grignard reagent
NASA Astrophysics Data System (ADS)
Tighilt, F.-Z.; Belhousse, S.; Sam, S.; Hamdani, K.; Lasmi, K.; Chazalviel, J. N.; Gabouze, N.
2017-11-01
Recently, considerable attention has been paid to the manipulation and the control of the physicochemical properties of porous silicon surfaces because of their crucial importance to the modern microelectronics industry. Hybrid structures consisting of deposited polymer on porous silicon surfaces are important to applications in microelectronics, photovoltaics and sensors (Ensafi et al., 2016; Kashyout et al., 2015; Osorio et al.; 2015; Hejjo et al., 2002) [1-4]. In many cases, the polymer can provide excellent mechanical and chemical protection of the substrate, changes the electrochemical interface characteristics of the substrate, and provides new ways to the functionalization of porous silicon surfaces for molecular recognition and sensing. In this work, porous silicon surface was modified by anodic treatment in ethynylmagnesium bromide electrolyte leading to the formation of a polymeric layer bearing some bromine substituents. Subsequently, the formed polymer is functionalized with amine molecules containing functional groups (carboxylic acid or pyridine) by a substitution reaction between bromine sites and amine groups (Hofmann reaction). The chemical composition of the modified porous silicon surfaces was investigated and the grafting of polymeric chains and functional groups on the porous silicon surface was confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) which displayed the principal characteristic peaks attributed to the different functional groups. Furthermore, the surface of the material was examined by scanning electron microscopy (SEM).
Wang, Jinquan; Sng, Waihong; Yi, Guangshun; Zhang, Yugen
2015-08-04
A new type of imidazolium salt-modified porous hypercrosslinked polymer (BET surface area up to 926 m(2) g(-1)) was reported. These porous materials exhibited good CO2 capture capacities (14.5 wt%) and catalytic activities for the conversion of CO2 into various cyclic carbonates under metal-free conditions. The synergistic effect of CO2 capture and conversion was observed.
Frechet, Jean M. J. [Oakland, CA; Svec, Frantisek [Alameda, CA; Rohr, Thomas [Leiden, NL
2008-10-07
A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.
Zhao, Jiao; Minegishi, Tsutomu; Zhang, Li; Zhong, Miao; Gunawan; Nakabayashi, Mamiko; Ma, Guijun; Hisatomi, Takashi; Katayama, Masao; Ikeda, Shigeru; Shibata, Naoya; Yamada, Taro; Domen, Kazunari
2014-10-27
Porous films of p-type CuInS2, prepared by sulfurization of electrodeposited metals, are surface-modified with thin layers of CdS and TiO2. This specific porous electrode evolved H2 from photoelectrochemical water reduction under simulated sunlight. Modification with thin n-type CdS and TiO2 layers significantly increased the cathodic photocurrent and onset potential through the formation of a p-n junction on the surface. The modified photocathodes showed a relatively high efficiency and stable H2 production under the present reaction conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Selvan, Ramakrishnan Kalai; Zhu, Pei; Yan, Chaoi; Zhu, Jiadeng; Dirican, Mahmut; Shanmugavani, A; Lee, Yun Sung; Zhang, Xiangwu
2018-03-01
Biomass-derived porous carbon has been considered as a promising sulfur host material for lithium-sulfur batteries because of its high conductive nature and large porosity. The present study explored biomass-derived porous carbon as polysulfide reservoir to modify the surface of glass fiber (GF) separator. Two different carbons were prepared from Oak Tree fruit shells by carbonization with and without KOH activation. The KOH activated porous carbon (AC) provides a much higher surface area (796 m 2 g -1 ) than pyrolized carbon (PC) (334 m 2 g -1 ). The R factor value, calculated from the X-ray diffraction pattern, revealed that the activated porous carbon contains more single-layer sheets with a lower degree of graphitization. Raman spectra also confirmed the presence of sp 3 -hybridized carbon in the activated carbon structure. The COH functional group was identified through X-ray photoelectron spectroscopy for the polysulfide capture. Simple and straightforward coating of biomass-derived porous carbon onto the GF separator led to an improved electrochemical performance in Li-S cells. The Li-S cell assembled with porous carbon modified GF separator (ACGF) demonstrated an initial capacity of 1324 mAh g -1 at 0.2 C, which was 875 mAh g -1 for uncoated GF separator (calculated based on the 2nd cycle). Charge transfer resistance (R ct ) values further confirmed the high ionic conductivity nature of porous carbon modified separators. Overall, the biomass-derived activated porous carbon can be considered as a promising alternative material for the polysulfide inhibition in Li-S batteries. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Michael Z.; Simpson, John T.; Aytug, Tolga
Superhydrophobic membrane structures having a beneficial combination of throughput and a selectivity. The membrane structure can include a porous support substrate; and a membrane layer adherently disposed on and in contact with the porous support substrate. The membrane layer can include a nanoporous material having a superhydrophobic surface. The superhydrophobic surface can include a textured surface, and a modifying material disposed on the textured surface. Methods of making and using the membrane structures.
Porous article with surface functionality and method for preparing same
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor)
2000-01-01
Porous organic articles having no surface functionality may be treated by remote plasma discharge to thereby introduce functionality to the surface of the article. The functionality is introduced throughout the article's surface, including the exterior surface and the surfaces of the pores. Little or no degradation of the porous organic article occurs as a result of the functionalization. Amino, hydroxyl, carbonyl and carboxyl groups may be introduced to the article. In this way, an essentially inert hydrophobic porous article, made from, for example, polyethylene, can have its surface modified so that the surface becomes hydrophilic. The remote plasma discharge process causes essentially no change in the bulk properties of the organic article. The remote plasma discharge process is preferably conducted so that no photons, and particularly no ultraviolet radiation, is transmitted from the plasma glow to the porous article. The surface-functionalized article may be used, for example, as a solid support in organic synthesis or in the chromatographic purification of organic or biochemicals.
Porous article with surface functionality and method for preparing same
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor)
2004-01-01
Porous organic articles having no surface functionality may be treated by remote plasma discharge to thereby introduce functionality to the surface of the article. The functionality is introduced throughout the article's surface, including the exterior surface and the surfaces of the pores. Little or no degradation of the porous organic article occurs as a result of the functionalization. Amino, hydroxyl, carbonyl and carboxyl groups may be introduced to the article. In this way, an essentially inert hydrophobic porous article, made from, for example, polyethylene, can have its surface modified so that the surface becomes hydrophilic. The remote plasma discharge process causes essentially no change in the bulk properties of the organic article. The remote plasma discharge process is preferably conducted so that no photons, and particularly no ultraviolet radiation, is transmitted from the plasma glow to the porous article. The surface-functionalized article may be used, for example, as a solid support in organic synthesis or in the chromatographic purification of organic or biochemicals.
Li, H; Yuan, B; Gao, Y; Chung, C Y; Zhu, M
2011-12-15
An in-situ nitriding method has been developed to modify the outer surface and the pore walls of both open and closed pores of porous NiTi shape memory alloys (SMAs) as part of their sintering process. XRD and XPS examinations revealed that the modified layer is mainly TiN. The biocompatibility of the in-situ nitrided sample has been characterized by its corrosion resistance, cell adherence, and implant surgery. The in-situ nitrided porous NiTi SMAs exhibit much better corrosion resistance, cell adherence, and bone tissue induced capability than the porous NiTi alloys without surface modification. Furthermore, the released Ni ion content in the blood of rabbit is reduced greatly by the in-situ nitriding. The excellent biocompatibility of in-situ nitrided sample is attributed to the formation of the TiN layer on all the pore walls including both open and closed pores. Copyright © 2011 Wiley Periodicals, Inc.
Antimicrobial 3D Porous Scaffolds Prepared by Additive Manufacturing and Breath Figures.
Vargas-Alfredo, Nelson; Dorronsoro, Ane; Cortajarena, Aitziber L; Rodríguez-Hernández, Juan
2017-10-25
We describe herein a novel strategy for the fabrication of efficient 3D printed antibacterial scaffolds. For this purpose, both the surface topography as well as the chemical composition of 3D scaffolds fabricated by additive manufacturing were modified. The scaffolds were fabricated by fused deposition modeling (FDM) using high-impact polystyrene (HIPS) filaments. The surface of the objects was then topographically modified providing materials with porous surfaces by means of the Breath Figures approach. The strategy involves the immersion of the scaffold in a polymer solution during a precise period of time. This approach permitted the modification of the pore size varying the immersion time as well as the solution concentration. Moreover, by using polymer blend solutions of polystyrene and polystyrene-b-poly(acrylic acid) (PS 23 -b-PAA 18 ) and a quaternized polystyrene-b-poly(dimethylaminoethyl methacrylate) (PS 42 -b-PDMAEMAQ 17 ), the scaffolds were simultaneously chemically modified. The surfaces were characterized by scanning electron microscopy and infrared spectroscopy. Finally, the biological response toward bacteria was explored. Porous surfaces prepared using quaternized PDMAEMA as well as those prepared using PAA confer antimicrobial activity to the films, i.e., were able to kill on contact Staphylococcus aureus employed as model bacteria.
Oxide modified air electrode surface for high temperature electrochemical cells
Singh, Prabhakar; Ruka, Roswell J.
1992-01-01
An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.
NASA Astrophysics Data System (ADS)
Gainullina, Yu. Yu.; Guskov, V. Yu.
2017-10-01
The adsorption of organic molecules on the surface of a porous polymeric sorbent modified with a mixed cyanuric acid-melamine supramolecular structure is studied. The parameters of thermodynamic adsorption are considered and the contributions from intermolecular interactions to the Helmholtz energy of adsorption are assessed. Analysis of the molar changes in internal energy and adsorption entropy shows that the supramolecular structure formed on the surface could not exhibit dimension effects, indicating there were no cavities. The contributions from nonspecific interactions to the Helmholtz energy of adsorption generally fall, while those of specific interactions increase, indicating an increase in the polarity of the sorbent surface.
Novel Development of Phosphate Treated Porous Hydroxyapatite.
Doi, Kazuya; Abe, Yasuhiko; Kobatake, Reiko; Okazaki, Yohei; Oki, Yoshifumi; Naito, Yoshihito; Prananingrum, Widyasri; Tsuga, Kazuhiro
2017-12-08
Phosphoric acid-etching treatment to the hydroxyapatite (HA) surface can modify the solubility calcium structure. The aim of the present study was to develop phosphate treated porous HA, and the characteristic structures and stimulation abilities of bone formation were evaluated to determine its suitability as a new type of bone graft material. Although the phosphoric acid-etching treatment did not alter the three-dimensional structure, a micrometer-scale rough surface topography was created on the porous HA surface. Compared to porous HA, the porosity of phosphate treated porous HA was slightly higher and the mechanical strength was lower. Two weeks after placement of the cylindrical porous or phosphate treated porous HA in a rabbit femur, newly formed bone was detected in both groups. At the central portion of the bone defect area, substantial bone formation was detected in the phosphate treated porous HA group, with a significantly higher bone formation ratio than detected in the porous HA group. These results indicate that phosphate treated porous HA has a superior surface topography and bone formation abilities in vivo owing to the capacity for both osteoconduction and stimulation abilities of bone formation conferred by phosphoric acid etching.
Novel Development of Phosphate Treated Porous Hydroxyapatite
Doi, Kazuya; Abe, Yasuhiko; Kobatake, Reiko; Okazaki, Yohei; Oki, Yoshifumi; Naito, Yoshihito; Prananingrum, Widyasri; Tsuga, Kazuhiro
2017-01-01
Phosphoric acid-etching treatment to the hydroxyapatite (HA) surface can modify the solubility calcium structure. The aim of the present study was to develop phosphate treated porous HA, and the characteristic structures and stimulation abilities of bone formation were evaluated to determine its suitability as a new type of bone graft material. Although the phosphoric acid-etching treatment did not alter the three-dimensional structure, a micrometer-scale rough surface topography was created on the porous HA surface. Compared to porous HA, the porosity of phosphate treated porous HA was slightly higher and the mechanical strength was lower. Two weeks after placement of the cylindrical porous or phosphate treated porous HA in a rabbit femur, newly formed bone was detected in both groups. At the central portion of the bone defect area, substantial bone formation was detected in the phosphate treated porous HA group, with a significantly higher bone formation ratio than detected in the porous HA group. These results indicate that phosphate treated porous HA has a superior surface topography and bone formation abilities in vivo owing to the capacity for both osteoconduction and stimulation abilities of bone formation conferred by phosphoric acid etching. PMID:29292788
Cooper, Justin; Harris, Joel M
2014-12-02
Reversed-phase liquid chromatography (RPLC) is a widely used technique for molecular separations. Stationary-phase materials for RPLC generally consist of porous silica-gel particles functionalized with n-alkane ligands. Understanding motions of molecules within the interior of these particles is important for developing efficient chromatographic materials and separations. To characterize these dynamics, time-resolved spectroscopic methods (photobleach recovery, fluorescence correlation, single-molecule imaging) have been adapted to measure molecular diffusion rates, typically at n-alkane-modified planar silica surfaces, which serve as models of chromatographic interfaces. A question arising from these studies is how dynamics of molecules on a planar surface relate to motions of molecules within the interior of a porous chromatographic particle. In this paper, imaging-fluorescence-correlation spectroscopy is used to measure diffusion rates of a fluorescent probe molecule 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate (DiI) within authentic RPLC porous silica particles and compared with its diffusion at a planar C18-modified surface. The results show that surface diffusion on the planar C18 substrate is much faster than the diffusion rate of the probe molecule through a chromatographic particle. Surface diffusion within porous particles, however, is governed by molecular trajectories along the tortuous contours of the interior surface of the particles. By accounting for the greater surface area that a molecule must explore to diffuse macroscopic distances through the particle, the molecular-scale diffusion rates on the two surfaces can be compared, and they are virtually identical. These results provide support for the relevance of surface-diffusion measurements made on planar model surfaces to the dynamic behavior of molecules on the internal surfaces of porous chromatographic particles.
Montiel-González, Zeuz; Escobar, Salvador; Nava, Rocío; del Río, J. Antonio; Tagüeña-Martínez, Julia
2016-01-01
Current research on porous silicon includes the construction of complex structures with luminescent and/or photonic properties. However, their preparation with both characteristics is still challenging. Recently, our group reported a possible method to achieve that by adding an oxidant mixture to the electrolyte used to produce porous silicon. This mixture can chemically modify their microstructure by changing the thickness and surface passivation of the pore walls. In this work, we prepared a series of samples (with and without oxidant mixture) and we evaluated the structural differences through their scanning electron micrographs and their optical properties determined by spectroscopic ellipsometry. The results showed that ellipsometry is sensitive to slight variations in the porous silicon structure, caused by changes in their preparation. The fitting process, based on models constructed from the features observed in the micrographs, allowed us to see that the mayor effect of the oxidant mixture is on samples of high porosity, where the surface oxidation strongly contributes to the skeleton thinning during the electrochemical etching. This suggests the existence of a porosity threshold for the action of the oxidant mixture. These results could have a significant impact on the design of complex porous silicon structures for different optoelectronic applications. PMID:27097767
Montiel-González, Zeuz; Escobar, Salvador; Nava, Rocío; del Río, J Antonio; Tagüeña-Martínez, Julia
2016-04-21
Current research on porous silicon includes the construction of complex structures with luminescent and/or photonic properties. However, their preparation with both characteristics is still challenging. Recently, our group reported a possible method to achieve that by adding an oxidant mixture to the electrolyte used to produce porous silicon. This mixture can chemically modify their microstructure by changing the thickness and surface passivation of the pore walls. In this work, we prepared a series of samples (with and without oxidant mixture) and we evaluated the structural differences through their scanning electron micrographs and their optical properties determined by spectroscopic ellipsometry. The results showed that ellipsometry is sensitive to slight variations in the porous silicon structure, caused by changes in their preparation. The fitting process, based on models constructed from the features observed in the micrographs, allowed us to see that the mayor effect of the oxidant mixture is on samples of high porosity, where the surface oxidation strongly contributes to the skeleton thinning during the electrochemical etching. This suggests the existence of a porosity threshold for the action of the oxidant mixture. These results could have a significant impact on the design of complex porous silicon structures for different optoelectronic applications.
Method for producing hydrophobic aerogels
Hrubesh, Lawrence W.; Poco, John F.; Coronado, Paul R.
1999-01-01
A method for treating a dried monolithic aerogel containing non-dispersed particles, with an organometallic surface modifying agent to produce hydrophobic aerogels. The dried, porous hydrophobic aerogels contain a protective layer of alkyl groups, such as methyl groups, on the modified surfaces of the pores of the aerogel. The alkyl groups at the aerogel surface typically contain at least one carbon-metal bond per group.
Trimethylamine Sensors Based on Au-Modified Hierarchical Porous Single-Crystalline ZnO Nanosheets.
Meng, Fanli; Zheng, Hanxiong; Sun, Yufeng; Li, Minqiang; Liu, Jinhuai
2017-06-22
It is of great significance for dynamic monitoring of foods in storage or during the transportation process through on-line detecting trimethylamine (TMA). Here, TMA were sensitively detected by Au-modified hierarchical porous single-crystalline ZnO nanosheets (HPSCZNs)-based sensors. The HPSCZNs were synthesized through a one-pot wet-chemical method followed by an annealing treatment. Polyethyleneimine (PEI) was used to modify the surface of the HPSCZNs, and then the PEI-modified samples were mixed with Au nanoparticles (NPs) sol solution. Electrostatic interactions drive Au nanoparticles loading onto the surface of the HPSCZNs. The Au-modified HPSCZNs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectrum (EDS), respectively. The results show that Au-modified HPSCZNs-based sensors exhibit a high response to TMA. The linear range is from 10 to 300 ppb; while the detection limit is 10 ppb, which is the lowest value to our knowledge.
Trimethylamine Sensors Based on Au-Modified Hierarchical Porous Single-Crystalline ZnO Nanosheets
Zheng, Hanxiong; Sun, Yufeng; Li, Minqiang; Liu, Jinhuai
2017-01-01
It is of great significance for dynamic monitoring of foods in storage or during the transportation process through on-line detecting trimethylamine (TMA). Here, TMA were sensitively detected by Au-modified hierarchical porous single-crystalline ZnO nanosheets (HPSCZNs)-based sensors. The HPSCZNs were synthesized through a one-pot wet-chemical method followed by an annealing treatment. Polyethyleneimine (PEI) was used to modify the surface of the HPSCZNs, and then the PEI-modified samples were mixed with Au nanoparticles (NPs) sol solution. Electrostatic interactions drive Au nanoparticles loading onto the surface of the HPSCZNs. The Au-modified HPSCZNs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectrum (EDS), respectively. The results show that Au-modified HPSCZNs-based sensors exhibit a high response to TMA. The linear range is from 10 to 300 ppb; while the detection limit is 10 ppb, which is the lowest value to our knowledge. PMID:28640226
Accelerated cell-surface interlocking on plasma polymer-modified porous ceramics.
Rebl, Henrike; Finke, Birgit; Schmidt, Jürgen; Mohamad, Heba S; Ihrke, Roland; Helm, Christiane A; Nebe, J Barbara
2016-12-01
Excellent osseointegration of permanent implants is crucial for the long lasting success of the implantation. To improve the osseointegrative potential, bio-inert titanium alloy surfaces (Ti6Al4V) are modified by plasma chemical oxidation (PCO®) of the titanium-oxide layer to a non-stoichiometric, amorphous calcium phosphate layer. The native titanium-oxide film measuring only a few nanometers is converted by PCO® to a thick porous calcium phosphate layer of about 10μm. In a second step the PCO surface is combined with a cell adhesive plasma-polymerized allylamine (PPAAm) nano film (5 and 50nm). Independent of the PPAAm coating homogeneity, the human osteoblast-like MG-63 cells show a remarkable increase in cell size and well-developed filopodia. Analyses of the actin cytoskeleton reveal that the cells mold to the pore shape of the PPAAm-covered PCO, thereby establishing a strong attachment to the surface. Interestingly, we could demonstrate that even though our untreated PCO shows excellent hydrophilicity, this alone is not sufficient to facilitate fast cell spreading, but the positive surface charges mediated by PPAAm. This multilayer composite material guarantees enhanced interlocking of the cells with the porous surface. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mangindaan, Dave; Chen, Chao-Ting; Wang, Meng-Jiy
2012-12-01
A controlled release system composed of surface modified porous polycaprolactone (PCL) membranes combined with a layer of tetraorthosilicate (TEOS)-chitosan sol-gel was reported in this study. PCL is a hydrophobic, semi-crystalline, and biodegradable polymer with a relatively slow degradation rate. The drugs chosen for release experiments were silver-sulfadiazine (AgSD) and ketoprofen which were impregnated in the TEOS-chitosan sol-gel. The surface modification was achieved by O2 plasma and the surfaces were characterized by water contact angle (WCA) measurements, atomic force microscope (AFM), scanning electron microscope and electron spectroscopy for chemical analysis (ESCA). The results showed that the release of AgSD on O2 plasma treated porous PCL membranes was prolonged when compared with the pristine sample. On the contrary, the release rate of ketoprofen revealed no significant difference on pristine and plasma treated PCL membranes. The prepared PCL membranes showed good biocompatibility for the wound dressing biomaterial applications.
NASA Astrophysics Data System (ADS)
Hu, Yingying; Wen, Zhaoyin; Wu, Xiangwei; Jin, Jun
2012-12-01
Porous carbon films with tunable pore structure to modify the β″-alumina electrolyte surface are fabricated through a low-cost and direct wet chemistry method with glucose and poly(methyl-methacrylate) (PMMA) as precursors. FTIR analysis confirms the effective connection between the carbohydrate and the pore-forming agent PMMA through hydrogen bonds. The experimental results indicate that the structural parameters of the porous carbon films, including mean pore size and film thickness, can be tuned simply by adjusting the amount of PMMA in the glucose/PMMA composite. This soft-template-assisted method could be readily extended to modify any other ceramic surfaces. The porous carbon films are demonstrated to greatly improve the wettability of the β″-alumina ceramics by molten sodium. Na/β″-alumina/Na cells are used to investigate the interfacial properties between sodium and the β″-alumina electrolyte. The results obtained at 350 °C reveal that the polarization behavior of the cell is alleviated by the porous coating. This work represents a successful method to coat ceramics with porous carbon and offers a promising solution to overcome the polarization problems of the sodium/β″-alumina interface in Na-based batteries.
Porous carbon derived from aniline-modified fungus for symmetrical supercapacitor electrodes
Wang, Keliang; Xu, Ming; Wang, Xiaomin; ...
2017-01-23
N incorporated carbon materials are proven to be efficient EDLCs electrode materials. In this work, aniline modified fungus served as a raw material, and N-doped porous activated carbon is prepared via an efficient KOH activation method. A porous network with a high specific surface area of 2339 m 2g -1 is displayed by the prepared carbon material, resulting in a high accessible surface area and low ion diffusion resistance which is desirable for EDLC electrode materials. In assembled EDLCs, the N–AC based electrode exhibits a specific capacitance of 218 F g -1 at a current density of 0.1 A gmore » -1. Besides, excellent stability is displayed after 5000 continuous cycles at different current densities ranging from 0.1 to 10 A g -1. Thus, the present work reveals a promising candidate for electrode materials of EDLCs.« less
Alvarez, Sara D.; Derfus, Austin M.; Schwartz, Michael P.; Bhatia, Sangeeta N.; Sailor, Michael J.
2008-01-01
Porous Si is a nanostructured material that is of interest for molecular and cell-based biosensing, drug delivery, and tissue engineering applications. Surface chemistry is an important factor determining the stability of porous Si in aqueous media, its affinity for various biomolecular species, and its compatibility with tissues. In this study, the attachment and viability of a primary cell type to porous Si samples containing various surface chemistries is reported, and the ability of the porous Si films to retain their optical reflectivity properties relevant to molecular biosensing is assessed. Four chemical species grafted to the porous Si surface are studied: silicon oxide (via ozone oxidation), dodecyl (via hydrosilylation with dodecene), undecanoic acid (via hydrosilylation with undecylenic acid), and oligo(ethylene) glycol (via hydrosilylation with undecylenic acid followed by an oligo(ethylene) glycol coupling reaction). Fourier Transform Infrared (FTIR) spectroscopy and contact angle measurements are used to characterize the surface. Adhesion and short-term viability of primary rat hepatocytes on these surfaces, with and without pre-adsorption of collagen type I, are assessed using vital dyes (calcein-AM and ethidium homodimer I). Cell viability on undecanoic acid-terminated porous Si, oxide-terminated porous Si, and oxide-terminated flat (non-porous) Si are monitored by quantification of albumin production over the course of 8 days. The stability of porous Si thin films after 8 days in cell culture is probed by measuring the optical interferometric reflectance spectra. Results show that hepatocytes adhere better to surfaces coated with collagen, and that chemical modification does not exert a deleterious effect on primary rat hepatocytes. The hydrosilylation chemistry greatly improves the stability of porous Si in contact with cultured primary cells while allowing cell coverage levels comparable to standard culture preparations on tissue culture polystyrene. PMID:18845334
Synthetic microfluidic paper: high surface area and high porosity polymer micropillar arrays.
Hansson, Jonas; Yasuga, Hiroki; Haraldsson, Tommy; van der Wijngaart, Wouter
2016-01-21
We introduce Synthetic Microfluidic Paper, a novel porous material for microfluidic applications that consists of an OSTE polymer that is photostructured in a well-controlled geometry of slanted and interlocked micropillars. We demonstrate the distinct benefits of Synthetic Microfluidic Paper over other porous microfluidic materials, such as nitrocellulose, traditional paper and straight micropillar arrays: in contrast to straight micropillar arrays, the geometry of Synthetic Microfluidic Paper was miniaturized without suffering capillary collapse during manufacturing and fluidic operation, resulting in a six-fold increased internal surface area and a three-fold increased porous fraction. Compared to commercial nitrocellulose materials for capillary assays, Synthetic Microfluidic Paper shows a wider range of capillary pumping speed and four times lower device-to-device variation. Compared to the surfaces of the other porous microfluidic materials that are modified by adsorption, Synthetic Microfluidic Paper contains free thiol groups and has been shown to be suitable for covalent surface chemistry, demonstrated here for increasing the material hydrophilicity. These results illustrate the potential of Synthetic Microfluidic Paper as a porous microfluidic material with improved performance characteristics, especially for bioassay applications such as diagnostic tests.
Effect of Surface Pore Structure of Nerve Guide Conduit on Peripheral Nerve Regeneration
Oh, Se Heang; Kim, Jin Rae; Kwon, Gu Birm; Namgung, Uk; Song, Kyu Sang
2013-01-01
Polycaprolactone (PCL)/Pluronic F127 nerve guide conduits (NGCs) with different surface pore structures (nano-porous inner surface vs. micro-porous inner surface) but similar physical and chemical properties were fabricated by rolling the opposite side of asymmetrically porous PCL/F127 membranes. The effect of the pore structure on peripheral nerve regeneration through the NGCs was investigated using a sciatic nerve defect model of rats. The nerve fibers and tissues were shown to have regenerated along the longitudinal direction through the NGC with a nano-porous inner surface (Nanopore NGC), while they grew toward the porous wall of the NGC with a micro-porous inner surface (Micropore NGC) and, thus, their growth was restricted when compared with the Nanopore NGC, as investigated by immunohistochemical evaluations (by fluorescence microscopy with anti-neurofilament staining and Hoechst staining for growth pattern of nerve fibers), histological evaluations (by light microscopy with Meyer's modified trichrome staining and Toluidine blue staining and transmission electron microscopy for the regeneration of axon and myelin sheath), and FluoroGold retrograde tracing (for reconnection between proximal and distal stumps). The effect of nerve growth factor (NGF) immobilized on the pore surfaces of the NGCs on nerve regeneration was not so significant when compared with NGCs not containing immobilized NGF. The NGC system with different surface pore structures but the same chemical/physical properties seems to be a good tool that is used for elucidating the surface pore effect of NGCs on nerve regeneration. PMID:22871377
Nursam, Natalita M; Wang, Xingdong; Tan, Jeannie Z Y; Caruso, Rachel A
2016-07-13
Porous nitrogen-modified titania (N-titania) monoliths with tailored morphologies were prepared using phase separation and agarose gel templating techniques. The doping and templating process were simultaneously carried out in a one-pot step using alcohol amine-assisted sol-gel chemistry. The amount of polymer used in the monoliths that were prepared using phase separation was shown to affect both the physical and optical properties: higher poly(ethylene glycol) content increased the specific surface area, porosity, and visible light absorption of the final materials. For the agarose-templated monoliths, the infiltration conditions affected the monolith morphology. A porous monolith with high surface area and the least shrinkage was obtained when the N containing alkoxide precursor was infiltrated into the agarose scaffolds at 60 °C. The effect of the diverse porous morphologies on the photocatalytic activity of N-titania was studied for the decomposition of methylene blue (MB) under visible and UV light irradiation. The highest visible light activity was achieved by the agarose-templated N-titania monolith, in part due to higher N incorporation. This sample also showed better UV activity, partly because of the higher specific surface area (up to 112 m(2) g(-1)) compared to the phase separation-induced monoliths (up to 103 m(2) g(-1)). Overall, agarose-templated, porous N-titania monoliths provided better features for effectively removing the MB contaminant.
Theoretical study of porous surfaces derived from graphene and boron nitride
NASA Astrophysics Data System (ADS)
Fabris, G. S. L.; Marana, N. L.; Longo, E.; Sambrano, J. R.
2018-02-01
Porous graphene (PG), graphenylene (GP), inorganic graphenylene (IGP-BN), and porous boron nitride (PBN) single-layer have been studied via periodic density functional theory with a modified B3LYP functional and an all-electron Gaussian basis set. The structural, elastic, electronic, vibrational, and topological properties of the surfaces were investigated. The analysis showed that all porous structures had a nonzero band gap, and only PG exhibited a non-planar shape. All porous structures seem to be more susceptible to longitudinal deformation than their pristine counterparts, and GP exhibits a higher strength than graphene in the transversal direction. In addition, the electron densities of GP and IGP-BN are localized closer to the atoms, in contrast with PG and PBN, whose charge density is shifted towards the pore center; this property could find application in various fields, such as gas adsorption.
NASA Astrophysics Data System (ADS)
Wang, Keliang; Xu, Ming; Gu, Yan; Gu, Zhengrong; Fan, Qi Hua
2016-11-01
N-doped porous carbon materials derived from urea-modified lignin were prepared via efficient KOH activation under carbonization. The synthesized N-doped carbon materials, which displayed a well-developed porous morphology with high specific surface area of 3130 m2 g-1, were used as electrode materials in symmetric supercapacitors with aqueous and solid electrolytes. In consistent with the observed physical structures and properties, the supercapacitors exhibited specific capacitances of 273 and 306 F g-1, small resistances of 2.6 and 7.7 Ω, stable charge/discharge at different current densities for over 5000 cycles and comparable energy and power density in 6 mol L-1 KOH liquid and KOH-PVA solid electrolytes, respectively.
Thirion, Damien; Lee, Joo S; Özdemir, Ercan
2016-01-01
Effective carbon dioxide (CO2) capture requires solid, porous sorbents with chemically and thermally stable frameworks. Herein, we report two new carbon–carbon bonded porous networks that were synthesized through metal-free Knoevenagel nitrile–aldol condensation, namely the covalent organic polymer, COP-156 and 157. COP-156, due to high specific surface area (650 m2/g) and easily interchangeable nitrile groups, was modified post-synthetically into free amine- or amidoxime-containing networks. The modified COP-156-amine showed fast and increased CO2 uptake under simulated moist flue gas conditions compared to the starting network and usual industrial CO2 solvents, reaching up to 7.8 wt % uptake at 40 °C. PMID:28144294
Chen, Xiao-Bo; Li, Yun-Cang; Hodgson, Peter D; Wen, Cuie
2009-07-01
The importance of particle size in titanium (Ti) fabricated by powder metallurgy for the surface energy and its impact on the apatite formation was investigated. Four sorts of Ti powders of different mean particle size were realized through 20min, 2h, 5h and 8h of ball milling, respectively. Each sort of Ti powder was used to fabricate porous Ti and its nonporous counterparts sharing similar surface morphology, grain size and chemical composition, and then alkali-heat treatment was conducted on them. Surface energy was measured on the surfaces of the nonporous Ti counterparts due to the difficulty in measuring the porous surfaces directly. The surface energy increase on the alkali-heat-treated porous and nonporous Ti was observed due to the decrease in the particle size of the Ti powders and the presence of Ti-OH groups brought by the alkali-heat treatment. The apatite-inducing ability of the alkali-heat-treated porous and nonporous Ti with different surface energy values was evaluated in modified simulated body fluid and results indicated that there was a strong correlation between the apatite-inducing ability and the surface energy. The alkali-heat-treated porous and nonporous Ti discs prepared from the powders with an average particle size of 5.89+/-0.76microm possessed the highest surface energy and the best apatite-inducing ability when compared to the samples produced from the powders with the average particle size varying from 19.79+/-0.31 to 10.25+/-0.39microm.
Undoped and Ni-doped CoO x surface modification of porous BiVO 4 photoelectrodes for water oxidation
Liu, Ya; Guo, Youhong; Schelhas, Laura T.; ...
2016-09-29
Surface modification of photoanodes with oxygen evolution reaction (OER) catalysts is an effective approach to enhance water oxidation kinetics, to reduce external bias, and to improve the energy harvesting efficiency of photoelectrochemical (PEC) water oxidation. Here, the surface of porous BiVO 4 photoanodes was modified by the deposition of undoped and Ni-doped CoO x via nitrogen flow assisted electrostatic spray pyrolysis. This newly developed atmospheric pressure deposition technique allows for surface coverage throughout the porous structure with thickness and composition control. PEC testing of modified BiVO 4 photoanodes shows that after deposition of an undoped CoO x surface layer, themore » onset potential shifts negatively by ca. 420 mV and the photocurrent density reaches 2.01 mA cm –2 at 1.23 vs V RHE under AM 1.5G illumination. Modification with Ni-doped CoO x produces even more effective OER catalysis and yields a photocurrent density of 2.62 mA cm –2 at 1.23 V RHE under AM 1.5G illumination. Furthermore, the valence band X-ray photoelectron spectroscopy and synchrotron-based X-ray absorption spectroscopy results show the Ni doping reduces the Fermi level of the CoO x layer; the increased surface band bending produced by this effect is partially responsible for the superior PEC performance.« less
NASA Technical Reports Server (NTRS)
Chow, C. Y.
1986-01-01
A numerical tool is constructed to examine the effects of a porous surface on transonic airfoil performance and to help understand the flow structure of passive shockwave/boundary layer interactions. The porous region is located near the shock with a cavity underneath it. This study is composed of two parts. Solved in the first part, with an inviscid-flow approach, is the transonic full-potential equation associated with transpiration boundary conditions which are obtained from porosity modeling. The numerical results indicate that a porous airfoil has a wave drag lower than that of a solid airfoil. The observed lambda-shock structure in the wind-tunnel testing can be predicted. Furthermore, the lift could be increased with an appropriate porosity distribution. In the second part of this work, the modified version of either an interactive boundary layer (IBL) algorithm or a thin-layer Navier-Stokes (TLNS) algorithm is used to study the outer flow, while a stream-function formulation is used to model the inner flow in the shallow cavity. The coupling procedure at the porous surface is based on Darcy's law and the assumption of a constant total pressure in the cavity. In addition, a modified Baldwin-Lomax turbulence model is used to describe the transpired turbulent boundary layer in the TLNS approach, while the Cebeci turbulence model is used in the IBL approach. According to the present analysis, a porous surface can reduce the wave drag appreciably, but can also increase the viscous losses. As has been observed experimentally, the numerical results indicate that the total drag is reduced at higher Mach numbers and increased at lower Mach numbers when the angles of attack are small. Furthermore, the streamline pattern of passive shock/boundary layer interaction are revealed.
Porous Ti-6Al-4V alloy fabricated by spark plasma sintering for biomimetic surface modification.
Kon, Masayuki; Hirakata, Luciana M; Asaoka, Kenzo
2004-01-15
Porous compacts with both biological and biomechanical compatibilities and high strength were developed. Spherical powders of Ti-6Al-4V alloy, which were either as received or surface modified with the use of calcium ions by hydrothermal treatment (HTT), were fabricated by a spark plasma sintering process. The porous compacts of pure Ti were used as reference materials. Porosity was approximately 30%, and compressive strengths were 113 and 125 MPa for the as-received Ti alloy powders and those modified by the HTT process, respectively. The bending strength and elastic modulus of as-received Ti alloy powders were 128-178 MPa and 16-18 GPa, respectively. Each of the compacts was immersed in simulated body fluid (SBF). The amount of adsorption/precipitation of calcium phosphate through the compacts was measured by weight change and was observed by SEM. The compacts were covered with calcium phosphate after 2 weeks of immersion in SBF. The compacts of Ti alloy had plenty of precipitated apatite crystals, and modification by HTT accumulated more precipitation. Because calcium phosphate is a mineral component of bone, apatite, which is precipitated on the surface of the compacts, could adsorb proteins and/or drugs such as antibiotics. It is expected that a large amount of proteins and/or drugs could be impregnated when the porous compacts developed are used. Copyright 2003 Wiley Periodicals, Inc.
Sañudo-Fontaneda, Luis A; Charlesworth, Susanne M; Castro-Fresno, Daniel; Andres-Valeri, Valerio C A; Rodriguez-Hernandez, Jorge
2014-01-01
Pervious pavements have become one of the most used sustainable urban drainage system (SUDS) techniques in car parks. This research paper presents the results of monitoring water quality from several experimental car park areas designed and constructed in Spain with bays made of interlocking concrete block pavement, porous asphalt, polymer-modified porous concrete and reinforced grass with plastic and concrete cells. Moreover, two different sub-base materials were used (limestone aggregates and basic oxygen furnace slag). This study therefore encompasses the majority of the materials used as permeable surfaces and sub-base layers all over the world. Effluent from the test bays was monitored for dissolved oxygen, pH, electric conductivity, total suspended solids, turbidity and total petroleum hydrocarbons in order to analyze the behaviour shown by each combination of surface and sub-base materials. In addition, permeability tests were undertaken in all car parks using the 'Laboratorio Caminos Santander' permeameter and the Cantabrian Portable Infiltrometer. All results are presented together with the influence of surface and sub-base materials on water quality indicators using bivariate correlation statistical analysis at a confidence level of 95%. The polymer-modified porous concrete surface course in combination with limestone aggregate sub-base presented the best performance.
Improving protein resistance of α-Al 2O 3 membranes by modification with POEGMA brushes
NASA Astrophysics Data System (ADS)
He, Huating; Jing, Wenheng; Xing, Weihong; Fan, Yiqun
2011-11-01
A kind of protein-resistant ceramic membrane is prepared by grafting poly(oligo (ethylene glycol) methyl ether methacrylate) (POEGMA) brushes onto the surfaces and pore walls of α-Al2O3 membrane (AM) by surface-initiated atom-transfer radical polymerization (SI-ATRP). Contact-angle, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and field-emission scanning electron microscopy (FESEM) were measured to confirm that the surfaces and pore walls of the ceramic porous membranes have been modified by the brushes with this method successfully. The protein interaction behavior with the POEGMA modified membranes (AM-POEGMA) was studied by the model protein of bovine serum albumin (BSA). A protein-resistant mechanism of AM-POEGMA was proposed to describe an interesting phenomenon discovered in the filtration experiment, in which the initial flux filtrating BSA solution is higher than the pure water flux. The fouling of AM-POEGMA was easier to remove than AM for the action of POEGMA brushes, indicated that the ceramic porous membranes modified with POEGMA brushes exhibit excellent protein resistance.
Engineered Surface Properties of Porous Tungsten from Cryogenic Machining
NASA Astrophysics Data System (ADS)
Schoop, Julius Malte
Porous tungsten is used to manufacture dispenser cathodes due to it refractory properties. Surface porosity is critical to functional performance of dispenser cathodes because it allows for an impregnated ceramic compound to migrate to the emitting surface, lowering its work function. Likewise, surface roughness is important because it is necessary to ensure uniform wetting of the molten impregnate during high temperature service. Current industry practice to achieve surface roughness and surface porosity requirements involves the use of a plastic infiltrant during machining. After machining, the infiltrant is baked and the cathode pellet is impregnated. In this context, cryogenic machining is investigated as a substitutionary process for the current plastic infiltration process. Along with significant reductions in cycle time and resource use, surface quality of cryogenically machined un-infiltrated (as-sintered) porous tungsten has been shown to significantly outperform dry machining. The present study is focused on examining the relationship between machining parameters and cooling condition on the as-machined surface integrity of porous tungsten. The effects of cryogenic pre-cooling, rake angle, cutting speed, depth of cut and feed are all taken into consideration with respect to machining-induced surface morphology. Cermet and Polycrystalline diamond (PCD) cutting tools are used to develop high performance cryogenic machining of porous tungsten. Dry and pre-heated machining were investigated as a means to allow for ductile mode machining, yet severe tool-wear and undesirable smearing limited the feasibility of these approaches. By using modified PCD cutting tools, high speed machining of porous tungsten at cutting speeds up to 400 m/min is achieved for the first time. Beyond a critical speed, brittle fracture and built-up edge are eliminated as the result of a brittle to ductile transition. A model of critical chip thickness ( hc ) effects based on cutting force, temperature and surface roughness data is developed and used to study the deformation mechanisms of porous tungsten under different machining conditions. It is found that when hmax = hc, ductile mode machining of otherwise highly brittle porous tungsten is possible. The value of hc is approximately the same as the average ligament size of the 80% density porous tungsten workpiece.
Supramolecular structures on silica surfaces and their adsorptive properties.
Belyakov, Vladimir N; Belyakova, Lyudmila A; Varvarin, Anatoly M; Khora, Olexandra V; Vasilyuk, Sergei L; Kazdobin, Konstantin A; Maltseva, Tetyana V; Kotvitskyy, Alexey G; Danil de Namor, Angela F
2005-05-01
The study of adsorptive and chemical immobilization of beta-cyclodextrin on a surface of hydroxylated silicas with various porous structure is described. Using IR spectroscopy, thermal gravimetrical analysis with a programmed heating, and chemical analysis of the silica surface, it is shown that the process of adsorption-desorption of beta-cyclodextrin depends on the porous structure of the silica. The reaction of esterification was used for chemical grafting of beta-cyclodextrin on the surface of hydroxylated silicas. Hydrolytic stability of silicas chemically modified by beta-cyclodextrin apparently is explained by simultaneous formation of chemical and hydrogen bonds between surface silanol groups and hydroxyl groups of beta-cyclodextrin. The uptake of the cations Cu(II), Cd(II), and Pb(II) and the anions Cr(VI) and As(V) by silicas modified with beta-cyclodextrin is investigated as a function of equilibrium ion concentrations. The increase of ion uptake and selectivity of ion extraction in comparison with starting silicas is established. It is due to the formation of surface inclusion complexes of the "host-guest" type in which one molecule of beta-cyclodextrin interacts simultaneously with several ions.
[Corrosion resistant properties of different anodized microtopographies on titanium surfaces].
Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian
2015-12-01
To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.
Antimicrobial Testing Methods & Procedures: MB-31
Information about ATMP - SOP Quantitative Disk Carrier Test Method (QCT-2) Modified for Testing Antimicrobial Products Against Spores of Clostridium difficile (ATCC 43598) on Inanimate, Hard, Non-porous Surfaces - MB-31-Final
Study of Surface Wave Propagation in Fluid-Saturated Porous Solids.
NASA Astrophysics Data System (ADS)
Azcuaga, Valery Francisco Godinez
1995-01-01
This study addresses the surface wave propagation phenomena on fluid-saturated porous solids. The analytical method for calculation of surface wave velocities (Feng and Johnson, JASA, 74, 906, 1983) is extended to the case of a porous solid saturated with a wetting fluid in contact with a non-wetting fluid, in order to study a material combination suitable for experimental investigation. The analytical method is further extended to the case of a non-wetting fluid/wetting fluid-saturated porous solid interface with an arbitrary finite surface stiffness. These extensions of the analytical method allows to theoretically study surface wave propagation phenomena during the saturation process. A modification to the 2-D space-time reflection Green's function (Feng and Johnson, JASA, 74, 915, 1983) is introduced in order to simulate the behavior of surface wave signals detected during the experimental investigation of surface wave propagation on fluid-saturated porous solids (Nagy, Appl. Phys. Lett., 60, 2735, 1992). This modification, together with the introduction of an excess attenuation for the Rayleigh surface mode, makes it possible to explain the apparent velocity changes observed on the surface wave signals during saturation. Experimental results concerning the propagation of surface waves on an alcohol-saturated porous glass are presented. These experiments were performed at frequencies of 500 and 800 kHz and show the simultaneous propagation of the two surface modes predicted by the extended analytical method. Finally an analysis of the displacements associated with the different surface modes is presented. This analysis reveals that it is possible to favor the generation of the Rayleigh surface mode or of the slow surface mode, simply by changing the type of transducer used in the generation of surface waves. Calculations show that a shear transducer couples more energy into the Rayleigh mode, whereas a longitudinal transducer couples more energy into the slow surface mode. Experimental results obtained with the modified experimental system show a qualitative agreement with the theoretical predictions.
Antimicrobial Testing Methods & Procedures: MB-31-03
Information about ATMP - SOP Quantitative Disk Carrier Test Method (QCT-2) Modified for Testing Antimicrobial Products Against Spores of Clostridium difficile (ATCC 43598) on Inanimate, Hard, Non-porous Surfaces - MB-31-03
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, Z. A.; Wu, X. W.; Yuan, X. H.; Hu, J. P.; Zhou, Q. M.; Liu, Z. H.; Wu, Y. P.
2015-12-01
Functional porous carbon (PC) derived from bio-friendly shaddock peel has been firstly explored as catalyst for vanadium redox flow battery (VRB). The prepared PC is micro-mesoporous with high BET surface area of 882.7 m2 g-1, has some surface oxygen-containing functional groups, and is doped with N and P heteroatoms. These three factors greatly favor the electrochemical reactions of VO2+/VO2+ on the PC modified glass carbon (PC-GC). Compared with the naked GC and graphite modified GC, the PC-GC presents a lower peak separation (66 mV), higher anodic current density (17.1 mA cm-2) and cathodic current density (15.0 mA cm-2). The VRB using PC modified graphite felt (GF) as positive electrode demonstrates an enhanced voltage efficiency of 82.7% at the current density of 60 mA cm-2, and a better rate performance than that from the virginal GF.
Characterization and tailoring of porous sol-gel dielectrics for interlayer dielectric applications
NASA Astrophysics Data System (ADS)
Rogojevic, Svetlana
A new, better insulator is needed to replace SiO2 in the next generation of microelectronic devices. The dielectric constant of porous materials can be tailored by adjusting the porosity, so that their use can be extended to more than one generation of devices. Silica xerogel films with wide range of porosities (25 90%) are fabricated by varying the rate of solvent evaporation during spin-coating. Even better porosity control is achieved by using mixtures of high and low boiling point solvents, and allowing one solvent to evaporate completely during spin-coating. The quartz crystal microbalance method was employed to measure the traces of moisture adsorbed in xerogel films of varying porosities. By employing two different surface modifiers, it is demonstrated that the level of hydrophobicity is a function of surface chemistry, and can be tailored by using a suitable surface modifier. To investigate the interaction of xerogels with other materials, metallic layers were deposited on xerogel films, and subsequently annealed. When annealed in the ambient with trace amount of oxygen, Ta and Cu films undergo morphological instabilities. These morphological changes may lead to the erroneous interpretation of the Rutherford backscattering spectra as metal diffusion. When the samples are capped with a Si3N4 layer, Cu and Ta do not show diffusion through xerogel when annealed up to 650°C. Bias-temperature stressing was conducted in order to assess Cu drift through xerogel in the presence of an electric field. Contrary to what is normally observed with other dielectrics, the leakage current and C-V curve shifts were larger with an Al electrode than with a Cu electrode. This indicates that the surface modification of xerogel can contribute to the smaller charge injection from the Cu/xerogel interface, or to the inhibition of Cu diffusion, thus offering a possibility of designing future monolayer diffusion barriers for porous materials. Two possible paths of mass transfer in porous solids are identified: bulk and surface diffusion. Three driving forces are also analyzed: concentration gradient, electric field, and curvature gradient. The model of diffusion through porous solids shows the effects of the electric field, the solid network thickness, porosity, surface and bulk diffusivity. The model is a useful tool for designing and interpreting the experiments, in order to assess the role of surface diffusion in porous materials.
NASA Astrophysics Data System (ADS)
Shi, Pengjun; Li, Xibo; Zhang, Qiuju; Yi, Zao; Luo, Jiangshan
2018-04-01
A well-separated and oriented TiO2 nano-columns arrays with porous structure were fabricated by the oblique angle sputter deposition technique and subsequently annealing at 450 °C in Ar/O2 mixed atmosphere. The deposited substrate was firstly modified by a template of self-assembled close-packed arrays of 500 nm-diameter silica (SiO2) spheres. Scanning electronic microscopic (SEM) images show that the porous columnar nanostructure is formed as a result of the geometric shadowing effect and surface diffusion of the adatoms in oblique angle deposition (OAD). X-ray diffraction (XRD) measurements reveal that the physically OAD film with annealing treatment are generally mixed phase of rutile and anatase TiO2 polymorphic forms. The morphology induced absorbance and band gap tuning by different substrates was demonstrated by the UV–vis spectroscopy. The well-separated one-dimensional (1D) nano-columns array with specific large porous surface area is beneficial for charge separation in photocatalytic degradation. Compared with compact thin film, such self-assembled porous TiO2 nano-columns array fabricated by oblique angle sputter deposition performed an enhanced visible light induced photocatalytic activity by decomposing methyl orange (MO) solution. The well-designed periodic array-structured porous TiO2 films by using modified patterned substrates has been demonstrated significantly increased absorption edge in the UV-visible light region with a narrower optical band gap, which are expected to be favorable for application in photovoltaic, lithium-ion insertion and photocatalytic, etc.
Micropatterned arrays of porous silicon: toward sensory biointerfaces.
Flavel, Benjamin S; Sweetman, Martin J; Shearer, Cameron J; Shapter, Joseph G; Voelcker, Nicolas H
2011-07-01
We describe the fabrication of arrays of porous silicon spots by means of photolithography where a positive photoresist serves as a mask during the anodization process. In particular, photoluminescent arrays and porous silicon spots suitable for further chemical modification and the attachment of human cells were created. The produced arrays of porous silicon were chemically modified by means of a thermal hydrosilylation reaction that facilitated immobilization of the fluorescent dye lissamine, and alternatively, the cell adhesion peptide arginine-glycine-aspartic acid-serine. The latter modification enabled the selective attachment of human lens epithelial cells on the peptide functionalized regions of the patterns. This type of surface patterning, using etched porous silicon arrays functionalized with biological recognition elements, presents a new format of interfacing porous silicon with mammalian cells. Porous silicon arrays with photoluminescent properties produced by this patterning strategy also have potential applications as platforms for in situ monitoring of cell behavior.
Gnanasundaram, Saraswathy; Ranganathan, Mohan; Das, Bhabendra Nath; Mandal, Asit Baran
2013-02-01
Foot odor and foot infection are major problems of athletes and persons with hyperhidrosis. Many shoes especially sports shoes have removable cushion insoles/foot beds for foot comfort. Polyurethane (PU) foam and elastomer have been used as cushion insole in shoes. In the present work, new insole materials based on porous viscoelastic PU sheets having hydrophilic property and antimicrobial drug coating to control foot infection and odor were developed. Bacteria and fungus that are causing infection and bad odor of the foot of athletes were isolated by microbial cell culturing of foot sweat. The surface of porous viscoelastic PU sheets was modified using hydrophilic polymers and coated with antimicrobial agent, silver sulfadiazine (SS). The surface modified PU sheets were characterized using ATR-FTIR, TGA, DSC, SEM, contact angle measurement and water absorption study. Results had shown that modified PU sheets have hydrophilicity greater than that of original PU sheet. FTIR spectra and SEM pictures confirmed modification of PU surface with hydrophilic polymers and coating with SS. Minimum inhibitory concentration studies indicated that SS has activity on all isolated bacteria of athletic foot sweat. The maximum inhibition was found for Pseudomonas (20mm) followed by Micrococci (17 mm), Diphtheroids (16 mm) and Staphylococci (12 mm). During perspiration of foot the hydrophilic polymers on PU surface will swell and release SS. Future work will confirm the application of these materials as inserts in athletic shoes. Copyright © 2012 Elsevier B.V. All rights reserved.
Yuan, Weiwei; Yuan, Peng; Liu, Dong; Yu, Wenbin; Laipan, Minwang; Deng, Liangliang; Chen, Fanrong
2016-01-15
Hierarchically porous TS-1/modified-diatomite composites with high removal efficiency for methylene blue (MB) were prepared via a facile in situ hydrothermal route. The surface charge state of the diatomite was modified to enhance the electrostatic interactions, followed by in situ hydrothermal coating with TS-1 nanoparticles. The zeolite loading amount in the composites could be adjusted by changing the hydrothermal time. The highest specific surface area and micropore volume of the obtained composites were 521.3m(2)/g and 0.254cm(3)/g, respectively, with an optimized zeolite loading amount of 96.8%. Based on the synergistic effect of efficient adsorption and photocatalysis resulting from the newly formed hierarchically porous structure and improved dispersion of TS-1 nanoparticles onto diatomite, the composites' removal efficiency for MB reached 99.1% after 2h of photocatalytic reaction, even higher than that observed using pure TS-1 nanoparticles. Moreover, the superior MB removal kinetics of the composites were well represented by a pseudo-first-order model, with a rate constant (5.28×10(-2)min(-1)) more than twice as high as that of pure TS-1 nanoparticles (2.43×10(-2)min(-1)). The significant dye removal performance of this novel TS-1/modified-diatomite composite indicates that it is a promising candidate for use in waste water treatment. Copyright © 2015 Elsevier Inc. All rights reserved.
Bsat, Suzan; Amin Yavari, Saber; Munsch, Maximilian; Valstar, Edward R.; Zadpoor, Amir A.
2015-01-01
Advanced additive manufacturing techniques such as electron beam melting (EBM), can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be bio-functionalized to promote bone growth. In the current work, EBM porous Ti6Al4V alloy was exposed to an alkali acid heat (AlAcH) treatment to bio-functionalize the surface of the porous structure. Various molar concentrations (3, 5, 10M) and immersion times (6, 24 h) of the alkali treatment were used to determine optimal parameters. The apatite forming ability of the samples was evaluated using simulated body fluid (SBF) immersion testing. The micro-topography and surface chemistry of AlAcH treated samples were evaluated before and after SBF testing using scanning electron microscopy and energy dispersive X-ray spectroscopy. The AlAcH treatment successfully modified the topographical and chemical characteristics of EBM porous titanium surface creating nano-topographical features ranging from 200–300 nm in size with a titania layer ideal for apatite formation. After 1 and 3 week immersion in SBF, there was no Ca or P present on the surface of as manufactured porous titanium while both elements were present on all AlAcH treated samples except those exposed to 3M, 6 h alkali treatment. An increase in molar concentration and/or immersion time of alkali treatment resulted in an increase in the number of nano-topographical features per unit area as well as the amount of titania on the surface. PMID:28788021
Bsat, Suzan; Yavari, Saber Amin; Munsch, Maximilian; Valstar, Edward R; Zadpoor, Amir A
2015-04-08
Advanced additive manufacturing techniques such as electron beam melting (EBM), can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be bio-functionalized to promote bone growth. In the current work, EBM porous Ti6Al4V alloy was exposed to an alkali acid heat (AlAcH) treatment to bio-functionalize the surface of the porous structure. Various molar concentrations (3, 5, 10M) and immersion times (6, 24 h) of the alkali treatment were used to determine optimal parameters. The apatite forming ability of the samples was evaluated using simulated body fluid (SBF) immersion testing. The micro-topography and surface chemistry of AlAcH treated samples were evaluated before and after SBF testing using scanning electron microscopy and energy dispersive X-ray spectroscopy. The AlAcH treatment successfully modified the topographical and chemical characteristics of EBM porous titanium surface creating nano-topographical features ranging from 200-300 nm in size with a titania layer ideal for apatite formation. After 1 and 3 week immersion in SBF, there was no Ca or P present on the surface of as manufactured porous titanium while both elements were present on all AlAcH treated samples except those exposed to 3M, 6 h alkali treatment. An increase in molar concentration and/or immersion time of alkali treatment resulted in an increase in the number of nano-topographical features per unit area as well as the amount of titania on the surface.
Selective voltammetric determination of Cd(II) by using N,S-codoped porous carbon nanofibers.
Gao, Sanshuang; Liu, Jing; Luo, Jun; Mamat, Xamxikamar; Sambasivam, Sangaraju; Li, Yongtao; Hu, Xun; Wågberg, Thomas; Hu, Guangzhi
2018-05-05
Porous carbon nanofibers codoped with nitrogen and sulfur (NFs) were prepared by pyrolysis of trithiocyanuric acid, silica nanospheres and polyacrylonitrile (PAN) followed by electrospinning. The NFs were used to modify a glassy carbon electrode (GCE) which then displayed highly sensitive response to traces of Cd(II). Compared to a bare GCE and a Nafion modified GCE, the GCE modified with codoped NFs shows improved sensitivity for Cd(II) in differential pulse anodic sweep voltammetry. The stripping peak current (typically measured at 0.81 V vs. Ag/AgCl) increases linearly in the 2.0-500 μg·L -1 Cd(II) concentration range. This is attributed to the large surface area (109 m 2 ·g -1 ), porous structure, and high fraction of heteroatoms (19 at.% of N and 0.75 at.% of S). The method was applied to the determination of Cd(II) in (spiked) tap water where it gave recoveries that ranged between 96% and 103%. Graphical abstract Schematic of a glassy carbon electrode (GCE) modified with N- and S-codoped porous carbon nanofibers (N,S-PCNFs). This GCE has good selectivity for cadmium ion (Cd 2+ ) which can be determined by differential pulse anodic sweeping voltammetry (DPASV) with a detection limit as low as 0.7 ng·mL -1 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Yuichi, E-mail: yuichi.watanabe@aist.go.jp; Suemori, Kouji; Hoshino, Satoshi
2016-06-15
An indium tin oxide (ITO) nanoparticle-based porous electrode sintered at low temperatures was investigated as a transparent electrode for electrochromic displays (ECDs). The electrochromic (EC) response of the dye-modified ITO porous electrode sintered at 150 °C, which exhibited a generally low resistivity, was markedly superior to that of a conventional dye-modified TiO{sub 2} porous electrode sintered at the same temperature. Moreover, the EC characteristics of the dye-modified ITO porous electrode sintered at 150 °C were better than those of the high-temperature (450 °C) sintered conventional dye-modified TiO{sub 2} porous electrode. These improvements in the EC characteristics of the dye-modified ITO porous electrode aremore » attributed to its lower resistivity than that of the TiO{sub 2} porous electrodes. In addition to its sufficiently low resistivity attained under the sintering conditions required for flexible ECD applications, the ITO porous film had superior visible-light transparency and dye adsorption capabilities. We conclude that the process temperature, resistivity, optical transmittance, and dye adsorption capability of the ITO porous electrode make it a promising transparent porous electrode for flexible ECD applications.« less
Ag-Modified In2O3/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance
Fang, Fang; Bai, Lu; Song, Dongsheng; Yang, Hongping; Sun, Xiaoming; Sun, Hongyu; Zhu, Jing
2015-01-01
Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10–30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitivity. Consequently, the HCHO gas-sensing performance of the Ag-modified In2O3/ZnO bundles have been tested, with the formaldehyde-detection limit of 100 ppb (parts per billion) and the response and recover times as short as 6 s and 3 s, respectively, at 300 °C and the detection limit of 100 ppb, response time of 12 s and recover times of 6 s at 100 °C. The HCHO sensing detect limitation matches the health standard limitation on the concentration of formaldehyde for indoor air. Moreover, the strategy to synthesize the nanobundles is just two-step heating and easy to scale up. Therefore, the Ag-modified In2O3/ZnO bundles are ready for industrialization and practical applications. PMID:26287205
NASA Astrophysics Data System (ADS)
Smolyanskii, A. S.; Kozlova, N. V.; Zheltova, A. V.; Aksyutina, A. S.; Shvedov, A. S.; Lakeev, S. G.
2015-07-01
Light scattering and interference patterns are studied in the optical absorption spectra of nuclear filters based on polyethylene terephthalate fi lms modifi ed by dry aerosol deposition of silver nano- and microparticles. Surface plasmon polaritons and localized plasmons formed by the passage of light through porous silver films are found to have an effect on the diffraction and interference modes. The thickness of silver nano- and microparticle coatings on the surface of the nuclear fi lters was determined from the shift in the interference patterns in the optical absorption spectra of the modified nuclear filters relative to the original nuclear filters. A correlation was found between the estimated coating thickness and the average surface roughness of the nuclear filters modified by layers of silver nano- and microparticles.
In Vivo Response of Laser Processed Porous Titanium Implants for Load-Bearing Implants.
Bandyopadhyay, Amit; Shivaram, Anish; Tarafder, Solaiman; Sahasrabudhe, Himanshu; Banerjee, Dishary; Bose, Susmita
2017-01-01
Applications of porous metallic implants to enhance osseointegration of load-bearing implants are increasing. In this work, porous titanium implants, with 25 vol.% porosity, were manufactured using Laser Engineered Net Shaping (LENS™) to measure the influence of porosity towards bone tissue integration in vivo. Surfaces of the LENS™ processed porous Ti implants were further modified with TiO 2 nanotubes to improve cytocompatibility of these implants. We hypothesized that interconnected porosity created via additive manufacturing will enhance bone tissue integration in vivo. To test our hypothesis, in vivo experiments using a distal femur model of male Sprague-Dawley rats were performed for a period of 4 and 10 weeks. In vivo samples were characterized via micro-computed tomography (CT), histological imaging, scanning electron microscopy, and mechanical push-out tests. Our results indicate that porosity played an important role to establish early stage osseointegration forming strong interfacial bonding between the porous implants and the surrounding tissue, with or without surface modification, compared to dense Ti implants used as a control.
In vivo response of laser processed porous titanium implants for load-bearing implants
Bandyopadhyay, Amit; Shivaram, Anish; Tarafder, Solaiman; Sahasrabudhe, Himanshu; Banerjee, Dishary; Bose, Susmita
2016-01-01
Applications of porous metallic implants to enhance osseointegration of load-bearing implants are increasing. In this work, porous titanium implants, with 25 volume% porosity, were manufactured using Laser Engineered Net Shaping (LENS™) to measure the influence of porosity towards bone tissue integration in vivo. Surfaces of the LENS™ processed porous Ti implants were further modified with TiO2 nanotubes to improve cytocompatibility of these implants. We hypothesized that interconnected porosity created via additive manufacturing will enhance bone tissue integration in vivo. To test our hypothesis, in vivo experiments using a distal femur model of male Sprague-Dawley rats were performed for a period of 4 and 10 weeks. In vivo samples were characterized via micro-computed tomography (CT), histological imaging, scanning electron microscopy, and mechanical push-out tests. Our results indicate that porosity played an important role to establish early stage osseointegration forming strong interfacial bonding between the porous implants and the surrounding tissue, with or without surface modification, compared to dense Ti implants used as a control. PMID:27307009
Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications.
Braem, Annabel; Van Mellaert, Lieve; Mattheys, Tina; Hofmans, Dorien; De Waelheyns, Evelien; Geris, Liesbet; Anné, Jozef; Schrooten, Jan; Vleugels, Jef
2014-01-01
Implant-related infections are a serious complication in prosthetic surgery, substantially jeopardizing implant fixation. As porous coatings for improved osseointegration typically present an increased surface roughness, their resulting large surface area (sometimes increasing with over 700% compared to an ideal plane) renders the implant extremely susceptible to bacterial colonization and subsequent biofilm formation. Therefore, there is particular interest in orthopaedic implantology to engineer surfaces that combine both the ability to improve osseointegration and at the same time reduce the infection risk. As part of this orthopaedic coating development, the interest of in vitro studies on the interaction between implant surfaces and bacteria/biofilms is growing. In this study, the in vitro staphylococcal adhesion and biofilm formation on newly developed porous pure Ti coatings with 50% porosity and pore sizes up to 50 μm is compared to various dense and porous Ti or Ti-6Al-4V reference surfaces. Multiple linear regression analysis indicates that surface roughness and hydrophobicity are the main determinants for bacterial adherence. Accordingly, the novel coatings display a significant reduction of up to five times less bacterial surface colonization when compared to a commercial state-of-the-art vacuum plasma sprayed coating. However, the results also show that a further expansion of the porosity with over 15% and/or the pore size up to 150 μm is correlated to a significant increase in the roughness parameters resulting in an ascent of bacterial attachment. Chemically modifying the Ti surface in order to improve its hydrophilicity, while preserving the average roughness, is found to strongly decrease bacteria quantities, indicating the importance of surface functionalization to reduce the infection risk of porous coatings. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Shen, Mao; Chen, Suqing; Jia, Wenping; Fan, Guodong; Jin, Yanxian; Liang, Huading
2016-12-01
In this paper, we reported a novel hierarchical porous Ag@Fe3O4@C-Au@TiO2 core@shell microspheres with a highly photocatalytic activity and magnetically separable properties. The synthesis method is included of a Fe3O4 magnetic embedded Ag core (Ag@Fe3O4), an interlayer of carbon modified by PEI to form sufficient amounts of amine functional groups (Ag@Fe3O4@C-PEI), the grafting of Au nanoparticles on the surface of Ag@Fe3O4@C-PEI (Ag@Fe3O4@C-Au), and an ordered porous TiO2 structured shell. As an example of the applications, the photocatalytic activities of the samples were investigated by the reduction of Rhodamine B (RhB) under visible-light irradiation. The results show that the porous Ag@Fe3O4@C-Au@TiO2 core@shell microspheres display higher adsorption and photocatalytic activities compared to the pure porous TiO2 and Ag@Fe3O4@C@TiO2 microspheres, which are attributed to the local surface plasmon resonance (LSPR) by the Ag and Au nanoparticles and the high specific surface area.
Chemical Sensors Based on IR Spectroscopy and Surface-Modified Waveguides
NASA Technical Reports Server (NTRS)
Lopez, Gabriel P.; Niemczyk, Thomas
1999-01-01
Sol-gel processing techniques have been used to apply thin porous films to the surfaces of planar infrared (IR) waveguides to produce widely useful chemical sensors. The thin- film coating serves to diminish the concentration of water and increase the concentration of the analyte in the region probed by the evanescent IR wave. These porous films are composed of silica, and therefore, conventional silica surface modification techniques can be used to give the surface a specific functional character. The sol-gel film was surface-modified to make the film highly hydrophobic. These sensors were shown to be capable of detecting non-polar organic analytes, such as benzonitrile, in aqueous solution with detection limits in the ppb range. Further, these porous sol-gel structures allow the analytes to diffuse into and out of the films rapidly, thus reaching equilibrium in less than ten seconds. These sensors are unique because of the fact that their operation is based on the measurement of an IR absorption spectrum. Thus, these sensors are able to identify the analytes as well as measure concentration with high sensitivity. These developments have been documented in previous reports and publications. Recently, we have also targeted detection of the polar organic molecules acetone and isopropanol in aqueous solution. Polar organics are widely used in industrial and chemical processes, hence it is of interest to monitor their presence in effluents or decontamination process flows. Although large improvements in detection limits were expected with non-polar organic molecules in aqueous solutions using very hydrophobic porous sol-gel films on silicon attenuated total reflectance (Si ATR) waveguides, it was not as clear what the detection enhancements might be for polar organic molecules. This report describes the use of modified sol-gel-coated Si ATR sensors for trace detection and quantitation of small polar organic molecules in aqueous solutions. The detection of both acetone and isopropanol molecules in aqueous solution has been previously reported for chalcogenide fiber optic sensors. The sol-gel film was produced using a mixture of ethyltriethoxysilane and tetraethoxysilane and the surface modification was carried out using trimethylchlorosilane. We have demonstrated that this film concentrates the target polar analytes from aqueous solution in the region probed by the evanescent wave to improve detection limits by as much as a factor of 450.
Ciampi, Simone; Guan, Bin; Darwish, Nadim A; Zhu, Ying; Reece, Peter J; Gooding, J Justin
2012-12-21
Herein, mesoporous silicon (PSi) is configured as a single sensing device that has dual readouts; as a photonic crystal sensor in a Rugate filter configuration, and as a high surface area porous electrode. The as-prepared PSi is chemically modified to provide it with stability in aqueous media and to allow for the subsequent coupling of chemical species, such as via Cu(I)-catalyzed cycloaddition reactions between 1-alkynes and azides ("click" reactions). The utility of the bimodal capabilities of the PSi sensor for monitoring surface coupling procedures is demonstrated by the covalent coupling of a ferrocene derivative, as well as by demonstrating ligand-exchange reactions (LER) at the PSi surface. Both types of reactions were monitored through optical reflectivity measurements, as well as electrochemically via the oxidation/reduction of the surface tethered redox species.
NASA Astrophysics Data System (ADS)
Li, Hong; Huang, Chengya; Zhang, Long; Lou, Wanqiu
2014-09-01
In this study we report a new and efficient method of fabricating superhydrophobic surface on zinc plate modified with 3-trifluoromethylbenzene diazonium tetrafluoroborate salts (CF3BD), which shows a water contact angle of 160° for a 4 μl water droplet and a low sliding angle of about 1°. The morphology and chemical composition of as-prepared superhydrophobic zinc surfaces are investigated by means of scanning electron microscopy (SEM), electron probe microanalyzer (EPMA) and FT-IR spectrum. The results show that the organic layers formed on zinc plate surface are provided with the special hierarchical porous microstructure and the low surface energy, which lead to the superhydrophobicity surface on the modified zinc.
Zhang, Ming; Wang, Ai-Juan; Li, Jun-Ming; Song, Na
2017-10-01
Stearic acid (Sa) was used to modify the surface properties of hydroxyapatite (HAp) in different solvents (water, ethanol or dichloromethane(CH 2 Cl 2 )). Effect of different solvents on the properties of HAp particles (activation ratio, grafting ratio, chemical properties), emulsion properties (emulsion stability, emulsion type, droplet morphology) as well as the cured materials (morphology, average pore size) were studied. FT-IR and XPS results confirmed the interaction occurred between stearic acid and HAp particles. Stable O/W and W/O type Pickering emulsions were prepared using unmodified and Sa modified HAp nanoparticles respectively, which indicated a catastrophic inversion of the Pickering emulsion happened possibly because of the enhanced hydrophobicity of HAp particles after surface modification. Porous materials with different structures and pore sizes were obtained using Pickering emulsion as the template via in situ evaporation solvent method. The results indicated the microstructures of cured samples are different form each other when HAp was surface modified in different solvents. HAp particles fabricated using ethanol as solvent has higher activation ratio and grafting ratio. Pickering emulsion with higher stability and cured porous materials with uniform morphology were obtained compared with samples prepared using water and CH 2 Cl 2 as solvents. In conclusion, surface modification of HAp in different solvents played a very important role for its stabilized Pickering emulsion as well as the microstructure of cured samples. It is better to use ethanol as the solvent for Sa modified HAp particles, which could increase the stability of Pickering emulsion and obtain cured samples with uniform pore size. Copyright © 2017 Elsevier B.V. All rights reserved.
High performance membrane-electrode assembly based on a surface-modified membrane
NASA Astrophysics Data System (ADS)
Han, Sangil; Lee, Jang Woo; Kwak, Chan; Chai, Geun Seok; Son, In Hyuk; Jang, Moon Yup; An, Sung Guk; Cho, Sung Yong; Kim, Jun Young; Kim, Hyung Wook; Serov, Alexey Alexandrovych; Yoo, Youngtai; Nam, Kie Hyun
A surface-modified membrane is prepared using a sputtering technique that deposits gold directly on a Nafion ® 115 membrane surface that is roughened with silicon carbide paper. The surface-modified membranes are characterized by means of a scanning electron microscope (SEM), differential scanning calorimetry (DSC), and water contact-angle analysis. A single direct methanol fuel cell (DMFC) with a surface-modified membrane exhibits enhanced performance (160 mW cm -2), while a bare Nafion ® 115 cell yields 113 mW cm -2 at 0.4 V and an operating temperature of 70 °C. From FE-SEM images and CO ad stripping voltammograms, it is also found that the gold layer is composed of clusters of porous nodule-like particles, which indicates that an anode with nodule-like gold leads to the preferential oxidation of carbon monoxide. These results suggest that the topology of gold in the interfacial area and its electrocatalytic nature may be the critical factors that affect DMFC performance.
NASA Astrophysics Data System (ADS)
Norouzi Rad, M.
2016-12-01
Precipitation and deposition of salts in porous media is important in many natural processes as well as industrial and environmental applications since it can modify the structure and transport properties of porous media. In the presence of soluble salt in water during evaporation from porous media, salt is transported by convection induced by capillary liquid flow toward the evaporating surface where it accumulates, whereas diffusion tends to spread the salt and homogenize concentrations in space. Therefore, the competition between the convection and diffusion (characterized by Peclet number) affects the dynamics of salt distribution in porous media. As shown in previous studies (1-3) salt crust thickness and its coverage on the surface are highly influenced by the pore size distribution on the surface and active evaporation spots. In the current study, we focus on the precipitation dynamics and pattern during diffusion-driven evaporation period (the so-called stage-2 of evaporation) when the surface is dried and vaporization plane moves below the surface. Therefore, precipitation occurs inside the porous media during this period. To investigate the details of this process, 4D X-ray Microscopy was utilized. To do so, a packed bed of silica sand was saturated with 4 Molal NaCl solution and X-ray Microscopy was used to image the sample at well-defined time intervals during the evaporation process to provide pore scale information on evaporation and precipitation dynamics. The resulted 3-D pore-scale images were segmented to quantify the evaporative water losses and the dynamics and patterns of salt precipitation inside porous media with particular focus on the characterization of the processes occurring during stage-2 evaporation affecting the precipitation dynamics. [1] Norouzi Rad, M., N. Shokri, A. Keshmiri, P. Withers (2015), Effects of grain and pore size on salt precipitation during evaporation from porous media: A pore-scale investigation, Trans. Porous. Med., 110(2), 281-294. [2] Norouzi Rad, M., N. Shokri (2014), Effects of grain angularity on NaCl precipitation in porous media during evaporation, Water Resour. Res., 50, 9020-9030. [3] Norouzi Rad, M., N. Shokri, M. Sahimi (2013), Pore-Scale Dynamics of Salt Precipitation in Drying Porous Media, Phys. Rev. E, 88, 032404.
Optimization of chemical displacement deposition of copper on porous silicon.
Bandarenka, Hanna; Redko, Sergey; Nenzi, Paolo; Balucani, Marco; Bondarenko, Vitaly
2012-11-01
Copper (II) sulfate was used as a source of copper to achieve uniform distribution of Cu particles deposited on porous silicon. Layers of the porous silicon were formed by electrochemical anodization of Si wafers in a mixture of HF, C3H7OH and deionized water. The well-known chemical displacement technique was modified to grow the copper particles of specific sizes. SEM and XRD analysis revealed that the outer surface of the porous silicon was covered with copper particles of the crystal orientation inherited from the planes of porous silicon skeleton. The copper crystals were found to have the cubic face centering elementary cell. In addition, the traces of Cu2O cubic primitive crystalline phases were identified. The dimensions of Cu particles were determined by the Feret's analysis of the SEM images. The sizes of the particles varied widely from a few to hundreds of nanometers. A phenomenological model of copper deposition was proposed.
NASA Technical Reports Server (NTRS)
Tooms, S.; Attenborough, K.
1990-01-01
Using a Fast Fourier integration method and a global matrix method for solution of the boundary condition equations at all interfaces simultaneously, a useful tool for predicting acoustic propagation in a stratified fluid over a stratified porous-elastic solid was developed. The model for the solid is a modified Biot-Stoll model incorporating four parameters describing the pore structure corresponding to the Rayleigh-Attenborough rigid-porous structure model. The method is also compared to another Fast Fourier code (CERL-FFP) which models the ground as an impedance surface under a horizontally stratified air. Agreement with the CERL FFP is good. The effects on sound propagation of a combination of ground elasticity, complex ground structure, and atmospheric conditions are demonstrated by theoretical results over a snow layer, and experimental results over a model ground surface.
Investigating anomalous transport of electrolytes in charged porous media
NASA Astrophysics Data System (ADS)
Skjøde Bolet, Asger Johannes; Mathiesen, Joachim
2017-04-01
Surface charge is know to play an important role in microfluidics devices when dealing with electrolytes and their transport properties. Similarly, surface charge could play a role for transport in porous rock with submicron pore sizes. Estimates of the streaming potentials and electro osmotic are mostly considered in simple geometries both using analytic and numerical tools, however it is unclear at present how realistic complex geometries will modify the dynamics. Our work have focused on doing numerical studies of the full three-dimensional Stokes-Poisson-Nernst-Planck problem for electrolyte transport in porous rock. As the numerical implementation, we have used a finite element solver made using the FEniCS project code base, which can both solve for a steady state configuration and the full transient. In the presentation, we will show our results on anomalous transport due to electro kinetic effects such as the streaming potential or the electro osmotic effect.
Torstrick, F Brennan; Klosterhoff, Brett S; Westerlund, L Erik; Foley, Kevin T; Gochuico, Joanna; Lee, Christopher S D; Gall, Ken; Safranski, David L
2018-05-01
Various surface modifications, often incorporating roughened or porous surfaces, have recently been introduced to enhance osseointegration of interbody fusion devices. However, these topographical features can be vulnerable to damage during clinical impaction. Despite the potential negative impact of surface damage on clinical outcomes, current testing standards do not replicate clinically relevant impaction loading conditions. The purpose of this study was to compare the impaction durability of conventional smooth polyether-ether-ketone (PEEK) cervical interbody fusion devices with two surface-modified PEEK devices that feature either a porous structure or plasma-sprayed titanium coating. A recently developed biomechanical test method was adapted to simulate clinically relevant impaction loading conditions during cervical interbody fusion procedures. Three cervical interbody fusion devices were used in this study: smooth PEEK, plasma-sprayed titanium-coated PEEK, and porous PEEK (n=6). Following Kienle et al., devices were impacted between two polyurethane blocks mimicking vertebral bodies under a constant 200 N preload. The posterior tip of the device was placed at the entrance between the polyurethane blocks, and a guided 1-lb weight was impacted upon the anterior face with a maximum speed of 2.6 m/s to represent the strike force of a surgical mallet. Impacts were repeated until the device was fully impacted. Porous PEEK durability was assessed using micro-computed tomography (µCT) pre- and postimpaction. Titanium-coating coverage pre- and postimpaction was assessed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy. Changes to the surface roughness of smooth and titanium-coated devices were also evaluated. Porous PEEK and smooth PEEK devices showed minimal macroscopic signs of surface damage, whereas the titanium-coated devices exhibited substantial visible coating loss. Quantification of the porous PEEK deformation demonstrated that the porous structure maintained a high porosity (>65%) following impaction that would be available for bone ingrowth, and exhibited minimal changes to pore size and depth. SEM and energy dispersive X-ray spectroscopy analysis of titanium-coated devices demonstrated substantial titanium coating loss after impaction that was corroborated with a decrease in surface roughness. Smooth PEEK showed minimal signs of damage using SEM, but demonstrated a decrease in surface roughness. Although recent surface modifications to interbody fusion devices are beneficial for osseointegration, they may be susceptible to damage and wear during impaction. The current study found porous PEEK devices to show minimal damage during simulated cervical impaction, whereas titanium-coated PEEK devices lost substantial titanium coverage. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Intravitreal properties of porous silicon photonic crystals
Cheng, L; Anglin, E; Cunin, F; Kim, D; Sailor, M J; Falkenstein, I; Tammewar, A; Freeman, W R
2009-01-01
Aim To determine the suitability of porous silicon photonic crystals for intraocular drug-delivery. Methods A rugate structure was electrochemically etched into a highly doped p-type silicon substrate to create a porous silicon film that was subsequently removed and ultrasonically fractured into particles. To stabilise the particles in aqueous media, the silicon particles were modified by surface alkylation (using thermal hydrosilylation) or by thermal oxidation. Unmodified particles, hydrosilylated particles and oxidised particles were injected into rabbit vitreous. The stability and toxicity of each type of particle were studied by indirect ophthalmoscopy, biomicroscopy, tonometry, electroretinography (ERG) and histology. Results No toxicity was observed with any type of the particles during a period of >4 months. Surface alkylation led to dramatically increased intravitreal stability and slow degradation. The estimated vitreous half-life increased from 1 week (fresh particles) to 5 weeks (oxidised particles) and to 16 weeks (hydrosilylated particles). Conclusion The porous silicon photonic crystals showed good biocompatibility and may be used as an intraocular drug-delivery system. The intravitreal injectable porous silicon photonic crystals may be engineered to host a variety of therapeutics and achieve controlled drug release over long periods of time to treat chronic vitreoretinal diseases. PMID:18441177
NASA Astrophysics Data System (ADS)
Parambath Vinayan, Bhaghavathi; Nagar, Rupali; Ramaprabhu, Sundara
2016-09-01
We investigate the electrocatalytic activity of PtAu alloy nanoparticles supported on various chemically modified carbon morphologies towards oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR). The surface-modification of graphene nanosheets (f-G), multi-walled carbon nanotubes (f-MWNTs) and (graphene nanosheets-carbon nanotubes) hybrid support (f-G-MWNTs) were carried out by soft functionalization method using a cationic polyelectrolyte poly-(diallyldimethyl ammonium chloride). The Pt and PtAu alloy nanoparticles were dispersed over chemically modified carbon supports by sodium-borohydride assisted modified polyol reduction method. The electrochemical performance of all electrocatalysts were studied by half- and full-cell proton exchange membrane fuel cell (PEMFC) measurements and PtAu/f-G-MWNTs catalyst comparatively yielded the best catalytic performance. PEMFC full cell measurements of PtAu/f-G-MWNTs cathode electrocatalyst yield a maximum power density of 319 mW cm-2 at 60 °C without any back pressure,which is 2.1 times higher than that of cathode electrocatalyst Pt on graphene support. The high ORR and MOR activity of PtAu/f-G-MWNTs electrocatalyst is due to the alloying effect and inherent beneficial properties of porous hybrid nanocarbon support.
NASA Astrophysics Data System (ADS)
Raychoudhury, Trishikhi; Surasani, Vikranth Kumar
2017-06-01
Retention of surface-modified nanoscale zero-valent iron (NZVI) particles in the porous media near the point of injection has been reported in the recent studies. Retention of excess particles in porous media can alter the media properties. The main objectives of this study are, therefore, to evaluate the effect of particle retention on the porous media properties and its implication on further NZVI particle transport under different flow conditions. To achieve the objectives, a one-dimensional transport model is developed by considering particle deposition, detachment, and straining mechanisms along with the effect of changes in porosity resulting from retention of NZVI particles. Two different flow conditions are considered for simulations. The first is a constant Darcy's flow rate condition, which assumes a change in porosity, causes a change in pore water velocity and the second, is a constant head condition, which assumes the change in porosity, influence the permeability and hydraulic conductivity (thus Darcy's flow rate). Overall a rapid decrease in porosity was observed as a result of high particle retention near the injection points resulting in a spatial distribution of deposition rate coefficient. In the case of constant head condition, the spatial distribution of Darcy's velocities is predicted due to variation in porosity and hydraulic conductivity. The simulation results are compared with the data reported from the field studies; which suggests straining is likely to happen in the real field condition.
Lu, Mang; Xia, Guang-Hua; Zhao, Xiao-Dong
2013-01-01
In this study, porous suspended ceramsite with a specific density close to that of water was prepared by high-temperature calcination using fly ash, feldspar, calcite, fired talc and kaolin as the raw materials. The ceramsite was modified by activated carbon/Fe3O4 magnetic composites. The optimum modification conditions determined by methylene blue adsorption experiment were: KOH/glucose ratio of 1.5:1, carbonization temperature of 400 degrees C, activation temperature of 850 degrees C, activation time of 1 h, and Fe3O4/KOH+glucose ratio of 1:10. The results demonstrated that the adsorption capacity of the modified ceramsite for methylene blue was significantly higher than that of the unmodified ones. The presence of the composites did not lead to significant decrease in the mechanical properties of the modified ceramsite. Moreover, the modified ceramsite showed good resistance towards acid and alkali. The modified ceramsite can be used as biocarrier and adsorbent for a wide range of contaminants in water and can subsequently be removed from the medium by a simple magnetic procedure.
Correia, Alexandra; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Almeida, Sérgio; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A
2015-10-21
Over the past decade, the potential of polymeric structures has been investigated to overcome many limitations related to nanosized drug carriers by modulating their toxicity, cellular interactions, stability, and drug-release kinetics. In this study, we have developed a successful nanocomposite consisting of undecylenic acid modified thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs) loaded with an anticancer drug, sorafenib, and surface-conjugated with heptakis(6-amino-6-deoxy)-β-cyclodextrin (HABCD) to show the impact of the surface polymeric functionalization on the physical and biological properties of the drug-loaded nanoparticles. Cytocompatibility studies showed that the UnTHCPSi-HABCD NPs were not toxic to breast cancer cells. HABCD also enhanced the suspensibility and both the colloidal and plasma stabilities of the UnTHCPSi NPs. UnTHCPSi-HABCD NPs showed a significantly increased interaction with breast cancer cells compared to bare NPs and also sustained the drug release. Furthermore, the sorafenib-loaded UnTHCPSi-HABCD NPs efficiently inhibited cell proliferation of the breast cancer cells.
Effects of macro- versus nanoporous silicon substrates on human aortic endothelial cell behavior
2014-01-01
Human aortic endothelial cells play a key role in the pathogenesis of atherosclerosis, which is a common, progressive, and multifactorial disease that is the clinical endpoint of an inflammatory process and endothelial dysfunction. Study and development of new therapies against cardiovascular disease must be tested in vitro cell models, prior to be evaluated in vivo. To this aim, new cell culture platforms are developed that allow cells to grow and respond to their environment in a realistic manner. In this work, the cell adhesion and morphology of endothelial cells are investigated on functionalized porous silicon substrates with two different pore size configurations: macroporous and nanoporous silicon. Herein, we modified the surfaces of porous silicon substrates by aminopropyl triethoxysilane, and we studied how different pore geometries induced different cellular response in the cell morphology and adhesion. The cell growth over the surface of porous silicon becomes an attractive field, especially for medical applications. Surface properties of the biomaterial are associated with cell adhesion and as well as, with proliferation, migration and differentiation. PMID:25246859
Human aortic endothelial cell morphology influenced by topography of porous silicon substrates.
Formentín, Pilar; Catalán, Úrsula; Fernández-Castillejo, Sara; Alba, Maria; Baranowska, Malgorzata; Solà, Rosa; Pallarès, Josep; Marsal, Lluís F
2015-10-01
Porous silicon has received much attention because of its optical properties and for its usefulness in cell-based biosensing, drug delivery, and tissue engineering applications. Surface properties of the biomaterial are associated with cell adhesion and with proliferation, migration, and differentiation. The present article analyzes the behavior of human aortic endothelial cells in macro- and nanoporous collagen-modified porous silicon samples. On both substrates, cells are well adhered and numerous. Confocal microscopy and scanning electron microscopy were employed to study the effects of porosity on the morphology of the cells. On macroporous silicon, filopodia is not observed but the cell spreads on the surface, increasing the lamellipodia surface which penetrates the macropore. On nanoporous silicon, multiple filopodia were found to branch out from the cell body. These results demonstrate that the pore size plays a key role in controlling the morphology and growth rate of human aortic endothelial cells, and that these forms of silicon can be used to control cell development in tissue engineering as well as in basic cell biology research. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Norouzi Rad, M.; Shokri, N.
2014-12-01
Understanding the physics of water evaporation from saline porous media is important in many processes such as evaporation from porous media, vegetation, plant growth, biodiversity in soil, and durability of building materials. To investigate the effect of particle size distribution on the dynamics of salt precipitation in saline porous media during evaporation, we applied X-ray micro-tomography technique. Six samples of quartz sand with different grain size distributions were used in the present study enabling us to constrain the effects of particle and pore sizes on salt precipitation patterns and dynamics. The pore size distributions were computed using the pore-scale X-ray images. The packed beds were saturated with NaCl solution of 3 Molal and the X-ray imaging was continued for one day with temporal resolution of 30 min resulting in pore scale information about the evaporation and precipitation dynamics. Our results show more precipitation at the early stage of the evaporation in the case of sand with the larger particle size due to the presence of fewer evaporation sites at the surface. The presence of more preferential evaporation sites at the surface of finer sands significantly modified the patterns and thickness of the salt crust deposited on the surface such that a thinner salt crust was formed in the case of sand with smaller particle size covering larger area at the surface as opposed to the thicker patchy crusts in samples with larger particle sizes. Our results provide new insights regarding the physics of salt precipitation in porous media during evaporation.
Preparation of hierarchical porous Zn-salt particles and their superhydrophobic performance
NASA Astrophysics Data System (ADS)
Gao, Dahai; Jia, Mengqiu
2015-12-01
Superhydrophobic surfaces arranged by hierarchical porous particles were prepared using modified hydrothermal routes under the effect of sodium citrate. Two particle samples were generated in the medium of hexamethylenetetramine (P1) and urea (P2), respectively. X-ray diffraction, scanning electron microscope, and transmission electron microscope were adopted for the investigation, and results revealed that the P1 and P2 particles are porous microspheres with crosslinked extremely thin (10-30 nm) sheet crystals composed of Zn5(OH)8Ac2·2H2O and Zn5(CO3)2(OH)6, respectively. The prepared particles were treated with a fluoroethylene vinyl ether derivative and studied using Fourier transform infrared spectroscopy and energy-dispersive X-ray spectrometer. Results showed that the hierarchical surfaces of these particles were combined with low-wettable fluorocarbon layers. Moreover, the fabricated surface composed of the prepared hierarchical particles displayed considerably high contact angles, indicating great superhydrophobicity for the products. The wetting behavior of the particles was analyzed with a theoretical wetting model in comparison with that of chestnut-like ZnO products obtained through a conventional hydrothermal route. Correspondingly, this study provided evidence that high roughness surface plays a great role in superhydrophobic behavior.
Studies on the development of latent fingerprints by the method of solid-medium ninhydrin.
Yang, Ruiqin; Lian, Jie
2014-09-01
A new series of fingerprint developing membrane were prepared using ninhydrin as the developing agent, and pressure-sensitive emulsifiers as the encapsulated chemicals. The type of emulsifier, plastic film, concentration of the developing agent, modifying ions and thickness of the membrane were studied in order to get the optimized fingerprint developing effect. The membrane can be successfully applied to both latent sweat fingerprints and blood fingerprint on many different surfaces. The sensitivity of the method toward the latent sweat fingerprint is 0.1 mg/L amino acid. The membrane can be applied to both porous and non-porous surfaces. Fingerprints that are difficult to develop on surfaces such as leather, glass and heat-sensitive paper using traditional chemical methods can be successfully developed with this membrane. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Chakraborty, Sanjiban; Colón, Yamil J; Snurr, Randall Q; Nguyen, SonBinh T
2015-01-01
Porous organic polymers (POPs) possessing meso- and micropores can be obtained by carrying out the polymerization inside a mesoporous silica aerogel template and then removing the template after polymerization. The total pore volume (tpv) and specific surface area (ssa) can be greatly enhanced by modifying the template (up to 210% increase for tpv and 73% for ssa) as well as by supercritical processing of the POPs (up to an additional 142% increase for tpv and an additional 32% for ssa) to include larger mesopores. The broad range of pores allows for faster transport of molecules through the hierarchically porous POPs, resulting in increased diffusion rates and faster gas uptake compared to POPs with only micropores.
NASA Astrophysics Data System (ADS)
Gao, Jiefeng; Song, Xin; Huang, Xuewu; Wang, Ling; Li, Bei; Xue, Huaiguo
2018-05-01
Non-solvent assisted electrospinning was proposed for fabricating Polymethylmethacrylate (PMMA) microspheres and fibers with a hollow core and porous shell, which could be used for oil adsorption and oil/water separation. Propanediol was chosen as the non-solvent because of its high surface tension and viscosity as well as large phase separation tendency with polymer, which was beneficial to the formation of both the hollow core and porous shell during the electrospinning. With the increase of the polymer solution concentration, the microsphere gradually evolved to the bead-on-string geometry and finally to a continuous fiber form, indicating the transition from electro-spraying to electrospinning. The hollow core and dense surface pores enhanced the hydrophobicity, oleophilicity, permeability, and specific surface area of the fibers, and hence imparted the fibrous mat a high oil adsorption capacity. When the porous hollow microspheres were electro-sprayed onto the stainless steel mesh followed by the PDMS modification, the modified mesh became super-hydrophobic and super-oleophilic with the contact angle of 153° and sliding angle of 4°. The as-prepared mesh showed rapid oil/water separation with high efficiency and excellent recycling performance. The flux for separation of oil/water mixture could reach as high as 11,000 L m-2 h-1. This facile non-solvent assisted electrospinning method provides a new avenue for preparation of multifunctional porous materials which possess potential applications in large-scale oil/water separation.
Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route
NASA Astrophysics Data System (ADS)
Chang, Binbin; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng
2015-01-01
Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl2 using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl2 at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of -SO3H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N2 adsorption-desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of -SO3H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of -SO3H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and -SO3H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles.
Wang, Chang-Fang; Mäkilä, Ermei M; Bonduelle, Colin; Rytkönen, Jussi; Raula, Janne; Almeida, Sérgio; Närvänen, Ale; Salonen, Jarno J; Lecommandoux, Sebastien; Hirvonen, Jouni T; Santos, Hélder A
2015-01-28
Porous silicon (PSi) nanomaterials combine a high drug loading capacity and tunable surface chemistry with various surface modifications to meet the requirements for biomedical applications. In this work, alkyne-terminated thermally hydrocarbonized porous silicon (THCPSi) nanoparticles were fabricated and postmodified using five bioactive molecules (targeting peptides and antifouling polymers) via a single-step click chemistry to modulate the bioactivity of the THCPSi nanoparticles, such as enhancing the cellular uptake and reducing the plasma protein association. The size of the nanoparticles after modification was increased from 176 to 180-220 nm. Dextran 40 kDa modified THCPSi nanoparticles showed the highest stability in aqueous buffer. Both peptide- and polymer-functionalized THCPSi nanoparticles showed an extensive cellular uptake which was dependent on the functionalized moieties presented on the surface of the nanoparticles. The plasma protein adsorption study showed that the surface modification with different peptides or polymers induced different protein association profiles. Dextran 40 kDa functionalized THCPSi nanoparticles presented the least protein association. Overall, these results demonstrate that the "click" conjugation of the biomolecules onto the alkyne-terminated THCPSi nanoparticles is a versatile and simple approach to modulate the surface chemistry, which has high potential for biomedical applications.
Rao, Xi; Li, Jing; Feng, Xue; Chu, Chenglin
2018-01-01
In this study, a simple, cost-effective approach of polymeric foam replication was used to produce three-dimensionally macroporous titanium scaffolds with controllable porosities and mechanical properties. Two kinds of porous titanium scaffolds with different porosities (74.7% and 87.6%) and pore sizes (360µm and 750µm) were fabricated. Both of the scaffolds exhibit good compressive strength (24.5MPa and 13.5MPa) with a low elastic modulus (0.23GPa and 0.11GPa), approximating the mechanical properties of nature human cancellous bone (E = 10-50MPa, σ = 0.01-3.0GPa). Thereafter, the scaffolds were surface modified using plasma electrolyte oxidation (PEO) process to gain a bioactive porous titania ceramic coating. The SBF immersion test indicates PEO treated scaffolds show excellent bioactivity as the apatite rapidly nucleates and grows on the scaffold surface during 3-28 days. The results suggest that the highly porous titanium scaffolds with titania bioactive coatings are promising in cancellous bone replacement. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, B.; Smits, K. M.
2017-12-01
Evaporation is a strongly coupled exchange process of mass, momentum and energy between the atmosphere and the soil. Several mechanisms influence evaporation, such as the atmospheric conditions, the structure of the soil surface, and the physical properties of the soil. Among the previous studies associated with evaporation modeling, most efforts use uncoupled models which simplify the influences of the atmosphere and soil through the use of resistance terms. Those that do consider the coupling between the free flow and porous media flow mainly consider flat terrain with grain-scale roughness. However, larger obstacles, which may form drags or ridges allowing normal convective air flow through the soil, are common in nature and may affect the evaporation significantly. Therefore, the goal of this work is to study the influence of large obstacles such as wavy surfaces on the flow behavior within the soil and exchange processes to the atmosphere under turbulent free-flow conditions. For simplicity, the soil surface with large obstacles are represented by a simple wavy surface. To do this, we modified a previously developed theory for two-phase two-component porous-medium flow, coupling it to single-phase two-component turbulent flow to simulate and analyze the evaporation from wavy soil surfaces. Detailed laboratory scale experiments using a wind tunnel interfaced with a porous media tank were carried out to test the modeling results. The characteristics of turbulent flow across a permeable wavy surface are discussed. Results demonstrate that there is an obvious recirculation zone formed at the surface, which is special because of the accumulation of water vapor and the thicker boundary layer in this area. In addition, the influences of both the free flow and porous medium on the evaporation are also analyzed. The porous medium affects the evaporation through the amount of water it can provide to the soil surface; while the atmosphere influences the evaporation through the gradients formed within the boundary layer. This study gives a primary cognition on the evaporation from bare soil surface with obstacles. Ongoing work will include a deep understanding of the mechanisms which may provide the basis for land-atmosphere study on field scale.
Mechanical properties of polymer-modified porous concrete
NASA Astrophysics Data System (ADS)
Ariffin, N. F.; Jaafar, M. F. Md.; Shukor Lim, N. H. Abdul; Bhutta, M. A. R.; Hussin, M. W.
2018-04-01
In this research work, polymer-modified porous concretes (permeable concretes) using polymer latex and redispersible polymer powder with water-cement ratio of 30 %, polymer-cement ratios of 0 to 10 % and cement content of 300 kg/m3 are prepared. The porous concrete was tested for compressive strength, flexural strength, water permeability and void ratio. The cubes size of specimen is 100 mm ×100 mm × 100 mm and 150 mm × 150 mm × 150 mm while the beam size is 100 mm × 100 mm × 500 mm was prepared for particular tests. The tests results show that the addition of polymer as a binder to porous concrete gives an improvement on the strength properties and coefficient of water permeability of polymer-modified porous concrete. It is concluded from the test results that increase in compressive and flexural strengths and decrease in the coefficient of water permeability of the polymer-modified porous concrete are clearly observed with increasing of polymer-cement ratio.
NASA Astrophysics Data System (ADS)
Faustova, Zhanna; Matveeva, Tatiana; Slizhov, Yuriy
2017-11-01
Sorbents based on Chromaton N-AW with layers of mesoporous silica gel modified with acetylacetonate nickel (II) and copper (II) were obtained. The porous structure of sorbents based on synthesized silica gel and industrial samples of Chromaton N, Silipore 075, Silochrom C-120 was studied. All studied samples are mesoporous. For sorbents based on commercially available Chromaton N, Silipore 075, and Silochrome 120, the mesopore dimensions vary in a wide range from 10 to 50 nm. For synthesized silica gel and chelate-containing sorbents, a narrower pore distribution is observed in the range of 5-15 nm, which indicates the uniformity of its surface. A comparative analysis of the effect of carrier properties on the acid-base properties of the surface of chelate-containing sorbents is carried out. The acid-base nature of the modifier is more pronounced in the case of synthesized silica gel by the sol-gel method.
Ionene modified small polymeric beads
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor)
1977-01-01
Linear ionene polyquaternary cationic polymeric segments are bonded by means of the Menshutkin reaction (quaternization) to biocompatible, extremely small, porous particles containing halide or tertiary amine sites which are centers for attachment of the segments. The modified beads in the form of emulsions or suspensions offer a large, positively-charged surface area capable of irreversibly binding polyanions such as heparin, DNA, RNA or bile acids to remove them from solution or of reversibly binding monoanions such as penicillin, pesticides, sex attractants and the like for slow release from the suspension.
Anti-graffiti nanocomposite materials for surface protection of a very porous stone
NASA Astrophysics Data System (ADS)
Licchelli, Maurizio; Malagodi, Marco; Weththimuni, Maduka; Zanchi, Chiara
2014-09-01
The preservation of stone substrates from defacement induced by graffiti represents a very challenging task, which can be faced by applying suitable protective agents on the surface. Although different anti-graffiti materials have been developed, it is often found that their effectiveness is unsatisfactory, most of all when applied on very porous stones, e.g. Lecce stone. The aim of this work was to study the anti-graffiti behaviour of new nanocomposite materials obtained by dispersing montmorillonite nanoparticles (layered aluminosilicates with a high-aspect ratio) into a fluorinated polymer matrix (a fluorinated polyurethane based on perfluoropolyether blocks). Polymeric structure was modified by inducing a cross-linking process, in order to produce a durable anti-graffiti coating with enhanced barrier properties. Several composites were prepared using a naturally occurring and an organically modified montmorillonite clay (1, 3, and 5 % w/w concentrations). Materials were applied on Lecce stone specimens, and then their treated surfaces were soiled by a black ink permanent marker or by a black acrylic spray paint. Several repeated staining/cleaning cycles were performed in order to evaluate anti-graffiti effectiveness. Colorimetric measurements were selected to assess the anti-graffiti performance. It was found that the presence of 3 % w/w organically modified montmorillonite in the polymer coating is enough to induce a durable anti-graffiti effect when the stone surface is stained by acrylic paint. Less promising results are obtained when staining by permanent marker is considered as all the investigated treatments afford a reasonable protection from ink only for the first staining/cleaning cycle.
Synthesis of nano grade hollow silica sphere via a soft template method.
Tsai, Ming-Shyong; Li, Miao Ju; Yen, Fu-Hsu
2008-06-01
The nano grade hollow silica sphere (HSS) was synthesized by a novel soft template method. We found that the precipitate of aluminate had a porous structure that could be the soft template for HSS. After mixing the colloidal silica with the aluminate precipitate, the bubble trapped in this porous structure could form the nano grade HSS. The aluminate precipitate was removed by adjusting the pH of the slurry to approximately 1. The outside diameter, the specific surface, and the mean pore size diameter of the forming HSS were 60-90 nm, 571 m2/g, and 3 nm, respectively. The formed HSS was collected by modifying the surface with Si(OCH3)3CHCH2 (VTMO) and then filtrating the precipitated gel in the n-butanol and ethanol solvent system.
Tuneable porous carbonaceous materials from renewable resources.
White, Robin J; Budarin, Vitaly; Luque, Rafael; Clark, James H; Macquarrie, Duncan J
2009-12-01
Porous carbon materials are ubiquitous with a wide range of technologically important applications, including separation science, heterogeneous catalyst supports, water purification filters, stationary phase materials, as well as the developing future areas of energy generation and storage applications. Hard template routes to ordered mesoporous carbons are well established, but whilst offering different mesoscopic textural phases, the surface of the material is difficult to chemically post-modify and processing is energy, resource and step intensive. The production of carbon materials from biomass (i.e. sugars or polysaccharides) is a relatively new but rapidly expanding research area. In this tutorial review, we compare and contrast recently reported routes to the preparation of porous carbon materials derived from renewable resources, with examples of our previously reported mesoporous polysaccharide-derived "Starbon" carbonaceous material technology.
Wave trapping by dual porous barriers near a wall in the presence of bottom undulation
NASA Astrophysics Data System (ADS)
Kaligatla, R. B.; Manisha; Sahoo, T.
2017-09-01
Trapping of oblique surface gravity waves by dual porous barriers near a wall is studied in the presence of step type varying bottom bed that is connected on both sides by water of uniform depths. The porous barriers are assumed to be fixed at a certain distance in front of a vertical rigid wall. Using linear water wave theory and Darcy's law for flow past porous structure, the physical problem is converted into a boundary value problem. Using eigenfunction expansion in the uniform bottom bed region and modified mild-slope equation in the varying bottom bed region, the mathematical problem is handled for solution. Moreover, certain jump conditions are used to account for mass conservation at slope discontinuities in the bottom bed profile. To understand the effect of dual porous barriers in creating tranquility zone and minimum load on the sea wall, reflection coefficient, wave forces acting on the barrier and the wall, and surface wave elevation are computed and analyzed for different values of depth ratio, porous-effect parameter, incident wave angle, gap between the barriers and wall and slope length of undulated bottom. The study reveals that with moderate porosity and suitable gap between barriers and sea wall, using dual barriers an effective wave trapping system can be developed which will exert less wave force on the barriers and the rigid wall. The proposed wave trapping system is likely to be of immense help for protecting various facilities/ infrastructures in coastal environment.
Roohani-Esfahani, S I; Dunstan, C R; Davies, B; Pearce, S; Williams, R; Zreiqat, H
2012-11-01
This is the first reported study to prepare highly porous baghdadite (Ca₃ZrSi₂O₉) scaffolds with and without surface modification and investigate their ability to repair critical-sized bone defects in a rabbit radius under normal load. The modification was carried out to improve the mechanical properties of the baghdadite scaffolds (particularly to address their brittleness) by coating their surfaces with a thin layer (∼400 nm) of polycaprolactone (PCL)/bioactive glass nanoparticles (nBGs). The β-tricalcium phosphate/hydroxyapatite (TCP/HA) scaffolds with and without modification were used as the control groups. All of the tested scaffolds had an open and interconnected porous structure with a porosity of ∼85% and average pore size of 500 μm. The scaffolds (six per scaffold type and size of 4 mm × 4 mm × 15 mm) were implanted (press-fit) into the rabbit radial segmental defects for 12 weeks. Micro-computed tomography and histological evaluations were used to determine bone ingrowth, bone quality, and implant integration after 12 weeks of healing. Extensive new bone formation with complete bridging of the radial defect was evident with the baghdadite scaffolds (modified/unmodified) at the periphery and in close proximity to the ceramics within the pores, in contrast to TCP/HA scaffolds (modified/unmodified), where bone tended to grow between the ulna adjacent to the implant edge. Although the modification of the baghdadite scaffolds significantly improved their mechanical properties, it did not show any significant effect on in vivo bone formation. Our findings suggest that baghdadite scaffolds with and without modification can serve as a potential material to repair critical sized bone defects. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Shahbazi, Mohammad-Ali; Almeida, Patrick V; Mäkilä, Ermei; Correia, Alexandra; Ferreira, Mónica P A; Kaasalainen, Martti; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A
2014-03-01
Currently, developing a stable nanocarrier with high cellular internalization and low toxicity is a key bottleneck in nanomedicine. Here, we have developed a successful method to covalently conjugate poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) copolymer on the surface of (3-aminopropyl)triethoxysilane-functionalized thermally carbonized porous silicon nanoparticles (APSTCPSi NPs), forming a surface negatively charged nanovehicle with unique properties. This polymer conjugated NPs could modify surface smoothness, charge, and hydrophilicity of the developed NPs, leading to considerable improvement in the colloidal and plasma stabilities via enhanced suspensibility and charge repulsion. Furthermore, despite the surface negative charge of the polymer-conjugated NPs, the cellular internalization was increased in both MDA-MB-231 and MCF-7 breast cancer cells. These results provide a proof-of-concept evidence that such polymer-based PSi nanocomposite can be extensively used as a promising candidate for intracellular drug delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gentile, Francesco; Coluccio, Maria Laura; Zaccaria, Remo Proietti; Francardi, Marco; Cojoc, Gheorghe; Perozziello, Gerardo; Raimondo, Raffaella; Candeloro, Patrizio; Di Fabrizio, Enzo
2014-07-21
Super-hydrophobic surfaces are bio-inspired interfaces with a superficial texture that, in its most common evolution, is formed by a periodic lattice of silicon micro-pillars. Similar surfaces reveal superior properties compared to conventional flat surfaces, including very low friction coefficients. In this work, we modified meso-porous silicon micro-pillars to incorporate networks of metal nano-particles into the porous matrix. In doing so, we obtained a multifunctional-hierarchical system in which (i) at a larger micrometric scale, the super-hydrophobic pillars bring the molecules dissolved in an ultralow-concentration droplet to the active sites of the device, (ii) at an intermediate meso-scale, the meso-porous silicon film adsorbs the low molecular weight content of the solution and, (iii) at a smaller nanometric scale, the aggregates of silver nano-particles would measure the target molecules with unprecedented sensitivity. In the results, we demonstrated how this scheme can be utilized to isolate and detect small molecules in a diluted solution in very low abundance ranges. The presented platform, coupled to Raman or other spectroscopy techniques, is a realistic candidate for the protein expression profiling of biological fluids.
NASA Astrophysics Data System (ADS)
Khaldi, Khadidja; Sam, Sabrina; Lounas, Amel; Yaddaden, Chafiaa; Gabouze, Noure-Eddine
2017-11-01
In this work, Acetylcholinesterase enzyme (AChE) was immobilized on porous silicon (PSi) surface using two strategies. In the first method, acid chains were covalently grafted on the hydrogenated PSi by hydrosilylation reaction. The obtained acid-terminated surface was activated by a reaction with N-hydroxysuccinimide (NHS) in the presence of a peptide-coupling agent N-ethyl-N‧-(3-dimethylaminopropyl)-carbodiimide (EDC), and then reacted with the amino linker of the lysine residues AChE to anchor the enzyme by a covalent amide bond. In the second procedure, the PSi surface was first hydroxylated in piranha solution, followed by a silanization reaction with 3-aminopropyltriethoxysilane (APTES) to form amine-terminated surface. Finally, AChE was attached to the terminal amine groups by an aminolysis reaction with carboxylic acid groups of AChE in the presence of NHS/EDC mixture. Fourier transform infrared spectroscopy (FTIR) confirmed the efficiency of the surface modifications. The enzymatic activity of immobilized AChE was determined by means of a colorimetric test and was discussed according to the enzyme orientation on the surface which was revealed by contact angle measurements.
NASA Astrophysics Data System (ADS)
Zhao, Shuo; Zhang, Yiwei; Wang, Yanyun; Zhou, Yuming; Qiu, Kaibo; Zhang, Chao; Fang, Jiasheng; Sheng, Xiaoli
2017-12-01
Coping with the gradually increasing worldwide energy and environmental issues, it is urgent to develop efficient, cheap and visible-light-driven photocatalysts for hydrogen production. Here, we present a facile way to synthesize bromine doped graphitic carbon nitride (CN-BrX) with highly porous structure by using ionic liquid (1-butyl-3-vinylimidazolium bromide) as the Br source and soft-template for the first time, which applied in hydrogen evolution under visible light irradiation. A systematic study is conducted on the optimization in the doping amount. The results find that the as-fabricated CN-BrX photocatalysts possess a uniform porous network with thin walls due to the release of volatile domains and decomposition of ionic liquids. The highly porous structure with the large surface area (≤150 m2/g) benefits the exposure of active sites. Moreover, the bromine modification and porous structure can narrow the band gap, enhance the transportation capability of photogenerated electrons, improve the optical and conductive properties of CN, thus contribute to an outstanding H2 evolution rate under visible light irradiation (120 μmol h-1), which is about 3.6 times higher than pure CN. This work provides a new insight for designing the novel g-C3N4 based photocatalysts for hydrogen production, CO2 conversion and environmental remediation.
Huang, Yuhong; Wei, Oiang; Chu, Chung-tse; Zheng, Haixing
2001-01-01
Metal nitride, carbonitride, and oxycarbonitride powder with high surface area (up to 150 m.sup.2 /g) is prepared by using sol-gel process. The metal organic precursor, alkoxides or amides, is synthesized firstly. The metal organic precursor is modified by using unhydrolyzable organic ligands or templates. A wet gel is formed then by hydrolysis and condensation process. The solvent in the wet gel is then be removed supercritically to form porous amorphous hydroxide. This porous hydroxide materials is sintered to 725.degree. C. under the ammonia flow and porous nitride powder is formed. The other way to obtain high surface area nitride, carbonitride, and oxycarbonitride powder is to pyrolyze polymerized templated metal amides aerogel in an inert atmosphere. The electrochemical capacitors are prepared by using sol-gel prepared nitride, carbonitride, and oxycarbonitride powder. Two methods are used to assemble the capacitors. Electrode is formed either by pressing the mixture of nitride powder and binder to a foil, or by depositing electrode coating onto metal current collector. The binder or coating is converted into a continuous network of electrode material after thermal treatment to provide enhanced energy and power density. Liquid electrolyte is soaked into porous electrode. The electrochemical capacitor assembly further has a porous separator layer between two electrodes/electrolyte and forming a unit cell.
NASA Astrophysics Data System (ADS)
Martin, M.; Massif, L.; Estephan, E.; Saab, M.-b.; Cloitre, T.; Larroque, C.; Agarwal, V.; Cuisinier, F. J. G.; Le Lay, G.; Gergely, C.
2011-10-01
We study the effect of different surface functionalization methods on the sensing performances of porous silicon (PSi) microcavities when used for detection of biomolecules. Previous research on porous silicon demonstrated versatility of these devices for sensor applications based on their photonic responses. The interface between biological molecules and the Si semiconductor surface is a key issue for improving biomolecular recognition in these devices. PSi microcavities were fabricated to reveal reflectivity pass-band spectra in the visible and near-infrared domain. To assure uniform infiltration of proteins the number of layers of Bragg mirrors was limited to five, the first layer being of high porosity. In one approach the devices were thermally oxidized and functionalized to assure covalent binding of molecules. Secondly, the as etched PSi surface was modified with adhesion peptides isolated via phage display technology and presenting high binding capacity for Si. Functionalization and molecular binding events were monitored via reflectometric interference spectra as shifts in the resonance peaks of the cavity structure due to changes in the refractive index when a biomolecule is attached to the large internal surface of PSi. Improved sensitivity is obtained due to the peptide interface linkers between the PSi and biological molecules compared to the silanized devices. We investigate the formation of peptide-Si interface layer via X-ray photoelectron spectroscopy, scanning tunneling microscopy and scanning electron microscopy.
NASA Astrophysics Data System (ADS)
Han, Weiliang; Huang, Xiaosheng; Lu, Gongxuan; Tang, Zhicheng
2018-04-01
In this paper, the support surface properties (surface oxygen-containing functional groups and structure defects) of porous carbon spheres (PCSs) were carefully designed by as UV assisted O3 technology. CO catalytic oxidation reactions performed over the supported Pd-Ce catalysts on modified porous carbon spheres. Results illustrated that the Pd-Ce/PCSs catalysts exhibited high CO catalytic activity, which were increased at first, and then decreased with UV assistant-O3 treatment time. The Pd-Ce/PCSs-30 catalyst exhibited superior activity and T100 was only 15 °C. Moreover, the Pd-Ce/PCSs-30 catalyst obtained an excellent stability, and 100% CO conversion could be maintained as the time on stream evolutes up to 16h in the presence of H2O in the feed. Based on characterization results, there were two main factors: (a) the surface area and pore volume were decreased with UV-O3 treatment, leading to the enhancement of Pd-Ce particle size, and the decrease of Pd-Ce nanoparticle dispersion and mass transfer efficiency, as well as the decrease of catalytic activity of Pd-Ce/PCSs, (b) the surface oxygen content and defect sites of PCSs were raised by UV-O3 treatment, which could improve surface loading of Pd, Ce and enhance Pdsbnd Osbnd Ce bonding interactions, thereby increasing the activity of Pd-Ce/PCSs.
Preparation of porous carbons from polymeric precursors modified with acrylated kraft lignin
NASA Astrophysics Data System (ADS)
Sobiesiak, M.
2016-04-01
The presented studies concern the preparation of porous carbons from a BPA.DA-St polymer containing acrylated kraft lignin as a monomer. The porous polymeric precursor in the form of microspheres was synthesized in suspension polymerization process. Next samples of the polymer were impregnated with acetic acid or aqueous solution of acetates (potassium or ammonia), dried and carbonised in nitrogen atmosphere at 450°C. After carbonization microspherical shape of the materials was remained, that is desired feature for potential application in chromatography or SPE technique. Chemical and textural properties of the porous carbon adsorbents were characterized using infrared spectroscopy (ATR-FTIR), thermogravimetry analyses with mass spectrometry of released gases (TG-MS) and nitrogen sorption experiments. The presented studies revealed the impregnation is useful method for development of porous structure of carbonaceous materials. The highest values of porous structure parameters were obtained when acetic acid and ammonium acetate were used as impregnating substances. On the surface of the materials oxygen functional groups are present that is important for specific interactions during sorption processes. The highest contents of functionalities were observed for carbon BPA.DA-St-LA-C-AcNH4.
Shear Rheology of Suspensions of Porous Zeolite Particles in Concentrated Polymer Solutions
NASA Astrophysics Data System (ADS)
Olanrewaju, Kayode O.; Breedveld, Victor
2008-07-01
We present experimental data on the shear rheology of Ultem (polyetherimide)/NMP(l-methyl-2-pyrrolidinone) solutions with and without suspended surface-modified porous/nonporous zeolite (ZSM-5) particles. We found that the porous zeolite suspensions have relative viscosities that significantly exceed the Krieger-Dougherty predictions for hard sphere suspensions. The major origin of this discrepancy is the selective absorption of NMP solvent into the zeolite pores, which raises both the polymer concentration and the particle volume fraction, thus enhancing both the viscosity of the continuous phase Ultem/NMP polymer solution and the particle contribution to the suspension viscosity. Other factors, such as zeolite non-sphericity and specific interactions with Ultem polymer, contribute to the suspension viscosity to a lesser extent. We propose a predictive model for the viscosity of porous zeolite suspensions by incorporating an absorption parameter, α, into the Krieger-Dougherty model. We also propose independent approaches to determine α. The first one is indirect and based on zeolite density/porosity data, assuming that all pores will be filled with solvent. The other method is based on our experimental data, by comparing the viscosity data of porous versus non-porous zeolite suspensions. The different approaches are compared.
X-ray microanalysis of porous materials using Monte Carlo simulations.
Poirier, Dominique; Gauvin, Raynald
2011-01-01
Quantitative X-ray microanalysis models, such as ZAF or φ(ρz) methods, are normally based on solid, flat-polished specimens. This limits their use in various domains where porous materials are studied, such as powder metallurgy, catalysts, foams, etc. Previous experimental studies have shown that an increase in porosity leads to a deficit in X-ray emission for various materials, such as graphite, Cr(2) O(3) , CuO, ZnS (Ichinokawa et al., '69), Al(2) O(3) , and Ag (Lakis et al., '92). However, the mechanisms responsible for this decrease are unclear. The porosity by itself does not explain the loss in intensity, other mechanisms have therefore been proposed, such as extra energy loss by the diffusion of electrons by surface plasmons generated at the pores-solid interfaces, surface roughness, extra charging at the pores-solid interface, or carbon diffusion in the pores. However, the exact mechanism is still unclear. In order to better understand the effects of porosity on quantitative microanalysis, a new approach using Monte Carlo simulations was developed by Gauvin (2005) using a constant pore size. In this new study, the X-ray emissions model was modified to include a random log normal distribution of pores size in the simulated materials. This article presents, after a literature review of the previous works performed about X-ray microanalysis of porous materials, some of the results obtained with Gauvin's modified model. They are then compared with experimental results. Copyright © 2011 Wiley Periodicals, Inc.
Detection of Human Ig G Using Photoluminescent Porous Silicon Interferometer.
Cho, Bomin; Kim, Seongwoong; Woo, Hee-Gweon; Kim, Sungsoo; Sohn, Honglae
2015-02-01
Photoluminescent porous silicon (PSi) interferometers having dual optical properties, both Fabry-Pérot fringe and photolumincence (PL), have been developed and used as biosensors for detection of Human Immunoglobin G (Ig G). PSi samples were prepared by electrochemical etching of p-type silicon under white light exposure. The surface of PSi was characterized using a cold field emission scanning electron microscope. The sensor system studied consisted of a single layer of porous silicon modified with Protein A. The system was probed with various fragments of aqueous human immunoglobin G (Ig G) analyte. Both reflectivity and PL were simultaneously measured under the exposure of human Ig G. An increase of optical thickness and decrease of PL were obtained under the exposure of human Ig G. Detection limit of 500 fM was observed for the human Ig G.
Modeling the Shock Hugoniot in Porous Materials
NASA Astrophysics Data System (ADS)
Cochrane, Kyle R.; Shulenburger, Luke; Mattsson, Thomas R.; Lane, J. Matthew D.; Weck, Philippe F.; Vogler, Tracy J.; Desjarlais, Michael P.
2017-06-01
Porous materials are present in many scenarios from planetary science to ICF. Understanding how porosity modifies the behavior of the shock Hugoniot in an equation of state is key to being able to predictively simulate experiments. For example, modeling shocks in under-dense iron oxide can aid in understanding planetary formation and silica aerogel can be used to approximate the shock response of deuterium. Simulating the shock response of porous materials presents a variety of theoretical challenges, but by combining ab initio calculations with a surface energy and porosity model, we are able to accurately represent the shock Hugoniot. Finally, we show that this new approach can be used to calculate the Hugoniot of porous materials using existing tabular equations of state. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Zeng, Lizhen; Zhao, Shaofei; He, Miao
2018-02-01
The anode material is a crucial factor that significantly affects the cost and performance of microbial fuel cells (MFCs). In this study, a novel macroscale porous, biocompatible, highly conductive and low cost electrode, carbonized polydopamine-modified cotton textile (NC@CCT), is fabricated by using normal cheap waste cotton textiles as raw material via a simple in situ polymerization and carbonization treatment as anode of MFCs. The physical and chemical characterizations show that the macroscale porous and biocompatible NC@CCT electrode is coated by nitrogen-doped carbon nanoparticles and offers a large specific surface area (888.67 m2 g-1) for bacterial cells growth, accordingly greatly increases the loading amount of bacterial cells and facilitates extracellular electron transfer (EET). As a result, the MFC equipped with the NC@CCT anode achieves a maximum power density of 931 ± 61 mW m-2, which is 80.5% higher than that of commercial carbon felt (516 ± 27 mW m-2) anode. Moreover, making full use of the normal cheap waste cotton textiles can greatly reduce the cost of MFCs and the environmental pollution problem.
Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels.
Chinga-Carrasco, Gary; Syverud, Kristin
2014-09-01
Nanocellulose from wood is a promising material with potential in various technological areas. Within biomedical applications, nanocellulose has been proposed as a suitable nano-material for wound dressings. This is based on the capability of the material to self-assemble into 3D micro-porous structures, which among others have an excellent capacity of maintaining a moist environment. In addition, the surface chemistry of nanocellulose is suitable for various applications. First, OH-groups are abundant in nanocellulose materials, making the material strongly hydrophilic. Second, the surface chemistry can be modified, introducing aldehyde and carboxyl groups, which have major potential for surface functionalization. In this study, we demonstrate the production of nanocellulose with tailor-made surface chemistry, by pre-treating the raw cellulose fibres with carboxymethylation and periodate oxidation. The pre-treatments yielded a highly nanofibrillated material, with significant amounts of aldehyde and carboxyl groups. Importantly, the poly-anionic surface of the oxidized nanocellulose opens up for novel applications, i.e. micro-porous materials with pH-responsive characteristics. This is due to the swelling capacity of the 3D micro-porous structures, which have ionisable functional groups. In this study, we demonstrated that nanocellulose gels have a significantly higher swelling degree in neutral and alkaline conditions, compared to an acid environment (pH 3). Such a capability can potentially be applied in chronic wounds for controlled and intelligent release of antibacterial components into biofilms. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels
Syverud, Kristin
2014-01-01
Nanocellulose from wood is a promising material with potential in various technological areas. Within biomedical applications, nanocellulose has been proposed as a suitable nano-material for wound dressings. This is based on the capability of the material to self-assemble into 3D micro-porous structures, which among others have an excellent capacity of maintaining a moist environment. In addition, the surface chemistry of nanocellulose is suitable for various applications. First, OH-groups are abundant in nanocellulose materials, making the material strongly hydrophilic. Second, the surface chemistry can be modified, introducing aldehyde and carboxyl groups, which have major potential for surface functionalization. In this study, we demonstrate the production of nanocellulose with tailor-made surface chemistry, by pre-treating the raw cellulose fibres with carboxymethylation and periodate oxidation. The pre-treatments yielded a highly nanofibrillated material, with significant amounts of aldehyde and carboxyl groups. Importantly, the poly-anionic surface of the oxidized nanocellulose opens up for novel applications, i.e. micro-porous materials with pH-responsive characteristics. This is due to the swelling capacity of the 3D micro-porous structures, which have ionisable functional groups. In this study, we demonstrated that nanocellulose gels have a significantly higher swelling degree in neutral and alkaline conditions, compared to an acid environment (pH 3). Such a capability can potentially be applied in chronic wounds for controlled and intelligent release of antibacterial components into biofilms. PMID:24713295
NASA Astrophysics Data System (ADS)
Numpilai, Thanapha; Witoon, Thongthai; Chareonpanich, Metta; Limtrakul, Jumras
2017-02-01
The conjugation of dexamethasone (DEX) onto modified-porous silica materials via a pH-responsive hydrazone bond has been reported to be highly efficient method to specifically deliver the DEX to diseased sites. However, the influence of physicochemical properties of porous silica materials has not yet been fully understood. In this paper, the impact of pore sizes, particle sizes and silanol contents on surface functionalization, drug loading and release behavior of porous silica materials conjugated with dexamethasone via pH-responsive hydrazone bond was investigated. The grafting density was found to relate to the number of silanol groups on the surface of porous silica materials. The particle size and macropores of the porous silica materials played an vital role on the drug loading and release behavior. Although the porous silica materials with larger particle sizes possessed a lower grafting density, a larger amount of drug loading could be achieved. Moreover, the porous silica materials with larger particle sizes showed a slower release rate of DEX due to a longer distance for cleaved DEX diffusion out of pores. DEX release rate exhibited pH-dependent, sustained release. At pH 4.5, the amount of DEX release within 10 days could be controlled in the range of 12.74-36.41%, depending on the host material. Meanwhile, less than 1.5% of DEX was released from each of type of the porous silica materials at pH 7.4. The results of silica dissolution suggested that the degradation of silica matrix did not significantly affect the release rate of DEX. In addition, the kinetic modeling studies revealed that the DEX releases followed Korsmeyer-Peppas model with a release exponent (n) ranged from 0.3 to 0.47, indicating a diffusion-controlled release mechanism.
Yang, Jian; Shi, Guixin; Bei, Jianzhong; Wang, Shenguo; Cao, Yilin; Shang, Qingxin; Yang, Guanghui; Wang, Wenjing
2002-12-05
The fabrication and surface modification of a porous cell scaffold are very important in tissue engineering. Of most concern are high-density cell seeding, nutrient and oxygen supply, and cell affinity. In the present study, poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds with different pore structures were fabricated. An improved method based on Archimedes' Principle for measuring the porosity of scaffolds, using a density bottle, was developed. Anhydrous ammonia plasma treatment was used to modify surface properties to improve the cell affinity of the scaffolds. The results show that hydrophilicity and surface energy were improved. The polar N-containing groups and positive charged groups also were incorporated into the sample surface. A low-temperature treatment was used to maintain the plasma-modified surface properties effectively. It would do help to the further application of plasma treatment technique. Cell culture results showed that pores smaller than 160 microm are suitable for human skin fibroblast cell growth. Cell seeding efficiency was maintained at above 99%, which is better than the efficiency achieved with the common method of prewetting by ethanol. The plasma-treatment method also helped to resolve the problem of cell loss during cell seeding, and the negative effects of the ethanol trace on cell culture were avoided. The results suggest that anhydrous ammonia plasma treatment enhances the cell affinity of porous scaffolds. Mass transport issues also have been considered. Copyright 2002 Wiley Periodicals, Inc.
Ma, Jiajun; Lv, Ling; Zou, Gang; Zhang, Qijin
2015-01-14
In this paper, we report a facile strategy to fabricate fluorescent porous thin film on the surface of U-bent poly(methyl methacrylate) optical fiber (U-bent POF) in situ via "click" polymerization for vapor phase sensing of explosives. Upon irradiation of evanescent UV light transmitting within the fiber under ambient condition, a porous film (POSS-thiol cross-linking film, PTCF) is synthesized on the side surface of the fiber by a thiol-ene "click" reaction of vinyl-functionalized polyhedral oligomeric silsesquioxanes (POSS-V8) and alkane dithiols. When vinyl-functionalized porphyrin, containing four allyl substituents at the periphery, is added into precursors for the polymerization, fluorescence porphyrin can be covalently bonded into the cross-linked network of PTCF. This "fastened" way reduces the aggregation-induced fluorescence self-quenching of porphyrin and enhances the physicochemical stability of the porous film on the surface of U-bent POF. Fluorescent signals of the PTCF/U-bent POF probe made by this method exhibit high fluorescence quenching toward trace TNT and DNT vapor and the highest fluorescence quenching efficiency is observed for 1, 6-hexanedimercaptan-based film. In addition, because of the presence of POSS-V8 with multi cross-linkable groups, PTCF exhibits well-organized pore network and stable dye dispersion, which not only causes fast and sensitive fluorescence quenching against vapors of nitroaromatic compounds, but also provides a repeatability of the probing performance.
Alcalá-Alcalá, Sergio; Benítez-Cardoza, Claudia G; Lima-Muñoz, Enrique J; Piñón-Segundo, Elizabeth; Quintanar-Guerrero, David
2015-07-15
This work presents an evaluation of the adsorption/infiltration process in relation to the loading of a model protein, α-amylase, into an assembled biodegradable polymeric system, free of organic solvents and made up of poly(D,L-lactide-co-glycolide) acid (PLGA). Systems were assembled in a friendly aqueous medium by adsorbing and infiltrating polymeric nanoparticles into porous microspheres. These assembled systems are able to load therapeutic amounts of the drug through adsorption of the protein onto the large surface area characteristic of polymeric nanoparticles. The subsequent infiltration of nanoparticles adsorbed with the protein into porous microspheres enabled the controlled release of the protein as a function of the amount of infiltrated nanoparticles, since the surface area available on the porous structure is saturated at different levels, thus modifying the protein release rate. Findings were confirmed by both the BET technique (N2 isotherms) and in vitro release studies. During the adsorption process, the pH of the medium plays an important role by creating an environment that favors adsorption between the surfaces of the micro- and nano-structures and the protein. Finally, assays of α-amylase activity using 2-chloro-4-nitrophenyl-α-D-maltotrioside (CNP-G3) as the substrate and the circular dichroism technique confirmed that when this new approach was used no conformational changes were observed in the protein after release. Copyright © 2015 Elsevier B.V. All rights reserved.
Bykova, Iu; Weinhardt, V; Kashkarova, A; Lebedev, S; Baumbach, T; Pichugin, V; Zaitsev, K; Khlusov, I
2014-08-01
The applications of synchrotron radiation (SR) in medical imaging have become of great use, particularly in angiography, bronchography, mammography, computed tomography, and X-ray microscopy. Thanks to recently developed phase contrast imaging techniques non-destructive preclinical testing of low absorbing materials such as polymers has become possible. The focus of the present work is characterization and examination of UHMWPE-derived materials widely used in medicine, before and after their exposure to SR during such testing. Physical properties, such as wettability, surface energy, IR-spectroscopy, roughness, optical microscopy, microhardness measurements of UHMWPE samples were studied before and after SR. The relationship between a growth of UHMWPE surface hydrophilicity after SR and surface colonization by stromal cells was studied in vitro. Obtained results demonstrate that SR may be used as prospective direction to examine bulk (porous) structure of polymer materials and/or to modify polymer surface and volume for tissue engineering.
Sol-gel Technology and Advanced Electrochemical Energy Storage Materials
NASA Technical Reports Server (NTRS)
Chu, Chung-tse; Zheng, Haixing
1996-01-01
Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.
Microwave-assisted synthesis of porous carbon-titania and highly crystalline titania nanostructures.
Parker, Alison; Marszewski, Michal; Jaroniec, Mietek
2013-03-01
Porous carbon-titania and highly crystalline titania nanostructured materials were obtained through a microwave-assisted one-pot synthesis. Resorcinol and formaldehyde were used as carbon precursors, triblock copolymer Pluronic F127 as a stabilizing agent, and titanium isopropoxide as a titania precursor. This microwave-assisted one-pot synthesis involved formation of carbon spheres according to the recently modified Stöber method followed by hydrolysis and condensation of titania precursor. This method afforded carbon-titania composite materials containing anatase phase with specific surface areas as high as 390 m(2) g(-1). The pure nanostructured titania, obtained after removal of carbon through calcination of the composite material in air, was shown to be the anatase phase with considerably higher degree of crystallinity and the specific surface area as high as 130 m(2) g(-1). The resulting titania, because of its high surface area, well-developed porosity, and high crystallinity, is of great interest for catalysis, water treatment, lithium batteries, and other energy-related applications.
Suspended polyhydroxyalkanoate microspheres as 3D carriers for mammalian cell growth.
Wei, Dai-Xu; Dao, Jin-Wei; Liu, Hua-Wei; Chen, Guo-Qiang
2018-04-13
Different forms of biopolyester PHBVHHx microspheres were prepared so as to compare the mammalian cell behaviors in suspension cultivation system. Based on a microbial terpolyester PHBVHHx consisting of 3-hydroxybutyrate (HB), 3-hydroxyvalerate (HV), and 3-hydroxyhexanoate (HHx), solid microspheres (SMSs), hollow microspheres (HMSs), and porous microspheres (PMS) were successfully prepared by a modified solvent evaporation method involving gas-in-oil-in-water (G1/O/W2) double emulsion, water-in-oil-in-water (W1/O/W2) double emulsion and oil-in-water (O/W) single emulsion, respectively. Generally, PMSs have diameters ranging from 330 to 400 μm with pore sizes of 10 to 60 μm. The pores inside the PMSs were found well interconnected compared with PHBVHHx prepared by the traditional solvent evaporation method, resulting in the highest water uptake ratio. When inoculated with human osteoblast-like cells lasting 6 days, PMS showed much better cell attachment and proliferation compared with other less porous microspheres due to its large inner space as a 3 D carrier. Cell migration towards surface and other interconnected inner pores was clearly observable. Dead or apoptotic cells were found more common among less porous SMSs or HMSs compared with highly porous PMSs. It is therefore concluded that porous PHBVHHx microspheres with larger surface open pores and interconnected inner pores can serve as a carrier or scaffold supporting more and better cell growth for either injectable purposes or simply supporting cell growth.
Neirinck, Bram; Soccol, Dimitri; Fransaer, Jan; Van der Biest, Omer; Vleugels, Jef
2010-08-15
The effect of short chained organic acids and bases on the surface energy and wetting properties of submicrometer alumina powder was assessed. The surface chemistry of treated powders was determined by means of Diffuse Reflectance Infrared Fourier Transform spectroscopy and compared to untreated powder. The wetting of powders was measured using a modified Washburn method, based on the use of precompacted powder samples. The geometric factor needed to calculate the contact angle was derived from measurements of the porous properties of the powder compacts. Contact angle measurements with several probe liquids before and after modification allowed a theoretical estimation of the surface energy based on the surface tension component theory. Trends in the surface energy components were linked to observations in infrared spectra. The results showed that the hydrophobic character of the precompacted powder depends on both the chain length and polar group of the modifying agent. Copyright 2010 Elsevier Inc. All rights reserved.
Understanding long-term silver release from surface modified porous titanium implants.
Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit
2017-08-01
Prevention of orthopedic device related infection (ODRI) using antibiotics has met with limited amount of success and is still a big concern during post-surgery. As an alternative, use of silver as an antibiotic treatment to prevent surgical infections is being used due to the well-established antimicrobial properties of silver. However, in most cases silver is used in particulate form with wound dressings or with short-term devices such as catheters but not with load-bearing implants. We hypothesize that strongly adherent silver to load-bearing implants can offer longer term solution to infection in vivo. Keeping that in mind, the focus of this study was to understand the long term release study of silver ions for a period of minimum 6months from silver coated surface modified porous titanium implants. Implants were fabricated using a LENS™ system, a powder based additive manufacturing technique, with at least 25% volume porosity, with and without TiO 2 nanotubes in phosphate buffer saline (pH 7.4) to see if the total release of silver ions is within the toxic limit for human cells. Considering the fact that infection sites may reduce the local pH, silver release was also studied in acetate buffer (pH 5.0) for a period of 4weeks. Along with that, the osseointegrative properties as well as cytotoxicity of porous titanium implants were assessed in vivo for a period of 12weeks using a rat distal femur model. In vivo results indicate that porous titanium implants with silver coating show comparable, if not better, biocompatibility and bonding at the bone-implant interface negating any concerns related to toxicity related to silver to normal cells. The current research is based on our recently patented technology, however focused on understanding longer-term silver release to mitigate infection related problems in load-bearing implants that can even arise several months after the surgery. Prevention of orthopedic device related infection using antibiotics has met with limited success and is still a big concern during post-surgery. Use of silver as an antibiotic treatment to prevent surgical infections is being explored due to the well-established antimicrobial properties of silver. However, in most cases silver is used in particulate form with wound dressings or with short-term devices such as catheters but not with load-bearing implants. We hypothesize that strongly adherent silver to load-bearing implants can offer longer-term solution towards infection in vivo. Keeping that in mind, the focus of this study was to understand the long-term release of silver ions, for a period of minimum 6months, from silver coated surface modified porous titanium implants. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Surface Coatings for Gas Detection via Porous Silicon
NASA Astrophysics Data System (ADS)
Ozdemir, Serdar; Li, Ji-Guang; Gole, James
2009-03-01
Nanopore covered microporous silicon interfaces have been formed via an electrochemical etch for gas sensor applications. Rapid reversible and sensitive gas sensors have been fabricated. The fabricated porous silicon (PS) gas sensors display the advantages of operation at room temperature as well as at a single, readily accessible temperature with an insensitivity to temperature drift; operation in a heat-sunk configuration, ease of coating with gas-selective materials; low cost of fabrication and operation, and the ability to rapidly assess false positives by operating the sensor in a pulsed mode. The PS surface has been modified with unique coatings on the basis of a general theory in order to achieve maximum sensitivity and selectivity. Sensing of NH3, NOx and PH3 at or below the ppm level have been observed. A typical PS nanostructure coated microstructured hybrid configuration when coated with tin oxide (NOx, CO) and gold nanostructures (NH3) provides a greatly increased sensitivity to the indicated gases. Al2O3 coating of the porous silicon using atomic layer deposition and its effect on PH3 sensing has been investigated. 20-100 nm TiO2 nanoparticles have been produced using sol-gel methods to coat PS surfaces and the effects on the selectivity and the sensitivity have been studied.
Chen, Junyu; Zhang, Xin; Huang, Chao; Cai, He; Hu, Shanshan; Wan, Qianbing; Pei, Xibo; Wang, Jian
2017-03-01
As a new class of crystalline nanoporous materials, metal-organic frameworks (MOFs) have recently been used for biomedical applications due to their large surface area, high porosity, and theoretically infinite structures. To improve the biological performance of titanium, MOF films were applied to surface modification of titanium. Zn-based MOF films composed of zeolitic imidazolate framework-8 (ZIF-8) crystals with nanoscale and microscale sizes (nanoZIF-8 and microZIF-8) were prepared on porous titanium surfaces by hydrothermal and solvothermal methods, respectively. The ZIF-8 films were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The nanoZIF-8 film exhibited good biocompatibility, whereas the microZIF-8 film showed obvious cytotoxicity to MG63 cells. Compared to pure titanium and alkali- and heat-treated porous titanium, the nanoZIF-8 film not only enhanced alkaline phosphatase (ALP) activity, extracellular matrix mineralization, and expression of osteogenic genes (ALP, Runx2) in MG63 cells but also inhibited the growth of Streptococcus mutans. These results indicate that MOF films or coatings may be promising candidates for bone tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 834-846, 2017. © 2016 Wiley Periodicals, Inc.
Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation
Yoo, Seungmin; Kim, Jung-Hwan; Shin, Myoungsoo; Park, Hyungmin; Kim, Jeong-Hoon; Lee, Sang-Young; Park, Soojin
2015-01-01
The rational design and realization of revolutionary porous structures have been long-standing challenges in membrane science. We demonstrate a new class of amphiphilic polystyrene-block-poly(4-vinylpyridine) block copolymer (BCP)–based porous membranes featuring hierarchical multiscale hyperporous structures. The introduction of surface energy–modifying agents and the control of major phase separation parameters (such as nonsolvent polarity and solvent drying time) enable tunable dual-phase separation of BCPs, eventually leading to macro/nanoscale porous structures and chemical functionalities far beyond those accessible with conventional approaches. Application of this BCP membrane to a lithium-ion battery separator affords exceptional improvement in electrochemical performance. The dual-phase separation–driven macro/nanopore construction strategy, owing to its simplicity and tunability, is expected to be readily applicable to a rich variety of membrane fields including molecular separation, water purification, and energy-related devices. PMID:26601212
2016-01-01
Three-dimensional (3D) porous metal nanostructures have been a long sought-after class of materials due to their collective properties and widespread applications. In this study, we report on a facile and versatile strategy for the formation of Au hydrogel networks involving the dopamine-induced 3D assembly of Au nanoparticles. Following supercritical drying, the resulting Au aerogels exhibit high surface areas and porosity. They are all composed of porous nanowire networks reflecting in their diameters those of the original particles (5–6 nm) via electron microscopy. Furthermore, electrocatalytic tests were carried out in the oxidation of some small molecules with Au aerogels tailored by different functional groups. The beta-cyclodextrin-modified Au aerogel, with a host–guest effect, represents a unique class of porous metal materials of considerable interest and promising applications for electrocatalysis. PMID:26751502
NASA Astrophysics Data System (ADS)
Chuan, Lee Te; Rathi, Muhammad Fareez Mohamad; Abidin, Muhamad Yusuf Zainal; Abdullah, Hasan Zuhudi; Idris, Maizlinda Izwana
2015-07-01
Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm-2) at room temperature. Surface oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.
Wang, Shuangyin; Zhao, Xinsheng; Cochell, Thomas; Manthiram, Arumugam
2012-08-16
Nitrogen-doped carbon nanotubes have been grown, for the first time, on graphite felt (N-CNT/GF) by a chemical vapor deposition approach and examined as an advanced electrode for vanadium redox flow batteries (VRFBs). The unique porous structure and nitrogen doping of N-CNT/GF with increased surface area enhances the battery performance significantly. The enriched porous structure of N-CNTs on graphite felt could potentially facilitate the diffusion of electrolyte, while the N-doping could significantly contribute to the enhanced electrode performance. Specifically, the N-doping (i) modifies the electronic properties of CNT and thereby alters the chemisorption characteristics of the vanadium ions, (ii) generates defect sites that are electrochemically more active, (iii) increases the oxygen species on CNT surface, which is a key factor influencing the VRFB performance, and (iv) makes the N-CNT electrochemically more accessible than the CNT.
Cao, Anping; Shan, Meixia; Paltrinieri, Laura; Evers, Wiel H; Chu, Liangyong; Poltorak, Lukasz; Klootwijk, Johan H; Seoane, Beatriz; Gascon, Jorge; Sudhölter, Ernst J R; de Smet, Louis C P M
2018-04-19
Recently various porous organic frameworks (POFs, crystalline or amorphous materials) have been discovered, and used for a wide range of applications, including molecular separations and catalysis. Silicon nanowires (SiNWs) have been extensively studied for diverse applications, including as transistors, solar cells, lithium ion batteries and sensors. Here we demonstrate the functionalization of SiNW surfaces with POFs and explore its effect on the electrical sensing properties of SiNW-based devices. The surface modification by POFs was easily achieved by polycondensation on amine-modified SiNWs. Platinum nanoparticles were formed in these POFs by impregnation with chloroplatinic acid followed by chemical reduction. The final hybrid system showed highly enhanced sensitivity for methanol vapour detection. We envisage that the integration of SiNWs with POF selector layers, loaded with different metal nanoparticles will open up new avenues, not only in chemical and biosensing, but also in separations and catalysis.
Method for eliminating gas blocking in electrokinetic pumping systems
Arnold, Don W.; Paul, Phillip H.; Schoeniger, Joseph S.
2001-09-11
A method for eliminating gas bubble blockage of current flow during operation of an electrokinetic pump. By making use of the ability to modify the surface charge on the porous dielectric medium used in electrokinetic pumps, it becomes possible to place electrodes away from the pressurized region of the electrokinetic pump. While gas is still generated at the electrodes they are situated such that the generated gas can escape into a larger buffer reservoir and not into the high pressure region of the pump where the gas bubbles can interrupt current flow. Various combinations of porous dielectric materials and ionic conductors can be used to create pumps that have desirable electrical, material handling, and flow attributes.
Arsenic sorption by red mud-modified biochar produced from rice straw.
Wu, Chuan; Huang, Liu; Xue, Sheng-Guo; Huang, Yu-Ying; Hartley, William; Cui, Meng-Qian; Wong, Ming-Hung
2017-08-01
Red mud-modified biochar (RM-BC) has been produced to be utilized as a novel adsorbent to remove As because it can effectively combine the beneficial features of red mud (rich metal oxide composition and porous structure) and biochar (large surface area and porous structure properties). SEM-EDS and XRD analyses demonstrated that red mud had loaded successfully on the surface of biochar. With the increasing of pH in solution, arsenate (As(V)) adsorption on RM-BC decreased while arsenite (As(III)) increased. Arsenate adsorption kinetics process on RM-BC fitted the pseudo-second-order model, while that of As(III) favored the Elovich model. All sorption isotherms produced superior fits with the Langmuir model. RM-BC exhibited improved As removal capabilities, with a maximum adsorption capacity (Q max ) for As(V) of 5923 μg g -1 , approximately ten times greater than that of the untreated BC (552.0 μg g -1 ). Furthermore, it has been indicated that the adsorption of As(V) on RM-BC may be strongly associated with iron oxides (hematite and magnetite) and aluminum oxides (gibbsite) by X-ray absorption near-edge spectroscopy (XANES), which was possibly because of surface complexation and electrostatic interactions. RM-BC may be used as a valuable adsorbent for removing As in the environment due to the waste materials being relatively abundant.
Aircraft energy efficiency laminar flow control glove flight conceptual design study
NASA Technical Reports Server (NTRS)
Wright, A. S.
1979-01-01
A laminar flow control glove applied to the wing of a short to medium range jet transport with aft mounted engines was designed. A slotted aluminum glove concept and a woven stainless steel mesh porous glove concept suction surfaces were studied. The laminar flow control glove and a dummy glove with a modified supercritical airfoil, ducting, modified wing leading and trailing edges, modified flaps, and an LFC trim tab were applied to the wing after slot spacing suction parameters, and compression power were determined. The results show that a laminar flow control glove can be applied to the wing of a jet transport with an appropriate suction system installed.
Iverson, Chad D; Lucy, Charles A
2014-12-19
Most stationary phases for hydrophilic interaction liquid chromatography (HILIC) and reversed phase liquid chromatography (RPLC) are based on silica. Porous graphitic carbon (PGC) is an attractive alternative to silica-based phases due to its chemical and thermal stability, and unique selectivity. However, native PGC is strongly hydrophobic and in some instances excessively retentive. PGC particles with covalently attached aniline groups (Dimethylaniline-PGC and Aniline-PGC) were synthesized to alter the surface polarity of PGC. First, the diazonium salt of N,N-dimethyl-p-phenylenediamine or 4-nitroaniline was adsorbed onto the PGC surface. The adsorbed salt was reduced with sodium borohydride and (Aniline-PGC only) the nitro group was further reduced with iron powder to the aniline. X-ray photoelectron spectroscopy confirmed the surface functionalities and that these moieties were introduced to the surface at concentrations of 0.9 and 2.1molecules/nm(2), respectively. These modified PGC phases (especially Aniline-PGC) were evaluated as HILIC and reversed phases. The Dimethylaniline-PGC phase displayed only weak HILIC retention of phenolic solutes. In contrast, the Aniline-PGC phase displayed up to nearly a 7-fold increase in HILIC retention vs. an aniline-silica phase and selectivity that differed from 10 other HILIC phases. Introduction of aniline groups to the PGC surface reduced the RPLC retentivity of PGC up to more than 5-fold and improved the separation efficiency up to 6-fold. The chromatographic performance of Aniline-PGC is demonstrated by separations of nucleotides, nucleosides, carboxylic acids, basic pharmaceuticals, and other compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
Vertical Carbon Nanotube Device in Nanoporous Templates
NASA Technical Reports Server (NTRS)
Sands, Timothy (Inventor); Fisher, Timothy Scott (Inventor); Bashir, Rashid (Inventor); Maschmann, Matthew Ralph (Inventor)
2014-01-01
A modified porous anodic alumina template (PAA) containing a thin CNT catalyst layer directly embedded into the pore walls. CNT synthesis using the template selectively catalyzes SWNTs and DWNTs from the embedded catalyst layer to the top PAA surface, creating a vertical CNT channel within the pores. Subsequent processing allows for easy contact metallization and adaptable functionalization of the CNTs and template for a myriad of applications.
Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater.
Lau, Abbe Y T; Tsang, Daniel C W; Graham, Nigel J D; Ok, Yong Sik; Yang, Xin; Li, Xiang-Dong
2017-02-01
Bioretention systems have been recommended as one of the best management practices for low impact development for water recycling/reuse systems. Although improvement of the stormwater quality has been reported regarding pollutants eliminations such as suspended solids and heavy metals, a substantial removal of indicator bacteria is required for possible non-potable reuse. This study investigated the efficiency of wood biochar with H 2 SO 4 -, H 3 PO 4 -, KOH-, and amino-modifications for E. coli removal from synthetic stormwater under intermittent flow. The H 2 SO 4 -modified biochar showed a specific surface area of 234.7 m 2 g -1 (approximately double the area of original biochar), whereas a substantial reduction in surface area was found with amino-modified biochar. The E. coli removal (initial concentration of 0.3-3.2 × 10 6 CFU mL -1 ) by modified biochars as filter media was very promising with, for example, over 98% removal efficiency in the first 20 pore volumes of stormwater infiltration and over 92% removal by the end of the second infiltration cycle. Only a small portion of E. coli attached on the modified biochars (<0.3%, except KOH- and amino-modified biochars) was remobilized during the drainage phase of intermittent flow. The high removal capacity and stability against drainage were attributed to the high surface area, porous structure, and surface characteristics (e.g. hydrophobicity and O-containing functional groups) of the biochars. Thus, the H 2 SO 4 -modified biochar appeared to give the best treatment performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Riester, Scott M.; Bonin, Carolina A.; Kremers, Hilal Maradit; Dudakovic, Amel; Kakar, Sanjeev; Cohen, Robert C.; Westendorf, Jennifer J.
2015-01-01
The biological interface between an orthopedic implant and the surrounding host tissue may have a dramatic effect upon clinical outcome. Desired effects include bony ingrowth (osseointegration), stimulation of osteogenesis (osteoinduction), increased vascularization, and improved mechanical stability. Implant loosening, fibrous encapsulation, corrosion, infection, and inflammation, as well as physical mismatch may have deleterious clinical effects. This is particularly true of implants used in the reconstruction of load-bearing synovial joints such as the knee, hip, and the shoulder. The surfaces of orthopedic implants have evolved from solid-smooth to roughened-coarse and most recently, to porous in an effort to create a three-dimensional architecture for bone apposition and osseointegration. Total joint surgeries are increasingly performed in younger individuals with a longer life expectancy, and therefore, the postimplantation lifespan of devices must increase commensurately. This review discusses advancements in biomaterials science and cell-based therapies that may further improve orthopedic success rates. We focus on material and biological properties of orthopedic implants fabricated from porous metal and highlight some relevant developments in stem-cell research. We posit that the ideal primary and revision orthopedic load-bearing metal implants are highly porous and may be chemically modified to induce stem cell growth and osteogenic differentiation, while minimizing inflammation and infection. We conclude that integration of new biological, chemical, and mechanical methods is likely to yield more effective strategies to control and modify the implant–bone interface and thereby improve long-term clinical outcomes. PMID:25348836
NASA Astrophysics Data System (ADS)
Zhou, Xiaowei; Ouyang, Chun
2017-05-01
In order to make large improvements of surface toughness and wear resistance for pure titanium (Ti) substrate, anodic titanium oxide (ATO) surface with nanoporous structure was coated with the Ni-CeO2 nanocomposite coatings. Regarding TiO2 barrier layer on Ti surface to inhibit its electrochemical activity, pre-treatments were successively processed with anodizing, sensitizing, activating, and then followed by electroless Ni-P film to be acted as an activated layer for electroplating Ni-CeO2 deposits. The existing Pd atoms around ATO nanopores were expected as the heterogeneous nucleation sites for supporting the growing locations of electroless Ni-P film. The innovative of interface design using porous structure was introduced for bonding pinholes to achieve a metallurgical adhesion interface between Ti substrate and surface coatings. Besides the objectives of this work were to elucidate how effects by the adding CeO2 nanoparticles on modifying microstructures and wear mechanisms of Ni-CeO2 nanocomposite coatings. Many efforts of XRD, FE-SEM, TEM and Nanoindentation tests were devoted to comparing different wear behaviors of Ni-CeO2 coatings relative to pure nickel. Results indicated that uniform-distributed Ti nanopores with an average diameter size of ∼200 nm was achieved using the Phosphate-type anodizing solution at DC 150 V. A worn surface without fatigue cracks was observed for TAO surface coated with Ni-CeO2 deposits, showing the existing Ce-rich worn products to be acted as a solid lubricant phase for making a self-healing effect on de-lamination failures. More important, this finding will be the guidelines for Ce-rich precipitations to be expected as the strengthening phase in anodized porous of Ti, Al and Mg alloys for intensifying their surface properties.
Chen, Wei J; Keh, Huan J
2013-08-22
An analysis for the quasi-steady electrophoretic motion of a soft particle composed of a charged spherical rigid core and an adsorbed porous layer positioned at the center of a charged spherical cavity filled with an arbitrary electrolyte solution is presented. Within the porous layer, frictional segments with fixed charges are assumed to distribute uniformly. Through the use of the linearized Poisson-Boltzmann equation and the Laplace equation, the equilibrium double-layer potential distribution and its perturbation caused by the applied electric field are separately determined. The modified Stokes and Brinkman equations governing the fluid flow fields outside and inside the porous layer, respectively, are solved subsequently. An explicit formula for the electrokinetic migration velocity of the soft particle in terms of the fixed charge densities on the rigid core surface, in the porous layer, and on the cavity wall is obtained from a balance between its electrostatic and hydrodynamic forces. This formula is valid for arbitrary values of κa, λa, r0/a, and a/b, where κ is the Debye screening parameter, λ is the reciprocal of the length characterizing the extent of flow penetration inside the porous layer, a is the radius of the soft particle, r0 is the radius of the rigid core of the particle, and b is the radius of the cavity. In the limiting cases of r0 = a and r0 = 0, the migration velocity for the charged soft sphere reduces to that for a charged impermeable sphere and that for a charged porous sphere, respectively, in the charged cavity. The effect of the surface charge at the cavity wall on the particle migration can be significant, and the particle may reverse the direction of its migration.
Wang, Liang; Zhang, Bingsen; Meng, Xiangju; Su, Dang Sheng; Xiao, Feng-Shou
2014-06-01
A composite catalyst including palladium nanoparticles on titania (TiO2) and on nitrogen-modified porous carbon (Pd/TiO2@N-C) is synthesized from palladium salts, tetrabutyl titanate, and chitosan. N2 sorption isotherms show that the catalyst has a high BET surface area (229 m(2) g(-1)) and large porosity. XPS and TEM characterization of the catalyst shows that palladium species with different chemical states are well dispersed across the TiO2 and nitrogen-modified porous carbon, respectively. The Pd/TiO2@N-C catalyst is very active and shows excellent stability towards hydrogenation of vanillin to 2-methoxy-4-methylphenol using formic acid as hydrogen source. This activity can be attributed to a synergistic effect between the Pd/TiO2 (a catalyst for dehydrogenation of formic acid) and Pd/N-C (a catalyst for hydrogenation of vanillin) sites. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhuang, X-M; Zhou, B; Ouyang, J-L; Sun, H-P; Wu, Y-L; Liu, Q; Deng, F-L
2014-08-01
Micro/nanotopographical modifications on titanium surfaces constitute a new process to increase osteoblast response to enhance bone formation. In this study, we utilized alkali heat treatment at high (SB-AH1) and low temperatures (SB-AH2) to nano-modify sandblasted titanium with microtopographical surfaces. Then, we evaluated the surface properties, biocompatibility and osteogenic capability of SB-AH1 and SB-AH2 in vitro and in vivo, and compared these with conventional sandblast-acid etching (SLA) and Ti control surfaces. SB-AH1 and SB-AH2 surfaces exhibited micro/nanotopographical modifications of nano-needle structures and nano-porous network layers, respectively, compared with the sole microtopographical surface of macro and micro pits on the SLA surface and the relatively smooth surface on the Ti control. SB-AH1 and SB-AH2 showed different roughness and elemental components, but similar wettability. MC3T3-E1 preosteoblasts anchored closely on the nanostructures of SB-AH1 and SB-AH2 surfaces, and these two surfaces more significantly enhanced cell proliferation and alkaline phosphatase (ALP) activity than others, while the SB-AH2 surface exhibited better cell proliferation and higher ALP activity than SB-AH1. All four groups of titanium domes with self-tapping screws were implanted in rabbit calvarial bone models, and these indicated that SB-AH1 and SB-AH2 surfaces achieved better peri-implant bone formation and implant stability, while the SB-AH2 surface achieved the best percentage of bone-implant contact (BIC%). Our study demonstrated that the micro/nanotopographical surface generated by sandblasting and alkali heat treatment significantly enhanced preosteoblast proliferation, ALP activity and bone formation in vitro and in vivo, and nano-porous network topography may further induce better preosteoblast proliferation, ALP activity and BIC%.
NASA Astrophysics Data System (ADS)
Redel, Engelbert; Wang, Zhengbang; Walheim, Stefan; Liu, Jinxuan; Gliemann, Hartmut; Wöll, Christof
2013-08-01
We determine the optical constants of two highly porous, crystalline metal-organic frameworks (MOFs). Since it is problematic to determine the optical constants for the standard powder modification of these porous solids, we instead use surface-anchored metal-organic frameworks (SURMOFs). These MOF thin films are grown using liquid phase epitaxy (LPE) on modified silicon substrates. The produced SURMOF thin films exhibit good optical properties; these porous coatings are smooth as well as crack-free, they do not scatter visible light, and they have a homogenous interference color over the entire sample. Therefore, spectroscopic ellipsometry (SE) can be used in a straightforward fashion to determine the corresponding SURMOF optical properties. After careful removal of the solvent molecules used in the fabrication process as well as the residual water adsorbed in the voids of this highly porous solid, we determine an optical constant of n = 1.39 at a wavelength of 750 nm for HKUST-1 (stands for Hong Kong University of Science and Technology-1; and was first discovered there) or [Cu3(BTC)2]. After exposing these SURMOF thin films to moisture/EtOH atmosphere, the refractive index (n) increases to n = 1.55-1.6. This dependence of the optical properties on water/EtOH adsorption demonstrates the potential of such SURMOF materials for optical sensing.
40 CFR 761.79 - Decontamination standards and procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... disassembled electrical equipment), concrete, and non-porous surfaces covered with a porous surface, such as... person decontaminating porous surfaces other than concrete under paragraph (b)(4) of this section and non..., concrete, or non-porous surfaces. (1) The decontamination standard for water containing PCBs is: (i) Less...
40 CFR 761.79 - Decontamination standards and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... disassembled electrical equipment), concrete, and non-porous surfaces covered with a porous surface, such as... person decontaminating porous surfaces other than concrete under paragraph (b)(4) of this section and non..., concrete, or non-porous surfaces. (1) The decontamination standard for water containing PCBs is: (i) Less...
40 CFR 761.79 - Decontamination standards and procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... disassembled electrical equipment), concrete, and non-porous surfaces covered with a porous surface, such as... person decontaminating porous surfaces other than concrete under paragraph (b)(4) of this section and non..., concrete, or non-porous surfaces. (1) The decontamination standard for water containing PCBs is: (i) Less...
40 CFR 761.79 - Decontamination standards and procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... disassembled electrical equipment), concrete, and non-porous surfaces covered with a porous surface, such as... person decontaminating porous surfaces other than concrete under paragraph (b)(4) of this section and non..., concrete, or non-porous surfaces. (1) The decontamination standard for water containing PCBs is: (i) Less...
40 CFR 761.79 - Decontamination standards and procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... disassembled electrical equipment), concrete, and non-porous surfaces covered with a porous surface, such as... person decontaminating porous surfaces other than concrete under paragraph (b)(4) of this section and non..., concrete, or non-porous surfaces. (1) The decontamination standard for water containing PCBs is: (i) Less...
NASA Astrophysics Data System (ADS)
Dong, Wenjun; Hou, Lijuan; Li, Tingting; Gong, Ziqiang; Huang, Huandi; Wang, Ge; Chen, Xiaobo; Li, Xiaoyun
2015-12-01
Scaffold biomaterials with open pores and channels are favourable for cell growth and tissue regeneration, however the inherent poor mechanical strength and low surface activity limit their applications as load-bearing bone grafts with satisfactory osseointegration. In this study, macro-porous graphene oxide (GO) modified titanate nanowire scaffolds with desirable surface chemistry and tunable mechanical properties were prepared through a simple hydrothermal process followed by electrochemical deposition of GO nanosheets. The interconnected and porous structure of the GO/titanate nanowire scaffolds provides a large surface area for cellular attachment and migration and displays a high compressive strength of approximately 81.1 MPa and a tunable Young’s modulus over the range of 12.4-41.0 GPa, which satisfies site-specific requirements for implantation. Surface chemistry of the scaffolds was modulated by the introduction of GO, which endows the scaffolds flexibility in attaching and patterning bioactive groups (such as -OH, -COOH and -NH2). In vitro cell culture tests suggest that the GO/titanate nanowire scaffolds act as a promising biomaterial candidate, in particular the one terminated with -OH groups, which demonstrates improved cell viability, and proliferation, differentiation and osteogenic activities.
Dong, Wenjun; Hou, Lijuan; Li, Tingting; Gong, Ziqiang; Huang, Huandi; Wang, Ge; Chen, Xiaobo; Li, Xiaoyun
2015-12-21
Scaffold biomaterials with open pores and channels are favourable for cell growth and tissue regeneration, however the inherent poor mechanical strength and low surface activity limit their applications as load-bearing bone grafts with satisfactory osseointegration. In this study, macro-porous graphene oxide (GO) modified titanate nanowire scaffolds with desirable surface chemistry and tunable mechanical properties were prepared through a simple hydrothermal process followed by electrochemical deposition of GO nanosheets. The interconnected and porous structure of the GO/titanate nanowire scaffolds provides a large surface area for cellular attachment and migration and displays a high compressive strength of approximately 81.1 MPa and a tunable Young's modulus over the range of 12.4-41.0 GPa, which satisfies site-specific requirements for implantation. Surface chemistry of the scaffolds was modulated by the introduction of GO, which endows the scaffolds flexibility in attaching and patterning bioactive groups (such as -OH, -COOH and -NH2). In vitro cell culture tests suggest that the GO/titanate nanowire scaffolds act as a promising biomaterial candidate, in particular the one terminated with -OH groups, which demonstrates improved cell viability, and proliferation, differentiation and osteogenic activities.
NASA Astrophysics Data System (ADS)
Gu, Jiatai; Gu, Haihong; Cao, Jin; Chen, Shaojie; Li, Ni; Xiong, Jie
2018-05-01
In this work, novel nanofibrous membranes with waterproof and breathable (W&B) performance were successfully fabricated by the combination of electrospinning and surface modification technology. This fibrous membranes consisted of polyurethane (PU), NaCl, and fluoroalkylsilane (FAS). Firstly, The fibrous construction and porous structure of fibrous membranes were regulated by tuning the NaCl concentrations in PU solutions. Then, the obtained PU/NaCl fibrous membranes were further modified with fluoroalkylsilane (FAS) to improve hydrophobic property. The synergistic effect of porous structure and hydrophobicity on waterproof and breathable performance was investigated. Furthermore, the mechanical property of fibrous membranes was deeply analysed on the basis of macromolecule orientation and adhesive structure. Benefiting from the optimized porous structure and hydrophobic modification, the resultant fibrous membranes exhibited excellent waterproof (hydrostatic pressure of 1261 Mbar), breathable (water vapor transmission (WVT) rate of 9.06 kg m-2 d-1 and air permeability of 4.8 mm s-1) performance, as well as high tensile strength (breakage stress of 10.4 MPa), suggesting a promising candidate for various applications, especially in protective clothing.
Chakraborty, Sanjiban; Colón, Yamil J.; Snurr, Randall Q.
2015-01-01
Porous organic polymers (POPs) possessing meso- and micropores can be obtained by carrying out the polymerization inside a mesoporous silica aerogel template and then removing the template after polymerization. The total pore volume (tpv) and specific surface area (ssa) can be greatly enhanced by modifying the template (up to 210% increase for tpv and 73% for ssa) as well as by supercritical processing of the POPs (up to an additional 142% increase for tpv and an additional 32% for ssa) to include larger mesopores. The broad range of pores allows for faster transport of molecules through the hierarchically porous POPs, resulting in increased diffusion rates and faster gas uptake compared to POPs with only micropores. PMID:28966764
Osseointegration improvement by plasma electrolytic oxidation of modified titanium alloys surfaces.
Echeverry-Rendón, Mónica; Galvis, Oscar; Quintero Giraldo, David; Pavón, Juan; López-Lacomba, José Luis; Jiménez-Piqué, Emilio; Anglada, Marc; Robledo, Sara M; Castaño, Juan G; Echeverría, Félix
2015-02-01
Titanium (Ti) is a material frequently used in orthopedic applications, due to its good mechanical properties and high corrosion resistance. However, formation of a non-adherent fibrous tissue between material and bone drastically could affect the osseointegration process and, therefore, the mechanical stability of the implant. Modifications of topography and configuration of the tissue/material interface is one of the mechanisms to improve that process by manipulating parameters such as morphology and roughness. There are different techniques that can be used to modify the titanium surface; plasma electrolytic oxidation (PEO) is one of those alternatives, which consists of obtaining porous anodic coatings by controlling parameters such as voltage, current, anodizing solution and time of the reaction. From all of the above factors, and based on previous studies that demonstrated that bone cells sense substrates features to grow new tissue, in this work commercially pure Ti (c.p Ti) and Ti6Al4V alloy samples were modified at their surface by PEO in different anodizing solutions composed of H2SO4 and H3PO4 mixtures. Treated surfaces were characterized and used as platforms to grow osteoblasts; subsequently, cell behavior parameters like adhesion, proliferation and differentiation were also studied. Although the results showed no significant differences in proliferation, differentiation and cell biological activity, overall results showed an important influence of topography of the modified surfaces compared with polished untreated surfaces. Finally, this study offers an alternative protocol to modify surfaces of Ti and their alloys in a controlled and reproducible way in which biocompatibility of the material is not compromised and osseointegration would be improved.
Sorkio, Anni; Porter, Patrick J; Juuti-Uusitalo, Kati; Meenan, Brian J; Skottman, Heli; Burke, George A
2015-09-01
Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells are currently undergoing clinical trials to treat retinal degenerative diseases. Transplantation of hESC-RPE cells in conjuction with a supportive biomaterial carrier holds great potential as a future treatment for retinal degeneration. However, there has been no such biodegradable material that could support the growth and maturation of hESC-RPE cells so far. The primary aim of this work was to create a thin porous poly (L-lactide-co-caprolactone) (PLCL) membrane that could promote attachment, proliferation, and maturation of the hESC-RPE cells in serum-free culture conditions. The PLCL membranes were modified by atmospheric pressure plasma processing and coated with collagen IV to enhance cell growth and maturation. Permeability of the membranes was analyzed with an Ussing chamber system. Analysis with scanning electron microscopy, contact angle measurement, atomic force microscopy, and X-ray photoelectron spectroscopy demonstrated that plasma surface treatment augments the surface properties of the membrane, which enhances the binding and conformation of the protein. Cell proliferation assays, reverse transcription-polymerase chain reaction, indirect immunofluoresence staining, trans-epithelial electrical resistance measurements, and in vitro phagocytosis assay clearly demonstrated that the plasma treated PLCL membranes supported the adherence, proliferation, maturation and functionality of hESC-RPE cells in serum-free culture conditions. Here, we report for the first time, how PLCL membranes can be modified with atmospheric pressure plasma processing to enable the formation of a functional hESC-RPE monolayer on a porous biodegradable substrate, which have a potential as a tissue-engineered construct for regenerative retinal repair applications.
Direct electrodeposition of porous gold nanowire arrays for biosensing applications.
Zhang, Xinyi; Li, Dan; Bourgeois, Laure; Wang, Huanting; Webley, Paul A
2009-02-02
Nanochannel alumina templates are used as templates for fabrication of porous gold nanowire arrays by a direct electrodeposition method. After modification with glucose oxidase, a porous gold nanowire-array electrode is shown to be an excellent electrochemical biosensor for the detection of glucose. The picture shows an SEM image of a nanowire array after removal of the alumina template by acid dissolution. We report the fabrication of porous gold nanowire arrays by means of a one-step electrodeposition method utilizing nanochannel alumina templates. The microstructure of gold nanowires depends strongly on the current density. The formation of porous gold nanowires is attributed to disperse crystallization under conditions of low nucleation rate. Interfacial electron transport through the porous gold nanowires is studied by electrochemical impedance spectroscopy. Cyclic voltammetric studies on the porous gold nanowire arrays reveal a low-potential electrocatalytic response towards hydrogen peroxide. The properties of the glucose oxidase modified porous gold nanowire array electrode are elucidated and compared with those of nonporous enzyme electrodes. The glucose oxidase modified porous gold nanowire-array electrode is shown to be an excellent electrochemical biosensor for the detection of glucose.
NASA Astrophysics Data System (ADS)
Kazazi, Mahdi; Sedighi, Ali Reza; Mokhtari, Mohammad Amin
2018-05-01
A facile and efficient two-step procedure was developed for the fabrication of a high-performance and binder-free cobalt oxide-carbon nanotubes (CO/CNT) pseudocapacitive electrode. First, CNTs were deposited on the surface of a chemically activated graphite sheet by cathodic electrophoretic deposition technique from their ethanolic suspension. In the next step, a thin film of cobalt oxide was electrodeposited on the CNTs coated graphite substrate by a galvanostatic method, followed by a thermal treatment in air. The structure and morphology of the prepared cobaltite electrode with and without CNT interlayer were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and nitrogen adsorption-desorption measurement. The results indicated that Co3O4 nanoparticles were uniformly attached on the surface of CNTs, to form a porous-structured CO/CNT composite electrode with a high specific surface area of 144.9 m2 g-1. Owing to the superior electrical conductivity of CNTs, high surface area and open porous structure, and improved integrity of the electrode structure, the composite electrode delivered a high areal capacitance of 4.96F cm-2 at a current density of 2 mA cm-2, a superior rate performance (64.7% capacitance retention from 2 mA cm-2 to 50 mA cm-2), as well as excellent cycling stability (91.8% capacitance retention after 2000 cycles), which are higher than those of the pure cobaltite electrode.
Sol–gel method to fabricate CaP scaffolds by robocasting for tissue engineering
Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P.
2012-01-01
Highly porous calcium phosphate (CaP) scaffolds for bone-tissue engineering were fabricated by combining a robocasting process with a sol–gel synthesis that mixed Calcium Nitrate Tetrahydrate and Triethyl Phosphite precursors in an aqueous medium. The resulting gels were used to print scaffolds by robocasting without the use of binder to increase the viscosity of the paste. X-ray diffraction analysis confirmed that the process yielded hydroxyapatite and β-tricalcium phosphate biphasic composite powders. Thus, the scaffold composition after crystallization of the amorphous structure could be easily modified by varying the initial Ca/P ratio during synthesis. The compressive strengths of the scaffolds are ~6 MPa, which is in the range of human cancellous bone (2–12 MPa). These highly porous scaffolds (~73 vol% porosity) are composed of macro-pores of ~260 μm in size; such porosity is expected to enable bone ingrowth into the scaffold for bone repair applications. The chemistry, porosity, and surface topography of such scaffolds can also be modified by the process parameters to favor bone formation. The studied sol–gel process can be used to coat these scaffolds by dip-coating, which induces a significant enhancement of mechanical properties. This can adjust scaffold properties such as composition and surface morphology, which consequently may improve their performances. PMID:22311079
Sol-gel method to fabricate CaP scaffolds by robocasting for tissue engineering.
Houmard, Manuel; Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P
2012-04-01
Highly porous calcium phosphate (CaP) scaffolds for bone-tissue engineering were fabricated by combining a robocasting process with a sol-gel synthesis that mixed Calcium Nitrate Tetrahydrate and Triethyl Phosphite precursors in an aqueous medium. The resulting gels were used to print scaffolds by robocasting without the use of binder to increase the viscosity of the paste. X-ray diffraction analysis confirmed that the process yielded hydroxyapatite and β-tricalcium phosphate biphasic composite powders. Thus, the scaffold composition after crystallization of the amorphous structure could be easily modified by varying the initial Ca/P ratio during synthesis. The compressive strengths of the scaffolds are ~6 MPa, which is in the range of human cancellous bone (2-12 MPa). These highly porous scaffolds (~73 vol% porosity) are composed of macro-pores of ~260 μm in size; such porosity is expected to enable bone ingrowth into the scaffold for bone repair applications. The chemistry, porosity, and surface topography of such scaffolds can also be modified by the process parameters to favor bone formation. The studied sol-gel process can be used to coat these scaffolds by dip-coating, which induces a significant enhancement of mechanical properties. This can adjust scaffold properties such as composition and surface morphology, which consequently may improve their performances.
Liu, Zehua; Balasubramanian, Vimalkumar; Bhat, Chinmay; Vahermo, Mikko; Mäkilä, Ermei; Kemell, Marianna; Fontana, Flavia; Janoniene, Agne; Petrikaite, Vilma; Salonen, Jarno; Yli-Kauhaluoma, Jari; Hirvonen, Jouni; Zhang, Hongbo; Santos, Hélder A
2017-02-01
One of the most challenging obstacles in nanoparticle's surface modification is to achieve the concept that one ligand can accomplish multiple purposes. Upon such consideration, 3-aminopropoxy-linked quercetin (AmQu), a derivative of a natural flavonoid inspired by the structure of dopamine, is designed and subsequently used to modify the surface of thermally hydrocarbonized porous silicon (PSi) nanoparticles. This nanosystem inherits several advanced properties in a single carrier, including promoted anticancer efficiency, multiple drug resistance (MDR) reversing, stimuli-responsive drug release, drug release monitoring, and enhanced particle-cell interactions. The anticancer drug doxorubicin (DOX) is efficiently loaded into this nanosystem and released in a pH-dependent manner. AmQu also effectively quenches the fluorescence of the loaded DOX, thereby allowing the use of the nanosystem for monitoring the intracellular drug release. Furthermore, a synergistic effect with the presence of AmQu is observed in both normal MCF-7 and DOX-resistant MCF-7 breast cancer cells. Due to the similar structure as dopamine, AmQu may facilitate both the interaction and internalization of PSi into the cells. Overall, this PSi-based platform exhibits remarkable superiority in both multifunctionality and anticancer efficiency, making this nanovector a promising system for anti-MDR cancer treatment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
40 CFR 761.267 - Sampling non-porous surfaces.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sampling non-porous surfaces. 761.267... PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.267 Sampling non-porous surfaces. (a) Sample large, nearly flat, non-porous surfaces by dividing...
40 CFR 761.267 - Sampling non-porous surfaces.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling non-porous surfaces. 761.267... PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.267 Sampling non-porous surfaces. (a) Sample large, nearly flat, non-porous surfaces by dividing...
Multi-scale cell/surface interaction on modified titanium aluminum vanadium surfaces
NASA Astrophysics Data System (ADS)
Chen, Jianbo
This dissertation presents a series of experimental studies of the effects of multi-scale cell/surface interactions on modified Ti-6Al-4V surfaces. These include laser-grooved surfaces; porous structures and RGD-coated laser-grooved surfaces. A nano-second DPSS UV lasers with a Gaussian pulse energy profile was used to introduce the desired micro-groove geometries onto Ti-6Al-4V surfaces. This was done without inducing micro-cracks or significant changes in surface chemistry within the heat affected zones. The desired 8-12 mum groove depths and widths were achieved by the control of pulse frequency, scan speed, and the lens focal length that controls spot size. The interactions between human osteosarcoma (HOS) cells and laser-grooved Ti-6Al-4V surfaces were investigated after 48 hours of cell culture. The cell behavior, including cell spreading, alignment and adhesion, was elucidated using scanning electronic microscopy (SEM), immuno-fluorescence staining and enzymatic detachment. Contact guidance was shown to increase as grooved spacing decreased. For the range of micro-groove geometries studied, micro-grooves with groove spacings of 20 mum provided the best combination of cell orientation and adhesion. Short-term adhesion experiments (15 mins to 1 day) also revealed that there is a positive correlation between cell orientation and cell adhesion. Contact guidance on the micro-grooved surfaces is shown to be enhanced by nano- and micro-scale asperities that provide sites for the attachment of lamellopodia during cell locomotion and spreading. Contact guidance is also promoted by the geometrical confinement provided by laser grooves. An experimental study of initial cell spreading and ingrowth into Ti-6Al-4V porous structures was also carried out on porous structures with different pore sizes and geometries. A combination of SEM, the tetrazolium salt (MTT) colorimetric assay and enzymatic detachment were used to study cell spreading and adhesion. The extent of cell ingrowth, pore coverage, cell adhesion and proliferation was observed to increase with decreasing pore size. It was found that fiber geometries provided guidance for cell spreading along the fiber directions. However, the larger gaps in fiber geometries made pore bridging difficult. Finally, this dissertation presents an in vivo study of the combined effects of laser microgrooving and RGD-coating on the osseointegration of implanted Ti-6Al-4V pins. Both histological and biomechanical results show that the combination of laser microgrooving and RGD-coating results in improved osseointegration over the control surfaces. All the above findings have important implications for future orthopedic and dental implant design.
Hartmann, Sarah; Brandhuber, Doris; Hüsing, Nicola
2007-09-01
The preparation of porous hierarchical architectures that have structural features spanning from the nanometer to micrometer and even larger dimensions and that exhibit certain functionalities is one of the new challenging frontiers in materials chemistry. The sol-gel process is one of the most promising synthesis routes toward such materials because it not only offers the possibility to incorporate organic functions into the porous host but also offers the possibility to deliberately tailor the pore structure. In this Account, the opportunities given by the application of novel diol-modified silanes are discussed for the synthesis of hierarchically organized inorganic and also inorganic-organic porous monoliths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemtsova, Elena G., E-mail: ezimtsova@yandex.ru; Arbenin, Andrei Yu.; Plotnikov, Alexander F.
2015-03-15
The authors investigated a new approach to modify the surface of the mesoporous silica matrix MCM-41. This approach is based on manipulating the chemical composition of the porous surface layer and also on fine tuning the pore radius by applying the atomic layer deposition (ALD) technique. The synthesis of alumina nanolayers was performed on the planar and the porous matrix (MCM-41) by the ALD technique using aluminum tri-sec-butoxide and water as precursors. The authors show that one cycle on silicon, using aluminum tri-sec-butoxide and water as precursors, results in a 1–1.2 Å increase in alumina nanolayer thickness. This is comparable tomore » the increase in thickness per cycle for other precursors such as trimethylaluminum and aluminum chloride. The authors show that the synthesis of an Al{sub 2}O{sub 3} nanolayer on the pore surface of the mesoporous silica matrix MCM-41 by the ALD technique results in a regular change in the porous structure of the samples. The specific porosity (ml/g) of the MCM-41 was 0.95 and that of MCM-41 after 5 ALD cycles was 0.39. The pore diameter (nm) of MCM-41 was 3.3 and that of MCM-41 after 5 ALD cycles was 2.3.« less
Surface functionalization of 3D glass-ceramic porous scaffolds for enhanced mineralization in vitro
NASA Astrophysics Data System (ADS)
Ferraris, Sara; Vitale-Brovarone, Chiara; Bretcanu, Oana; Cassinelli, Clara; Vernè, Enrica
2013-04-01
Bone reconstruction after tissue loosening due to traumatic, pathological or surgical causes is in increasing demand. 3D scaffolds are a widely studied solution for supporting new bone growth. Bioactive glass-ceramic porous materials can offer a three-dimensional structure that is able to chemically bond to bone. The ability to surface modify these devices by grafting biologically active molecules represents a challenge, with the aim of stimulating physiological bone regeneration with both inorganic and organic signals. In this research work glass ceramic scaffolds with very high mechanical properties and moderate bioactivity have been functionalized with the enzyme alkaline phosphatase (ALP). The material surface was activated in order to expose hydroxyl groups. The activated surface was further grafted with ALP both via silanization and also via direct grafting to the surface active hydroxyl groups. Enzymatic activity of grafted samples were measured by means of UV-vis spectroscopy before and after ultrasonic washing in TRIS-HCl buffer solution. In vitro inorganic bioactivity was investigated by soaking the scaffolds after the different steps of functionalization in a simulated body fluid (SBF). SEM observations allowed the monitoring of the scaffold morphology and surface chemical composition after soaking in SBF. The presence of ALP enhanced the in vitro inorganic bioactivity of the tested material.
A novel carbon electrode material for highly improved EDLC performance.
Fang, Baizeng; Binder, Leo
2006-04-20
Porous materials, developed by grafting functional groups through chemical surface modification with a surfactant, represent an innovative concept in energy storage. This work reports, in detail, the first practical realization of a novel carbon electrode based on grafting of vinyltrimethoxysilane (vtmos) functional group for energy storage in electric double layer capacitor (EDLC). Surface modification with surfactant vtmos enhances the hydrophobisation of activated carbon and the affinity toward propylene carbonate (PC) solvent, which improves the wettability of activated carbon in the electrolyte solution based on PC solvent, resulting in not only a lower resistance to the transport of electrolyte ions within micropores of activated carbon but also more usable surface area for the formation of electric double layer, and accordingly, higher specific capacitance, energy density, and power capability available from the capacitor based on modified carbon. Especially, the effects from surface modification become superior at higher discharge rate, at which much better EDLC performance (i.e., much higher energy density and power capability) has been achieved by the modified carbon, suggesting that the modified carbon is a novel and very promising electrode material of EDLC for large current applications where both high energy density and power capability are required.
NASA Astrophysics Data System (ADS)
Terracciano, Monica; Shahbazi, Mohammad-Ali; Correia, Alexandra; Rea, Ilaria; Lamberti, Annalisa; de Stefano, Luca; Santos, Hélder A.
2015-11-01
Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL-1 after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL-1 and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL-1 after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL-1 and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05173h
Deng, Jie; Liu, Xinyue; Ma, Lang; Cheng, Chong; Shi, Wenbin; Nie, Chuanxiong; Zhao, Changsheng
2014-12-10
In this study, multifunctional and heparin-mimicking star-shaped supramolecules-deposited 3D porous multilayer films with improved biocompatibility were fabricated via a layer-by-layer (LbL) self-assembly method on polymeric membrane substrates. Star-shaped heparin-mimicking polyanions (including poly(styrenesulfonate-co-sodium acrylate; Star-PSS-AANa) and poly(styrenesulfonate-co-poly(ethylene glycol)methyl ether methacrylate; Star-PSS-EGMA)) and polycations (poly(methyl chloride-quaternized 2-(dimethylamino)ethyl methacrylate; Star-PMeDMA) were first synthesized by atom transfer radical polymerization (ATRP) from β-cyclodextrin (β-CD) based cores. Then assembly of 3D porous multilayers onto polymeric membrane surfaces was carried out by alternating deposition of the polyanions and polycations via electrostatic interaction. The surface morphology and composition, water contact angle, blood activation, and thrombotic potential as well as cell viability for the coated heparin-mimicking films were systematically investigated. The results of surface ATR-FTIR spectra and XPS spectra verified successful deposition of the star-shaped supramolecules onto the biomedical membrane surfaces; scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations revealed that the modified substrate had 3D porous surface morphology, which might have a great biological influence on the biointerface. Furthermore, systematic in vitro investigation of protein adsorption, platelet adhesion, human platelet factor 4 (PF4, indicates platelet activation), activate partial thromboplastin time (APTT), thrombin time (TT), coagulation activation (thrombin-antithrombin III complex (TAT, indicates blood coagulant)), and blood-related complement activation (C3a and C5a, indicates inflammation potential) confirmed that the heparin-mimicking multilayer coated membranes exhibited ultralow blood component activations and excellent hemocompatibility. Meanwhile, after surface coating, endothelial cell viability was also promoted, which indicated that the heparin-mimicking multilayer coating might extend the application fields of polymeric membranes in biomedical fields.
Selective formation of porous silicon
NASA Technical Reports Server (NTRS)
Fathauer, Jones (Inventor)
1993-01-01
A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H20. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.
Mangla, Onkar; Roy, Savita; Ostrikov, Kostya (Ken)
2015-01-01
The hot and dense plasma formed in modified dense plasma focus (DPF) device has been used worldwide for the nanofabrication of several materials. In this paper, we summarize the fabrication of III–V semiconductor nanostructures using the high fluence material ions produced by hot, dense and extremely non-equilibrium plasma generated in a modified DPF device. In addition, we present the recent results on the fabrication of porous nano-gallium arsenide (GaAs). The details of morphological, structural and optical properties of the fabricated nano-GaAs are provided. The effect of rapid thermal annealing on the above properties of porous nano-GaAs is studied. The study reveals that it is possible to tailor the size of pores with annealing temperature. The optical properties of these porous nano-GaAs also confirm the possibility to tailor the pore sizes upon annealing. Possible applications of the fabricated and subsequently annealed porous nano-GaAs in transmission-type photo-cathodes and visible optoelectronic devices are discussed. These results suggest that the modified DPF is an effective tool for nanofabrication of continuous and porous III–V semiconductor nanomaterials. Further opportunities for using the modified DPF device for the fabrication of novel nanostructures are discussed as well. PMID:28344261
Mangla, Onkar; Roy, Savita; Ostrikov, Kostya Ken
2015-12-29
The hot and dense plasma formed in modified dense plasma focus (DPF) device has been used worldwide for the nanofabrication of several materials. In this paper, we summarize the fabrication of III-V semiconductor nanostructures using the high fluence material ions produced by hot, dense and extremely non-equilibrium plasma generated in a modified DPF device. In addition, we present the recent results on the fabrication of porous nano-gallium arsenide (GaAs). The details of morphological, structural and optical properties of the fabricated nano-GaAs are provided. The effect of rapid thermal annealing on the above properties of porous nano-GaAs is studied. The study reveals that it is possible to tailor the size of pores with annealing temperature. The optical properties of these porous nano-GaAs also confirm the possibility to tailor the pore sizes upon annealing. Possible applications of the fabricated and subsequently annealed porous nano-GaAs in transmission-type photo-cathodes and visible optoelectronic devices are discussed. These results suggest that the modified DPF is an effective tool for nanofabrication of continuous and porous III-V semiconductor nanomaterials. Further opportunities for using the modified DPF device for the fabrication of novel nanostructures are discussed as well.
Benavent-Gil, Yaiza; Rosell, Cristina M
2017-10-01
Porous starches might offer an attractive alternative as bio-adsorbents of a variety of compounds. However, morphology and physicochemical properties of starches must be understood before exploring their applications. Objective was to study the action of different amylolytic enzymes for producing porous starches. Wheat, rice, potato and cassava starches were treated with Amyloglucosidase (AMG), α-amylase (AM) and cyclodextrin-glycosyltransferase (CGTase). Morphological characteristics, chemical composition, adsorptive capacity and pasting/thermal properties were assessed. Scanning Electron Microscopy (SEM) showed porous structures with diverse pore size distribution, which was dependent on the enzyme type and starch source, but no differences were observed in the total granule surface occupied by pores. The adsorptive capacity analysis revealed that modified starches had high water absorptive capacity and showed different oil adsorptive capacity depending on the enzyme type. Amylose content analysis revealed different hydrolysis pattern of the amylases, suggesting that AMG mainly affected crystalline region meanwhile AM and CGTase attacked amorphous area. A heatmap illustrated the diverse pasting properties of the different porous starches, which also showed significant different thermal properties, with different behavior between cereal and tuber starches. Therefore, it is possible to modulate the properties of starches through the use of different enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.
Shimabuku, Quelen Letícia; Arakawa, Flávia Sayuri; Fernandes Silva, Marcela; Ferri Coldebella, Priscila; Ueda-Nakamura, Tânia; Fagundes-Klen, Márcia Regina; Bergamasco, Rosangela
2017-08-01
Continuous flow experiments (450 mL min -1 ) were performed in household filter in order to investigate the removal and/or inactivation of T4 bacteriophage, using granular activated carbon (GAC) modified with silver and/or copper oxide nanoparticles at different concentrations. GAC and modified GAC were characterized by X-ray diffractometry, specific surface area, pore size and volume, pore average diameter, scanning electron microscopy, transmission electron microscopy, zeta potential and atomic absorption spectroscopy. The antiviral activity of the produced porous media was evaluated by passing suspensions of T4 bacteriophage (∼10 5 UFP/mL) through filters. The filtered water was analyzed for the presence of the bacteriophage and the release of silver and copper oxide. The porous media containing silver and copper oxide nanoparticles showed high inactivation capacity, even reaching reductions higher than 3 log. GAC6 (GAC/Ag0.5%Cu1.0%) was effective in the bacteriophage inactivation, reaching 5.53 log reduction. The levels of silver and copper released in filtered water were below the recommended limits (100 ppb for silver and 1000 ppb for copper) in drinking water. From this study, it is possible to conclude that activated carbon modified with silver and copper oxide nanoparticles can be used as a filter for virus removal in the treatment of drinking water.
RGDfK-Peptide Modified Alginate Scaffold for Cell Transplantation and Cardiac Neovascularization.
Sondermeijer, Hugo P; Witkowski, Piotr; Seki, Tetsunori; van der Laarse, Arnoud; Itescu, Silviu; Hardy, Mark A
2018-05-01
Cell implantation for tissue repair is a promising new therapeutic strategy. Although direct injection of cells into tissue is appealing, cell viability and retention are not very good. Cell engraftment and survival following implantation are dependent on a sufficient supply of oxygen and nutrients through functional microcirculation as well as a suitable local microenvironment for implanted cells. In this study, we describe the development of a porous, biocompatible, three-dimensional (3D) alginate scaffold covalently modified with the synthetic cyclic RGDfK (Arg-Gly-Asp-D-Phe-Lys) peptide. Cyclic RGDfK peptide is protease resistant, highly stable in aqueous solutions, and has high affinity for cellular integrins. Cyclic RGDfK-modified alginate scaffolds were generated using a novel silicone sheet sandwich technique in combination with freeze-gelation, resulting in highly porous nonimmunogenic scaffolds that promoted both human and rodent cell survival in vitro, and neoangiogenesis in vivo. Two months following implantation in abdominal rectus muscles in rats, cyclic RGDfK-modified scaffolds were fully populated by host cells, especially microvasculature without an overt immune response or fibrosis, whereas unmodified control scaffolds did not show cell ingrowth. Importantly, modified scaffolds that were seeded with human mesenchymal precursor cells and were patched to the epicardial surface of infarcted myocardium induced myocardial neoangiogenesis and significantly improved cardiac function. In summary, purified cyclic RGDfK peptide-modified 3D alginate scaffolds are biocompatible and nonimmunogenic, enhance cell viability, promote angiogenesis, and may be used as a means to deliver cells to myocardial infarct areas to improve neovascularization and cardiac function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuan, Lee Te, E-mail: gd130079@siswa.uthm.edu.my; Rathi, Muhammad Fareez Mohamad, E-mail: cd110238@siswa.uthm.edu.my; Abidin, Muhamad Yusuf Zainal, E-mail: cd110221@siswa.uthm.edu.my
Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm{sup −2}) at room temperature. Surfacemore » oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.« less
Reig, L; Amigó, V; Busquets, D; Calero, J A; Ortiz, J L
2012-08-01
Porous Ti6Al4V samples were produced by microsphere sintering. The Zero-Order Reaction Rate Model and Transition State Theory were used to model the sintering process and to estimate the bending strength of the porous samples developed. The evolution of the surface area during the sintering process was used to obtain sintering parameters (sintering constant, activation energy, frequency factor, constant of activation and Gibbs energy of activation). These were then correlated with the bending strength in order to obtain a simple model with which to estimate the evolution of the bending strength of the samples when the sintering temperature and time are modified: σY=P+B·[lnT·t-ΔGa/R·T]. Although the sintering parameters were obtained only for the microsphere sizes analysed here, the strength of intermediate sizes could easily be estimated following this model. Copyright © 2012 Elsevier B.V. All rights reserved.
Ge, Shenguang; Zhang, Yan; Yan, Mei; Huang, Jiadong; Yu, Jinghua
2017-01-01
A simple, low-cost, and sensitive electrochemical lab-on-paper assay is developed based on a novel gold nanoparticle modified porous paper working electrode for use in point-of-care testing (POCT). Electrochemical methods are introduced for lab-on-paper based on screen-printed paper electrodes. To further improve specificity, performance, and sensitivity for point-of-care testing, a novel porous Au-paper working electrode (Au-PWE) is designed for lab-on-paper using growth of an interconnected Au nanoparticle (NP) layer on the surface of cellulose fibers in order to enhance the conductivity of the paper sample zone and immobilize the primary antibodies (Ab1). With a sandwich-type immunoassay format, Pd-Au bimetallic nanoparticles possessing peroxidase-like activity are used as a matrix to immobilize secondary antibodies (Ab2) for rapid detection of targets. This lab-on-paper based immunodevice is applied to the diagnosis of a cancer biomarker in clinical serum samples.
Surface modification of porous titanium with rice husk as space holder
NASA Astrophysics Data System (ADS)
Wang, Xinsheng; Hou, Junjian; Liu, Yanpei
2018-06-01
Porous titanium was characterized after its surface modification by acid and alkali solution immersion. The results show that the acid surface treatment caused the emergence of flocculent sodium titanate and induced apatite formation. The surface modification of porous titanium promotes biological activation, and the application of porous titanium is also improved as an implant material because of the existence of C and Si.
Investigation of gas surface interactions at self-assembled silicon surfaces acting as gas sensors
NASA Astrophysics Data System (ADS)
Narducci, Dario; Bernardinello, Patrizia; Oldani, Matteo
2003-05-01
This paper reports the results of an investigation aimed at using self-assembled monolayers to modify the supramolecular interactions between Si surfaces and gaseous molecules. The specific goal is that of employing molecularly imprinted silicon surfaces to develop a new class of chemical sensors capable to detect species with enhanced selectivity. Single-crystal p-type (0 0 1) silicon has been modified by grafting organic molecules onto its surface by using wet chemistry synthetic methods. Silicon has been activated toward nucleophilic attack by brominating its surface using a modified version of the purple etch, and aromatic fragments have been bonded through the formation of direct Si-C bonds onto it using Grignard reagents or lithium aryl species. Formation of self-assembled monolayers (SAMs) was verified by using vibrational spectroscopy. Porous metal-SAM-Si diodes have been successfully tested as resistive chemical sensors toward NO x, SO x, CO, NH 3 and methane. Current-voltage characteristics measured at different gas compositions showed that the mechanism of surface electron density modulation involves a modification of the junction barrier height upon gas adsorption. Quantum-mechanical simulations of the interaction mechanism were carried out using different computational methods to support such an interaction mechanism. The results obtained appear to open up new relevant applications of the SAM techniques in the area of gas sensing.
Selective formation of porous silicon
NASA Technical Reports Server (NTRS)
Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)
1993-01-01
A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.
Baranowska, Malgorzata; Slota, Agata J; Eravuchira, Pinkie J; Alba, Maria; Formentin, Pilar; Pallarès, Josep; Ferré-Borrull, Josep; Marsal, Lluís F
2015-08-15
Porous silicon (pSi) is a prosperous biomaterial, biocompatible, and biodegradable. Obtaining regularly functionalized pSi surfaces is required in many biotechnology applications. Silane-PEG-NHS (triethoxysilane-polyethylene-glycol-N-hydroxysuccinimide) is useful for single-molecule studies due to its ability to attach to only one biomolecule. We investigate the functionalization of pSi with silane-PEG-NHS and compare it with two common grafting agents: APTMS (3-aminopropylotrimethoxysilane) as electrostatic linker, and APTMS modified with glutaraldehyde as covalent spacer. We show the arrangement of two proteins (collagen and bovine serum albumin) as a function of the functionalization and of the pore size. FTIR is used to demonstrate correct functionalization while fluorescence confocal microscopy reveals that silane-PEG-NHS results in a more uniform protein distribution. Reflection interference spectroscopy (RIfS) is used to estimate the attachment of linker and proteins. The results open a way to obtain homogenous chemical modified silicon supports with a great value in biosensing, drug delivery and cell biology. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuan, Lin; Hu, Ming; Wei, Yulong; Ma, Wenfeng
2016-12-01
The thorn-sphere-like tungsten oxide (WO3) made up by 1D nanorods has been successfully synthesized through hydrothermal method on the Au-modified porous silicon (PS) substrates with seed-layer induction. By using XRD, EDS, FESEM and TEM techniques, we tested and verified that the crystal structure and morphology evolution of WO3 hierarchical nanostructure on the Au-modified PS strongly depend on the Au-sputtering time and hydrothermal reaction time. In addition, by comparing the NO2-sensing properties of the prepared products, we found that the 10 s-Au decorated PS/WO3-3 h (sputtering Au for 10 s and hydrothermal reaction for 3 h) composites sensor behaving as a typical p-type semiconductor and operating at room temperature (RT) exhibits high sensitivity and response characteristics even to ppb-level NO2, which makes this kind of sensor a competitive candidate for NO2-sensing applications. Moreover, the enhanced response may not only due to the high specific surface area but the Au nanoparticles acting as promoters for the spillover effect and forming metal-semiconductor heterojunctions with the PS and WO3. The transmission of electrons and holes in the heterogeneous interface generated among PS, WO3 and Au is proposed to illustrate the p-type response mechanism.
Measurements of acoustic surface waves on fluid-filled porous rocks
NASA Astrophysics Data System (ADS)
Adler, Laszlo; Nagy, Peter B.
1994-09-01
Novel experimental techniques to measure ultrasonic velocity and attenuation of surface waves on fluid-filled porous natural rocks are presented. Our experimental results are consistent with the theoretical predictions of Feng and Johnson (1983). Depending on the interface conditions, i.e., whether the surface pores are open or closed, pseudo-Rayleigh, pseudo-Stoneley, and/or Stoneley surface waves may exist on fluid-saturated rocks with closed 'slow' surface wave (true Stoneley mode) on fluid-filled porous rocks with closed surface pores. The velocity and attenuation of the 'slow' surface mode may be used to assess the dynamic permeabilty of porous formations.
Time-lapse 3D imaging of calcite precipitation in a microporous column
NASA Astrophysics Data System (ADS)
Godinho, Jose R. A.; Withers, Philip J.
2018-02-01
Time-lapse X-ray computed tomography is used to image the evolution of calcite precipitation during flow through microporous quartz over the course of 400 h. The growth rate decreases by more than seven times, which is linked to the clogging of flow paths that restricts flow to some regions of the column. Fewer precipitates are observed as a function of column depth, which is found to be related to a differential nucleation density along the sample. A higher nucleation density closer to the inlet implies more crystal volume increase per unit of time without affecting the rate if normalized to the surface area of crystals. Our overall growth rates measured in porous media are orders of magnitude slower than growth rates derived from traditional precipitation experiments on free surfaces. Based on our time-lapse results we hypothesize a scenario where the evolving distribution of precipitates within a pore structure during precipitation progressively modifies the local transport through the pores. Within less permeable regions the saturation index may be lower than along the main flow paths. Therefore, the reactive crystal surfaces within those regions grow at a slower rate than that expected from the bulk fluid composition. Since the amount of reactive surface area within these less permeable regions increases over time, the overall growth rate decreases without a necessary significant change of the bulk fluid composition along more permeable flow paths. In conclusion, the overall growth rates in an evolving porous media expected from bulk fluid compositions alone can be overestimated due to the development of stagnant sub-regions where the reactive surface area is bath by a solution with lower saturation index. In this context we highlight the value of time-lapse 3D studies for understanding the dynamics of mineral precipitation in porous media.
NASA Astrophysics Data System (ADS)
Gao, Nengwen; Ke, Wei; Fan, Yiqun; Xu, Nanping
2013-10-01
Wettability has been recognized as one of the most important properties of porous materials for both fundamental and practical applications. In this study, the oleophilicity of Al2O3 membranes modified by four alkoxysilanes with different length of alkyl group was investigated through oil wetting dynamic test. Fourier transform infrared spectroscopy (FTIR), thermogravimertric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were measured to confirm that ceramic membrane surfaces have been grafted with alkoxysilanes without changing the membrane morphology. A high speed video camera was used to record the spreading and imbibition process of oil on the modified membrane surface. The value of oil contact angle and its change during the wetting process were used to characterize the membrane oleophilicity. Characterization results showed that the oleophilicity of the modified membranes increased along with the increasing of the silane alkyl group. The influence of oleophilicity on the filtration performance of water-in-oil (W/O) emulsions was experimentally studied. A higher oil flux was obtained for membranes grafted with a longer alkyl group, indicating that increase oleophilicity can increase the membrane antifouling property. This work presents a valuable route to the surface oleophilicity control and testing of ceramic membranes in the filtration of non-polar organic solvents.
NASA Astrophysics Data System (ADS)
Shen, Keke; Yu, Miao; Li, Qianqian; Sun, Wei; Zhang, Xiting; Quan, Miao; Liu, Zhengtang; Shi, Suqing; Gong, Yongkuan
2017-12-01
A non-fluorinated polymeric alkylsilane, poly(isobutyl methacrylate-co-3-methacryloxypropyltrimethoxysilane) (PIT), is designed and synthesized to replace the commercial long-chain perfluoroalkylsilane (FAS) water-repellent agent. The superhydrophobic polyester fabrics are prepared by anchoring sol-gel derived silica nanoparticles onto alkali-treated polyester fabric surfaces and subsequently hydrophobilizing with PIT, using FAS as control. The surface chemical composition, surface morphology, wetting behavior and durability of the modified polyester fabrics are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectrophotometer (XPS) and video-based contact angle goniometer, respectively. The results show that a porous silica layer could be successfully fabricated onto the surface of polyester fabric through base-catalyzed sol-gel process with tetraethoxysilane (TEOS) as precursor, incorporating additional nanostructured roughness essential for superhydrophobicity. At the same time, such a silica primer layer could provide both secondary reactive moieties (-Si - OH) for the subsequent surface hydrophobization and acceptable adhesion at the silica-polyester fabric interface. When silica modified polyester fabric (SiO2@ fabric) is hydrophobized by PIT solution (10 mg/mL), excellent water-repellency could be obtained. The water contact angle is up to 154° and the sliding angle is about 5°. Compared with small molecule water-repellent agent FAS, PIT modified SiO2@ fabric exhibits greatly improved solvent resistance under ultra-sonication, abrasion and simulated laundering durability. The anti-stain property of PIT-modified SiO2@ fabric is also evaluated by using different aqueous colored solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konovalov, Sergey, E-mail: konovserg@gmail.com; Gromov, Victor, E-mail: gromov@physics.sibsiu.ru; Kobzareva, Tatyana
The paper presents the results of the investigation of VT6 titanium alloy subjected to electro-explosion alloying with TiB{sub 2} and irradiation with pulsed electron beam. It was established that electro-explosion alloying resulted in a high level of roughness of the surface layer with high adhesion of the modified layer and matrix. Further irradiation of the material with electron beam resulted in the smoothing of the surface of alloying and formation of a porous structure with various scale levels in the surface layer. It was also established that the energetic exposure causes the formation of a gradient structure with a changingmore » elemental composition along the direction from the surface of alloying.« less
Menaa, Bouzid; Herrero, Mar; Rives, Vicente; Lavrenko, Mayya; Eggers, Daryl K.
2008-01-01
Organically-modified siloxanes were used as host materials to examine the influence of surface chemistry on protein conformation in a crowded environment. The sol-gel materials were prepared from tetramethoxysilane and a series of monosubstituted alkoxysilanes, RSi(OR′)3, featuring alkyl groups of increasing chain length in the R-position. Using circular dichroism spectroscopy in the far-UV region, apomyoglobin was found to transit from an unfolded state to a native-like helical state as the content of the hydrophobic precursor increased from 0–15%. At a fixed molar content of 5% RSi(OR’)3, the helical structure of apomyoglobin increased with the chain length of the R-group, i.e. methyl < ethyl < n-propyl < n-butyl < n-hexyl. This trend also was observed for the tertiary structure of ribonuclease A, suggesting that protein folding and biological activity are sensitive to the hydrophilic/hydrophobic balance of neighboring surfaces. The observed changes in protein structure did not correlate with total surface area or the average pore size of the modified glasses, but scanning electron microscopy images revealed an interesting relationship between surface morphology and alkyl chain length. The unexpected benefit of incorporating a low content of hydrophobic groups into a hydrophilic surface may lead to materials with improved biocompatibility for use in biosensors and implanted devices. PMID:18359512
Palladium modified porous silicon as multi-functional MALDI chip for serum peptide detection.
Li, Xiao; Chen, Xiaoming; Tan, Jie; Liang, Xiao; Wu, Jianmin
2017-02-14
Interest in using mesoporous materials for peptidomic research has increased recently. The present study reports a new type of matrix assisted laser desorption/ionization (MALDI) plate derived from electrochemically etched porous silicon (PSi) whose surface was modified with palladium nanoparticles (PdNPs). Owing to the well-tailored pore size and the molecular filtration effect of the PSi, peptides in serum samples can be selectively captured and enriched in the pore channel, thereby eliminating the interference from large proteins in subsequent MALDI-MS detection. On the other hand, the PdNPs with localized surface plasmon resonance (LSPR) effect can help to enhance the efficiency of energy absorption in the UV region. Meanwhile, the charge separation effect between the PSi semiconductor and PdNPs also can be applied to promote the accumulation of positive charges on PdNPs, resulting in an improvement in laser desorption/ionization (LDI) efficiency under positive linear detection mode. The interplay among these unique properties of PSi and PdNPs can synergistically increase the overall sensitivity in serum peptide detection. Using this technology, serum sample can be directly detected on the PSi-PdNPs chip without complicated pretreatment process. Therefore, a high fidelity serum peptide fingerprint can be acquired in a high throughput way. With the assistance of statistical analysis, colorectal cancer patients and healthy people can be accurately distinguished based on the serum peptide fingerprints.
Protein adsorption onto nanozeolite: effect of micropore openings.
Wu, Jiamin; Li, Xiang; Yan, Yueer; Hu, Yuanyuan; Zhang, Yahong; Tang, Yi
2013-09-15
A clear and deep understanding of protein adsorption on porous surfaces is desirable for the reasonable design and applications of porous materials. In this study, the effect of surface micropores on protein adsorption was systematically investigated by comparing adsorption behavior of cytochrome c (Cyto-c) and Candida antarctica Lipase B (CALB) on porous and non-porous nanozeolites silicalite-1 and Beta. It was found that micropore openings on the surface of nanozeolites played a key role in determining adsorption affinity, conformations, and activities of proteins. Both Cyto-c and CALB showed higher affinity to porous nanozeolites than to non-porous ones, resulting in greater conformational change of proteins on porous surfaces which in turn affected their bio-catalytic performance. The activity of Cyto-c improved while that of CALB decreased on porous nanozeolites. Recognition of certain amino acid residues or size-matching secondary structures by micropore openings on the surface of nanozeolites was proposed to be the reason. Moreover, the pore opening effect of porous nanozeolites on protein behavior could be altered by changing protein coverage on them. This study gives a novel insight into the interaction between proteins and microporous materials, which will help to guide the rational fabrication and bio-applications of porous materials in the future. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tu, Xiaofeng; Zhou, Yingke; Song, Yijie
2017-04-01
The three-dimensional porous LiFePO4 modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO4 to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.
Effect of various filler types on the properties of porous asphalt mixture
NASA Astrophysics Data System (ADS)
Shukry, Nurul Athma Mohd; Hassan, Norhidayah Abdul; Ezree Abdullah, Mohd; Rosli Hainin, Mohd; Yusoff, Nur Izzi Md; Putra Jaya, Ramadhansyah; Mohamed, Azman
2018-04-01
The open structure of porous asphalt exposes a large surface area to the effects of air and water, which accelerates the oxidation rate and affects the coating properties of the binder. These factors may influence the adhesive strength of the binder-aggregate and lead to cohesive failure within the binder film, contributing to aggregate stripping and moisture damage. The addition of fillers in asphalt mixtures has been identified to stiffen the asphalt binder and improve mixture strength. This study investigates the effect of various filler types (hydrated lime, cement, and diatomite) on the properties of porous asphalt. Compacted samples of porous asphalt were prepared using Superpave gyratory compactor at the target air void content of 21%. Each sample was incorporated with 2% of filler and polymer-modified binder of PG76. The morphology and chemical composition of fillers were investigated with a field emission scanning electron microscope (FESEM) and energy dispersive X-ray (EDX) analysis. The properties of porous asphalt were evaluated in terms of permeability, abrasion loss, resilient modulus, and indirect tensile strength. All mixtures were found to show high permeability rates. Mixtures with hydrated lime exhibited lower abrasion loss compared to mixtures with cement and diatomite. The use of diatomite increases the resistance of the mixtures to rutting and moisture damage compared to other fillers as shown by the enhanced resilient modulus and indirect tensile strength.
1991-09-01
Difference Numerical Model for the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors Over Hard and Porous Surfaces by Victor W. Sparrow...The nonlinear acoustic propagation effects require a numerical solution in the time domain. To model a porous ground surface, which in the frequency...incident on the hard and porous surfaces were produced. The model predicted that near grazing finite amplitude acoustic blast waves decay with distance
Modified silica-based heterogeneous catalysts for etherification of glycerol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gholami, Zahra, E-mail: zahra.gholami@petronas.com.my; Abdullah, Ahmad Zuhairi, E-mail: chzuhairi@usm.my; Gholami, Fatemeh, E-mail: fgholami59@gmail.com
2015-07-22
The advent of mesoporous silicas such as MCM-41 has provided new opportunities for research into supported metal catalysis. The loading of metals into framework structures and particularly into the pores of porous molecular sieves, has long been of interest because of their potential catalytic activity. Stable heterogeneous mesoporous basic catalysts were synthesized by wet impregnation of MCM-41 with calcium nitrate and lanthanum nitrate. The surface and structural properties of the prepared catalysts were characterized using BET surface analysis, SEM and TEM. MCM-41 and modified MCM-41 were used in the solventless etherification of glycerol to produce diglycerol as the desired product.more » The reaction was performed at 250 °C for 8 h, and catalyst activity was evaluated. Catalytic etherification over the 20%Ca{sub 1.6}La{sub 0.6}/MCM-41 catalyst resulted in the highest glycerol conversion of 91% and diglycerol yield of 43%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao Xia; Liu Bing; Hou Qian
A new route for the economic and efficient treatment of azo dye pollutants is reported, in which surface-modified organic-inorganic hybrid mesoporous silica (MS) spheres were chosen as microreactors for the accumulation and subsequent photodegradation of pollutants in defined regions. The surface-modified silica materials were prepared by anchoring the polycationic species such as poly(allylamine hydrochloride) on MS spheres via a simple wet impregnation method. The as-synthesized spheres with well-defined porous structures exhibited 15 times of accumulating capacity for orange II and Congo red compared to that of the pure MS spheres. Diffuse reflectance UV-vis spectroscopy and confocal laser scanning microscopy demonstratedmore » that the accumulated orange II and CR in defined MS spheres were rapidly degraded in the presence of Fenton reagent under visible radiation. Kinetics analysis in recycling degradation showed that the as-synthesized materials might be utilized as environment-friendly preconcentrators/microreactors for the remediation of dye wastewater.« less
Nano/macro porous bioactive glass scaffold
NASA Astrophysics Data System (ADS)
Wang, Shaojie
Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent exchange process. Although both techniques lower the surface area of BG scaffolds, the temperature-dependent sintering process closes nanopores through densification, while the concentration-dependent solvent exchange process enlarges nanopores through Ostwald-ripening type coarsening. Therefore, nanopore size and surface area of BG scaffold are independently controlled using these methods. In vitro cell and in vivo animal tissue responses have been investigated to evaluate the performance of the nano-macro porous BG scaffold. The cells are found to migrate and penetrate deep into the 3D nano-macro porous structure, while exhibiting excellent adhesion to the bioscaffold surface. Importantly, the new tissue with both blood vessels and collagen fibers is formed deep inside the implanted scaffolds without obvious inflammatory reaction. Furthermore, our observations show biological benefits of the nanopores in the BG scaffold. In comparison to BG scaffold without nanopores, cells migrate and penetrate into nano-macro dual-porous BG scaffold faster and deeper mainly because of the increase of surface area. To study the effect of nanopore topography, we fabricated BG scaffolds with the same surface area but different nanopore sizes. It is found that the initial cell attachment is significantly enhanced on the BG scaffold with the same surface area but smaller nanopores size, indicating that the nanopore topography strongly influences the performance of BG scaffold. In conclusion, the present results demonstrate most clearly the usefulness of our nano-macro dual-porous BG as a novel and superior 3D bioscaffold for regenerative medicine and hard tissue engineering.
Vapor sensors using porous silicon-based optical interferometers
NASA Astrophysics Data System (ADS)
Gao, Ting
The ability to detect or monitor various gases is important for many applications. Smaller, more portable, lower power, and less expensive gas sensors are needed. Porous silicon (PS) has attracted attention for use in such devices due to its unique optical and electronic properties and its large surface area. This thesis describes the preparation and characteristics of vapor sensors using thin PS Fabry-Perot films. The average refractive index of the PS layer increases when the PS film is exposed to analyte vapors, causing the optical fringes to shift to longer wavelengths. Two methods for monitoring the shifts in these optical fringes are explored in this thesis. The first technique measures the reflection spectrum using a white light source, and the second measures the intensity of reflected light using a low-power red diode laser source. The latter method offers a simple, low-cost and reliable transduction mechanism for vapor sensing. A vapor sensor with a detection limit of 250 ppb and a wide dynamic range (five orders of magnitude) is demonstrated. The effect of the PS film thickness and porosity on sensitivity are systematically studied. A model based on the Bruggeman approximation and capillary condensation is proposed to explain this sensing behavior. Two approaches to improve the sensitivity of the PS sensors are explored. In the first, porous Si is chemically modified and the investigation shows that the sensing response varies with different surface properties. In a second study, thin polymer layers are coated on the porous Si substrate to selectively filter solvent vapors. This bi-layer approach is also applied to porous Si layers that have luminescent quantum structures. These latter structures sense adsorbates based on quenching of luminescence from the quantum-confined silicon nanostructures. In the course of this thesis, an anomalous response of ozone-oxidized PS films to water vapor was discovered. The effect was studied by optical interferometry, isotope studies, and in-situ Fourier transform infrared spectroscopy. It is concluded that in some porous Si films, water forms a strongly hydrogen bonded network that results in compression of the porous Si layer.
Nanostructured carbon materials for adsorption of methane and other gases
Stadie, Nicholas P.; Fultz, Brent T.; Ahn, Channing; Murialdo, Maxwell
2015-06-30
Provided are methods for storing gases on porous adsorbents, methods for optimizing the storage of gases on porous adsorbents, methods of making porous adsorbents, and methods of gas storage of optimized compositions, as in systems containing porous adsorbents and gas adsorbed on the surface of the porous adsorbent. The disclosed methods and systems feature a constant or increasing isosteric enthalpy of adsorption as a function of uptake of the gas onto the exposed surface of a porous adsorbent. Adsorbents with a porous geometry and surface dimensions suited to a particular adsorbate are exposed to the gas at elevated pressures in the specific regime where n/V (density) is larger than predicted by the ideal gas law by more than several percent.
Studies of SERS efficiency of gold coated porous silicon formed on rough silicon backside
NASA Astrophysics Data System (ADS)
Dridi, H.; Haji, L.; Moadhen, A.
2017-12-01
Starting from a rough backside of silicon wafer, we have formed a porous layer by electrochemical anodization and then coated by a thin film of gold. The morphological characteristics of the porous silicon and in turn the metal film are governed by the anodization process and also by the starting surface. So, in order to investigate the Plasmonic aspect of such rough surface which combines roughness inherent to the porous nature and that due to rough starting surface, we have used a dye target molecule to study its SERS signal using a porous silicon layer obtained on the rough backside surface. The use of unusual backside of silicon wafer could be, beside the others, an interesting way to made SERS effective substrate thanks to reproducible rough porous gold on porous layer from this starting face. The morphological results correspond to the silicon rough surface as a function of the crystallographic orientation showed the presence of two different substrate structure. The optical reflectivity results obtained of gold deposited on oxidized porous silicon showed a dependence of its Localized Surface Plasmon band frequency of the deposit time. SERS results, obtained for a dye target molecule (Rhodamine 6G), show a higher intensities in the case of the 〈110〉 orientation, which characterized by the higher roughness surface. Voici "the most relevant and important aspects of our work".
Gas impermeable glaze for sealing a porous ceramic surface
Reed, Scott T.; Stone, Ronald G.; Nenoff, Tina M.; Trudell, Daniel E.; Thoma, Steven G.
2004-04-06
A process for fabricating a gas impermeable seal on a porous ceramic surface using a thin, glass-based, pinhole free glaze. The process can be used to fabricate gas impermeable end seals on porous alumina tubes used as filter media. The porous alumina tubes can have an inorganic microporous thin film separation membrane on the inner surface, which can be used for high temperature gas separation processes.
NASA Astrophysics Data System (ADS)
Zhang, Yali; Xia, Lunguo; Zhai, Dong; Shi, Mengchao; Luo, Yongxiang; Feng, Chun; Fang, Bing; Yin, Jingbo; Chang, Jiang; Wu, Chengtie
2015-11-01
The hierarchical microstructure, surface and interface of biomaterials are important factors influencing their bioactivity. Porous bioceramic scaffolds have been widely used for bone tissue engineering by optimizing their chemical composition and large-pore structure. However, the surface and interface of struts in bioceramic scaffolds are often ignored. The aim of this study is to incorporate hierarchical pores and bioactive components into the bioceramic scaffolds by constructing nanopores and bioactive elements on the struts of scaffolds and further improve their bone-forming activity. Mesoporous bioactive glass (MBG) modified β-tricalcium phosphate (MBG-β-TCP) scaffolds with a hierarchical pore structure and a functional strut surface (~100 nm of MBG nanolayer) were successfully prepared via 3D printing and spin coating. The compressive strength and apatite-mineralization ability of MBG-β-TCP scaffolds were significantly enhanced as compared to β-TCP scaffolds without the MBG nanolayer. The attachment, viability, alkaline phosphatase (ALP) activity, osteogenic gene expression (Runx2, BMP2, OPN and Col I) and protein expression (OPN, Col I, VEGF, HIF-1α) of rabbit bone marrow stromal cells (rBMSCs) as well as the attachment, viability and angiogenic gene expression (VEGF and HIF-1α) of human umbilical vein endothelial cells (HUVECs) in MBG-β-TCP scaffolds were significantly upregulated compared with conventional bioactive glass (BG)-modified β-TCP (BG-β-TCP) and pure β-TCP scaffolds. Furthermore, MBG-β-TCP scaffolds significantly enhanced the formation of new bone in vivo as compared to BG-β-TCP and β-TCP scaffolds. The results suggest that application of the MBG nanolayer to modify 3D-printed bioceramic scaffolds offers a new strategy to construct hierarchically porous scaffolds with significantly improved physicochemical and biological properties, such as mechanical properties, osteogenesis, angiogenesis and protein expression for bone tissue engineering applications, in which the incorporation of nanostructures and bioactive components into the scaffold struts synergistically play a key role in the improved bone formation.
Electron beam selectively seals porous metal filters
NASA Technical Reports Server (NTRS)
Snyder, J. A.; Tulisiak, G.
1968-01-01
Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.
Bacterial adherence to anodized titanium alloy
NASA Astrophysics Data System (ADS)
Pérez-Jorge Peremarch, C.; Pérez Tanoira, R.; Arenas, M. A.; Matykina, E.; Conde, A.; De Damborenea, J. J.; Gómez Barrena, E.; Esteban, J.
2010-11-01
The aim of this study was to evaluate Staphylococcus sp adhesion to modified surfaces of anodized titanium alloy (Ti-6Al-4V). Surface modification involved generation of fluoride-containing titanium oxide nanotube films. Specimens of Ti-6Al-4V alloy 6-4 ELI-grade 23- meets the requirements of ASTM F136 2002A (AMS 2631B class A1) were anodized in a mixture of sulphuric/hydrofluoric acid at 20 V for 5 and 60 min to form a 100 nm-thick porous film of 20 nm pore diameter and 230 nm-thick nanotube films of 100 nm in diameter. The amount of fluorine in the oxide films was of 6% and of 4%, respectively. Collection strains and six clinical strains each of Staphylococcus aureus and Staphylococcus epidermidis were studied. The adherence study was performed using a previously published protocol by Kinnari et al. The experiments were performed in triplicates. As a result, lower adherence was detected for collection strains in modified materials than in unmodified controls. Differences between clinical strains were detected for both species (p<0.0001, Kruskal-Wallis test), although global data showed similar results to that of collection strains (p<0.0001, Kruskal-Wallis test). Adherence of bacteria to modified surfaces was decreased for both species. The results also reflect a difference in the adherence between S. aureus and S. epidermidis to the modified material. As a conclusion, not only we were able to confirm the decrease of adherence in the modified surface, but also the need to test multiple clinical strains to obtain more realistic microbiological results due to intraspecies differences.
Surface-area-controlled synthesis of porous TiO2 thin films for gas-sensing applications
NASA Astrophysics Data System (ADS)
Park, Jae Young; Kim, Ho-hyoung; Rana, Dolly; Jamwal, Deepika; Katoch, Akash
2017-03-01
Surface-area-controlled porous TiO2 thin films were prepared via a simple sol-gel chemical route, and their gas-sensing properties were thoroughly investigated in the presence of typical oxidizing NO2 gas. The surface area of TiO2 thin films was controlled by developing porous TiO2 networked by means of controlling the TiO2-to-TTIP (titanium isopropoxide, C12H28O4Ti) molar ratio, where TiO2 nanoparticles of size ˜20 nm were used. The sensor’s response was found to depend on the surface area of the TiO2 thin films. The porous TiO2 thin-film sensor with greater surface area was more sensitive than those of TiO2 thin films with lesser surface area. The improved sensing ability was ascribed to the porous network formed within the thin films by TiO2 sol. Our results show that surface area is a key parameter for obtaining superior gas-sensing performance; this provides important guidelines for preparing and using porous thin films for gas-sensing applications.
Terracciano, Monica; Shahbazi, Mohammad-Ali; Correia, Alexandra; Rea, Ilaria; Lamberti, Annalisa; De Stefano, Luca; Santos, Hélder A
2015-12-21
Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL(-1) after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL(-1) and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.
Porous silicon photoluminescence biosensor for rapid and sensitive detection of toxins
NASA Astrophysics Data System (ADS)
Melnyk, Yulia; Pavlova, Karyna; Myndrul, Valerii; Viter, Roman; Smyntyna, Valentyn; Iatsunskyi, Igor
2017-08-01
A rapid and low cost photoluminescence (PL) immunosensor for the determination of low concentrations of Ochratoxin A(OTA) and Aflatoxine B1 (AfB1) has been developed. This biosensor was based on porous silicon (PSi) fabricated by metal-assisted chemical etching (MACE) and modified by antibodies against OTA/AfB1 (anti-OTA/anti-AfB1). Biofunctionalization method of the PSi surface by anti-OTA/ anti-AfB1 was developed. The changes of the PL intensity after interaction of the immobilized anti-OTA/anti-AfB1with OTA/AfB1 antigens were used as biosensor signal, allowing sensitive and selective detection of OTA/AfB1 antigens in BSA solution. The sensitivity of the reported optical biosensor towards OTA/AfB1 antigens is in the range from 10-3 to 102 ng/ml.
Um, Sungyong; Lee, Sung Gi; Woo, Hee-Gweon; Cho, Sungdong; Sohn, Honglae
2013-01-01
Adsorption and desorption characteristics of gradient distributed Bragg reflector (DBR) porous silicon (PSi) were investigated under the exposure of organic vapors. Gradient DBR PSi whose average pore size decreased as the lateral distance from the Pt electrode increased was generated by using an asymmetric etching configuration. The reflection resonances were measured as a function of lateral distance from a point closest to the plate Pt electrode to a position on the silicon surface. Two types of gradient DBR PSi (H- and HO-terminated gradient DBR PSi) were used in this study. The detection of volatile organic compounds (VOCs) using the gradient DBR PSi had been achieved. When the vapor of VOCs condensed in the nanopores, the gradient DBR PSi modified with hydrophobic and hydrophilic functionality exhibited different pore adsorption and desorption characteristics.
Polymer as permeability modifier in porous media for enhanced oil recovery
NASA Astrophysics Data System (ADS)
Parsa, Shima; Weitz, David
2017-11-01
We use confocal microscopy to directly visualize the changes in morphology and mobilization of trapped oil ganglia within a 3D micromodel of porous media upon polymer flooding. Enhanced oil recovery is achieved in polymer flooding with large molecular weight at concentrations close or higher than a critical concentration of polymer. We also measure the fluctuations of the velocity of the displacing fluid and show that the velocities change upon polymer flooding in the whole medium. The changes in the fluid velocities are heterogeneous and vary in different pores, hence only providing enough pressure gradient across a few of the trapped oil ganglia and mobilize them. Our measurements show that polymer flooding is an effective method for enhancing oil recovery due to retention of polymer on the solid surfaces and changing the resistances of the available paths to water.
Porous micropillar structures for retaining low surface tension liquids.
Agonafer, Damena D; Lee, Hyoungsoon; Vasquez, Pablo A; Won, Yoonjin; Jung, Ki Wook; Lingamneni, Srilakshmi; Ma, Binjian; Shan, Li; Shuai, Shuai; Du, Zichen; Maitra, Tanmoy; Palko, James W; Goodson, Kenneth E
2018-03-15
The ability to manipulate fluid interfaces, e.g., to retain liquid behind or within porous structures, can be beneficial in multiple applications, including microfluidics, biochemical analysis, and the thermal management of electronic systems. While there are a variety of strategies for controlling the disposition of liquid water via capillarity, such as the use of chemically modified porous adhesive structures and capillary stop valves or surface geometric features, methods that work well for low surface tension liquids are far more difficult to implement. This study demonstrates the microfabrication of a silicon membrane that can retain exceptionally low surface tension fluorinated liquids against a significant pressure difference across the membrane via an array of porous micropillar structures. The membrane uses capillary forces along the triple phase contact line to maintain stable liquid menisci that yield positive working Laplace pressures. The micropillars have inner diameters and thicknesses of 1.5-3 μm and ∼1 μm, respectively, sustaining Laplace pressures up to 39 kPa for water and 9 kPa for Fluorinert™ (FC-40). A theoretical model for predicting the change in pressure as the liquid advances along the porous micropillar structure is derived based on a free energy analysis of the liquid meniscus with capped spherical geometry. The theoretical prediction was found to overestimate the burst pressure compared with the experimental measurements. To elucidate this deviation, transient numerical simulations based on the Volume of Fluid (VOF) were performed to explore the liquid pressure and evolution of meniscus shape under different flow rates (i.e., Capillary numbers). The results from VOF simulations reveal strong dynamic effects where the anisotropic expansion of liquid along the outer micropillar edge leads to an irregular meniscus shape before the liquid spills along the micropillar edge. These findings suggest that the analytical prediction of burst Laplace pressure obtained under quasi-static condition (i.e., equilibrium thermodynamic analysis under low capillary number) is not applicable to highly dynamic flow conditions, where the liquid meniscus shape deformation by flow perturbation cannot be restored by surface tension force instantaneously. Therefore, the critical burst pressure is dependent on the liquid velocity and viscosity under dynamic flow conditions. A numerical simulation using Surface Evolver also predicts that surface defects along the outer micropillar edge can yield up to 50% lower Laplace pressures than those predicted with ideal feature geometries. The liquid retention strategy developed here can facilitate the routing and phase management of dielectric working fluids for application in heat exchangers. Further improvements in the retention performance can be realized by optimizing the fabrication process to reduce surface defects. Copyright © 2017 Elsevier Inc. All rights reserved.
Instabilities orginating from suction holes used for Laminar Flow Control (LFC)
NASA Technical Reports Server (NTRS)
Watmuff, Jonathan H.
1994-01-01
A small-scale wind tunnel previously used for turbulent boundary layer studies has been modified for experiments in laminar flow control. The facility incorporates suction through interchangeable porous test surfaces which are used to stabilize the boundary layer and delay transition to turbulent flow. The thin porous test surfaces are supported by a baffled plenum chamber box which also acts to gather the flow through the surface into tubes which are routed to a high pressure fan. An elliptic leading edge is attached to the assembly to establish a new layer on the test plate. A slot is used to remove the test section flow below the leading edge. The test section was lengthened and fitted with a new ceiling. Substantial modifications were also made to the 3D probe traverse. Detailed studies have been made using isolated holes to explore the underlying instability mechanisms. The suction is perturbed harmonically and data are averaged on the basis of the phase of the disturbance. Conditions corresponding to strong suction and without suction have been studied. In both cases, 3D contour surfaces in the vicinity of the hole show highly three-dimensional T-S waves that fan out away from the hole with streamwise distance. With suction, the perturbations on the centerline are much stronger and decay less rapidly, while the far field is similar to the case without suction. Downstream the contour surfaces of the bow-shaped TS waves develop spanwise irregularities which eventually form into clumps. The contours remain smooth when suction is not applied. Even without suction, the harmonic point source is challenging for CFD; e.g. DNS has been used for streamwise growth. With suction, grid resources are consumed by the hole and this makes DNS even more expensive. Limited DNS results so far indicate that the vortices which emanate from suction holes appear to be stable. The spanwise clumping observed in the experiment is evidence of a secondary instability that could be associated with suction vortices. A typical porous surface for LFC consists of 0.002 inch diameter holes with 0.020 inch grid spacing L, which is too small to resolve disturbances. A 20:1 scale porous test surface has been machined for improved spatial resolution while the L/d is still representative of flight conditions. Designers of porous surfaces use Goldsmith's criterion to minimize crossstream interaction. However nothing is known about the streamwise interactions. Results using two holes, aligned but displaced in the streamwise direction, indicate that partial TS wave cancellation is possible, depending on the hole spacing and disturbance frequency. Using DNS for streamwise interaction studies will be prohibitively expensive if linear superposition cannot be used for the multiple holes.
Base Passive Porosity for Vehicle Drag Reduction
NASA Technical Reports Server (NTRS)
Bauer, Steven X. S. (Inventor); Wood, Richard M. (Inventor)
2003-01-01
A device for controlling drag on a ground vehicle. The device consists of a porous skin or skins mounted on the trailing surface and/or aft portions of the ground vehicle. The porous skin is separated from the vehicle surface by a distance of at least the thickness of the porous skin. Alternately, the trailing surface, sides, and/or top surfaces of the ground vehicle may be porous. The device minimizes the strength of the separation in the base and wake regions of the ground vehicle, thus reducing drag.
Orelma, Hannes; Filpponen, Ilari; Johansson, Leena-Sisko; Osterberg, Monika; Rojas, Orlando J; Laine, Janne
2012-12-01
We introduce a new method to modify films of nanofibrillated cellulose (NFC) to produce non-porous, water-resistant substrates for diagnostics. First, water resistant NFC films were prepared from mechanically disintegrated NFC hydrogel, and then their surfaces were carboxylated via TEMPO-mediated oxidation. Next, the topologically functionalized film was activated via EDS/NHS chemistry, and its reactivity verified with bovine serum albumin and antihuman IgG. The surface carboxylation, EDC/NHS activation and the protein attachment were confirmed using quartz crystal microbalance with dissipation, contact angle measurements, conductometric titrations, X-ray photoelectron spectroscopy and fluorescence microscopy. The surface morphology of the prepared films was investigated using confocal laser scanning microscopy and atomic force microscopy. Finally, we demonstrate that antihuman IgG can be immobilized on the activated NFC surface using commercial piezoelectric inkjet printing.
Li, Jiyu; Liu, Bin; Zhou, Yingying; Chen, Zhipeng; Jiang, Lelun; Yuan, Wei; Liang, Liang
2017-01-01
Microneedle arrays (MA) have been extensively investigated in recent decades for transdermal drug delivery due to their pain-free delivery, minimal skin trauma, and reduced risk of infection. However, porous MA received relatively less attention due to their complex fabrication process and ease of fracturing. Here, we present a titanium porous microneedle array (TPMA) fabricated by modified metal injection molding (MIM) technology. The sintering process is simple and suitable for mass production. TPMA was sintered at a sintering temperature of 1250°C for 2 h. The porosity of TPMA was approximately 30.1% and its average pore diameter was about 1.3 μm. The elements distributed on the surface of TPMA were only Ti and O, which may guarantee the biocompatibility of TPMA. TPMA could easily penetrate the skin of a human forearm without fracture. TPMA could diffuse dry Rhodamine B stored in micropores into rabbit skin. The cumulative permeated flux of calcein across TPMA with punctured skin was 27 times greater than that across intact skin. Thus, TPMA can continually and efficiently deliver a liquid drug through open micropores in skin.
Porosity and thickness effect of porous silicon layer on photoluminescence spectra
NASA Astrophysics Data System (ADS)
Husairi, F. S.; Eswar, K. A.; Guliling, Muliyadi; Khusaimi, Z.; Rusop, M.; Abdullah, S.
2018-05-01
The porous silicon nanostructures was prepared by electrochemical etching of p-type silicon wafer. Porous silicon prepared by using different current density and fix etching time with assistance of halogen lamp. The physical structure of porous silicon measured by the parameters used which know as experimental factor. In this work, we select one of those factors to correlate which optical properties of porous silicon. We investigated the surface morphology by using Surface Profiler (SP) and photoluminescence using Photoluminescence (PL) spectrometer. Different physical characteristics of porous silicon produced when current density varied. Surface profiler used to measure the thickness of porous and the porosity calculated using mass different of silicon. Photoluminescence characteristics of porous silicon depend on their morphology because the size and distribution of pore its self will effect to their exciton energy level. At J=30 mA/cm2 the shorter wavelength produced and it followed the trend of porosity with current density applied.
Fabrication of Porous Ag/TiO2/Au Coatings with Excellent Multipactor Suppression
Wu, Duoduo; Ma, Jianzhong; Bao, Yan; Cui, Wanzhao; Hu, Tiancun; Yang, Jing; Bai, Yuanrui
2017-01-01
Porous Ag/TiO2/Au coatings with excellent multipactor suppression were prepared by fabrication of porous Ag surface through two-step wet chemical etching, synthesis of TiO2 coatings by electroless-plating-like solution deposition and deposition of Au coatings via electroless plating. Porous structure of Ag surface, TiO2 coatings on porous Ag surface and Au coatings on porous Ag/TiO2 surface were verified by field-emission scanning electron microscopy, the composition and crystal type of TiO2 coatings was characterized by X-ray photoelectron spectroscopy and X-ray diffraction. Secondary electron yield (SEY) measurement was used to monitor the SEY coefficient of the porous Ag coatings and Ag/TiO2/Au coatings. The as-obtained porous Ag coatings were proved exhibiting low SEY below 1.2, and the process was highly reproducible. In addition, the porous Ag/TiO2/Au coatings showed excellent multipactor suppression with the SEY 1.23 and good environmental stability. It is worth mentioning that the whole preparation process is simple and feasible, which would provide a promising application in RF devices. PMID:28281546
Surface States and Effective Surface Area on Photoluminescent P-Type Porous Silicon
NASA Technical Reports Server (NTRS)
Weisz, S. Z.; Porras, A. Ramirez; Resto, O.; Goldstein, Y.; Many, A.; Savir, E.
1997-01-01
The present study is motivated by the possibility of utilizing porous silicon for spectral sensors. Pulse measurements on the porous-Si/electrolyte system are employed to determine the surface effective area and the surface-state density at various stages of the anodization process used to produce the porous material. Such measurements were combined with studies of the photoluminescence spectra. These spectra were found to shift progressively to the blue as a function of anodization time. The luminescence intensity increases initially with anodization time, reaches a maximum and then decreases with further anodization. The surface state density, on the other hand, increases with anodization time from an initial value of about 2 x 10(exp 12)/sq cm surface to about 1013 sq cm for the anodized surface. This value is attained already after -2 min anodization and upon further anodization remains fairly constant. In parallel, the effective surface area increases by a factor of 10-30. This behavior is markedly different from the one observed previously for n-type porous Si.
Violi, Ianina L; Perez, M Dolores; Fuertes, M Cecilia; Soler-Illia, Galo J A A
2012-08-01
Highly porous (V(mesopore) = 25-50%) and ordered mesoporous titania thin films (MTTF) were prepared on ITO (indium tin oxide)-covered glass by a fast two-step method. The effects of substrate surface modification and thermal treatment on pore order, accessibility and crystallinity of the MTTF were systematically studied for MTTF deposited onto bare and titania-modified ITO. MTTF exposed briefly to 550 °C resulted in highly ordered films with grid-like structures, enlarged pore size, and increased accessible pore volume when prepared onto the modified ITO substrate. Mesostructure collapse and no significant change in pore volume were observed for MTTF deposited on bare ITO substrates. Highly crystalline anatase was obtained for MTTF prepared on the modified-ITO treated at high temperatures, establishing the relationship between grid-like structures and titania crystallization. Photocatalytic activity was maximized for samples with increased crystallization and high accessible pore volume. In this manner, a simple way of designing materials with optimized characteristics for optoelectronic applications was achieved through the modification of the ITO surface and a controlled thermal treatment.
Porous silicon structures with high surface area/specific pore size
Northrup, M.A.; Yu, C.M.; Raley, N.F.
1999-03-16
Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.
Porous silicon structures with high surface area/specific pore size
Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.
1999-01-01
Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.
Recovery of gold as a type of porous fiber by using biosorption followed by incineration.
Park, Seong-In; Kwak, In Seob; Bae, Min A; Mao, Juan; Won, Sung Wook; Han, Do Hyeong; Chung, Yong Sik; Yun, Yeoung-Sang
2012-01-01
This study introduces a new process for the recovery of gold in porous fiber form by the incineration of Au-loaded biosorbent fiber from gold-cyanide solutions. For the recovery of gold from such aqueous solutions, polyethylenimine (PEI)-modified bacterial biosorbent fiber (PBBF) and PEI-modified chitosan fiber (PCSF) were developed and used. The maximum uptakes of Au(I) ions were estimated as 421.1 and 251.7 mg/g at pH 5.5 for PBBF and PCSF, respectively. Au-loaded biosorbents were freeze-dried and then incinerated to oxidize their organic constituents while simultaneously obtaining reduced gold. As a result, porous metallic gold fibers were obtained with 60 μm of diameter. Scanning electron microscopic (SEM) analysis and mercury porosimetry revealed the fibers to have 60 μm of diameter and to be highly porous and hollow. The proposed process therefore offers the potential for the efficient recovery of metallic porous gold fibers using combined biosorption and incineration. Copyright © 2011 Elsevier Ltd. All rights reserved.
Shrestha, Neha; Shahbazi, Mohammad-Ali; Araújo, Francisca; Zhang, Hongbo; Mäkilä, Ermei M; Kauppila, Jussi; Sarmento, Bruno; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A
2014-08-01
Porous silicon (PSi) based particulate systems are emerging as an important drug delivery system due to its advantageous properties such as biocompatibility, biodegradability and ability to tailor the particles' physicochemical properties. Here, annealed thermally hydrocarbonized PSi (AnnTHCPSi) and undecylenic acid modified AnnTHCPSi (AnnUnTHCPSi) microparticles were developed as a PSi-based platform for oral delivery of insulin. Chitosan (CS) was used to modify the AnnUnTHCPSi microparticles to enhance the intestinal permeation of insulin. Surface modification with CS led to significant increase in the interaction of PSi microparticles with Caco-2/HT-29 cell co-culture monolayers. Compared to pure insulin, the CS-conjugated microparticles significantly improved the permeation of insulin across the Caco-2/HT-29 cell monolayers, with ca. 20-fold increase in the amount of insulin permeated and ca. 7-fold increase in the apparent permeability (P(app)) value. Moreover, among all the investigated particles, the CS-conjugated microparticles also showed the highest amount of insulin associated with the mucus layer and the intestinal Caco-2 cells and mucus secreting HT-29 cells. Our results demonstrate that CS-conjugated AnnUnTHCPSi microparticles can efficiently enhance the insulin absorption across intestinal cells, and thus, they are promising microsystems for the oral delivery of proteins and peptides across the intestinal cell membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dridi, H.; Haji, L.; Moadhen, A.
2017-04-01
We report in this paper a novel method to elaborate rough Surface Enhanced Raman Scattering (SERS) substrate. A single layer of porous silicon was formed on the silicon backside surface. Morphological characteristics of the porous silicon layer before and after gold deposition were influenced by the rough character (gold size). The reflectance measurements showed a dependence of the gold nano-grains size on the surface nature, through the Localized Surface Plasmon (LSP) band properties. SERS signal of Rhodamine 6G used as a model analyte, adsorbed on the rough porous silicon layer revealed a marked enhancement of its vibrational modes intensities.
Li, Mingtao; Meng, Guowen; Huang, Qing; Zhang, Shile
2014-01-01
We report a new mechanism for the enhancement of porous-ZnO surface photovoltage (SPV) response to polychlorinated biphenyls (PCBs, a notorious class of persistent organic pollutants as global environmental hazard) based on copper phthalocyanine (CuPc) chemisorptive bonding on porous-ZnO. A new ZnO-CuPc composite is formed on the porous-ZnO surface due to the interaction between the surface ZnO and CuPc, with its valence band (VB) energy level being higher than that of the pristine porous-ZnO. So that the efficiency of the photogenerated-electron transfer from the composite VB to the adjacent ZnO's surface states is drastically increased due to the reduced energy gap between the transition states. As a result, the sensitivity of the PCB-orientated SPV sensor is much improved by showing amplified variation of the SPV-signals perturbed by PCBs adsorbed on the ZnO-CuPc@porous-ZnO sensitive material. PMID:24594662
NASA Astrophysics Data System (ADS)
Yang, Feng; Li, Yong-gang; Wei, Ying-hui; Wei, Huan; Yan, Ze-ying; Hou, Li-feng
2018-03-01
A surface-porous Mg-Al eutectic alloy was fabricated at room temperature via electrochemical dealloying in a neutral, aqueous 0.6 M NaCl solution by controlling the applied potential and processing duration. Selective dissolution occurred on the alloy surface. The surface-porous formation mechanism is governed by the selective dissolution of the α-Mg phase, which leaves the Mg17Al12 phase as the porous layer framework. The pore characteristics (morphology, size, and distribution) of the dealloyed samples are inherited from the α-Mg phases of the precursor Mg70.5Al29.5 (at.%) alloy. Size control in the porous layer can be achieved by regulating the synthesis parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chubenko, E. B., E-mail: eugene.chubenko@gmail.com; Redko, S. V.; Sherstnyov, A. I.
2016-03-15
The influence of the surface layer on the process of the electrochemical deposition of metals and semiconductors into porous silicon is studied. It is shown that the surface layer differs in structure and electrical characteristics from the host porous silicon bulk. It is established that a decrease in the conductivity of silicon crystallites that form the surface layer of porous silicon has a positive effect on the process of the filling of porous silicon with metals and semiconductors. This is demonstrated by the example of nickel and zinc oxide. The effect can be used for the formation of nanocomposite materialsmore » on the basis of porous silicon and nanostructures with a high aspect ratio.« less
Bioparticles assembled using low frequency vibration immune to evacuation drifts
NASA Astrophysics Data System (ADS)
Shao, Fenfen; Whitehill, James David; Ng, Tuck Wah
2012-08-01
The use of low frequency vibration on suspensions of glass beads in a droplet has been shown to develop a strong degree of patterning (to a ring) due to the manner with which the surface waves are modified. Functionalized glass beads that serve as bioparticles permit for sensitive readings when concentrated at specific locations. However, a time controlled exposure with analytes is desirable. The replacement of the liquid medium with analyte through extraction is needed to conserve time. Nevertheless, we show here that extraction with a porous media, which is simple and useable in the field, will strongly displace the patterned beads. The liquid removal was found to be dependent on two mechanisms that affect the shape of the droplet, one of contact hysteresis due to the outer edge pinning, and the other of liquid being drawn into the porous media. From this, we developed and demonstrated a modified well structure that prevented micro-bead displacement during evacuation. An added strong advantage with this approach lies with its ability to require only analytes to be dispensed at the location of aggregated particles, which minimizes analyte usage. This was analytically established here.
Post-activation of in situ Bsbnd F codoped g-C3N4 for enhanced photocatalytic H2 evolution
NASA Astrophysics Data System (ADS)
Cui, Yanjuan; Wang, Hao; Yang, Chuanfeng; Li, Ming; Zhao, Yimeng; Chen, Fangyan
2018-05-01
Porous graphitic carbon nitride polymer (p-CN-BF) with enhanced photoproduction of H2 from water was prepared by a two-step treatment process including in-situ Boron and fluorine codoping using [Emim]BF4 as dopants followed by post-calcination in air. Several techniques were employed to characterize the modified structure and elucidate the doping state of B and F. It was shown that in-situ doping method is necessary for efficient doping of heteroatoms into the molecular composition of CN. The difference of doping state of B and F was that B doping primary existing in the inside skeleton of CN, but F doping merely presents in the surface layer. The inside doped B made for the enhanced visible light absorption and the production of uniform porous structure during post-sintering process. By the synergistic effect of Bsbnd F codoping and post-activation, p-CN-BF showed much enhanced photoelectron generation, transmission and separation, therefore, it performs high photocatalytic activity for H2 evolution (351 μmol h-1), which was 13 and 5 times higher than samples only modified by Bsbnd F codoping (CN-BF) or post-annealing (P-CN).
Bipolar plate/diffuser for a proton exchange membrane fuel cell
Besmann, Theodore M.; Burchell, Timothy D.
2001-01-01
A combination bipolar plate/diffuser fuel cell component includes an electrically conducting solid material having: a porous region having a porous surface; and a hermetic region, the hermetic region defining at least a portion of at least one coolant channel, the porous region defining at least a portion of at least one reactant channel, the porous region defining a flow field medium for diffusing the reactant to the porous surface.
Bipolar plate/diffuser for a proton exchange membrane fuel cell
Besmann, Theodore M.; Burchell, Timothy D.
2000-01-01
A combination bipolar plate/diffuser fuel cell component includes an electrically conducting solid material having: a porous region having a porous surface; and a hermetic region, the hermetic region defining at least a portion of at least one coolant channel, the porous region defining at least a portion of at least one reactant channel, the porous region defining a flow field medium for diffusing the reactant to the porous surface.
Ultrastructural investigation of intact orbital implant surfaces using atomic force microscopy.
Choi, Samjin; Lee, Seung Jun; Shin, Jae-Ho; Cheong, Youjin; Lee, Hui-Jae; Paek, Joo Hee; Kim, Jae Sik; Jin, Kyung-Hyun; Park, Hun-Kuk
2011-01-01
This study examined the surface nanostructures of three orbital implants: nonporous poly(methyl methacrylate) (PMMA), porous aluminum oxide and porous polyethylene. The morphological characteristics of the orbital implants surfaces were observed by atomic force microscopy (AFM). The AFM topography, phase shift and deflection images of the intact implant samples were obtained. The surface of the nonporous PMMA implant showed severe scratches and debris. The surface of the aluminum oxide implant showed a porous structure with varying densities and sizes. The PMMA implant showed nodule nanostructures, 215.56 ± 52.34 nm in size, and the aluminum oxide implant showed crystal structures, 730.22 ± 341.02 nm in size. The nonporous PMMA implant showed the lowest roughness compared with other implant biomaterials, followed by the porous aluminum oxide implant. The porous polyethylene implant showed the highest roughness and severe surface irregularities. Overall, the surface roughness of orbital implants might be associated with the rate of complications and cell adhesion. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Li, Y.; Seymour, M.; Chen, G.; Su, C.
2013-12-01
Mechanistic understanding of the transport and retention of nanoparticles in porous media is essential both for environmental applications of nanotechnology and assessing the potential environmental impacts of engineered nanomaterials. Engineered and naturally occurring nanoparticles can be found in various shapes including rod-shape carbon nanotubes that have high aspect ratios. Although it is expected that nonspherical shape could play an important role on their transport and retention behaviors, current theoretical models for particle transport in porous media, however, are mostly based on spherical particle shape. In this work, the effect of particle shape on its transport and retention in porous media was evaluated by stretching carboxylate-modified fluorescent polystyrene spheres into rod shapes with aspect ratios of 2:1 and 4:1. Quartz crystal microbalance with dissipation experiments (QCM-D) were conducted to measure the deposition rates of spherical and rod-shaped nanoparticles to the collector (poly-L-lysine coated silica sensor) surface under favorable conditions. Under unfavorable conditions, the retention of nanoparticles in a microfluidic flow cell packed with glass beads was studied with the use of laser scanning cytometry (LSC). Under favorable conditions, the spherical particles displayed a significantly higher deposition rate compared with that of the rod-shaped particles. Theoretical analysis based on Smoluchowski-Levich approximation indicated that the rod-shaped particles largely counterbalance the attractive energies due to higher hydrodynamic forces and torques experienced during their transport and rotation. Under unfavorable conditions, significantly more attachment was observed for rod-shaped particles than spherical particles, and the attachment rate of the rod-shaped particles showed an increasing trend with the increase in injection volume. Rod-shaped particles were found to be less sensitive to the surface charge heterogeneity change than spherical particles. Increased attachment rate of rod-shaped particles was attributed to surface heterogeneity and possibly enhanced hydrophobicity during the stretching process.
Modified friction factor correlation for CICC's based on a porous media analogy
NASA Astrophysics Data System (ADS)
Lewandowska, Monika; Bagnasco, Maurizio
2011-09-01
A modified correlation for the bundle friction factor in CICC's based on a porous media analogy is presented. The correlation is obtained by the analysis of the collected pressure drop data measured for 23 CICC's. The friction factors predicted by the proposed correlation are compared with those resulting from the pressure drop data for two CICC's measured recently using cryogenic helium in the SULTAN test facility at EPFL-CRPP.
Electrodeposition of platinum and silver into chemically modified microporous silicon electrodes
2012-01-01
Electrodeposition of platinum and silver into hydrophobic and hydrophilic microporous silicon layers was investigated using chemically modified microporous silicon electrodes. Hydrophobic microporous silicon enhanced the electrodeposition of platinum in the porous layer. Meanwhile, hydrophilic one showed that platinum was hardly deposited within the porous layer, and a film of platinum on the top of the porous layer was observed. On the other hand, the electrodeposition of silver showed similar deposition behavior between these two chemically modified electrodes. It was also found that the electrodeposition of silver started at the pore opening and grew toward the pore bottom, while a uniform deposition from the pore bottom was observed in platinum electrodeposition. These electrodeposition behaviors are explained on the basis of the both effects, the difference in overpotential for metal deposition on silicon and on the deposited metal, and displacement deposition rate of metal. PMID:22720690
Nanostructured materials for hydrogen storage
Williamson, Andrew J.; Reboredo, Fernando A.
2007-12-04
A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.
Numerical analysis of the impact of permeability on trailing-edge noise
NASA Astrophysics Data System (ADS)
Koh, Seong Ryong; Meinke, Matthias; Schröder, Wolfgang
2018-05-01
The impact of porous surfaces on the near-wall turbulent structures and the generated trailing-edge noise is analyzed for several trailing-edge shapes of finite thickness using a high resolution large-eddy simulation (LES)/computational aeroacoustics (CAA) method. The porous surface of the trailing edge is defined by the porosity and the viscous permeability determined by the solution of a turbulent flat plate boundary layer at a Reynolds number 1280 based on the displacement thickness in the inflow cross section. The volume-averaged approach for the homogeneous porous medium shows that the porous impedance scales linearly with the porosity and exponentially with the mean structure size of a porous medium. The drag induced by the porous surface changes the friction velocity and the permeability Reynolds number ReK which determines the porous impedance Rs scaled by ReK-2/3. The trailing-edge noise is analyzed for three solid and three porous trailing edges. The effect of a finite span is investigated by the spanwise correlation model based on the measured coherence distribution. The acoustic prediction shows a good agreement with measurements of the broadband spectrum and the strong tone generated by a finite trailing-edge thickness. The pressure gradient inside the porous media is redistributed by the Darcy drag defined by the viscous permeability and the porosity. The mean pressure increases in the upstream direction inside the porous medium such that the flow acceleration involved in the acoustic generation is reduced inside the porous medium. The noise reduction by a porous medium reaches 11 dB for the trailing-edge shape which possesses a sharp corner for the solid surface. The porous surface applied to a semi-circular trailing edge achieves a 4 dB noise reduction. The directivity pattern for individual components of the acoustic spectrum shows that the massive noise reduction is determined at the tone. Enhanced wave diffraction by the thick flat plate changes the directivity pattern in the high frequency range.
Organically Modified Silicas on Metal Nanowires
2010-01-01
Organically modified silica coatings were prepared on metal nanowires using a variety of silicon alkoxides with different functional groups (i.e., carboxyl groups, polyethylene oxide, cyano, dihydroimidazole, and hexyl linkers). Organically modified silicas were deposited onto the surface of 6-μm-long, ∼300-nm-wide, cylindrical metal nanowires in suspension by the hydrolysis and polycondensation of silicon alkoxides. Syntheses were performed at several ratios of tetraethoxysilane to an organically modified silicon alkoxide to incorporate desired functional groups into thin organosilica shells on the nanowires. These coatings were characterized using transmission electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy. All of the organically modified silicas prepared here were sufficiently porous to allow the removal of the metal nanowire cores by acid etching to form organically modified silica nanotubes. Additional functionality provided to the modified silicas as compared to unmodified silica prepared using only tetraethoxysilane precursors was demonstrated by chromate adsorption on imidazole-containing silicas and resistance to protein adsorption on polyethyleneoxide-containing silicas. Organically modified silica coatings on nanowires and other nano- and microparticles have potential application in fields such as biosensing or nanoscale therapeutics due to the enhanced properties of the silica coatings, for example, the prevention of biofouling. PMID:20715881
Damle, Ashok S.
2004-07-13
A method is provided for the preparation of metal/porous substrate composite membranes by flowing a solution of metal to be plated over a first surface of a porous substrate and concurrently applying a pressure of gas on a second surface of the porous substrate, such that the porous substrate separates the solution of metal from the gas, and the use of the resulting membrane for the production of highly purified hydrogen gas.
Surface transport processes in charged porous media
Gabitto, Jorge; Tsouris, Costas
2017-03-03
Surface transport processes are important in chemistry, colloidal sciences, engineering, biology, and geophysics. Natural or externally produced charges on surfaces create electrical double layers (EDLs) at the solid-liquid interface. The existence of the EDLs produces several complex processes including bulk and surface transport of ions. In this work, a model is presented to simulate bulk and transport processes in homogeneous porous media comprising big pores. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A volume averaging technique is used to derive the averaged transport equations inmore » the limit of thin electrical double layers. Description of the EDL between the electrolyte solution and the charged wall is accomplished using the Gouy-Chapman-Stern (GCS) model. The surface transport terms enter into the average equations due to the use of boundary conditions for diffuse interfaces. Two extra surface transports terms appear in the closed average equations. One is a surface diffusion term equivalent to the transport process in non-charged porous media. The second surface transport term is a migration term unique to charged porous media. The effective bulk and transport parameters for isotropic porous media are calculated solving the corresponding closure problems.« less
Surface transport processes in charged porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabitto, Jorge; Tsouris, Costas
Surface transport processes are important in chemistry, colloidal sciences, engineering, biology, and geophysics. Natural or externally produced charges on surfaces create electrical double layers (EDLs) at the solid-liquid interface. The existence of the EDLs produces several complex processes including bulk and surface transport of ions. In this work, a model is presented to simulate bulk and transport processes in homogeneous porous media comprising big pores. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A volume averaging technique is used to derive the averaged transport equations inmore » the limit of thin electrical double layers. Description of the EDL between the electrolyte solution and the charged wall is accomplished using the Gouy-Chapman-Stern (GCS) model. The surface transport terms enter into the average equations due to the use of boundary conditions for diffuse interfaces. Two extra surface transports terms appear in the closed average equations. One is a surface diffusion term equivalent to the transport process in non-charged porous media. The second surface transport term is a migration term unique to charged porous media. The effective bulk and transport parameters for isotropic porous media are calculated solving the corresponding closure problems.« less
NASA Astrophysics Data System (ADS)
Mural, Prasanna Kumar S.; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi
2016-04-01
3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification. Electronic supplementary information (ESI) available: SEM micrographs of porous PE with and without maleated PE, X-ray micro-computed tomogram of porous extruded PE, FTIR spectra of GO, XPS wide spectra of untreated and GO immobilized PE and Raman spectra of PE and GO. See DOI: 10.1039/c6nr01356b
NASA Astrophysics Data System (ADS)
Maddix, Danielle C.; Sampaio, Luiz; Gerritsen, Margot
2018-05-01
The degenerate parabolic Generalized Porous Medium Equation (GPME) poses numerical challenges due to self-sharpening and its sharp corner solutions. For these problems, we show results for two subclasses of the GPME with differentiable k (p) with respect to p, namely the Porous Medium Equation (PME) and the superslow diffusion equation. Spurious temporal oscillations, and nonphysical locking and lagging have been reported in the literature. These issues have been attributed to harmonic averaging of the coefficient k (p) for small p, and arithmetic averaging has been suggested as an alternative. We show that harmonic averaging is not solely responsible and that an improved discretization can mitigate these issues. Here, we investigate the causes of these numerical artifacts using modified equation analysis. The modified equation framework can be used for any type of discretization. We show results for the second order finite volume method. The observed problems with harmonic averaging can be traced to two leading error terms in its modified equation. This is also illustrated numerically through a Modified Harmonic Method (MHM) that can locally modify the critical terms to remove the aforementioned numerical artifacts.
Process for forming a porous silicon member in a crystalline silicon member
Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.
1999-01-01
Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.
Evaluation of nano-technology-modified zirconia oral implants: a study in rabbits.
Lee, Jaebum; Sieweke, Janet H; Rodriguez, Nancy A; Schüpbach, Peter; Lindström, Håkan; Susin, Cristiano; Wikesjö, Ulf M E
2009-07-01
The objective of this study was to screen candidate nano-technology-modified, micro-structured zirconia implant surfaces relative to local bone formation and osseointegration. Proprietary nano-technology surface-modified (calcium phosphate: CaP) micro-structured zirconia implants (A and C), control micro-structured zirconia implants (ZiUnite), and titanium porous oxide implants (TiUnite) were implanted into the femoral condyle in 40 adult male New Zealand White rabbits. Each animal received one implant in each hind leg; thus, 20 animals received A and C implants and 20 animals received ZiUnite and TiUnite implants in contralateral hind legs. Ten animals/group were euthanized at weeks 3 and 6 when biopsies of the implant sites were processed for histometric analysis using digital photomicrographs produced using backscatter scanning electron microscopy. The TiUnite surface demonstrated significantly greater bone-implant contact (BIC) (77.6+/-2.6%) compared with the A (64.6+/-3.6%) and C (62.2+/-3.1%) surfaces at 3 weeks (p<0.05). Numerical differences between ZiUnite (70.5+/-3.1%) and A and C surfaces did not reach statistical significance (p>0.05). Similarly, there were non-significant differences between the TiUnite and the ZiUnite surfaces (p>0.05). At 6 weeks, there were no significant differences in BIC between the TiUnite (67.1+/-4.2%), ZiUnite (69.7+/-5.7%), A (68.6+/-1.9%), and C (64.5+/-4.1%) surfaces (p>0.05). TiUnite and ZiUnite implant surfaces exhibit high levels of osseointegration that, in this model, confirm their advanced osteoconductive properties. Addition of CaP nano-technology to the ZiUnite surface does not enhance the already advanced osteoconductivity displayed by the TiUnite and ZiUnite implant surfaces.
NASA Astrophysics Data System (ADS)
Walicka, A.; Walicki, E.; Jurczak, P.; Falicki, J.
2017-08-01
In the paper, the influence of both the bearing surfaces roughness as well as porosity of one bearing surface on the pressure distribution and load-carrying capacity of a curvilinear, externally pressurized, thrust bearing is discussed. The equations of motion of a pseudo-plastic Rabinowitsch fluid are used to derive the Reynolds equation. After general considerations on the flow in a bearing clearance and in a porous layer using the Morgan-Cameron approximation and Christensen theory of hydrodynamic lubrication with rough bearing surfaces the modified Reynolds equation is obtained. The analytical solution is presented; as a result one obtains the formulae expressing the pressure distribution and load-carrying capacity. Thrust radial and conical bearings, externally pressurized, are considered as numerical examples.
Veeramani, Vediyappan; Madhu, Rajesh; Chen, Shen-Ming; Lou, Bih-Show; Palanisamy, Jayabal; Vasantha, Vairathevar Sivasamy
2015-05-22
The biomass-derived activated carbons (ACs) have been prepared with high surface areas up to 793 m(2) g(-1) is by ZnCl2 activation at three different temperatures, viz. AC700, AC800, and AC900. The AC samples were characterized by a variety of analytical and spectroscopy techniques. The as-synthesized ACs were adopted for the simultaneous electrochemical detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). For comparison, reduced graphene oxide (RGO) was employed for the proposed sensor. The high surface area, modulated pore size and the presence of oxygen surface functional groups like heteroatoms (83.427% C, 1.085% N, 0.383% S, and 0.861% H) in the biomass-derived AC is found to be responsible for the excellent catalytic activities of biomolecules. Fascinatingly, the facile sensor further used to detect biomolecules levels in the snail hemolymph and human blood serum. Notably, the obtained analytical parameters for the biomolecules detection over the AC modified GCE, outperforming several carbon-based modified electrodes in literatures.
Veeramani, Vediyappan; Madhu, Rajesh; Chen, Shen-Ming; Lou, Bih-Show; Palanisamy, Jayabal; Vasantha, Vairathevar Sivasamy
2015-01-01
The biomass-derived activated carbons (ACs) have been prepared with high surface areas up to 793 m2 g−1 is by ZnCl2 activation at three different temperatures, viz. AC700, AC800, and AC900. The AC samples were characterized by a variety of analytical and spectroscopy techniques. The as-synthesized ACs were adopted for the simultaneous electrochemical detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). For comparison, reduced graphene oxide (RGO) was employed for the proposed sensor. The high surface area, modulated pore size and the presence of oxygen surface functional groups like heteroatoms (83.427% C, 1.085% N, 0.383% S, and 0.861% H) in the biomass-derived AC is found to be responsible for the excellent catalytic activities of biomolecules. Fascinatingly, the facile sensor further used to detect biomolecules levels in the snail hemolymph and human blood serum. Notably, the obtained analytical parameters for the biomolecules detection over the AC modified GCE, outperforming several carbon-based modified electrodes in literatures. PMID:25998156
NASA Astrophysics Data System (ADS)
Veeramani, Vediyappan; Madhu, Rajesh; Chen, Shen-Ming; Lou, Bih-Show; Palanisamy, Jayabal; Vasantha, Vairathevar Sivasamy
2015-05-01
The biomass-derived activated carbons (ACs) have been prepared with high surface areas up to 793 m2 g-1 is by ZnCl2 activation at three different temperatures, viz. AC700, AC800, and AC900. The AC samples were characterized by a variety of analytical and spectroscopy techniques. The as-synthesized ACs were adopted for the simultaneous electrochemical detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). For comparison, reduced graphene oxide (RGO) was employed for the proposed sensor. The high surface area, modulated pore size and the presence of oxygen surface functional groups like heteroatoms (83.427% C, 1.085% N, 0.383% S, and 0.861% H) in the biomass-derived AC is found to be responsible for the excellent catalytic activities of biomolecules. Fascinatingly, the facile sensor further used to detect biomolecules levels in the snail hemolymph and human blood serum. Notably, the obtained analytical parameters for the biomolecules detection over the AC modified GCE, outperforming several carbon-based modified electrodes in literatures.
Enhancing the Properties of Carbon and Gold Substrates by Surface Modification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harnisch, Jennifer Anne
2001-01-01
The properties of both carbon and gold substrates are easily affected by the judicious choice of a surface modification protocol. Several such processes for altering surface composition have been published in literature. The research presented in this thesis primarily focuses on the development of on-column methods to modify carbon stationary phases used in electrochemically modulated liquid chromatography (EMLC). To this end, both porous graphitic carbon (PGC) and glassy carbon (GC) particles have been modified on-column by the electroreduction of arenediazonium salts and the oxidation of arylacetate anions (the Kolbe reaction). Once modified, the carbon stationary phases show enhanced chromatographic performancemore » both in conventional liquid chromatographic columns and EMLC columns. Additionally, one may also exploit the creation of aryl films to by electroreduction of arenediazonium salts in the creation of nanostructured materials. The formation of mercaptobenzene film on the surface of a GC electrode provides a linking platform for the chemisorption of gold nanoparticles. After deposition of nanoparticles, the surface chemistry of the gold can be further altered by self-assembled monolayer (SAM) formation via the chemisorption of a second thiol species. Finally, the properties of gold films can be altered such that they display carbon-like behavior through the formation of benzenehexathiol (BHT) SAMs. BHT chemisorbs to the gold surface in a previously unprecedented planar fashion. Carbon and gold substrates can be chemically altered by several methodologies resulting in new surface properties. The development of modification protocols and their application in the analytical arena is considered herein.« less
NASA Astrophysics Data System (ADS)
Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila
2016-02-01
The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.
NASA Astrophysics Data System (ADS)
Hu, Jinyi; Yuan, Wei; Chen, Wenjun; Xu, Xiaotian; Tang, Yong
2016-12-01
This study reports the fabrication of a novel stable superhydrophobic and superoleophylic porous metal material on a copper fiber sintered felt (CFSF) substrate via a simple solution-immersion method. Oxidation and modification times are two important factors related to the level of hydrophobicity; oxidation for 1 h and modification for 24 h are appropriate to build a superhydrophobic CFSF surface with a water contact angle of 152.83° and a kerosene contact angle of 0°. The stability and high temperature resistance of superhydrophobic CFSF were studied. A novel device was designed to measure the water repellent ability of the treated CFSF. The results indicated that the water repellent ability of superhydrophobic CFSF was almost constant after 40 cycles of sanding. Both the water contact angle and the microstructure of the modified CFSF surface remained nearly unchanged after experiencing ultrasonic vibration for 1 min. The modified CFSF surface maintains super hydrophobicity after being treated at 180 °C for 1 h. The separation efficiencies for different types of oils and organic solvents (kerosene, chloroform, n-hexane and gasoline) are more than 96%. The modified CFSF retains a high robustness of separation efficiency even after it is recycled for the separation of kerosene and water for more than 10 times.
Wu, S L; Chu, Paul K; Liu, X M; Chung, C Y; Ho, J P Y; Chu, C L; Tjong, S C; Yeung, K W K; Lu, W W; Cheung, K M C; Luk, K D K
2006-10-01
Good surface properties and biocompatibility are crucial to porous NiTi shape memory alloys (SMA) used in medical implants, as possible nickel release from porous NiTi may cause deleterious effects in the human body. In this work, oxygen plasma immersion ion implantation (O-PIII) was used to reduce the amount of nickel leached from porous NiTi alloys with a porosity of 42% prepared by capsule-free hot isostatic pressing. The mechanical properties, surface properties, and biocompatibility were studied by compression tests, X-ray photoelectron spectroscopy (XPS), and cell culturing. The O-PIII porous NiTi SMAs have good mechanical properties and excellent superelasticity, and the amount of nickel leached from the O-PIII porous NiTi is much less than that from the untreated samples. XPS results indicate that a nickel-depleted surface layer predominantly composed of TiO(2) is produced by O-PIII and acts as a barrier against out-diffusion of nickel. The cell culturing tests reveal that both the O-PIII and untreated porous NiTi alloys have good biocompatibility. (c) 2006 Wiley Periodicals, Inc
Xia, Hongjun; Wan, Guangping; Zhao, Junlong; Liu, Jiawei; Bai, Quan
2016-11-04
High performance liquid chromatography (HPLC) is a kind of efficient separation technology and has been used widely in many fields. Micro-sized porous silica microspheres as the most popular matrix have been used for fast separation and analysis in HPLC. In this paper, the monodisperse large-porous silica microspheres with controllable size and structure were successfully synthesized with polymer microspheres as the templates and characterized. First, the poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate) microspheres (P GMA-EDMA ) were functionalized with tetraethylenepentamine (TEPA) to generate amino groups which act as a catalyst in hydrolysis of tetraethyl orthosilicate (TEOS) to form Si-containing low molecular weight species. Then the low molecular weight species diffused into the functionalized P GMA-EDMA microspheres by induction force of the amino groups to form polymer/silica hybrid microspheres. Finally, the organic polymer templates were removed by calcination, and the large-porous silica microspheres were obtained. The compositions, morphology, size distribution, specific surface area and pore size distribution of the porous silica microspheres were characterized by infrared analyzer, scanning-electron microscopy, dynamic laser scattering, the mercury intrusion method and thermal gravimetric analysis, respectively. The results show that the agglomeration of the hybrid microspheres can be overcome when the templates were functionalized with TEPA as amination reagent, and the yield of 95.7% of the monodisperse large-porous silica microspheres can be achieved with high concentration of polymer templates. The resulting large-porous silica microspheres were modified with octadecyltrichlorosilane (ODS) and the chromatographic evaluation was performed by separating the proteins and the digest of BSA. The baseline separation of seven kinds of protein standards was achieved, and the column delivered a better performance when separating BSA digests comparing with the commercial one currently available. The high column efficiency and good reproducibility present that the large-porous silica microspheres obtained can be used as a matrix for peptide and protein separation. Copyright © 2016 Elsevier B.V. All rights reserved.
Surface modification for interaction study with bacteria and preosteoblast cells
NASA Astrophysics Data System (ADS)
Song, Qing
Surface modification plays a pivotal role in bioengineering. Polymer coatings can provide biocompatibility and biofunctionalities to biomaterials through surface modification. In this dissertation, initiated chemical vapor deposition (iCVD) was utilized to coat two-dimensional (2D) and three-dimensional (3D) substrates with differently charged polyelectrolytes in order to generate antimicrobial and osteocompatible biomaterials. ICVD is a modified CVD technique that enables surface modification in an all-dry condition without substrate damage and solvent contamination. The free-radical polymerization allows the vinyl polymers to conformally coat on various micro- and nano-structured substrates and maintains the delicate structure of the functional groups. The vapor deposition of polycations provided antimicrobial activity to planar and porous substrates through destroying the negatively charged bacterial membrane and brought about high contact-killing efficiency (99.99%) against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli. Additionally, the polyampholytes synthesized by iCVD exhibited excellent antifouling performance against the adhesion of Gram-positive Listeria innocua and Gram-negative E. coli in phosphate buffered saline (PBS). Their antifouling activities were attributed to the electrostatic interaction and hydration layers that served as physical and energetic barriers to prevent bacterial adhesion. The contact-killing and antifouling polymers synthesized by iCVD can be applied to surface modification of food processing equipment and medical devices with the aim of reducing foodborne diseases and medical infections. Moreover, the charged polyelectrolyte modified 2D polystyrene surfaces displayed good osteocompatibility and enhanced osteogenesis of preosteoblast cells than the un-modified polystyrene surface. In order to promote osteoinduction of hydroxyapatite (HA) scaffolds, bioinspired polymer-controlled mineralization was conducted on the polyelectrolyte modified HA scaffolds. The mineralized scaffolds stimulated osteogenesis of preosteoblast cells compared with the control HA scaffolds. Therefore, the surface modification through vapor deposition of polyelectrolytes and polymer-controlled mineralization can improve osteoinduction of bone materials. In summary, the iCVD-mediated surface modification is a simple and promising approach to biofunctionalizing various structured substrates and generating antimicrobial and biocompatible biomaterials.
Simon, Ziv; Deporter, Douglas A; Pilliar, Robert M; Clokie, Cameron M
2006-09-01
Coating endosseous dental implants with growth factors such as bone morphogenetic proteins (BMPs) may be one way to accelerate and/or enhance the quality of osseointegration. The purpose of this study was to investigate in the murine muscle pouch model whether sintered porous-surfaced titanium alloy implants coated with BMPs would lead to heterotopic bone formation around and within the implant surface geometry. Porous-surfaced dental implants were coated with partially purified native human BMPs, with or without a carrier of Poloxamer 407 (BASF Corp., Parsippany, NJ), placed in gelatin capsules and implanted into the hindquarter muscles of mice. Mice were euthanized after 28 days. Sections of retrieved specimens were subsequently prepared for morphometric analysis of bone formation using backscatter electron microscopic images. Human BMPs, either with or without the carrier of Poloxamer 407, led to bone formation within and outside of the sintered porous implant surface. When the sintered implant surface region was subdivided into inner and outer halves, similar levels of bone ingrowth and contact were seen in the 2 halves. Evidence of bone formation to the depth of the solid implant core (i.e., the deepest level possible) also was seen. Sintered porous-surfaced dental implants can be used as substrate for partially purified BMPs in the murine muscle pouch model. With the addition of these osteoinductive factors, the porous implant surface supported bone formation within the surface porosity provided, in some instances, all the way to the solid implant core. The addition of growth factors to a sintered porous surface may be an efficient method for altering locally the healing sequence and quality of bone associated with osseointegration of bone-interfacing implants.
Putting gold nanocages to work for optical imaging, controlled release and cancer theranostics
Pang, Bo; Yang, Xuan; Xia, Younan
2016-01-01
Gold nanocages are hollow nanostructures with ultrathin, porous walls. They are bio-inert and their surface can be readily modified with functional groups to specifically interact with the biological system of interest. They have remarkable optical properties, including localized surface plasmon resonance peaks tunable to the near-infrared region, strong absorption and scattering, as well as two- and three-photon luminescence. With the establishment of robust protocols for both synthesis and surface functionalization, Au nanocages have been extensively explored for various biomedical applications. In this review, we begin with a brief account of the synthesis and properties of Au nanocages, and then highlight some of the recent developments in applying them to an array of biomedical applications related to optical imaging, controlled release and cancer theranostics. PMID:27348546
NASA Astrophysics Data System (ADS)
Moradi, Neshat; Salem, Shiva; Salem, Amin
2018-03-01
This work highlighted the effective activation of bentonite paste to produce nano-porous powder for removal of cationic dye from wastewater. The effects of activation parameters such as soda and moisture contents, ageing time and temperature were analyzed using response surface methodology (RSM). The significance of independent variables and their interactions were tested by blending the obtained powders with wastewater and then the adsorption was evaluated, spectrophotometrically. The experiments were carried out by preparation of pastes according to response surface methodology and central composite design, which is the standard method, was used to evaluate the effects and interactions of four factors on the treatment efficiency. RSM was demonstrated as an appropriate approach for optimization of alkali activation. The optimal conditions obtained from the desirable responses were 5.0 wt% soda and 45.0 wt% moisture, respectively in which the powder activation was carried out at 150 °C. In order to well understand the role of nano-structured material on dye removal, the adsorbents were characterized through X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and Brunauer-Emmett-Teller surface area measurement. Finally, the analysis clearly demonstrates that the dye removal onto prepared adsorbent is well fitted with Langmuir isotherm compared to the other isotherm models. The low cost of material and facile process support the further development for commercial application purpose.
Díaz-Rodríguez, P; Gómez-Amoza, J L; Landin, M
2015-08-04
Topographical features of biomaterials are able to modulate cell attachment, spreading and differentiation. The addition of growth factors to implantable biomaterials can modify these cellular responses, enhancing their therapeutic potential. The aim of this research is to establish the influence of biomorphic silicon carbide ceramics (bioSiCs) surface topography on the proliferation and osteoblastic differentiation of mesenchymal stem cells and the potential synergistic effect of the ceramic porous structure together with vascular endothelial growth factor loading (VEGF) on the surface mediated osteoblastic differentiation. Three porous bioSiCs with important differences in their microstructure were obtained from different natural precursors. Samples loaded with or without VEGF through ionic interactions were cultured with human umbilical vein endothelial cells (HUVEC) or bone marrow derived mesenchymal stem cells (hMSCs). Cell behaviour and protein activity with regard to bioSiC porous structure and surface properties were analysed. An in vivo model (Chick Chorioallantoic Membrane; CAM) was used to assess the capability of the VEGF loaded systems to promote angiogenesis. Experimental data show that loaded systems were able to control the release of VEGF for up to 15 d ensuring the activity of the protein, increasing the proliferation of HUVECs and the formation of new blood vessels in the CAM. It was found that the selection of bioSiCs with a higher pore size promoted a higher concentration of osteoblastic differentiation markers of MSCs cultured on the surface of bioSiCs. Furthermore, the addition of VEGF to the systems was able to promote a faster osteoblastic differentiation according to the qPCR results, suggesting a synergy between both the surface properties and the controlled release of the growth factor. The VEGF loaded sapelli bioSiC was found to be the most promising material for bone tissue engineering applications.
Zhu, Ying; Soeriyadi, Alexander H; Parker, Stephen G; Reece, Peter J; Gooding, J Justin
2014-06-21
Porous silicon (PSi) rugate filters modified with alkyne-terminated monolayers were chemically patterned using a combination of photolithography of photoresist and click chemistry. Two chemical functionalities were obtained by conjugating, via click reactions, ethylene glycol moieties containing two different terminal groups to discrete areas towards the exterior of a PSi rugate filter. The patterning of biological species to the functionalized surface was demonstrated through the conjugation of fluorescein isothiocyanate labelled bovine serum albumin (FITC-BSA). Fluorescence microscopy showed selective positioning of FITC-BSA at discretely functionalized areas. Meanwhile, the optical information from precisely defined positions on the patterned surface was monitored by optical reflectivity measurements. The optical measurements revealed successful step-wise chemical functionalization followed by immobilization of gelatin. Multiplex detection of protease activity from different array elements on the patterned surface was demonstrated by monitoring the blue shifts in the reflectivity spectra resulted from the digestion of gelatin by subtilisin. Precise information from both individual elements and average population was acquired. This technique is important for the development of PSi into a microarray platform for highly parallel biosensing applications, especially for cell-based assays.
Pyka, Grzegorz; Kerckhofs, Greet; Papantoniou, Ioannis; Speirs, Mathew; Schrooten, Jan; Wevers, Martine
2013-01-01
Additive manufacturing (AM) is a production method that enables the building of porous structures with a controlled geometry. However, there is a limited control over the final surface of the product. Hence, complementary surface engineering strategies are needed. In this work, design of experiments (DoE) was used to customize post AM surface treatment for 3D selective laser melted Ti6Al4V open porous structures for bone tissue engineering. A two-level three-factor full factorial design was employed to assess the individual and interactive effects of the surface treatment duration and the concentration of the chemical etching solution on the final surface roughness and beam thickness of the treated porous structures. It was observed that the concentration of the surface treatment solution was the most important factor influencing roughness reduction. The designed beam thickness decreased the effectiveness of the surface treatment. In this case study, the optimized processing conditions for AM production and the post-AM surface treatment were defined based on the DoE output and were validated experimentally. This allowed the production of customized 3D porous structures with controlled surface roughness and overall morphological properties, which can assist in more controlled evaluation of the effect of surface roughness on various functional properties. PMID:28788357
Pyka, Grzegorz; Kerckhofs, Greet; Papantoniou, Ioannis; Speirs, Mathew; Schrooten, Jan; Wevers, Martine
2013-10-22
Additive manufacturing (AM) is a production method that enables the building of porous structures with a controlled geometry. However, there is a limited control over the final surface of the product. Hence, complementary surface engineering strategies are needed. In this work, design of experiments (DoE) was used to customize post AM surface treatment for 3D selective laser melted Ti6Al4V open porous structures for bone tissue engineering. A two-level three-factor full factorial design was employed to assess the individual and interactive effects of the surface treatment duration and the concentration of the chemical etching solution on the final surface roughness and beam thickness of the treated porous structures. It was observed that the concentration of the surface treatment solution was the most important factor influencing roughness reduction. The designed beam thickness decreased the effectiveness of the surface treatment. In this case study, the optimized processing conditions for AM production and the post-AM surface treatment were defined based on the DoE output and were validated experimentally. This allowed the production of customized 3D porous structures with controlled surface roughness and overall morphological properties, which can assist in more controlled evaluation of the effect of surface roughness on various functional properties.
NASA Astrophysics Data System (ADS)
Su, Changhong; Xu, Youqian; Zhang, Wei; Liu, Yang; Li, Jun
2012-01-01
A porous ceramic tube with superhydrophobic and superoleophilic surface was fabricated by sol-gel and then surface modification with polyurethane-polydimethysiloxane, and an oil-water separator based on the porous ceramic tube was erected to characterize superhydrophobic and superoleophilic surface's separation efficiency and velocity when being used to reclaim oil from oily water and complex oily water containing clay particle. The separator is fit for reclaiming oil from oily water.
Dong, Liying; Jin, Yu; Song, Tao; Liang, Jinsong; Bai, Xin; Yu, Sumei; Teng, Chunying; Wang, Xin; Qu, Juanjuan; Huang, Xiaomei
2017-07-01
Auricularia auricula spent substrate (AASS) modified by didodecyldimethylammonium bromide(DDAB) was used as adsorbent to remove Cr(VI) from aqueous solution. Based on a single-factor experiment and response surface methodology, the optimal conditions were adsorbent dosage of 1.5 g/L, pH value of 4.0, initial Cr(VI) concentration of 19 mg/L, temperature of 25 °C, biosorption time of 120 min, rotational speed of 150 r/min, respectively, under which biosorption capacity could reach 12.16 mg/g compared with unmodified AASS (6.058 mg/g). DDAB modification could enlarge the specific surface area and porous diameter of the adsorbents, and supply hydrophilic and hydrophobic groups capable of adsorbing at the interfaces. In addition, DDAB increased ionic exchange and complex formation demonstrated by variations of elemental contents, shifts of carboxyl, amine groups, hydroxyl, alkyl chains, and phosphate groups as well as the crystal structure of the Cr-O compounds. Variations of peaks and energy in XPS analysis also testified the reduction of Cr(VI) to Cr(III).The biosorption behavior of modified AASS was in line with Langmuir and Freundlich isotherm equation. The final regeneration efficiency was 62.33% after three biosorption-desorption cycles. Apparently, DDBA is a eximious modifier and DDBA-modified AASS was very efficient for Cr(VI) removal.
Yang, Wei; Lei, Xiangyang; Hui, Haohao; Zhang, Qinghua; Deng, Xueran
2018-05-07
Moisture-resistant silicone coatings were prepared on the surface of potassium dihydrogen phosphate (KDP) crystal by means of spin-coating, in which hydrophobic-modified SiO₂ nanoparticles were embedded in a certain proportion. The refractive index of such coating can be tuned arbitrarily in the range of 1.21⁻1.44, which endows the KDP optical component with excellent transmission capability as well as the moisture proof effect. A dual-layer anti-reflective coating system was obtained by covering this silicone coating with a porous SiO₂ coating which is specially treated to enhance the moisture resistance. Transmittance of such a dual-layer coating system could reach 99.60% and 99.62% at 1064 nm and 532 nm, respectively, by precisely matching the refractive index of both layers. Furthermore, the long-term stability of this coating system has been verified at high humidity ambient of 80% RH for 27 weeks.
Highly stable porous silicon-carbon composites as label-free optical biosensors.
Tsang, Chun Kwan; Kelly, Timothy L; Sailor, Michael J; Li, Yang Yang
2012-12-21
A stable, label-free optical biosensor based on a porous silicon-carbon (pSi-C) composite is demonstrated. The material is prepared by electrochemical anodization of crystalline Si in an HF-containing electrolyte to generate a porous Si template, followed by infiltration of poly(furfuryl) alcohol (PFA) and subsequent carbonization to generate the pSi-C composite as an optically smooth thin film. The pSi-C sensor is significantly more stable toward aqueous buffer solutions (pH 7.4 or 12) compared to thermally oxidized (in air, 800 °C), hydrosilylated (with undecylenic acid), or hydrocarbonized (with acetylene, 700 °C) porous Si samples prepared and tested under similar conditions. Aqueous stability of the pSi-C sensor is comparable to related optical biosensors based on porous TiO(2) or porous Al(2)O(3). Label-free optical interferometric biosensing with the pSi-C composite is demonstrated by detection of rabbit IgG on a protein-A-modified chip and confirmed with control experiments using chicken IgG (which shows no affinity for protein A). The pSi-C sensor binds significantly more of the protein A capture probe than porous TiO(2) or porous Al(2)O(3), and the sensitivity of the protein-A-modified pSi-C sensor to rabbit IgG is found to be ~2× greater than label-free optical biosensors constructed from these other two materials.
Scaling of Counter-Current Imbibition Process in Low-Permeability Porous Media, TR-121
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kvoscek, A.R.; Zhou, D.; Jia, L.
2001-01-17
This project presents the recent work on imaging imbibition in low permeability porous media (diatomite) with X-ray completed tomography. The viscosity ratio between nonwetting and wetting fluids is varied over several orders of magnitude yielding different levels of imbibition performance. Also performed is mathematical analysis of counter-current imbibition processes and development of a modified scaling group incorporating the mobility ratio. This modified group is physically based and appears to improve scaling accuracy of countercurrent imbibition significantly.
Controlled porous pattern of anodic aluminum oxide by foils laminate approach.
Wang, Gou-Jen; Peng, Chi-Sheng
2006-04-01
A novel, much simpler, and low-cost method to fabricate the porous pattern of the anodic aluminum oxide (AAO) based on the aluminum foils laminate approach was carried out. During our experiments, it was found that the pores of the AAO on the upper foil grew bi-directionally from both the top and the bottom surfaces. Experimental results further indicate that the upward porous pattern of the upper foil is determined by the surface structure of the bottom surface of the upper foil. The porous pattern of AAO can be controlled by a pre-made pattern on the bottom surface. Furthermore, no Aluminum (Al) layer removing process is required in this novel laminate method.
Friction coefficient and effective interference at the implant-bone interface.
Damm, Niklas B; Morlock, Michael M; Bishop, Nicholas E
2015-09-18
Although the contact pressure increases during implantation of a wedge-shaped implant, friction coefficients tend to be measured under constant contact pressure, as endorsed in standard procedures. Abrasion and plastic deformation of the bone during implantation are rarely reported, although they define the effective interference, by reducing the nominal interference between implant and bone cavity. In this study radial forces were analysed during simulated implantation and explantation of angled porous and polished implant surfaces against trabecular bone specimens, to determine the corresponding friction coefficients. Permanent deformation was also analysed to determine the effective interference after implantation. For the most porous surface tested, the friction coefficient initially increased with increasing normal contact stress during implantation and then decreased at higher contact stresses. For a less porous surface, the friction coefficient increased continually with normal contact stress during implantation but did not reach the peak magnitude measured for the rougher surface. Friction coefficients for the polished surface were independent of normal contact stress and much lower than for the porous surfaces. Friction coefficients were slightly lower for pull-out than for push-in for the porous surfaces but not for the polished surface. The effective interference was as little as 30% of the nominal interference for the porous surfaces. The determined variation in friction coefficient with radial contact force, as well as the loss of interference during implantation will enable a more accurate representation of implant press-fitting for simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fernandes, Diana M; Barbosa, André D S; Pires, João; Balula, Salete S; Cunha-Silva, Luís; Freire, Cristina
2013-12-26
A novel hybrid composite material, PMo10V2@MIL-101 was prepared by the encapsulation of the tetra-butylammonium (TBA) salt of the vanadium-substituted phosphomolybdate [PMo10V2O40](5-) (PMo10V2) into the porous metal-organic framework (MOF) MIL-101(Cr). The materials characterization by powder X-ray diffraction, Fourier transform infrared spectra and scanning electron microscopy confirmed the preparation of the composite material without disruption of the MOF porous structure. Pyrolytic graphite electrodes modified with the original components (MIL-101(Cr), PMo10V2), and the composite material PMo10V2@MIL-101 were prepared and their electrochemical responses were studied by cyclic voltammetry. Surface confined redox processes were observed for all the immobilized materials. MIL-101(Cr) showed one-electron reduction process due to chromium centers (Cr(III) → Cr(II)), while PMo10V2 presented five reduction processes: the peak at more positive potentials is attributed to two superimposed 1-electron vanadium reduction processes (V(V) → V(IV)) and the other four peaks to Mo-centred two-electron reduction processes (Mo(VI) → Mo(V)). The electrochemical behavior of the composite material PMo10V2@MIL-101 showed both MIL-101(Cr) and PMo10V2 redox features, although with the splitting of the two vanadium processes and the shift of the Mo- and Cr- centered processes to more negative potentials. Finally, PMo10V2@MIL-101 modified electrode showed outstanding enhanced vanadium-based electrocatalytic properties towards ascorbic acid oxidation, in comparison with the free PMo10V2, as a result of its immobilization into the porous structure of the MOF. Furthermore, PMo10V2@MIL-101 modified electrode showed successful simultaneous detection of ascorbic acid and dopamine.
NASA Astrophysics Data System (ADS)
Kim, Byoung Soo; Kim, Hyun Jin; An, Suyeong; Chi, Sangwon; Kim, Junseok; Lee, Jonghwi
2017-07-01
Recently, numerous attempts have been made to engineer micro- and nano-porous surface patterns or to develop convenient preparation methods for the practical applications of self-cleaning surfaces, water-repellent surfaces, novel textures, etc. Herein, we introduce a simple, cheap, and repeatable crystallization-based method to produce porous surface structures, on any surface of already fabricated polymeric materials. Contact of the solvent phase with cooled polymer surfaces enabled the limited dissolution of the surfaces and the subsequent extremely fast melt crystallization of the solvent. After removing the crystals, various micro- and nano-porous patterns were obtained, whose pore sizes ranged over three orders of magnitude. Pore depth was linearly dependent on the dissolution time. Crystal growth was mainly directed normal to the surfaces, but it was also controlled in-plane, resulting in cylindrical or lamellar structures. Superhydrophobic surfaces were successfully prepared on both polystyrene and polycarbonate. This process offers a novel surface engineering tool for a variety of polymer surfaces, whose topology can be conveniently controlled over a wide range by crystal engineering.
Apparatus and methods for humidity control
NASA Technical Reports Server (NTRS)
Dinauer, William R. (Inventor); Otis, David R. (Inventor); El-Wakil, Mohamed M. (Inventor); Vignali, John C. (Inventor); Macaulay, Philip D. (Inventor)
1994-01-01
Apparatus is provided which controls humidity in a gas. The apparatus employs a porous interface that is preferably a manifolded array of stainless steel tubes through whose porous surface water vapor can pass. One side of the porous interface is in contact with water and the opposing side is in contact with gas whose humidity is being controlled. Water vapor is emitted from the porous surface of the tubing into the gas when the gas is being humidified, and water vapor is removed from the gas through the porous surfaces when the gas is being dehumidified. The temperature of the porous interface relative to the gas temperature determines whether humidification or dehumidification is being carried out. The humidity in the gas is sensed and compared to the set point humidity. The water temperature, and consequently the porous interface temperature, are automatically controlled in response to changes in the gas humidity level above or below the set point. Any deviation from the set point humidity is thus corrected.
Dynamics of barite growth in porous media quantified by in situ synchrotron X-ray tomography
NASA Astrophysics Data System (ADS)
Godinho, jose; Gerke, kirill
2016-04-01
Current models used to formulate mineral sequestration strategies of dissolved contaminants in the bedrock often neglect the effect of confinement and the variation of reactive surface area with time. In this work, in situ synchrotron X-ray micro-tomography is used to quantify barite growth rates in a micro-porous structure as a function of time during 13.5 hours with a resolution of 1 μm. Additionally, the 3D porous network at different time frames are used to simulate the flow velocities and calculate the permeability evolution during the experiment. The kinetics of barite growth under porous confinement is compared with the kinetics of barite growth on free surfaces in the same fluid composition. Results are discussed in terms of surface area normalization and the evolution of flow velocities as crystals fill the porous structure. During the initial hours the growth rate measured in porous media is similar to the growth rate on free surfaces. However, as the thinner flow paths clog the growth rate progressively decreases, which is correlated to a decrease of local flow velocity. The largest pores remain open, enabling growth to continue throughout the structure. Quantifying the dynamics of mineral precipitation kinetics in situ in 4D, has revealed the importance of using a time dependent reactive surface area and accounting for the local properties of the porous network, when formulating predictive models of mineral precipitation in porous media.
NASA Astrophysics Data System (ADS)
Skews, Beric W.; Glick, Gavin; Doyle, Graham K.; Lamond, Paul W.
1997-05-01
This paper describes the use of high-speed photography, and videography, in the study of material distortion and movement when a shock wave traverses a highly deformable porous structure, such as a blob of foam or a porous bed of particles. The effects of surface porosity can be significant in determining the nature of reflection of shock waves from surfaces. Not only are wave geometries substantially modified but the resulting wall pressures are also strongly affected. It, in addition, the surface is highly deformable by being made up of an elastic matrix or a collection of discrete particles, then the reflection geometry and loading can be even more complex. It is known, for example, that shock wave impact on open-cell polyurethane foam attached to a wall can cause a significant increase in pressure on the wall compared to reflection off a plane rigid wall without covering. The motion of the interface is an essential consideration in understanding the dynamics of these interactions. These studies could have application to the effects of blast wave propagation over complex surfaces such as forests, grasslands, and snow; as well as in establishing the efficacy of safety padding and attenuation materials under shock and impact loading conditions. Studies on an assortment of materials are presented, using a variety of visualization techniques. Recording methods used range from short duration flash photography (both shadow and schlieren), through multi-frame videography; to single frame, multi-exposure video capture with a camera capable of rates up to 1 million pictures per second. In the case of shock wave impact on specimens of polyurethane foam, the results clearly show the expulsion and reingestion of shock heated gas from within the foam body as the material collapses and then recovers, coupled with longitudinal and transverse oscillations of the body of the foam material. For blast wave propagation over porous beds, occurrence of particle lift off, bed fluidization, and the generation of surface dunes are evident. The recordings allow the calculation of the velocities and accelerations of the various interfaces and particles to be made, using suitable image processing techniques. Thus, estimates may be made of the unsteady drag forces acting on the individual particles.
Surface-enhanced Raman spectroscopy using silver-coated porous glass-ceramic substrates.
Pan, Z; Zavalin, A; Ueda, A; Guo, M; Groza, M; Burger, A; Mu, R; Morgan, S H
2005-06-01
Surface-enhanced Raman scattering (SERS) has been studied using a silver-coated porous glass-ceramic material as a new type of substrate. The porous glass-ceramic is in the CaO-TiO2-P2O5 system prepared by controlled crystallization and subsequent chemical leaching of the dense glass-ceramic, leaving a solid skeleton with pores ranging in size from 50 nm to submicrometer. Silver was coated on the surface of the porous glass-ceramic by radio frequency (RF) sputtering or e-beam evaporation in vacuum. SERS spectra of excellent quality were obtained from several dyes and carboxylic acid molecules, including rhodamine 6G, crystal violet, isonicotinic acid, and benzoic acid, using this new substrate. This new substrate showed a good compatibility with these molecules. The porous glass ceramic with a nanometer-structured surface accommodated both test molecules and silver film. The absorbed molecules were therefore better interfaced with silver for surface-enhanced Raman scattering.
Marine phages as excellent tracers for reactive colloidal transport in porous media
NASA Astrophysics Data System (ADS)
Ghanem, Nawras; Chatzinotas, Antonis; Harms, Hauke; Wick, Lukas Y.
2016-04-01
Question: Here we evaluate marine phages as specific markers of hydrological flow and reactive transport of colloidal particles in the Earth's critical zone (CZ). Marine phages and their bacterial hosts are naturally absent in the CZ, and can be detected with extremely high sensitivity. In the framework of the DFG Collaborative Research Center AquaDiva, we asked the following questions: (1) Are marine phages useful specific markers of hydrological flow and reactive transport in porous media? and (2) Which phage properties are relevant drivers for the transport of marine phages in porous media? Methods: Seven marine phages from different families (as well two commonly used terrestrial phages) were selected based on their morphology, size and physico-chemical surface properties (surface charge and hydrophobicity). Phage properties were assessed by electron microscopy, dynamic light scattering and water contact angle analysis (CA). Sand-filled laboratory percolation columns were used to study transport. The breakthrough curves of the phages were analyzed using the clean bed filtration theory and the XDLVO theory of colloid stability, respectively. Phages were quantified by a modified high- throughput plaque assay and a culture-independent particle counting method approach. Results: Our data show that most marine tested phages exhibited highly variable transport rates and deposition efficiency, yet generally high colloidal stability and viability. We find that size, morphology and hydrophobicity are key factors shaping the transport efficiency of phages. Differing deposition efficiencies of the phages were also supported by calculated XDLVO interaction energy profile. Conclusion: Marine phages have a high potential for the use as sensitive tracers in terrestrial habitats with their surface properties playing a crucial role for their transport. Marine phages however, exhibit differences in their deposition efficiency depending on their morphology, hydrophobicity and availability.
Wang, Shunzhi; McGuirk, C Michael; Ross, Michael B; Wang, Shuya; Chen, Pengcheng; Xing, Hang; Liu, Yuan; Mirkin, Chad A
2017-07-26
Metal-organic frameworks (MOFs) are a class of modular, crystalline, and porous materials that hold promise for storage and transport of chemical cargoes. Though MOFs have been studied in bulk forms, ways of deliberately manipulating the external surface functionality of MOF nanoparticles are less developed. A generalizable approach to modify their surfaces would allow one to impart chemical functionality onto the particle surface that is independent of the bulk MOF structure. Moreover, the use of a chemically programmable ligand, such as DNA, would allow for the manipulation of interparticle interactions. Herein, we report a coordination chemistry-based strategy for the surface functionalization of the external metal nodes of MOF nanoparticles with terminal phosphate-modified oligonucleotides. The external surfaces of nine distinct archetypical MOF particles containing four different metal species (Zr, Cr, Fe, and Al) were successfully functionalized with oligonucleotides, illustrating the generality of this strategy. By taking advantage of the programmable and specific interactions of DNA, 11 distinct MOF particle-inorganic particle core-satellite clusters were synthesized. In these hybrid nanoclusters, the relative stoichiometry, size, shape, and composition of the building blocks can all be independently controlled. This work provides access to a new set of nucleic acid-nanoparticle conjugates, which may be useful as programmable material building blocks and as probes for measuring and manipulating intracellular processes.
NASA Astrophysics Data System (ADS)
Huang, Wei; Cao, Yang; Chen, Yong; Peng, Juan; Lai, Xiaoyong; Tu, Jinchun
2017-02-01
In this paper, we report the fast synthesis of porous NiCo2O4 hollow nanospheres via a polycrystalline Cu2O-templated route based on the elaborately designed "coordinating etching and precipitating" process. The composition and morphology of the porous NiCo2O4 hollow nanospheres were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The electron-transfer capability and electrocatalytic activity of the materials were investigated by electrochemical impedance spectroscopy and cyclic voltammetry. NiCo2O4 was endowed with superior electron-transfer capability, large surface area, and abundant intrinsic redox couples of Ni2+/Ni3+ and Co2+/Co3+ ions; thus, the modified electrode exhibited excellent glucose-sensing properties, with a high sensitivity of 1917 μA·mM-1·cm-2 at a low concentration, a good linear range from 0.01 mM to 0.30 mM and from 0.30 mM to 2.24 mM, and a low detection limit of 0.6 μM (S/N = 3).
Li, Jiyu; Liu, Bin; Zhou, Yingying; Chen, Zhipeng; Jiang, Lelun; Yuan, Wei; Liang, Liang
2017-01-01
Microneedle arrays (MA) have been extensively investigated in recent decades for transdermal drug delivery due to their pain-free delivery, minimal skin trauma, and reduced risk of infection. However, porous MA received relatively less attention due to their complex fabrication process and ease of fracturing. Here, we present a titanium porous microneedle array (TPMA) fabricated by modified metal injection molding (MIM) technology. The sintering process is simple and suitable for mass production. TPMA was sintered at a sintering temperature of 1250°C for 2 h. The porosity of TPMA was approximately 30.1% and its average pore diameter was about 1.3 μm. The elements distributed on the surface of TPMA were only Ti and O, which may guarantee the biocompatibility of TPMA. TPMA could easily penetrate the skin of a human forearm without fracture. TPMA could diffuse dry Rhodamine B stored in micropores into rabbit skin. The cumulative permeated flux of calcein across TPMA with punctured skin was 27 times greater than that across intact skin. Thus, TPMA can continually and efficiently deliver a liquid drug through open micropores in skin. PMID:28187179
NASA Astrophysics Data System (ADS)
Yuennan, Jureeporn; Sukwisute, Pisan; Muensit, Nantakan
2018-05-01
The present work has investigated a means of fabricating porous, β phase P(VDF-HFP) film by adding two kinds of hydrated metal salts. Without the use of mechanical stretching or electrical poling treatments, MgCl2 · 6H2O and AlCl3 · 6H2O are found to induce the formation of β phase crystals in porous film derived from the solution casting method. Trivalent Al ions have been found to effectively promote the self-oriented β phase of the P(VDF-HFP) film greater than divalent Mg ions. The overall β content is achieved about 38% and 42% for adding 0.25 wt% Mg- and Al-salts, respectively. The average pore sizes and surface roughness of porous P(VDF-HFP) films are increased with increasing salt concentration. The dielectric constant of about 5 for pure P(VDF-HFP) film (at 100 Hz) has been boosted up to 13–19 when adding the salts. In addition, the P(VDF-HFP) films filled with Al-salt exhibit the largest piezoelectric coefficient of 20 pC/N. Thus, the modified polymers are one of candidate materials for using in dielectric and piezoelectric applications.
Stack configurations for tubular solid oxide fuel cells
Armstrong, Timothy R.; Trammell, Michael P.; Marasco, Joseph A.
2010-08-31
A fuel cell unit includes an array of solid oxide fuel cell tubes having porous metallic exterior surfaces, interior fuel cell layers, and interior surfaces, each of the tubes having at least one open end; and, at least one header in operable communication with the array of solid oxide fuel cell tubes for directing a first reactive gas into contact with the porous metallic exterior surfaces and for directing a second reactive gas into contact with the interior surfaces, the header further including at least one busbar disposed in electrical contact with at least one surface selected from the group consisting of the porous metallic exterior surfaces and the interior surfaces.
Ni-base superalloy powder-processed porous layer for gas cooling in extreme environments
White, Emma M. H.; Heidloff, Andrew J.; Byrd, David J.; ...
2016-05-26
Extreme high temperature conditions demand novel solutions for hot gas filters and coolant access architectures, i.e., porous layers on exposed components. These high temperatures, for example in current turbine engines, are at or exceeding current material limits for high temperature oxidation/corrosion, creep resistance, and, even, melting temperature. Thus novel blade designs allowing greater heat removal are required to maintain airfoil temperatures below melting and/ or rapid creep deformation limits. Gas atomized Ni-base superalloy powders were partially sintered into porous layers to allow full-surface, transpirational cooling of the surface of airfoils. Furthermore, these powder-processed porous layers were fully characterized for surface,more » morphology, cross-sectional microstructure, and mechanical strength characteristics. A sintering model based on pure Ni surface diffusion correlated well with the experimental results and allowed reasonable control over the partial sintering process to obtain a specified level of porosity within the porous layer.« less
Ni-base superalloy powder-processed porous layer for gas cooling in extreme environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Emma M. H.; Heidloff, Andrew J.; Byrd, David J.
Extreme high temperature conditions demand novel solutions for hot gas filters and coolant access architectures, i.e., porous layers on exposed components. These high temperatures, for example in current turbine engines, are at or exceeding current material limits for high temperature oxidation/corrosion, creep resistance, and, even, melting temperature. Thus novel blade designs allowing greater heat removal are required to maintain airfoil temperatures below melting and/ or rapid creep deformation limits. Gas atomized Ni-base superalloy powders were partially sintered into porous layers to allow full-surface, transpirational cooling of the surface of airfoils. Furthermore, these powder-processed porous layers were fully characterized for surface,more » morphology, cross-sectional microstructure, and mechanical strength characteristics. A sintering model based on pure Ni surface diffusion correlated well with the experimental results and allowed reasonable control over the partial sintering process to obtain a specified level of porosity within the porous layer.« less
Ao, Haiyong; Xie, Youtao; Qin, An; Ji, Heng; Yang, Shengbing; Huang, Liping; Zheng, Xuebin; Tang, Tingting
2014-01-01
In the present study, hyaluronic acid (HyA) was covalently immobilized onto titanium coatings to improve their biological properties. Diffuse reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were employed to characterize the HyA-modified titanium coating. HyA-modified titanium coatings possess better cell-material interaction, and human mesenchymal stem cells present good adhesive morphologies on the surface of TC-AAH. The results of subsequent cellular evaluation showed that the immobilization of HyA on titanium coatings could improve hMSC attachment, proliferation, and differentiation. In vivo evaluation of implants in rabbit femur condyle defect model showed improvements of early osseointegration and bone-to-implant contact of TC-AAH. In conclusion, immobilization of HyA could improve biological properties of titanium coatings.
Local deformation behavior of surface porous polyether-ether-ketone.
Evans, Nathan T; Torstrick, F Brennan; Safranski, David L; Guldberg, Robert E; Gall, Ken
2017-01-01
Surface porous polyether-ether-ketone has the ability to maintain the tensile monotonic and cyclic strength necessary for many load bearing orthopedic applications while providing a surface that facilitates bone ingrowth; however, the relevant deformation behavior of the pore architecture in response to various loading conditions is not yet fully characterized or understood. The focus of this study was to examine the compressive and wear behavior of the surface porous architecture using micro Computed Tomography (micro CT). Pore architectures of various depths (~0.5-2.5mm) and pore sizes (212-508µm) were manufactured using a melt extrusion and porogen leaching process. Compression testing revealed that the pore architecture deforms in the typical three staged linear elastic, plastic, and densification stages characteristic of porous materials. The experimental moduli and yield strengths decreased as the porosity increased but there was no difference in properties between pore sizes. The porous architecture maintained a high degree of porosity available for bone-ingrowth at all strains. Surface porous samples showed no increase in wear rate compared to injection molded samples, with slight pore densification accompanying wear. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahmani, N.; Dariani, R. S., E-mail: dariani@alzahra.ac.ir
Porous silicon films with porosity ranging from 42% to 77% were fabricated by electrochemical anodization under different current density. We used atomic force microscopy and dynamic scaling theory for deriving the surface roughness profile and processing the topography of the porous silicon layers, respectively. We first compared the topography of bare silicon surface with porous silicon and then studied the effect of the porosity of porous silicon films on their scaling behavior by using their self-affinity nature. Our work demonstrated that silicon compared to the porous silicon films has the highest Hurst parameter, indicating that the formation of porous layermore » due to the anodization etching of silicon surface leads to an increase of its roughness. Fractal analysis revealed that the evolution of the nanocrystallites’ fractal dimension along with porosity. Also, we found that both interface width and Hurst parameter are affected by the increase of porosity.« less
Xia, Lei; Song, Jian; Xu, Ru; Liu, Dali; Dong, Biao; Xu, Lin; Song, Hongwei
2014-09-15
The ZnO inverse opal photonic crystals (IOPCs) were synthesized by the sol-gel method using the polymethylmethacrylate (PMMA) as a template. For glucose detection, glucose oxidase (GOD) was further immobilized on the inwall and surface of the IOPCs. The biosensing properties toward glucose of the Nafion/GOD/ZnO IOPCs modified FTO electrodes were carefully studied and the results indicated that the sensitivity of ZnO IOPCs modified electrode was 18 times than reference electrode due to the large surface area and uniform porous structure of ZnO IOPCs. Moreover, photoelectrochemical detection for glucose using the electrode was realized and the sensitivity approached to 52.4 µA mM(-1) cm(-2), which was about four times to electrochemical detection (14.1 µA mM(-1) cm(-2)). It indicated that photoelectrochemical detection can highly improve the sensor performance than conventional electrochemical method. It also exhibited an excellent anti-interference property and a good stability at the same time. This work provides a promising approach for realizing excellent photoelectrochemical biosensor of similar semiconductor photoelectric material. Copyright © 2014 Elsevier B.V. All rights reserved.
Arsenic removal from water using a novel amorphous adsorbent developed from coal fly ash.
Zhang, Kaihua; Zhang, Dongxue; Zhang, Kai
2016-01-01
A novel effective adsorbent of alumina/silica oxide hydrate (ASOH) for arsenic removal was developed through simple chemical reactions using coal fly ash. The iron-modified ASOH with enhancing adsorption activity was further developed from raw fly ash based on the in situ technique. The adsorbents were characterized by X-ray diffraction, Fourier transform infrared spectrometry, scanning electron micrograph, laser particle size and Brunauer-Emmet-Teller surface area. The results show that the adsorbents are in amorphous and porous structure, the surface areas of which are 8-12 times that of the raw ash. The acidic hydrothermal treatment acts an important role in the formation of the amorphous structure of ASOH rather than zeolite crystal. A series of adsorption experiments for arsenic on them were studied. ASOH can achieve a high removal efficiency for arsenic of 96.4% from water, which is more than 2.5 times that of the raw ash. Iron-modified ASOH can enhance the removal efficiency to reach 99.8% due to the in situ loading of iron (Fe). The condition of synthesis pH = 2-4 is better for iron-modified ASOH to adsorb arsenic from water.
Grazing incidence x-ray diffraction analysis of zeolite NaA membranes on porous alumina tubes.
Kyotani, Tomohiro
2006-07-01
Zeolite NaA-type membranes hydrothermally synthesized on porous alumina tubes, for dehydration process, were characterized by grazing incidence 2 theta scan X-ray diffraction analysis (GIXRD). The fine structure of the membrane was studied fractionally for surface layer and for materials embedded in the porous alumina tube. The thickness of the surface layer on the porous alumina tube in the membranes used in this study was approximately 2-3 microm as determined from transmission electron microscopy with focused ion beam thin-layer specimen preparation technique (FIB-TEM). To discuss the effects of the membrane surface morphology on the GIXRD measurements, CaA-type membrane prepared by ion exchange from the NaA-type membrane and surface-damaged NaA-type membrane prepared by water leaching were also studied. For the original NaA-type membrane, 2 theta scan GIXRD patterns could be clearly measured at X-ray incidence angles (alpha) ranging from 0.1 to 2.0 deg in increments of 0.1 deg. The surface layers of the 2 - 3 microm on the porous alumina tube correspond to the alpha values up to ca. 0.2 deg. For the CaA-type and the surface-damaged NaA-type membranes, however, diffraction patterns from the surface layer could not be successfully detected and the others were somewhat broad. For all the three samples, diffraction intensities of both zeolite and alumina increased with depth (X-ray incidence angle, alpha) in the porous alumina tube region. The depth profile analysis of the membranes based on the GIXRD first revealed that amount of zeolite crystal embedded in the porous alumina tube is much larger than that in the surface layer. Thus, the 2 theta scan GIXRD is a useful method to study zeolite crystal growth mechanism around (both inside and outside) the porous alumina support during hydrothermal synthesis and to study water permeation behavior in the dehydration process.
NASA Astrophysics Data System (ADS)
Nayak, Bishnupriya; Menon, S. V. G.
2018-01-01
Enthalpy-based equation of state based on a modified soft sphere model for the fluid phase, which includes vaporization and ionization effects, is formulated for highly porous materials. Earlier developments and applications of enthalpy-based approach had not accounted for the fact that shocked states of materials with high porosity (e.g., porosity more than two for Cu) are in the expanded fluid region. We supplement the well known soft sphere model with a generalized Lennard-Jones formula for the zero temperature isotherm, with parameters determined from cohesive energy, specific volume and bulk modulus of the solid at normal condition. Specific heats at constant pressure, ionic and electronic enthalpy parameters and thermal excitation effects are calculated using the modified approach and used in the enthalpy-based equation of state. We also incorporate energy loss from the shock due to expansion of shocked material in calculating porous Hugoniot. Results obtained for Cu, even up to initial porosities ten, show good agreement with experimental data.
NASA Astrophysics Data System (ADS)
Tozawa, Tomokazu; Jones, James T. A.; Swamy, Shashikala I.; Jiang, Shan; Adams, Dave J.; Shakespeare, Stephen; Clowes, Rob; Bradshaw, Darren; Hasell, Tom; Chong, Samantha Y.; Tang, Chiu; Thompson, Stephen; Parker, Julia; Trewin, Abbie; Bacsa, John; Slawin, Alexandra M. Z.; Steiner, Alexander; Cooper, Andrew I.
2009-12-01
Porous materials are important in a wide range of applications including molecular separations and catalysis. We demonstrate that covalently bonded organic cages can assemble into crystalline microporous materials. The porosity is prefabricated and intrinsic to the molecular cage structure, as opposed to being formed by non-covalent self-assembly of non-porous sub-units. The three-dimensional connectivity between the cage windows is controlled by varying the chemical functionality such that either non-porous or permanently porous assemblies can be produced. Surface areas and gas uptakes for the latter exceed comparable molecular solids. One of the cages can be converted by recrystallization to produce either porous or non-porous polymorphs with apparent Brunauer-Emmett-Teller surface areas of 550 and 23m2g-1, respectively. These results suggest design principles for responsive porous organic solids and for the modular construction of extended materials from prefabricated molecular pores.
Song, Wentong; Shi, Da; Tao, Shengyang; Li, Zhaoliang; Wang, Yuchao; Yu, Yongxian; Qiu, Jieshan; Ji, Min; Wang, Xinkui
2016-11-01
A facile method is reported to construct monolithic microreactor with high catalytic performance for Knoevenagel reaction. The microreactor is based on hierarchically porous silica (HPS) which has interconnected macro- and mesopores. Then the HPS is surface modified by pyrogallol (PG) polymer. Al(NO3)3 and Mg(NO3)2 are loaded on the surface of HPS through coordination with -OH groups of PG. After thermal treatment, Al(NO3)3 and Mg(NO3)2 are converted Al2O3 and MgO. The as-synthesized catalytic microreactor shows a high and stable performance in Knoevenagel reaction. The microreactor possess large surface area and interconnected pore structures which are beneficial for reactions. Moreover, this economic, facile and eco-friendly surface modification method can be used in loading more metal oxides for more reactions. Copyright © 2016 Elsevier Inc. All rights reserved.
Nguyen, H Q; Deporter, D A; Pilliar, R M; Valiquette, N; Yakubovich, R
2004-02-01
Ti-6Al-4V implants formed with a sintered porous surface for implant fixation by bone ingrowth were prepared with or without the addition of a thin surface layer of calcium phosphate (Ca-P) formed using a sol-gel coating technique over the porous surface. The implants were placed transversely across the tibiae of 17 rabbits. Implanted sites were allowed to heal for 2 weeks, after which specimens were retrieved for morphometric assessment using backscattered scanning electron microscopy and quantitative image analysis. Bone formation along the porous-structured implant surface, was measured in relation to the medial and lateral cortices as an indication of implant surface osteoconductivity. The Absolute Contact Length measurements of endosteal bone growth along the porous-surfaced zone were greater with the Ca-P-coated implants compared to the non-Ca-P-coated implants. The Ca-P-coated implants also displayed a trend towards a significant increase in the area of bone ingrowth (Bone Ingrowth Fraction). Finally, there was significantly greater bone-to-implant contact within the sinter neck regions of the Ca-P-coated implants.
Tian, Pei; Liu, Di; Li, Kexun; Yang, Tingting; Wang, Junjie; Liu, Yi; Zhang, Song
2017-11-01
Metal-organic framework Cu 3 (BTC) 2 , prepared by an easy hydrothermal method, was used as the oxygen-based catalyst in microbial fuel cell (MFC). The maximum power density of Cu 3 (BTC) 2 modified air-cathode MFC was 1772±15mWm -2 , almost 1.8 times higher than the control. BET results disclosed high specific surface area of 2159.7m 2 g -1 and abundant micropores structure. Regular octahedron and porous surface of Cu 3 (BTC) 2 were observed in SEM. XPS testified the existence of divalent copper in the extended 3D frameworks, which importantly acted as the Lewis-acid sites or redox centers in ORR. Additionally, the total resistance decreased by 42% from 17.60 to 10.24Ω compared with bare AC electrode. The rotating disk electrode test results showed a four-electron transfer pathway for Cu 3 (BTC) 2 , which was crucial for electrochemical catalytic activity. All the structural and electrochemical advantages make Cu 3 (BTC) 2 a promising catalyst for ORR in MFC. Copyright © 2017. Published by Elsevier Ltd.
Giretova, Maria; Medvecky, Lubomir; Stulajterova, Radoslava; Sopcak, Tibor; Briancin, Jaroslav; Tatarkova, Monika
2016-12-01
Polyhydroxybutyrate/chitosan/calcium phosphate composites are interesting biomaterials for utilization in regenerative medicine and they may by applied in reconstruction of deeper subchondral defects. Insufficient informations were found in recent papers about the influence of lysozyme degradation of chitosan in calcium phosphate/chitosan based composites on in vitro cytotoxicity and proliferation activity of osteoblasts. The effect of enzymatic chitosan degradation on osteoblasts proliferation was studied on composite films in which the porosity of origin 3D scaffolds was eliminated and the surface texture was modified. The significantly enhanced proliferation activity with faster population growth of osteoblasts were found on enzymatically degraded biopolymer composite films with α-tricalcium phosphate and nanohydroxyapatite. No cytotoxicity of composite films prepared from lysozyme degraded scaffolds containing a large fraction of low molecular weight chitosans (LMWC), was revealed after 10 days of cultivation. Contrary to above in the higher cytotoxicity origin untreated nanohydroxyapatite films and porous composite scaffolds. The results showed that the synergistic effect of surface distribution, morphology of nanohydroxyapatite particles, microtopography and the presence of LMWC due to chitosan degradation in composite films were responsible for compensation of the cytotoxicity of nanohydroxyapatite composite films or porous composite scaffolds.
NASA Astrophysics Data System (ADS)
Wu, Shikai; Wen, Shengwu; Xu, Xinmei; Huang, Guozhi; Cui, Yifan; Li, Jinyu; Qu, Ailan
2018-04-01
Porous graphite carbon nitride nanosheets (g-C3N4) are achieved via one-step catalyst-free solution self-polymerization from a single melamine precursor. The resultant porous g-C3N4 nanosheets with the best photodegradation capacity provided the surface area of 669.15 m2/g, which is superior to the surface area of any other porous g-C3N4 reported. Results showed enhanced adsorption and degradation capacity of methyl orange (MO) under UV-visible light irradiation (λ > 350 nm) compared to bulk g-C3N4. The MO oxidation of the porous g-C3N4 nanosheets is driven mostly by the participation of holes, and secondly by rad O2- and rad OH radicals. This approach shed lights on porous g-C3N4 production simply by self-polycondensation of single functional monomer. It also provided a low-cost and eco-friendly method to facilely mass-produce g-C3N4 nanosheets with high surface area for many potential applications.
NASA Astrophysics Data System (ADS)
Liu, Jiatong; Sun, Cuifeng; Fu, Ming; Long, Jie; He, Dawei; Wang, Yongsheng
2018-02-01
The development of porous materials exhibiting photon regulation abilities for improved photoelectrochemical catalysis performance is always one of the important goals of solar energy harvesting. In this study, methods to improve the photocatalytic activity of TiO2 inverse opals were discussed. TiO2 inverse opals were prepared by atomic layer deposition (ALD) using colloidal crystal templates. In addition, TiO2 inverse opal heterostructures were fabricated using colloidal heterocrystals by repeated vertical deposition using different colloidal spheres. The hydrothermal method and ALD were used to prepare ZnO- or Fe2O3-modified TiO2 inverse opals on the internal surfaces of the TiO2 porous structures. Although the photonic reflection band was not significantly varied by oxide modification, the presence of Fe2O3 in the TiO2 inverse opals enhanced their visible absorption. The conformally modified oxides on the TiO2 inverse opals could also form energy barriers and avoid the recombination of electrons and holes. The fabrication of the TiO2 photonic crystal heterostructures and modification with ZnO or Fe2O3 can enhance the photocatalytic activity of TiO2 inverse opals.
Measuring and controlling the transport of magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Stephens, Jason R.
Despite the large body of literature describing the synthesis of magnetic nanoparticles, few analytical tools are commonly used for their purification and analysis. Due to their unique physical and chemical properties, magnetic nanoparticles are appealing candidates for biomedical applications and analytical separations. Yet in the absence of methods for assessing and assuring their purity, the ultimate use of magnetic particles and heterostructures is likely to be limited. For magnetic nanoparticles, it is the use of an applied magnetic flux or field gradient that enables separations. Flow based techniques are combined with applied magnetic fields to give methods such as magnetic field flow fractionation and high gradient magnetic separation. Additional techniques have been explored for manipulating particles in microfluidic channels and in mesoporous membranes. This thesis further describes development of these and new analytical tools for separation and analysis of colloidal particles is critically important to enable the practical use of these, particularly for medicinal purposes. Measurement of transport of nanometer scale particles through porous media is important to begin to understand the potential environmental impacts of nanomaterials. Using a diffusion cell with two compartments separated by either a porous alumina or polycarbonate membrane as a model system, diffusive flux through mesoporous materials is examined. Experiments are performed as a function of particle size, pore diameter, and solvent, and the particle fluxes are monitored by the change in absorbance of the solution in the receiving cell. Using the measured extinction coefficient and change in absorbance of the solution as a function of time, the fluxes of 3, 8, and 14 nm diameter CoFe2O4 particles are determined as they are translocated across pores with diameters 30, 50, 100, and 200 nm in hexane and aqueous solutions. In general, flux decreases with increasing particle size and increases with pore diameter. We find that fluxes are faster in aqueous solutions than in hexane, which is attributed to the hydrophilic nature of the porous membranes and differences in wettability. The impact of an applied magnetic flux gradient, which induces magnetization and motion, on permeation is also examined. Surface chemistry plays an important role in determining flux through porous media such as in the environment. Diffusive flux of nanoparticles through alkylsilane modified porous alumina is measured as a model for understanding transport in porous media of differing surface chemistries. Experiments are performed as a function of particle size, pore diameter, attached hydrocarbon chain length and chain terminus, and solvent. Particle fluxes are monitored by the change in absorbance of the solution in the receiving side of a diffusion cell. In general, flux increases when the membranes are modified with alkylsilanes compared to untreated membranes, which is attributed to the hydrophobic nature of the porous membranes and differences in wettability. We find that flux decreases, in both hexane and aqueous solutions, when the hydrocarbon chain lining the interior pore wall increases in length. The rate and selectivity of transport across these membranes is related to the partition coefficient (Kp) and the diffusion coefficient (D) of the permeating species. By conducting experiments as a function of initial particle concentration, we find that KpD increases with increasing particle size, is greater in alkylsilane--modified pores, and larger in hexane solution than water. The impact of the alkylsilane terminus (--CH3, --Br, --NH2, --COOH) on permeation in water is also examined. In water, the highest KpD is observed when the membranes are modified with carboxylic acid terminated silanes and lowest with amine terminated silanes as a result of electrostatic effects during translocation. Finally, the manipulation of magnetic nanoparticles for the controlled formation of linked nanoparticle assemblies between microfluidic channels by the application of an external magnet is discussed. Two orthogonal channels were prepared using standard PDMS techniques with pressure-driven flow used to deliver the Fe3O4 and Au nanoparticle reactants. Nanoparticle assembly formation is based upon locally confined surface modification of Fe3O4 nanoparticles interacting with Au nanoparticles bridging the two particles together. For the magnetic particles, transfer between flow streams is greatly increased by placing a permanent magnet above and below the channel intersections. Multiple configurations of Fe3O 4 and Au nanoparticle assemblies are observed as a function of flow rate and interaction time of the individual nanoparticle components. We observe the formation of higher order assemblies by increasing the concentration of Fe3O4 nanoparticles introduced to the microfluidic device. This technique demonstrates the ability to form nanoparticle linked assemblies and could be easily linked to other analytical techniques developed in our lab to further isolate and separate a particular product. (Abstract shortened by UMI.)
Combustion theory for liquids with a free surface. 3: Special problems
NASA Technical Reports Server (NTRS)
Milkov, S. N.; Sukhov, G. S.; Yarin, L. P.
1986-01-01
Two special problems concerning the combustion of liquids with a free surface, i.e., flame quenching during the mixing of a burning liquid inside a container and liquid burnout from a porous layer, are analyzed using a quasi-one-dimensional model. The critical parameters corresponding to the quenching of a burning fluid with a free surface are determined. Determinations are also made of the limiting pressure gradients corresponding to the transition from the combustion mode where the liquid evaporates from the surface of a porous layer to the mode where the phase transition surface lies inside the porous layer.
Nitrogen-doped hierarchical porous carbon microsphere through KOH activation for supercapacitors.
Jiang, Jingui; Chen, Hao; Wang, Zhao; Bao, Luke; Qiang, Yiwei; Guan, Shiyou; Chen, Jianding
2015-08-15
A porous carbon microsphere with moderate specific surface area and superior specific capacitance for supercapacitors is fabricated from polyphosphazene microsphere as the single heteroatoms source by the carbonization and subsequent KOH activation under N2 atmosphere. With KOH activation, X-ray photoelectron spectroscopy analysis confirms that the phosphorus of polyphosphazene microsphere totally vanishes, and the doping content of nitrogen and its population of various functionalities on porous carbon microsphere surface are tuned. Compared with non-porous carbon microsphere, the texture property of the resultant porous carbon microsphere subjected to KOH activation has been remarkably developed with the specific surface area growing from 315 to 1341 m(2) g(-1)and the pore volume turning from 0.17 to 0.69 cm(3) g(-1). Prepared with the KOH/non-porous carbon microsphere weight ratio at 1.0, the porous carbon microsphere with moderate specific surface area of 568 m(2) g(-1), exhibits intriguing electrochemical behavior in 1 M H2SO4 aqueous electrolyte, with superior specific capacitance (278 F g(-1) at 0.1 A g(-1)), good rate capability (147 F g(-1) remained at 10 A g(-1)) and robust cycling durability (No capacitance loss after 5000 cycles). The promising electrochemical performance could be ascribed to the synergy of nitrogen heteroatom functionalities and the porous morphology. Copyright © 2015 Elsevier Inc. All rights reserved.
Grafting of activated carbon cloths for selective adsorption
NASA Astrophysics Data System (ADS)
Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S.
2016-05-01
Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.
Surface Plasmon Resonance Evaluation of Colloidal Metal Aerogel Filters
NASA Technical Reports Server (NTRS)
Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.
1997-01-01
We have fabricated aerogels containing gold, silver, and platinum nanoparticles for gas catalysis applications. By applying the concept of an average or effective dielectric constant to the heterogeneous interlayer surrounding each particle, we extend the technique of immersion spectroscopy to porous or heterogeneous media. Specifically, we apply the predominant effective medium theories for the determination of the average fractional composition of each component in this inhomogeneous layer. Hence, the surface area of metal available for catalytic gas reaction is determined. The technique is satisfactory for statistically random metal particle distributions but needs further modification for aggregated or surfactant modified systems. Additionally, the kinetics suggest that collective particle interactions in coagulated clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.
Hernon-Kenny, Laura A; Behringer, Deborah L; Crenshaw, Michael D
2016-05-01
Comparison of solvent-wetted gauze with body paint, a peelable surface sampling media, for the sampling of the chemical warfare agents VX and sulfur mustard from nine surfaces was performed. The nine surfaces sampled are those typical of interior public venues and include smooth, rough, porous, and non-porous surfaces. Overall, solvent-wetted gauze (wipes) performed better for the recovery of VX from non-porous surfaces while body paint (BP) performed better for the porous surfaces. The average percent VX recoveries using wipes and BP, respectively, are: finished wood flooring, 86.2%, 71.4%; escalator handrail, 47.3%, 26.7%; stainless steel, 80.5%, 56.1%; glazed ceramic tile, 81.8%, 44.9%; ceiling tile, 1.77%, 13.1%; painted drywall 7.83%, 21.1%; smooth cement, 0.64%, 10.3%; upholstery fabric, 24.6%, 23.1%; unfinished wood flooring, 9.37%, 13.1%. Solvent-wetted gauze performed better for the recovery of sulfur mustard from three of the relatively non-porous surfaces while body paint performed better for the more porous surfaces. The average percent sulfur mustard recoveries using wipes and BP, respectively, are: finished wood flooring, 30.2%, 2.97%; escalator handrail, 4.40%, 4.09%; stainless steel, 21.2%, 3.30%; glazed ceramic tile, 49.7%, 16.7%; ceiling tile, 0.33%, 11.1%; painted drywall 2.05%, 10.6%; smooth cement, 1.20%, 35.2%; upholstery fabric, 7.63%, 6.03%; unfinished wood flooring, 0.90%, 1.74%. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Casimir quantum levitation tuned by means of material properties and geometries
NASA Astrophysics Data System (ADS)
Dou, Maofeng; Lou, Fei; Boström, Mathias; Brevik, Iver; Persson, Clas
2014-05-01
The Casimir force between two surfaces is attractive in most cases. Although stable suspension of nano-objects has been achieved, the sophisticated geometries make them difficult to be merged with well-established thin film processes. We find that by introducing thin film surface coating on porous substrates, a repulsive to attractive force transition is achieved when the separations are increased in planar geometries, resulting in a stable suspension of two surfaces near the force transition separation. Both the magnitude of the force and the transition distance can be flexibly tailored though modifying the properties of the considered materials, that is, thin film thickness, doping concentration, and porosity. This stable suspension can be used to design new nanodevices with ultralow friction. Moreover, it might be convenient to merge this thin film coating approach with micro- and nanofabrication processes in the future.
NASA Astrophysics Data System (ADS)
Antonov, E. N.; Krotova, L. I.; Minaev, N. V.; Minaeva, S. A.; Mironov, A. V.; Popov, V. K.; Bagratashvili, V. N.
2015-11-01
We report the implementation of a novel scheme for surface-selective laser sintering (SSLS) of polymer particles, based on using water as a sensitizer of laser heating and sintering of particles as well as laser radiation at a wavelength of 1.94 μm, corresponding to the strong absorption band of water. A method of sintering powders of poly(lactide-co-glycolide), a hydrophobic bioresorbable polymer, after modifying its surface with an aqueous solution of hyaluronic acid is developed. The sintering thresholds for wetted polymer are by 3 - 4 times lower than those for sintering in air. The presence of water restricts the temperature of the heated polymer, preventing its thermal destruction. Polymer matrices with a developed porous structure are obtained. The proposed SSLS method can be applied to produce bioresorbable polymer matrices for tissue engineering.
Xue, Junhui; Xu, Yizhuang; Jin, Zhaoxia
2016-03-08
Here, we demonstrated that, when the precipitation process of polyamide-6 (PA6) solution happens in cylindrical channels of an anodized aluminum oxide membrane (AAO), interface interactions between a solid surface, solvent, non-solvent, and PA6 will influence the obtained polymer nanostructures, resulting in complex morphologies, increased surface area, and crystallization changes. With the enhancing interaction of PA6 and the AAO surface, the morphology of PA6 nanostructures changes from solid nanofibers, mesoporous, to bamboo-like, while at the same time, metastable γ-phase domains increase in these PA6 nanostructures. Brunauer-Emmett-Teller (BET) surface areas of solid, bamboo-like, and mesoporous PA6 nanofibers rise from 16, 20.9, to 25 m(2)/g. This study shows that interfacial interaction in AAO template fabrication can be used in manipulating the morphology and crystallization of one-dimensional polymer nanostructures. It also provides us a simple and novel method to create porous PA6 nanofibers with a large surface area.
Percutaneous Implants with Porous Titanium Dermal Barriers: An In Vivo Evaluation of Infection Risk
Isackson, Dorthyann; McGill, Lawrence D.; Bachus, Kent N.
2010-01-01
Osseointegrated percutaneous implants are a promising prosthetic alternative for a subset of amputees. However, as with all percutaneous implants, they have an increased risk of infection since they breach the skin barrier. Theoretically, host tissues could attach to the metal implant creating a barrier to infection. When compared with smooth surfaces, it is hypothesized that porous surfaces improve the attachment of the host tissues to the implant, and decrease the infection risk. In this study, 4 titanium implants, manufactured with a percutaneous post and a subcutaneous disk, were placed subcutaneously on the dorsum of eight New Zealand White rabbits. Beginning at four weeks post-op, the implants were inoculated weekly with 108 CFU Staphylococcus aureus until signs of clinical infection presented. While we were unable to detect a difference in the incidence of infection of the porous metal implants, smooth surface (no porous coating) percutaneous and subcutaneous components had a 7-fold increased risk of infection compared to the implants with a porous coating on one or both components. The porous coated implants displayed excellent tissue ingrowth into the porous structures; whereas, the smooth implants were surrounded with a thick, organized fibrotic capsule that was separated from the implant surface. This study suggests that porous coated metal percutaneous implants are at a significantly lower risk of infection when compared to smooth metal implants. The smooth surface percutaneous implants were inadequate in allowing a long-term seal to develop with the soft tissue, thus increasing vulnerability to the migration of infecting microorganisms. PMID:21145778
Carbon aerogel-based supercapacitors modified by hummers oxidation method.
Xu, Yuelong; Ren, Bin; Wang, Shasha; Zhang, Lihui; Liu, Zhenfa
2018-05-14
Carbon aerogels of an inter-connected three-dimensional (3D) structure are a potential carbon material for supercapacitors. We report a new oxidation modification method to prepare a series of modified carbon aerogels (OM-CA) by Hummers oxidation method. Oxidation-modified carbon aerogels (OM-CA) are obtained from carbon aerogel powders oxidized by Hummers method. Sulfuric acid stoichiometry is studied in order to investigate the effect of the surface oxygen group on surface area and electrochemical performance. Additionally, heteroatoms are doped into carbon aerogels in the oxidation process. The effect of heteroatom doping on electrochemical performance as a supercapacitor electrode material is investigated. When the amount of sulfuric acid is 40 wt%, the dopping manganese content is 0.9 mol%, the specific surface area of OM-CA is 450 m 2 /g, and its specific capacitance is 151 F g -1 at 0.5 A g -1 , which is achieved by heteroatom doping and texture properties. In addition, OM-CA composite supercapacitors exhibit a stable cycle life at a current density of 0.5 A g -1 and retain 98.0% of initial capacitance over 500 cycles, and OM-CA-40% still presents a higher capacity, up to 148 F g -1 at 0.5 A g -1 . The high specific surface area and specific capacitance suggest the porous carbon material has potential applications in supercapacitors. Copyright © 2018 Elsevier Inc. All rights reserved.
Composite oxygen transport membrane
Christie, Gervase Maxwell; Lane, Jonathan A.
2014-08-05
A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.
Composite oxygen transport membrane
Christie, Gervase Maxwell; Lane, Jonathan A.
2016-11-15
A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.
Porous Carriers for Controlled/Modulated Drug Delivery
Ahuja, G.; Pathak, K.
2009-01-01
Considerable research efforts have been directed in recent years towards the development of porous carriers as controlled drug delivery matrices because of possessing several features such as stable uniform porous structure, high surface area, tunable pore size and well-defined surface properties. Owing to wide range of useful properties porous carriers have been used in pharmaceuticals for many purposes including development of floating drug delivery systems, sustained drug delivery systems. Various types of pores like open, closed, transport and blind pores in the porous solid allow them to adsorb drugs and release them in a more reproducible and predictable manner. Pharmaceutically exploited porous adsorbents includes, silica (mesoporous), ethylene vinyl acetate (macroporous), polypropylene foam powder (microporous), titanium dioxide (nanoporous). When porous polymeric drug delivery system is placed in contact with appropriate dissolution medium, release of drug to medium must be preceded by the drug dissolution in the water filled pores or from surface and by diffusion through the water filled channels. The porous carriers are used to improve the oral bioavailability of poorly water soluble drugs, to increase the dissolution of relatively insoluble powders and conversion of crystalline state to amorphous state. PMID:20376211
Lü, Yinyun; Zhan, Wenwen; He, Yue; Wang, Yiting; Kong, Xiangjian; Kuang, Qin; Xie, Zhaoxiong; Zheng, Lansun
2014-03-26
Porous metal oxides nanomaterials with controlled morphology have received great attention because of their promising applications in catalysis, energy storage and conversion, gas sensing, etc. In this paper, porous Co3O4 concave nanocubes with extremely high specific surface area (120.9 m(2)·g(-1)) were synthesized simply by calcining Co-based metal-organic framework (Co-MOF, ZIF-67) templates at the optimized temperature (300 °C), and the formation mechanism of such highly porous structures as well as the influence of the calcination temperature are well explained by taking into account thermal behavior and intrinsic structural features of the Co-MOF precursors. The gas-sensing properties of the as-synthesized porous Co3O4 concave nanocubes were systematically tested towards volatile organic compounds including ethanol, acetone, toluene, and benzene. Experimental results reveal that the porous Co3O4 concave nanocubes present the highest sensitivity to ethanol with fast response/recovery time (< 10 s) and a low detection limit (at least 10 ppm). Such outstanding gas sensing performance of the porous Co3O4 concave nanocubes benefits from their high porosity, large specific surface area, and remarkable capabilities of surface-adsorbed oxygen.
A theoretical study for the propagation of rolling noise over a porous road pavement
NASA Astrophysics Data System (ADS)
Keung Lui, Wai; Ming Li, Kai
2004-07-01
A simplified model based on the study of sound diffracted by a sphere is proposed for investigating the propagation of noise in a hornlike geometry between porous road surfaces and rolling tires. The simplified model is verified by comparing its predictions with the published numerical and experimental results of studies on the horn amplification of sound over a road pavement. In a parametric study, a point monopole source is assumed to be localized on the surface of a tire. In the frequency range of interest, a porous road pavement can effectively reduce the level of amplified sound due to the horn effect. It has been shown that an increase in the thickness and porosity of a porous layer, or the use of a double layer of porous road pavement, attenuates the horn amplification of sound. However, a decrease in the flow resistivity of a porous road pavement does little to reduce the horn amplification of sound. It has also been demonstrated that the horn effect over a porous road pavement is less dependent on the angular position of the source on the surface of tires.
NASA Astrophysics Data System (ADS)
Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang
2016-02-01
Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA.
Electrochemical synthesis of porous cobalt nanowall arrays
NASA Astrophysics Data System (ADS)
He, Wei; Gao, Peng; Chu, Lei; Yin, Ligen; Li, Zhen; Xie, Yi
2006-07-01
Porous cobalt nanowall arrays have been prepared by electrochemical deposition of mono-precursor [Co(NH3)5Cl]Cl2 on copper substrates. Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halenda (BJH) investigations of the surface properties indicate that the resulting porous nanomaterials possess high surface area and uniform pore size distribution, which implies potential applications in some fields, such as catalysis, energy, and magnetic data storage devices. The magnetism measurements of the porous cobalt nanowall arrays take on a good ferromagnetic behaviour with enhanced coercivity (Hc).
NASA Astrophysics Data System (ADS)
Runowski, Marcin; Dąbrowska, Krystyna; Grzyb, Tomasz; Miernikiewicz, Paulina; Lis, Stefan
2013-11-01
A simple co-precipitation reaction between Ln3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb3+-doped LaPO4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO4:Tb3+@SiO2@NH2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO4:Tb3+@SiO2.
Runowski, Marcin; Dąbrowska, Krystyna; Grzyb, Tomasz; Miernikiewicz, Paulina; Lis, Stefan
2013-01-01
A simple co-precipitation reaction between Ln 3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb 3+ -doped LaPO 4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH 2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb 3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO 4 :Tb 3+ @SiO 2 @NH 2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO 4 :Tb 3+ @SiO 2 .
NASA Astrophysics Data System (ADS)
Loftfield, Nina; Kästner, Markus; Reithmeier, Eduard
2018-06-01
Local and global liquid transport properties correlate strongly with the morphology of porous materials. Therefore, by characterizing the porous network information is indirectly gained on the materials properties. Properties like the open-porosity are easily accessible with techniques like mercury porosimetry. However, the 3D image reconstruction, destructive or non-destructive, holds advantages like an accurate spatially resolved representation of the investigated material. Common 3D data acquisition is done by x-ray microtomography or a combination of focused ion beam based milling and scanning electron microscopy. In this work a reconstruction approach similar to the latter one is implemented. The porous network is reconstructed based on an alternating process of milling the surface by fly cutting and measuring the surface data with a confocal laser scanning microscope. This has the benefit of reconstructing the pore network on the basis of surface height data, measuring the structure boundaries directly. The stack of milled surface height data needs to be registered and the pore structure to be segmented. The segmented pore structure is connected throughout each height layer and afterwards meshed. The investigated materials are porous surface coatings of aluminum oxide for the usage in tribological pairings.
Additively Manufactured and Surface Biofunctionalized Porous Nitinol.
Gorgin Karaji, Z; Speirs, M; Dadbakhsh, S; Kruth, J-P; Weinans, H; Zadpoor, A A; Amin Yavari, S
2017-01-18
Enhanced bone tissue regeneration and improved osseointegration are among the most important goals in design of multifunctional orthopedic biomaterials. In this study, we used additive manufacturing (selective laser melting) to develop multifunctional porous nitinol that combines superelasticity with a rationally designed microarchitecture and biofunctionalized surface. The rational design based on triply periodic minimal surfaces aimed to properly adjust the pore size, increase the surface area (thereby amplifying the effects of surface biofunctionalization), and resemble the curvature characteristics of trabecular bone. The surface of additively manufactured (AM) porous nitinol was biofunctionalized using polydopamine-immobilized rhBMP2 for better control of the release kinetics. The actual morphological properties of porous nitinol measured by microcomputed tomography (e.g., open/close porosity, and surface area) closely matched the design values. The superelasticity originated from the austenite phase formed in the nitinol porous structure at room temperature. Polydopamine and rhBMP2 signature peaks were confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy tests. The release of rhBMP2 continued until 28 days. The early time and long-term release profiles were found to be adjustable independent of each other. In vitro cell culture showed improved cell attachment, cell proliferation, cell morphology (spreading, spindle-like shape), and cell coverage as well as elevated levels of ALP activity and increased calcium content for biofunctionalized surfaces as compared to as-manufactured specimens. The demonstrated functionalities of porous nitinol could be used as a basis for deployable orthopedic implants with rationally designed microarchitectures that maximize bone tissue regeneration performance by release of biomolecules with adjustable and well-controlled release profiles.
Microwave impregnation of porous materials with thermal energy storage materials
Benson, David K.; Burrows, Richard W.
1993-01-01
A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.
Microwave impregnation of porous materials with thermal energy storage materials
Benson, D.K.; Burrows, R.W.
1993-04-13
A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.
Chemical microreactor and method thereof
Morse, Jeffrey D.; Jankowski, Alan
2005-11-01
A chemical microreactor suitable for generation of hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. One such microreactor employs a packed catalyst capillary microchannel and at least one porous membrane. Another employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2 /cm.sup.3. The packed catalyst capillary microchannels, porous membranes and porous membrane support structures may be formed by a variety of methods.
Sputtering from a Porous Material by Penetrating Ions
NASA Technical Reports Server (NTRS)
Rodriguez-Nieva, J. F.; Bringa, E. M.; Cassidy, T. A.; Johnson, R. E.; Caro, A.; Fama, M.; Loeffler, M.; Baragiola, R. A.; Farkas, D.
2012-01-01
Porous materials are ubiquitous in the universe and weathering of porous surfaces plays an important role in the evolution of planetary and interstellar materials. Sputtering of porous solids in particular can influence atmosphere formation, surface reflectivity, and the production of the ambient gas around materials in space, Several previous studies and models have shown a large reduction in the sputtering of a porous solid compared to the sputtering of the non-porous solid. Using molecular dynamics simulations we study the sputtering of a nanoporous solid with 55% of the solid density. We calculate the electronic sputtering induced by a fast, penetrating ion, using a thermal spike representation of the deposited energy. We find that sputtering for this porous solid is, surprisingly, the same as that for a full-density solid, even though the sticking coefficient is high.
Porous NiTi for bone implants: a review.
Bansiddhi, A; Sargeant, T D; Stupp, S I; Dunand, D C
2008-07-01
NiTi foams are unique among biocompatible porous metals because of their high recovery strain (due to the shape-memory or superelastic effects) and their low stiffness facilitating integration with bone structures. To optimize NiTi foams for bone implant applications, two key areas are under active study: synthesis of foams with optimal architectures, microstructure and mechanical properties; and tailoring of biological interactions through modifications of pore surfaces. This article reviews recent research on NiTi foams for bone replacement, focusing on three specific topics: (i) surface modifications designed to create bio-inert porous NiTi surfaces with low Ni release and corrosion, as well as bioactive surfaces to enhance and accelerate biological activity; (ii) in vitro and in vivo biocompatibility studies to confirm the long-term safety of porous NiTi implants; and (iii) biological evaluations for specific applications, such as in intervertebral fusion devices and bone tissue scaffolds. Possible future directions for bio-performance and processing studies are discussed that could lead to optimized porous NiTi implants.
Porous NiTi for bone implants: A review
Bansiddhi, A.; Sargeant, T.D.; Stupp, S.I.; Dunand, D.C.
2011-01-01
NiTi foams are unique among biocompatible porous metals because of their high recovery strain (due to the shape-memory or superelastic effects) and their low stiffness facilitating integration with bone structures. To optimize NiTi foams for bone implant applications, two key areas are under active study: synthesis of foams with optimal architectures, microstructure and mechanical properties; and tailoring of biological interactions through modifications of pore surfaces. This article reviews recent research on NiTi foams for bone replacement, focusing on three specific topics: (i) surface modifications designed to create bio-inert porous NiTi surfaces with low Ni release and corrosion, as well as bioactive surfaces to enhance and accelerate biological activity; (ii) In vitro and in vivo biocompatibility studies to confirm the long-term safety of porous NiTi implants; and (iii) biological evaluations for specific applications, such as in intervertebral fusion devices and bone tissue scaffolds. Possible future directions for bio-performance and processing studies are discussed that could lead to optimized porous NiTi implants. PMID:18348912
NASA Astrophysics Data System (ADS)
Ma, Aijing; Xu, Jie; Zhang, Xuehua; Zhang, Bin; Wang, Dayang; Xu, Haolan
2014-05-01
Interfacial nanodroplets were grafted to the surfaces of self-sacrificed template particles in a galvanic reaction system to assist the construction of 3D Au porous structures. The interfacial nanodroplets were formed via direct adsorption of surfactant-free emulsions onto the particle surfaces. The interfacial nanodroplets discretely distributed at the template particle surfaces and served as soft templates to guide the formation of porous Au structures. The self-variation of footprint sizes of interfacial nanodroplets during Au growth gave rise to a hierarchical pore size distribution of the obtained Au porous particles. This strategy could be easily extended to synthesize bimetal porous particles such as Au-Pt and Au-Pd. The obtained porous Au, Au-Pt, and Au-Pd particles showed excellent catalytic activity in catalytic reduction of 4-nitrophenol.
Zhao, Jingming; Hwang, K H; Choi, W S; Shin, S J; Lee, J K
2016-02-01
Titanium as one kind of biomaterials comes in direct contact with the body, making evaluation of biocompatibility an important aspect to biomaterials development. Surface chemistry of titanium plays an important role in osseointegration. Different surface modification alters the surface chemistry and result in different biological response. In this study, three kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coating successfully formed on the Ti surfaces in simulated body fluid. Strong mixed acid increased the roughness of the metal surface, because the porous and rough surface allows better adhesion between Ca-P coatings and substrates. After modification of titanium surface by mixed acidic solution and subsequently H2O2/HCL treatment evaluation of biocompatibility was conducted from hydroxyapatite formation by biomimetic process and cell viability on modified titanium surface. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Results from this study indicated that surface treatment methods affect the surface morphology, type of TiO2 layer formed and subsequent apatite deposition and biological responses. The thermo scientific alamarblue cell viability assay reagent is used to quantitatively measure the viability of mammalian cell lines, bacteria and fungi by incorporating a rapid, sensitive and reliable fluorometric/colorimetric growth indicator, without any toxic and side effect to cell line. In addition, mixed acid treatment uses a lower temperature and shorter time period than widely used alkali treatment.
Protocells and their use for targeted delivery of multicomponent cargos to cancer cells
Brinker, Jeffrey C.; Ashley, Carlee Erin; Jiang, Xingmao; Liu, Juewen; Peabody, David S.; Wharton, Walker Richard; Carnes, Eric; Chackerian, Bryce; Willman, Cheryl L.
2016-11-01
Various embodiments provide materials and methods for synthesizing protocells for use in targeted delivery of cargo components to cancer cells. In one embodiment, the lipid bilayer can be fused to the porous particle core to form a protocell. The lipid bilayer can be modified with targeting ligands or other ligands to achieve targeted delivery of cargo components that are loaded within the protocell to a target cell, e.g., a type of cancer. Shielding materials can be conjugated to the surface of the lipid bilayer to reduce undesired non-specific binding.
Protocells and their use for targeted delivery of multicomponent cargos to cancer cells
Brinker, C Jeffrey; Ashley, Carlee Erin; Jiang, Xingmao; Liu, Juewen; Peabody, David S; Wharton, Walker Richard; Carnes, Eric; Chackerian, Bryce; Willman, Cheryl L
2015-03-31
Various embodiments provide materials and methods for synthesizing protocells for use in targeted delivery of cargo components to cancer cells. In one embodiment, the lipid bilayer can be fused to the porous particle core to form a protocell. The lipid bilayer can be modified with targeting ligands or other ligands to achieve targeted delivery of cargo components that are loaded within the protocell to a target cell, e.g., a type of cancer. Shielding materials can be conjugated to the surface of the lipid bilayer to reduce undesired non-specific binding.
Numerical Investigation of Flow in an Over-Expanded Nozzle with Porous Surfaces
NASA Technical Reports Server (NTRS)
Elmiligui, Alaa; Abdol-Hamid, K. S.; Hunter, Craig A.
2005-01-01
A new porous condition has been implemented in the PAB3D solver for simulating the flow over porous surfaces. The newly-added boundary condition is utilized to compute the flow field of a non-axisymmetric, convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. The nozzle has an expansion ratio (exit area/throat area) of 1.797 and a design nozzle pressure ratio of 8.78. The flow fields for a baseline nozzle (no porosity) and for a nozzle with porous surfaces (10% porosity ratio) are computed for NPR varying from 2.01 to 9.54. Computational model results indicate that the over-expanded nozzle flow was dominated by shock-induced boundary-layer separation. Porous configurations were capable of controlling off-design separation in the nozzle by encouraging stable separation of the exhaust flow. Computational simulation results, wall centerline pressure, mach contours, and thrust efficiency ratio are presented and discussed. Computed results are in excellent agreement with experimental data.
Numerical Investigation of Flow in an Over-expanded Nozzle with Porous Surfaces
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Elmilingui, Alaa A.; Hunter, Craig A.
2006-01-01
A new porous condition has been implemented in the PAB3D solver for simulating the flow over porous surfaces. The newly-added boundary condition is utilized to compute the flow field of a non-axisymmetric, convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. The nozzle has an expansion ratio (exit area/throat area) of 1.797 and a design nozzle pressure ratio of 8.78. The flow fields for a baseline nozzle (no porosity) and for a nozzle with porous surfaces (10% porosity ratio) are computed for NPR varying from 2.01 to 9.54. Computational model results indicate that the over-expanded nozzle flow is dominated by shock-induced boundary-layer separation. Porous configurations are capable of controlling off-design separation in the nozzle by encouraging stable separation of the exhaust flow. Computational simulation results, wall centerline pressure, mach contours, and thrust efficiency ratio are presented and discussed. Computed results are in excellent agreement with experimental data.
Head-on collision of normal shock waves with rigid porous materials
NASA Astrophysics Data System (ADS)
Levy, A.; Ben-Dor, G.; Skews, B. W.; Sorek, S.
1993-08-01
The head-on collision of a planar shock wave with a rigid porous material has been investigated experimentally in a 75 mm × 75 mm shock tube. The experimental study indicated that unlike the reflection from a flexible porous material (e.g., polyurethane foam) where the transmitted compression waves do not converge to a sharp shock wave, in the case of a rigid porous material (e.g., alumina) the transmitted compression waves do converge to a sharp shock wave, which decays as it propagates along the porous material. In addition to this major difference, many other differences were observed. They are outlined in the following sections. Based on these observations a suggestion modifying the phenomenology of the reflection/interaction process in the case a porous material with large permeability is proposed.
Observation of a new surface mode on a fluid-saturated permeable solid
NASA Astrophysics Data System (ADS)
Nagy, Peter B.
1992-06-01
Almost ten years ago, S. Feng and D. L. Johnson predicted the presence of a new surface mode on a fluid/fluid-saturated porous solid interface with closed surface pores [J. Acoust. Soc. Am. 74, 906 (1983)]. We found that, due to surface tension, practically closed-pore boundary conditions can prevail at an interface between a nonwetting fluid (e.g., air) and a porous solid saturated with a wetting fluid (e.g., water or alcohol). Surface wave velocity and attenuation measurements were made on alcohol-saturated porous sintered glass at 100 kHz. The experimental results show clear evidence of the new ``slow'' surface mode predicted by Feng and Johnson.
Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications
Jeon, Ju-Won; Zhang, Libing; Lutkenhaus, Jodie L.; ...
2015-02-01
Low-cost renewable lignin has been used as a precursor to produce porous carbons. However, to date, it has not been easy to obtain high surface area porous carbon without activation processes or templating agents. Here, we demonstrate that low molecular weight lignin yields highly porous carbon (1092 m² g⁻¹) with more graphitization through direct carbonization without additional activation processes or templating agents. We found that molecular weight and oxygen consumption during carbonization are critical factors to obtain high surface area, graphitized porous carbons. This highly porous carbon from low-cost renewable lignin sources is a good candidate for supercapacitor electrode materials.
Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, Ju-Won; Zhang, Libing; Lutkenhaus, Jodie L.
Low-cost renewable lignin has been used as a precursor to produce porous carbons. However, to date, it has not been easy to obtain high surface area porous carbon without activation processes or templating agents. Here, we demonstrate that low molecular weight lignin yields highly porous carbon (1092 m² g⁻¹) with more graphitization through direct carbonization without additional activation processes or templating agents. We found that molecular weight and oxygen consumption during carbonization are critical factors to obtain high surface area, graphitized porous carbons. This highly porous carbon from low-cost renewable lignin sources is a good candidate for supercapacitor electrode materials.
Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors.
Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing
2017-02-16
Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 μM and 8.0 μA/μM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications.
Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors
Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing
2017-01-01
Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 µM and 8.0 µA/µM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications. PMID:28336878
Wu, Yingnan; Li, Chao; Zhang, Tianting; Zou, Yu; Hui, James H.P.; Lee, Eng Hin
2012-01-01
Considering the load-bearing physiological requirement of articular cartilage, scaffold for cartilage tissue engineering should exhibit appropriate mechanical responses as natural cartilage undergoing temporary deformation on loading with little structural collapse, and recovering to the original geometry on unloading. A porous elastomeric poly l-lactide-co-ɛ-caprolactone (PLCL) was generated and crosslinked at the surface to chitosan to improve its wettability. Human bone marrow derived mesenchymal stem cells (MSC) attachment, morphological change, proliferation and in vitro cartilage tissue formation on the chitosan-modified PLCL scaffold were compared with the unmodified PLCL scaffold. Chitosan surface promoted more consistent and even distribution of the seeded MSC within the scaffold. MSC rapidly adopted a distinct spread-up morphology on attachment on the chitosan-modified PLCL scaffold with the formation of F-actin stress fiber which proceeded to cell aggregation; an event much delayed in the unmodified PLCL. Enhanced cartilage formation on the chitosan-modified PLCL was shown by real-time PCR analysis, histological and immunochemistry staining and biochemical assays of the cartilage extracellular matrix components. The Young's modulus of the derived cartilage tissues on the chitosan-modified PLCL scaffold was significantly increased and doubled that of the unmodified PLCL. Our results show that chitosan modification of the PLCL scaffold improved the cell compatibility of the PLCL scaffold without significant alteration of the physical elastomeric properties of PLCL and resulted in the formation of cartilage tissue of better quality. PMID:21902611
Transport and Retention of Colloids in Porous Media: Does Shape Really Matter?
The effect of particle shape on its transport and retention in porous media was evaluated by stretching carboxylate-modified fluorescent polystyrene spheres into rod shapes with aspect ratios of 2:1 and 4:1. Quartz crystal microbalance with dissipation experiments (QCM-D) were c...
Modelling the evolution of complex conductivity during calcite precipitation on glass beads
NASA Astrophysics Data System (ADS)
Leroy, Philippe; Li, Shuai; Jougnot, Damien; Revil, André; Wu, Yuxin
2017-04-01
When pH and alkalinity increase, calcite frequently precipitates and hence modifies the petrophysical properties of porous media. The complex conductivity method can be used to directly monitor calcite precipitation in porous media because it is sensitive to the evolution of the mineralogy, pore structure and its connectivity. We have developed a mechanistic grain polarization model considering the electrochemical polarization of the Stern and diffuse layers surrounding calcite particles. Our complex conductivity model depends on the surface charge density of the Stern layer and on the electrical potential at the onset of the diffuse layer, which are computed using a basic Stern model of the calcite/water interface. The complex conductivity measurements of Wu et al. on a column packed with glass beads where calcite precipitation occurs are reproduced by our surface complexation and complex conductivity models. The evolution of the size and shape of calcite particles during the calcite precipitation experiment is estimated by our complex conductivity model. At the early stage of the calcite precipitation experiment, modelled particles sizes increase and calcite particles flatten with time because calcite crystals nucleate at the surface of glass beads and grow into larger calcite grains. At the later stage of the calcite precipitation experiment, modelled sizes and cementation exponents of calcite particles decrease with time because large calcite grains aggregate over multiple glass beads and only small calcite crystals polarize.
Degradation of blue and red inks by Ag/AgCl photocatalyst under UV light irradiation
NASA Astrophysics Data System (ADS)
Daupor, Hasan; Chenea, Asmat
2017-08-01
Objective of this research, cubic Ag/AgCl photocatalysts with an average particle size of 500 nm has been successfully synthesized via a modified precipitation reaction between ZrCl4 and AgNO3. Method for analysis, the crystal structure of the product was characterized by X-ray powder diffraction (XRD). The morphology and composition were studied by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV-vis diffuse-reflection spectra (DRS) and so on. The result showed that the optical absorption spectrum exhibited strong absorption in the visible region around 500-600 nm due to surface plasmon resonance (SPR) of metallic silver nanoparticles. SEM micrographs showed that the obtained Ag/AgCl had cubic morphology and appeared on the porous surface as the cubic cage morphology. As a result, this porous surface also positively affected the photocatalytic reaction. The photocatalytic activity of the obtained product was evaluated by the photodegradation of blue and red ink solutions under UV light irradiation, and it was interestingly, discovered that AgCl could degrade 0.25% and 0.10% in 7 hours for blue and red inks solution respectively, Which were higher than of commercial AgCl. The result suggested that the morphology of Ag/AgCl strongly affected their photocatalytic activities. O2-, OH- reaction. radicals and Cl° atom are main species during photocatalytic reaction.
Chhasatia, Rinku; Sweetman, Martin J; Harding, Frances J; Waibel, Michaela; Kay, Tom; Thomas, Helen; Loudovaris, Thomas; Voelcker, Nicolas H
2017-05-15
A label-free porous silicon (pSi) based, optical biosensor, using both an antibody and aptamer bioreceptor motif has been developed for the detection of insulin. Two parallel biosensors were designed and optimised independently, based on each bioreceptor. Both bioreceptors were covalently attached to a thermally hydrosilylated pSi surface though amide coupling, with unreacted surface area rendered stable and low fouling by incorporation of PEG moieties. The insulin detection ability of each biosensor was determined using interferometric reflectance spectroscopy, using a range of different media both with and without serum. Sensing performance was compared in terms of response value, response time and limit of detection (LOD) for each platform. In order to demonstrate the capability of the best performing biosensor to detect insulin from real samples, an in vitro investigation with the aptamer-modified surface was performed. This biosensor was exposed to buffer conditioned by glucose-stimulated human islets, with the result showing a positive response and a high degree of selectivity towards insulin capture. The obtained results correlated well with the ELISA used in the clinic for assaying glucose-stimulated insulin release from donor islets. We anticipate that this type of sensor can be applied as a rapid point-of-use biosensor to assess the quality of donor islets in terms of their insulin production efficiency, prior to transplantation. Copyright © 2017 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Corn starch was modified with cyclodextrin glycosyltransferase (CGTase) below the gelatinization temperature. The porous, partially hydrolyzed, granules with or without CGTase hydrolysis products, cyclodextrins (CDs) and short chain maltodextrins, may be used as an alternative to modified corn starc...
Xiang, Jun; Sun, Jianguo; Hong, Jiaxu; Wang, Wentao; Wei, Anji; Le, Qihua; Xu, Jianjiang
2015-05-01
Corneal disease is a common cause of blindness, and keratoplasty is considered as an effective treatment method. However, there is a severe shortage of donor corneas worldwide. This paper presents a novel T-style design of a keratoprosthesis and its preparation methods, in which a mechanically and structurally effective artificial cornea is made based on a poly(2-hydroxyethyl methacrylate) hydrogel. The porous skirt was modified with hyaluronic acid and cationized gelatin, and the bottom of the optical column was coated with poly(ethylene glycol). The physical properties of the T-style Kpro were analyzed using ultraviolet and visible spectrophotometry and electron scanning microscopy. The surface chemical properties were characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface modification in the spongy skirt promoted cell adhesion and produced a firm bond between the corneal tissue and the implant device, while the surface modification in the optic column resisted cell adhesion and prevented retroprosthetic membrane formation. Through improved surgical techniques, the novel T-style keratoprosthesis provides enough mechanical stability to facilitate long-term biointegration with the host environment. In vivo implantation experiments showed that the T-style keratoprosthesis is a promising cornea alternative for patients with severe limbal stem cell deficiency and corneal opacity. Copyright © 2015 Elsevier B.V. All rights reserved.
Improvement in wettability of porous Si by carboxylate termination
NASA Astrophysics Data System (ADS)
Sakakibara, Masanori; Matsumoto, Kimihisa; Kamiya, Kazuhide; Kawabata, Shigeki; Inada, Mitsuru; Suzuki, Shinya
2018-02-01
The effects of the surface terminations of carboxylic acid and carboxylate on the hydrophilicity of porous Si were studied to observe the changes in the photoluminescence (PL) intensity of water-dispersed porous Si powder over time. Porous Si terminated by carboxylate was produced from carboxylic acid-terminated porous Si by a neutralization reaction with an alkali metal. After the neutralization of porous Si terminated by carboxylic acid, the formation of carboxylate-terminated porous Si was confirmed by observing the absorption peaks corresponding to Si-C and COO- from Fourier transform infrared (FT-IR) spectra. On the basis of changes in the PL intensity of porous Si over time, the hydrophilicity of porous Si terminated by carboxylate was determined to be higher than that of porous Si terminated by carboxylic acid. On the other hand, nonradiative recombination centers on the surface of carboxylate-terminated porous Si were formed during the neutralization process, which reduced the PL intensity. The PL from porous Si terminated by carboxylic acid and carboxylate was caused by the quantum size effect regardless of the termination molecules, which was confirmed by the wavelength dependence of the PL lifetime. Porous Si terminated by undecylenate is an effective material for applications such as bio-labels owing to its hydrophilicity and high PL stability.
Superoleophilic particles and coatings and methods of making the same
Simpson, John T; D& #x27; Urso, Brian
2013-07-30
Superoleophilic particles and surfaces and methods of making the same are described. The superoleophilic particles can include porous particles having a hydrophobic coating layer deposited thereon. The coated porous particles are characterized by particle sizes ranging from at least 100 nm to about 10 .mu.m and a plurality of nanopores. Some of the nanopores provide flow through porosity. The superoleophilic particles also include oil pinned within the nanopores of the porous particles The plurality of porous particles can include (i) particles including a plurality of spaced apart nanostructured features comprising a contiguous, protrusive material, (ii) diatomaceous earth particles, or (iii) both. The surfaces can include the superoleophilic particles coupled to the surface.
2006-03-01
data for conventional systems was obtained mainly through the RS Means Assemblies Cost Data book (Balboni, 2005) while Bruce Ferguson’s Porous...Pavements book provided much of the information for porous systems (Ferguson, 2005). Additional information regarding pavement maintenance, inspection...Jacobs, M. M. J., Stet, M. J. A., & Molenaar , A. A. A. (2002). Decision model for the use of polymer modified binders in asphalt concrete for airfields
SIMPLE GREEN® (Dual listing for 2013 reformulation)
Technical product bulletin: this surface washing agent is suitable for use in oil spill cleanups in freshwater, estuarine, and marine environments at all temperatures, on both porous and non-porous surfaces.
Yao, Meng-Zhu; Huang-Fu, Ming-Yi; Liu, Hui-Na; Wang, Xia-Rong; Sheng, Xiaoxia; Gao, Jian-Qing
2016-01-01
Nano-hydroxyapatite/polyamide 66 (nHA/PA66) porous scaffolds were fabricated by a phase inversion method. Carbon nanotubes (CNTs) and silk fibroin (SF) were used to modify the surface of the nHA/PA66 scaffolds by freeze-drying and cross-linking. Dexamethasone was absorbed to the CNTs to promote the osteogenic differentiation of bone mesenchymal stem cells (BMSCs). The cell viability of BMSCs was investigated by changing the concentration of the CNT dispersion, and the most biocompatible scaffold was selected. In addition, the morphology and mechanical property of the scaffolds were investigated. The results showed that the nHA/PA66 scaffolds modified with CNTs and SF met the requirements of bone tissue engineering scaffolds. The dexamethasone-loaded CNT/SF-nHA/PA66 composite scaffold promoted the osteogenic differentiation of BMSCs, and the drug-loaded scaffolds are expected to function as effective bone tissue engineering scaffolds. PMID:27920525
Diffuse charge and Faradaic reactions in porous electrodes
NASA Astrophysics Data System (ADS)
Biesheuvel, P. M.; Fu, Yeqing; Bazant, Martin Z.
2011-06-01
Porous electrodes instead of flat electrodes are widely used in electrochemical systems to boost storage capacities for ions and electrons, to improve the transport of mass and charge, and to enhance reaction rates. Existing porous electrode theories make a number of simplifying assumptions: (i) The charge-transfer rate is assumed to depend only on the local electrostatic potential difference between the electrode matrix and the pore solution, without considering the structure of the double layer (DL) formed in between; (ii) the charge-transfer rate is generally equated with the salt-transfer rate not only at the nanoscale of the matrix-pore interface, but also at the macroscopic scale of transport through the electrode pores. In this paper, we extend porous electrode theory by including the generalized Frumkin-Butler-Volmer model of Faradaic reaction kinetics, which postulates charge transfer across the molecular Stern layer located in between the electron-conducting matrix phase and the plane of closest approach for the ions in the diffuse part of the DL. This is an elegant and purely local description of the charge-transfer rate, which self-consistently determines the surface charge and does not require consideration of reference electrodes or comparison with a global equilibrium. For the description of the DLs, we consider the two natural limits: (i) the classical Gouy-Chapman-Stern model for thin DLs compared to the macroscopic pore dimensions, e.g., for high-porosity metallic foams (macropores >50 nm) and (ii) a modified Donnan model for strongly overlapping DLs, e.g., for porous activated carbon particles (micropores <2 nm). Our theory is valid for electrolytes where both ions are mobile, and it accounts for voltage and concentration differences not only on the macroscopic scale of the full electrode, but also on the local scale of the DL. The model is simple enough to allow us to derive analytical approximations for the steady-state and early transients. We also present numerical solutions to validate the analysis and to illustrate the evolution of ion densities, pore potential, surface charge, and reaction rates in response to an applied voltage.
Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming
2014-04-23
For the first time, high-surface-area (approximately 1465 m(2) g(-1)), highly porous and heteroatom-enriched activated carbon (HAC) was prepared from banana stems (Musa paradisiaca, Family: Musaceae) at different carbonization temperatures of 700, 800 and 900 °C (HAC) using a simple and eco-friendly method. The amounts of carbon, hydrogen, nitrogen and sulfur in the HAC are 61.12, 2.567, 0.4315, and 0.349%, respectively. Using X-ray diffraction (XRD), CHNS elemental analysis, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, the prepared activated carbon appears amorphous and disordered in nature. Here, we used HAC for an electrochemical application of nitrite (NO2(-)) sensor to control the environmental pollution. In addition, HAC exhibits noteworthy performance for the highly sensitive determination of nitrite. The limit of detection (LODs) of the nitrite sensor at HAC-modified GCE is 0.07 μM. In addition, the proposed method was applied to determine nitrite in various water samples with acceptable results.
NASA Astrophysics Data System (ADS)
Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming
2014-04-01
For the first time, high-surface-area (approximately 1465 m2 g-1), highly porous and heteroatom-enriched activated carbon (HAC) was prepared from banana stems (Musa paradisiaca, Family: Musaceae) at different carbonization temperatures of 700, 800 and 900°C (HAC) using a simple and eco-friendly method. The amounts of carbon, hydrogen, nitrogen and sulfur in the HAC are 61.12, 2.567, 0.4315, and 0.349%, respectively. Using X-ray diffraction (XRD), CHNS elemental analysis, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, the prepared activated carbon appears amorphous and disordered in nature. Here, we used HAC for an electrochemical application of nitrite (NO2-) sensor to control the environmental pollution. In addition, HAC exhibits noteworthy performance for the highly sensitive determination of nitrite. The limit of detection (LODs) of the nitrite sensor at HAC-modified GCE is 0.07 μM. In addition, the proposed method was applied to determine nitrite in various water samples with acceptable results.
NASA Technical Reports Server (NTRS)
Dreschel, T. W.; Hall, C. R.; Foster, T. E.; Salganic, M.; Warren, L.; Corbett, M.
2005-01-01
The Porous Tube Plant Nutrient Delivery System (PTPNDS) was designed for NASA to grow plants in microgravity of space. The system utilizes a controlled fluid loop to supply nutrients and water to plant roots growing on a ceramic surface moistened by capiflary action. A PTPNDS test bed was developed and utilizing remote sensing systems, spectral analyses procedures, gas-exchange, and fluorescence measurements, we examined differences in plant water status for wheat plants (Triticum aestivum, cv. Perigee) grown in a modified growth chamber during the summers of 2003 and 2004. Some differences in plant performance were detectable in the gas-exchange and fluorescence measurements. For instance, in both years the plants grown with the most available water had the lowest rates of photosynthesis and exhibited higher proportions of non-photochemical quenching particularly under low light levels. In addition, small differences in mean leaf water content between treatments were detected using spectral reflectance analyses.
Li, Yang; Kim, Jeonghun; Wang, Jie; Liu, Nei-Ling; Bando, Yoshio; Alshehri, Abdulmohsen Ali; Yamauchi, Yusuke; Hou, Chia-Hung; Wu, Kevin C-W
2018-06-05
Zeolitic imidazolate framework (ZIF) composite-derived carbon exhibiting large surface area and high micropore volume is demonstrated to be a promising electrode material for the capacitive deionization (CDI) application. However, some inherent serious issues (e.g., low electrical conductivity, narrow pore size, relatively low pore volume, etc.) are still observed for nitrogen-doped porous carbon particles, which restrict their CDI performance. To solve the above-mentioned problems, herein, we prepared gold-nanoparticle-embedded ZIF-8-derived nitrogen-doped carbon calcined at 800 °C (Au@NC800) and PEDOT doped-NC-800 (NC800-PEDOT). The newly generated NC800-PEDOT and Au@NC800 electrodes exhibited notably increased conductivity, and they also achieved high electrosorption capacities of 16.18 mg g-1 and 14.31 mg g-1, respectively, which were much higher than that of NC800 (8.36 mg g-1). Au@NC800 and NC800-PEDOT can be promisingly applicable as highly efficient CDI electrode materials.
Lee, Hung-Pang; Lin, Da-Jun; Yeh, Ming-Long
2017-06-25
Magnesium alloys have great potential for developing orthopedic implants due to their biodegradability and mechanical properties, but the rapid corrosion rate of the currently-available alloys limits their clinical applications. To increase the corrosion resistance of the substrate, a protective ceramic coating is constructed by a micro-arc oxidation (MAO) process on ZK60 magnesium alloy. The porous ceramic coating is mainly composed of magnesium oxide and magnesium silicate, and the results from cell cultures show it can stimulate osteoblastic cell growth and proliferation. Moreover, gallic acid, a phenolic compound, was successfully introduced onto the MAO coating by grafting on hydrated oxide and chelating with magnesium ions. The gallic acid and rough surface of MAO altered the cell attachment behavior, making it difficult for fibroblasts to adhere to the MAO coating. The viability tests showed that gallic acid could suppress fibroblast growth and stimulate osteoblastic cell proliferation. Overall, the porous MAO coating combined with gallic acid offered a novel strategy for increasing osteocompatibility.
Lee, Hung-Pang; Lin, Da-Jun; Yeh, Ming-Long
2017-01-01
Magnesium alloys have great potential for developing orthopedic implants due to their biodegradability and mechanical properties, but the rapid corrosion rate of the currently-available alloys limits their clinical applications. To increase the corrosion resistance of the substrate, a protective ceramic coating is constructed by a micro-arc oxidation (MAO) process on ZK60 magnesium alloy. The porous ceramic coating is mainly composed of magnesium oxide and magnesium silicate, and the results from cell cultures show it can stimulate osteoblastic cell growth and proliferation. Moreover, gallic acid, a phenolic compound, was successfully introduced onto the MAO coating by grafting on hydrated oxide and chelating with magnesium ions. The gallic acid and rough surface of MAO altered the cell attachment behavior, making it difficult for fibroblasts to adhere to the MAO coating. The viability tests showed that gallic acid could suppress fibroblast growth and stimulate osteoblastic cell proliferation. Overall, the porous MAO coating combined with gallic acid offered a novel strategy for increasing osteocompatibility. PMID:28773055
Dong, Fan; Sun, Yanjuan; Fu, Min; Wu, Zhongbiao; Lee, S C
2012-06-15
This research represents a highly enhanced visible light photocatalytic removal of 450 ppb level of nitric oxide (NO) in air by utilizing flower-like hierarchical porous BiOI/BiOCl composites synthesized by a room temperature template free method for the first time. The facile synthesis method avoids high temperature treatment, use of organic precursors and production of undesirable organic byproducts during synthesis process. The result indicated that the as-prepared BiOI/BiOCl composites samples were solid solution and were self-assembled hierarchically with single-crystal nanoplates. The aggregation of the self-assembled nanoplates resulted in the formation of 3D hierarchical porous architecture containing tri-model mesopores. The coupling to BiOI with BiOCl led to down-lowered valence band (VB) and up-lifted conduction band (CB) in contrast to BiOI, making the composites suitable for visible light excitation. The BiOI/BiOCl composites samples exhibited highly enhanced visible light photocatalytic activity for removal of NO in air due to the large surface areas and pore volume, hierarchical structure and modified band structure, exceeding that of P25, BiOI, C-doped TiO(2) and Bi(2)WO(6). This research results could provide a cost-effective approach for the synthesis of porous hierarchical materials and enhancement of photocatalyst performance for environmental and energetic applications owing to its low cost and easy scaling up. Copyright © 2012 Elsevier B.V. All rights reserved.
Liu, Jian; Bo, Xiangjie; Zhao, Zheng; Guo, Liping
2015-12-15
In this study, we developed a novel biosensor based on highly exposed Pt nanoparticles (Pt NPs) decorated porous graphene (PG) for the reliable detection of extracellular hydrogen peroxide (H2O2) released from living cells. The commercially available low-cost hydrophilic CaCO3 spheres were used as template for preparing PG. The porous structure provided larger surface area and more active sites. Due to the porous structure of PG, the Pt NPs supported on PG were not secluded by aggregated graphene layers and were highly exposed to target molecules. Ultrafine Pt NPs were well dispersed and loaded on PG by a method of microwave assistance. Electrochemical performances of the Pt/PG nanocomposites modified glassy carbon electrode (GCE) were investigated. The electrocatalytic reduction of H2O2 showed a wide linear range from 1 to 1477 μM, with a high sensitivity of 341.14 μA mM(-1) cm(-2) and a limit of detection (LOD) as low as 0.50 μM. Moreover, the Pt/PG/GCE exhibited excellent anti-interference property, reproducibility and long-term storage stability. Because of these remarkable analytical advantages, the constructed sensor was used to determine H2O2 released from living cells with satisfactory results. The superior catalytic activity makes Pt/PG nanocomposites a promising candidate for electrochemical sensors and biosensors design. Copyright © 2015 Elsevier B.V. All rights reserved.
A modified hexagonal photonic crystal fiber for terahertz applications
NASA Astrophysics Data System (ADS)
Islam, Md. Saiful; Sultana, Jakeya; Faisal, Mohammad; Islam, Mohammad Rakibul; Dinovitser, Alex; Ng, Brian W.-H.; Abbott, Derek
2018-05-01
We present a Zeonex based highly birefringent and dispersion flattened porous core photonic crystal fiber (PC-PCF) for polarization preserving applications in the terahertz region. In order to facilitate birefringence, an array of elliptical shaped air holes surrounded by porous cladding is introduced. The porous cladding comprises circular air-holes in a modified hexagonal arrangement. The transmission characteristics of the proposed PCF are investigated using a full-vector finite element method with perfectly matched layer (PML) absorbing boundary conditions. Simulation results show a high birefringence of 0.086 and an ultra-flattened dispersion variation of ± 0.03 ps/THz/cm at optimal design parameters. Besides, a number of other important wave-guiding properties including frequency dependence of the effective material loss (EML), confinement loss, and effective area are also investigated to assess the fiber's effectiveness as a terahertz waveguide.
Du, Si-Hong; Wang, Li-Qun; Fu, Xiao-Ting; Chen, Ming-Ming; Wang, Cheng-Yang
2013-07-01
Porous starch was used as a precursor for hierarchical porous carbon microspheres. The preparation consisted of stabilisation, carbonisation and KOH activation, and the resultant hierarchical porous carbon microspheres had a large BET surface area of 3251 m(2)g(-1). Due to the large surface area and the hierarchical pore structure, electrodes made of the hierarchical porous carbon microsphere materials had high specific capacitances of 304 Fg(-1) at a current density of 0.05 Ag(-1) and 197 Fg(-1) at a current density of 180 Ag(-1) when used in a symmetric capacitor with 6M KOH as the electrolyte. After 10,000 cycles, the capacitor still exhibited a stable performance with a capacitance retention of 98%. These results indicate that porous starch is an excellent precursor to prepare high performance electrode materials for EDLCs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wei, Ta-Chen; Mack, Anne; Chen, Wu; Liu, Jia; Dittmann, Monika; Wang, Xiaoli; Barber, William E
2016-04-01
In recent years, superficially porous particles (SPPs) have drawn great interest because of their special particle characteristics and improvement in separation efficiency. Superficially porous particles are currently manufactured by adding silica nanoparticles onto solid cores using either a multistep multilayer process or one-step coacervation process. The pore size is mainly controlled by the size of the silica nanoparticles and the tortuous pore channel geometry is determined by how those nanoparticles randomly aggregate. Such tortuous pore structure is also similar to that of all totally porous particles used in HPLC today. In this article, we report on the development of a next generation superficially porous particle with a unique pore structure that includes a thinner shell thickness and ordered pore channels oriented normal to the particle surface. The method of making the new superficially porous particles is a process called pseudomorphic transformation (PMT), which is a form of micelle templating. Porosity is no longer controlled by randomly aggregated nanoparticles but rather by micelles that have an ordered liquid crystal structure. The new particle possesses many advantages such as a narrower particle size distribution, thinner porous layer with high surface area and, most importantly, highly ordered, non-tortuous pore channels oriented normal to the particle surface. This PMT process has been applied to make 1.8-5.1μm SPPs with pore size controlled around 75Å and surface area around 100m(2)/g. All particles with different sizes show the same unique pore structure with tunable pore size and shell thickness. The impact of the novel pore structure on the performance of these particles is characterized by measuring van Deemter curves and constructing kinetic plots. Reduced plate heights as low as 1.0 have been achieved on conventional LC instruments. This indicates higher efficiency of such particles compared to conventional totally porous and superficially porous particles. Copyright © 2016 Elsevier B.V. All rights reserved.
Formation of bubbly horizon in liquid-saturated porous medium by surface temperature oscillation.
Goldobin, Denis S; Krauzin, Pavel V
2015-12-01
We study nonisothermal diffusion transport of a weakly soluble substance in a liquid-saturated porous medium in contact with a reservoir of this substance. The surface temperature of the porous medium half-space oscillates in time, which results in a decaying solubility wave propagating deep into the porous medium. In this system, zones of saturated solution and nondissolved phase coexist with ones of undersaturated solution. The effect is first considered for the case of annual oscillation of the surface temperature of water-saturated ground in contact with the atmosphere. We reveal the phenomenon of formation of a near-surface bubbly horizon due to temperature oscillation. An analytical theory of the phenomenon is developed. Further, the treatment is extended to the case of higher frequency oscillations and the case of weakly soluble solids and liquids.
Methods and systems for in-situ electroplating of electrodes
Zappi, Guillermo Daniel; Zarnoch, Kenneth Paul; Huntley, Christian Andrew; Swalla, Dana Ray
2015-06-02
The present techniques provide electrochemical devices having enhanced electrodes with surfaces that facilitate operation, such as by formation of a porous nickel layer on an operative surface, particularly of the cathode. The porous metal layer increases the surface area of the electrode, which may result in increasing the efficiency of the electrochemical devices. The formation of the porous metal layer is performed in situ, that is, after the assembly of the electrodes into an electrochemical device. The in situ process offers a number of advantages, including the ability to protect the porous metal layer on the electrode surface from damage during assembly of the electrochemical device. The enhanced electrode and the method for its processing may be used in any number of electrochemical devices, and is particularly well suited for electrodes in an electrolyzer useful for splitting water into hydrogen and oxygen.
NASA Astrophysics Data System (ADS)
Jha, B. K.; Aina, B.; Muhammad, S. A.
2015-03-01
This study investigates analytically the hydrodynamic and thermal behaviour of a fully developed natural convection flow in a vertical micro-porous-annulus (MPA) taking into account the velocity slip and temperature jump at the outer surface of inner porous cylinder and inner surface of outer porous cylinder. A closed — form solution is presented for velocity, temperature, volume flow rate, skin friction and rate of heat transfer expressed as a Nusselt number. The influence of each governing parameter on hydrodynamic and thermal behaviour is discussed with the aid of graphs. During the course of investigation, it is found that as suction/injection on the cylinder walls increases, the fluid velocity and temperature is enhanced. In addition, it is observed that wall surface curvature has a significant effect on flow and thermal characteristics.
Method for forming a chemical microreactor
Morse, Jeffrey D [Martinez, CA; Jankowski, Alan [Livermore, CA
2009-05-19
Disclosed is a chemical microreactor that provides a means to generate hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water. The microreactor contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. Two distinct embodiment styles are discussed. One embodiment style employs a packed catalyst capillary microchannel and at least one porous membrane. Another embodiment style employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2/cm.sup.3. Various methods to form packed catalyst capillary microchannels, porous membranes and porous membrane support structures are also disclosed.
Light emitting diode with porous SiC substrate and method for fabricating
Li, Ting; Ibbetson, James; Keller, Bernd
2005-12-06
A method and apparatus for forming a porous layer on the surface of a semiconductor material wherein an electrolyte is provided and is placed in contact with one or more surfaces of a layer of semiconductor material. The electrolyte is heated and a bias is introduced across said electrolyte and the semiconductor material causing a current to flow between the electrolyte and the semiconductor material. The current forms a porous layer on the one or more surfaces of the semiconductor material in contact with the electrolyte. The semiconductor material with its porous layer can serve as a substrate for a light emitter. A semiconductor emission region can be formed on the substrate. The emission region is capable of emitting light omnidirectionally in response to a bias, with the porous layer enhancing extraction of the emitting region light passing through the substrate.
2017-01-01
Metal–organic frameworks (MOFs) are a class of modular, crystalline, and porous materials that hold promise for storage and transport of chemical cargoes. Though MOFs have been studied in bulk forms, ways of deliberately manipulating the external surface functionality of MOF nanoparticles are less developed. A generalizable approach to modify their surfaces would allow one to impart chemical functionality onto the particle surface that is independent of the bulk MOF structure. Moreover, the use of a chemically programmable ligand, such as DNA, would allow for the manipulation of interparticle interactions. Herein, we report a coordination chemistry-based strategy for the surface functionalization of the external metal nodes of MOF nanoparticles with terminal phosphate-modified oligonucleotides. The external surfaces of nine distinct archetypical MOF particles containing four different metal species (Zr, Cr, Fe, and Al) were successfully functionalized with oligonucleotides, illustrating the generality of this strategy. By taking advantage of the programmable and specific interactions of DNA, 11 distinct MOF particle–inorganic particle core–satellite clusters were synthesized. In these hybrid nanoclusters, the relative stoichiometry, size, shape, and composition of the building blocks can all be independently controlled. This work provides access to a new set of nucleic acid–nanoparticle conjugates, which may be useful as programmable material building blocks and as probes for measuring and manipulating intracellular processes. PMID:28718644
Amin Yavari, S; Ahmadi, S M; van der Stok, J; Wauthle, R; Riemslag, A C; Janssen, M; Schrooten, J; Weinans, H; Zadpoor, A A
2014-08-01
Bio-functionalizing surface treatments are often applied for improving the bioactivity of biomaterials that are based on otherwise bioinert titanium alloys. When applied on highly porous titanium alloy structures intended for orthopedic bone regeneration purposes, such surface treatments could significantly change the static and fatigue properties of these structures and, thus, affect the application of the biomaterial as bone substitute. Therefore, the interplay between biofunctionalizing surface treatments and mechanical behavior needs to be controlled. In this paper, we studied the effects of two bio-functionalizing surface treatments, namely alkali-acid heat treatment (AlAcH) and acid-alkali (AcAl), on the static and fatigue properties of three different highly porous titanium alloy implants manufactured using selective laser melting. It was found that AlAcH treatment results in minimal mass loss. The static and fatigue properties of AlAcH specimens were therefore not much different from as-manufactured (AsM) specimens. In contrast, AcAl resulted in substantial mass loss and also in significantly less static and fatigue properties particularly for porous structures with the highest porosity. The ratio of the static mechanical properties of AcAl specimens to that of AsM specimen was in the range of 1.5-6. The fatigue lives of AcAl specimens were much more severely affected by the applied surface treatments with fatigue lives up to 23 times smaller than that of AsM specimens particularly for the porous structures with the highest porosity. In conclusion, the fatigue properties of surface treated porous titanium are dependent not only on the type of applied surface treatment but also on the porosity of the biomaterial. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Xiaofeng; Xu, Yi; Zhang, Qing; Cao, Kun; Mu, Xiuni
2016-09-15
A dual-task method for the simultaneous separation and purification of (-)-epigallocatechin gallate (EGCG) and caffeine (CAF) from crude extract of green tea was established by size exclusion effect onto hydroquinone modified porous adsorbents. The results showed that hydroquinone modified porous adsorbents P4 provided the best separation power due to it has more porous structure and phenolic hydroxyl group. The adsorption-desorption behaviors of EGCG and CAF onto P4 adsorbents were investigated. Adsorption kinetics of EGCG and CAF results showed that the adsorption followed the pseudo-second-order kinetic model. The results also indicated that the equilibrium adsorption data best fit the Langmuir model. Meanwhile, EGCG and CAF were separated successfully onto P4 adsorbents packed columns in a gradient eluent process, and P4 adsorbents exhibited the size exclusion effect for small molecules CAF. Based on the phenolic hydroxyl group and size exclusion effect of P4 adsorbents, the high purity EGCG and CAF were obtained with 40% (v/v) ethanol eluent successively. The process fulfilled the task of simultaneous separation and purification of EGCG and CAF, and proved to be a promising basis for preparations of difficult to obtain active components that have similar polarity and different sizes of molecules and derived from the same natural products. Copyright © 2016 Elsevier B.V. All rights reserved.
Osteoinduction on Acid and Heat Treated Porous Ti Metal Samples in Canine Muscle
Kawai, Toshiyuki; Takemoto, Mitsuru; Fujibayashi, Shunsuke; Akiyama, Haruhiko; Tanaka, Masashi; Yamaguchi, Seiji; Pattanayak, Deepak K.; Doi, Kenji; Matsushita, Tomiharu; Nakamura, Takashi; Kokubo, Tadashi; Matsuda, Shuichi
2014-01-01
Samples of porous Ti metal were subjected to different acid and heat treatments. Ectopic bone formation on specimens embedded in dog muscle was compared with the surface characteristics of the specimen. Treatment of the specimens by H2SO4/HCl and heating at 600°C produced micrometer-scale roughness with surface layers composed of rutile phase of titanium dioxide. The acid- and heat-treated specimens induced ectopic bone formation within 6 months of implantation. A specimen treated using NaOH followed by HCl acid and then heat treatment produced nanometer-scale surface roughness with a surface layer composed of both rutile and anatase phases of titanium dioxide. These specimens also induced bone formation after 6 months of implantation. Both these specimens featured positive surface charge and good apatite-forming abilities in a simulated body fluid. The amount of the bone induced in the porous structure increased with apatite-forming ability and higher positive surface charge. Untreated porous Ti metal samples showed no bone formation even after 12 months. Specimens that were only heat treated featured a smooth surface composed of rutile. A mixed acid treatment produced specimens with micrometer-scale rough surfaces composed of titanium hydride. Both of them also showed no bone formation after 12 months. The specimens that showed no bone formation also featured almost zero surface charge and no apatite-forming ability. These results indicate that osteoinduction of these porous Ti metal samples is directly related to positive surface charge that facilitates formation of apatite on the metal surfaces in vitro. PMID:24520375
Hot gas filter and system assembly
Lippert, Thomas Edwin; Palmer, Kathryn Miles; Bruck, Gerald Joseph; Alvin, Mary Anne; Smeltzer, Eugene E.; Bachovchin, Dennis Michael
1999-01-01
A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.
Hot gas filter and system assembly
Lippert, T.E.; Palmer, K.M.; Bruck, G.J.; Alvin, M.A.; Smeltzer, E.E.; Bachovchin, D.M.
1999-08-31
A filter element is described for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system. 8 figs.
In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy.
do Prado, Renata Falchete; Esteves, Gabriela Campos; Santos, Evelyn Luzia De Souza; Bueno, Daiane Acácia Griti; Cairo, Carlos Alberto Alves; Vasconcellos, Luis Gustavo Oliveira De; Sagnori, Renata Silveira; Tessarin, Fernanda Bastos Pereira; Oliveira, Felipe Eduardo; Oliveira, Luciane Dias De; Villaça-Carvalho, Maria Fernanda Lima; Henriques, Vinicius André Rodrigues; Carvalho, Yasmin Rodarte; De Vasconcellos, Luana Marotta Reis
2018-01-01
Titanium (Ti) and Ti-6 Aluminium-4 Vanadium alloys are the most common materials in implants composition but β type alloys are promising biomaterials because they present better mechanical properties. Besides the composition of biomaterial, many factors influence the performance of the biomaterial. For example, porous surface may modify the functional cellular response and accelerate osseointegration. This paper presents in vitro and in vivo evaluations of powder metallurgy-processed porous samples composed by different titanium alloys and pure Ti, aiming to show their potential for biomedical applications. The porous surfaces samples were produced with different designs to in vitro and in vivo tests. Samples were characterized with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and elastic modulus analyses. Osteogenic cells from newborn rat calvaria were plated on discs of different materials: G1-commercially pure Ti group (CpTi); G2-Ti-6Al-4V alloy; G3-Ti-13 Niobium-13 Zirconium alloy; G4-Ti-35 Niobium alloy; G5-Ti-35 Niobium-7 Zirconium-5 Tantalum alloy. Cell adhesion and viability, total protein content, alkaline phosphatase activity, mineralization nodules and gene expression (alkaline phosphatase, Runx-2, osteocalcin and osteopontin) were assessed. After 2 and 4 weeks of implantation in rabbit tibia, bone ingrowth was analyzed using micro-computed tomography (μCT). EDS analysis confirmed the material production of each group. Metallographic and SEM analysis revealed interconnected pores, with mean pore size of 99,5μm and mean porosity of 42%, without significant difference among the groups (p>0.05). The elastic modulus values did not exhibit difference among the groups (p>0.05). Experimental alloys demonstrated better results than CpTi and Ti-6Al-4V, in gene expression and cytokines analysis, especially in early experimental periods. In conclusion, our data suggests that the experimental alloys can be used for biomedical application since they contributed to excellent cellular behavior and osseointegration besides presenting lower elastic modulus.
Lipinski, P; Barbas, A; Bonnet, A-S
2013-12-01
Because of its biocompatibility and high mechanical properties, the commercially pure grade 2 titanium (CPG2Ti) is largely used for fabrication of patient specific implants or hard tissue substitutes with complex shape. To avoid the stress-shielding and help their colonization by bone, prostheses with a controlled porosity are designed. The selective laser melting (SLM) is well adapted to manufacture such geometrically complicated structures constituted by struts with rough surfaces and relatively small diameters. Few studies were dedicated to characterize the fatigue properties of SLM processed samples and bulk parts. They followed conventional or standard protocols. The fatigue behavior of standard samples is very different from the one of porous raw structures. In this study, the SLM made "as built" (AB) and "heat treated" (HT) tubular samples were tested in fatigue. Wöhler curves were determined in both cases. The obtained endurance limits were equal to σD(AB)=74.5MPa and σD(HT)=65.7MPa, respectively. The heat treatment worsened the endurance limit by relaxation of negative residual stresses measured on the external surface of the samples. Modified Goodman diagram was established for raw specimens. Porous samples, based on the pattern developed by Barbas et al. (2012), were manufactured by SLM. Fatigue tests and finite element simulations performed on these samples enabled the determination of a simple rule of fatigue assessment. The method based on the stress gradient appeared as the best approach to take into account the notch influence on the fatigue life of CPG2Ti structures with a controlled porosity. The direction dependent apparent fatigue strength was found. A criterion based on the effective, or global, nominal stress was proposed taking into account the anisotropy of the porous structures. Thanks to this criterion, the usual calculation methods can be used to design bone substitutes, without a precise modelling of their internal fine porosity. © 2013 Elsevier Ltd. All rights reserved.
Lin, Yi-Feng; Chen, Chien-Hua; Tung, Kuo-Lun; Wei, Te-Yu; Lu, Shih-Yuan; Chang, Kai-Shiun
2013-03-01
The use of a membrane contactor combined with a hydrophobic porous membrane and an amine absorbent has attracted considerable attention for the capture of CO2 because of its extensive use, low operational costs, and low energy consumption. The hydrophobic porous membrane interface prevents the passage of the amine absorbent but allows the penetration of CO2 molecules that are captured by the amine absorbent. Herein, highly porous SiO2 aerogels modified with hydrophobic fluorocarbon functional groups (CF3 ) were successfully coated onto a macroporous Al2 O3 membrane; their performance in a membrane contactor for CO2 absorption is discussed. The SiO2 aerogel membrane modified with CF3 functional groups exhibits the highest CO2 absorption flux and can be continuously operated for CO2 absorption for extended periods of time. This study suggests that a SiO2 aerogel membrane modified with CF3 functional groups could potentially be used in a membrane contactor for CO2 absorption. Also, the resulting hydrophobic SiO2 aerogel membrane contactor is a promising technology for large-scale CO2 absorption during the post-combustion process in power plants. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Infiltration performance of engineered surfaces commonly used for distributed stormwater management
NASA Astrophysics Data System (ADS)
Valinski, Nicholas A.
Engineered porous media are commonly used in low impact development (LID) structures to mitigate excess stormwater in urban environments. Differences in infiltrability of these LID systems arise from the wide variety of materials used to create porous surfaces and subsequent maintenance, debris loading, and physical damage. In this study, infiltration capacity of six common materials was tested by multiple replicate experiments with automated mini-disk infiltrometers. The tested materials included porous asphalt, porous concrete, porous brick pavers, flexible porous pavement, engineered soils, and native soils. Porous asphalt, large porous brick pavers, and curb cutout rain gardens showed the greatest infiltration rates. Most engineered porous pavements and soils performed better than the native silt loam soils. Infiltration performance was found to be related more to site design and environmental factors than material choice. Sediment trap zones in both pavements and engineered soil rain gardens were found to be beneficial to the whole site performance. Winter chloride application had a large negative impact on poured in place concrete, making it a poor choice for heavily salted areas.
Infiltration performance of engineered surfaces commonly used for distributed stormwater management.
Valinski, N A; Chandler, D G
2015-09-01
Engineered porous media are commonly used in low impact development (LID) structures to mitigate excess stormwater in urban environments. Differences in infiltrability of these LID systems arise from the wide variety of materials used to create porous surfaces and subsequent maintenance, debris loading, and physical damage. In this study, the infiltration capacity of six common materials was tested by multiple replicate experiments with automated mini-disk infiltrometers. The tested materials included porous asphalt, porous concrete, porous brick pavers, flexible porous pavement, engineered soils, and native soils. Porous asphalt, large porous brick pavers, and curb cutout rain gardens showed the greatest infiltration rates. Most engineered porous pavements and soils performed better than the native silt loam soils. Infiltration performance was found to be related more to site design and environmental factors than material choice. Sediment trap zones in both pavements and engineered soil rain gardens were found to be beneficial to the whole site performance. Winter chloride application had a large negative impact on poured in place concrete, making it a poor choice for heavily salted areas. Copyright © 2015 Elsevier Ltd. All rights reserved.
Acid leaching of natural chrysotile asbestos to mesoporous silica fibers
NASA Astrophysics Data System (ADS)
Maletaškić, Jelena; Stanković, Nadežda; Daneu, Nina; Babić, Biljana; Stoiljković, Milovan; Yoshida, Katsumi; Matović, Branko
2018-04-01
Nanofibrous silica with a high surface area was produced from chrysotile by the acid-leaching method. Natural mineral chrysotile asbestos from Stragari, Korlace in Serbia was used as the starting material. The fibers were modified by chemical treatment with 1 M HCl and the mineral dissolution was monitored by transmission electron microscopy, X-ray powder diffraction, inductively coupled plasma spectrometry and low-temperature nitrogen adsorption techniques to highlight the effects of the leaching process. The results showed that the applied concentration of acid solution and processing time of 4 h were sufficient to effectively remove the magnesium hydroxide layer and transform the crystal structure of the hazardous starting chrysotile to porous SiO2 nanofibers. With prolonged acid leaching, the specific surface area, S BET, calculated by BET equation, was increased from 147 up to 435 m2 g- 1, with micropores representing a significant part of the specific surface.
Steady internal flow and aerodynamic loads analysis of shuttle thermal protection system
NASA Technical Reports Server (NTRS)
Petley, D. H.; Alexander, W., Jr.; Ivey, G. W., Jr.; Kerr, P. A.
1984-01-01
An analytical model for calculation of ascent steady state tile loading was developed and validated with wind tunnel data. The analytical model is described and results are given. Results are given for loading due to shocks and skin friction. The analysis included calculation of internal flow (porous media flow and channel flow) to obtain pressures and integration of the pressures to obtain forces and moments on an insulation tile. A heat transfer program was modified by using analogies between heat transfer and fluid flow so that it could be used for internal flow calculation. The type of insulation tile considered was undensified reusable surface insulation (RSI) without gap fillers, and the location studied was the lower surface of the orbiter. Force and moment results are reported for parameter variations on surface pressure distribution, gap sizes, insulation permeability, and tile thickness.
Lalo, Hélène; Bon-Saint-Côme, Yémima; Plano, Bernard; Etienne, Mathieu; Walcarius, Alain; Kuhn, Alexander
2012-02-07
The elaboration of an original composite bimetallic macroporous electrode containing a site-selective sol-gel deposit is reported. Regular colloidal crystals, obtained by a modified Langmuir-Blodgett approach, are used as templates for the electrogeneration of the desired metals in the form of a well-defined layered bimetallic porous electrode. This porous matrix shows a spatially modulated electroactivity which is subsequently used as a strategy for targeted electrogeneration of a sol-gel deposit, exclusively in one predefined part of the porous electrode.
Electrolyte matrix in a molten carbonate fuel cell stack
Reiser, C.A.; Maricle, D.L.
1987-04-21
A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack. 6 figs.
Electrolyte matrix in a molten carbonate fuel cell stack
Reiser, Carl A.; Maricle, Donald L.
1987-04-21
A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack.
NASA Astrophysics Data System (ADS)
Zhang, Juan; Chen, Minmin; Zhao, Xiqiu; Zhang, Min; Mao, Jinxiang; Cao, Xichuan; Zhang, Zhuoqi
2018-01-01
SBA-15 mesoporous silicate was synthesized and functionalized with 3-aminopropyl organic groups through a post-synthesis method. The materials were characterized consecutively by powder X-ray diffraction (XRD), N2 adsorption/desorption analysis and solid-state magic-angle spinning 29Si nuclear magnetic resonance (MAS NMR). Human c-myc anti-sense oligodeoxyneucleotide (AS-ODN) was selected as a model molecule to be loaded onto the surface of bare and functionalized SBA-15 via different loading conditions. It has been found that the amount of AS-ODN incorporated into the porous matrix is strongly dependent on the surface properties, pH of the loading solvent and AS-ODN concentration. The release behaviour of AS-ODN from modified SBA-15 materials was also investigated and depended on conditions chosen. Cellular uptake of the eluted AS-ODN into Hela cells was observed by fluorescent microscopy. The materials showed excellent cytocompatibility. The AS-ODN keeps full transfection and expression activities indicating its structural integrity. The functionalized SBA-15 is an excellent prospect as a biomedical material candidate for the future.
Process of preparing tritiated porous silicon
Tam, Shiu-Wing
1997-01-01
A process of preparing tritiated porous silicon in which porous silicon is equilibrated with a gaseous vapor containing HT/T.sub.2 gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon.
Niwa, Toshiyuki; Shimabara, Hiroko; Kondo, Masahiro; Danjo, Kazumi
2009-12-01
Spray freeze-drying (SFD) process, which is a novel particle design technique previously developed by authors, has been improved by using four-fluid nozzle (4N) instead of conventional two-fluid nozzle (2N) to expand its application in pharmaceutical industry. Aqueous spray solutions of the drug and the polymeric carrier were separately supplied into 4N, and atomized while colliding with each other at the tip of nozzle. The droplets of mixed solutions were directly immersed into liquid nitrogen and immediately frozen to form a suspension. Then, the iced droplets were lyophilized by freeze-dryer to prepare the composite particles of the drug and carrier. This process has been used in the present study to modify and enhance the dissolution profiles of poorly water-soluble drug, phenytoin. Water-soluble and enteric polymeric carriers in pharmaceutical use were used as a dissolution modifier. The SFD composite particles prepared by using 4N were fully characterized compared to those using 2N from morphological and physicochemical perspectives. It was found that the particles have fine porous structure producing vast specific surface area. Further, phenytoin was completely dispersed as amorphous state in the polymeric matrix with higher carrier ratio than phenytoin:carrier = 1:3. The dissolution of phenytoin from the water-soluble carrier-based particles was greatly enhanced because of large effective surface area and disappearance of crystalline. On the other hand, the release profiles from enteric carrier-based particles showed the typical enteric patterns, that is, delayed in acidic medium and accelerated in neutral pH. The results demonstrated that SFD technique using 4N has potential to develop the novel solubilized formulation for poorly water-soluble APIs.
Myndrul, Valerii; Viter, Roman; Savchuk, Maryna; Shpyrka, Nelya; Erts, Donats; Jevdokimovs, Daniels; Silamiķelis, Viesturs; Smyntyna, Valentyn; Ramanavicius, Arunas; Iatsunskyi, Igor
2018-04-15
A rapid and low cost photoluminescence (PL) immunosensor for the determination of low concentrations of Ochratoxin A (OTA) has been developed. This immunosensor was based on porous silicon (PSi) and modified by antibodies against OTA (anti-OTA). PSi layer was fabricated by metal-assisted chemical etching (MACE) procedure. Main structural parameters (pore size, layer thickness, morphology and nanograins size) and composition of PSi were investigated by means of X-Ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. PL-spectroscopy of PSi was performed at room temperature and showed a wide emission band centered at 680 ± 20nm. Protein A was covalently immobilized on the surface of PSi, which in next steps was modified by anti-OTA and BSA in this way a anti-OTA/Protein-A/PSi structure sensitive towards OTA was designed. The anti-OTA/Protein-A/PSi-based immunosensors were tested in a wide range of OTA concentrations from 0.001 upto 100ng/ml. Interaction of OTA with anti-OTA/Protein-A/PSi surface resulted in the quenching of photoluminescence in comparison to bare PSi. The limit of detection (LOD) and the sensitivity range of anti-OTA/Protein-A/PSi immunosensors were estimated. Association constant and Gibbs free energy for the interaction of anti-OTA/Protein-A/PSi with OTA were calculated and analyzed using the interaction isotherms. Response time of the anti-OTA/Protein-A/PSi-based immunosensor toward OTA was in the range of 500-700s. These findings are very promising for the development of highly sensitive, and potentially portable immunosensors suitable for fast determination of OTA in food and beverages. Copyright © 2017 Elsevier B.V. All rights reserved.
Preparation of porous Si and TiO 2 nanofibres using a sulphur-templating method for lithium storage
McCormac, Kathleen; Byrd, Ian; Brannen, Rodney; ...
2015-02-03
We prepared highly porous Si/TiO 2 composite nanofibres using a unique sulphur-templating method combined with electrospinning. The structure, morphology, surface area, phase and composition of these nanofibres were characterized using Raman spectroscopy, scanning electron microscopy, powder X-ray diffraction, surface area analyser and thermogravimetric analyser. The specific surface area of Si/TiO 2 porous NFs is as large as 387m 2g -1, whose silicon capacity can be maintained above 1580mAhg -1 in 180 cycles.
Study the formation of porous surface layer for a new biomedical titanium alloy
NASA Astrophysics Data System (ADS)
Talib Mohammed, Mohsin; Diwan, Abass Ali; Ali, Osamah Ihsan
2018-03-01
In the present work, chemical treatment using hydrogen peroxide (H2O2) oxidation and subsequent thermal treatment was applied to create a uniform porous layer over the surface of a new metastable β-Ti alloy. The results revealed that this oxidation treatment can create a stable ultrafine porous film over the oxidized surface. This promoted the electrochemical characteristics of H2O2-treated Ti-Zr-Nb (TZN) alloy system, presenting nobler corrosion behavior in simulated body fluid (SBF) comparing with untreated sample.
Zavareh, Siamak; Behrouzi, Zahra; Avanes, Armen
2017-08-01
The aim of this study was to develop a chitosan-based magnetic adsorbent for selective and effective removal of phosphate from aqueous solutions. For this purpose, Cu-chitosan/Fe 3 O 4 nanocomposite was prepared using a facile method and characterized. The prepared adsorbent exhibited more porous surface with higher specific area compared to neat chitosan based on SEM and BET studies. The FTIR and EDX studies indicated the presence of Cu(II) bonded to the adsorbent surface. Crystalline properties of the adsorbent were also studied using XRD. Experimental isotherm data were fitted to nonlinear forms of Langmuir and Freunlich models. The maximum capacity for the modified adsorbent was calculated to be 88mg P 2 O 5 /g, much higher than that for neat chitosan and chitosan/Fe 3 O 4 according to the Langmuir isotherm. The adsorption by the modified adsorbent had fast kinetics and obeyed pseudo-second-order kinetic model. Interestingly, the maximum removal efficiency for the modified adsorbent was observed in neutral pH values, pHs of natural waters. A high selectivity against natural waters common anions as well as good regeneration ability was obtained for the introduced adsorbent. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Yuanyuan; Wei, Manman; Chen, Tong; Zhu, Nan; Ma, Yulong
2016-11-01
A facile strategy based on self-assembly of Au nanoparticles (AuNPs) (60±10nm in size) on the surfaces of amino-functionalized porous silica spheres under mild conditions was proposed. The resulting material possessed a core-shell structure in which AuNPs were the shell and silica spheres were the core. Then, thiolated-β-cyclodextrin (SH-β-CD) was covalently attached onto the AuNPs as chiral selector for the enantioseparation. The resultant packing material was evaluated by high-performance liquid chromatography (HPLC). The separations of nine pairs of enantiomers were achieved by using the new chiral stationary phase (CSP) in the reversed-phase liquid chromatography (RPLC) mode, respectively. The results showed the new CSP have more sufficient interaction with the analytes due to the existence of AuNPs on silica surfaces, resulting in faster mass transfer rate, compared with β-CD modified silica column. The result shed light on potential usage of chemical modified NPs as chiral selector for enantioseparation based on HPLC. In addition, the new phase was also used in hydrophilic interaction liquid chromatography (HILIC) to separate polar compounds and highly hydrophilic compounds. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of oxidation on surface heterogeneity of carbosils
NASA Astrophysics Data System (ADS)
Charmas, B.; Leboda, R.; Gérard, G.; Villiéras, F.
2002-08-01
Carbon-silica adsorbents (carbosils), prepared by pyrolysis of methylene chloride (CH 2Cl 2) on the surface of a porous silica gel, were subjected to an oxidizing hydrothermal treatment (HTT) at 200 °C, using a hydrogen peroxide water solution as a modification medium. Conventional nitrogen adsorption volumetry and low-pressure argon and nitrogen adsorption techniques were used to analyze and compare textural properties and surface heterogeneity of initial and hydrothermally treated samples. In the presence of carbon, the mesoporous network of silica gel is protected from the massive collapse generally observed after oxidizing HTT. For carbosils, some changes occur during HTT, leading to a slight decrease of specific surface areas accompanied by an increase in mean mesopore size. The argon and nitrogen condensation energy distributions, derived from low-pressure adsorption experiments, indicate that both silica and pyrocarbon materials were modified during HTT. Depolymerization and recondensation processes occur for silica, creating new silica surfaces. These processes are responsible of the decrease in specific surface areas. For pyrocarbon, similar depolymerization and recondensation processes probably occur, creating new and high-energy surface sites.
Double diffusion in arbitrary porous cavity: Part II
NASA Astrophysics Data System (ADS)
Ahamad, N. Ameer; Kamangar, Sarfaraz; Salman Ahmed N., J.; Soudagar, Manzoor Elahi M.; Khan, T. M. Yunus
2017-07-01
Heat and mass transfer in porous medium is one of the fundamental topics of interest. The present article is dedicated to study the effect of a small block placed at center of left vertical surface of the cavity. The block is maintained at isothermal temperature That three of its edges attached with porous medium. The left surface of cavity is maintained at highest concentration and right surface at lowest concentration. The right surface of cavity is at cold isothermal temperature Tc. Governing equations are converted into matrix form of equations with the help of finite element method and solved iteratively by using a computer code generated in MATLAB.
Method for removing organic liquids from aqueous solutions and mixtures
Hrubesh, Lawrence W.; Coronado, Paul R.; Dow, Jerome P.
2004-03-23
A method for removing organic liquids from aqueous solutions and mixtures. The method employs any porous material preferably in granular form and having small pores and a large specific surface area, that is hydrophobic so that liquid water does not readily wet its surface. In this method, organics, especially organic solvents that mix with and are more volatile than water, are separated from aqueous solution by preferentially evaporating across the liquid/solid boundary formed at the surfaces of the hydrophobic porous materials. Also, organic solvents that are immiscible with water, preferentially wet the surfaces of the hydrophobic material and are drawn within the porous materials by capillary action.
Conceptual Design of a Condensing Heat Exchanger for Space Systems Using Porous Media
NASA Technical Reports Server (NTRS)
Hasan, Mohammad M.; Khan, Lutful I.; Nayagam, Vedha; Balasubramaniam, Ramaswamy
2006-01-01
Condensing heat exchangers are used in many space applications in the thermal and humidity control systems. In the International Space Station (ISS), humidity control is achieved by using a water cooled fin surface over which the moist air condenses, followed by "slurper bars" that take in both the condensate and air into a rotary separator and separates the water from air. The use of a cooled porous substrate as the condensing surface provides and attractive alternative that combines both heat removal as well as liquid/gas separation into a single unit. By selecting the pore sizes of the porous substrate a gravity independent operation may also be possible with this concept. Condensation of vapor into and on the porous surface from the flowing air and the removal of condensate from the porous substrate are the critical processes involved in the proposed concept. This paper describes some preliminary results of the proposed condensate withdrawal process and discusses the on-going design and development work of a porous media based condensing heat exchanger at the NASA Glenn Research Center in collaboration with NASA Johnson Space Center.
Hara, Daisuke; Nakashima, Yasuharu; Sato, Taishi; Hirata, Masanobu; Kanazawa, Masayuki; Kohno, Yusuke; Yoshimoto, Kensei; Yoshihara, Yusuke; Nakamura, Akihiro; Nakao, Yumiko; Iwamoto, Yukihide
2016-02-01
The present study examined the bone bonding strength of diamond-structured porous titanium-alloy (Porous-Ti-alloy) manufactured using the electron beam-melting technique in comparison with fiber mesh-coated or rough-surfaced implants. Cylindrical implants with four different pore sizes (500, 640, 800, and 1000μm) of Porous-Ti-alloy, titanium fiber mesh (FM), and surfaces roughened by titanium arc spray (Ti-spray) were implanted into the distal femur of rabbits. Bone bonding strength and histological bone ingrowth were evaluated at 4 and 12weeks after implantation. The bone bonding strength of Porous-Ti-alloy implants (640μm pore size) increased over time from 541.4N at 4weeks to 704.6N at 12weeks and was comparable to that of FM and Ti-spray implants at both weeks. No breakage of the porous structure after mechanical testing was found with Porous-Ti-alloy implants. Histological bone ingrowth that increased with implantation time occurred along the inner structure of Porous-Ti-alloy implants. There was no difference in bone ingrowth in Porous-Ti-alloy implants with pore sizes among 500, 640, and 800μm; however, less bone ingrowth was observed with the 1000μm pore size. These results indicated Porous-Ti-alloy implants with pore size under 800μm provided biologically active and mechanically stable surface for implant fixation to bone, and had potential advantages for weight bearing orthopedic implants such as acetabular cups. Copyright © 2015 Elsevier B.V. All rights reserved.
Process of preparing tritiated porous silicon
Tam, S.W.
1997-02-18
A process of preparing tritiated porous silicon is described in which porous silicon is equilibrated with a gaseous vapor containing HT/T{sub 2} gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon. 1 fig.
Bone attachment to glass-fibre-reinforced composite implant with porous surface.
Mattila, R H; Laurila, P; Rekola, J; Gunn, J; Lassila, L V J; Mäntylä, T; Aho, A J; Vallittu, P K
2009-06-01
A method has recently been developed for producing fibre-reinforced composites (FRC) with porous surfaces, intended for use as load-bearing orthopaedic implants. This study focuses on evaluation of the bone-bonding behaviour of FRC implants. Three types of cylindrical implants, i.e. FRC implants with a porous surface, solid polymethyl methacrylate (PMMA) implants and titanium (Ti) implants, were inserted in a transverse direction into the intercondular trabeculous bone area of distal femurs and proximal tibias of New Zealand White rabbits. Animals were sacrificed at 3, 6 and 12 weeks post operation, and push-out tests (n=5-6 per implant type per time point) were then carried out. At 12 weeks the shear force at the porous FRC-bone interface was significantly higher (283.3+/-55.3N) than the shear force at interfaces of solid PMMA/bone (14.4+/-11.0 N; p<0.001) and Ti/bone (130.6+/-22.2N; p=0.001). Histological observation revealed new bone growth into the porous surface structure of FRC implants. Solid PMMA and Ti implants were encapsulated mostly with fibrous connective tissue. Finite element analysis (FEA) revealed that porous FRC implants had mechanical properties which could be tailored to smooth the shear stress distribution at the bone-implant interface and reduce the stress-shielding effect.
40 CFR 761.280 - Application and scope.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...
Smart release of doxorubicin loaded on polyetheretherketone (PEEK) surface with 3D porous structure.
Ouyang, Liping; Sun, Zhenjie; Wang, Donghui; Qiao, Yuqin; Zhu, Hongqin; Ma, Xiaohan; Liu, Xuanyong
2018-03-01
It is important to fabricate an implant possessing environment sensitive drug delivery. In this work, the construction of 3D porous structure on polyetheretherketone (PEEK) surface and pH sensitive polymer, chitosan, was introduced. The smart release of doxorubicin can be realized on the 3D porous surface of PEEK loading chitosan. We give a feasible explanation for the effect of chitosan on smart drug release according to Henderson-Hasselbalch equation. Furthermore, the intracellular drug content of the cell cultured on the samples with highest chitosan is significantly higher at pH 4.0, whereas lower at pH 7.4 than other samples. The smart release of doxorubicin via modification with chitosan onto 3D porous PEEK surface paves the way for the application of PEEK in drug loading platform for recovering bone defect caused by malignant bone tumor. Copyright © 2017 Elsevier B.V. All rights reserved.
Investigation of passive shock wave-boundary layer control for transonic airfoil drag reduction
NASA Technical Reports Server (NTRS)
Nagamatsu, H. T.; Brower, W. B., Jr.; Bahi, L.; Ross, J.
1982-01-01
The passive drag control concept, consisting of a porous surface with a cavity beneath it, was investigated with a 12-percent-thick circular arc and a 14-percent-thick supercritical airfoil mounted on the test section bottom wall. The porous surface was positioned in the shock wave/boundary layer interaction region. The flow circulating through the porous surface, from the downstream to the upstream of the terminating shock wave location, produced a lambda shock wave system and a pressure decrease in the downstream region minimizing the flow separation. The wake impact pressure data show an appreciably drag reduction with the porous surface at transonic speeds. To determine the optimum size of porosity and cavity, tunnel tests were conducted with different airfoil porosities, cavities and flow Mach numbers. A higher drag reduction was obtained by the 2.5 percent porosity and the 1/4-inch deep cavity.
Sun, Tuan-Wei; Yu, Wei-Lin; Zhu, Ying-Jie; Chen, Feng; Zhang, Yong-Gang; Jiang, Ying-Ying; He, Yao-Hua
2018-06-21
Hydroxyapatite nanowires exhibit a great potential in biomedical applications owing to their high specific surface area, high flexibility, excellent mechanical properties, and similarity to mineralized collagen fibrils of natural bone. In this work, zinc-containing nanoparticle-decorated ultralong hydroxyapatite nanowires (Zn-UHANWs) with a hierarchical nanostructure have been synthesized by a one-step solvothermal method. The highly flexible Zn-UHANWs exhibit a hierarchical rough surface and enhanced specific surface area as compared with ultralong hydroxyapatite nanowires (UHANWs). To evaluate the potential application of Zn-UHANWs in bone regeneration, the biomimetic Zn-UHANWs/chitosan (CS) (Zn-UHANWs/CS) composite porous scaffold with 80 wt % Zn-UHANWs was prepared by incorporating Zn-UHANWs into the chitosan matrix by the freeze-drying process. The as-prepared Zn-UHANWs/CS composite porous scaffold exhibits enhanced mechanical properties, highly porous structure, and excellent water retention capacity. In addition, the Zn-UHANWs/CS porous scaffold has a good biodegradability with the sustainable release of Zn, Ca, and P elements in aqueous solution. More importantly, the Zn-UHANWs/CS porous scaffold can promote the osteogenic differentiation of rat bone marrow derived mesenchymal stem cells and facilitate in vivo bone regeneration as compared with the pure CS porous scaffold or UHANWs/CS porous scaffold. Thus, both the Zn-UHANWs and Zn-UHANWs/CS porous scaffold developed in this work are promising for application in bone defect repair. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tough bonding of hydrogels to diverse non-porous surfaces
NASA Astrophysics Data System (ADS)
Yuk, Hyunwoo; Zhang, Teng; Lin, Shaoting; Parada, German Alberto; Zhao, Xuanhe
2016-02-01
In many animals, the bonding of tendon and cartilage to bone is extremely tough (for example, interfacial toughness ~800 J m-2 refs ,), yet such tough interfaces have not been achieved between synthetic hydrogels and non-porous surfaces of engineered solids. Here, we report a strategy to design tough transparent and conductive bonding of synthetic hydrogels containing 90% water to non-porous surfaces of diverse solids, including glass, silicon, ceramics, titanium and aluminium. The design strategy is to anchor the long-chain polymer networks of tough hydrogels covalently to non-porous solid surfaces, which can be achieved by the silanation of such surfaces. Compared with physical interactions, the chemical anchorage results in a higher intrinsic work of adhesion and in significant energy dissipation of bulk hydrogel during detachment, which lead to interfacial toughness values over 1,000 J m-2. We also demonstrate applications of robust hydrogel-solid hybrids, including hydrogel superglues, mechanically protective hydrogel coatings, hydrogel joints for robotic structures and robust hydrogel-metal conductors.
NASA Astrophysics Data System (ADS)
Xueyan, L.; Gao, B.; Sun, Y.; Wu, J.
2017-12-01
Perfluorooctanoic acid (PFOA) has been used in a wide variety of industrial and consumer product applications. PFOA has been detected around the world at ng/L to μg/L levels in groundwater, and at ng/g levels in soil.The physicochemical properties of porous media were proven to play pivotal roles in determining the transport behavior of various pollutants. It is anticipated that physicochemical properties of porous media will strongly influence the transport behavior of PFOA. In addition, previous investigations have revealed that input concentration significantly influence the transport behavior of nanoparticles and antibiotics. Thus, this study was designed experimentally and fundamentally to gain insight into transport and retention of PFOA in various porous medias at different input concentrations, solution IS and cation type. Unlike in quartz sand porous media, the BTCs in limestone porous media exhibited increasing retention rate and high degree of tailing in limestone porous media. Results showed that higher relative retention occurred in limestone porous media than in quartz sand porous media under the same solution chemistry. This result was attributed to the less negative zeta-potentials, rougher surface and larger specific surface area, and the presence of hydroxyl groups and organic matters of limestone grains. Higher ionic strength and Ca2+ had little impact on the mobility of PFOA in quartz sand porous media, but significantly enhanced the retention of PFOA in limestone porous media. The difference is likely due to the compression of the electrical double layer, and the surface-charge neutralization and cation-bridging effect of Ca2+. Higher input concentration resulted in lower relative PFOA retention in limestone porous media, but the influence were insignificant in quartz sand porous media. This effect is likely because attachment sites in limestone responced to the variety of input concentration differently than quartz.
NASA Astrophysics Data System (ADS)
Rabhi, R.; Amami, B.; Dhahri, H.; Mhimid, A.
2017-11-01
This paper deals with heat transfer and fluid flow in a porous micro duct under local thermal non equilibrium conditions subjected to an external oriented magnetic field. The considered sample is a micro duct filled with porous media assumed to be homogenous, isotropic and saturated. The slip velocity and the temperature jump were uniformly imposed to the wall. In modeling the flow, the Brinkmann-Forchheimer extended Darcy model was incorporated into the momentum equations. In the energy equation, the local thermal non equilibrium between the two phases was adopted. A modified axisymmetric lattice Boltzmann method was used to solve the obtained governing equation system. Attention was focused on the influence of the emerging parameters such as Knudsen number, Kn, Hartmann number, Ha, Eckert number, Ec, Biot number, Bi and the magnetic field inclination γ on flow and heat transfer throughout this paper.
Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin
2018-01-01
Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD) as well as transmission electron microscopy (TEM). The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs) were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta2O5 nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro. PMID:29614022
Fluorescence of silicon nanoparticles prepared by nanosecond pulsed laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chunyang, E-mail: chunyangliu@126.com; Sui, Xin; Yang, Fang
2014-03-15
A pulsed laser fabrication method is used to prepare fluorescent microstructures on silicon substrates in this paper. A 355 nm nanosecond pulsed laser micromachining system was designed, and the performance was verified and optimized. Fluorescence microscopy was used to analyze the photoluminescence of the microstructures which were formed using the pulsed laser processing technique. Photoluminescence spectra of the microstructure reveal a peak emission around 500 nm, from 370 nm laser irradiation. The light intensity also shows an exponential decay with irradiation time, which is similar to attenuation processes seen in porous silicon. The surface morphology and chemical composition of themore » microstructure in the fabricated region was also analyzed with multifunction scanning electron microscopy. Spherical particles are produced with diameters around 100 nm. The structure is compared with porous silicon. It is likely that these nanoparticles act as luminescence recombination centers on the silicon surface. The small diameter of the particles modifies the band gap of silicon by quantum confinement effects. Electron-hole pairs recombine and the fluorescence emission shifts into the visible range. The chemical elements of the processed region are also changed during the interaction between laser and silicon. Oxidation and carbonization play an important role in the enhancement of fluorescence emission.« less
Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin
2018-04-03
Recently, tantalum has been attracting much attention for its anticorrosion resistance and biocompatibility, and it has been widely used in surface modification for implant applications. To improve its osteogenic differentiation of human bone marrow stem cells (hBMSCs), a micro/nano structure has been fabricated on the tantalum coating surface through the combination of anodic oxidation and plasma spraying method. The morphology, composition, and microstructure of the modified coating were comprehensively studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD) as well as transmission electron microscopy (TEM). The effects of hierarchical structures as well as micro-porous structure of tantalum coating on the behavior for human bone marrow stem cells (hBMSCs) were evaluated and compared at both cellular and molecular levels in vitro. The experimental results show that a hierarchical micro/nano structure with Ta₂O₅ nanotubes spread onto a micro-scale tantalum coating has been fabricated successfully, which is confirmed to promote cell adhesion and spreading. Besides, the hierarchical micro/nano tantalum coating can provide 1.5~2.1 times improvement in gene expression, compared with the micro-porous tantalum coating. It demonstrates that it can effectively enhance the proliferation and differentiation of hBMSCs in vitro.
NASA Astrophysics Data System (ADS)
Goyal, M.; Goyal, R.; Bhargava, R.
2017-12-01
In this paper, triple diffusive natural convection under Darcy flow over an inclined plate embedded in a porous medium saturated with a binary base fluid containing nanoparticles and two salts is studied. The model used for the nanofluid is the one which incorporates the effects of Brownian motion and thermophoresis. In addition, the thermal energy equations include regular diffusion and cross-diffusion terms. The vertical surface has the heat, mass and nanoparticle fluxes each prescribed as a power law function of the distance along the wall. The boundary layer equations are transformed into a set of ordinary differential equations with the help of group theory transformations. A wide range of parameter values are chosen to bring out the effect of buoyancy ratio, regular Lewis number and modified Dufour parameters of both salts and nanofluid parameters with varying angle of inclinations. The effects of parameters on the velocity, temperature, solutal and nanoparticles volume fraction profiles, as well as on the important parameters of heat and mass transfer, i.e., the reduced Nusselt, regular and nanofluid Sherwood numbers, are discussed. Such problems find application in extrusion of metals, polymers and ceramics, production of plastic films, insulation of wires and liquid packaging.
Fabricating porous silicon carbide
NASA Technical Reports Server (NTRS)
Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)
1994-01-01
The formation of porous SiC occurs under electrochemical anodization. A sample of SiC is contacted electrically with nickel and placed into an electrochemical cell which cell includes a counter electrode and a reference electrode. The sample is encapsulated so that only a bare semiconductor surface is exposed. The electrochemical cell is filled with an HF electrolyte which dissolves the SiC electrochemically. A potential is applied to the semiconductor and UV light illuminates the surface of the semiconductor. By controlling the light intensity, the potential and the doping level, a porous layer is formed in the semiconductor and thus one produces porous SiC.
Porous plug for reducing orifice induced pressure error in airfoils
NASA Technical Reports Server (NTRS)
Plentovich, Elizabeth B. (Inventor); Gloss, Blair B. (Inventor); Eves, John W. (Inventor); Stack, John P. (Inventor)
1988-01-01
A porous plug is provided for the reduction or elimination of positive error caused by the orifice during static pressure measurements of airfoils. The porous plug is press fitted into the orifice, thereby preventing the error caused either by fluid flow turning into the exposed orifice or by the fluid flow stagnating at the downstream edge of the orifice. In addition, the porous plug is made flush with the outer surface of the airfoil, by filing and polishing, to provide a smooth surface which alleviates the error caused by imperfections in the orifice. The porous plug is preferably made of sintered metal, which allows air to pass through the pores, so that the static pressure measurements can be made by remote transducers.
Jiang, Ying-Bing [Albuquerque, NM; Cecchi, Joseph L [Albuquerque, NM; Brinker, C Jeffrey [Albuquerque, NM
2011-05-24
Barrier layers and methods for forming barrier layers on a porous layer are provided. The methods can include chemically adsorbing a plurality of first molecules on a surface of the porous layer in a chamber and forming a first layer of the first molecules on the surface of the porous layer. A plasma can then be used to react a plurality of second molecules with the first layer of first molecules to form a first layer of a barrier layer. The barrier layers can seal the pores of the porous material, function as a diffusion barrier, be conformal, and/or have a negligible impact on the overall ILD k value of the porous material.
Hietala, Susan Leslie; Hietala, Vincent Mark; Tigges, Chris Phillip
2001-01-01
A method and apparatus for measuring surface changes, such as mass uptake at various pressures, in a thin-film material, in particular porous membranes, using multiple differently-configured acoustic sensors.
Rieger, Elisabeth; Dupret-Bories, Agnès; Salou, Laetitia; Metz-Boutigue, Marie-Helene; Layrolle, Pierre; Debry, Christian; Lavalle, Philippe; Vrana, Nihal Engin
2015-06-07
Porous titanium implants are widely employed in the orthopaedics field to ensure good bone fixation. Recently, the use of porous titanium implants has also been investigated in artificial larynx development in a clinical setting. Such uses necessitate a better understanding of the interaction of soft tissues with porous titanium structures. Moreover, surface treatments of titanium have been generally evaluated in planar structures, while the porous titanium implants have complex 3 dimensional (3D) architectures. In this study, the determining factors for soft tissue integration of 3D porous titanium implants were investigated as a function of surface treatments via quantification of the interaction of serum proteins and cells with single titanium microbeads (300-500 μm in diameter). Samples were either acid etched or nanostructured by anodization. When the samples are used in 3D configuration (porous titanium discs of 2 mm thickness) in vivo (in subcutis of rats for 2 weeks), a better integration was observed for both anodized and acid etched samples compared to the non-treated implants. If the implants were also pre-treated with rat serum before implantation, the integration was further facilitated. In order to understand the underlying reasons for this effect, human fibroblast cell culture tests under several conditions (directly on beads, beads in suspension, beads encapsulated in gelatin hydrogels) were conducted to mimic the different interactions of cells with Ti implants in vivo. Physical characterization showed that surface treatments increased hydrophilicity, protein adsorption and roughness. Surface treatments also resulted in improved adsorption of serum albumin which in turn facilitated the adsorption of other proteins such as apolipoprotein as quantified by protein sequencing. The cellular response to the beads showed considerable difference with respect to the cell culture configuration. When the titanium microbeads were entrapped in cell-laden gelatin hydrogels, significantly more cells migrated towards the acid etched beads. In conclusion, the nanoscale surface treatment of 3D porous titanium structures can modulate in vivo integration by the accumulative effect of the surface treatment on several physical factors such as protein adsorption, surface hydrophilicity and surface roughness. The improved protein adsorption capacity of the treated implants can be further exploited by a pre-treatment with autologous serum to render the implant surface more bioactive. Titanium microbeads are a good model system to observe these effects in a 3D microenvironment and provide a better representation of cellular responses in 3D.
Staphylococcus epidermidis adhesion on surface-treated open-cell Ti6Al4V foams.
Türkan, Uğur; Güden, Mustafa; Sudağıdan, Mert
2016-06-01
The effect of alkali and nitric acid surface treatments on the adhesion of Staphylococcus epidermidis to the surface of 60% porous open-cell Ti6Al4V foam was investigated. The resultant surface roughness of foam particles was determined from the ground flat surfaces of thin foam specimens. Alkali treatment formed a porous, rough Na2Ti5O11 surface layer on Ti6Al4V particles, while nitric acid treatment increased the number of undulations on foam flat and particle surfaces, leading to the development of finer surface topographical features. Both surface treatments increased the nanometric-scale surface roughness of particles and the number of bacteria adhering to the surface, while the adhesion was found to be significantly higher in alkali-treated foam sample. The significant increase in the number of bacterial attachment on the alkali-treated sample was attributed to the formation of a highly porous and nanorough Na2Ti5O11 surface layer.
Modeling of nanostructured porous thermoelastic composites with surface effects
NASA Astrophysics Data System (ADS)
Nasedkin, A. V.; Nasedkina, A. A.; Kornievsky, A. S.
2017-01-01
The paper presents an integrated approach for determination of effective properties of anisotropic porous thermoelastic materials with a nanoscale stochastic porosity structure. This approach includes the effective moduli method for composite me-chanics, the simulation of representative volumes and the finite element method. In order to take into account nanoscale sizes of pores, the Gurtin-Murdoch model of surface stresses and the highly conducting interface model are used at the borders between material and pores. The general methodology for determination of effective properties of porous composites is demonstrated for a two-phase composite with special conditions for stresses and heat flux discontinuities at the phase interfaces. The mathematical statements of boundary value problems and the resulting formulas to determine the complete set of effective constants of the two-phase composites with arbitrary anisotropy and with surface properties are described; the generalized statements are formulated and the finite element approximations are given. It is shown that the homogenization procedures for porous composites with surface effects can be considered as special cases of the corresponding procedures for the two-phase composites with interphase stresses and heat fluxes if the moduli of nanoinclusions are negligibly small. These approaches have been implemented in the finite element package ANSYS for a model of porous material with cubic crystal system for various values of surface moduli, porosity and number of pores. It has been noted that the magnitude of the area of the interphase boundaries has influence on the effective moduli of the porous materials with nanosized structure.
NASA Astrophysics Data System (ADS)
Heap, Michael J.; Byrne, Paul K.; Mikhail, Sami
2017-01-01
Surface gravitational acceleration (surface gravity) on Mars, the second-smallest planet in the Solar System, is much lower than that on Earth. A direct consequence of this low surface gravity is that lithostatic pressure is lower on Mars than on Earth at any given depth. Collated published data from deformation experiments on basalts suggest that, throughout its geological history (and thus thermal evolution), the Martian brittle lithosphere was much thicker but weaker than that of present-day Earth as a function solely of surface gravity. We also demonstrate, again as a consequence of its lower surface gravity, that the Martian lithosphere is more porous, that fractures on Mars remain open to greater depths and are wider at a given depth, and that the maximum penetration depth for opening-mode fractures (i.e., joints) is much deeper on Mars than on Earth. The result of a weak Martian lithosphere is that dykes-the primary mechanism for magma transport on both planets-can propagate more easily and can be much wider on Mars than on Earth. We suggest that this increased the efficiency of magma delivery to and towards the Martian surface during its volcanically active past, and therefore assisted the exogeneous and endogenous growth of the planet's enormous volcanoes (the heights of which are supported by the thick Martian lithosphere) as well as extensive flood-mode volcanism. The porous and pervasively fractured (and permeable) nature of the Martian lithosphere will have also greatly assisted the subsurface storage of and transport of fluids through the lithosphere throughout its geologically history. And so it is that surface gravity, influenced by the mass of a planetary body, can greatly modify the mechanical and hydraulic behaviour of its lithosphere with manifest differences in surface topography and geomorphology, volcanic character, and hydrology.
Interaction of pressure and momentum driven flows with thin porous media: Experiments and modeling
NASA Astrophysics Data System (ADS)
Naaktgeboren, Christian
Flow interaction with thin porous media arise in a variety of natural and man-made settings. Examples include flow through thin grids in electronics cooling, and NOx emissions reduction by means of ammonia injection grids, pulsatile aquatic propulsion with complex trailing anatomy (e.g., jellyfish with tentacles) and microbursts from thunderstorm activity over dense vegetation, unsteady combustion in or near porous materials, pulsatile jet-drying of textiles, and pulsed jet agitation of clothing for trace contaminant sampling. Two types of interactions with thin porous media are considered: (i) forced convection or pressure-driven flows, where fluid advection is maintained by external forces, and (ii) inertial or momentum-driven flows, in which fluid motion is generated but not maintained by external forces. Forced convection analysis through thin permeable media using a porous continuum approach requires the knowledge of porous medium permeability and form coefficients, K and C, respectively, which are defined by the Hazen-Dupuit-Darcy (HDD) equation. Their determination, however, requires the measurement of the pressure-drop per unit of porous medium length. The pressure-drop caused by fluid entering and exiting the porous medium, however, is not related to the porous medium length. Hence, for situations in which the inlet and outlet pressure-drops are not negligible, e.g., for short porous media, the definition of Kand C via the HDD equation becomes ambiguous. This aspect is investigated analytically and numerically using the flow through a restriction in circular pipe and parallel plates channels as preliminary models. Results show that inlet and outlet pressure-drop effects become increasingly important when the inlet and outlet fluid surface fraction φ decreases and the Reynolds number Re increases for both laminar and turbulent flow regimes. A conservative estimate of the minimum porous medium length beyond which the core pressure-drop predominates over the inlet and outlet pressure-drop is obtained by considering a least restrictive porous medium core. Finally, modified K and C are proposed and predictive equations, accurate to within 2.5%, are obtained for both channel configurations with Re ranging from 10-2 to 102 and φ from 6% to 95%. When momentum driven flows interact with thin porous media, the interaction of vortices with the media's complex structure gives way to a number of phenomena of fundamental and applied interest, such as unsteady flow separation. A special case that embodies many of the key features of these flows is the interaction of a vortex ring with a permeable flat surface. Although fundamental, this complex flow configuration has never been considered. The present investigation experimentally studies the fluid mechanics of the interaction of a vortex ring impinging directly on thin permeable flat targets. The vortex ring is formed in water using a piston-cylinder mechanism and visualized using planar laser-induced fluorescence (PLIF). The rings are formed for jet Reynolds numbers of 3000 and 6000, and piston stroke-to-diameter ratios of 1.0, 3.0, and 6.0. Thin screens of similar geometry having surface opening fractions of 44, 60, 69, and 79% are targeted by the rings. The flow that emerges downstream of the screens reforms into a new, "transmitted" vortex ring. For the lower porosity targets, features that are characteristic of vortex ring impingement on walls are also observed, such as primary vortex ring rebound and reversal, flow separation, formation of secondary vortices and mixing. As the interaction proceeds, however, the primary vortex ring and secondary vortices are drawn toward the symmetry axis of the flow by fluid passing through the permeable screen. Quantitative flow measurements using digital particle image velocimetry (DPIV), indicate the transmitted vortex ring has lower velocity and less (total) kinetic energy than the incident ring. Ring trajectories and total kinetic energy relationships between vortices upstream and downstream the porous targets as a function of the porosity are presented, based on the velocity field from the DPIV measurements. Results show that kinetic energy dissipation is more intense for the low porosity targets and that flows with higher initial kinetic energy impacting on the same target loose a smaller percentage of their initial energy.
NASA Astrophysics Data System (ADS)
Kimura, T.
2015-12-01
A recently developed reticular type porous structure, which can be fabricated as the film through the soft colloidal block copolymer (e.g., PS-b-PEO) templating, is very promising as the porous platform showing high-performance based on its high surface area as well as high diffusivity of targeted organic molecules and effective accommodation of bulky molecules, but the compositional design of oxide frameworks has not been developed so enough to date. Here, I report reliable synthetic methods of the reticular type porous structure toward simple compositional variations. Due to the reproducibility of reticular type porous titania films from titanium alkoxide (e.g., TTIP; titanium tetraisopropoxide), a titania-silica film having similar porous structure was obtained by mixing silicon alkoxide (e.g., tetraethoxysilane) and TTIP followed by their pre-hydrolysis, and the mixing ratio of Ti to Si composition was easily reached to 1.0. For further compositional design, a concept of surface coating was widely applicable; the reticular type porous titania surfaces can be coated with other oxides such as silica. Here, a silica coating was successfully achieved by the simple chemical vapor deposition of silicon alkoxide (e.g., tetramethoxysilane) without water (with water at the humidity level), which was also utilized for pore filling with silica by the similar process with water.
Laminar flow drag reduction on soft porous media.
Mirbod, Parisa; Wu, Zhenxing; Ahmadi, Goodarz
2017-12-08
While researches have focused on drag reduction of various coated surfaces such as superhydrophobic structures and polymer brushes, the insights tso understand the fundamental physics of the laminar skin friction coefficient and the related drag reduction due to the formation of finite velocity at porous surfaces is still relatively unknown. Herein, we quantitatively investigated the flow over a porous medium by developing a framework to model flow of a Newtonian fluid in a channel where the lower surface was replaced by various porous media. We showed that the flow drag reduction induced by the presence of the porous media depends on the values of the permeability parameter α = L/(MK) 1/2 and the height ratio δ = H/L, where L is the half thickness of the free flow region, H is the thickness and K is the permeability of the fiber layer, and M is the ratio of the fluid effective dynamic viscosity μ e in porous media to its dynamic viscosity μ. We also examined the velocity and shear stress profiles for flow over the permeable layer for the limiting cases of α → 0 and α → ∞. The model predictions were compared with the experimental data for specific porous media and good agreement was found.
Meng, Qing-Qing; Zhao, Xin; Lin, Cheng-You; Chen, Shu-Jing; Ding, Ying-Chun; Chen, Zhao-Yang
2017-01-01
In this paper; the surface plasmon resonance (SPR) sensor with a porous silica film was studied. The effect of the thickness and porosity of the porous silica film on the performance of the sensor was analyzed. The results indicated that the figure of merit (FOM) of an SPR sensor can be enhanced by using a porous silica film with a low-refractive-index. Particularly; the FOM of an SPR sensor with 40 nm thick 90% porosity porous silica film; whose refractive index is 1.04 was improved by 311% when compared with that of a traditional SPR sensor. Furthermore; it was found that the decrease in the refractive index or the increase in the thickness of the low-refractive-index porous silica film can enlarge the FOM enhancement. It is believed that the proposed SPR sensor with a low-refractive-index porous silica film will be helpful for high-performance SPR sensors development. PMID:28796155
Meng, Qing-Qing; Zhao, Xin; Lin, Cheng-You; Chen, Shu-Jing; Ding, Ying-Chun; Chen, Zhao-Yang
2017-08-10
In this paper; the surface plasmon resonance (SPR) sensor with a porous silica film was studied. The effect of the thickness and porosity of the porous silica film on the performance of the sensor was analyzed. The results indicated that the figure of merit (FOM) of an SPR sensor can be enhanced by using a porous silica film with a low-refractive-index. Particularly; the FOM of an SPR sensor with 40 nm thick 90% porosity porous silica film; whose refractive index is 1.04 was improved by 311% when compared with that of a traditional SPR sensor. Furthermore; it was found that the decrease in the refractive index or the increase in the thickness of the low-refractive-index porous silica film can enlarge the FOM enhancement. It is believed that the proposed SPR sensor with a low-refractive-index porous silica film will be helpful for high-performance SPR sensors development.
Amin Yavari, S; Chai, Y C; Böttger, A J; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A
2015-06-01
Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20V anodizing time: 30min to 3h) are used for anodizing porous titanium structures that were later heat treated at 500°C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500°C improve the cell culture response of porous titanium. Copyright © 2015 Elsevier B.V. All rights reserved.
A Phase-Separation Route to Synthesize Porous CNTs with Excellent Stability for Na+ Storage.
Chen, Zhi; Wang, Taihong; Zhang, Ming; Cao, Guozhong
2017-06-01
Porous carbon nanotubes (CNTs) are obtained by removing MoO 2 nanoparticles from MoO 2 @C core@shell nanofibers which are synthesized by phase-segregation via a single-needle electrospinning method. The specific surface area of porous CNTs is 502.9 m 2 g -1 , and many oxygen-containing functional groups (COH, CO) are present. As anodes for sodium-ion batteries, the porous CNT electrode displays excellent rate performance and cycling stability (110 mA h g -1 after 1200 cycles at 5 A g -1 ). Those high properties can be attributed to the porous structure and surface modification to steadily store Na + with high capacity. The work provides a facile and broadly applicable way to fabricate the porous CNTs and their composites for batteries, catalysts, and fuel cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
TESTING ANTIMICROBIAL EFFICACY ON POROUS MATERIALS
The efficacy of antimicrobial treatments to eliminate or control biological growth in the indoor environment can easily be tested on nonporous surfaces. However, the testing of antimicrobial efficacy on porous surfaces, such as those found in the indoor environment [i.e., gypsum ...
SURFACE CHEMICAL EFFECTS ON COLLOID STABILITY AND TRANSPORT THROUGH NATURAL POROUS MEDIA
Surface chemical effects on colloidal stability and transport through porous media were investigated using laboratory column techniques. Approximately 100 nm diameter, spherical, iron oxide particles were synthesized as the mobile colloidal phase. The column packing material was ...
40 CFR 761.286 - Sample size and procedure for collecting a sample.
Code of Federal Regulations, 2010 CFR
2010-07-01
... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... PCB remediation waste or porous surfaces, collect at least 20 milliliters of waste, or a portion of...
Peng, Huisheng [Shanghai, CN; Zhu, Yuntian Theodore [Cary, NC; Peterson, Dean E [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM
2011-06-14
A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.
Hierarchical and Well-Ordered Porous Copper for Liquid Transport Properties Control.
Pham, Quang N; Shao, Bowen; Kim, Yongsung; Won, Yoonjin
2018-05-09
Liquid delivery through interconnected pore network is essential for various interfacial transport applications ranging from energy storage to evaporative cooling. The liquid transport performance in porous media can be significantly improved through the use of hierarchical morphology that leverages transport phenomena at different length scales. Traditional surface engineering techniques using chemical or thermal reactions often show nonuniform surface nanostructuring within three-dimensional pore network due to uncontrollable diffusion and reactivity in geometrically complex porous structures. Here, we demonstrate hierarchical architectures on the basis of crystalline copper inverse opals using an electrochemistry approach, which offers volumetric controllability of structural and surface properties within the complex porous metal. The electrochemical process sequentially combines subtractive and additive steps-electrochemical polishing and electrochemical oxidation-to improve surface wetting properties without sacrificing structural permeability. We report the transport performance of the hierarchical inverse opals by measuring the capillary-driven liquid rise. The capillary performance parameter of hierarchically engineered inverse opal ( K/ R eff = ∼5 × 10 -3 μm) is shown to be higher than that of a typical crystalline inverse opal ( K/ R eff = ∼1 × 10 -3 μm) owing to the enhancement in fluid permeable and hydrophilic pathways. The new surface engineering method presented in this work provides a rational approach in designing hierarchical porous copper for transport performance enhancements.
Silver/hydroxyapatite composite coatings on porous titanium surfaces by sol-gel method.
Qu, Jie; Lu, Xiong; Li, Dan; Ding, Yonghui; Leng, Yang; Weng, Jie; Qu, Shuxin; Feng, Bo; Watari, Fumio
2011-04-01
Hydroxyapatite (HA) coatings loaded with nanosilver particles is an attractive method to impart the HA coating with antibacterial properties. Producing Ag/HA coatings on porous Ti substrates have been an arduous job since commonly used line-of-sight techniques are not able to deposit uniform coatings on the inner pore surfaces of the porous Ti. In this study, porous Ti scaffolds with high porosity and interconnected structures were prepared by polymer impregnating method. A sol-gel process was used to produce uniform Ag/HA composite coatings on the surfaces of porous Ti substrates. Ca(NO(3) )(2) ·4H(2) O and P(2) O(5) in an ethyl alcohol based system was selected to prepare the sol, which ensured the homogeneous distribution of Ag in the sol. The characterization revealed that silver particles uniformly distributed in the coatings without agglomeration. High antibacterial ratio (>95%), against E. coli and S. albus was expressed by the silver-containing coatings (Ag/HA 0.8 and 1.6 wt %). The biocompatibility of the Ag/HA 0.8 surfaces was as good as that of pure HA surface, as revealed by culturing osteoblasts on them. The results indicated that Ag/HA 0.8 had the good balance between the biocompatibility and antibacterial properties of the coatings. Copyright © 2011 Wiley Periodicals, Inc.
Dong, QianQian; Zhou, MiaoMiao; Lin, Xiao; Shen, Lan; Feng, Yi
2018-07-01
This study aimed to develop novel co-processed tablet fillers based on the principle of particle engineering for direct compaction and to compare the characteristics of co-processed products obtained by fluid-bed coating and co-spray drying, respectively. Water-soluble mannitol and water-insoluble calcium carbonate were selected as representative fillers for this study. Hydroxypropyl methylcellulose (HPMC), serving as a surface property modifier, was distributed on the surface of primary filler particles via the two co-processing methods. Both fundamental and functional properties of the products were comparatively investigated. The results showed that functional properties of the fillers, like flowability, compactibility, and drug-loading capacity, were effectively improved by both co-processing methods. However, fluid-bed coating showed greater advantages over co-spray drying in some aspects, which was mainly attributed to the remarkable differences in some fundamental properties of co-processed powders, like particle size, surface topology, and particle structure. For example, the more irregular surface and porous structure induced by fluid-bed coating could contribute to better compaction properties and lower lubricant sensitivity due to the increasing contact area and mechanical interlocking between particles under pressure. More effective surface distribution of HPMC during fluid-bed coating was also a contributor. In addition, such a porous agglomerate structure could also reduce the separation of drug and excipients after mixing, resulting in the improvement in drug loading capacity and tablet uniformity. In summary, fluid-bed coating appears to be more promising for co-processing than spray drying in some aspects, and co-processed excipients produced by it have a great prospect for further investigations and development. Copyright © 2018 Elsevier B.V. All rights reserved.
From Red Cells to Soft Porous Lubrication
NASA Astrophysics Data System (ADS)
Gacka, T.; Nathan, R.; Wu, L.; Wu, Q.; Cbmss Laboratory Team; Chinese Academy Of Sci. Team
2011-11-01
Feng and Weinbaum (J. Fluid. Mech., 422, 282, 2000), inspired by the enhanced lift phenomena in downhill skiing, developed a new lubrication theory for highly compressible porous media where significantly increased lifting force was predicted as a planing surface glided over a soft porous layer; suggesting superior potential use of porous media for soft lubrication. In this study, we experimentally examine the lift generation phenomena by developing a novel soft porous bearing that consists of a running conveyer belt covered with a soft, 100% polyester, porous sheet, and a stationary, fully instrumented, inclined, planar, upper board. Pore pressure was generated as the upper boundary glides over the soft porous bearing and was measured by pressure sensors. One observed that the pore pressure distribution is consistent with predictions by Feng and Weinbaum (2000), and is a function of the relative velocity between the planing surface and the running belt, the mechanical properties (e.g. porosity, permeability and stiffness) and thickness of the porous layer, as well as the compression ratios at the leading and trailing edges. A load cell is used to characterize the performance of the porous bearing, by comparing pore pressure to total lifting forces. The study presented herein significantly improves our understanding of the behavior of highly compressible porous media under fast compression.
NASA Astrophysics Data System (ADS)
Hanumagowda, B. N.; Gonchigara, Thippeswamy; Santhosh Kumar, J.; MShiva Kumar, H.
2018-04-01
Exponential slider bearings with porous facing is analysed in this article. The modified Reynolds equation is derived for the Exponential porous slider bearing with MHD and couple stress fluid. Computed values of Steady film pressure, Steady load capacity, Dynamic stiffness and Damping coefficient are presented in graphical form. The Steady film pressure, Steady load capacity, Dynamic stiffness and Damping coefficient decreases with increasing values of permeability parameter and increases with increasing values of couplestress parameter and Hartmann number.
Smoothed Particle Hydrodynamics Modeling of Gravity Currents on a Dry Porous Medium
NASA Astrophysics Data System (ADS)
Daly, E.; Grimaldi, S.; Bui, H.
2014-12-01
Gravity currents flowing over porous media occur in many environmental processes and industrial applications, such as irrigation, benthic boundary layers, and oil spills. The coupling of the flow over the porous surface and the infiltration of the fluid in the porous media is complex and difficult to model. Of particular interest is the prediction of the position of the runoff front and the depth of the infiltration front. We present here a model for the flow of a finite volume of a highly viscous Newtonian fluid over a dry, homogenous porous medium. The Navier-Stokes equations describing the runoff flow are coupled to the Volume Averaged Navier-Stokes equations for the infiltration flow. The numerical solution of these equations is challenging because of the presence of two free surfaces (runoff and infiltration waves), the lack of fixed boundary conditions at the runoff front, and the difficulties in defining appropriate conditions at the surface of the porous medium. The first two challenges were addressed by using Smoothed Particle Hydrodynamics, which is a Lagrangian, mesh-free particle method particularly suitable for modelling free surface flows. Two different approaches were used to model the flow conditions at the surface of the porous medium. The Two Domain Approach (TDA) assumes that runoff and infiltration flows occur in two separate homogenous domains; here, we assume the continuity of velocity and stresses at the interface of the two domains. The One Domain Approach (ODA) models runoff and infiltration flows as occurring through a medium whose hydraulic properties vary continuously in space. The transition from the hydraulic properties of the atmosphere and the porous medium occur in a layer near the surface of the porous medium. Expressions listed in literature were used to compute the thickness of this transition layer and the spatial variation of porosity and permeability within it. Our results showed that ODA led to slower velocities of the runoff front and enhanced infiltration when compared to the implemented formulation of TDA. In the ODA, depending on the description of the transition layer, the maximum distances travelled by the runoff front and the maximum depth of infiltration varied over a range of ±15% and ±50% when compared to their respective averaged values.
Peptide-Modified Zwitterionic Porous Hydrogels for Endothelial Cell and Vascular Engineering
Lin, Chih-Yeh; Wang, Yi-Ren; Lin, Che-Wei; Wang, Shih-Wen; Chien, Hsiu-Wen; Cheng, Nai-Chen; Tsai, Wei-Bor
2014-01-01
Abstract Hydrogels allow control of gel composition and mechanics, and permit incorporation of cells and a wide variety of molecules from nanoparticles to micromolecules. Peptide-linked hydrogels should tune the basic polymer into a more bioactive template to influence cellular activities. In this study, we first introduced the generation of 2D poly-(sulfobetaine methacrylate [SBMA]) hydrogel surfaces. By incorporating with functional peptide RGD and vascular endothelial growth factor-mimicking peptide KLTWQELYQLKYKG (QK) peptides, endothelial cells attached to the surface well and proliferated in a short-term culturing. However, the mechanical property, which plays a crucial role directing the cellular functions and supporting the structures, decreased when peptides graft onto hydrogels. Manipulating the mechanical property was thus necessary, and the most related factor was the monomer concentration. From our results, the higher amount of SBMA caused greater stiffness in hydrogels. Following the 2D surface studies, we fabricated 3D porous hydrogels for cell scaffolds by several methods. The salt/particle leaching method showed a more reliable way than gas-foaming method to fabricate homogeneous and open-interconnected pores within the hydrogel. Using the salt/particle leaching method, we can control the pore size before leaching. Morphology of endothelial cells within scaffolds was also investigated by scanning electron microscopy, and histological analysis was conducted in vitro and in vivo to test the biocompatibility of SB hydrogel and its potential as a therapeutic reagent for ischemic tissue repair in mice. PMID:25469315
NASA Astrophysics Data System (ADS)
Zhao, Qihang; Xing, Yongxing; Liu, Zhiliang; Ouyang, Jing; Du, Chunfang
2018-03-01
The synthesis and characterization of BiOCl and Fe3+-grafted BiOCl (Fe/BiOCl) is reported that are developed as efficient adsorbents for the removal of cationic dyes rhodamine B (RhB) and methylene blue (MB) as well as anionic dyes methyl orange (MO) and acid orange (AO) from aqueous solutions with low concentration of 0.01 0.04 mmol/L. Characterizations by various techniques indicate that Fe3+ grafting induced more open porous structure and higher specific surface area. Both BiOCl and Fe/BiOCl with negatively charged surfaces showed excellent adsorption efficiency toward cationic dyes, which could sharply reach 99.6 and nearly 100% within 3 min on BiOCl and 97.0 and 98.0% within 10 min on Fe/BiOCl for removing RhB and MB, respectively. However, Fe/BiOCl showed higher adsorption capacity than BiOCl toward ionic dyes. The influence of initial dye concentration, temperature, and pH value on the adsorption capacity is comprehensively studied. The adsorption process of RhB conforms to Langmuir adsorption isotherm and pseudo-second-order kinetic feature. The excellent adsorption capacities of as-prepared adsorbents toward cationic dyes are rationalized on the basis of electrostatic attraction as well as open porous structure and high specific surface area. In comparison with Fe/BiOCl, BiOCl displays higher selective efficiency toward cationic dyes in mixed dye solutions.
Pajoum Shariati, Seyed Ramin; Shokrgozar, Mohammad Ali; Vossoughi, Manouchehr; Eslamifar, Ali
2009-07-01
Extensive full-thickness burns require replacement of both epidermis and dermis. In designing skin replacements, the goal has been to re-create this model and make a product which has both essential components. In the present study, we developed procedures for establishing confluent, stratified layers of cultured human keratinocytes on the surface of modified collagen-chitosan scaffold that contains fibroblasts. The culture methods for propagation of keratinocytes and fibroblasts isolated from human neonatal foreskin were developed. The growth and proliferation of normal human keratinocytes were evaluated in serum-free (keratinocyte growth medium) and our modified medium. Characterization of human keratinocytes was determined by using pan-keratin and anti-involucrin monoclonal antibodies. For fabrication of relevant biodegradable and biocompatible collagen-chitosan porous scaffold with improved biostability, modified method of freeze-gelation was used. In generating organotypic co-cultures, epidermal keratinocytes were plated onto the upper surface of scaffold containing embedded fibroblasts. The results showed that the growth of isolated human skin fibroblasts and keratinocytes in our modified medium was more than that in the serum-free medium. The different evaluations of collagen-chitosan scaffold showed that it is relevant to growth of cells (fibroblast and keratinocyte) and has a good flexibility in manipulation of the living skin equivalents. These findings indicate that the integration of collagen-chitosan scaffold with co-cultured keratinocyte and fibroblast in vitro provides a potential source of living skin for grafting in vivo.
Stem cell behavior on tailored porous oxide surface coatings.
Lavenus, Sandrine; Poxson, David J; Ogievetsky, Nika; Dordick, Jonathan S; Siegel, Richard W
2015-07-01
Nanoscale surface topographies are known to have a profound influence on cell behavior, including cell guidance, migration, morphology, proliferation, and differentiation. In this study, we have observed the behavior of human mesenchymal stem cells cultured on a range of tailored porous SiO2 and TiO2 nanostructured surface coatings fabricated via glancing angle electron-beam deposition. By controlling the physical vapor deposition angle during fabrication, we could control systematically the deposited coating porosity, along with associated topographic features. Immunocytochemistry and image analysis quantitatively revealed the number of adherent cells, as well as their basic cellular morphology, on these surfaces. Signaling pathway studies showed that even with subtle changes in nanoscale surface structures, the behavior of mesenchymal stem cells was strongly influenced by the precise surface structures of these porous coatings. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fluid flow simulation and permeability computation in deformed porous carbonate grainstones
NASA Astrophysics Data System (ADS)
Zambrano, Miller; Tondi, Emanuele; Mancini, Lucia; Lanzafame, Gabriele; Trias, F. Xavier; Arzilli, Fabio; Materazzi, Marco; Torrieri, Stefano
2018-05-01
In deformed porous carbonates, the architecture of the pore network may be modified by deformation or diagenetic processes altering the permeability with respect to the pristine rock. The effects of the pore texture and morphology on permeability in porous rocks have been widely investigated due to the importance during the evaluation of geofluid reservoirs. In this study, these effects are assessed by combining synchrotron X-ray computed microtomography (SR micro-CT) and computational fluid dynamics. The studied samples pertain to deformed porous carbonate grainstones highly affected by deformation bands (DBs) exposed in Northwestern Sicily and Abruzzo regions, Italy. The high-resolution SR micro-CT images of the samples, acquired at the SYRMEP beamline of the Elettra - Sincrotrone Trieste laboratory (Italy), were used for simulating a pressure-driven flow by using the lattice-Boltzmann method (LBM). For the experiments, a multiple relaxation time (MRT) model with the D3Q19 scheme was used to avoid viscosity-dependent results of permeability. The permeability was calculated using Darcy's law once steady conditions were reached. After the simulations, the pore-network properties (effective porosity, specific surface area, and geometrical tortuosity) were calculated using 3D images of the velocity fields. These images were segmented considering a velocity threshold value higher than zero. The study showed that DBs may generate significant heterogeneity and anisotropy of the permeability of the evaluated rock samples. Cataclasis and cementation process taking place within the DBs reduce the effective porosity and therefore the permeability. Contrary to this, pressure dissolution and faulting may generate connected channels which contribute to the permeability only parallel to the DB.
High Surface Area of Porous Silicon Drives Desorption of Intact Molecules
Northen, Trent R.; Woo, Hin-Koon; Northen, Michael T.; Nordström, Anders; Uritboonthail, Winnie; Turner, Kimberly L.; Siuzdak, Gary
2007-01-01
The surface structure of porous silicon used in desorption/ionization on porous silicon (DIOS) mass analysis is known to play a primary role in the desorption/ionization (D/I) process. In this study, mass spectrometry and scanning electron microscopy (SEM) are used to examine the correlation between intact ion generation with surface ablation, and surface morphology. The DIOS process is found to be highly laser energy dependent and correlates directly with the appearance of surface ions (Sin+ and OSiH+). A threshold laser energy for DIOS is observed (10 mJ/cm2), which supports that DIOS is driven by surface restructuring and is not a strictly thermal process. In addition, three DIOS regimes are observed which correspond to surface restructuring and melting. These results suggest that higher surface area silicon substrates may enhance DIOS performance. A recent example which fits into this mechanism is silicon nanowires surface which have a high surface energy and concomitantly requires lower laser energy for analyte desorpton. PMID:17881245
NASA Astrophysics Data System (ADS)
Xia, Yue; Li, Fangfei; Jiang, Yinshan; Xia, Maosheng; Xue, Bing; Li, Yanjuan
2014-06-01
TiO2-diatomite photocatalysts were prepared by sol-gel process with various pre-modified diatomite. In order to obtain diatomite with different surface characteristics, two modification approaches including calcination and phosphoric acid treatment on the micro-structure of diatomite are introduced. The photocatalysts were characterized by XRD, XPS, nitrogen adsorption-desorption isotherms and micromorphology analysis. The results indicate that, compared with pure TiO2, the anatase-to-rutile phase transition temperature of TiO2 loaded on diatomite carrier is significantly increased to nearly 900 °C, depending on the different pretreatment method of diatomite. The photocatalytic activities of different samples were evaluated by their degradation rate of methyl orange (MO) dye under UV and visible-light irradiation. The samples prepared by phosphoric acid pretreatment method exhibit the highest photocatalytic activity. After 90 min of UV irradiation, about 90% of MO is decomposed by the best effective photocatalyst. And after 8 h visible-light irradiation, nearly 60% of MO is decomposed by the same sample. Further mechanism investigation reveals that the H3PO4 pretreatment process can obviously change the surface features of diatomite carrier, cause the formation of Si-O-Ti bond, increase the binding strength between TiO2 and diatomite, restrain crystal growth of loaded TiO2, and thus form thermal-stable mesoporous structure at the granular spaces. It helps to build micro-, meso- and macro-porous hierarchical porous structure in TiO2-diatomite, and improves the charge and mass transfer efficiency during catalyzing process, resulting in the significantly increased photocatalytic activity of TiO2-diatomite pretreated by phosphoric acid.
Zong, Linqi; Jin, Yan; Liu, Chang; Zhu, Bin; Hu, Xiaozhen; Lu, Zhenda; Zhu, Jia
2016-11-09
Alloy anodes, particularly silicon, have been intensively pursued as one of the most promising anode materials for the next generation lithium-ion battery primarily because of high specific capacity (>4000 mAh/g) and elemental abundance. In the past decade, various nanostructures with porosity or void space designs have been demonstrated to be effective to accommodate large volume expansion (∼300%) and to provide stable solid electrolyte interphase (SEI) during electrochemical cycling. However, how to produce these building blocks with precise morphology control at large scale and low cost remains a challenge. In addition, most of nanostructured silicon suffers from poor Coulombic efficiency due to a large surface area and Li ion trapping at the surface coating. Here we demonstrate a unique nanoperforation process, combining modified ball milling, annealing, and acid treating, to produce porous Si with precise and continuous porosity control (from 17% to 70%), directly from low cost metallurgical silicon source (99% purity, ∼ $1/kg). The produced porous Si coated with graphene by simple ball milling can deliver a reversible specific capacity of 1250 mAh/g over 1000 cycles at the rate of 1C, with Coulombic efficiency of first cycle over 89.5%. The porous networks also provide efficient ion and electron pathways and therefore enable excellent rate performance of 880 mAh/g at the rate of 5C. Being able to produce particles with precise porosity control through scalable processes from low-grade materials, it is expected that this nanoperforation may play a role in the next generation lithium ion battery anodes, as well as many other potential applications such as optoelectronics and thermoelectrics.
Porous textile antenna designs for improved wearability
NASA Astrophysics Data System (ADS)
Shahariar, Hasan; Soewardiman, Henry; Muchler, Clifford A.; Adams, Jacob J.; Jur, Jesse S.
2018-04-01
Textile antennas are an integral part of the next generation personalized wearable electronics system. However, the durability of textile antennas are rarely discussed in the literature. Typical textile antennas are prone to damage during normal wearable user scenarios, washing, and heat cycling over time. Fabricating a durable, washable, flexible, and breathable (like textile materials) antenna is challenging due to the incompatibility of the mechanical properties of conductive materials and soft textile materials. This paper describes a scalable screen printing process on an engineered nonwoven substrate to fabricate microstrip patch antennas with enhanced durability. This work used an Evolon® nonwoven substrate with low surface roughness (˜Ra = 18 μm) and high surface area (˜2.05 mm2 mm-2 of fabric area) compared to traditional textile materials, which allows the ink to penetrate evenly in the fiber bulk with its strong capillary wicking force and enhances print resolution. The composite layer of ink and fiber is conductive and enables the antennas to maintain high mechanical flexibility without varying its RF (Radio Frequency) properties. Additionally, the antennas are packaged by laminating porous polyurethane web to make the device durable and washable. The fully packaged antennas maintain the structural flexibility and RF functionality after 15 cycles of washing and drying. To improve the air permeability and enhance flexibility the antenna is also modified by incorporating holes in the both patch and ground layer of the antenna. The antennas were analyzed before and after submerging in water to observe the effect of wetting and drying with respect to frequency response. The porous antenna with holes recovered 3x times faster than the one without holes (solid) from fully wet state (saturated with water) to the dry state, demonstrating its potential use as a moisture sensor system.
Structure, composition and morphology of bioactive titanate layer on porous titanium surfaces
NASA Astrophysics Data System (ADS)
Li, Jinshan; Wang, Xiaohua; Hu, Rui; Kou, Hongchao
2014-07-01
A bioactive coating was produced on pore surfaces of porous titanium samples by an amendatory alkali-heat treatment method. Porous titanium was prepared by powder metallurgy and its porosity and average size were 45% and 135 μm, respectively. Coating morphology, coating structure and phase constituents were examined by SEM, XPS and XRD. It was found that a micro-network structure with sizes of <200 nm mainly composed of bioactive sodium titanate and rutile phases of TiO2 covered the interior and exterior of porous titanium cells, and redundant Ca ion was detected in the titanate layer. The concentration distribution of Ti, O, Ca and Na in the coating showed a compositional gradient from the intermediate layer toward the outer surface. These compositional gradients indicate that the coating bonded to Ti substrate without a distinct interface. After immersion into the SBF solution for 3 days, a bone-like carbonate-hydroxylapatite showing a good biocompatibility was detected on the coating surface. And the redundant Ca advanced the bioactivity of the coating. Thus, the present modification is expected to allow the use of the bioactive porous titanium as artificial bones even under load-bearing conditions.
Sánchez-Sánchez, Angela; Suárez-García, Fabián; Martínez-Alonso, Amelia; Tascón, Juan M D
2014-12-10
Doped porous carbons exhibiting highly developed porosity and rich surface chemistry have been prepared and subsequently applied to clarify the influence of both factors on carbon dioxide capture. Nanocasting was selected as synthetic route, in which a polyaramide precursor (3-aminobenzoic acid) was thermally polymerized inside the porosity of an SBA-15 template in the presence of different H3PO4 concentrations. The surface chemistry and the porous texture of the carbons could be easily modulated by varying the H3PO4 concentration and carbonization temperature. Porous texture was found to be the determinant factor on carbon dioxide adsorption at 0 °C, while surface chemistry played an important role at higher adsorption temperatures. We proved that nitrogen functionalities acted as basic sites and oxygen and phosphorus groups as acidic ones toward adsorption of CO2 molecules. Among the nitrogen functional groups, pyrrolic groups exhibited the highest influence, while the positive effect of pyridinic and quaternary functionalities was smaller. Finally, some of these N-doped carbons exhibit CO2 heats of adsorption higher than 42 kJ/mol, which make them excellent candidates for CO2 capture.
Porous multi-component material for the capture and separation of species of interest
Addleman, Raymond S.; Chouyyok, Wilaiwan; Li, Xiaohong S.; Cinson, Anthony D.; Gerasimenko, Aleksandr A
2016-06-21
A method and porous multi-component material for the capture, separation or chemical reaction of a species of interest is disclosed. The porous multi-component material includes a substrate and a composite thin film. The composite thin film is formed by combining a porous polymer with a nanostructured material. The nanostructured material may include a surface chemistry for the capture of chemicals or particles. The composite thin film is coupled to the support or device surface. The method and material provides a simple, fast, and chemically and physically benign way to integrate nanostructured materials into devices while preserving their chemical activity.
Porous silicon ring resonator for compact, high sensitivity biosensing applications
Rodriguez, Gilberto A.; Hu, Shuren; Weiss, Sharon M.
2015-01-01
A ring resonator is patterned on a porous silicon slab waveguide to produce a compact, high quality factor biosensor with a large internal surface area available for enhanced recognition of biological and chemical molecules. The porous nature of the ring resonator allows molecules to directly interact with the guided mode. Quality factors near 10,000 were measured for porous silicon ring resonators with a radius of 25 μm. A bulk detection sensitivity of 380 nm/RIU was measured upon exposure to salt water solutions. Specific detection of nucleic acid molecules was demonstrated with a surface detection sensitivity of 4 pm/nM.
Formation of porous networks on polymeric surfaces by femtosecond laser micromachining
NASA Astrophysics Data System (ADS)
Assaf, Youssef; Kietzig, Anne-Marie
2017-02-01
In this study, porous network structures were successfully created on various polymer surfaces by femtosecond laser micromachining. Six different polymers (poly(tetrafluoroethylene) (PTFE), poly(methyl methacrylate) (PMMA), high density poly(ethylene) (HDPE), poly(lactic acid) (PLA), poly(carbonate) (PC), and poly(ethylene terephthalate) (PET)) were machined at different fluences and pulse numbers, and the resulting structures were identified and compared by lacunarity analysis. At low fluence and pulse numbers, porous networks were confirmed to form on all materials except PLA. Furthermore, all networks except for PMMA were shown to bundle up at high fluence and pulse numbers. In the case of PC, a complete breakdown of the structure at such conditions was observed. Operation slightly above threshold fluence and at low pulse numbers is therefore recommended for porous network formation. Finally, the thickness over which these structures formed was measured and compared to two intrinsic material dependent parameters: the single pulse threshold fluence and the incubation coefficient. Results indicate that a lower threshold fluence at operating conditions favors material removal over structure formation and is hence detrimental to porous network formation. Favorable machining conditions and material-dependent parameters for the formation of porous networks on polymer surfaces have thus been identified.
A simplified biomolecule attachment strategy for biosensing using a porous Si oxide interferometer
Perelman, Loren A.; Schwartz, Michael P.; Wohlrab, Aaron M.; VanNieuwenhze, Michael S.; Sailor, Michael J.
2008-01-01
A simple strategy for linking biomolecules to porous Si surfaces and detecting peptide/drug binding is described. Porous Si is prepared using an electrochemical etch and then thermally oxidized by heating in ambient atmosphere. Bovine serum albumin (BSA) is then non-covalently adsorbed to the inner pore walls of the porous Si oxide (PSiO2) matrix. The BSA layer is used as a linker for covalent attachment of the peptide Ac-L-Lysine-D-Alanine-D-Alanine (KAA) using published bioconjugation chemistry. BSA-coated surfaces functionalized with KAA display specificity for the glycopeptide vancomycin while resisting adsorption of non-specific reagents. While the biomolecule attachment strategy reported here is used to bind peptides, the scheme can be generalized to the linking of any primary amine-containing molecule to PSiO2 surfaces. PMID:18458749
NASA Astrophysics Data System (ADS)
An, Geon-Hyoung; Ahn, Hyo-Jin; Hong, Woong-Ki
2015-01-01
Four different types of carbon nanofibers (CNFs) for electrical double-layer capacitors (EDLCs), porous and non-porous CNFs with and without Pt metal nanoparticles, are synthesized by an electrospinning method and their performance in electrical double-layer capacitors (EDLCs) is characterized. In particular, the Pt-embedded porous CNFs (PCNFs) exhibit a high specific surface area of 670 m2 g-1, a large mesopore volume of 55.7%, and a low electrical resistance of 1.7 × 103. The synergistic effects of the high specific surface area with a large mesopore volume, and superior electrical conductivity result in an excellent specific capacitance of 130.2 F g-1, a good high-rate performance, superior cycling durability, and high energy density of 16.9-15.4 W h kg-1 for the performance of EDLCs.
Method for producing a selectively permeable separation module
Stone, Mark L.; Orme, Christopher J.; Peterson, Eric S.
2000-03-14
A method and apparatus is provided for casting a polymeric membrane on the inside surface of porous tubes to provide a permeate filter system capable of withstanding hostile operating conditions and having excellent selectivity capabilities. Any polymer in solution, by either solvent means or melt processing means, is capable of being used in the present invention to form a thin polymer membrane having uniform thickness on the inside surface of a porous tube. Multiple tubes configured as a tubular module can also be coated with the polymer solution. By positioning the longitudinal axis of the tubes in a substantially horizontal position and rotating the tube about the longitudinal axis, the polymer solution coats the inside surface of the porous tubes without substantially infiltrating the pores of the porous tubes, thereby providing a permeate filter system having enhanced separation capabilities.
Computational Study of Colloidal Droplet Interactions with Three Dimensional Structures
2015-05-18
on the meshless SPH method for droplet impact on and sorption into a powder bed considering free surface flow above the powder bed surface ...considering free surface flow above the powder bed surface , infiltration of the liquid in the porous matrix, and the interfacial forces on the free moving...infiltration of the liquid in the porous matrix, and the interfacial forces on the free moving surface . The model has been used to study the effect of impact
NASA Astrophysics Data System (ADS)
Aleksandrova, E. O.; Novichkov, R. V.; Olenin, A. Yu.; Zuev, B. K.
2017-03-01
Silica nanoparticles are obtained according to the Stober-Fink-Bohn method, and their surfaces are chemically modified with 1H,1H,2H,2H-perfluorodecyltriethoxysilane. It is estimated that sols of porous silica nanoparticles (average sizes, 50-200 nm) form during primary chemical process; the average size of the particles can be increased to 400-500 nm by consecutive growth. Oxythermography (thermoprogrammed oxidation) measurements reveal a stepped dependence between the content of organic substance of nanoparticles and the duration of chemical modification reaction exists. It is concluded that this could be due to the formation of dense shell (or shells) as a result of sols aging between the cycles of growth; such shells impose diffusive restrictions when molecules penetrate into the pores of the internal volume of the particles.
Liu, Haijing; Cao, Yinliang; Wang, Feng; Huang, Yaqin
2014-01-22
Novel hierarchical lamellar porous carbon (HLPC) with high BET specific surface area of 2730 m(2) g(-1) and doped by nitrogen atoms has been synthesized from the fish scale without any post-synthesis treatment, and applied to support the platinum (Pt) nanoparticle (NP) catalysts (Pt/HLPC). The Pt NPs could be highly dispersed on the porous surface of HLPC with a narrow size distribution centered at ca. 2.0 nm. The results of the electrochemical analysis reveal that the electrochemical active surface area (ECSA) of Pt/HLPC is larger than the Pt NP electrocatalyst supported on the carbon black (Pt/Vulcan XC-72). Compared with the Pt/Vulcan XC-72, the Pt/HLPC exhibits larger current density, lower overpotential, and enhanced catalytic activity toward the oxygen reduction reaction (ORR) through the direct four-electron pathway. The improved catalytic activity is mainly attributed to the high BET specific surface area, hierarchical porous structures and the nitrogen-doped surface property of HLPC, indicating the superiority of HLPC as a promising support material for the ORR electrocatalysts.
Kamitakahara, Masanobu; Uno, Yuika; Ioku, Koji
2014-01-01
In designing the biomaterials, it is important to control their surface morphologies, because they affect the interactions between the materials and cells. We previously reported that porous calcium-deficient hydroxyapatite (HA) ceramics composed of rod-like particles had advantages over sintered porous HA ceramics; however, the effects of the surface morphology of calcium-deficient HA ceramics on cell behavior have remained unclear. Using a hydrothermal process, we successfully prepared porous calcium-deficient HA ceramics with different surface morphologies, composed of plate-like particles of 200-300, 500-800 nm, or 2-3 μm in width and rod-like particles of 1 or 3-5 μm in width, respectively. The effects of these surface morphologies on the behavior of osteoblast-like cells were examined. Although the numbers of cells adhered to the ceramic specimens did not differ significantly among the specimens, the proliferation rates of cells on the ceramics decreased with decreasing particle size. Our results reveal that controlling the surface morphology that is governed by particle shape and size is important for designing porous calcium-deficient HA ceramics.
Chen, Hongjie; Wang, Chunli; Yang, Xiao; Xiao, Zhanwen; Zhu, Xiangdong; Zhang, Kai; Fan, Yujiang; Zhang, Xingdong
2017-01-01
A simple approach to fabricating hydroxyxapatite/titanium dioxide (HA/TiO 2 ) coating on porous titanium (Ti) scaffolds was developed in the present study. Surface TiO 2 layer was firstly formed on porous Ti scaffolds with multi-scale pores by acid-alkali (AA) treatment. The outer HA layer was then formed on the TiO 2 layer by subsequent pulse electrochemical deposition (ED) technique. All the three main process parameters, i.e. deposition times, current density and mass transfer mode affected the properties of the HA coating notably. Under the conditions of 90 deposition cycles, -10mA/cm 2 of pulse current density and stirring, a thin layer of homogeneous and nanorod-like HA sediments was formed on the substrate surface of porous Ti scaffolds. The results of protein adsorption and cellular experiments showed that compared to the single TiO 2 surface, the HA/TiO 2 surface allowed more adsorption of serum proteins and further enhanced the alkaline phosphatase (ALP) activity of MC3T3-E1 osteoblasts. Copyright © 2016 Elsevier B.V. All rights reserved.
40 CFR 761.295 - Reporting and recordkeeping of the PCB concentrations in samples.
Code of Federal Regulations, 2010 CFR
2010-07-01
... On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6... concentrations for bulk PCB remediation waste and porous surfaces on a dry weight basis and as micrograms of PCBs...
Shklyaev, A A; Latyshev, A V
2016-12-01
We study the surface morphology and chemical composition of SiGe layers after their formation under high-temperature annealing at 800-1100 °C of 30-150 nm Ge layers deposited on Si(100) at 400-500 °C. It is found that the annealing leads to the appearance of the SiGe layers of two types, i.e., porous and continuous. The continuous layers have a smoothened surface morphology and a high concentration of threading dislocations. The porous and continuous layers can coexist. Their formation conditions and the ratio between their areas on the surface depend on the thickness of deposited Ge layers, as well as on the temperature and the annealing time. The data obtained suggest that the porous SiGe layers are formed due to melting of the strained Ge layers and their solidification in the conditions of SiGe dewetting on Si. The porous and dislocation-rich SiGe layers may have properties interesting for applications.
NASA Astrophysics Data System (ADS)
Ghogare, Trupti T.; Kartha, Moses J.; Kendre, Subhash D.; Pathan, Habib M.
2018-04-01
Monte-Carlo Ballistic Deposition simulations have done on substrates with different initial roughness. The grown films were observed to be porous. The initial growths of the films with seed like initiations are observed for substrate with high initial roughness. In order to confirm this effect TiO2 films were deposited on different substrates using chemical bath deposition. The surface morphological and optical properties were measured using scanning electron microscopy and a UV-Vis spectrophotometer. Flower like porous structure are obtained on glass substrate and continuous porous morphology is formed on ITO substrate. The morphology of the surfaces was successfully reconstructed and the surface porosity was calculated after digitalising images and reconstructed the surfaces. The TiO2 film formed on ITO is observed to be 10% more porous than on the film formed on glass substrate. Diffusion Limited Aggregation simulations with multiple seeds confirms that the observed flower like structure formed are due to the screening effects of the diffusing ion by already deposited particles.
Xie, Zaiku; Liu, Zhicheng; Wang, Yangdong; Yang, Qihua; Xu, Longya; Ding, Weiping
2010-01-01
Catalysts are important to the chemical industry and environmental remediation due to their effective conversion of one chemical into another. Among them, composite catalysts have attracted continuous attention during the past decades. Nowadays, composite catalysts are being used more and more to meet the practical catalytic performance requirements in the chemical industry of high activity, high selectivity and good stability. In this paper, we reviewed our recent work on development of composite catalysts, mainly focusing on the composite catalysts obtained from porous materials such as zeolites, mesoporous materials, carbon nanotubes (CNT), etc. Six types of porous composite catalysts are discussed, including amorphous oxide modified zeolite composite catalysts, zeolite composites prepared by co-crystallization or overgrowth, hierarchical porous catalysts, host-guest porous composites, inorganic and organic mesoporous composite catalysts, and polymer/CNT composite catalysts. PMID:20559508
Li, Calvin H.; Rioux, Russell P.
2016-01-01
Spherical Cu nanocavity surfaces are synthesized to examine the individual role of contact angles in connecting lateral Rayleigh-Taylor wavelength to vertical Kevin-Helmholtz wavelength on hydrodynamic instability for the onset of pool boiling Critical Heat Flux (CHF). Solid and porous Cu pillar surfaces are sintered to investigate the individual role of pillar structure pitch at millimeter scale, named as module wavelength, on hydrodynamic instability at CHF. Last, spherical Cu nanocavities are coated on the porous Cu pillars to create a multiscale Cu structure, which is studied to examine the collective role and relative significance of contact angles and module wavelength on hydrodynamic instability at CHF, and the results indicate that module wavelength plays the dominant role on hydrodynamic instability at CHF when the height of surface structures is equal or above ¼ Kelvin-Helmholtz wavelength. Pool boiling Heat Transfer Coefficient (HTC) enhancements on spherical Cu nanocavity surfaces, solid and porous Cu pillar surfaces, and the integrated multiscale structure have been investigated, too. The experimental results reveal that the nanostructures and porous pillar structures can be combined together to achieve even higher enhancement of HTC than that of individual structures. PMID:27841322
NASA Astrophysics Data System (ADS)
Depczyński, Wojciech; Piasecki, Artur; Piasecka, Magdalena; Strąk, Kinga
2017-10-01
This paper focuses on identification of the impact of porous heated surface on flow boiling heat transfer in a rectangular minichannel. The heated element for Fluorinert FC-72 was a thin plate made of Haynes-230. Infrared thermography was used to determine changes in the temperature on its outer smooth side. The porous surface in contact with the fluid in the minichannel was produced in two processes: sintering or soldering of Fe powder to the plate. The results were presented as relationships between the heat transfer coefficient and the distance from the minichannel inlet and as boiling curves. Results obtained for using a smooth heated plate at the saturated boiling region were also presented to compare. In the subcooled boiling region, at a higher heat flux, the heat transfer coefficient was slightly higher for the surface prepared via soldering. In the saturated boiling region, the local heat transfer coefficients obtained for the smooth plate surface were slightly higher than those achieved from the sintered plate surface. The porous structures formed have low thermal conductivity. This may induce noticeable thermal resistance at the diffusion bridges of the sintered structures, in particular within the saturated boiling region.
Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds
Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon
2013-01-01
The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908
Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.
Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon
2013-12-17
The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.
Fraser, Angela; Wohlgenant, Kelly; Cates, Sheryl; Chen, Xi; Jaykus, Lee-Ann; Li, You; Chapman, Benjamin
2015-02-01
Children enrolled in child care are 2.3-3.5 times more likely to experience acute gastrointestinal illness than children cared for in their own homes. The purpose of this study was to determine the frequency surfaces were touched by child care providers to identify surfaces that should be cleaned and sanitized. Observation data from a convenience sample of 37 child care facilities in North Carolina and South Carolina were analyzed. Trained data collectors used iPods (Apple, Cupertino, CA) to record hand touch events of 1 child care provider for 45 minutes in up to 2 classrooms in each facility. Across the 37 facilities, 10,134 hand contacts were observed in 51 classrooms. Most (4,536) were contacts with porous surfaces, with an average of 88.9 events per classroom observation. The most frequently touched porous surface was children's clothing. The most frequently touched nonporous surface was food contact surfaces (18.6 contacts/observation). Surfaces commonly identified as high-touch surfaces (ie, light switches, handrails, doorknobs) were touched the least. General cleaning and sanitizing guidelines should include detailed procedures for cleaning and sanitizing high-touch surfaces (ie, clothes, furniture, soft toys). Guidelines are available for nonporous surfaces but not for porous surfaces (eg, clothing, carpeting). Additional research is needed to inform the development of evidence-based practices to effectively treat porous surfaces. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
High surface area electrodes by template-free self-assembled hierarchical porous gold architecture.
Morag, Ahiud; Golub, Tatiana; Becker, James; Jelinek, Raz
2016-06-15
The electrode active surface area is a crucial determinant in many electrochemical applications and devices. Porous metal substrates have been employed in electrode design, however construction of such materials generally involves multistep processes, generating in many instances electrodes exhibiting incomplete access to internal pore surfaces. Here we describe fabrication of electrodes comprising hierarchical, nano-to-microscale porous gold matrix, synthesized through spontaneous crystallization of gold thiocyanate in water. Cyclic voltammetry analysis revealed that the specific surface area of the conductive nanoporous Au microwires was very high and depended only upon the amount of gold used, not electrode areas or geometries. Application of the electrode in a pseudo-capacitor device is presented. Copyright © 2016 Elsevier Inc. All rights reserved.
Porous coolant tube holder for fuel cell stack
Guthrie, Robin J.
1981-01-01
A coolant tube holder for a stack of fuel cells is a gas porous sheet of fibrous material adapted to be sandwiched between a cell electrode and a nonporous, gas impervious flat plate which separates adjacent cells. The porous holder has channels in one surface with coolant tubes disposed therein for carrying coolant through the stack. The gas impervious plate is preferably bonded to the opposite surface of the holder, and the channel depth is the full thickness of the holder.
Porous Alumina Films with Width-Controllable Alumina Stripes
2010-01-01
Porous alumina films had been fabricated by anodizing from aluminum films after an electropolishing procedure. Alumina stripes without pores can be distinguished on the surface of the porous alumina films. The width of the alumina stripes increases proportionally with the anodizing voltage. And the pores tend to be initiated close to the alumina stripes. These phenomena can be ascribed to the electric field distribution in the alumina barrier layer caused by the geometric structure of the aluminum surface. PMID:21170406
Zhao, Yue; Li, Dong-sheng; Xing, Shou-xiang; Yang, De-ren; Jiang, Min-hua
2005-01-01
This paper reports the surface morphology and I-V curves of porous silicon (PS) samples and related devices. The observed fabrics on the PS surface were found to affect the electrical property of PS devices. When the devices were operated under different external bias (10 V or 3 V) for 10 min, their observed obvious differences in electrical properties may be due to the different control mechanisms in the Al/PS interface and PS matrix morphology. PMID:16252350
Nanoengineered field induced charge separation membranes manufacture thereof
O'Brien, Kevin C.; Haslam, Jeffery J.; Bourcier, William L.; Floyd, III, William Clary
2016-08-02
A device according to one embodiment includes a porous membrane having a surface charge and pore configuration characterized by a double layer overlap effect being present in pores of the membrane, where the porous membrane includes functional groups that preferentially interact with either cations or anions. A device according to another embodiment includes a porous membrane having a surface charge in pores thereof sufficient to impart anion or cation selectivity in the pores. Additional devices, systems and methods are also presented.
Morphology and FT IR spectra of porous silicon
NASA Astrophysics Data System (ADS)
Kopani, Martin; Mikula, Milan; Kosnac, Daniel; Gregus, Jan; Pincik, Emil
2017-12-01
The morphology and chemical bods of p-type and n-type porous Si was compared. The surface of n-type sample is smooth, homogenous without any features. The surface of p-type sample reveals micrometer-sized islands. FTIR investigation reveals various distribution of SiOxHy complexes in both p-and n-type samples. From the conditions leading to porous silicon layer formation (the presence of holes) we suggest both SiOxHy and SiFxHy complexes in the layer.
Chemically Layered Porous Solids
NASA Technical Reports Server (NTRS)
Koontz, Steve
1991-01-01
Aerogels and other porous solids in which surfaces of pores have chemical properties varying with depth below macroscopic surfaces prepared by sequences of chemical treatments. Porous glass or silica bead treated to make two depth zones having different chemical properties. Beads dropped along tube filled with flowing gas containing atomic oxygen, generated in microwave discharge. General class of materials treatable include oxides of aluminum, silicon, zirconium, tin, titanium, and nickel, and mixtures of these oxides. Potential uses of treated materials include chromatographic separations, membrane separations, controlled releases of chemicals, and catalysis.
Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts
Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne
2014-08-12
Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.
NASA Astrophysics Data System (ADS)
Muth, John; Poggie, Matthew; Kulesha, Gene; Michael Meneghini, R.
2013-02-01
Hip and knee replacement can dramatically improve a patient's quality of life through pain relief and restored function. Fixation of hip and knee replacement implants to bone is critical to the success of the procedure. A variety of roughened surfaces and three-dimensional porous surfaces have been used to enhance biological fixation on orthopedic implants. Recently, highly porous metals have emerged as versatile biomaterials that may enhance fixation to bone and are suitable to a number of applications in hip and knee replacement surgery. This article provides an overview of several processes used to create these implant surfaces.
Cowieson, D; Piletska, E; Moczko, E; Piletsky, S
2013-08-01
An application of plasma-induced grafting of polyethylene membranes with a thin layer of molecularly imprinted polymer (MIP) was presented. High-density polyethylene (HDPE) membranes, "Vyon," were used as a substrate for plasma grafting modification. The herbicide atrazine, one of the most popular targets of the molecular imprinting, was chosen as a template. The parameters of the plasma treatment were optimized in order to achieve a good balance between polymerization and ablation processes. Modified HDPE membranes were characterized, and the presence of the grafted polymeric layer was confirmed based on the observed weight gain, pore size measurements, and infrared spectrometry. Since there was no significant change in the porosity of the modified membranes, it was assumed that only a thin layer of the polymer was introduced on the surface. The experiments on the re-binding of the template atrazine to the membranes modified with MIP and blank polymers were performed. HDPE membranes which were grafted with polymer using continuous plasma polymerization demonstrated the best result which was expressed in an imprinted factor equal to 3, suggesting that molecular imprinting was successfully achieved.
Microfluidic devices and methods including porous polymer monoliths
Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V
2014-04-22
Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.
Microfluidic devices and methods including porous polymer monoliths
Hatch, Anson V.; Sommer, Gregory j.; Singh, Anup K.; Wang, Ying-Chih; Abhyankar, Vinay
2015-12-01
Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.
Tam, Shiu-Wing
1997-01-01
An illumination source comprising a porous silicon having a source of electrons on the surface and/or interticies thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon.
Tam, Shiu-Wing
1998-01-01
An illumination source comprising a porous silicon having a source of electrons on the surface and/or interticies thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon.
Chen, Li; Zhang, Ruiyuan; Min, Ting; ...
2018-05-19
For applications of reactive transport in porous media, optimal porous structures should possess both high surface area for reactive sites loading and low mass transport resistance. Hierarchical porous media with a combination of pores at different scales are designed for this purpose. In this paper, using the lattice Boltzmann method, pore-scale numerical studies are conducted to investigate diffusion-reaction processes in 2D hierarchical porous media generated by self-developed reconstruction scheme. Complex interactions between porous structures and reactive transport are revealed under different conditions. Simulation results show that adding macropores can greatly enhance the mass transport, but at the same time reducemore » the reactive surface, leading to complex change trend of the total reaction rate. Effects of gradient distribution of macropores within the porous medium are also investigated. It is found that a front-loose, back-tight (FLBT) hierarchical structure is desirable for enhancing mass transport, increasing total reaction rate, and improving catalyst utilization. Finally, on the whole, from the viewpoint of reducing cost and improving material performance, hierarchical porous structures, especially gradient structures with the size of macropores gradually decreasing along the transport direction, are desirable for catalyst application.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Li; Zhang, Ruiyuan; Min, Ting
For applications of reactive transport in porous media, optimal porous structures should possess both high surface area for reactive sites loading and low mass transport resistance. Hierarchical porous media with a combination of pores at different scales are designed for this purpose. In this paper, using the lattice Boltzmann method, pore-scale numerical studies are conducted to investigate diffusion-reaction processes in 2D hierarchical porous media generated by self-developed reconstruction scheme. Complex interactions between porous structures and reactive transport are revealed under different conditions. Simulation results show that adding macropores can greatly enhance the mass transport, but at the same time reducemore » the reactive surface, leading to complex change trend of the total reaction rate. Effects of gradient distribution of macropores within the porous medium are also investigated. It is found that a front-loose, back-tight (FLBT) hierarchical structure is desirable for enhancing mass transport, increasing total reaction rate, and improving catalyst utilization. Finally, on the whole, from the viewpoint of reducing cost and improving material performance, hierarchical porous structures, especially gradient structures with the size of macropores gradually decreasing along the transport direction, are desirable for catalyst application.« less
Fontana, Flavia; Mori, Michela; Riva, Federica; Mäkilä, Ermei; Liu, Dongfei; Salonen, Jarno; Nicoletti, Giovanni; Hirvonen, Jouni; Caramella, Carla; Santos, Hélder A
2016-01-13
The new frontier in the treatment of chronic nonhealing wounds is the use of micro- and nanoparticles to deliver drugs or growth factors into the wound. Here, we used platelet lysate (PL), a hemoderivative of platelets, consisting of a multifactorial cocktail of growth factors, to modify porous silicon (PSi) microparticles and assessed both in vitro and ex vivo the properties of the developed microsystem. PL-modified PSi was assessed for its potential to induce proliferation of fibroblasts. The wound closure-promoting properties of the microsystem were then assessed in an in vitro wound healing assay. Finally, the PL-modified PSi microparticles were evaluated in an ex vivo experiment over human skin. It was shown that PL-modified PSi microparticles were cytocompatible and enhanced the cell proliferation in different experimental settings. In addition, this microsystem promoted the closure of the gap between the fibroblast cells in the wound healing assay, in periods of time comparable with the positive control, and induced a proliferation and regeneration process onto the human skin in an ex vivo experiment. Overall, our results show that PL-modified PSi microparticles are suitable microsystems for further development toward applications in the treatment of chronic nonhealing wounds.
Two-Dimensional Porous Carbon: Synthesis and Ion-Transport Properties.
Zheng, Xiaoyu; Luo, Jiayan; Lv, Wei; Wang, Da-Wei; Yang, Quan-Hong
2015-09-23
Their chemical stability, high specific surface area, and electric conductivity enable porous carbon materials to be the most commonly used electrode materials for electrochemical capacitors (also known as supercapacitors). To further increase the energy and power density, engineering of the pore structures with a higher electrochemical accessible surface area, faster ion-transport path and a more-robust interface with the electrolyte is widely investigated. Compared with traditional porous carbons, two-dimensional (2D) porous carbon sheets with an interlinked hierarchical porous structure are a good candidate for supercapacitors due to their advantages in high aspect ratio for electrode packing and electron transport, hierarchical pore structures for ion transport, and short ion-transport length. Recent progress on the synthesis of 2D porous carbons is reported here, along with the improved electrochemical behavior due to enhanced ion transport. Challenges for the controlled preparation of 2D porous carbons with desired properties are also discussed; these require precise tuning of the hierarchical structure and a clarification of the formation mechanisms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Comparison of NMR simulations of porous media derived from analytical and voxelized representations.
Jin, Guodong; Torres-Verdín, Carlos; Toumelin, Emmanuel
2009-10-01
We develop and compare two formulations of the random-walk method, grain-based and voxel-based, to simulate the nuclear-magnetic-resonance (NMR) response of fluids contained in various models of porous media. The grain-based approach uses a spherical grain pack as input, where the solid surface is analytically defined without an approximation. In the voxel-based approach, the input is a computer-tomography or computer-generated image of reconstructed porous media. Implementation of the two approaches is largely the same, except for the representation of porous media. For comparison, both approaches are applied to various analytical and digitized models of porous media: isolated spherical pore, simple cubic packing of spheres, and random packings of monodisperse and polydisperse spheres. We find that spin magnetization decays much faster in the digitized models than in their analytical counterparts. The difference in decay rate relates to the overestimation of surface area due to the discretization of the sample; it cannot be eliminated even if the voxel size decreases. However, once considering the effect of surface-area increase in the simulation of surface relaxation, good quantitative agreement is found between the two approaches. Different grain or pore shapes entail different rates of increase of surface area, whereupon we emphasize that the value of the "surface-area-corrected" coefficient may not be universal. Using an example of X-ray-CT image of Fontainebleau rock sample, we show that voxel size has a significant effect on the calculated surface area and, therefore, on the numerically simulated magnetization response.
Yu, Liang; Zeng, Shaozhong; Zeng, Xierong; Li, Xiaohua; Wu, Hongliang; Yao, Yuechao; Tu, Wenxuan; Zou, Jizhao
2018-04-04
Facile synthesis of carbon materials with high heteroatom content, large specific surface area (SSA) and hierarchical porous structure is critical for energy storage applications. In this study, nitrogen and oxygen co-doped clews of carbon nanobelts (NCNBs) with hierarchical porous structures are successfully prepared by a carbonization and subsequent activation by using ladder polymer of hydroquinone and formaldehyde (LPHF) as the precursor and ammonia as the activating agent. The hierarchical porous structures and ultra-high SSA (up to 2994 m² g −1 ) can effectively facilitate the exchange and transportation of electrons and ions. Moreover, suitable heteroatom content is believed to modify the wettability of the carbon material. The as-prepared activated NCNBs-60 (the NCNBs activated by ammonia at 950 °C for 60 min) possess a high capacitance of 282 F g −1 at the current density of 0.25 A g −1 , NCNBs-45 (the NCNBs are activated by ammonia at 950 °C for 45 min) and show an excellent capacity retention of 50.2% when the current density increase from 0.25 to 150 A g −1 . Moreover, the NCNBs-45 electrode exhibits superior electrochemical stability with 96.2% capacity retention after 10,000 cycles at 5.0 A g −1 . The newly prepared NCNBs thus show great potential in the field of energy storage.
Yu, Liang; Zeng, Shaozhong; Zeng, Xierong; Li, Xiaohua; Wu, Hongliang; Yao, Yuechao; Tu, Wenxuan; Zou, Jizhao
2018-01-01
Facile synthesis of carbon materials with high heteroatom content, large specific surface area (SSA) and hierarchical porous structure is critical for energy storage applications. In this study, nitrogen and oxygen co-doped clews of carbon nanobelts (NCNBs) with hierarchical porous structures are successfully prepared by a carbonization and subsequent activation by using ladder polymer of hydroquinone and formaldehyde (LPHF) as the precursor and ammonia as the activating agent. The hierarchical porous structures and ultra-high SSA (up to 2994 m2 g−1) can effectively facilitate the exchange and transportation of electrons and ions. Moreover, suitable heteroatom content is believed to modify the wettability of the carbon material. The as-prepared activated NCNBs-60 (the NCNBs activated by ammonia at 950 °C for 60 min) possess a high capacitance of 282 F g−1 at the current density of 0.25 A g−1, NCNBs-45 (the NCNBs are activated by ammonia at 950 °C for 45 min) and show an excellent capacity retention of 50.2% when the current density increase from 0.25 to 150 A g−1. Moreover, the NCNBs-45 electrode exhibits superior electrochemical stability with 96.2% capacity retention after 10,000 cycles at 5.0 A g−1. The newly prepared NCNBs thus show great potential in the field of energy storage. PMID:29617315
Fabrication of mesoporous silica for ultra-low-k interlayer dielectrics
NASA Astrophysics Data System (ADS)
Fujii, Nobutoshi; Kohmura, Kazuo; Nakayama, Takahiro; Tanaka, Hirofumi; Hata, Nobuhiro; Seino, Yutaka; Kikkawa, Takamaro
2005-11-01
We have developed sol-gel self-assembly techniques to control the pore structure and diameter of ultra-low-k interlayer dielectric (ILD) films. Porous silica films have been fabricated using cationic and nonionic surfactants as templates, resulting in 2D-hexagonal and disordered pore structures, respectively. The disordered mesoporous silica film has a worm-hole like network of pore channels having a uniform diameter. Precursors of the mesoporous silica films were synthesized by use of tetraethyl-orthosilicate (TEOS), inorganic acid, water, ethanol and various surfactants. The surfactants used were cationic alkyltrimethyl-ammonium (ATMA) chloride surfactants for 2D-hexagonal pores and nonionic tri-block copolymer for disordered structures. Dimethyldiethoxysilane (DMDEOS) was added for forming the disordered mesoporous silica. The disordered cylindrical pore structure with a uniform pore size was fabricated by controlling the static electrical interaction between the surfactant and the silica oligomer with methyl group of DMDEOS. Tetramethylcycrotetrasiloxane (TMCTS) vapor treatment was developed, which improved the mechanical strength of mesoporous silica films. The TMCTS polymer covered the pore wall surface and cross-linked to passivate the mechanical defects in the silica wall. Significant enhancement of mechanical strength was demonstrated by TMCTS vapor treatment. The porous silica film modified with a catalyst and a plasma treatment achieved higher mechanical strength and lower dielectric constant than conventional porous silica films because the TMCTS vapor treatment was more effective for mechanical reinforcement and hydrophobicity.
Heterogeneous porous structures for the fastest liquid absorption
NASA Astrophysics Data System (ADS)
Shou, Dahua; Ye, Lin; Fan, Jintu
2013-08-01
Engineered porous materials, which have fast absorption of liquids under global constraints (e.g. volume, surface area, or cost of the materials), are useful in many applications including moisture management fabrics, medical wound dressings, paper-based analytical devices, liquid molding composites, etc.. The absorption in capillary tubes and porous media is driven by the surface tension of liquid, which is inversely proportional to the pore size. On the contrary, the ability of conduction (or permeability) of liquid in porous materials is linear with the square of pore size. Both mechanisms superimpose with each other leading to a possibility of the fastest absorption for a porous structure. In this work, we explore the flow behaviors for the fastest absorption using heterogeneous porous architectures, from two-portion tubes to two-layer porous media. The absorption time for filling up the voids in these porous materials is expressed in terms of pore size, height and porosity. It is shown that under the given height and void volume, these two-component porous structures with a negative gradient of pore size/porosity against the imbibition direction, have a faster absorption rate than controlled samples with uniform pore size/porosity. Particularly, optimal structural parameters including pore size, height and porosity are found for the minimum absorption time. The obtained results will be used as a priori for the design of porous structures with excellent water absorption and moisture management property in various fields.
Gerba, Charles P.; Tamimi, Akrum H.; Kitajima, Masaaki; Maxwell, Sheri L.; Rose, Joan B.
2013-01-01
Fomites can serve as routes of transmission for both enteric and respiratory pathogens. The present study examined the effect of low and high relative humidity on fomite-to-finger transfer efficiency of five model organisms from several common inanimate surfaces (fomites). Nine fomites representing porous and nonporous surfaces of different compositions were studied. Escherichia coli, Staphylococcus aureus, Bacillus thuringiensis, MS2 coliphage, and poliovirus 1 were placed on fomites in 10-μl drops and allowed to dry for 30 min under low (15% to 32%) or high (40% to 65%) relative humidity. Fomite-to-finger transfers were performed using 1.0 kg/cm2 of pressure for 10 s. Transfer efficiencies were greater under high relative humidity for both porous and nonporous surfaces. Most organisms on average had greater transfer efficiencies under high relative humidity than under low relative humidity. Nonporous surfaces had a greater transfer efficiency (up to 57%) than porous surfaces (<6.8%) under low relative humidity, as well as under high relative humidity (nonporous, up to 79.5%; porous, <13.4%). Transfer efficiency also varied with fomite material and organism type. The data generated can be used in quantitative microbial risk assessment models to assess the risk of infection from fomite-transmitted human pathogens and the relative levels of exposure to different types of fomites and microorganisms. PMID:23851098
Zhong, Hong; Su, Yanqing; Chen, Xingwei; Li, Xiaoju; Wang, Ruihu
2017-12-22
CO 2 adsorption and concomitant catalytic conversion into useful chemicals are promising approaches to alleviate the energy crisis and effects of global warming. This is highly desirable for developing new types of heterogeneous catalytic materials containing CO 2 -philic groups and catalytic active sites for CO 2 chemical transformation. Here, we present an imidazolium- and triazine-based porous organic polymer with counter chloride anion (IT-POP-1). The porosity and CO 2 affinity of IT-POP-1 may be modulated at the molecular level through a facile anion-exchange strategy. Compared with the post-modified polymers with iodide and hexafluorophosphate anions, IT-POP-1 possesses the highest surface area and the best CO 2 uptake capacity with excellent adsorption selectivity over N 2 . The roles of the task-specific components such as triazine, imidazolium, hydroxyl, and counter anions in CO 2 absorption and catalytic performance were illustrated. IT-POP-1 exhibits the highest catalytic activity and excellent recyclability in solvent- and additive-free cycloaddition reaction of CO 2 with epoxides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ground level air convection produces frost damage patterns in turfgrass
NASA Astrophysics Data System (ADS)
Ackerson, Bruce J.; Beier, Richard A.; Martin, Dennis L.
2015-11-01
Frost injury patterns are commonly observed on the warm-season turfgrass species bermudagrass ( Cynodon species Rich.), zoysiagrass ( Zoysia species Willd.), and buffalograss [ Bouteloua dactyloides (Nutt.) J.T. Columbus] in cool-temperate and subtropical zones. Qualitative observations of these injury patterns are presented and discussed. A model for the formation of such patterns based on thermal instability and convection of air is presented. The characteristic length scale of the observed frost pattern injury requires a temperature profile that decreases with height from the soil to the turfgrass canopy surface followed by an increase in temperature with height above the turfgrass canopy. This is justified by extending the earth temperature theory to include a turf layer with atmosphere above it. Then the theory for a thermally unstable layer beneath a stable region by Ogura and Kondo is adapted to a turf layer to include different parameter values for pure air, as well as for turf, which is treated as a porous medium. The earlier porous medium model of Thompson and Daniels proposed to explain frost injury patterns is modified to give reasonable agreement with observed patterns.
Ground level air convection produces frost damage patterns in turfgrass.
Ackerson, Bruce J; Beier, Richard A; Martin, Dennis L
2015-11-01
Frost injury patterns are commonly observed on the warm-season turfgrass species bermudagrass (Cynodon species Rich.), zoysiagrass (Zoysia species Willd.), and buffalograss [Bouteloua dactyloides (Nutt.) J.T. Columbus] in cool-temperate and subtropical zones. Qualitative observations of these injury patterns are presented and discussed. A model for the formation of such patterns based on thermal instability and convection of air is presented. The characteristic length scale of the observed frost pattern injury requires a temperature profile that decreases with height from the soil to the turfgrass canopy surface followed by an increase in temperature with height above the turfgrass canopy. This is justified by extending the earth temperature theory to include a turf layer with atmosphere above it. Then the theory for a thermally unstable layer beneath a stable region by Ogura and Kondo is adapted to a turf layer to include different parameter values for pure air, as well as for turf, which is treated as a porous medium. The earlier porous medium model of Thompson and Daniels proposed to explain frost injury patterns is modified to give reasonable agreement with observed patterns.
Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming
2014-01-01
For the first time, high-surface-area (approximately 1465 m2 g−1), highly porous and heteroatom-enriched activated carbon (HAC) was prepared from banana stems (Musa paradisiaca, Family: Musaceae) at different carbonization temperatures of 700, 800 and 900°C (HAC) using a simple and eco-friendly method. The amounts of carbon, hydrogen, nitrogen and sulfur in the HAC are 61.12, 2.567, 0.4315, and 0.349%, respectively. Using X-ray diffraction (XRD), CHNS elemental analysis, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, the prepared activated carbon appears amorphous and disordered in nature. Here, we used HAC for an electrochemical application of nitrite (NO2−) sensor to control the environmental pollution. In addition, HAC exhibits noteworthy performance for the highly sensitive determination of nitrite. The limit of detection (LODs) of the nitrite sensor at HAC-modified GCE is 0.07 μM. In addition, the proposed method was applied to determine nitrite in various water samples with acceptable results. PMID:24755990
Pentaethylenehexamine-Loaded Hierarchically Porous Silica for CO2 Adsorption
Ji, Changchun; Huang, Xin; Li, Lei; Xiao, Fukui; Zhao, Ning; Wei, Wei
2016-01-01
Recently, amine-functionalized materials as a prospective chemical sorbent for post combustion CO2 capture have gained great interest. However, the amine grafting for the traditional MCM-41, SBA-15, pore-expanded MCM-41 or SBA-15 supports can cause the pore volume and specific surface area of sorbents to decrease, significantly affecting the CO2 adsorption-desorption dynamics. To overcome this issue, hierarchical porous silica with interparticle macropores and long-range ordering mesopores was prepared and impregnated with pentaethylenehexamine. The pore structure and amino functional group content of the modified silicas were analyzed by scanning electron microscope, transmission electron microscope, N2 adsorption, X-ray powder diffraction, and Fourier transform infrared spectra. Moreover, the effects of the pore structure as well as the amount of PEHA loading of the samples on the CO2 adsorption capacity were investigated in a fixed-bed adsorption system. The CO2 adsorption capacity reached 4.5 mmol CO2/(g of adsorbent) for HPS−PEHA-70 at 75 °C. Further, the adsorption capacity for HPS-PEHA-70 was steady after a total of 15 adsorption-desorption cycles. PMID:28773956
NASA Astrophysics Data System (ADS)
Wang, Yuebo; Su, Xiaoli; Xu, Zhen; Wen, Ke; Zhang, Ping; Zhu, Jianxi; He, Hongping
2016-02-01
A new type of surface-functionalized porous clay heterostructures (SF-PCH) was synthesized via carbonization of the template agents with sulfuric acid. The converted carbons deposited on the porous surface of the SF-PCH samples and changed their surface chemical properties. The composites possessed a maximum carbon content of 5.35%, a large specific surface area of 428 m2/g and micropore volume of approximately 0.2 cm3/g. The layered and porous structure of SF-PCH was retained after carbonization and calcination when sulfuric acid solution with a mild concentration was used. Analysis by XPS confirmed that the carbonaceous matter in the pore channels was functionalized with various organic groups, including carbonaceous, nitrogenous, and sulfated groups. Both the surface chemical property and structural characteristic of adsorbents have effects on the adsorption properties of SF-PCH for toluene. The SF-PCH samples exhibited a stronger adsorption affinity to toluene compared with untreated PCH in the low pressure region, which is more valuable in the practical applications. These results demonstrate that carbonization of soft-template is a feasible process for the surface modification of PCH, enabling the resulting composites to become promising candidates for application in toluene emission control.
Yazdi, Iman K; Ziemys, Arturas; Evangelopoulos, Michael; Martinez, Jonathan O; Kojic, Milos; Tasciotti, Ennio
2015-10-01
Controlling size, shape and uniformity of porous constructs remains a major focus of the development of porous materials. Over the past two decades, we have seen significant developments in the fabrication of new, porous-ordered structures using a wide range of materials, resulting in properties well beyond their traditional use. Porous materials have been considered appealing, due to attractive properties such as pore size length, morphology and surface chemistry. Furthermore, their utilization within the life sciences and medicine has resulted in significant developments in pharmaceutics and medical diagnosis. This article focuses on various classes of porous materials, providing an overview of principle concepts with regard to design and fabrication, surface chemistry and loading and release kinetics. Furthermore, predictions from a multiscale mathematical model revealed the role pore length and diameter could have on payload release kinetics.
Methods for removing contaminant matter from a porous material
Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID
2010-11-16
Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.
Systems and strippable coatings for decontaminating structures that include porous material
Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID
2011-12-06
Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.
Sun, Yuanyuan; Liu, Chang; Zan, Yifan; Miao, Gai; Wang, Hao; Kong, Lingzhao
2018-04-12
Porous carbon adsorbents were prepared from microalgae (Chlorococcum sp.) via directly hydrothermal carbonization coupled with KOH or NH 3 activation for Cr(VI) adsorption. KOH-activated porous carbons exhibit high Cr(VI) adsorption capacities than those obtained via NH 3 modification (370.37 > 95.70 mg/g). The superior Cr(VI) adsorption capacity is due to high surface areas (1784 m 2 /g) and pore volumes of porous carbon with mesoporous and macroporous structures. The Cr(VI) adsorption result was well fitted to the Langmuir model, showing that the removal of Cr(VI) was attributed to the monolayer adsorption of activity site on carbon surface.
NASA Astrophysics Data System (ADS)
Voitenko, K.; Isaiev, M.; Pastushenko, A.; Andrusenko, D.; Kuzmich, A.; Lysenko, V.; Burbelo, R.
2017-01-01
In the paper the experimental study of heat transport across the interface “porous silicon/liquid” by photoacoustic technique is reported. Two cases with and without liquid covering of porous silicon surface were considered. Thermal perturbations were excited at the surface of porous silicon as a result of absorption of the light with modulated intensity. The resulting thermal-elastic stresses arising in the system were registered with piezoelectric transducer. The amplitude-frequency dependencies of the voltage on the piezoelectric electrodes were measured. The presence of the liquid film leads to decreasing of the amplitude of photoacoustic signal as a result of the thermal energy evacuation from the porous silicon into the liquid. The experimental dependencies were fitted with the results of simulation that takes into account heat fluxes separation at the porous silicon/liquid interface. With the presented method one can precisely measure heat fluxes transferred from the solid into contacting fluid. Moreover, the presented approach can be easily adopted for the thermal conductivity study of the different nanofluids as well as thermal resistance at the interface nanostructured solid/fluid.
Hautamäki, Mikko P; Aho, Allan J; Alander, Pasi; Rekola, Jami; Gunn, Jarmo; Strandberg, Niko; Vallittu, Pekka K
2008-08-01
Polymer technology has provided solutions for filling of bone defects in situations where there may be technical or biological complications with autografts, allografts, and metal prostheses. We present an experimental study on segmental bone defect reconstruction using a polymethylmethacrylate-(PMMA-) based bulk polymer implant prosthesis. We concentrated on osteoconductivity and surface characteristics. A critical size segment defect of the rabbit tibia in 19 animals aged 18-24 weeks was reconstructed with a surface porous glass fiber-reinforced (SPF) prosthesis made of polymethylmethacrylate (PMMA). The biomechanical properties of SPF implant material were previously adjusted technically to mimic the properties of normal cortical bone. A plain PMMA implant with no porosity or fiber reinforcement was used as a control. Radiology, histomorphometry, and scanning electron microscopy (SEM) were used for analysis of bone growth into the prosthesis during incorporation. The radiographic and histological incorporation model showed good host bone contact, and strong formation of new bone as double cortex. Histomorphometric evaluation showed that the bone contact index (BCI) at the posterior surface interface was higher with the SPF implant than for the control. The total appositional bone growth over the posterior surface (area %) was also stronger for the SPF implant than for controls. Both bone growth into the porous surface and the BCI results were related to the quality, coverage, and regularity of the microstructure of the porous surface. Porous surface structure enhanced appositional bone growth onto the SPF implant. Under load-bearing conditions the implant appears to function like an osteoconductive prosthesis, which enables direct mobilization and rapid return to full weight bearing.
Seo, Ha Na; Lee, Woo Jin; Hwang, Tae Sik; Park, Doo Hyun
2009-09-01
A noncompartmented microbial fuel cell (NCMFC) composed of a Mn(IV)-carbon plate and a Fe(III)-carbon plate was used for electricity generation from organic wastewater without consumption of external energy. The Fe(III)-carbon plate, coated with a porous ceramic membrane and a semipermeable cellulose acetate film, was used as a cathode, which substituted for the catholyte and cathode. The Mn(IV)-carbon plate was used as an anode without a membrane or film coating. A solar cell connected to the NCMFC activated electricity generation and bacterial consumption of organic matter contained in the wastewater. More than 99 degrees of the organic matter was biochemically oxidized during wastewater flow through the four NCMFC units. A predominant bacterium isolated from the anode surface in both the conventional and the solar cell-linked NCMFC was found to be more than 99 degrees similar to a Mn(II)-oxidizing bacterium and Burkeholderia sp., based on 16S rDNA sequence analysis. The isolate reacted electrochemically with the Mn(IV)-modified anode and produced electricity in the NCMFC. After 90 days of incubation, a bacterial species that was enriched on the Mn(IV)-modified anode surface in all of the NCMFC units was found to be very similar to the initially isolated predominant species by comparing 16S rDNA sequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerra, Denis L., E-mail: denis@cpd.ufmt.b; Leidens, Victor L.; Viana, Rubia R.
2010-05-15
The compound N{sup 1}-[3-(trimethoxysilyl)propyl]diethylenetriamine was anchored onto Amazon kaolinite surface by heterogeneous route. The modified and natural kaolinite samples were characterized by transmission electron microscopy, scanning electron microscopic, X-ray diffraction, and nuclear magnetic nuclei of {sup 29}Si and {sup 13}C. The well-defined peaks obtained in the {sup 13}C NMR spectrum in the 5.0-62.1 ppm region confirmed the attachment of organic functional groups as pendant chains bonded into the porous clay. The ability of these materials to remove U(VI) from aqueous solution was followed by a series of adsorption isotherms adjusted to a Sips equation at room temperature and pH 4.0.more » The kinetic parameters analyzed by the Lagergren and Elovich models gave a good fit for a pseudo-second order reaction with k{sub 2} values 16.0 and 25.1 mmol g{sup -1} min{sup -1} ranges for natural and modified kaolinite clays, respectively. The energetic effects caused by metal ion adsorption were determined through calorimetric titrations. - Graphical abstract: This investigation reports the use of original and modified kaolinites as alternative absorbents. The compound N-[3-trimethoxysilyl)propyl]diethylenetriamine was anchored onto Amazon kaolinite surface by heterogeneous route.« less
NASA Astrophysics Data System (ADS)
Cougnon, C.; Lebègue, E.; Pognon, G.
2015-01-01
Modified activated carbon (Norit S-50) electrodes with electrochemical double layer (EDL) capacitance and redox capacitance contributions to the electric charge storage were tested in 1 M H2SO4 to quantify the benefit and the limitation of the surface redox reactions on the electrochemical performances of the resulting pseudo-capacitive materials. The electrochemical performances of an electrochemically anodized carbon electrode and a catechol-modified carbon electrode, which make use both EDL capacitance of the porous structure of the carbon and redox capacitance, were compared to the performances obtained for the pristine carbon. Nitrogen gas adsorption measurements have been used for studying the impact of the grafting on the BET surface area, pore size distribution, pore volume and average pore diameter. The electrochemical behavior of carbon materials was studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The EIS data were discussed by using a complex capacitance model that allows defining the characteristic time constant, the global capacitance and the frequency at which the maximum charge stored is reached. The EIS measurements were achieved at different dc potential values where a redox activity occurs and the evolution of the capacitance and the capacitive relaxation time with the electrode potential are presented. Realistic galvanostatic charge/discharge measurements performed at different current rates corroborate the results obtained by impedance.