Although monitoring for surface contamination in work with radioactive materials and dermal monitoring of pesticide exposure to agricultural workers have been standard practice for 50 years, regular surface sampling and dermal monitoring methods have only been applied to indust...
Wang, Kai; Zhang, Shaojie; Chen, Jiang; Teng, Pengxiao; Wei, Fangqiang; Chen, Qiao
2017-10-30
A new detection device was designed by integrating fiber Bragg grating (FBG) and polyvinyl chloride (PVC) tube in order to monitor the slip surface of a landslide. Using this new FBG-based device, a corresponding slope model with a pre-set slip surface was designed, and seven tests with different soil properties were carried out in laboratory conditions. The FBG sensing fibers were fixed on the PVC tube to measure strain distributions of PVC tube at different elevation. Test results indicated that the PVC tube could keep deformation compatible with soil mass. The new device was able to monitor slip surface location before sliding occurrence, and the location of monitored slip surface was about 1-2 cm above the pre-set slip surface, which basically agreed with presupposition results. The monitoring results are expected to be used to pre-estimate landslide volume and provide a beneficial option for evaluating the potential impact of landslides on shipping safety in the Three Gorges area.
Zhang, Shaojie; Chen, Jiang; Teng, Pengxiao; Wei, Fangqiang; Chen, Qiao
2017-01-01
A new detection device was designed by integrating fiber Bragg grating (FBG) and polyvinyl chloride (PVC) tube in order to monitor the slip surface of a landslide. Using this new FBG-based device, a corresponding slope model with a pre-set slip surface was designed, and seven tests with different soil properties were carried out in laboratory conditions. The FBG sensing fibers were fixed on the PVC tube to measure strain distributions of PVC tube at different elevation. Test results indicated that the PVC tube could keep deformation compatible with soil mass. The new device was able to monitor slip surface location before sliding occurrence, and the location of monitored slip surface was about 1–2 cm above the pre-set slip surface, which basically agreed with presupposition results. The monitoring results are expected to be used to pre-estimate landslide volume and provide a beneficial option for evaluating the potential impact of landslides on shipping safety in the Three Gorges area. PMID:29084157
Method and apparatus for real time weld monitoring
Leong, Keng H.; Hunter, Boyd V.
1997-01-01
An improved method and apparatus are provided for real time weld monitoring. An infrared signature emitted by a hot weld surface during welding is detected and this signature is compared with an infrared signature emitted by the weld surface during steady state conditions. The result is correlated with weld penetration. The signal processing is simpler than for either UV or acoustic techniques. Changes in the weld process, such as changes in the transmitted laser beam power, quality or positioning of the laser beam, change the resulting weld surface features and temperature of the weld surface, thereby resulting in a change in the direction and amount of infrared emissions. This change in emissions is monitored by an IR sensitive detecting apparatus that is sensitive to the appropriate wavelength region for the hot weld surface.
NASA Astrophysics Data System (ADS)
García Plaza, E.; Núñez López, P. J.
2018-01-01
The wavelet packet transform method decomposes a time signal into several independent time-frequency signals called packets. This enables the temporary location of transient events occurring during the monitoring of the cutting processes, which is advantageous in monitoring condition and fault diagnosis. This paper proposes the monitoring of surface roughness using a single low cost sensor that is easily implemented in numerical control machine tools in order to make on-line decisions on workpiece surface finish quality. Packet feature extraction in vibration signals was applied to correlate the sensor signals to measured surface roughness. For the successful application of the WPT method, mother wavelets, packet decomposition level, and appropriate packet selection methods should be considered, but are poorly understood aspects in the literature. In this novel contribution, forty mother wavelets, optimal decomposition level, and packet reduction methods were analysed, as well as identifying the effective frequency range providing the best packet feature extraction for monitoring surface finish. The results show that mother wavelet biorthogonal 4.4 in decomposition level L3 with the fusion of the orthogonal vibration components (ax + ay + az) were the best option in the vibration signal and surface roughness correlation. The best packets were found in the medium-high frequency DDA (6250-9375 Hz) and high frequency ADA (9375-12500 Hz) ranges, and the feed acceleration component ay was the primary source of information. The packet reduction methods forfeited packets with relevant features to the signal, leading to poor results for the prediction of surface roughness. WPT is a robust vibration signal processing method for the monitoring of surface roughness using a single sensor without other information sources, satisfactory results were obtained in comparison to other processing methods with a low computational cost.
NASA Astrophysics Data System (ADS)
Guo, Kai; Xie, Yongjie; Ye, Hu; Zhang, Song; Li, Yunfei
2018-04-01
Due to the uncertainty of stratospheric airship's shape and the security problem caused by the uncertainty, surface reconstruction and surface deformation monitoring of airship was conducted based on laser scanning technology and a √3-subdivision scheme based on Shepard interpolation was developed. Then, comparison was conducted between our subdivision scheme and the original √3-subdivision scheme. The result shows our subdivision scheme could reduce the shrinkage of surface and the number of narrow triangles. In addition, our subdivision scheme could keep the sharp features. So, surface reconstruction and surface deformation monitoring of airship could be conducted precisely by our subdivision scheme.
Evaluation of a hygiene monitor for detection of contamination in dental surgeries.
Douglas, C W; Rothwell, P S
1991-05-11
Routines for disinfecting working surfaces in dental surgeries are difficult to monitor without time-consuming and labour-intensive microbiological techniques, yet effective monitoring is a vital part of cross-infection control. Easy to use, on-site methods would be valuable in this context. This study evaluates a portable monitor, the Biotrace Hygiene Monitor, which uses bioluminescence to measure adenosine triphosphate (ATP) on surfaces. Under laboratory conditions, the ability of the monitor to detect whole saliva and Streptococcus sanguis was determined and, in the general practice environment, the level of ATP on surfaces in five dental surgeries was assessed. The minimum amount of saliva detectable was 0.5 microliters and in surgeries, the monitor readily identified numerous surfaces with fairly high levels of ATP. Routine cleaning methods sometimes left ATP on surfaces at levels which represented a cross-infection risk, if it is assumed that the ATP derived from patients' saliva. Modification of cleaning methods resulted in a reduction of ATP levels to within that which could be considered reasonably practicably safe. It is concluded that the Biotrace Hygiene Monitor offers a simple and valuable means of monitoring dental practice cleaning routines.
Final report on Weeks Island Monitoring Phase : 1999 through 2004.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehgartner, Brian L.; Munson, Darrell Eugene
2005-05-01
This Final Report on the Monitoring Phase of the former Weeks Island Strategic Petroleum Reserve crude oil storage facility details the results of five years of monitoring of various surface accessible quantities at the decommissioned facility. The Weeks Island mine was authorized by the State of Louisiana as a Strategic Petroleum Reserve oil storage facility from 1979 until decommissioning of the facility in 1999. Discovery of a sinkhole over the facility in 1992 with freshwater inflow to the facility threatened the integrity of the oil storage and led to the decision to remove the oil, fill the chambers with brine,more » and decommission the facility. Thereafter, a monitoring phase, by agreement between the Department of Energy and the State, addressed facility stability and environmental concerns. Monitoring of the surface ground water and the brine of the underground chambers from the East Fill Hole produced no evidence of hydrocarbon contamination, which suggests that any unrecovered oil remaining in the underground chambers has been contained. Ever diminishing progression of the initial major sinkhole, and a subsequent minor sinkhole, with time was verification of the response of sinkholes to filling of the facility with brine. Brine filling of the facility ostensively eliminates any further growth or new formation from freshwater inflow. Continued monitoring of sinkhole response, together with continued surface surveillance for environmental problems, confirmed the intended results of brine pressurization. Surface subsidence measurements over the mine continued throughout the monitoring phase. And finally, the outward flow of brine was monitored as a measure of the creep closure of the mine chambers. Results of each of these monitoring activities are presented, with their correlation toward assuring the stability and environmental security of the decommissioned facility. The results suggest that the decommissioning was successful and no contamination of the surface environment by crude oil has been found.« less
NASA Astrophysics Data System (ADS)
Walter, Diana; Wegmuller, Urs; Spreckels, Volker; Busch, Wolfgang
2008-11-01
The main objective of the projects "Determination of ground motions in mining areas by interferometric analyses of ALOS data" (ALOS ADEN 3576, ESA) and "Monitoring of mining induced surface deformation" (ALOS-RA-094, JAXA) is to evaluate PALSAR data for surface deformation monitoring, using interferometric techniques. We present monitoring results of surface movements for an active hard coal colliery of the German hard coal mining company RAG Deutsche Steinkohle (RAG). Underground mining activities lead to ground movements at the surface with maximum subsidence rates of about 10cm per month for the test site. In these projects the L-band sensor clearly demonstrates the good potential for deformation monitoring in active mining areas, especially in rural areas. In comparison to C-band sensors we clearly observe advantages in resolving the high deformation gradients that are present in this area and we achieve a more complete spatial coverage than with C-band. Extensive validation data based on levelling data and GPS measurements are available within RAǴs GIS based database "GeoMon" and thus enable an adequate analysis of the quality of the interferometric results. Previous analyses confirm the good accuracy of PALSAR data for deformation monitoring in mining areas. Furthermore, we present results of special investigations like precision geocoding of PALSAR data and corner reflector analysis. At present only DInSAR results are obtained due to the currently available number of PALSAR scenes. For the future we plan to also apply Persistent Scatterer Interferometry (PSI) using longer series of PALSAR data.
NASA Astrophysics Data System (ADS)
García Plaza, E.; Núñez López, P. J.
2018-01-01
On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.
Li, Qi; Song, Ranran; Shi, Hui; Ma, Jianli; Liu, Xuehao; Li, Xiaochun
2018-04-01
The CO 2 injected into deep formations during implementation of carbon dioxide (CO 2 ) capture and storage (CCS) technology may leak and migrate into shallow aquifers or ground surfaces through a variety of pathways over a long period. The leaked CO 2 can threaten shallow environments as well as human health. Therefore, almost all monitoring programs for CCS projects around the world contain near-surface monitoring. This paper presents a U-tube based near-surface monitoring technology focusing on its first application in the Shenhua CCS demonstration project, located in the Ordos Basin, Inner Mongolia, China. First, background information on the site monitoring program of the Shenhua CCS demonstration project was provided. Then, the principle of fluid sampling and the monitoring methods were summarized for the U-tube sampler system, and the monitoring data were analyzed in detail. The U-tube based monitoring results showed that the U-tube sampler system is accurate, flexible, and representative of the subsurface fluid sampling process. The monitoring indicators for the subsurface water and soil gas at the Shenhua CCS site indicate good stratification characteristics. The concentration level of each monitoring indicator decreases with increasing depth. Finally, the significance of this near-surface environmental monitoring technology for CO 2 leakage assessments was preliminarily confirmed at the Shenhua CCS site. The application potential of the U-tube based monitoring technology was also demonstrated during the subsurface environmental monitoring of other CCS projects.
Tommasino, L; Tokonami, S
2011-05-01
Four passive sampling elements (quatrefoil) have been recently developed, which transform airborne radionuclides into surface-bound radionuclides. These samplers, once exposed, result in thin radiation sources that can be detected by any real-time or passive detector. In particular, by using a large collecting-area sampler with a low surface density (g cm(-2)), it is possible to measure radon and its decay products by beta surface-contamination monitors, which are rarely used for these applications. The results obtained to date prove that it is finally possible to carry out the measurements of radon (and its decay products) indoors, in soil and in water simply by a Pancake Geiger-Muller counter. Emphasis will be given to those measurements, which are difficult, if not impossible, to carry out with existing technologies.
Vermeul, Vince R.; Strickland, Chris E.; Thorne, Paul D.; ...
2014-12-31
The FutureGen 2.0 Project will design and build a first-of-its-kind, near-zero emissions coal-fueled power plant with carbon capture and storage (CCS). To assess storage site performance and meet the regulatory requirements of the Class VI Underground Injection Control (UIC) Program for CO2 Geologic Sequestration, the FutureGen 2.0 project will implement a suite of monitoring technologies designed to 1) evaluate CO2 mass balance and 2) detect any unforeseen loss in CO2 containment. The monitoring program will include direct monitoring of the injection stream and reservoir, and early-leak-detection monitoring directly above the primary confining zone. It will also implement an adaptive monitoringmore » strategy whereby monitoring results are continually evaluated and the monitoring network is modified as required, including the option to drill additional wells in out-years. Wells will be monitored for changes in CO2 concentration and formation pressure, and other geochemical/isotopic signatures that provide indication of CO2 or brine leakage. Indirect geophysical monitoring technologies that were selected for implementation include passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture logging. Near-surface monitoring approaches that have been initiated include surficial aquifer and surface- water monitoring, soil-gas monitoring, atmospheric monitoring, and hyperspectral data acquisition for assessment of vegetation conditions. Initially, only the collection of baseline data sets is planned; the need for additional near- surface monitoring will be continually evaluated throughout the design and operational phases of the project, and selected approaches may be reinstituted if conditions warrant. Given the current conceptual understanding of the subsurface environment, early and appreciable impacts to near-surface environments are not expected.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2006 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2006 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions aremore » in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2006 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT), and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., preparing SAPs, coordinating sample collection, and sharing data) ensures that the CY 2006 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and surface water sampling and analysis activities implemented under the Y-12 GWPP including sampling locations and frequency; quality assurance (QA)/quality control (QC) sampling; sample collection and handling; field measurements and laboratory analytes; data management and data quality objective (DQO) evaluation; and groundwater elevation monitoring. However, this report does not include equivalent information regarding the groundwater and surface water sampling and analysis activities associated with the monitoring programs implemented by BJC. Such details are deferred to the respective programmatic plans and reports issued by BJC (see Section 3.0). Collectively, the groundwater and surface water monitoring data obtained during CY 2006 by the Y-12 GWPP and BJC address DOE Order 450.1 (Environmental Protection Program) requirements for monitoring groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). Section 4 of this report presents a summary evaluation of the monitoring data with regard to the respective objectives of surveillance monitoring and exit pathway/perimeter monitoring, based on the analytical results for the principal groundwater and surface water contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. Section 5 of this report summarizes the most pertinent findings regarding the principal contaminants, along with recommendations proposed for ongoing groundwater and surface water quality monitoring performed under the Y-12 GWPP. Narrative sections of this report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Appendix C contains construction details for the wells in each regime that were sampled during CY 2006 by either the Y-12 GWPP or BJC. Field measurements recorded during collection of the groundwater and surface water samples and results of laboratory analyses of the samples are in Appendix D (Bear Creek Regime), Appendix E (East Fork Regime and surrounding areas), and Appendix F (Chestnut Ridge Regime). Appendix G contains data for the QA/QC samples associated with monitoring performed in each regime by the Y-12 GWPP.« less
High Temperatures Health Monitoring of the Condensed Water Height in Steam Pipe Systems
NASA Technical Reports Server (NTRS)
Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian
2013-01-01
Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 deg while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the air-backed probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.
Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation
Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin
2015-01-01
We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application. PMID:26007735
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC
2010-12-01
This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2009 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in referencemore » to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2009 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2009 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and surface water sampling and analysis activities implemented under the Y-12 GWPP including sampling locations and frequency; quality assurance (QA)/quality control (QC) sampling; sample collection and handling; field measurements and laboratory analytes; data management and data quality objective (DQO) evaluation; and groundwater elevation monitoring. However, this report does not include equivalent QA/QC or DQO evaluation information regarding the groundwater and surface water sampling and analysis activities associated with the monitoring programs implemented by BJC. Such details are deferred to the respective programmatic plans and reports issued by BJC (see Section 3.0). Collectively, the groundwater and surface water monitoring data obtained during CY 2009 by the Y-12 GWPP and BJC address DOE Order 450.1A (Environmental Protection Program) requirements for monitoring groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). Section 4 of this report presents a summary evaluation of the monitoring data with regard to the respective objectives of surveillance monitoring and exit pathway/perimeter monitoring, based on the analytical results for the principal groundwater contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. Section 5 of this report summarizes the most pertinent findings regarding the principal contaminants, along with recommendations proposed for ongoing groundwater and surface water quality monitoring performed under the Y-12 GWPP. Narrative sections of this report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Appendix C contains construction details for the wells in each regime that were sampled during CY 2009 by either the Y-12 GWPP or BJC. Field measurements recorded during collection of the groundwater and surface water samples and results of laboratory analyses of the samples are in Appendix D (Bear Creek Regime), Appendix E (East Fork Regime and surrounding areas), and Appendix F (Chestnut Ridge Regime). Appendix G contains data for the QA/QC samples associated with monitoring performed in each regime by the Y-12 GWPP.« less
Garbin, Scott; Wylie, Jason; Krishna, K. C. Bal
2017-01-01
A Modified Robbins Device (MRD) was installed in a full-scale water distribution system to investigate biofouling and metal depositions on concrete, high-density polyethylene (HDPE) and stainless steel surfaces. Bulk water monitoring and a KIWA monitor (with glass media) were used to offline monitor biofilm development on pipe wall surfaces. Results indicated that adenosine triphosphate (ATP) and metal concentrations on coupons increased with time. However, bacterial diversities decreased. There was a positive correlation between increase of ATP and metal deposition on pipe surfaces of stainless steel and HDPE and no correlation was observed on concrete and glass surfaces. The shared bacterial diversity between bulk water and MRD was less than 20% and the diversity shared between the MRD and KIWA monitor was only 10%. The bacterial diversity on biofilm of plumbing material of MRD however, did not show a significant difference suggesting a lack of influence from plumbing material during early stage of biofilm development. PMID:28060947
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC
2008-12-01
This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2007 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2007 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions aremore » in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2007 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT), and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). In December 2007, the BWXT corporate name was changed to Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12), which is applied to personnel and organizations throughout CY 2007 for this report. Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2007 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and surface water sampling and analysis activities implemented under the Y-12 GWPP including sampling locations and frequency; quality assurance (QA)/quality control (QC) sampling; sample collection and handling; field measurements and laboratory analytes; data management and data quality objective (DQO) evaluation; and groundwater elevation monitoring. However, this report does not include equivalent information regarding the groundwater and surface water sampling and analysis activities associated with the monitoring programs implemented by BJC. Such details are deferred to the respective programmatic plans and reports issued by BJC (see Section 3.0). Collectively, the groundwater and surface water monitoring data obtained during CY 2007 by the Y-12 GWPP and BJC address DOE Order 450.1 (Environmental Protection Program) requirements for monitoring groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). Section 4 of this report presents a summary evaluation of the monitoring data with regard to the respective objectives of surveillance monitoring and exit pathway/perimeter monitoring, based on the analytical results for the principal groundwater and surface water contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. Section 5 of this report summarizes the most pertinent findings regarding the principal contaminants, along with recommendations proposed for ongoing groundwater and surface water quality monitoring performed under the Y-12 GWPP.« less
Surface Monitoring of CFRP Structures for Adhesive Bonding
NASA Technical Reports Server (NTRS)
Ledesma, Rodolfo; Palmieri, Frank L.; Yost, William T.; Connell, John W.; Fitz-Gerald, James M.
2017-01-01
Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding is essential in order to obtain a surface free from contaminants that may degrade structural performance. Two techniques which monitor the effectiveness of the laser surface treatment of carbon fiber reinforced polymer (CFRP) materials are being investigated: laser induced breakdown spectroscopy (LIBS) and optically stimulated electron emission (OSEE). The applicability of LIBS to detect silicone contaminants on CFRP composites is studied using 35 ns Nd:YAG laser pulses at 355 nm with a pulse energy of 45 mJ. The LIBS regime in which pulse energies are < 100 mJ is referred to as mLIBS. CFRP surfaces were contaminated with polydimethylsiloxane (PDMS), a major component of silicone based mold release agents. The presence of PDMS is found by inspecting the Si I emission line at 288.2 nm. Untreated CFRP samples and CFRP contaminated with PDMS were tested. The PDMS areal density ranged from 0.36 Â+/- 0.04 to 0.51 Â+/- 0.16 mg/cm2. The results demonstrate the successful detection of PDMS on CFRP using mLIBS. In addition, OSEE was used to measure CFRP surface cleanliness pre- and post-treatment by laser ablation on specimens contaminated with PDMS coatings from 8 nm to 1311 nm in thickness. The results showed a significant increase in the OSEE photocurrent after laser surface treatment.
Advanced geophysical underground coal gasification monitoring
Mellors, Robert; Yang, X.; White, J. A.; ...
2014-07-01
Underground Coal Gasification (UCG) produces less surface impact, atmospheric pollutants and greenhouse gas than traditional surface mining and combustion. Therefore, it may be useful in mitigating global change caused by anthropogenic activities. Careful monitoring of the UCG process is essential in minimizing environmental impact. Here we first summarize monitoring methods that have been used in previous UCG field trials. We then discuss in more detail a number of promising advanced geophysical techniques. These methods – seismic, electromagnetic, and remote sensing techniques – may provide improved and cost-effective ways to image both the subsurface cavity growth and surface subsidence effects. Activemore » and passive seismic data have the promise to monitor the burn front, cavity growth, and observe cavity collapse events. Electrical resistance tomography (ERT) produces near real time tomographic images autonomously, monitors the burn front and images the cavity using low-cost sensors, typically running within boreholes. Interferometric synthetic aperture radar (InSAR) is a remote sensing technique that has the capability to monitor surface subsidence over the wide area of a commercial-scale UCG operation at a low cost. It may be possible to infer cavity geometry from InSAR (or other surface topography) data using geomechanical modeling. The expected signals from these monitoring methods are described along with interpretive modeling for typical UCG cavities. They are illustrated using field results from UCG trials and other relevant subsurface operations.« less
NASA Astrophysics Data System (ADS)
Bauguitte, S. J.; Brough, N.; Frey, M. M.; Jones, A. E.; Roscoe, H. K.; Wolff, E. W.
2009-12-01
Concentrations of surface ozone over polar regions cannot be derived from satellite data so can only be studied from ground-based platforms. To understand the regional picture a carefully-designed network of ground-based monitors is required. Here we report on a network of 10 autonomous ozone monitors that was established around the Weddell Sea sector of coastal Antarctica with a transect up onto the Antarctic Plateau during the International Polar Year. The aim was to measure for a full year, thus gaining a much-improved broader view of boundary layer ozone seasonality at different locations as well as on factors affecting the budget of surface ozone in Antarctica. Of specific interest were the balance between halogen-driven destruction and photochemical production from snow-emitted precursors, as well as the spatial extent of ozone depletion events. Each ozone monitor measured successfully within its predefined duty cycle throughout the year, with some differences in performance dependent on power availability. Here we present technical information and first results from the network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC,
2012-12-01
This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2011 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2011 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12more » grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. This report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and known extent of groundwater contamination. The CY 2011 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by the DOE Environmental Management (EM) contractor responsible for environmental cleanup on the ORR. In August 2011, URS | CH2M Oak Ridge LLC (UCOR) replaced Bechtel Jacobs Company LLC (BJC) as the DOE EM contractor. For this report, BJC/UCOR will be referenced as the managing contractor for CY 2011. Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC/UCOR (i.e., coordinating sample collection and sharing data) ensures that the CY 2011 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. This report contains a summary of information regarding the groundwater and surface water sampling and analysis activities implemented under the Y-12 GWPP including sampling locations and frequency; quality assurance (QA)/quality control (QC) sampling; sample collection and handling; field measurements and laboratory analytes; data management and data quality objective (DQO) evaluation; and groundwater elevation monitoring. However, this report does not include equivalent QA/QC or DQO evaluation information regarding the groundwater and surface water sampling and analysis activities associated with the monitoring programs implemented by BJC/UCOR. Such details are deferred to the respective programmatic plans and reports issued by BJC. Collectively, the groundwater and surface water monitoring data obtained during CY 2011 by the Y-12 GWPP and BJC/UCOR address DOE Order 436.1 and DOE Order 458.1 requirements for monitoring groundwater and surface water quality in areas (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring) and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). This report presents a summary evaluation of the monitoring data with regard to the respective objectives of surveillance monitoring and exit pathway/perimeter monitoring, based on the analytical results for the principal groundwater contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. This report summarizes the most pertinent findings regarding the principal contaminants, along with recommendations proposed for ongoing groundwater and surface water quality monitoring performed under the Y-12 GWPP.« less
Use of oil shale ash in road construction: results of follow-up environmental monitoring.
Reinik, Janek; Irha, Natalya; Koroljova, Arina; Meriste, Tõnis
2018-01-05
Oil shale ash (OSA) was used for road construction in a pristine swamp area in East-Estonia during 2013-2014. OSA was used as a binder both in mass stabilization of soft peat soil and in the upper layer. Use of OSA in civil engineering always raises questions about the environmental safety of such activities. Post-construction environmental monitoring of the pilot section was carried out in 2014 and 2015. The monitoring program involved surface water and soil sampling campaigns. Samples were analyzed for selected constituents and parameters of environmental concern. The paper gives data for assessing the environmental impact and evaluation of potential risks associated with construction of roads using OSA. Leaching of hazardous compounds from the pilot section to surrounding aqueous environment was not observed during the monitoring program. Still, the road construction affected the concentration of sulfates in surrounding surface water. Also, the water-soluble content of barium in surface water correlated significantly with the concentrations of chloride and sulfate ion and electric conductivity of the surface water. Therefore, it is recommended to monitor the electric conductivity, concentrations of sulfates, chlorides, and barium in nearby surface water when OSA is used in road construction.
Allasia, Paolo; Manconi, Andrea; Giordan, Daniele; Baldo, Marco; Lollino, Giorgio
2013-01-01
We present a new method for near-real-time monitoring of surface displacements due to landslide phenomena, namely ADVanced dIsplaCement monitoring system for Early warning (ADVICE). The procedure includes: (i) data acquisition and transfer protocols; (ii) data collection, filtering, and validation; (iii) data analysis and restitution through a set of dedicated software; (iv) recognition of displacement/velocity threshold, early warning messages via SMS and/or emails; (v) automatic publication of the results on a dedicated webpage. We show how the system evolved and the results obtained by applying ADVICE over three years into a real early warning scenario relevant to a large earthflow located in southern Italy. ADVICE has speed-up and facilitated the understanding of the landslide phenomenon, the communication of the monitoring results to the partners, and consequently the decision-making process in a critical scenario. Our work might have potential applications not only for landslide monitoring but also in other contexts, as monitoring of other geohazards and of complex infrastructures, as open-pit mines, buildings, dams, etc. PMID:23807688
Allasia, Paolo; Manconi, Andrea; Giordan, Daniele; Baldo, Marco; Lollino, Giorgio
2013-06-27
We present a new method for near-real-time monitoring of surface displacements due to landslide phenomena, namely ADVanced dIsplaCement monitoring system for Early warning (ADVICE). The procedure includes: (i) data acquisition and transfer protocols; (ii) data collection, filtering, and validation; (iii) data analysis and restitution through a set of dedicated software; (iv) recognition of displacement/velocity threshold, early warning messages via SMS and/or emails; (v) automatic publication of the results on a dedicated webpage. We show how the system evolved and the results obtained by applying ADVICE over three years into a real early warning scenario relevant to a large earthflow located in southern Italy. ADVICE has speed-up and facilitated the understanding of the landslide phenomenon, the communication of the monitoring results to the partners, and consequently the decision-making process in a critical scenario. Our work might have potential applications not only for landslide monitoring but also in other contexts, as monitoring of other geohazards and of complex infrastructures, as open-pit mines, buildings, dams, etc.
NASA Astrophysics Data System (ADS)
Sauer, U.; Schuetze, C.; Dietrich, P.
2013-12-01
The MONACO project (Monitoring approach for geological CO2 storage sites using a hierarchic observation concept) aims to find reliable monitoring tools that work on different spatial and temporal scales at geological CO2 storage sites. This integrative hierarchical monitoring approach based on different levels of coverage and resolutions is proposed as a means of reliably detecting CO2 degassing areas at ground surface level and for identifying CO2 leakages from storage formations into the shallow subsurface, as well as CO2 releases into the atmosphere. As part of this integrative hierarchical monitoring concept, several methods and technologies from ground-based remote sensing (Open-path Fourier-transform infrared (OP-FTIR) spectroscopy), regional measurements (near-surface geophysics, chamber-based soil CO2 flux measurement) and local in-situ measurements (using shallow boreholes) will either be combined or used complementary to one another. The proposed combination is a suitable concept for investigating CO2 release sites. This also presents the possibility of adopting a modular monitoring concept whereby our monitoring approach can be expanded to incorporate other methods in various coverage scales at any temporal resolution. The link between information obtained from large-scale surveys and local in-situ monitoring can be realized by sufficient geophysical techniques for meso-scale monitoring, such as geoelectrical and self-potential (SP) surveys. These methods are useful for characterizing fluid flow and transport processes in permeable near-surface sedimentary layers and can yield important information concerning CO2-affected subsurface structures. Results of measurements carried out a natural analogue site in the Czech Republic indicate that the hierarchical monitoring approach represents a successful multidisciplinary modular concept that can be used to monitor both physical and chemical processes taking place during CO2 migration and seepage. The application of FTIR spectroscopy in combination with soil gas surveys and geophysical investigations results in a comprehensive site characterization, including atmospheric and near-surface CO2 distribution, as well as subsurface structural features. We observed a correlation of higher CO2 concentration and flux rates at the meso-scale that coincides with distinct geophysical anomalies. Here, we found prominent SP anomalies and zones of lower resistivity in the geoelectrical images compared to undisturbed regions nearby. This presentation will discuss the results we obtained and illustrate the influence of CO2 on electrical parameters measured under field conditions in relation to environmental parameters.
NASA Astrophysics Data System (ADS)
Rahrig, M.; Drewello, R.; Lazzeri, A.
2018-05-01
Monitoring is an essential requirement for the planning, assessment and evaluation of conservation measures. It should be based on a standardized and reproducible observation of the historical surface. For many areas and materials suitable methods for long-term monitoring already exist. But hardly any non-destructive testing methods have been used to test new materials for conservation of damaged stone surfaces. The Nano-Cathedral project, funded by the European Union's Horizon 2020 research and innovation program, is developing new materials and technologies for preserving damaged stone surfaces of built heritage. The prototypes developed are adjusted to the needs and problems of a total of six major cultural monuments in Europe. In addition to the testing of the materials under controlled laboratory conditions, the products have been applied to trial areas on the original stone surfaces. For a location-independent standardized assessment of surface changes of the entire trial areas a monitoring method based on opto-technical, non-contact and non-destructive testing methods has been developed. This method involves a three-dimensional measurement of the surface topography using Structured-Light-Scanning and the analysis of the surfaces in different light ranges using high resolution VIS photography, as well as UV-A-fluorescence photography and reflected near-field IR photography. The paper will show the workflow of this methodology, including a detailed description of the equipment used data processing and the advantages for monitoring highly valuable stone surfaces. Alongside the theoretical discussion, the results of two measuring campaigns on trial areas of the Nano-Cathedral project will be shown.
2011 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-02-01
Gnome-Coach was the site of a 3-kiloton underground nuclear test in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and groundwater tracer test performed at the site. The State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. As for the subsurface, monitoring activities that include hydraulic head monitoring and groundwater sampling of the wells onsite are conducted as part of the annual site inspection. These activities were conducted on January 19, 2011. The site roads, monitoring well heads, and the monument at surface ground zero were observed asmore » being in good condition at the time of the site inspection. An evaluation of the hydraulic head data obtained from the site indicates that water levels in wells USGS-4 and USGS-8 appear to respond to the on/off cycling of the dedicated pump in well USGS-1 and that water levels in wells LRL-7 and DD-1 increased during this annual monitoring period. Analytical results obtained from the sampling indicate that concentrations of tritium, strontium-90, and cesium-137 were consistent with concentrations from historical sampling events.« less
NASA Astrophysics Data System (ADS)
Kellerer-Pirklbauer, Andreas; Bodin, Xavier; Delaloye, Reynald; Fischer, Andrea; Gärtner-Roer, Isabelle; Hartl, Lea; Kaufmann, Viktor; Krainer, Karl; Lambiel, Christophe; Mair, Volkmar; Marcer, Marco; Morra di Cella, Umberto; Scapozza, Cristian; Schoeneich, Philippe; Staub, Benno
2017-04-01
Active, inactive and relict rock glaciers are widespread periglacial landforms in the European Alps as revealed by several inventories elaborated for Slovenia, Austria, Switzerland, Italy, and France. Rock glaciers indicate present or past permafrost conditions in mountain environments and hence have a high climatic or paleoclimatic relevance. The monitoring of surface velocities at active rock glaciers has a long tradition in the European Alps with first terrestrial photogrammetric surveys in the Swiss and Austrian Alps already in the 1920s. Since the 1990s velocity monitoring activities have been substantially expanded but also institutionalized. Today, several research groups carry out annual or even continuous monitoring of rock glacier creep at more than 30 rock glaciers in Austria, France, Italy, and Switzerland. In many cases such a kinematic monitoring is jointly accomplished with meteorological and ground temperature monitoring in order to better understand the rock glacier-climate relationships and the reaction of rock glacier behavior to climatic changes. In this contribution we present a synthesis of the main results from long-term monitoring of several rock glaciers in the European Alps with at least annually-repeated data. Similarities but also differences of the movement patterns at the different sites are discussed, while the spatio-temporal pattern of the surface displacement is looked at against the climate context. In general, rock glacier surface velocities in the European Alps have been rather low during the 1980s and 1990s and reached a first peak in 2003/04 followed by a drastic drop until c.2007/08. Since then rock glacier surface velocities increased again with new velocity records in 2015/16 superior to the first peak around 2003/04. These creep rate maxima coincide with the warmest permafrost temperatures ever measured in boreholes and are likely a result of the continuously warm conditions at the ground surface over the past seven years.
Johnson, Timothy C.; Slater, Lee D.; Ntarlagiannis, Dimitris; Day-Lewis, Frederick D.; Elwaseif, Mehrez
2012-01-01
Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides superior spatial coverage in two or three dimensions, potentially high-resolution information in time, and information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever-increasing size and complexity of long-term, three-dimensional (3-D) time series conductivity data sets. Here we use 3-D surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater-surface water interactions along a stretch of the Columbia River adjacent to the Hanford 300 near Richland, Washington, USA. We reduce the resulting 3-D conductivity time series using both time-series and time-frequency analyses to isolate a paleochannel causing enhanced groundwater-surface water interactions. Correlation analysis on the time-lapse imaging results concisely represents enhanced groundwater-surface water interactions within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) transform provides additional information by identifying the stage periodicities driving groundwater-surface water interactions due to upstream dam operations, and identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 Area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.
NASA Astrophysics Data System (ADS)
Cahill, A. G.; Chao, J.; Forde, O.; Prystupa, E.; Mayer, K. U.; Black, T. A.; Tannant, D. D.; Crowe, S.; Hallam, S.; Mayer, B.; Lauer, R. M.; van Geloven, C.; Welch, L. A.; Salas, C.; Levson, V.; Risk, D. A.; Beckie, R. D.
2017-12-01
Fugitive gas, comprised primarily of methane, can be unintentionally released from upstream oil and gas development either at surface from leaky infrastructure or in the subsurface through failure of energy well bore integrity. For the latter, defective cement seals around energy well casings may permit buoyant flow of natural gas from the deeper subsurface towards shallow aquifers, the ground surface and potentially into the atmosphere. Concerns associated with fugitive gas release at surface and in the subsurface include contributions to greenhouse gas emissions, subsurface migration leading to accumulation in nearby infrastructure and impacts to groundwater quality. Current knowledge of the extent of fugitive gas leakage including how to best detect and monitor over time, and particularly its migration and fate in the subsurface, is incomplete. We have established an experimental field observatory for evaluating fugitive gas leakage in an area of historic and ongoing hydrocarbon resource development within the Montney Resource Play of the Western Canadian Sedimentary Basin, British Columbia, Canada. Natural gas will be intentionally released at surface and up to 25 m below surface at various rates and durations. Resulting migration patterns and impacts will be evaluated through examination of the geology, hydrogeology, hydro-geochemistry, isotope geochemistry, hydro-geophysics, vadose zone and soil gas processes, microbiology, and atmospheric conditions. The use of unmanned aerial vehicles and remote sensors for monitoring and detection of methane will also be assessed for suitability as environmental monitoring tools. Here we outline the experimental design and describe initial research conducted to develop a detailed site conceptual model of the field observatory. Subsequently, results attained from pilot surface and sub-surface controlled natural gas releases conducted in late summer 2017 will be presented as well as results of numerical modelling conducted to plan methane release experiments in 2018 and onwards. This research will create knowledge which informs strategies to detect and monitor fugitive gas fluxes at the surface and in groundwater; as well as guide associated regulatory and technical policies.
Geodetic monitoring of subrosion-induced subsidence processes in urban areas
NASA Astrophysics Data System (ADS)
Kersten, Tobias; Kobe, Martin; Gabriel, Gerald; Timmen, Ludger; Schön, Steffen; Vogel, Detlef
2017-03-01
The research project SIMULTAN applies an advanced combination of geophysical, geodetic, and modelling techniques to gain a better understanding of the evolution and characteristics of sinkholes. Sinkholes are inherently related to surface deformation and, thus, of increasing societal relevance, especially in dense populated urban areas. One work package of SIMULTAN investigates an integrated approach to monitor sinkhole-related mass translations and surface deformations induced by salt dissolution. Datasets from identical and adjacent points are used for a consistent combination of geodetic and geophysical techniques. Monitoring networks are established in Hamburg and Bad Frankenhausen (Thuringia). Levelling surveys indicate subsidence rates of about 4-5 mm per year in the main subsidence areas of Bad Frankenhausen with a local maximum of 10 mm per year around the leaning church tower. Here, the concept of combining geodetic and gravimetric techniques to monitor and characterise geological processes on and below the Earth's surface is exemplary discussed for the focus area Bad Frankenhausen. For the different methods (levelling, GNSS, relative/absolute gravimetry) stable network results at identical points are obtained by the first campaigns, i.e., the results are generally in agreement.
NASA Astrophysics Data System (ADS)
Devetter, Brent M.; Mukherjee, Prabuddha; Murphy, Catherine J.; Bhargava, Rohit
2015-05-01
Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min-1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes.Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min-1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01006c
Lacunarity study of speckle patterns produced by rough surfaces
NASA Astrophysics Data System (ADS)
Dias, M. R. B.; Dornelas, D.; Balthazar, W. F.; Huguenin, J. A. O.; da Silva, L.
2017-11-01
In this work we report on the study of Lacunarity of digital speckle patterns generated by rough surfaces. The study of Lacunarity of speckle patterns was performed on both static and moving rough surfaces. The results show that the Lacunarity is sensitive to the surface roughness, which suggests that it can be used to perform indirect measurement of surface roughness as well as to monitor defects, or variations of roughness, of metallic moving surfaces. Our results show the robustness of this statistical tool applied to speckle pattern in order to study surface roughness.
Clinical Monitoring of Smooth Surface Enamel Lesions Using CP-OCT During Nonsurgical Intervention
Chan, Kenneth H.; Tom, Henry; Lee, Robert C.; Kang, Hobin; Simon, Jacob C.; Staninec, Michal; Darling, Cynthia L.; Pelzner, Roger B.; Fried, Daniel
2017-01-01
Introduction Studies have shown that cross-polarization optical coherence tomography (CP-OCT) can be used to image the internal structure of carious lesions in vivo. The objective of this study was to show that CP-OCT can be used to monitor changes in the internal structure of early active carious lesions on smooth surfaces during non-surgical intervention with fluoride. Methods Lesions on the smooth surfaces of teeth were imaged using CP-OCT on 17 test subjects. Lesion structural changes were monitored during fluoride varnish application at 6-week intervals for 30 weeks. The lesion depth (Ld), integrated reflectivity (ΔR), and surface zone thickness (Sz) were monitored. Results A distinct transparent surface zone that may be indicative of lesion arrestment was visible in CP-OCT images on 62/63 lesions before application of fluoride varnish. The lesion depth and internal structure were resolved for all the lesions. The overall change in the mean values for Ld, ΔR, and Sz for all the lesions was minimal and was not significant during the study (P > 0.05). Only 5/63 lesions manifested a significant increase in Sz during intervention. Conclusion Even though it appears that most of the lesions manifested little change with fluoride varnish application in the 30 weeks of the study, CP-OCT was able to measure the depth and internal structure of all the lesions including the thickness of the important transparent surface zone located at the surface of the lesions, indicating that CP-OCT is ideally suited for monitoring lesion severity in vivo. PMID:26955902
NASA Technical Reports Server (NTRS)
Wiesnet, D. R. (Principal Investigator); Mcginnis, D. F.; Matson, M.
1980-01-01
The author has identified the following significant results. The HCMM thermal data are useful for monitoring estuarine surface thermal patterns. Estuarine thermal patterns, are, under certain conditions, indicative of the surface tidal current circulation patterns. Under optimum conditions, estuaries as small as the Cooper River (i.e., approximately 100 sq km) can be monitored for tidal/thermal circulation patterns by HCMM-type IR sensors.
Sentinel-3a: commissioning phase results of its optical payload
NASA Astrophysics Data System (ADS)
Nieke, J.; Mavrocordatos, C.
2017-09-01
The Sentinel-3 (S3) is a Global Land and Ocean Mission [1] currently in development as part of the European Commission's Copernicus programme (former: Global Monitoring for Environment and Security (GMES) [2]). The multi-instrument Sentinel-3 mission measures sea-surface topography, sea- and land-surface temperature, ocean colour and land colour to support ocean forecasting systems, as well as environmental and climate monitoring with near-real time data.
Li, Li; Hutter, Tanya; Finnemore, Alexander S; Huang, Fu Min; Baumberg, Jeremy J; Elliott, Stephen R; Steiner, Ullrich; Mahajan, Sumeet
2012-08-08
Metal oxide nanoparticles (MONPs) have widespread usage across many disciplines, but monitoring molecular processes at their surfaces in situ has not been possible. Here we demonstrate that MONPs give highly enhanced (×10(4)) Raman scattering signals from molecules at the interface permitting direct monitoring of their reactions, when placed on top of flat metallic surfaces. Experiments with different metal oxide materials and molecules indicate that the enhancement is generic and operates at the single nanoparticle level. Simulations confirm that the amplification is principally electromagnetic and is a result of optical modulation of the underlying plasmonic metallic surface by MONPs, which act as scattering antennae and couple light into the confined region sandwiched by the underlying surface. Because of additional functionalities of metal oxides as magnetic, photoelectrochemical and catalytic materials, enhanced Raman scattering mediated by MONPs opens up significant opportunities in fundamental science, allowing direct tracking and understanding of application-specific transformations at such interfaces. We show a first example by monitoring the MONP-assisted photocatalytic decomposition reaction of an organic dye by individual nanoparticles.
NASA Astrophysics Data System (ADS)
Davaze, Lucas; Rabatel, Antoine; Arnaud, Yves; Sirguey, Pascal; Six, Delphine; Letreguilly, Anne; Dumont, Marie
2018-01-01
Less than 0.25 % of the 250 000 glaciers inventoried in the Randolph Glacier Inventory (RGI V.5) are currently monitored with in situ measurements of surface mass balance. Increasing this archive is very challenging, especially using time-consuming methods based on in situ measurements, and complementary methods are required to quantify the surface mass balance of unmonitored glaciers. The current study relies on the so-called albedo method, based on the analysis of albedo maps retrieved from optical satellite imagery acquired since 2000 by the MODIS sensor, on board the TERRA satellite. Recent studies revealed substantial relationships between summer minimum glacier-wide surface albedo and annual surface mass balance, because this minimum surface albedo is directly related to the accumulation-area ratio and the equilibrium-line altitude. On the basis of 30 glaciers located in the French Alps where annual surface mass balance data are available, our study conducted on the period 2000-2015 confirms the robustness and reliability of the relationship between the summer minimum surface albedo and the annual surface mass balance. For the ablation season, the integrated summer surface albedo is significantly correlated with the summer surface mass balance of the six glaciers seasonally monitored. These results are promising to monitor both annual and summer glacier-wide surface mass balances of individual glaciers at a regional scale using optical satellite images. A sensitivity study on the computed cloud masks revealed a high confidence in the retrieved albedo maps, restricting the number of omission errors. Albedo retrieval artifacts have been detected for topographically incised glaciers, highlighting limitations in the shadow correction algorithm, although inter-annual comparisons are not affected by systematic errors.
Monitoring Ion Track Formation Using In Situ RBS/c, ToF-ERDA, and HR-PIXE
NASA Astrophysics Data System (ADS)
Karlušić, Marko; Fazinić, Stjepko; Siketić, Zdravko; Tadić, Tonči; Cosic, Donny; Božičević-Mihalić, Iva; Zamboni, Ivana; Jakšić, Milko; Schleberger, Marika
2017-09-01
The aim of this work is to investigate feasibility of the ion beam analysis techniques for monitoring swift heavy ion track formation. First, use of the in situ Rutherford backscattering spectroscopy in channeling mode to observe damage build-up in quartz SiO2 after MeV heavy ion irradiation is demonstrated. Second, new results of the in situ grazing incidence time-of-flight elastic recoil detection analysis used for monitoring the surface elemental composition during ion tracks formation in various materials are presented. Ion tracks were found on SrTiO3, quartz SiO2, a-SiO2 and muscovite mica surfaces by atomic force microscopy, but in contrast to our previous studies on GaN and TiO2, surface stoichiometry remained unchanged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutton, Rick
2012-12-01
Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 9-10, 2012, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outsidemore » the site boundaries have not been affected by project-related contaminants.« less
Radiological monitoring plan for the Oak Ridge Y-12 Plant: Surface Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-10-01
The Y-12 Plant conducts a surface water monitoring program in response to DOE Orders and state of Tennessee requirements under the National Pollutant Discharge Elimination System (NPDES). The anticipated codification of DOE Order 5400.5 for radiation protection of the public and the environment (10 CFR Part 834) will require an environmental radiation protection plan (ERPP). The NPDES permit issued by the state of Tennessee requires a radiological monitoring plan (RMP) for Y-12 Plant surface waters. In a May 4, 1995 memo, the state of Tennessee, Division of Water Pollution Control, stated their desired needs and goals regarding the content ofmore » RMPs, associated documentation, and data resulting from the RMPs required under the NPDES permitting system (L. Bunting, General Discussion, Radiological Monitoring Plans, Tennessee Division of Water Pollution Control, May 4,1995). Appendix A provides an overview of how the Y-12 Plant will begin to address these needs and goals. It provides a more complete, documented basis for the current Y-12 Plant surface water monitoring program and is intended to supplement documentation provided in the Annual Site Environmental Reports (ASERs), NPDES reports, Groundwater Quality Assessment Reports, and studies conducted under the Y-12 Plant Environmental Restoration (ER) Program. The purpose of this update to the Y-12 Plant RMP is to satisfy the requirements of the current NPDES permit, DOE Order 5400.5, and 10 CFR Part 834, as current proposed, by defining the radiological monitoring plan for surface water for the Y-12 Plant. This plan includes initial storm water monitoring and data analysis. Related activities such as sanitary sewer and sediment monitoring are also summarized. The plan discusses monitoring goals necessary to determine background concentrations of radionuclides, to quantify releases, determine trends, satisfy regulatory requirements, support consequence assessments, and meet requirements that releases be ``as low as reasonably achievable`` (ALARA).« less
NASA Astrophysics Data System (ADS)
Yenier, E.; Baturan, D.; Karimi, S.
2016-12-01
Monitoring of seismicity related to oil and gas operations is routinely performed nowadays using a number of different surface and downhole seismic array configurations and technologies. Here, we provide a hydraulic fracture (HF) monitoring case study that compares the data set generated by a sparse local surface network of broadband seismometers to a data set generated by a single downhole geophone string. Our data was collected during a 5-day single-well HF operation, by a temporary surface network consisting of 10 stations deployed within 5 km of the production well. The downhole data was recorded by a 20 geophone string deployed in an observation well located 15 m from the production well. Surface network data processing included standard STA/LTA event triggering enhanced by template-matching subspace detection, grid search locations which was improved using the double-differencing re-location technique, as well as Richter (ML) and moment (Mw) magnitude computations for all detected events. In addition, moment tensors were computed from first motion polarities and amplitudes for the subset of highest SNR events. The resulting surface event catalog shows a very weak spatio-temporal correlation to HF operations with only 43% of recorded seismicity occurring during HF stages times. This along with source mechanisms shows that the surface-recorded seismicity delineates the activation of several pre-existing structures striking NNE-SSW and consistent with regional stress conditions as indicated by the orientation of SHmax. Comparison of the sparse-surface and single downhole string datasets allows us to perform a cost-benefit analysis of the two monitoring methods. Our findings show that although the downhole array recorded ten times as many events, the surface network provides a more coherent delineation of the underlying structure and more accurate magnitudes for larger magnitude events. We attribute this to the enhanced focal coverage provided by the surface network and the use of broadband instrumentation. The results indicate that sparse surface networks of high quality instruments can provide rich and reliable datasets for evaluation of the impact and effectiveness of hydraulic fracture operations in regions with favorable surface noise, local stress and attenuation characteristics.
Li, Zhongwei; Liu, Xingjian; Wen, Shifeng; He, Piyao; Zhong, Kai; Wei, Qingsong; Shi, Yusheng; Liu, Sheng
2018-01-01
Lack of monitoring of the in situ process signatures is one of the challenges that has been restricting the improvement of Powder-Bed-Fusion Additive Manufacturing (PBF AM). Among various process signatures, the monitoring of the geometric signatures is of high importance. This paper presents the use of vision sensing methods as a non-destructive in situ 3D measurement technique to monitor two main categories of geometric signatures: 3D surface topography and 3D contour data of the fusion area. To increase the efficiency and accuracy, an enhanced phase measuring profilometry (EPMP) is proposed to monitor the 3D surface topography of the powder bed and the fusion area reliably and rapidly. A slice model assisted contour detection method is developed to extract the contours of fusion area. The performance of the techniques is demonstrated with some selected measurements. Experimental results indicate that the proposed method can reveal irregularities caused by various defects and inspect the contour accuracy and surface quality. It holds the potential to be a powerful in situ 3D monitoring tool for manufacturing process optimization, close-loop control, and data visualization. PMID:29649171
USDA-ARS?s Scientific Manuscript database
Two passive microwave missions are currently operating at L-band to monitor surface soil moisture (SM) over continental surfaces. The SMOS sensor, based on an innovative interferometric technology enabling multi-angular signatures of surfaces to be measured, was launched in November 2009....
Nitrate variability in groundwater of North Carolina using monitoring and private well data models.
Messier, Kyle P; Kane, Evan; Bolich, Rick; Serre, Marc L
2014-09-16
Nitrate (NO3-) is a widespread contaminant of groundwater and surface water across the United States that has deleterious effects to human and ecological health. This study develops a model for predicting point-level groundwater NO3- at a state scale for monitoring wells and private wells of North Carolina. A land use regression (LUR) model selection procedure is developed for determining nonlinear model explanatory variables when they are known to be correlated. Bayesian Maximum Entropy (BME) is used to integrate the LUR model to create a LUR-BME model of spatial/temporal varying groundwater NO3- concentrations. LUR-BME results in a leave-one-out cross-validation r2 of 0.74 and 0.33 for monitoring and private wells, effectively predicting within spatial covariance ranges. Results show significant differences in the spatial distribution of groundwater NO3- contamination in monitoring versus private wells; high NO3- concentrations in the southeastern plains of North Carolina; and wastewater treatment residuals and swine confined animal feeding operations as local sources of NO3- in monitoring wells. Results are of interest to agencies that regulate drinking water sources or monitor health outcomes from ingestion of drinking water. Lastly, LUR-BME model estimates can be integrated into surface water models for more accurate management of nonpoint sources of nitrogen.
Hsueh, Hsiao-Ting; Lin, Chih-Ting
2016-05-15
Surface potential is one of the most important properties at solid-liquid interfaces. It can be modulated by the voltage applied on the electrode or by the surface properties. Hence, surface potential is a good indicator for surface modifications, such as biomolecular bindings. In this work, we proposed a planar nano-gap structure for surface-potential difference monitoring. Based on the proposed architecture, the variance of surface-potential difference can be determined by electrical double layer capacitance (EDLC) between the nano-gap electrodes. Using cyclic voltammetry method, in this work, we demonstrated a relationship between surface potential and EDLC by chemically modifying surface properties. Finally, we also showed the proposed planar nano-gap device provides the capability for cardiac-troponin T (cTnT) measurements with co-existed 10 µg/ml BSA interference. The detection dynamic range is from 100 pg/ml to 1 µg/ml. Based on experimental results and extrapolation, the detection limit is less than 100 pg/ml in diluted PBS buffer (0.01X PBS). These results demonstrated the planar nano-gap architecture having potentials on biomolecular detection through monitoring of surface-potential variation. Copyright © 2015 Elsevier B.V. All rights reserved.
Multisensor system for the protection of critical infrastructure of a seaport
NASA Astrophysics Data System (ADS)
Kastek, Mariusz; Dulski, Rafał; Zyczkowski, Marek; Szustakowski, Mieczysław; Trzaskawka, Piotr; Ciurapinski, Wiesław; Grelowska, Grazyna; Gloza, Ignacy; Milewski, Stanislaw; Listewnik, Karol
2012-06-01
There are many separated infrastructural objects within a harbor area that may be considered "critical", such as gas and oil terminals or anchored naval vessels. Those objects require special protection, including security systems capable of monitoring both surface and underwater areas, because an intrusion into the protected area may be attempted using small surface vehicles (boats, kayaks, rafts, floating devices with weapons and explosives) as well as underwater ones (manned or unmanned submarines, scuba divers). The paper will present the concept of multisensor security system for a harbor protection, capable of complex monitoring of selected critical objects within the protected area. The proposed system consists of a command centre and several different sensors deployed in key areas, providing effective protection from land and sea, with special attention focused on the monitoring of underwater zone. The initial project of such systems will be presented, its configuration and initial tests of the selected components. The protection of surface area is based on medium-range radar and LLTV and infrared cameras. Underwater zone will be monitored by a sonar and acoustic and magnetic barriers, connected into an integrated monitoring system. Theoretical analyses concerning the detection of fast, small surface objects (such as RIB boats) by a camera system and real test results in various weather conditions will also be presented.
Geophysical Monitoring Methods Evaluation for the FutureGen 2.0 Project
Strickland, Chris E.; USA, Richland Washington; Vermeul, Vince R.; ...
2014-12-31
A comprehensive monitoring program will be needed in order to assess the effectiveness of carbon sequestration at the FutureGen 2.0 carbon capture and storage (CCS) field-site. Geophysical monitoring methods are sensitive to subsurface changes that result from injection of CO 2 and will be used for: (1) tracking the spatial extent of the free phase CO 2 plume, (2) monitoring advancement of the pressure front, (3) identifying or mapping areas where induced seismicity occurs, and (4) identifying and mapping regions of increased risk for brine or CO 2 leakage from the reservoir. Site-specific suitability and cost effectiveness were evaluated formore » a number of geophysical monitoring methods including: passive seismic monitoring, reflection seismic imaging, integrated surface deformation, time-lapse gravity, pulsed neutron capture logging, cross-borehole seismic, electrical resistivity tomography, magnetotellurics and controlled source electromagnetics. The results of this evaluation indicate that CO 2 injection monitoring using reflection seismic methods would likely be difficult at the FutureGen 2.0 site. Electrical methods also exhibited low sensitivity to the expected CO 2 saturation changes and would be affected by metallic infrastructure at the field site. Passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture monitoring were selected for implementation as part of the FutureGen 2.0 storage site monitoring program.« less
Geophysical Monitoring Methods Evaluation for the FutureGen 2.0 Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strickland, Chris E.; USA, Richland Washington; Vermeul, Vince R.
A comprehensive monitoring program will be needed in order to assess the effectiveness of carbon sequestration at the FutureGen 2.0 carbon capture and storage (CCS) field-site. Geophysical monitoring methods are sensitive to subsurface changes that result from injection of CO 2 and will be used for: (1) tracking the spatial extent of the free phase CO 2 plume, (2) monitoring advancement of the pressure front, (3) identifying or mapping areas where induced seismicity occurs, and (4) identifying and mapping regions of increased risk for brine or CO 2 leakage from the reservoir. Site-specific suitability and cost effectiveness were evaluated formore » a number of geophysical monitoring methods including: passive seismic monitoring, reflection seismic imaging, integrated surface deformation, time-lapse gravity, pulsed neutron capture logging, cross-borehole seismic, electrical resistivity tomography, magnetotellurics and controlled source electromagnetics. The results of this evaluation indicate that CO 2 injection monitoring using reflection seismic methods would likely be difficult at the FutureGen 2.0 site. Electrical methods also exhibited low sensitivity to the expected CO 2 saturation changes and would be affected by metallic infrastructure at the field site. Passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture monitoring were selected for implementation as part of the FutureGen 2.0 storage site monitoring program.« less
Using well casing as an electrical source to monitor hydraulic fracture fluid injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilt, Michael; Nieuwenhuis, Greg; MacLennan, Kris
2016-03-09
The depth to surface resistivity (DSR) method transmits current from a source located in a cased or openhole well to a distant surface return electrode while electric field measurements are made at the surface over the target of interest. This paper presents both numerical modelling results and measured data from a hydraulic fracturing field test where conductive water was injected into a resistive shale reservoir during a hydraulic fracturing operation. Modelling experiments show that anomalies due to hydraulic fracturing are small but measureable with highly sensitive sensor technology. The field measurements confirm the model results,showing that measured differences in themore » surface fields due to hydraulic fracturing have been detected above the noise floor. Our results show that the DSR method is sensitive to the injection of frac fluids; they are detectable above the noise floor in a commercially active hydraulic fracturing operation, and therefore this method can be used for monitoring fracture fluid movement.« less
Method and apparatus for monitoring and measuring the surface tension of a fluid using fiber optics
Abraham, Bernard M.; Ketterson, John B.; Bohanon, Thomas M.; Mikrut, John M.
1994-01-01
A non-contact method and apparatus for measuring and monitoring the surface of a fluid using fiber optics and interferometric detection to permit measurement mechanical characteristics' fluid surfaces. The apparatus employs an alternating electric field gradient for generating a capillary wave on the surface of the fluid. A fiber optic coupler and optical fiber directs a portion of a laser beam onto the surface of the fluid, another portion of the laser beam onto the photo sensor, and directs light reflected from the surface of the fluid onto the photo sensor. The output of the photo sensor is processed and coupled to a phase sensitive detector to permit measurement of phase shift between the drive signal creating the capillary wave and the detected signal. This phase shift information is then used to determine mechanical properties of the fluid surface such as surface tension, surface elasticity, and surface inhomogeneity. The resulting test structure is easily made compact, portable, and easy to align and use.
Residential radon exposure and risk of lung cancer in Missouri.
Alavanja, M C; Lubin, J H; Mahaffey, J A; Brownson, R C
1999-01-01
OBJECTIVES: This study investigated residential radon exposure and lung cancer risk, using both standard radon dosimetry and a new radon monitoring technology that, evidence suggests, is a better measure of cumulative radon exposure. METHODS: Missouri women (aged 30 to 84 years) newly diagnosed with primary lung cancer during the period January 1, 1993, to January 31, 1994, were invited to participate in this population-based case-control study. Both indoor air radon detectors and CR-39 alpha-particle detectors (surface monitors) were used. RESULTS: When surface monitors were used, a significant trend in lung cancer odds ratios was observed for 20-year time-weighted-average radon concentrations. CONCLUSIONS: When surface monitors were used, but not when standard radon dosimetry was used, a significant lung cancer risk was found for radon concentrations at and above the action level for mitigation of houses currently used in the United States (148 Bqm-3). The risk was below the action level used in Canada (750 Bqm-3) and many European countries (200-400 Bqm-3). PMID:10394313
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... monitoring, accumulated refuse, surface methane monitoring, and collection and control system exceedances... included a burden item for Agency review of surface methane monitoring reports. Respondents, however, are... adjusted the calculations to exclude any Agency burden associated with surface methane monitoring. We have...
de Medeiros Engelmann, Pâmela; Dos Santos, Victor Hugo Jacks Mendes; Moser, Letícia Isabela; do Canto Bruzza, Eduardo; Barbieri, Cristina Barazzetti; Barela, Pâmela Susin; de Moraes, Diogo Pompéu; Augustin, Adolpho Herbert; Goudinho, Flávio Soares; Melo, Clarissa Lovato; Ketzer, João Marcelo Medina; Rodrigues, Luiz Frederico
2017-09-01
In Brazil, landfills are commonly used as a method for the final disposal of waste that is compliant with the legislation. This technique, however, presents a risk to surface water and groundwater resources, owing to the leakage of metals, anions, and organic compounds. The geochemical monitoring of water resources is therefore extremely important, since the leachate can compromise the quality and use of surface water and groundwater close to landfills. In this paper, the results of analyses of metals, anions, ammonia, and physicochemical parameters were used to identify possible contamination of surface water and groundwater in a landfill area. A statistical multivariate approach was used. The values found for alkali metals, nitrate, and chloride indicate contamination in the regional groundwater and, moreover, surface waters also show variation when compared to the other background points, mainly for ammonia. Thus, the results of this study evidence the landfill leachate influence on the quality of groundwater and surface water in the study area.
Eksin, Ece; Zor, Erhan; Erdem, Arzum; Bingol, Haluk
2017-06-15
Recently, the low-cost effective biosensing systems based on advanced nanomaterials have received a key attention for development of novel assays for rapid and sequence-specific nucleic acid detection. The electrochemical biosensor based on reduced graphene oxide (rGO) modified disposable pencil graphite electrodes (PGEs) were developed herein for electrochemical monitoring of DNA, and also for monitoring of biointeraction occurred between anticancer drug, Daunorubicin (DNR), and DNA. First, rGO was synthesized chemically and characterized by using UV-Vis, TGA, FT-IR, Raman Spectroscopy and SEM techniques. Then, the quantity of rGO assembling onto the surface of PGE by passive adsorption was optimized. The electrochemical behavior of rGO-PGEs was examined by cyclic voltammetry (CV). rGO-PGEs were then utilized for electrochemical monitoring of surface-confined interaction between DNR and DNA using differential pulse voltammetry (DPV) technique. Additionally, voltammetric results were complemented with electrochemical impedance spectroscopy (EIS) technique. Electrochemical monitoring of DNR and DNA was resulted with satisfying detection limits 0.55µM and 2.71µg/mL, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.; Environmental Science Division
In September 2005, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) initiated periodic sampling of groundwater in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Morrill, Kansas. On the basis of available information, the CCC/USDA believes that one or more third parties operated this facility after termination of the CCC/USDA's lease in 1971. The sampling at Morrill is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE), to monitor levels of carbon tetrachloride contaminationmore » identified in the groundwater at this site (Argonne 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater has been sampled twice yearly for a recommended period of two years. The samples are analyzed for volatile organic compounds (VOCs), as well as for selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The sampling is presently conducted in a network of 12 monitoring wells and 3 private wells (Figure 1.1), at locations approved by the KDHE. The scope of the originally approved monitoring has been expanded to include vegetation sampling (initiated in October 2006) and surface water and stream bed sediment sampling (initiated in March 2007). The analytical results for groundwater sampling events at Morrill in September 2005, March 2006, September 2006, and March 2007 were documented previously (Argonne 2006a, 2007c,e). The results have demonstrated the presence of carbon tetrachloride contamination, at levels exceeding the KDHE Tier 2 Risk-Based Screening Level (5.0 {micro}g/L) for this compound, in a groundwater plume extending generally south-southeastward from the former CCC/USDA facility, toward Terrapin Creek at the south edge of the town. Little clear pattern of change in the concentrations observed at the individual monitoring points and little plume migration have been observed in previous monitoring events. Low levels ({le} 1.3 {micro}g/L) of carbon tetrachloride have persistently been detected at monitoring well MW8S, however, along an intermittent tributary to Terrapin Creek. This observation suggests a possible risk of contamination of the surface waters of the creek. In light of these findings, in 2006 the CCC/USDA recommended expansion of the approved monitoring program to include the collection and analysis of surface water samples along Terrapin Creek (Argonne 2007e). At the request of the KDHE (KDHE 2007a), locations for both surface water and shallow sediment sampling were discussed with the KDHE in January 2007. An addendum to the existing monitoring plan and a standard operating procedure (SOP AGEM-15) for sediment sampling were submitted to the KDHE on the basis of these discussions (Argonne 2007a,b). This report presents the results of groundwater, surface water, and sediment sampling performed at Morrill in October 2007, in accord with the monitoring plan (Argonne 2005b) and the addendum to that plan (Argonne 2007a). To supplement these studies, Argonne also sampled natural vegetation along Terrapin Creek in October 2006, April 2007, and July 2007 for analyses for VOCs. The results of the plant tissue analyses are included in this report. The October 2007 groundwater sampling at Morrill represents the fifth and final monitoring event performed under the recommended two-year monitoring program approved by the KDHE.« less
Monitoring the Vadose Zone Moisture Regime Below a Surface Barrier
NASA Astrophysics Data System (ADS)
Zhang, Z. F.; Strickland, C. E.; Field, J. G.
2009-12-01
A 6000 m2 interim surface barrier has been constructed over a portion of the T Tank Farm in the Depart of Energy’s Hanford site. The purpose of using a surface barrier was to reduce or eliminate the infiltration of meteoric precipitation into the contaminated soil zone due to past leaks from Tank T-106 and hence to reduce the rate of movement of the plume. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier on the reduction of soil moisture flow. A vadose zone monitoring system was installed to measure soil water conditions at four horizontal locations (i.e., instrument Nests A, B, C, and D) outside, near the edge of, and beneath the barrier. Each instrument nest consists of a capacitance probe with multiple sensors, multiple heat-dissipation units, and a neutron probe access tube used to measure soil-water content and soil-water pressure. Nest A serves as a control by providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess barrier edge effects. Nests C and D are used to assess the impact of the surface barrier on soil-moisture conditions beneath it. Monitoring began in September 2006 and continues to the present. To date, the monitoring system has provided high-quality data. Results show that the soil beneath the barrier has been draining from the shallower depth. The lack of climate-caused seasonal variation of soil water condition beneath the barrier indicates that the surface barrier has minimized water exchange between the soil and the atmosphere.
Fusion of radar and optical data for mapping and monitoring of water bodies
NASA Astrophysics Data System (ADS)
Jenerowicz, Agnieszka; Siok, Katarzyn
2017-10-01
Remote sensing techniques owe their great popularity to the possibility to obtain of rapid, accurate and information over large areas with optimal time, spatial and spectral resolutions. The main areas of interest for remote sensing research had always been concerned with environmental studies, especially water bodies monitoring. Many methods that are using visible and near- an infrared band of the electromagnetic spectrum had been already developed to detect surface water reservoirs. Moreover, the usage of an image obtained in visible and infrared spectrum allows quality monitoring of water bodies. Nevertheless, retrieval of water boundaries and mapping surface water reservoirs with optical sensors is still quite demanding. Therefore, the microwave data could be the perfect complement to data obtained with passive optical sensors to detect and monitor aquatic environment especially surface water bodies. This research presents the methodology to detect water bodies with open- source satellite imagery acquired with both optical and microwave sensors. The SAR Sentinel- 1 and multispectral Sentinel- 2 imagery were used to detect and monitor chosen reservoirs in Poland. In the research Level, 1 Sentinel- 2 data and Level 1 SAR images were used. SAR data were mainly used for mapping water bodies. Next, the results of water boundaries extraction with Sentinel-1 data were compared to results obtained after application of modified spectral indices for Sentinel- 2 data. The multispectral optical data can be used in the future for the evaluation of the quality of the reservoirs. Preliminary results obtained in the research had shown, that the fusion of data obtained with optical and microwave sensors allow for the complex detection of water bodies and could be used in the future quality monitoring of water reservoirs.
Parnell, J.M.
1997-01-01
The U.S. Geological Survey (USGS), in cooperation with Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, prepared the Surface- and Ground- Water Monitoring Work Plan for Air Force Plant 85 (AFP 85 or Plant), Columbus, Ohio, under the Air Force Installation Restoration Program to characterize any ground-water, surface-water, and soil contamination that may exist at AFP 85. The USGS began the study in November 1996. The Plant was divided into nine sampling areas, which included some previously investi gated study sites. The investigation activities included the collection and presentation of data taken during drilling and water-quality sampling. Data collection focused on the saturated and unsatur ated zones and surface water. Twenty-three soil borings were completed. Ten monitoring wells (six existing wells and four newly constructed monitoring wells) were selected for water-quality sam pling. Surface-water and streambed-sediment sampling locations were chosen to monitor flow onto and off of the Plant. Seven sites were sampled for both surface-water and streambed-sediment quality. This report presents data on the selected inorganic and organic constituents in soil, ground water, surface water, and streambed sediments at AFP 85. The methods of data collection and anal ysis also are included. Knowledge of the geologic and hydrologic setting could aid Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, and its governing regulatory agencies in future remediation studies.
A real-time posture monitoring method for rail vehicle bodies based on machine vision
NASA Astrophysics Data System (ADS)
Liu, Dongrun; Lu, Zhaijun; Cao, Tianpei; Li, Tian
2017-06-01
Monitoring vehicle operation conditions has become significantly important in modern high-speed railway systems. However, the operational impact of monitoring the roll angle of vehicle bodies has principally been limited to tilting trains, while few studies have focused on monitoring the running posture of vehicle bodies during operation. We propose a real-time posture monitoring method to fulfil real-time monitoring requirements, by taking rail surfaces and centrelines as detection references. In realising the proposed method, we built a mathematical computational model based on space coordinate transformations to calculate attitude angles of vehicles in operation and vertical and lateral vibration displacements of single measuring points. Moreover, comparison and verification of reliability between system and field results were conducted. Results show that monitoring of the roll angles of car bodies obtained through the system exhibit variation trends similar to those converted from the dynamic deflection of bogie secondary air springs. The monitoring results of two identical conditions were basically the same, highlighting repeatability and good monitoring accuracy. Therefore, our monitoring results were reliable in reflecting posture changes in running railway vehicles.
High Temporal Resolution Permafrost Monitoring Using a Multiple Stack Insar Technique
NASA Astrophysics Data System (ADS)
Eppler, J.; Kubanski, M.; Sharma, J.; Busler, J.
2015-04-01
The combined effect of climate change and accelerated economic development in Northern regions increases the threat of permafrost related surface deformation to buildings and transportation infrastructure. Satellite based InSAR provides a means for monitoring infrastructure that may be both remote and spatially extensive. However, permafrost poses challenges for InSAR monitoring due to the complex temporal deformation patterns caused by both seasonal active layer fluctuations and long-term changes in permafrost thickness. These dynamics suggest a need for increasing the temporal resolution of multi-temporal InSAR methods. To address this issue we have developed a method that combines and jointly processes two or more same side geometry InSAR stacks to provide a high-temporal resolution estimate of surface deformation. The method allows for combining stacks from more than a single SAR sensor and for a combination of frequency bands. Data for this work have been collected and analysed for an area near the community of Umiujaq, Quebec in Northern Canada and include scenes from RADARSAT-2, TerraSAR-X and COSMO-SkyMed. Multiple stack based surface deformation estimates are compared for several cases including results from the three sensors individually and for all sensors combined. The test cases show substantially similar surface deformation results which correlate well with surficial geology. The best spatial coverage of coherent targets was achieved when data from all sensors were combined. The proposed multiple stack method is demonstrated to improve the estimation of surface deformation in permafrost affected areas and shows potential for deriving InSAR based permafrost classification maps to aid in the monitoring of Northern infrastructure.
Surface Enhanced Raman Scattering Monitoring of Chain Alignment in Freely Suspended Nanomembranes
NASA Astrophysics Data System (ADS)
Jiang, Chaoyang; Lio, Wilber Y.; Tsukruk, Vladimir V.
2005-09-01
The molecular chain reorganization in freely standing membranes with encapsulated gold nanoparticles was studied with surface enhanced Raman scattering (SERS) in the course of their elastic deformations. The efficient SERS was enabled by optimizing the design of gold nanoparticle forming chainlike aggregates, thus creating an exceptional ability to conduct in situ monitoring. Small deformations resulted in the radial orientation of side phenyl rings of polymer backbones while larger deflections led to the polymer chains bridging adjacent nanoparticles within one-dimensional aggregates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
2005-09-01
This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2004 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2004 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are inmore » reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The CY 2004 monitoring data were obtained under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT) and several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Data contained in this report meet applicable requirements of DOE Order 450.1 (Environmental Protection Program) regarding evaluation of groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). However, detailed analysis, evaluation, and interpretation of the CY 2004 monitoring data is deferred to the Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium (BWXT 2005). For each monitoring well, spring, and surface water sampling station included in this report, the GWPP Compendium provides: (1) pertinent well installation and construction information; (2) a complete sampling history, including sampling methods and distinguishing sampling characteristics; (3) an evaluation of hydrologic characteristics, based on pre-sampling groundwater elevations, along with a compilation of available test results (e.g., hydraulic conductivity test data); (4) a discussion of geochemical characteristics based on evaluation of the analytical results for the primary anions and cations; and (5) a detailed analysis and interpretation of the available data for the principal groundwater contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. The following sections of this report provide details regarding the CY 2004 groundwater and surface water monitoring activities in the Bear Creek, East Fork, and Chestnut Ridge Regime. Section 2 briefly describes the hydrogeologic system and generalized extent of groundwater contamination in each regime. Section 3 describes the monitoring programs implemented and associated sampling activities performed in each regime during CY 2004. Section 4 presents an a summary of the CY 2004 monitoring data with regard to the provisions of DOE Order 450.1 (surveillance and exit pathway/perimeter monitoring), including highlights of notable findings and time-series plots of data for CY 2004 sampling locations that provide representative examples of long-term contaminant concentration trends. Brief conclusions and proposed recommendations are provided in Section 5. Section 6 lists the documents cited for more detailed operational, regulatory, and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Monitoring well construction details are in Appendix C. Results of field measurements and laboratory analyses of the groundwater and surface water samples collected during CY 2004 are in Appendix D (Bear Creek Regime), Appendix E (East Fork Regime and surrounding areas), and Appendix F (Chestnut Ridge Regime). Appendix G contains data for quality assurance/quality control (QA/QC) samples associated with monitoring performed in each regime by the Y-12 GWPP.« less
Non-Contact Surface Roughness Measurement by Implementation of a Spatial Light Modulator
Aulbach, Laura; Salazar Bloise, Félix; Lu, Min; Koch, Alexander W.
2017-01-01
The surface structure, especially the roughness, has a significant influence on numerous parameters, such as friction and wear, and therefore estimates the quality of technical systems. In the last decades, a broad variety of surface roughness measurement methods were developed. A destructive measurement procedure or the lack of feasibility of online monitoring are the crucial drawbacks of most of these methods. This article proposes a new non-contact method for measuring the surface roughness that is straightforward to implement and easy to extend to online monitoring processes. The key element is a liquid-crystal-based spatial light modulator, integrated in an interferometric setup. By varying the imprinted phase of the modulator, a correlation between the imprinted phase and the fringe visibility of an interferogram is measured, and the surface roughness can be derived. This paper presents the theoretical approach of the method and first simulation and experimental results for a set of surface roughnesses. The experimental results are compared with values obtained by an atomic force microscope and a stylus profiler. PMID:28294990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC
This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2008 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2008 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions aremore » in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2008 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2008 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and surface water sampling and analysis activities implemented under the Y-12 GWPP including sampling locations and frequency; quality assurance (QA)/quality control (QC) sampling; sample collection and handling; field measurements and laboratory analytes; data management and data quality objective (DQO) evaluation; and groundwater elevation monitoring. However, this report does not include equivalent QA/QC or DQO evaluation information regarding the groundwater and surface water sampling and analysis activities associated with the monitoring programs implemented by BJC. Such details are deferred to the respective programmatic plans and reports issued by BJC (see Section 3.0).« less
NASA Technical Reports Server (NTRS)
Bolten, John; Crow, Wade
2012-01-01
The added value of satellite-based surface soil moisture retrievals for agricultural drought monitoring is assessed by calculating the lagged rank correlation between remotely-sensed vegetation indices (VI) and soil moisture estimates obtained both before and after the assimilation of surface soil moisture retrievals derived from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) into a soil water balance model. Higher soil moisture/VI lag correlations imply an enhanced ability to predict future vegetation conditions using estimates of current soil moisture. Results demonstrate that the assimilation of AMSR-E surface soil moisture retrievals substantially improve the performance of a global drought monitoring system - particularly in sparsely-instrumented areas of the world where high-quality rainfall observations are unavailable.
Space Station Induced Monitoring
NASA Technical Reports Server (NTRS)
Spann, James F. (Editor); Torr, Marsha R. (Editor)
1988-01-01
This report contains the results of a conference convened May 10-11, 1988, to review plans for monitoring the Space Station induced environment, to recommend primary components of an induced environment monitoring package, and to make recommendations pertaining to suggested modifications of the Space Station External Contamination Control Requirements Document JSC 30426. The contents of this report are divided as Follows: Monitoring Induced Environment - Space Station Work Packages Requirements, Neutral Environment, Photon Emission Environment, Particulate Environment, Surface Deposition/Contamination; and Contamination Control Requirements.
Study on Stability Analysis and Monitoring Technology of Deep Concave Open-Pit Mine Slope
NASA Astrophysics Data System (ADS)
Xue, Dinglong; Ren, Fenghua; Li, Yuan
2018-05-01
In this paper, using the FLAC3D software to establish the numerical model of the rock slope in the south of Washan stope and to compare and verify with the monitoring result, reference is made to the original engineering and hydrogeological data of Washan stope. The results show that the stability of the South slope is mainly affected by the dominant structural plane, and the potential slip surface and the dominant structure surface are the same. During the recovery period of -120m platform residual mine, the disturbance stress is increasing but the overall amplitude is small and the slope is relatively stable.
40 CFR 63.7907 - What are my inspection and monitoring requirements for surface impoundments?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 13 2010-07-01 2010-07-01 false What are my inspection and monitoring requirements for surface impoundments? 63.7907 Section 63.7907 Protection of Environment ENVIRONMENTAL... Remediation Surface Impoundments § 63.7907 What are my inspection and monitoring requirements for surface...
40 CFR 63.7907 - What are my inspection and monitoring requirements for surface impoundments?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 14 2013-07-01 2013-07-01 false What are my inspection and monitoring requirements for surface impoundments? 63.7907 Section 63.7907 Protection of Environment ENVIRONMENTAL... Remediation Surface Impoundments § 63.7907 What are my inspection and monitoring requirements for surface...
40 CFR 63.7907 - What are my inspection and monitoring requirements for surface impoundments?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 14 2014-07-01 2014-07-01 false What are my inspection and monitoring requirements for surface impoundments? 63.7907 Section 63.7907 Protection of Environment ENVIRONMENTAL... Remediation Surface Impoundments § 63.7907 What are my inspection and monitoring requirements for surface...
40 CFR 63.7907 - What are my inspection and monitoring requirements for surface impoundments?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 14 2012-07-01 2011-07-01 true What are my inspection and monitoring requirements for surface impoundments? 63.7907 Section 63.7907 Protection of Environment ENVIRONMENTAL... Remediation Surface Impoundments § 63.7907 What are my inspection and monitoring requirements for surface...
40 CFR 63.7907 - What are my inspection and monitoring requirements for surface impoundments?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 13 2011-07-01 2011-07-01 false What are my inspection and monitoring requirements for surface impoundments? 63.7907 Section 63.7907 Protection of Environment ENVIRONMENTAL... Remediation Surface Impoundments § 63.7907 What are my inspection and monitoring requirements for surface...
Monitoring Surface Climate With its Emissivity Derived From Satellite Measurements
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu
2012-01-01
Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth fs environment. Long-term and large-scale observations needed for global monitoring and research can be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last 5 years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature T(sub s) and emissivity spectra epsilon(sub v) with a spatial resolution of 0.5x0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. We demonstrate that surface epsilon(sub v) and T(sub s) retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface epsilon(sub v) together with T(sub s) from current and future operational satellites can be utilized as a means of long-term and large-scale monitoring of Earth 's surface weather environment and associated changes.
Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium, Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This document is a compendium of water quality and hydrologic characterization data obtained through December 2005 from the network of groundwater monitoring wells and surface water sampling stations (including springs and building sumps) at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee that have been sampled since January 2003. The primary objectives of this document, hereafter referenced as the Y-12 Groundwater Protection Program (GWPP) Compendium, are to: (1) Serve as a single-source reference for monitoring data that meet the requirements of the Y-12 GWPP, as defined in the Y-12 GWPP Management Plan (BWXTmore » Y-12 L.L.C. [BWXT] 2004); (2) Maintain a detailed analysis and evaluation of the monitoring data for each applicable well, spring, and surface water sampling station, with a focus on results for the primary inorganic, organic, and radiological contaminants in groundwater and surface water at Y-12; and (3) Ensure retention of ''institutional knowledge'' obtained over the long-term (>20-year) history of groundwater and surface water monitoring at Y-12 and the related sources of groundwater and surface water contamination. To achieve these goals, the Y-12 GWPP Compendium brings together salient hydrologic, geologic, geochemical, water-quality, and environmental compliance information that is otherwise disseminated throughout numerous technical documents and reports prepared in support of completed and ongoing environmental contamination assessment, remediation, and monitoring activities performed at Y-12. The following subsections provide background information regarding the overall scope and format of the Y-12 GWPP Compendium and the planned approach for distribution and revision (i.e., administration) of this ''living'' document.« less
Towards innovative roadside monitoring
NASA Astrophysics Data System (ADS)
Ojha, G.; Appel, E.; Magiera, T.
2012-04-01
Soil contamination along roadsides is an important factor of anthropogenic point source pollution. Climatic and traffic-specific factors influence the amount and characteristics of pollution emitted and deposited in the roadside soil. In our present study we focus on monitoring typical traffic pollutants (heavy metals HM, platinum group elements, polycyclic hydrocarbons PAH), and investigate the use of magnetic parameters, especially magnetic susceptibility (MS) as proxy. Monitoring plots were installed along roadside in areas with different climatic conditions and different traffic-specific activities (traffic density and speed, vehicle types, abrasion of tires, brake linings, petrol/diesel compounds and road maintenance). For monitoring we removed 10-15 cm of top soil at 1 m distance from the roadside edge and placed 30 plastic boxes there filled with clean quartz sand, to be sampled after regular intervals within two years. Preliminary data from the first year of monitoring are presented. Magnetic results revealed that a coarse grained magnetite-like phase is responsible for the enhancement of magnetic concentration. The mass-specific MS and concentration of pollutants (HM, PAH) all show a significant increase with time, however, there are obviously also seasonal and site-dependent effects which lead to more stable values over several months or even some decrease in the upper few cm due to migration into depth. Source identification indicates that the accumulated PAHs are primarily emissions from traffic. In order to be able to discriminate in between different kinds of transport and deposition (surface run off from the road and neighbouring soil material, splash water, air transport), we additionally established pillars at the roadside with clean quartz sampling boxes at different heights (surface, 0.5 m, 2 m). As a first surprising result we observed that the increase in the boxes at surface is not necessarily higher than at 0.5 m height. The results from our monitoring studies will be utilized to understand site-specific characteristics and to develop new innovative roadside pollution monitoring concepts.
NASA Astrophysics Data System (ADS)
Messier, K. P.; Kane, E.; Bolich, R.; Serre, M. L.
2014-12-01
Nitrate (NO3-) is a widespread contaminant of groundwater and surface water across the United States that has deleterious effects to human and ecological health. Legacy contamination, or past releases of NO3-, is thought to be impacting current groundwater and surface water of North Carolina. This study develops a model for predicting point-level groundwater NO3- at a state scale for monitoring wells and private wells of North Carolina. A land use regression (LUR) model selection procedure known as constrained forward nonlinear regression and hyperparameter optimization (CFN-RHO) is developed for determining nonlinear model explanatory variables when they are known to be correlated. Bayesian Maximum Entropy (BME) is then used to integrate the LUR model to create a LUR-BME model of spatial/temporal varying groundwater NO3- concentrations. LUR-BME results in a leave-one-out cross-validation r2 of 0.74 and 0.33 for monitoring and private wells, effectively predicting within spatial covariance ranges. The major finding regarding legacy sources NO3- in this study is that the LUR-BME models show the geographical extent of low-level contamination of deeper drinking-water aquifers is beyond that of the shallower monitoring well. Groundwater NO3- in monitoring wells is highly variable with many areas predicted above the current Environmental Protection Agency standard of 10 mg/L. Contrarily, the private well results depict widespread, low-level NO3-concentrations. This evidence supports that in addition to downward transport, there is also a significant outward transport of groundwater NO3- in the drinking water aquifer to areas outside the range of sources. Results indicate that the deeper aquifers are potentially acting as a reservoir that is not only deeper, but also covers a larger geographical area, than the reservoir formed by the shallow aquifers. Results are of interest to agencies that regulate surface water and drinking water sources impacted by the effects of legacy NO3- sources. Additionally, the results can provide guidance on factors affecting the point-level variability of groundwater NO3- and areas where monitoring is needed to reduce uncertainty. Lastly, LUR-BME predictions can be integrated into surface water models for more accurate management of non-point sources of nitrogen.
2015 Long-Term Hydrologic Monitoring Program Sampling and Analysis Results at Rio Blanco, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Findlay, Rick; Kautsky, Mark
2015-12-01
The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 20–21, 2015. This report documents the analytical results of the Rio Blanco annual monitoring event, the trip report, and the data validation package. The groundwater and surface water monitoring samples were shipped to the GEL Group Inc. laboratories for conventional analysis of tritium and analysis of gamma-emitting radionuclides by high-resolution gamma spectrometry. A subset of water samples collected from wells near the Rio Blanco site was also sent to GEL Group Inc.more » for enriched tritium analysis. All requested analyses were successfully completed. Samples were collected from a total of four onsite wells, including two that are privately owned. Samples were also collected from two additional private wells at nearby locations and from nine surface water locations. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and they were analyzed for tritium using the conventional method with a detection limit on the order of 400 picocuries per liter (pCi/L). Four locations (one well and three surface locations) were analyzed using the enriched tritium method, which has a detection limit on the order of 3 pCi/L. The enriched locations included the well at the Brennan Windmill and surface locations at CER-1, CER-4, and Fawn Creek 500 feet upstream.« less
2014-01-02
of the formation of a hydrogen-bonded hydroxyl. Characteristic modes of the sarin molecule itself are also ob- served. These experimental results show...chemical warfare agent, surface science, uptake, decontamination, filtration , UHV, XPS, FTIR, TPD REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S...challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Aubrey E.; Hopkinson, Leslie; Soeder, Daniel
Surface water and groundwater risks associated with unconventional oil and gas development result from potential spills of the large volumes of chemicals stored on-site during drilling and hydraulic fracturing operations, and the return to the surface of significant quantities of saline water produced during oil or gas well production. To better identify and mitigate risks, watershed models and tools are needed to evaluate the dispersion of pollutants in possible spill scenarios. This information may be used to determine the placement of in-stream water-quality monitoring instruments and to develop early-warning systems and emergency plans. A chemical dispersion model has been usedmore » to estimate the contaminant signal for in-stream measurements. Spills associated with oil and gas operations were identified within the Susquehanna River Basin Commission’s Remote Water Quality Monitoring Network. The volume of some contaminants was found to be sufficient to affect the water quality of certain drainage areas. The most commonly spilled compounds and expected peak concentrations at monitoring stations were used in laboratory experiments to determine if a signal could be detected and positively identified using standard water-quality monitoring equipment. The results were compared to historical data and baseline observations of water quality parameters, and showed that the chemicals tested do commonly affect water quality parameters. This work is an effort to demonstrate that hydrologic and water quality models may be applied to improve the placement of in-stream water quality monitoring devices. This information may increase the capability of early-warning systems to alert community health and environmental agencies of surface water spills associated with unconventional oil and gas operations.« less
NASA Technical Reports Server (NTRS)
Scheuring, Richard A.; Hamilton, D.; Jones, J. A.; Alexander, D.
2008-01-01
Currently there are several physiological monitoring requirements for Extravehicular Activity (EVA) in the Human-Systems Interface Requirements (HSIR) document, including continuous heart rhythm monitoring. However, it is not known whether heart rhythm monitoring in the lunar surface space suit is a necessary capability for lunar surface operations or in launch/landing suit the event of a cabin depressurization enroute to or from the moon. Methods: Current US astronaut corps demographic information was provided to an expert panel of cardiovascular medicine experts, including specialists in electrophysiology, exercise physiology, interventional cardiology and arrhythmia. This information included averages for male/female age, body mass index (BMI), blood pressure, cholesterol, inflammatory markers, echocardiogram, ranges for coronary artery calcium (CAC) scores for long duration astronauts, and ranges for heart rate (HR) and metabolic (MET) rates obtained during microgravity and lunar EVA. Results: The panel determined that no uncontrolled hazard was likely to occur in the suit during lunar surface or contingency microgravity ops that would require ECG monitoring in the highly screened US astronaut population. However having the capability for rhythm monitoring inside the vehicle (IVA) was considered critical to manage an astronaut in distress. Discussion: Heart rate (HR) monitoring alone allows effective monitoring of astronaut health and function. Consequently, electrocardiographic (ECG) monitoring capability as a clinical tool is not essential in the lunar or launch/landing space suit. However, the panel considered that rhythm monitoring could be useful in certain clinical situations, it was not considered required for safe operations. Also, lunar vehicles should be required to have ECG monitoring capability with a minimum of 5-lead ECG (derived 12- lead) for IVA medical assessments.
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Lewicki, J. L.; Zhang, Y.
2003-12-01
The injection of CO2 into deep geologic formations for the purpose of carbon sequestration entails risk that CO2 will leak upward from the target formation and ultimately seep out of the ground surface. We have developed a coupled subsurface and atmospheric surface layer modeling capability based on TOUGH2 to simulate CO2 leakage and seepage. Simulation results for representative subsurface and surface layer conditions are used to specify the requirements of potential near-surface monitoring strategies relevant to both health, safety, and environmental risk assessment as well as sequestration verification. The coupled model makes use of the standard multicomponent and multiphase framework of TOUGH2 and extends the model domain to include an atmospheric surface layer. In the atmospheric surface layer, we assume a logarithmic velocity profile for the time-averaged wind and make use of Pasquill-Gifford and Smagorinski dispersion coefficients to model surface layer dispersion. Results for the unsaturated zone and surface layer show that the vadose zone pore space can become filled with pure CO2 even for small leakage fluxes, but that CO2 concentrations above the ground surface are very low due to the strong effects of dispersion caused by surface winds. Ecological processes such as plant photosynthesis and root respiration, as well as biodegradation in soils, strongly affect near-surface CO2 concentrations and fluxes. The challenge for geologic carbon sequestration verification is to discern the leakage and seepage signal from the ecological signal. Our simulations point to the importance of subsurface monitoring and the need for geochemical (e.g., isotopic) analyses to distinguish leaking injected fossil CO2 from natural ecological CO2. This work was supported by the Office of Science, U.S. Department of Energy under contract No. DE-AC03-76SF00098.
Lee, Terrie M.; Fouad, Geoffrey G.
2014-01-01
In Florida’s karst terrain, where groundwater and surface waters interact, a mapping time series of the potentiometric surface in the Upper Floridan aquifer offers a versatile metric for assessing the hydrologic condition of both the aquifer and overlying streams and wetlands. Long-term groundwater monitoring data were used to generate a monthly time series of potentiometric surfaces in the Upper Floridan aquifer over a 573-square-mile area of west-central Florida between January 2000 and December 2009. Recorded groundwater elevations were collated for 260 groundwater monitoring wells in the Northern Tampa Bay area, and a continuous time series of daily observations was created for 197 of the wells by estimating missing daily values through regression relations with other monitoring wells. Kriging was used to interpolate the monthly average potentiometric-surface elevation in the Upper Floridan aquifer over a decade. The mapping time series gives spatial and temporal coherence to groundwater monitoring data collected continuously over the decade by three different organizations, but at various frequencies. Further, the mapping time series describes the potentiometric surface beneath parts of six regionally important stream watersheds and 11 municipal well fields that collectively withdraw about 90 million gallons per day from the Upper Floridan aquifer. Monthly semivariogram models were developed using monthly average groundwater levels at wells. Kriging was used to interpolate the monthly average potentiometric-surface elevations and to quantify the uncertainty in the interpolated elevations. Drawdown of the potentiometric surface within well fields was likely the cause of a characteristic decrease and then increase in the observed semivariance with increasing lag distance. This characteristic made use of the hole effect model appropriate for describing the monthly semivariograms and the interpolated surfaces. Spatial variance reflected in the monthly semivariograms decreased markedly between 2002 and 2003, timing that coincided with decreases in well-field pumping. Cross-validation results suggest that the kriging interpolation may smooth over the drawdown of the potentiometric surface near production wells. The groundwater monitoring network of 197 wells yielded an average kriging error in the potentiometric-surface elevations of 2 feet or less over approximately 70 percent of the map area. Additional data collection within the existing monitoring network of 260 wells and near selected well fields could reduce the error in individual months. Reducing the kriging error in other areas would require adding new monitoring wells. Potentiometric-surface elevations fluctuated by as much as 30 feet over the study period, and the spatially averaged elevation for the entire surface rose by about 2 feet over the decade. Monthly potentiometric-surface elevations describe the lateral groundwater flow patterns in the aquifer and are usable at a variety of spatial scales to describe vertical groundwater recharge and discharge conditions for overlying surface-water features.
Structural Health Monitoring of Composite Materials Using Distributed Fiber Bragg Sensors
NASA Technical Reports Server (NTRS)
Grant, Joseph; Kual, Raj; Taylor, Scott; Jackson, Kurt V.; Myers, George; Wang, Y.; Sharma, A.; Burdine, Robert (Technical Monitor)
2002-01-01
Health monitoring of polymer matrix composite materials using fiber optic Bragg grating (FBG) sensors is accomplished using a tunable IR (infrared) laser via transmission mode. Results are presented from experiments of composite structures with FBG's embedded at various orientations, and surface measurements of various cryogenic composite vessels.
Method and apparatus for monitoring and measuring the surface tension of a fluid using fiber optics
Abraham, B.M.; Ketterson, J.B.; Bohanon, T.M.; Mikrut, J.M.
1994-04-12
A non-contact method and apparatus are described for measuring and monitoring the surface of a fluid using fiber optics and interferometric detection to permit measurement of mechanical characteristics of fluid surfaces. The apparatus employs an alternating electric field gradient for generating a capillary wave on the surface of the fluid. A fiber optic coupler and optical fiber directs a portion of a laser beam onto the surface of the fluid, another portion of the laser beam onto the photo sensor, and directs light reflected from the surface of the fluid onto the photo sensor. The output of the photo sensor is processed and coupled to a phase sensitive detector to permit measurement of phase shift between the drive signal creating the capillary wave and the detected signal. This phase shift information is then used to determine mechanical properties of the fluid surface such as surface tension, surface elasticity, and surface inhomogeneity. The resulting test structure is easily made compact, portable, and easy to align and use. 4 figures.
Monitoring the spatial and temporal evolution of slope instability with Digital Image Correlation
NASA Astrophysics Data System (ADS)
Manconi, Andrea; Glueer, Franziska; Loew, Simon
2017-04-01
The identification and monitoring of ground deformation is important for an appropriate analysis and interpretation of unstable slopes. Displacements are usually monitored with in-situ techniques (e.g., extensometers, inclinometers, geodetic leveling, tachymeters and D-GPS), and/or active remote sensing methods (e.g., LiDAR and radar interferometry). In particular situations, however, the choice of the appropriate monitoring system is constrained by site-specific conditions. Slope areas can be very remote and/or affected by rapid surface changes, thus hardly accessible, often unsafe, for field installations. In many cases the use of remote sensing approaches might be also hindered because of unsuitable acquisition geometries, poor spatial resolution and revisit times, and/or high costs. The increasing availability of digital imagery acquired from terrestrial photo and video cameras allows us nowadays for an additional source of data. The latter can be exploited to visually identify changes of the scene occurring over time, but also to quantify the evolution of surface displacements. Image processing analyses, such as Digital Image Correlation (known also as pixel-offset or feature-tracking), have demonstrated to provide a suitable alternative to detect and monitor surface deformation at high spatial and temporal resolutions. However, a number of intrinsic limitations have to be considered when dealing with optical imagery acquisition and processing, including the effects of light conditions, shadowing, and/or meteorological variables. Here we propose an algorithm to automatically select and process images acquired from time-lapse cameras. We aim at maximizing the results obtainable from large datasets of digital images acquired with different light and meteorological conditions, and at retrieving accurate information on the evolution of surface deformation. We show a successful example of application of our approach in the Swiss Alps, more specifically in the Great Aletsch area, where slope instability was recently reactivated due to the progressive glacier retreat. At this location, time-lapse cameras have been installed during the last two years, ranging from low-cost and low-resolution webcams to more expensive high-resolution reflex cameras. Our results confirm that time-lapse cameras provide quantitative and accurate measurements of surface deformation evolution over space and time, especially in situations when other monitoring instruments fail.
Towards a Near Real-Time Satellite-Based Flux Monitoring System for the MENA Region
NASA Astrophysics Data System (ADS)
Ershadi, A.; Houborg, R.; McCabe, M. F.; Anderson, M. C.; Hain, C.
2013-12-01
Satellite remote sensing has the potential to offer spatially and temporally distributed information on land surface characteristics, which may be used as inputs and constraints for estimating land surface fluxes of carbon, water and energy. Enhanced satellite-based monitoring systems for aiding local water resource assessments and agricultural management activities are particularly needed for the Middle East and North Africa (MENA) region. The MENA region is an area characterized by limited fresh water resources, an often inefficient use of these, and relatively poor in-situ monitoring as a result of sparse meteorological observations. To address these issues, an integrated modeling approach for near real-time monitoring of land surface states and fluxes at fine spatio-temporal scales over the MENA region is presented. This approach is based on synergistic application of multiple sensors and wavebands in the visible to shortwave infrared and thermal infrared (TIR) domain. The multi-scale flux mapping and monitoring system uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI), and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) in conjunction with model reanalysis data and multi-sensor remotely sensed data from polar orbiting (e.g. Landsat and MODerate resolution Imaging Spectroradiometer (MODIS)) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate time-continuous (i.e. daily) estimates of field-scale water, energy and carbon fluxes. Within this modeling system, TIR satellite data provide information about the sub-surface moisture status and plant stress, obviating the need for precipitation input and a detailed soil surface characterization (i.e. for prognostic modeling of soil transport processes). The STARFM fusion methodology blends aspects of high frequency (spatially coarse) and spatially fine resolution sensors and is applied directly to flux output fields to facilitate daily mapping of fluxes at sub-field scales. A complete processing infrastructure to automatically ingest and pre-process all required input data and to execute the integrated modeling system for near real-time agricultural monitoring purposes over targeted MENA sites is being developed, and initial results from this concerted effort will be discussed.
NASA Astrophysics Data System (ADS)
Watlet, A.; Van Camp, M. J.; Francis, O.; Poulain, A.; Hallet, V.; Rochez, G.; Kaufmann, O.
2015-12-01
The vadose zone of karst systems plays an important role on the water dynamics. In particular, temporary perched aquifers can appear in the subsurface due to changes of climate conditions, diminished evapotranspiration and differences of porosity relative to deeper layers. It is therefore crucial, but challenging, to separate the hydrological signature of the vadose zone from the one of the saturated zone for understanding hydrological processes that occur in the vadose zone. Although many difficulties are usually encountered when studying karst environments due to their heterogeneities, cave systems offer an outstanding opportunity to investigate vadose zone from the inside with various techniques. We present results covering two years of hydrogeological and geophysical monitoring at the Rochefort Cave Laboratory (RCL), located in the Variscan fold-and-thrust belt (Belgium), a region that shows many karstic networks within Devonian limestone units. Hydrogeological data such as flows and levels monitoring or tracer tests performed in both vadose and saturated zones bring valuable information on the hydrological context of the studied area. Combining those results with geophysical measurements allows validating and imaging them with more integrative techniques. A microgravimetric monitoring involves a superconducting gravimeter continuously measuring at the surface of the RCL. Early in 2015, a second relative gravimeter was installed in the underlying cave system located 35 meters below the surface. This set up allows highlighting vadose gravity changes. These relative measurements are calibrated using an absolute gravimeter. 12 additional stations (7 at the surface, 5 in the cave) are monitored on a monthly basis by a spring gravimeter. To complete these gravimetric measurements, the site has been equipped with a permanent Electrical Resistivity Tomography (ERT) monitoring system comprising an uncommon array of surface, borehole and cave electrodes. Although such an unconventional ERT setup is challenging in terms of data processing and interpretation, it provides valuable data for inferring variations of the vadose zone saturation rate.
A Coupled model for ERT monitoring of contaminated sites
NASA Astrophysics Data System (ADS)
Wang, Yuling; Zhang, Bo; Gong, Shulan; Xu, Ya
2018-02-01
The performance of electrical resistivity tomography (ERT) system is usually investigated using a fixed resistivity distribution model in numerical simulation study. In this paper, a method to construct a time-varying resistivity model by coupling water transport, solute transport and constant current field is proposed for ERT monitoring of contaminated sites. Using the proposed method, a monitoring model is constructed for a contaminated site with a pollution region on the surface and ERT monitoring results at different time is calculated by the finite element method. The results show that ERT monitoring profiles can effectively reflect the increase of the pollution area caused by the diffusion of pollutants, but the extent of the pollution is not exactly the same as the actual situation. The model can be extended to any other case and can be used to scheme design and results analysis for ERT monitoring.
Hydrologic modeling for monitoring water availability in Eastern and Southern Africa
NASA Astrophysics Data System (ADS)
McNally, A.; Harrison, L.; Shukla, S.; Pricope, N. G.; Peters-Lidard, C. D.
2017-12-01
Severe droughts in 2015, 2016 and 2017 in Ethiopia, Southern Africa, and Somalia have negatively impacted agriculture and municipal water supplies resulting in food and water insecurity. Information from remotely sensed data and field reports indicated that the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation (FLDAS) accurately tracked both the anomalously low soil moisture, evapotranspiration and runoff conditions. This work presents efforts to more precisely monitor how the water balance responds to water availability deficits (i.e. drought) as estimated by the FLDAS with CHIRPS precipitation, MERRA-2 meteorological forcing and the Noah33 land surface model.Preliminary results indicate that FLDAS streamflow estimates are well correlated with observed streamflow where irrigation and other channel modifications are not present; FLDAS evapotranspiration (ET) is well correlated with ET from the Operational Simplified Surface Energy Balance model (SSEBop) in Eastern and Southern Africa. We then use these results to monitor availability, and explore trends in water supply and demand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-01
This document describes the environmental monitoring program at the Maywood Interim Storage Site (MISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of MISS began in 1984 when congress added the site to the US Department of Energy`s (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at MISS includesmore » sampling networks for radon and thoron concentrations in air; external gamma radiation-exposure; and total uranium, radium-226, radium-228, thorium-232, and thorium-230 concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in surface water, sediment, and groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1992-09-01
This document describes the environmental monitoring program at the Maywood Interim Storage Site (MISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of MISS began in 1984 when congress added the site to the US Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at MISS includesmore » sampling networks for radon and thoron concentrations in air; external gamma radiation-exposure; and total uranium, radium-226, radium-228, thorium-232, and thorium-230 concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in surface water, sediment, and groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.« less
Monitoring strip mining and reclamation with LANDSAT data in Belmont County, Ohio
NASA Technical Reports Server (NTRS)
Witt, R. G.; Schaal, G. M.; Bly, B. G.
1983-01-01
The utility of LANDSAT digital data for mapping and monitoring surface mines in Belmont County, Ohio was investigated. Two data sets from 1976 and 1979 were processed to classify level 1 land covers and three strip mine categories in order to examine change over time and assess reclamation efforts. The two classifications were compared with aerial photographs. Results of the accuracy assessment show that both classifications are approximately 86 per cent correct, and that surface mine change detection (date-to-date comparison) is facilitated by the digital format of LANDSAT data.
Surface energy fluxes in complex terrain
NASA Technical Reports Server (NTRS)
Reiter, E. R.; Sheaffer, J. D.; Bossert, J. E.
1986-01-01
The emphasis of the 1985 NASA project activity was on field measurements of wind data and heat balance data. Initiatives included a 19 station mountaintop monitoring program, testing and refining the surface flux monitoring systems and packing and shipping equipment to the People's Republic of China in preparation for the 1986 Tibet Experiment. Other work included more extensive analyses of the 1984 Gobi Desert and Rocky Mountain observations plus some preliminary analyses of the 1985 mountaintop network data. Details of our field efforts are summarized and results of our data analyses are presented.
SU-E-J-194: Continuous Patient Surface Monitoring and Motion Analysis During Lung SBRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, E; Rioux, A; Benedict, S
2015-06-15
Purpose: Continuous monitoring of the SBRT lung patient motion during delivery is critical for ensuring adequate target volume margins in stereotactic body radiotherapy (SBRT). This work assesses the deviation of the patient surface motion using a real-time surface tracking system throughout treatment delivery. Methods: Our SBRT protocol employs abdominal compression to reduce the diaphragm movement to within 1 cm, and this is confirmed daily with fluoroscopy. Most patients are prescribed 3–5 fractions, and on treatment day a repeat motion analysis with fluoroscopy is performed, followed by a kV CBCT is aligned with the original planning CT image for 3D setupmore » confirmation. During this entire process a patient surface data restricted to whole chest or the sternum at the middle of the breathing cycle was captured using AlignRT optical surface tracking system and defined as a reference surface. For 10 patients, the deviation of the patient position from the reference surface was recorded during the SBRT delivery in the anterior-posterior (AP) direction at 3–6 measurements per second. Results: On average, the patient position deviated from the reference surface more than 4 mm, 3 mm and 2 mm in the AP direction for 0.95%, 3.7% and 11.1% of the total treatment time, respectively. Only one of the 10 patients showed that the maximum deviation of the patient surface during the SBRT delivery was greater than 1 cm. The average deviation of the patient surface from the reference surface during the SBRT delivery was not greater than 1.6 mm for any patient. Conclusion: This investigation indicates that AP motion can be significant even though the frequency is low. Continuous monitoring during SBRT has demonstrated value in monitoring patient motion ensuring that margins selected for SBRT are appropriate, and the use of non-ionizing and high-frequency imaging can provide useful indicators of motion during treatment.« less
Monitoring of Surface Subsidence of the Mining Area Based on Sbas
NASA Astrophysics Data System (ADS)
Zhu, Y.; Zhou, S.; Zang, D.; Lu, T.
2018-05-01
This paper has collected 7 scenes of L band PALSAR sensor radar data of a mine in FengCheng city, jiangxi province, using the Small-baseline Subset (SBAS) method to invert the surface subsidence of the mine. Baselines of interference less than 800m has been chosen to constitute short baseline differential interference atlas, using pixels whose average coherent coefficient was larger than or equal to 0.3 as like high coherent point target, using singular value decomposition (SVD) method to calculate deformation phase sequence based on these high coherent points, and the accumulation of settlements of study area of different period had been obtained, so as to reflect the ground surface settlement evolution of the settlement of the area. The results of the study has showed that: SBAS technology has overcome coherent problem of the traditionality D-InSAR technique, continuous deformation field of surface mining in time dimension of time could been obtained, characteristics of ground surface settlement of mining subsidence in different period has been displayed, so to improve the accuracy and reliability of the monitoring results.
Laboratory-based geoelectric monitoring of water infiltration in consolidated ground
NASA Astrophysics Data System (ADS)
Yang, Lining; Sun, Qiang; Yang, Haiping
2018-04-01
Infiltration usually plays a significant role in construction failures and transfer of contaminants. Therefore, it is very important to monitor underground water migration. In this study, a soil infiltration experiment was carried out using an indoor model test. The water infiltration characteristics were recorded and analyzed based on the response of the geoelectric field, including the primary field potential, self-potential, excitation current and apparent resistivity. The phreatic water surface and the infiltration velocity were determined. The inversion results were compared with direct observations. The results showed that the changes in the geoelectric field parameters explain the principles of groundwater flow. The infiltration velocity and the phreatic surface can be determined based on the primary field potential response and the excitation current. When the phreatic surface reached the location of the electrodes, the primary field potential and self-potential decreased rapidly whereas the excitation current increased rapidly. The height of the phreatic surface and the infiltration time exhibited a linear relationship for both the observation data and the calculations of the excitation current. The apparent resistivity described the infiltration status in the soil and tracked the phreatic surface accurately.
Surface Infiltration Rates of Permeable Surfaces: Six Month ...
At the end of October 2009, EPA opened a parking lot on the Edison Environmental Center that included three parking rows of permeable pavement. The construction was a cooperative effort among EPA’s Office of Administration and Resources Management, National Risk Management Research Laboratory, and the facility owner, Region 2. The lot serves as an active parking area for facility staff and visitors and also as a research platform. Key unknowns in the application of green infrastructure include the long term performance and the maintenance requirements. The perceived uncertainty in these is a barrier to widespread adoption of the installation of permeable surfaces for stormwater management. EPA recognizes the need for credible long-term performance maintenance data and has begun a long-term monitoring effort on this installation. This document outlines the methods and results of the surface infiltration monitoring of the permeable parking surfaces during the first six months of operation. To inform the public.
Evaluating Dense 3d Reconstruction Software Packages for Oblique Monitoring of Crop Canopy Surface
NASA Astrophysics Data System (ADS)
Brocks, S.; Bareth, G.
2016-06-01
Crop Surface Models (CSMs) are 2.5D raster surfaces representing absolute plant canopy height. Using multiple CMSs generated from data acquired at multiple time steps, a crop surface monitoring is enabled. This makes it possible to monitor crop growth over time and can be used for monitoring in-field crop growth variability which is useful in the context of high-throughput phenotyping. This study aims to evaluate several software packages for dense 3D reconstruction from multiple overlapping RGB images on field and plot-scale. A summer barley field experiment located at the Campus Klein-Altendorf of University of Bonn was observed by acquiring stereo images from an oblique angle using consumer-grade smart cameras. Two such cameras were mounted at an elevation of 10 m and acquired images for a period of two months during the growing period of 2014. The field experiment consisted of nine barley cultivars that were cultivated in multiple repetitions and nitrogen treatments. Manual plant height measurements were carried out at four dates during the observation period. The software packages Agisoft PhotoScan, VisualSfM with CMVS/PMVS2 and SURE are investigated. The point clouds are georeferenced through a set of ground control points. Where adequate results are reached, a statistical analysis is performed.
Sheffield, L.M.; Gall, Adrian E.; Roby, D.D.; Irons, D.B.; Dugger, K.M.
2006-01-01
Least Auklets (Aethia pusilla (Pallas, 1811)) are the most abundant species of seabird in the Bering Sea and offer a relatively efficient means of monitoring secondary productivity in the marine environment. Counting auklets on surface plots is the primary method used to track changes in numbers of these crevice-nesters, but counts can be highly variable and may not be representative of the number of nesting individuals. We compared average maximum counts of Least Auklets on surface plots with density estimates based on mark–resight data at a colony on St. Lawrence Island, Alaska, during 2001–2004. Estimates of breeding auklet abundance from mark–resight averaged 8 times greater than those from maximum surface counts. Our results also indicate that average maximum surface counts are poor indicators of breeding auklet abundance and do not vary consistently with auklet nesting density across the breeding colony. Estimates of Least Auklet abundance from mark–resight were sufficiently precise to meet management goals for tracking changes in seabird populations. We recommend establishing multiple permanent banding plots for mark–resight studies on colonies selected for intensive long-term monitoring. Mark–resight is more likely to detect biologically significant changes in size of auklet breeding colonies than traditional surface count techniques.
DeVetter, Brent M; Mukherjee, Prabuddha; Murphy, Catherine J; Bhargava, Rohit
2015-05-21
Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min(-1). This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes.
DeVetter, Brent M.; Mukherjee, Prabuddha; Murphy, Catherine J.; Bhargava, Rohit
2015-01-01
Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min 1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes. PMID:25905515
Diagnostic monitoring by infrared imaging of avian embryos
NASA Astrophysics Data System (ADS)
Wurzbach, Richard N.
1998-03-01
For large scale chicken and turkey raising operations, automated 'candling' of eggs for monitoring embryonic development is effective and efficient. Candling is accomplished by the transmission of high intensity light such that it penetrates the translucent egg and gives indications of embryonic position and development. When monitoring the development of other species, however, mixed results are obtained with this technique. For instance, the Emu egg is virtually opaque to transmitted visible light, and thus cannot be candled by traditional means. During the development cycle all avian embryos, and for that mater all egg-laying creatures, exhibit changes in shell surface temperatures that indicate on-going development, or a lack of that development. Additionally, such hazards as bacterial or viral growth within the shell produce atypical thermal signatures. Analysis of the shell surface temperatures may be useful in monitoring the development of these embryos. Further applications of IR thermography in farming of avian species may make it an economically viable monitoring technique.
NASA Technical Reports Server (NTRS)
Dietz, Nikolaus; Bachmann, Klaus J.
1995-01-01
This paper describes the results of real-time optical monitoring of epitaxial growth processes by p-polarized reflectance spectroscopy (PRS) using a single wavelength application under pulsed chemical beam epitaxy (PCBE) condition. The high surface sensitivity of PRS allows the monitoring of submonolayer precursors coverage on the surface as shown for GaP homoepitaxy and GaP on Si heteroepitaxy as examples. In the case of heteroepitaxy, the growth rate and optical properties are revealed by PRS using interference oscillations as they occur during growth. Super-imposed on these interference oscillations, the PRS signal exhibits a fine structure caused by the periodic alteration of the surface chemistry by the pulsed supply of chemical precursors. This fine structure is modeled under conditions where the surface chemistry cycles between phosphorus supersaturated and phosphorus depleted surfaces. The mathematical model describes the fine structure using a surface layer that increases during the tertiarybutyl phosphine (TBP) supply and decreases during and after the triethylgallium (TEG) pulse, which increases the growing GaP film thickness. The imaginary part of the dielectric function of the surface layer is revealed from the turning points in the fine structure, where the optical response to the first precursor pulse in the cycle sequence changes sign. The amplitude of the fine structure is determined by the surface layer thickness and the complex dielectric functions for the surface layer with the underlying bulk film. Surface kinetic data can be obtained by analyzing the rise and decay transients of the fine structure.
Eng, Lars; Garcia, Brandon L; Geisbrecht, Brian V; Hanning, Anders
2018-02-26
Surface plasmon resonance (SPR) is a well-established method for biomolecular interaction studies. SPR monitors the binding of molecules to a solid surface, embodied as refractive index changes close to the surface. One limitation of conventional SPR is the universal nature of the detection that results in an inability to qualitatively discriminate between different binding species. Furthermore, it is impossible to directly discriminate two species simultaneously binding to different sites on a protein, which limits the utility of SPR, for example, in the study of allosteric binders or bi-specific molecules. It is also impossible in principle to discriminate protein conformation changes from actual binding events. Here we demonstrate how Label-Enhanced SPR can be utilized to discriminate and quantitatively monitor the simultaneous binding of two different species - one dye-labeled and one unlabeled - on a standard, single-wavelength SPR instrument. This new technique increases the versatility of SPR technology by opening up application areas where the usefulness of the approach has previously been limited. Copyright © 2018 Elsevier Inc. All rights reserved.
Cyanobacterial blooms occur worldwide and are associated with human respiratory irritation, undesirable taste and odor of potable water, increased drinking water treatment costs, loss of revenue from recreational use, and human illness as a result of ingestion or skin exposure du...
Geological Carbon Sequestration: A New Approach for Near-Surface Assurance Monitoring
Wielopolski, Lucian
2011-01-01
There are two distinct objectives in monitoring geological carbon sequestration (GCS): Deep monitoring of the reservoir’s integrity and plume movement and near-surface monitoring (NSM) to ensure public health and the safety of the environment. However, the minimum detection limits of the current instrumentation for NSM is too high for detecting weak signals that are embedded in the background levels of the natural variations, and the data obtained represents point measurements in space and time. A new approach for NSM, based on gamma-ray spectroscopy induced by inelastic neutron scatterings (INS), offers novel and unique characteristics providing the following: (1) High sensitivity with a reducible error of measurement and detection limits, and, (2) temporal- and spatial-integration of carbon in soil that results from underground CO2 seepage. Preliminary field results validated this approach showing carbon suppression of 14% in the first year and 7% in the second year. In addition the temporal behavior of the error propagation is presented and it is shown that for a signal at the level of the minimum detection level the error asymptotically approaches 47%. PMID:21556180
Flexible surface acoustic wave respiration sensor for monitoring obstructive sleep apnea syndrome
NASA Astrophysics Data System (ADS)
Jin, Hao; Tao, Xiang; Dong, Shurong; Qin, Yiheng; Yu, Liyang; Luo, Jikui; Deen, M. Jamal
2017-11-01
Obstructive sleep apnea syndrome (OSAS) has received much attention in recent years due to its significant harm to human health and high morbidity rate. A respiration monitoring system is needed to detect OSAS, so that the patient can receive treatment in a timely manner. Wired and wireless OSAS monitoring systems have been developed, but they require a wire connection and batteries to operate, and they are bulky, heavy and not user-friendly. In this paper, we propose the use of a flexible surface acoustic wave (SAW) microsensor to detect and monitor OSAS by measuring the humidity change associated with the respiration of a person. SAW sensors on rigid 128° YX LiNbO3 substrate are also characterized for this application. Results show both types of SAW sensors are suitable for OSAS monitoring with good sensitivity, repeatability and reliability, and the response time and recovery time for the flexible SAW sensors are 1.125 and 0.75 s, respectively. Our work demonstrates the potential for an innovative flexible microsensor for the detection and monitoring of OSAS.
NASA Technical Reports Server (NTRS)
Gregory, G. L.; Lee, R. B., III; Mathis, J. J., Jr.
1981-01-01
The Southeastern Virginia Urban Plume Study (SEV-UPS) utilizes remote sensors and satellite platforms to monitor the Earth's environment and resources. SEV-UPS focuses on the application of specific remote sensors to the monitoring and study of specific air quality problems. The 1979 SEV-UPS field program was conducted with specific objectives: (1) to provide correlative data to evaluate the Laser Absorption spectrometer ozone remote sensors; (2) to demonstrate the utility of the sensor for the study of urban ozone problems; (3) to provide additional insights into air quality phenomena occuring in Southeastern Virginia; and (4) to compare measurement results of various in situ measurement platforms. The field program included monitoring from 12 surface stations, 4 aircraft, 2 tethered balloons, 2 radiosonde release sites, and numerous surface meteorological observation sites. The aircraft monitored 03, NO, NOX, Bscat, temperature, and dewpoint temperature.
The impact of faceplate surface characteristics on detection of pulmonary nodules
NASA Astrophysics Data System (ADS)
Toomey, R. J.; Ryan, J. T.; McEntee, M. F.; McNulty, J.; Evanoff, M. G.; Cuffe, F.; Yoneda, T.; Stowe, J.; Brennan, P. C.
2009-02-01
Introduction In order to prevent specular reflections, many monitor faceplates have features such as tiny dimples on their surface to diffuse ambient light incident on the monitor, however, this "anti-glare" surface may also diffuse the image itself. The purpose of the study was to determine whether the surface characteristics of monitor faceplates influence the detection of pulmonary nodules under low and high ambient lighting conditions. Methods and Materials Separate observer performance studies were conducted at each of two light levels (<1 lux and >250 lux). Twelve examining radiologists with the American Board of Radiology participated in the darker condition and eleven in the brighter condition. All observers read on both smooth "glare" and dimpled "anti-glare" faceplates in a single lighting condition. A counterbalanced methodology was utilized to minimise memory effects. In each reading, observers were presented with thirty chest images in random order, of which half contained a single simulated pulmonary nodule. They were asked to give their confidence that each image did or did not contain a nodule and to mark the suspicious location. ROC analysis was applied to resultant data. Results No statistically significant differences were seen in the trapezoidal area under the ROC curve (AUC), sensitivity, specificity or average time per case at either light level for chest specialists or radiologists from other specialities. Conclusion The characteristics of the faceplate surfaces do not appear to affect detection of pulmonary nodules. Further work into other image types is being conducted.
Challenges for implementing water quality monitoring and analysis on a small Costa Rican catchment
NASA Astrophysics Data System (ADS)
Golcher, Christian; Cernesson, Flavie; Tournoud, Marie-George; Bonin, Muriel; Suarez, Andrea
2016-04-01
The Costa Rican water regulatory framework (WRF) (2007), expresses the national concern about the degradation of surface water quality observed in the country since several years. Given the urgency of preserving and restoring the surface water bodies, and facing the need of defining a monitoring tool to classify surface water pollution, the Costa-Rican WRF relies on two water quality indexes: the so-called "Dutch Index" (D.I) and the Biological Monitoring Working Party adapted to Costa Rica (BMWP'CR), allowing an "easy" physicochemical and biological appraisal of the water quality and the ecological integrity of water bodies. Herein, we intend to evaluate whether the compound of water quality indexes imposed by Costa Rican legislation, is suitable to assess rivers local and global anthropogenic pressure and environmental conditions. We monitor water quality for 7 points of Liberia River (northern pacific region - Costa Rica) from March 2013 to July 2015. Anthropogenic pressures are characterized by catchment land use and riparian conditions. Environmental conditions are built from rainfall daily series. Our results show (i) the difficulties to monitor new sites following the recent implementation of the WRF; (ii) the statistical characteristics of each index; and (iii) a modelling tentative of relationships between water quality indexes and explanatory factors (land-use, riparian characteristics and climate conditions).
NASA Astrophysics Data System (ADS)
Schuetze, C.; Sauer, U.; Dietrich, P.
2015-12-01
Reliable detection and assessment of near-surface CO2 emissions from natural or anthropogenic sources require the application of various monitoring tools at different spatial scales. Especially, optical remote sensing tools for atmospheric monitoring have the potential to measure integrally CO2 emissions over larger scales (> 10.000m2). Within the framework of the MONACO project ("Monitoring approach for geological CO2 storage sites using a hierarchical observation concept"), an integrative hierarchical monitoring concept was developed and validated at different field sites with the aim to establish a modular observation strategy including investigations in the shallow subsurface, at ground surface level and the lower atmospheric boundary layer. The main aims of the atmospheric monitoring using optical remote sensing were the observation of the gas dispersion in to the near-surface atmosphere, the determination of maximum concentration values and identification of the main challenges associated with the monitoring of extended emission sources with the proposed methodological set up under typical environmental conditions. The presentation will give an overview about several case studies using the integrative approach of Open-Path Fourier Transform Infrared spectroscopy (OP FTIR) in combination with in situ measurements. As a main result, the method was validated as possible approach for continuous monitoring of the atmospheric composition, in terms of integral determination of GHG concentrations and to identify target areas which are needed to be investigated more in detail. Especially the data interpretation should closely consider the micrometeorological conditions. Technical aspects concerning robust equipment, experimental set up and fast data processing algorithms have to be taken into account for the enhanced automation of atmospheric monitoring.
Temperature grid sensor for the measurement of spatial temperature distributions at object surfaces.
Schäfer, Thomas; Schubert, Markus; Hampel, Uwe
2013-01-25
This paper presents results of the development and application of a new temperature grid sensor based on the wire-mesh sensor principle. The grid sensor consists of a matrix of 256 Pt1000 platinum chip resistors and an associated electronics that measures the grid resistances with a multiplexing scheme at high speed. The individual sensor elements can be spatially distributed on an object surface and measure transient temperature distributions in real time. The advantage compared with other temperature field measurement approaches such as infrared cameras is that the object under investigation can be thermally insulated and the radiation properties of the surface do not affect the measurement accuracy. The sensor principle is therefore suited for various industrial monitoring applications. Its applicability for surface temperature monitoring has been demonstrated through heating and mixing experiments in a vessel.
Analysis of the Material Removal Rate in Magnetic Abrasive Finishing of Thin Film Coated Pyrex Glass
NASA Astrophysics Data System (ADS)
Lee, Hee Hwan; Lee, Seoung Hwan
The material removal rate (MRR) during precision finishing/polishing is a key factor, which dictates the process performance. Moreover, the MRR or wear rate is closely related to the material/part reliability. For nanoscale patterning and/or planarization on nano-order thickness coatings, the prediction and in-process monitoring of the MRR is necessary, because the process is not characterizable due to size effects and material property/process condition variations as a result of the coating/substrate interactions. The purpose of this research was to develop a practical methodology for the prediction and in-process monitoring of MRR during nanoscale finishing of coated surfaces. Using a specially designed magnetic abrasive finishing (MAF) and acoustic emission (AE) monitoring setup, experiments were carried out on indium-zinc-oxide (IZO) coated Pyrex glasses. After a given polishing time interval, AFM indentation was conducted for each workpiece sample to measure the adhesion force variations of the coating layers (IZO), which are directly related to the MRR changes. The force variation and AE monitoring data were compared to the MRR calculated form the surface measurement (Nanoview) results. The experimental results demonstrate strong correlations between AFM indentation and MRR measurement data. In addition, the monitored AE signals show sensitivity of the material structure variations of the coating layer, as the polishing progresses.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-14
..., paper mill, saw mill, and oil refinery repairs; casting services for ``grey iron and brass,'' including... surface soil hot spots, sampling of surface water and sediment in the canals, stratigraphic profiling with..., monitor well installation, ground water sampling, and aquifer testing. Foundry operations resulted in...
Improved Modeling and Prediction of Surface Wave Amplitudes
2017-05-31
structures and derived attenuation coefficients from the Eurasian Q inversion study. 15. SUBJECT TERMS nuclear explosion monitoring, surface waves, membrane...24 4.6 Inversion of Eurasian Attenuation Data for Q Structure ........................................ 31 4.6.1 Data used in the Q Inversion ...33 4.6.2 Q Inversion Results
2016-01-01
We developed a technique to monitor spatially confined surface reactions with mass spectrometry under ambient conditions, without the need for voltage or organic solvents. Fused-silica capillaries immersed in an aqueous solution, positioned in close proximity to each other and the functionalized surface, created a laminar flow junction with a resulting reaction volume of ∼5 pL. The setup was operated with a syringe pump, delivering reagents to the surface through a fused-silica capillary. The other fused-silica capillary was connected to a Venturi easy ambient sonic-spray ionization source, sampling the resulting analytes at a slightly higher flow rate compared to the feeding capillary. The combined effects of the inflow and outflow maintains a chemical microenvironment, where the rate of advective transport overcomes diffusion. We show proof-of-concept where acetylcholinesterase was immobilized on an organosiloxane polymer through electrostatic interactions. The hydrolysis of acetylcholine by acetylcholinesterase into choline was monitored in real-time for a range of acetylcholine concentrations, fused-silica capillary geometries, and operating flow rates. Higher reaction rates and conversion yields were observed with increasing acetylcholine concentrations, as would be expected. PMID:27249533
NASA Astrophysics Data System (ADS)
Craymer, M.; White, D.; Piraszewski, M.; Zhao, Y.; Henton, J.; Silliker, J.; Samsonov, S.
2015-12-01
Aquistore is a demonstration project for the underground storage of CO2 at a depth of ~3350 m near Estevan, Saskatchewan, Canada. An objective of the project is to design, adapt, and test non-seismic monitoring methods that have not been systematically utilized to date for monitoring CO2 storage projects, and to integrate the data from these various monitoring tools to obtain quantitative estimates of the change in subsurface fluid distributions, pressure changes and associated surface deformation. Monitoring methods being applied include satellite-, surface- and wellbore-based monitoring systems and comprise natural- and controlled-source electromagnetic methods, gravity monitoring, continuous GPS, synthetic aperture radar interferometry (InSAR), tiltmeter array analysis, and chemical tracer studies. Here we focus on the GPS, InSAR and gravity monitoring. Five monitoring sites were installed in 2012 and another six in 2013, each including GPS and InSAR corner reflector monuments (some collocated on the same monument). The continuous GPS data from these stations have been processed on a daily basis in both baseline processing mode using the Bernese GPS Software and precise point positioning mode using CSRS-PPP. Gravity measurements at each site have also been performed in fall 2013, spring 2014 and fall 2015, and at two sites in fall 2014. InSAR measurements of deformation have been obtained for a 5 m footprint at each site as well as at the corner reflector point sources. Here we present the first results of this geodetic deformation monitoring after commencement of CO2 injection on April 14, 2015. The time series of these sites are examined, compared and analyzed with respect to monument stability, seasonal signals, longer term trends, and any changes in motion and mass since CO2 injection.
Development of an operational African Drought Monitor prototype
NASA Astrophysics Data System (ADS)
Chaney, N.; Sheffield, J.; Wood, E. F.; Lettenmaier, D. P.
2011-12-01
Droughts have severe economic, environmental, and social impacts. However, timely detection and monitoring can minimize these effects. Based on previous drought monitoring over the continental US, a drought monitor has been developed for Africa. Monitoring drought in data sparse regions such as Africa is difficult due to a lack of historical or real-time observational data at a high spatial and temporal resolution. As a result, a land surface model is used to estimate hydrologic variables, which are used as surrogate observations for monitoring drought. The drought monitoring system consists of two stages: the first is to create long-term historical background simulations against which current conditions can be compared. The second is the real-time estimation of current hydrological conditions that results in an estimated drought index value. For the first step, a hybrid meteorological forcing dataset was created that assimilates reanalysis and observational datasets from 1950 up to real-time. Furthermore, the land surface model (currently the VIC land surface model is being used) was recalibrated against spatially disaggregated runoff fields derived from over 500 GRDC stream gauge measurements over Africa. The final result includes a retrospective database from 1950 to real-time of soil moisture, evapotranspiration, river discharge at the GRDC gauged sites (etc.) at a 1/4 degree spatial resolution, and daily temporal resolution. These observation-forced simulations are analyzed to detect and track historical drought events according to a drought index that is calculated from the soil moisture fields and river discharge relative to their seasonal climatology. The real-time monitoring requires the use of remotely sensed and weather-model analysis estimates of hydrological model forcings. For the current system, NOAA's Global Forecast System (GFS) is used along with remotely sensed precipitation from the NASA TMPA system. The historical archive of these data is evaluated against the data set used to create the background simulations. Real-time adjustments are used to preserve consistency between the historical and real-time data. The drought monitor will be presented together with the web-interface that has been developed for the scientific community to access and retrieve the data products. This system will be deployed for operational use at AGRHYMET in Niamey, Niger before the end of 2011.
Preparation and measurement methods for studying nanoparticle aggregate surface chemistry.
Szakal, Christopher; McCarthy, James A; Ugelow, Melissa S; Konicek, Andrew R; Louis, Kacie; Yezer, Benjamin; Herzing, Andrew A; Hamers, Robert J; Holbrook, R David
2012-07-01
Despite best efforts at controlling nanoparticle (NP) surface chemistries, the environment surrounding nanomaterials is always changing and can impart a permanent chemical memory. We present a set of preparation and measurement methods to be used as the foundation for studying the surface chemical memory of engineered NP aggregates. We attempt to bridge the gap between controlled lab studies and real-world NP samples, specifically TiO(2), by using well-characterized and consistently synthesized NPs, controllably producing NP aggregates with precision drop-on-demand inkjet printing for subsequent chemical measurements, monitoring the physical morphology of the NP aggregate depositions with scanning electron microscopy (SEM), acquiring "surface-to-bulk" mass spectra of the NP aggregate surfaces with time-of-flight secondary ion mass spectrometry (ToF-SIMS), and developing a data analysis scheme to interpret chemical signatures more accurately from thousands of data files. We present differences in mass spectral peak ratios for bare TiO(2) NPs compared to NPs mixed separately with natural organic matter (NOM) or pond water. The results suggest that subtle changes in the local environment can alter the surface chemistry of TiO(2) NPs, as monitored by Ti(+)/TiO(+) and Ti(+)/C(3)H(5)(+) peak ratios. The subtle changes in the absolute surface chemistry of NP aggregates vs. that of the subsurface are explored. It is envisioned that the methods developed herein can be adapted for monitoring the surface chemistries of a variety of engineered NPs obtained from diverse natural environments.
Upward movement of plutonium to surface sediments during an 11-year field study.
Kaplan, D I; Demirkanli, D I; Molz, F J; Beals, D M; Cadieux, J R; Halverson, J E
2010-05-01
An 11-year lysimeter study was established to monitor the movement of Pu through vadose zone sediments. Sediment Pu concentrations as a function of depth indicated that some Pu moved upward from the buried source material. Subsequent numerical modeling suggested that the upward movement was largely the result of invading grasses taking up the Pu and translocating it upward. The objective of this study was to determine if the Pu of surface sediments originated from atmosphere fallout or from the buried lysimeter source material (weapons-grade Pu), providing additional evidence that plants were involved in the upward migration of Pu. The (240)Pu/(239)Pu and (242)Pu/(239)Pu atomic fraction ratios of the lysimeter surface sediments, as determined by Thermal Ionization Mass Spectroscopy (TIMS), were 0.063 and 0.00045, respectively; consistent with the signatures of the weapons-grade Pu. Our numerical simulations indicate that because plants create a large water flux, small concentrations over multiple years may result in a measurable accumulation of Pu on the ground surface. These results may have implications on the conceptual model for calculating risk associated with long-term stewardship and monitored natural attenuation management of Pu contaminated subsurface and surface sediments. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Luo, Ming; Liu, Dongsheng; Luo, Huan
2016-01-01
Thin-walled workpieces, such as aero-engine blisks and casings, are usually made of hard-to-cut materials. The wall thickness is very small and it is easy to deflect during milling process under dynamic cutting forces, leading to inaccurate workpiece dimensions and poor surface integrity. To understand the workpiece deflection behavior in a machining process, a new real-time nonintrusive method for deflection monitoring is presented, and a detailed analysis of workpiece deflection for different machining stages of the whole machining process is discussed. The thin-film polyvinylidene fluoride (PVDF) sensor is attached to the non-machining surface of the workpiece to copy the deflection excited by the dynamic cutting force. The relationship between the input deflection and the output voltage of the monitoring system is calibrated by testing. Monitored workpiece deflection results show that the workpiece experiences obvious vibration during the cutter entering the workpiece stage, and vibration during the machining process can be easily tracked by monitoring the deflection of the workpiece. During the cutter exiting the workpiece stage, the workpiece experiences forced vibration firstly, and free vibration exists until the amplitude reduces to zero after the cutter exits the workpiece. Machining results confirmed the suitability of the deflection monitoring system for machining thin-walled workpieces with the application of PVDF sensors. PMID:27626424
Brennan, T.M.; Hammons, B.E.; Tsao, J.Y.
1992-12-15
A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth. 3 figs.
Brennan, Thomas M.; Hammons, B. Eugene; Tsao, Jeffrey Y.
1992-01-01
A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth.
Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Cahn, Michael
2017-05-15
Urban stormwater and agriculture irrigation runoff contain a complex mixture of contaminants that are often toxic to adjacent receiving waters. Runoff may be treated with simple systems designed to promote sorption of contaminants to vegetation and soils and promote infiltration. Two example systems are described: a bioswale treatment system for urban stormwater treatment, and a vegetated drainage ditch for treating agriculture irrigation runoff. Both have similar attributes that reduce contaminant loading in runoff: vegetation that results in sorption of the contaminants to the soil and plant surfaces, and water infiltration. These systems may also include the integration of granulated activated carbon as a polishing step to remove residual contaminants. Implementation of these systems in agriculture and urban watersheds requires system monitoring to verify treatment efficacy. This includes chemical monitoring for specific contaminants responsible for toxicity. The current paper emphasizes monitoring of current use pesticides since these are responsible for surface water toxicity to aquatic invertebrates.
Monitoring Ion Track Formation Using In Situ RBS/c, ToF-ERDA, and HR-PIXE.
Karlušić, Marko; Fazinić, Stjepko; Siketić, Zdravko; Tadić, Tonči; Cosic, Donny Domagoj; Božičević-Mihalić, Iva; Zamboni, Ivana; Jakšić, Milko; Schleberger, Marika
2017-09-06
The aim of this work is to investigate the feasibility of ion beam analysis techniques for monitoring swift heavy ion track formation. First, the use of the in situ Rutherford backscattering spectrometry in channeling mode to observe damage build-up in quartz SiO₂ after MeV heavy ion irradiation is demonstrated. Second, new results of the in situ grazing incidence time-of-flight elastic recoil detection analysis used for monitoring the surface elemental composition during ion tracks formation in various materials are presented. Ion tracks were found on SrTiO₃, quartz SiO₂, a-SiO₂, and muscovite mica surfaces by atomic force microscopy, but in contrast to our previous studies on GaN and TiO₂, surface stoichiometry remained unchanged. Third, the usability of high resolution particle induced X-ray spectroscopy for observation of electronic dynamics during early stages of ion track formation is shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutton, Rick
2011-12-01
Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 16-17, 2011, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and for tritium using the conventional method.more » Tritium was not measured using the enrichment method because the EPA laboratory no longer offers that service. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the boundaries have not been affected by project-related contaminants.« less
Monitoring Ion Track Formation Using In Situ RBS/c, ToF-ERDA, and HR-PIXE
Karlušić, Marko; Fazinić, Stjepko; Siketić, Zdravko; Tadić, Tonči; Cosic, Donny Domagoj; Božičević-Mihalić, Iva; Zamboni, Ivana; Jakšić, Milko; Schleberger, Marika
2017-01-01
The aim of this work is to investigate the feasibility of ion beam analysis techniques for monitoring swift heavy ion track formation. First, the use of the in situ Rutherford backscattering spectrometry in channeling mode to observe damage build-up in quartz SiO2 after MeV heavy ion irradiation is demonstrated. Second, new results of the in situ grazing incidence time-of-flight elastic recoil detection analysis used for monitoring the surface elemental composition during ion tracks formation in various materials are presented. Ion tracks were found on SrTiO3, quartz SiO2, a-SiO2, and muscovite mica surfaces by atomic force microscopy, but in contrast to our previous studies on GaN and TiO2, surface stoichiometry remained unchanged. Third, the usability of high resolution particle induced X-ray spectroscopy for observation of electronic dynamics during early stages of ion track formation is shown. PMID:28878186
Radar monitoring of oil pollution
NASA Technical Reports Server (NTRS)
Guinard, N. W.
1970-01-01
Radar is currently used for detecting and monitoring oil slicks on the sea surface. The four-frequency radar system is used to acquire synthetic aperature imagery of the sea surface on which the oil slicks appear as a nonreflecting area on the surface surrounded by the usual sea return. The value of this technique was demonstrated, when the four-frequency radar system was used to image the oil spill of tanker which has wrecked. Imagery was acquired on both linear polarization (horizontal, vertical) for frequencies of 428, 1228, and 8910 megahertz. Vertical returns strongly indicated the presence of oil while horizontal returns failed to detect the slicks. Such a result is characteristic of the return from the sea and cannot presently be interpreted as characteristics of oil spills. Because an airborne imaging radar is capable of providing a wide-swath coverage under almost all weather conditions, it offers promise in the development of a pollution-monitoring system that can provide a coastal watch for oil slicks.
SBIR Phase II Final Report: Low cost Autonomous NMR and Multi-sensor Soil Monitoring Instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, David O.
In this 32-month SBIR Phase 2 program, Vista Clara designed, assembled and successfully tested four new NMR instruments for soil moisture measurement and monitoring: An enhanced performance man-portable Dart NMR logging probe and control unit for rapid, mobile measurement in core holes and 2” PVC access wells; A prototype 4-level Dart NMR monitoring probe and prototype multi-sensor soil monitoring control unit for long-term unattended monitoring of soil moisture and other measurements in-situ; A non-invasive 1m x 1m Discus NMR soil moisture sensor with surface based magnet/coil array for rapid measurement of soil moisture in the top 50 cm of themore » subsurface; A non-invasive, ultra-lightweight Earth’s field surface NMR instrument for non-invasive measurement and mapping of soil moisture in the top 3 meters of the subsurface. The Phase 2 research and development achieved most, but not all of our technical objectives. The single-coil Dart in-situ sensor and control unit were fully developed, demonstrated and successfully commercialized within the Phase 2 period of performance. The multi-level version of the Dart probe was designed, assembled and demonstrated in Phase 2, but its final assembly and testing were delayed until close to the end of the Phase 2 performance period, which limited our opportunities for demonstration in field settings. Likewise, the multi-sensor version of the Dart control unit was designed and assembled, but not in time for it to be deployed for any long-term monitoring demonstrations. The prototype ultra-lightweight surface NMR instrument was developed and demonstrated, and this result will be carried forward into the development of a new flexible surface NMR instrument and commercial product in 2018.« less
Using expansive grasses for monitoring heavy metal pollution in the vicinity of roads.
Vachová, Pavla; Vach, Marek; Najnarová, Eva
2017-10-01
We propose a method for monitoring heavy metal deposition in the vicinity of roads using the leaf surfaces of two expansive grass species which are greatly abundant. A principle of the proposed procedure is to minimize the number of operations in collecting and preparing samples for analysis. The monitored elements are extracted from the leaf surfaces using dilute nitric acid directly in the sample-collection bottle. The ensuing steps, then, are only to filter the extraction solution and the elemental analysis itself. The verification results indicate that the selected grasses Calamagrostis epigejos and Arrhenatherum elatius are well suited to the proposed procedure. Selected heavy metals (Zn, Cu, Pb, Ni, Cr, and Cd) in concentrations appropriate for direct determination using methods of elemental analysis can be extracted from the surface of leaves of these species collected in the vicinity of roads with medium traffic loads. Comparing the two species showed that each had a different relationship between the amounts of deposited heavy metals and distance from the road. This disparity can be explained by specific morphological properties of the two species' leaf surfaces. Due to the abundant occurrence of the two species and the method's general simplicity and ready availability, we regard the proposed approach to constitute a broadly usable and repeatable one for producing reproducible results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Richer, Eric E.; Baron, Jill S.
2011-01-01
The Loch Vale watershed project is a long-term research and monitoring program located in Rocky Mountain National Park that addresses watershed-scale ecosystem processes, particularly as they respond to atmospheric deposition and climate variability. Measurements of precipitation depth, precipitation chemistry, discharge, and surface-water quality are made within the watershed and elsewhere in Rocky Mountain National Park. As data collected for the program are used by resource managers, scientists, policy makers, and students, it is important that all data collected in Loch Vale watershed meet high standards of quality. In this report, data quality was evaluated for precipitation, discharge, and surface-water chemistry measurements collected during 2003-09. Equipment upgrades were made at the Loch Vale National Atmospheric Deposition Program monitoring site to improve precipitation measurements and evaluate variability in precipitation depth and chemistry. Additional solar panels and batteries have been installed to improve the power supply, and data completeness, at the NADP site. As a result of equipment malfunction, discharge data for the Loch Outlet were estimated from October 18, 2005, to August 17, 2006. Quality-assurance results indicate that more than 98 percent of all surface-water chemistry measurements were accurate and precise. Records that did not meet quality criteria were removed from the database. Measurements of precipitation depth, precipitation chemistry, discharge, and surface-water quality were all sufficiently complete and consistent to support project data needs.
Developing A National Groundwater-Monitoring Network In Korea
NASA Astrophysics Data System (ADS)
Kim, N. J.; Cho, M. J.; Woo, N. C.
1995-04-01
Since the 1960's, the groundwater resources of Korea have been developed without a proper regulatory system for monitoring and preservation, resulting in significant source depletion, land subsidence, water contamination, and sea-water intrusion. With the activation of the "Groundwater Law" in June 1994, the government initiated a project to develop a groundwater-monitoring network to describe general groundwater quality, to define its long-term changes, and to identify major factors affecting changes in groundwater quality and yield. In selecting monitoring locations nationwide, criteria considered are 1) spatial distribution, 2) aquifer characteristics of hydrogeologic units, 3) local groundwater flow regime, 4) linkage with surface hydrology observations, 5) site accessibility, and 6) financial situations. A total of 310 sites in 78 small hydrologic basins were selected to compose the monitoring network. Installation of monitoring wells is scheduled to start in 1995 for 15 sites; the remainder are scheduled to be completed by 2001. At each site, a nest of monitoring wells was designed; shallow and deep groundwater will be monitored for water temperature, pH, EC, DO and TDS every month. Water-level fluctuations will also be measured by automatic recorders equipped with pressure transducers. As a next step, the government plans to develop a groundwater-database management system, which could be linked with surface hydrologic data.
Success of the Melton Valley Watershed Remediation at the ORNL - 12351
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adler, David; Wilkerson, Laura; Sims, Lynn
2012-07-01
The source remediation of the Melton Valley (MV) Watershed at the U.S. Department of Energy's (DOE's) Oak Ridge National Laboratory was completed 5 years ago (September 2006). Historic operations at the laboratory had resulted in chemical and radionuclide contaminant releases and potential risks or hazards within 175 contaminated units scattered across an area of 430 hectares (1062 acres) within the watershed. Contaminated areas included burial grounds, landfills, underground tanks, surface impoundments, liquid disposal pit/trenches, hydrofracture wells, leak and spill spites, inactive surface structures, and contaminated soil and sediments. The remediation of the watershed was detailed in the MV Interim Actionmore » Record of Decision (ROD) and included a combination of actions encompassing containment, isolation, stabilization, removal, and treatment of sources within the watershed and established the monitoring and land use controls that would result in protection of human health. The actions would take place over 5 years with an expenditure of over $340 M. The MV remedial actions left hazardous wastes in-place (e.g., buried wastes beneath hydraulic isolation caps) and cleanup at levels that do not allow for unrestricted access and unlimited exposure. The cleanup with the resultant land use would result in a comprehensive monitoring plan for groundwater, surface water, and biological media, as well as the tracking of the land use controls to assure their completion. This paper includes an overview of select performance measures and monitoring results, as detailed in the annual Remediation Effectiveness Report and the Five-Year Report. (authors)« less
Clean Air Markets - Monitoring Surface Water Chemistry
Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.
a New Approach for Subway Tunnel Deformation Monitoring: High-Resolution Terrestrial Laser Scanning
NASA Astrophysics Data System (ADS)
Li, J.; Wan, Y.; Gao, X.
2012-07-01
With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS) technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400). There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS) and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.
A new system for measuring three-dimensional back shape in scoliosis
Pynsent, Paul; Fairbank, Jeremy; Disney, Simon
2008-01-01
The aim of this work was to develop a low-cost automated system to measure the three-dimensional shape of the back in patients with scoliosis. The resulting system uses structured light to illuminate a patient’s back from an angle while a digital photograph is taken. The height of the surface is calculated using Fourier transform profilometry with an accuracy of ±1 mm. The surface is related to body axes using bony landmarks on the back that have been palpated and marked with small coloured stickers prior to photographing. Clinical parameters are calculated automatically and presented to the user on a monitor and as a printed report. All data are stored in a database. The database can be interrogated and successive measurements plotted for monitoring the deformity changes. The system developed uses inexpensive hardware and open source software. Accurate surface topography can help the clinician to measure spinal deformity at baseline and monitor changes over time. It can help the patients and their families to assess deformity. Above all it reduces the dependence on serial radiography and reduces radiation exposure when monitoring spinal deformity. PMID:18247064
Schwartz, Craig; Nordlund, Dennis; Sokaras, Dimosthenis; ...
2017-02-01
The surface and near surface structure of copper-indium-gallium-selenide (CIGS) absorber layers is integral to the producing a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigates the effectsmore » of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces as normalized, uniform surface chemistry as measured by XAS. This surface chemistry is found in CIGS solar cells with excellent power conversion efficiency (<19%). The results provide new insight for CIGS processing strategies that seek to replace CBD and/or cadmium sulfide.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Craig; Nordlund, Dennis; Sokaras, Dimosthenis
The surface and near surface structure of copper-indium-gallium-selenide (CIGS) absorber layers is integral to the producing a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigates the effectsmore » of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces as normalized, uniform surface chemistry as measured by XAS. This surface chemistry is found in CIGS solar cells with excellent power conversion efficiency (<19%). The results provide new insight for CIGS processing strategies that seek to replace CBD and/or cadmium sulfide.« less
Fussell, Andrew L.; Kleinebudde, Peter; Herek, Jennifer; Strachan, Clare J.; Offerhaus, Herman L.
2014-01-01
Traditional pharmaceutical dissolution tests determine the amount of drug dissolved over time by measuring drug content in the dissolution medium. This method provides little direct information about what is happening on the surface of the dissolving tablet. As the tablet surface composition and structure can change during dissolution, it is essential to monitor it during dissolution testing. In this work coherent anti-Stokes Raman scattering microscopy is used to image the surface of tablets during dissolution while UV absorption spectroscopy is simultaneously providing inline analysis of dissolved drug concentration for tablets containing a 50% mixture of theophylline anhydrate and ethyl cellulose. The measurements showed that in situ CARS microscopy is capable of imaging selectively theophylline in the presence of ethyl cellulose. Additionally, the theophylline anhydrate converted to theophylline monohydrate during dissolution, with needle-shaped crystals growing on the tablet surface during dissolution. The conversion of theophylline anhydrate to monohydrate, combined with reduced exposure of the drug to the flowing dissolution medium resulted in decreased dissolution rates. Our results show that in situ CARS microscopy combined with inline UV absorption spectroscopy is capable of monitoring pharmaceutical tablet dissolution and correlating surface changes with changes in dissolution rate. PMID:25045833
NASA Technical Reports Server (NTRS)
Hood, Robbie E.; Radley, C.D.; LaFontaine, F.J.
2008-01-01
Inland flooding from tropical cyclones can be a significant factor in storm-related deaths in the United States and other countries. Information collected during NASA tropical cyclone field studies suggest surface water and flooding induced by tropical cyclone precipitation can be detected and therefore monitored using passive microwave airborne radiometers. In particular, the 10.7 GHz frequency of the NASA Advanced Microwave Precipitation Radiometer (AMPR) flown on the NASA ER-2 has demonstrated high resolution detection of anomalous surface water and flooding in numerous situations. This presentation will highlight the analysis of three cases utilizing primarily satellite and airborne radiometer data. Radiometer data from the 1998 Third Convection and Moisture Experiment (CAMEX-3) are utilized to detect surface water during landfalling Hurricane Georges in both the Dominican Republic and Louisiana. A third case is landfalling Tropical Storm Gert in Eastern Mexico during the Tropical Cloud Systems and Processes (TCSP) experiment in 2005. AMPR data are compared to topographic data and vegetation indices to evaluate the significance of the surface water signature visible in the 10.7 GHz information. The results of this study suggest the benefit of an aircraft 10 GHz radiometer to provide real-time observations of surface water conditions as part of a multi-sensor flood monitoring network.
Turner, N W; Bloxham, M; Piletsky, S A; Whitcombe, M J; Chianella, I
2016-12-19
Metered dose inhalers (MDI) and multidose powder inhalers (MPDI) are commonly used for the treatment of chronic obstructive pulmonary diseases and asthma. Currently, analytical tools to monitor particle/particle and particle/surface interaction within MDI and MPDI at the macro-scale do not exist. A simple tool capable of measuring such interactions would ultimately enable quality control of MDI and MDPI, producing remarkable benefits for the pharmaceutical industry and the users of inhalers. In this paper, we have investigated whether a quartz crystal microbalance (QCM) could become such a tool. A QCM was used to measure particle/particle and particle/surface interactions on the macroscale, by additions of small amounts of MDPI components, in the powder form into a gas stream. The subsequent interactions with materials on the surface of the QCM sensor were analyzed. Following this, the sensor was used to measure fluticasone propionate, a typical MDI active ingredient, in a pressurized gas system to assess its interactions with different surfaces under conditions mimicking the manufacturing process. In both types of experiments the QCM was capable of discriminating interactions of different components and surfaces. The results have demonstrated that the QCM is a suitable platform for monitoring macro-scale interactions and could possibly become a tool for quality control of inhalers.
Space Shuttle Environmental Effects: The First 5 Flights
NASA Technical Reports Server (NTRS)
Potter, A. (Editor)
1983-01-01
Environmental effects associated with the first five Space Shuttle flights were monitored by the National Aeronautics and Space Administration (NASA) and the U.S. Air Force (USAF). Results and interpretations from this effort were reported at the December 1982 joint NASA-USAF conference. The conference proceedings are presented in this document. Most of the monitoring activity was focused on the launch cloud, emphasizing surface effects on the biota and air quality, model prediction of surface concentrations of HCl gas and Al2O3 dust, and airborne measurements of cloud composition. In general, assessments and predictions made in the April 1978 Final Environmental Impact Statement for the Space Shuttle Program were verified. Fallout of acidic mist and dust within 3 mi to 5 mi of the launch pad was the only unexpected effect of the launch. Atomization of deluge water in the Shuttle exhaust is considered to be the most probable cause of this effect. Sonic booms were monitored for several landings at Edwards Air Force Base, California; results agreed well with model predictions.
2012 Groundwater Monitoring and Inspection Report Gnome-Coach, New Mexico, Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-03-01
Gnome-Coach was the site of a 3-kiloton underground nuclear test conducted in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and a groundwater tracer test performed at the site. Surface reclamation and remediation began after the underground testing. A Completion Report was prepared, and the State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. Subsurface corrective action activities began in 1972 and have generally consisted of annual sampling and monitoring of wells near the site. In 2008, the annual site inspections were refined to include hydraulic head monitoringmore » and collection of samples from groundwater monitoring wells onsite using the low-flow sampling method. These activities were conducted during this monitoring period on January 18, 2012. Analytical results from this sampling event indicate that concentrations of tritium, strontium-90, and cesium-137 were generally consistent with concentrations from historical sampling events. The exceptions are the decreases in concentrations of strontium-90 in samples from wells USGS-4 and USGS-8, which were more than 2.5 times lower than last year's results. Well USGS-1 provides water for livestock belonging to area ranchers, and a dedicated submersible pump cycles on and off to maintain a constant volume in a nearby water tank. Water levels in wells USGS-4 and USGS-8 respond to the on/off cycling of the water supply pumping from well USGS-1. Well LRL-7 was not sampled in January, and water levels were still increasing when the transducer data were downloaded in September. A seismic reflection survey was also conducted this year. The survey acquired approximately 13.9 miles of seismic reflection data along 7 profiles on and near the site. These activities were conducted from February 23 through March 10, 2012. The site roads, monitoring well heads, and the monument at surface ground zero were in good condition at the time of the site inspection. However, it was reported in September 2012 that the USGS-1 well head had been damaged by a water truck in April 2012.« less
O’Connell, Sandra; ÓLaighin, Gearóid; Kelly, Lisa; Murphy, Elaine; Beirne, Sorcha; Burke, Niall; Kilgannon, Orlaith; Quinlan, Leo R.
2016-01-01
Introduction Physical activity is a vitally important part of a healthy lifestyle, and is of major benefit to both physical and mental health. A daily step count of 10,000 steps is recommended globally to achieve an appropriate level of physical activity. Accurate quantification of physical activity during conditions reflecting those needed to achieve the recommended daily step count of 10,000 steps is essential. As such, we aimed to assess four commercial activity monitors for their sensitivity/accuracy in a prescribed walking route that reflects a range of surfaces that would typically be used to achieve the recommended daily step count, in two types of footwear expected to be used throughout the day when aiming to achieve the recommended daily step count, and in a timeframe required to do so. Methods Four commercial activity monitors were worn simultaneously by participants (n = 15) during a prescribed walking route reflective of surfaces typically encountered while achieving the daily recommended 10,000 steps. Activity monitors tested were the Garmin Vivofit ™, New Lifestyles’ NL-2000 ™ pedometer, Withings Smart Activity Monitor Tracker (Pulse O2) ™, and Fitbit One ™. Results All activity monitors tested were accurate in their step detection over the variety of different surfaces tested (natural lawn grass, gravel, ceramic tile, tarmacadam/asphalt, linoleum), when wearing both running shoes and hard-soled dress shoes. Conclusion All activity monitors tested were accurate in their step detection sensitivity and are valid monitors for physical activity quantification over the variety of different surfaces tested, when wearing both running shoes and hard-soled dress shoes, and over a timeframe necessary for accumulating the recommended daily step count of 10,000 steps. However, it is important to consider the accuracy of activity monitors, particularly when physical activity in the form of stepping activities is prescribed as an intervention in the treatment or prevention of a disease state. PMID:27167121
Apollo lunar surface experiments package
NASA Technical Reports Server (NTRS)
1972-01-01
The ALSEP program status and monthly progress are reported. Environmental and quality control tests and test results are described. Details are given on the Apollo 17 Array E, and the lunar seismic profiling, ejecta and meteorites, mass spectrometer, surface gravimeter, and heat flow experiments. Monitoring of the four ALSEP systems on the moon is also described.
Methods of Measuring and Mapping of Landslide Areas
NASA Astrophysics Data System (ADS)
Skrzypczak, Izabela; Kokoszka, Wanda; Kogut, Janusz; Oleniacz, Grzegorz
2017-12-01
The problem of attracting new investment areas and the inability of current zoning areas, allows us to understand why it is impossible to completely rule out building on landslide areas. Therefore, it becomes important issue of monitoring areas at risk of landslides. Only through appropriate monitoring and proper development of measurements resulting as maps of areas at risk of landslides enables us to estimate the risk and the relevant economic calculation for the realization of the anticipated investment in such areas. The results of monitoring of the surface and in-depth of the landslides are supplemented with constant observation of precipitation. The previous analyses and monitoring of landslides show that some of them are continuously active. GPS measurements, especially with laser scanning provide a unique activity data acquired on the surface of each individual landslide. The development of high resolution numerical models of terrain and the creation of differential models based on subsequent measurements, informs us about the size of deformation, both in units of distance (displacements) and volume. The compatibility of the data with information from in-depth monitoring allows the generation of a very reliable in-depth model of landslide, and as a result proper calculation of the volume of colluvium. Programs presented in the article are a very effective tool to generate in-depth model of landslide. In Poland, the steps taken under the SOPO project i.e. the monitoring and description of landslides are absolutely necessary for social and economic reasons and they may have a significant impact on the economy and finances of individual municipalities and also a whole country economy.
NASA Astrophysics Data System (ADS)
Hu, Wen-Pin; Chen, Shean-Jen; Yih, Jenq-Nan; Lin, G.-Y.; Chang, Guan L.
2004-06-01
The ability to recognize the conformational changes and structural variations of a protein when immobilized in a solid surface is of great importance in a variety of applications. Surface plasmon resonance (SPR) sensing is an appropriate technique for investigating interfacial phenomena, and enables the conformational changes of proteins to be monitored through the variation in the SPR angle shift. Meanwhile, the surface-enhanced Raman scattering (SERS) system can also assist in clarifying the changes in protein structure. The present study utilizes a 1 mM CrO3 phosphate buffer solution (PBS) to induce conformational changes of human serum albumin (HSA). Monitoring the corresponding SPR angle shifts and the SPR reflectivity spectrum enables the relationships between the conformational changes of the surface-immobilized protein and the thickness and dielectric constants of the protein layer to be estimated. The experimental SPR results indicate that the Cr6+ ions cause significant conformational change of the protein. It is established that the ions are not merely absorbed into the protein as a result of electrostatic forces, but that complex protein refolding events also take place. Furthermore, the data acquired from the SERS system yield valuable information regarding the changes which take place in the protein structure.
A MODIS-based automated flood monitoring system for southeast asia
NASA Astrophysics Data System (ADS)
Ahamed, A.; Bolten, J. D.
2017-09-01
Flood disasters in Southeast Asia result in significant loss of life and economic damage. Remote sensing information systems designed to spatially and temporally monitor floods can help governments and international agencies formulate effective disaster response strategies during a flood and ultimately alleviate impacts to population, infrastructure, and agriculture. Recent destructive flood events in the Lower Mekong River Basin occurred in 2000, 2011, 2013, and 2016 (http://ffw.mrcmekong.org/historical_rec.htm, April 24, 2017). The large spatial distribution of flooded areas and lack of proper gauge data in the region makes accurate monitoring and assessment of impacts of floods difficult. Here, we discuss the utility of applying satellite-based Earth observations for improving flood inundation monitoring over the flood-prone Lower Mekong River Basin. We present a methodology for determining near real-time surface water extent associated with current and historic flood events by training surface water classifiers from 8-day, 250-m Moderate-resolution Imaging Spectroradiometer (MODIS) data spanning the length of the MODIS satellite record. The Normalized Difference Vegetation Index (NDVI) signature of permanent water bodies (MOD44W; Carroll et al., 2009) is used to train surface water classifiers which are applied to a time period of interest. From this, an operational nowcast flood detection component is produced using twice daily imagery acquired at 3-h latency which performs image compositing routines to minimize cloud cover. Case studies and accuracy assessments against radar-based observations for historic flood events are presented. The customizable system has been transferred to regional organizations and near real-time derived surface water products are made available through a web interface platform. Results highlight the potential of near real-time observation and impact assessment systems to serve as effective decision support tools for governments, international agencies, and disaster responders.
Variations of surface ozone concentration across the Klang Valley, Malaysia
NASA Astrophysics Data System (ADS)
Latif, Mohd Talib; Huey, Lim Shun; Juneng, Liew
2012-12-01
Hourly air quality data covering the period 2004-2008 was obtained from the Air Quality Division, the Department of Environment (DOE) through long-term monitoring by Alam Sekitar Sdn. Bhd. (ASMA) were analysed to investigate the variations of surface ozone (O3) in the Klang Valley, Malaysia. A total of nine monitoring stations were selected for analysis in this study and the results show that there are distinct seasonal patterns in the surface O3 across the Klang Valley. A high surface O3 concentration is usually observed between January and April, while a low surface O3 concentration is found between June and August. Analysis of daily variations in surface O3 and the precursors - NO, NO2, CO, NMHC and UVb, indicate that the surface O3 photochemistry in this study area exhibits a positive response to the intensity and wavelength in UVb while being influenced by the concentration of NOx, particularly through tritration processes. Although results from our study suggested that NMHCs may influence the maximum O3 concentration, further investigation is required. Wind direction during different monsoons was found to influence the concentration of O3 around the Klang Valley. HYSPLIT back trajectories (-72 h) were used to indicate the air-mass transport patterns on days with high concentrations of surface O3 in the study area. Results show that 47% of the high O3 days was associated with the localized circulation. The remaining 32% and 22% were associated with mid-range and long-range transport across the South China Sea from the northeast.
Lovanh, Nanh; Warren, Jason; Sistani, Karamat
2010-03-01
In this study, the comparison and monitoring of the initial greenhouse gas (GHG) emissions using a flux chamber and gas analyzer from three different liquid manure application methods at a swine farm in Kentucky were carried out. Swine slurry was applied to farmland by row injection, surface spray, and Aerway injection. Ammonia and GHG concentrations were monitored immediately after application, 72 and 216h after application. The results showed that the initial ammonia flux ranged from 5.80 mg m(-2)h(-1) for the surface spray method to 1.80 mg m(-2)h(-1) for the row injection method. The initial fluxes of methane ranged from 8.75 mg m(-2)h(-1) for surface spray to 2.27 mg m(-2)h(-1) for Aerway injection, carbon dioxide ranged from 4357 mg m(-2)h(-1) for surface spray to 60 mg m(-2)h(-1) for row injection, and nitrous oxide ranged from 0.89 mg m(-2)h(-1) for surface spray to 0.22 mg m(-2)h(-1) for row injection. However, the Aerway injection method seemed to create the highest gas (GHG) concentrations inside the monitoring chambers at the initial application and produced the highest gas fluxes at subsequent sampling time (e.g., 72h after application). Nevertheless, the surface spray method appeared to produce the highest gas fluxes, and the row injection method appeared to emit the least amount of greenhouse gases into the atmosphere. Gas fluxes decreased over time and did not depend on the initial headspace concentration in the monitoring flux chambers. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Chae, Gitak; Yu, Soonyoung; Sung, Ki-Sung; Choi, Byoung-Young; Park, Jinyoung; Han, Raehee; Kim, Jeong-Chan; Park, Kwon Gyu
2015-04-01
Monitoring of CO2 release through the ground surface is essential to testify the safety of CO2 storage projects. We conducted a feasibility study of the multi-channel surface-soil CO2-concentration monitoring (SCM) system as a soil CO2 monitoring tool with a small scale injection. In the system, chambers are attached onto the ground surface, and NDIR sensors installed in each chamber detect CO2 in soil gas released through the soil surface. Before injection, the background CO2 concentrations were measured. They showed the distinct diurnal variation, and were positively related with relative humidity, but negatively with temperature. The negative relation of CO2 measurements with temperature and the low CO2 concentrations during the day imply that CO2 depends on respiration. The daily variation of CO2 concentrations was damped with precipitation, which can be explained by dissolution of CO2 and gas release out of pores through the ground surface with recharge. For the injection test, 4.2 kg of CO2 was injected 1 m below the ground for about 30 minutes. In result, CO2 concentrations increased in all five chambers, which were located less than 2.5 m of distance from an injection point. The Chamber 1, which is closest to the injection point, showed the largest increase of CO2 concentrations; while Chamber 2, 3, and 4 showed the peak which is 2 times higher than the average of background CO2. The CO2 concentrations increased back after decreasing from the peak around 4 hours after the injection ended in Chamber 2, 4, and 5, which indicated that CO2 concentrations seem to be recovered to the background around 4 hours after the injection ended. To determine the leakage, the data in Chamber 2 and 5, which had low increase rates in the CO2 injection test, were used for statistical analysis. The result shows that the coefficient of variation (CV) of CO2 measurements for 30 minutes is efficient to determine a leakage signal, with reflecting the abnormal change in CO2 concentrations. The CV of CO2 measurements for 30 minutes exceeded 5% about 5 minutes before the maximum CO2 concentration was detected. The contributions of this work are as follows: (1) SCM is an efficient monitoring tool to detect the CO2 release through the ground surface. (2) The statistical analysis method to determine the leakage and a monitoring frequency are provided, with analyzing background concentrations and CO2 increases in a small-scale injection test. (3) The 5% CV of CO2 measurements for 30 minutes can be used for the early warning in CO2 storage sites.
Gallium arsenide based surface plasmon resonance for glucose monitoring
NASA Astrophysics Data System (ADS)
Patil, Harshada; Sane, Vani; Sriram, G.; Indumathi, T. S; Sharan, Preeta
2015-07-01
The recent trends in the semiconductor and microwave industries has enabled the development of scalable microfabrication technology which produces a superior set of performance as against its counterparts. Surface Plasmon Resonance (SPR) based biosensors are a special class of optical sensors that become affected by electromagnetic waves. It is found that bio-molecular recognition element immobilized on the SPR sensor surface layer reveals a characteristic interaction with various sample solutions during the passage of light. The present work revolves around developing painless glucose monitoring systems using fluids containing glucose like saliva, urine, sweat or tears instead of blood samples. Non-invasive glucose monitoring has long been simulated using label free detection mechanisms and the same concept is adapted. In label-free detection, target molecules are not labeled or altered, and are detected in their natural forms. Label-free detection mechanisms involves the measurement of refractive index (RI) change induced by molecular interactions. These interactions relates the sample concentration or surface density, instead of total sample mass. After simulation it has been observed that the result obtained is highly accurate and sensitive. The structure used here is SPR sensor based on channel waveguide. The tools used for simulation are RSOFT FULLWAVE, MEEP and MATLAB etc.
Kamyar Aram; David M. Rizzo
2017-01-01
The prevalence of Phytophthora species in surface waters has earned increasing attention in the past decades, in great part as a result of âstream monitoringâ programs for detection and monitoring of Phytophthora ramorum and other invasive species. The potential for Phytophthora ...
Fiber Optic Thermal Health Monitoring of Composites
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou; Winfree, William P.; Moore, Jason P.
2010-01-01
A recently developed technique is presented for thermographic detection of flaws in composite materials by performing temperature measurements with fiber optic Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of composites with subsurface defects. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared with the calculations using numerical simulation techniques. Methods and limitations for performing in-situ structural health monitoring are discussed.
Signal Processing for Determining Water Height in Steam Pipes with Dynamic Surface Conditions
NASA Technical Reports Server (NTRS)
Lih, Shyh-Shiuh; Lee, Hyeong Jae; Bar-Cohen, Yoseph
2015-01-01
An enhanced signal processing method based on the filtered Hilbert envelope of the auto-correlation function of the wave signal has been developed to monitor the height of condensed water through the steel wall of steam pipes with dynamic surface conditions. The developed signal processing algorithm can also be used to estimate the thickness of the pipe to determine the cut-off frequency for the low pass filter frequency of the Hilbert Envelope. Testing and analysis results by using the developed technique for dynamic surface conditions are presented. A multiple array of transducers setup and methodology are proposed for both the pulse-echo and pitch-catch signals to monitor the fluctuation of the water height due to disturbance, water flow, and other anomaly conditions.
Effect of Disinfectants on Glucose Monitors
Mahoney, John J; Lim, Christine G
2012-01-01
Background Monitoring blood glucose levels is an integral part of routine diabetes management. To minimize the risk of transmission of bloodborne pathogens during monitoring, the Centers for Disease Control and Prevention (CDC) recommends that glucose meters be disinfected after each use whenever they are used to test multiple patients. The objective of this study is to assess the compatibility of some common disinfectants with certain blood glucose meter systems. Methods We tested six disinfectants for adverse impact on meter performance or the exterior meter surfaces. The disinfectants tested were 0.525% sodium hypochlorite, 20% 2-propanol and 10% ethanol, 17.2% isopropanol, 55% isopropanol, 70% isopropanol, and hydrogen peroxide. To assess meter performance, we tested OneTouch® Ultra® blood glucose monitoring systems with control solution before and after application of either water or disinfectant. To assess the effect on exterior meter surfaces, we performed a soaking test to simulate long-term exposure to disinfectant. Results Paired t-test results showed that the control solution data associated with disinfectant and with water application were not significantly different for each meter type. However, most of the meter types were adversely affected by hydrogen peroxide and/or by the higher concentrations of alcohol-based disinfectants. Conclusions Although none of the six disinfectants affected meter performance, hydrogen peroxide and isopropanol >20% adversely affected the exterior surfaces of the tested meters. When complying with CDC instructions for meter disinfection, users should use caution and choose disinfectants that have been validated by the meter manufacturer. PMID:22401326
Surface water classification and monitoring using polarimetric synthetic aperture radar
NASA Astrophysics Data System (ADS)
Irwin, Katherine Elizabeth
Surface water classification using synthetic aperture radar (SAR) is an established practice for monitoring flood hazards due to the high temporal and spatial resolution it provides. Surface water change is a dynamic process that varies both spatially and temporally, and can occur on various scales resulting in significant impacts on affected areas. Small-scale flooding hazards, caused by beaver dam failure, is an example of surface water change, which can impact nearby infrastructure and ecosystems. Assessing these hazards is essential to transportation and infrastructure maintenance. With current satellite missions operating in multiple polarizations, spatio-temporal resolutions, and frequencies, a comprehensive comparison between SAR products for surface water monitoring is necessary. In this thesis, surface water extent models derived from high resolution single-polarization TerraSAR-X (TSX) data, medium resolution dual-polarization TSX data and low resolution quad-polarization RADARSAT-2 (RS-2) data are compared. There exists a compromise between acquiring SAR data with a high resolution or high information content. Multi-polarization data provides additional phase and intensity information, which makes it possible to better classify areas of flooded vegetation and wetlands. These locations are often where fluctuations in surface water occur and are essential for understanding dynamic underlying processes. However, often multi-polarized data is acquired at a low resolution, which cannot image these zones effectively. High spatial resolution, single-polarization TSX data provides the best model of open water. However, these single-polarization observations have limited information content and are affected by shadow and layover errors. This often hinders the classification of other land cover types. The dual-polarization TSX data allows for the classification of flooded vegetation, but classification is less accurate compared to the quad-polarization RS-2 data. The RS-2 data allows for the discrimination of open water, marshes/fields and forested areas. However, the RS-2 data is less applicable to small scale surface water monitoring (e.g. beaver dam failure), due to its low spatial resolution. By understanding the strengths and weaknesses of available SAR technology, an appropriate product can be chosen for a specific target application involving surface water change. This research benefits the eventual development of a space-based monitoring strategy over longer periods.
NASA Astrophysics Data System (ADS)
Ledesma, Rodolfo; Palmieri, Frank; Connell, John; Yost, William; Fitz-Gerald, James
2018-02-01
Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants as part of a vigorous quality control process to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding are essential in order to obtain a surface which is free from contaminants that may lead to inferior bond quality. In this study, the focus is to advance the laser induced breakdown spectroscopy (LIBS) technique by using pulse energies below 100 μJ (μLIBS) for the detection of low levels of silicone contaminants in carbon fiber reinforced polymer (CFRP) composites. Various CFRP surface conditions were investigated by LIBS using ∼10 ps, 355 nm laser pulses with pulse energies below 30 μJ. Time-resolved analysis was conducted to optimize the gate delay and gate width for the detection of the C I emission line at 247.9 nm to monitor the epoxy resin matrix of CFRP composites and the Si I emission line at 288.2 nm for detection of silicone contaminants in CFRP. To study the surface sensitivity to silicone contamination, CFRP surfaces were coated with polydimethylsiloxane (PDMS), the active ingredient in many mold release agents. The presence of PDMS was studied by inspecting the Si I emission lines at 251.6 nm and 288.2 nm. The measured PDMS areal densities ranged from 0.15 to 2 μg/cm2. LIBS measurements were performed before and after laser surface ablation. The results demonstrate the successful detection of PDMS thin layers on CFRP using picosecond μLIBS.
The TROPOMI surface UV algorithm
NASA Astrophysics Data System (ADS)
Lindfors, Anders V.; Kujanpää, Jukka; Kalakoski, Niilo; Heikkilä, Anu; Lakkala, Kaisa; Mielonen, Tero; Sneep, Maarten; Krotkov, Nickolay A.; Arola, Antti; Tamminen, Johanna
2018-02-01
The TROPOspheric Monitoring Instrument (TROPOMI) is the only payload of the Sentinel-5 Precursor (S5P), which is a polar-orbiting satellite mission of the European Space Agency (ESA). TROPOMI is a nadir-viewing spectrometer measuring in the ultraviolet, visible, near-infrared, and the shortwave infrared that provides near-global daily coverage. Among other things, TROPOMI measurements will be used for calculating the UV radiation reaching the Earth's surface. Thus, the TROPOMI surface UV product will contribute to the monitoring of UV radiation by providing daily information on the prevailing UV conditions over the globe. The TROPOMI UV algorithm builds on the heritage of the Ozone Monitoring Instrument (OMI) and the Satellite Application Facility for Atmospheric Composition and UV Radiation (AC SAF) algorithms. This paper provides a description of the algorithm that will be used for estimating surface UV radiation from TROPOMI observations. The TROPOMI surface UV product includes the following UV quantities: the UV irradiance at 305, 310, 324, and 380 nm; the erythemally weighted UV; and the vitamin-D weighted UV. Each of these are available as (i) daily dose or daily accumulated irradiance, (ii) overpass dose rate or irradiance, and (iii) local noon dose rate or irradiance. In addition, all quantities are available corresponding to actual cloud conditions and as clear-sky values, which otherwise correspond to the same conditions but assume a cloud-free atmosphere. This yields 36 UV parameters altogether. The TROPOMI UV algorithm has been tested using input based on OMI and the Global Ozone Monitoring Experiment-2 (GOME-2) satellite measurements. These preliminary results indicate that the algorithm is functioning according to expectations.
Real-time curling probe monitoring of dielectric layer deposited on plasma chamber wall
NASA Astrophysics Data System (ADS)
Hotta, Masaya; Ogawa, Daisuke; Nakamura, Keiji; Sugai, Hideo
2018-04-01
A microwave resonator probe called a curling probe (CP) was applied to in situ monitoring of a dielectric layer deposited on a chamber wall during plasma processing. The resonance frequency of the CP was analytically found to shift in proportion to the dielectric layer thickness; the proportionality constant was determined from a comparison with the finite-difference time-domain (FDTD) simulation result. Amorphous carbon layers deposited in acetylene inductively coupled plasma (ICP) discharge were monitored using the CP. The measured resonance frequency shift dictated the carbon layer thickness, which agreed with the results from the surface profiler and ellipsometry.
Katayama, Hirohito; Higo, Takashi; Tokunaga, Yuji; Katoh, Shigeo; Hiyama, Yukio; Morikawa, Kaoru
2008-01-01
A practical, risk-based monitoring approach using the combined data collected from actual experiments and computer simulations was developed for the qualification of an EU GMP Annex 1 Grade B, ISO Class 7 area. This approach can locate and minimize the representative number of sampling points used for microbial contamination risk assessment. We conducted a case study on an aseptic clean room, newly constructed and specifically designed for the use of a restricted access barrier system (RABS). Hotspots were located using three-dimensional airflow analysis based on a previously published empirical measurement method, the three-dimensional airflow analysis. Local mean age of air (LMAA) values were calculated based on computer simulations. Comparable results were found using actual measurements and simulations, demonstrating the potential usefulness of such tools in estimating contamination risks based on the airflow characteristics of a clean room. Intensive microbial monitoring and particle monitoring at the Grade B environmental qualification stage, as well as three-dimensional airflow analysis, were also conducted to reveal contamination hotspots. We found representative hotspots were located at perforated panels covering the air exhausts where the major piston airflows collect in the Grade B room, as well as at any locations within the room that were identified as having stagnant air. However, we also found that the floor surface air around the exit airway of the RABS EU GMP Annex 1 Grade A, ISO Class 5 area was always remarkably clean, possibly due to the immediate sweep of the piston airflow, which prevents dispersed human microbes from falling in a Stokes-type manner on settling plates placed on the floor around the Grade A exit airway. In addition, this airflow is expected to be clean with a significantly low LMAA. Based on these observed results, we propose a simplified daily monitoring program to monitor microbial contamination in Grade B environments. To locate hotspots we propose using a combination of computer simulation, actual airflow measurements, and intensive environmental monitoring at the qualification stage. Thereafter, instead of particle or microbial air monitoring, we recommend the use of microbial surface monitoring at the main air exhaust. These measures would be sufficient to assure the efficiency of the monitoring program, as well as to minimize the number of surface sampling points used in environments surrounding a RABS.
Assessment of Gas Potential in the Niobrara Formation, Rosebud Reservation, South Dakota
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Aubrey E.; Hopkinson, Leslie; Soeder, Daniel
2016-01-23
Surface water and groundwater risks associated with unconventional oil and gas development result from potential spills of the large volumes of chemicals stored on-site during drilling and hydraulic fracturing operations, and the return to the surface of significant quantities of saline water produced during oil or gas well production. To better identify and mitigate risks, watershed models and tools are needed to evaluate the dispersion of pollutants in possible spill scenarios. This information may be used to determine the placement of in-stream water-quality monitoring instruments and to develop early-warning systems and emergency plans. A chemical dispersion model has been usedmore » to estimate the contaminant signal for in-stream measurements. Spills associated with oil and gas operations were identified within the Susquehanna River Basin Commission’s Remote Water Quality Monitoring Network. The volume of some contaminants was found to be sufficient to affect the water quality of certain drainage areas. The most commonly spilled compounds and expected peak concentrations at monitoring stations were used in laboratory experiments to determine if a signal could be detected and positively identified using standard water-quality monitoring equipment. The results were compared to historical data and baseline observations of water quality parameters, and showed that the chemicals tested do commonly affect water quality parameters. This work is an effort to demonstrate that hydrologic and water quality models may be applied to improve the placement of in-stream water quality monitoring devices. This information may increase the capability of early-warning systems to alert community health and environmental agencies of surface water spills associated with unconventional oil and gas operations.« less
Importance of a Priori Vertical Ozone Profiles for TEMPO Air Quality Retrievals
NASA Technical Reports Server (NTRS)
Johnson, Matthew S.; Sullivan, John; Liu, Xiong; Zoogman, Peter; Newchurch, Mike; Kuang, Shi; McGee, Thomas; Leblanc, Thierry
2017-01-01
Ozone (O3) is a toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address the limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME (Global Ozone Monitoring Experiment), GOME-2, and OMI (Ozone Monitoring Instrument). This algorithm is suggested to use a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB-Clim) O3 climatology). This study evaluates the TB-Clim dataset and model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time data assimilation model products (NASA GMAO's (Global Modeling and Assimilation Office) operational GEOS-5 (Goddard Earth Observing System, Version 5) FP (Forecast Products) model and reanalysis data from MERRA2 (Modern-Era Retrospective analysis for Research and Applications, Version 2)) and a full chemical transport model (CTM), GEOS-Chem. In this study, vertical profile products are evaluated with surface (0-2 kilometers) and tropospheric (0-10 kilometers) TOLNet (Tropospheric Ozone Lidar Network) observations and the theoretical impact of individual a priori profile sources on the accuracy of TEMPO O3 retrievals in the troposphere and at the surface are presented. Results indicate that while the TB-Clim climatological dataset can replicate seasonally-averaged tropospheric O3 profiles, model-simulated profiles from a full CTM resulted in more accurate tropospheric and surface-level O3 retrievals from TEMPO when compared to hourly and daily-averaged TOLNet observations. Furthermore, it is shown that when large surface O3 mixing ratios are observed, TEMPO retrieval values at the surface are most accurate when applying CTM a priori profile information compared to all other data products.
Buijs; Hlady
1997-06-01
Interactions of recombinant human growth hormone and lysozyme with solid surfaces are studied using total internal reflection fluorescence (TIRF) and monitoring the protein's intrinsic tryptophan fluorescence. The intensity, spectra, quenching, and polarization of the fluorescence emitted by the adsorbed proteins are monitored and related to adsorption kinetics, protein conformation, and fluorophore rotational mobility. To study the influence of electrostatic and hydrophobic interactions on the adsorption process, three sorbent surfaces are used which differ in charge and hydrophobicity. The chemical surface groups are silanol, methyl, and quaternary amine. Results indicate that adsorption of hGH is dominated by hydrophobic interactions. Lysozyme adsoption is strongly affected by the ionic strength. This effect is probably caused by an ionic strength dependent conformational state in solution which, in turn, influences the affinity for adsorption. Both proteins are more strongly bound to hydrophobic surfaces and this strong interaction is accompanied by a less compact conformation. Furthermore, it was seen that regardless of the characteristics of the sorbent surface, the rotational mobility of both proteins' tryptophans is largely reduced upon adsorption.
NASA Astrophysics Data System (ADS)
Godefroy, J. C.; Gageant, C.; Francois, D.
Thin film surface thermometers and thermal gradient fluxmeters developed by ONERA to monitor thermal exchanges in aircraft engines to predict the remaining service life of the components are described. The sensors, less than 80 microns thick, with flexible Kapton dielectric layers and metal substrates, are integrated into the shape of the surface being monitored. Features of Cu-n, Ni-, Au-, and Cr-based films, including mounting and circuitry methods that permit calibration and accurate signal analysis, are summarized. Results are discussed from sample applications of the devices on a symmetric NACA 65(1)-012 airfoil and on a turbine blade.
Exposure to 4,4'-methylene bis (2-chloroaniline) (MbOCA) in New South Wales, Australia
Shankar, Kiran; Fung, Vivian; Seneviratne, Mahinda; O'Donnell, Gregory E
2017-01-01
Objectives: This study was conducted to determine the level of exposure of 4,4'-methylene bis (2-chloroaniline) (MbOCA) in New South Wales (NSW), Australia. Methods: An integrated occupational hygiene and biological monitoring program were used to assess the workers' exposure to MbOCA via inhalation, ingestion and dermal contact. This was conducted by personal air monitoring, static air monitoring and surface contamination monitoring of the work environment and biological monitoring of the workers' exposure to MbOCA at nine workplaces in NSW. Results: The air monitoring results for MbOCA gave a geometric mean (GM) of 0.06 μg/m3 and a geometric standard deviation (GSD) of 2.70 and a 95% confidence interval of 0.29 μg/m3. The surface contamination in the main work area showed the highest contamination with a GM of 74 ng/cm2 and a GSD of 17 and a 95% confidence interval of 7,751 ng/cm2. Biological monitoring showed a GM of 0.89 μmol/mol cr and a GSD of 11.9 and a 95% confidence interval of 52 μmol/mol cr. This indicated that 13% of the workers were over the SafeWork NSW Biological Occupational Exposure Limit of 15 μmol/mol cr. Conclusions: Workers' exposure through inhalation was minimal; however, evidence from biological monitoring of MbOCA suggested that the main contributing factor to exposure was skin absorption. This was attributed to poor housekeeping and inadequate personal protection. Improvements in these areas were recommended, and it was also recommended to improve the awareness of the workers to the adverse effects to their health of exposure to this carcinogen. PMID:28320979
Knowles, Brianna R; Wagner, Pawel; Maclaughlin, Shane; Higgins, Michael J; Molino, Paul J
2017-06-07
The growing need to develop surfaces able to effectively resist biological fouling has resulted in the widespread investigation of nanomaterials with potential antifouling properties. However, the preparation of effective antifouling coatings is limited by the availability of reactive surface functional groups and our ability to carefully control and organize chemistries at a materials' interface. Here, we present two methods of preparing hydrophilic low-fouling surface coatings through reaction of silica-nanoparticle suspensions and predeposited silica-nanoparticle films with zwitterionic sulfobetaine (SB). Silica-nanoparticle suspensions were functionalized with SB across three pH conditions and deposited as thin films via a simple spin-coating process to generate hydrophilic antifouling coatings. In addition, coatings of predeposited silica nanoparticles were surface functionalized via exposure to zwitterionic solutions. Quartz crystal microgravimetry with dissipation monitoring was employed as a high throughput technique for monitoring and optimizing reaction to the silica-nanoparticle surfaces. Functionalization of nanoparticle films was rapid and could be achieved over a wide pH range and at low zwitterion concentrations. All functionalized particle surfaces presented a high degree of wettability and resulted in large reductions in adsorption of bovine serum albumin protein. Particle coatings also showed a reduction in adhesion of fungal spores (Epicoccum nigrum) and bacteria (Escherichia coli) by up to 87 and 96%, respectively. These results indicate the potential for functionalized nanosilicas to be further developed as versatile fouling-resistant coatings for widespread coating applications.
200-BP-1 Prototype Hanford Barrier -- 15 Years of Performance Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Anderson L.; Draper, Kathryn E.; Link, Steven O.
2011-09-30
Monitoring is an essential component of engineered barrier system design and operation. A composite capacitive cover, including a capillary break and an evapotranspiration (ET) barrier at the Hanford Site, is generating data that can be used to help resolve these issues. The prototype Hanford barrier was constructed over the 216-B-57 Crib in 1994 to evaluate surface-barrier constructability, construction costs, and physical and hydrologic performance at the field scale. The barrier has been routinely monitored between November 1994 and September 1998 as part of a Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) treatability test of barrier performance formore » the 200 BP 1 Operable Unit. Since FY 1998, monitoring has focused on a more limited set of key water balance, stability, and biotic parameters. In FY 2009, data collection was focused on: (1) water-balance monitoring, consisting of precipitation, runoff, soil moisture storage, and drainage measurements with evapotranspiration calculated by difference; (2) stability monitoring, consisting of asphalt-layer-settlement, basalt-side-slope-stability, and surface-elevation measurements; (3) vegetation dynamics; and (4) animal use. September 2009 marked 15 years since the start of monitoring and the collection of performance data. This report describes the results of monitoring activities during the period October 1, 2008, through September 30, 2009, and summarizes the 15 years of performance data collected from September 1994 through September 2009.« less
Distribution Patterns of Land Surface Water from Hurricanes Katrina and Rita
2005-10-12
The above images, derived from NASA QuikScat satellite data, show the extensive pattern of rain water deposited by Hurricanes Katrina and Rita on land surfaces over several states in the southern and eastern United States. These results demonstrate the capability of satellite scatterometers to monitor changes in surface water on land. The color scale depicts increases in radar backscatter (in decibels) between the current measurement and the mean of measurements obtained during the previous two weeks. The backscatter can be calibrated to measure increases in surface soil moisture resulting from rainfall. The yellow color corresponds to an increase of approximately 10 percent or more in surface soil moisture according to the calibration site of Lonoke, Ark. The two hurricanes deposited excessive rainfall over extensive regions of the Mississippi River basin. Basins the size of the Mississippi can take up to several weeks before such excess rainfall significantly increases the amount of river discharge in large rivers such as the Mississippi. With hurricane season not over until November 30, the potential exists for significant flooding, particularly if new rain water is deposited by new hurricanes when river discharge peaks up as a result of previous rainfalls. River discharge should be closely monitored to account for this factor in evaluating potential flood conditions in the event of further hurricanes. http://photojournal.jpl.nasa.gov/catalog/PIA03029
Attribution of precipitation changes on ground-air temperature offset: Granger causality analysis
NASA Astrophysics Data System (ADS)
Cermak, Vladimir; Bodri, Louise
2018-01-01
This work examines the causal relationship between the value of the ground-air temperature offset and the precipitation changes for monitored 5-min data series together with their hourly and daily averages obtained at the Sporilov Geophysical Observatory (Prague). Shallow subsurface soil temperatures were monitored under four different land cover types (bare soil, sand, short-cut grass and asphalt). The ground surface temperature (GST) and surface air temperature (SAT) offset, Δ T(GST-SAT), is defined as the difference between the temperature measured at the depth of 2 cm below the surface and the air temperature measured at 5 cm above the surface. The results of the Granger causality test did not reveal any evidence of Granger causality for precipitation to ground-air temperature offsets on the daily scale of aggregation except for the asphalt pavement. On the contrary, a strong evidence of Granger causality for precipitation to the ground-air temperature offsets was found on the hourly scale of aggregation for all land cover types except for the sand surface cover. All results are sensitive to the lag choice of the autoregressive model. On the whole, obtained results contain valuable information on the delay time of Δ T(GST-SAT) caused by the rainfall events and confirmed the importance of using autoregressive models to understand the ground-air temperature relationship.
NASA Technical Reports Server (NTRS)
Otterman, J.
1975-01-01
Anthropogenic modification of the earth's surface is discussed in two problem areas: (1) land use changes and overgrazing, and how it affects albedo and land surface-atmosphere interactions, and (2) water and land surface pollution, especially oil slicks. A literature survey evidences the importance of these problems. The need for monitoring is stressed, and it is suggested that with some modifications to the sensors, ERTS (Landsat) series satellites can provide approximate monitoring information. The European Landsat receiving station in Italy will facilitate data collection for the tasks described.
Remote optoelectronic sensors for monitoring of nonlinear surfaces
NASA Astrophysics Data System (ADS)
Petrochenko, Andrew V.; Konyakhin, Igor A.
2015-05-01
Actually during construction of the high building actively are used objects of various nonlinear surface, for example, sinuous (parabolic or hyperbolic) roofs of the sport complexes that require automatic deformation control [1]. This type of deformation has character of deflection that is impossible to monitor objectively with just one optoelectronic sensor (which is fixed on this surface). In this article is described structure of remote optoelectronic sensor, which is part of the optoelectronic monitoring system of nonlinear surface, and mathematical transformation of exterior orientation sensor elements in the coordinates of control points.
Stout, D M; Leidy, R B
2000-07-01
Methods have been developed to monitor the translocation of microencapsulated cyfluthrin following perimeter applications to residential dwellings. A pilot study was implemented to determine both the potential for application spray to drift away from dwellings and the intrusion of residues into homes following perimeter treatments. Residential monitoring included measuring spray drift using cellulose filter paper and the collection of soil samples from within the spray zone. In addition, interior air was monitored using fiberglass filter paper as a sorbent medium and cotton ball swabs were used to collect surface wipes. Fortification of matrixes resulted in recoveries of > 90%. Spray drift was highest at the point of application and declined to low but measurable levels 9.1 m from the foundations of dwellings. Soil residues declined to low, but measurable levels by 45 days post-application. No cyfluthrin was measured from indoor air; however, some interior surfaces had detectable levels of cyfluthrin until three days post-application. Findings indicate that spray drift resulting from perimeter applications might contaminate non-target surfaces outside the spray zone. Soil borne residues may serve as persistent sources for human exposure and potentially intrude into dwellings through the activities of occupants and pets. Residues do not appreciably translocate through air and consequently inhalation is not a likely route for human exposure. Surface residues detected indoors suggest that the physical movement of residues from the exterior to the interior might be a viable route of movement of residues following this type of application.
NASA Astrophysics Data System (ADS)
Rippe, Dennis; Bergmann, Peter; Labitzke, Tim; Wagner, Florian; Schmidt-Hattenberger, Cornelia
2016-04-01
The Ketzin pilot site in Germany is the longest operating on-shore CO2 storage site in Europe. From June 2008 till August 2013, a total of ˜67,000 tonnes of CO2 were safely stored in a saline aquifer at depths of 630 m to 650 m. The storage site has now entered the abandonment phase, and continuation of the multi-disciplinary monitoring as part of the national project "CO2 post-injection monitoring and post-closure phase at the Ketzin pilot site" (COMPLETE) provides the unique chance to participate in the conclusion of the complete life cycle of a CO2 storage site. As part of the continuous evaluation of the functionality and integrity of the CO2 storage in Ketzin, from October 12, 2015 till January 6, 2015 a total of ˜2,900 tonnes of brine were successfully injected into the CO2 reservoir, hereby simulating in time-lapse the natural backflow of brine and the associated displacement of CO2. The main objectives of this brine injection experiment include investigation of how much of the CO2 in the pore space can be displaced by brine and if this displacement of CO2 during the brine injection differs from the displacement of formation fluid during the initial CO2 injection. Geophysical monitoring of the brine injection included continuous geoelectric measurements accompanied by monitoring of pressure and temperature conditions in the injection well and two adjacent observation wells. During the previous CO2 injection, the geoelectrical monitoring concept at the Ketzin pilot site consisted of permanent crosshole measurements and non-permanent large-scale surveys (Kiessling et al., 2010). Time-lapse geoelectrical tomographies derived from the weekly crosshole data at near-wellbore scale complemented by six surface-downhole surveys at a scale of 1.5 km showed a noticeable resistivity signature within the target storage zone, which was attributed to the CO2 plume (Schmidt-Hattenberger et al., 2011) and interpreted in terms of relative CO2 and brine saturations (Bergmann et al., 2012). During the brine injection, usage of a new data acquisition unit allowed the daily collection of an extended crosshole data set. This data set was complemented by an alternative surface-downhole acquisition geometry, which for the first time allowed for regular current injections from three permanent surface electrodes into the existing electrical resistivity downhole array without the demand of an extensive field survey. This alternative surface-downhole acquisition geometry is expected to be characterized by good data quality and well confined sensitivity to the target storage zone. Time-lapse geoelectrical tomographies have been derived from both surface-downhole and crosshole data and show a conductive signature around the injection well associated with the displacement of CO2 by the injected brine. In addition to the above mentioned objectives of this brine injection experiment, comparative analysis of the surface-downhole and crosshole data provides the opportunity to evaluate the alternative surface-downhole acquisition geometry with respect to its resolution within the target storage zone and its ability to quantitatively constrain the displacement of CO2 during the brine injection. These results will allow for further improvement of the deployed alternative surface-downhole acquisition geometries. References Bergmann, P., Schmidt-Hattenberger, C., Kiessling, D., Rücker, C., Labitzke, T., Henninges, J., Baumann, G., Schütt, H. (2012). Surface-Downhole Electrical Resistivity Tomography applied to Monitoring of the CO2 Storage Ketzin (Germany). Geophysics, 77, B253-B267. Kiessling, D., Schmidt-Hattenberger, C., Schuett, H., Schilling, F., Krueger, K., Schoebel, B., Danckwardt, E., Kummerow, J., CO2SINK Group (2010). Geoelectrical methods for monitoring geological CO2 storage: First results from cross-hole and surface-downhole measurements from the CO2SINK test site at Ketzin (Germany). International Journal of Greenhouse Gas Control, 4(5), 816-826. Schmidt-Hattenberger, C., Bergmann, P., Kießling, D., Krüger, K., Rücker, C., Schütt, H., Ketzin Group (2011). Application of a Vertical Electrical Resistivity Array (VERA) for monitoring CO2 migration at the Ketzin site: First performance evaluation. Energy Procedia, 4, 3363-3370.
Power, Christopher; Ramasamy, Murugan; MacAskill, Devin; Shea, Joseph; MacPhee, Joseph; Mayich, David; Baechler, Fred; Mkandawire, Martin
2017-12-01
Cover systems are commonly placed over waste rock piles (WRPs) to limit atmospheric water and oxygen ingress and control the generation and release of acid mine drainage (AMD) to the receiving environment. Although covers containing geomembranes such as high-density polyethylene (HDPE) exhibit the attributes to be highly effective, there are few, if any, published studies monitoring their performance at full-scale WRPs. In 2011, a HDPE cover was installed over the Scotchtown Summit WRP in Nova Scotia, Canada, and extensive field performance monitoring was conducted over the next five years. A range of parameters within the atmosphere, cover, waste rock, groundwater and surface water, were monitored and integrated into a comprehensive hydrogeochemical conceptual model to assess (i) atmospheric ingress to the waste rock, (ii) waste rock acidity and depletion and (iii) evolution of groundwater and surface water quality. Results demonstrate that the cover is effective and meeting site closure objectives. Depletion in oxygen influx resulted in slower sulphide oxidation and AMD generation, while a significant reduction in water influx (i.e. 512 to 50 mm/year) resulted in diminished AMD release. Consistent improvements in groundwater quality (decrease in sulphate and metals; increase in pH) beneath and downgradient of the WRP were observed. Protection and/or significant improvement in surface water quality was evident in all surrounding watercourses due to the improved groundwater plume and elimination of contaminated runoff over previously exposed waste rock. A variably saturated flow and contaminant transport model is currently being developed to predict long-term cover system performance.
Evaluation of the capabilities of satellite imagery for monitoring regional air pollution episodes
NASA Technical Reports Server (NTRS)
Barnes, J. C.; Bowley, C. J.; Burke, H. H. K.
1979-01-01
A comparative analysis of satellite visible channel imagery and ground based aerosol measurements is carried out for three cases representing a significant pollution episodes based on low surface visibility and high sulfate levels. The feasibility of detecting pollution episodes from space is also investigated using a simulation model. The model results are compared to quantitative information derived from digitized satellite data. The results show that when levels are or = 30 micrograms/cu, a haze pattern that correlates closely with the area of reported low surface visibilities and high micrograms sulfate levels can be detected in satellite visible channel imagery. The model simulation demonstrates the potential of the satellite to monitor the magnitude and areal extent of pollution episodes. Quantitative information on total aerosol amount derived from the satellite digitized data using the atmospheric radiative transfer model agrees well with the results obtained from the ground based measurements.
Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films
NASA Technical Reports Server (NTRS)
Hines, Jacqueline H. (Inventor)
2015-01-01
A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.
NASA Astrophysics Data System (ADS)
Vieira, Gonçalo; Catalão, João; Prates, Gonçalo; Correia, António
2014-05-01
Rockglaciers have been described by various authors in the South Shetlands archipelago (Antarctic Peninsula region), with the main contribution being that of Serrano and Lopez-Martínez (2000), who have described 9 rockglaciers and 11 protalus lobes. However, little is known about the deformation rates of rockglaciers in the region nor about possible changes associated with climate warming. Since the Western Antarctic Peninsula region is one of the areas on Earth which has been warming at a faster rate, monitoring rockglacier deformation should provide insight into the influence of climate change on geomorphodynamics. Hurd rockglacier is located in the south part of Hurd Peninsula, in a glacial cirque with a ridge varying from 227 to 301 m asl that connects directly to False Bay through a series of raised-beach terraces. The bedrock is composed of sandstones, shales and greywackes with a flysch facies, of the Myers Bluff formation. The valley shows steep rockwalls with extensive scree slopes and a small retreating valley glacier with a prominent frontal moraine, from where the rockglacier develops. The rockglacier body is ci 630 m long and 290 m wide and the surface shows frequent pressure ridges and furrows, especially in the lower sector. The rockglacier front is 15-20 m high and shows a slope of 45º (Serrano and López-Martínez 2000). In this poster we present the first data from surface deformation monitoring using stakes and D-GPS measurements conducted annually since 2011. Preliminary results show deformation values of 8 to 15 cm/year. Since 2011 we are also conducting DInSAR analysis using TerraSAR-X imagery and despite problems related mostly to snow cover, we have obtained image pairs allowing to identify deformation in the same order of magnitude of field observations. We expect to be able to present new results from the summer of 2013-14 campaign, which include a more intensive image acquisition plan. Results from a Vertical Electrical Sounding fro 2013 confirming the presence of permafrost, as indicated by Serrano et al (2004) are presented. The preliminary results from the monitoring of Hurd rockglacier and especially the application of DInSAR monitoring techinques indicate that such an approach is valid for monitoring surface deformation in the Maritime Antarctic and that it can be used to identify areas of high deformation rates, without a priori field knowledge. The main limitation is the short snow free period and the irregularity of snow fall events that occur also during the summer. This work was done in the framework of the PTDC/AAG-GLO/3908/2012 program, financed by FCT which the author acknowledge gratefully.
Chemical modifications of Au/SiO2 template substrates for patterned biofunctional surfaces.
Briand, Elisabeth; Humblot, Vincent; Landoulsi, Jessem; Petronis, Sarunas; Pradier, Claire-Marie; Kasemo, Bengt; Svedhem, Sofia
2011-01-18
The aim of this work was to create patterned surfaces for localized and specific biochemical recognition. For this purpose, we have developed a protocol for orthogonal and material-selective surface modifications of microfabricated patterned surfaces composed of SiO(2) areas (100 μm diameter) surrounded by Au. The SiO(2) spots were chemically modified by a sequence of reactions (silanization using an amine-terminated silane (APTES), followed by amine coupling of a biotin analogue and biospecific recognition) to achieve efficient immobilization of streptavidin in a functional form. The surrounding Au was rendered inert to protein adsorption by modification by HS(CH(2))(10)CONH(CH(2))(2)(OCH(2)CH(2))(7)OH (thiol-OEG). The surface modification protocol was developed by testing separately homogeneous SiO(2) and Au surfaces, to obtain the two following results: (i) SiO(2) surfaces which allowed the grafting of streptavidin, and subsequent immobilization of biotinylated antibodies, and (ii) Au surfaces showing almost no affinity for the same streptavidin and antibody solutions. The surface interactions were monitored by quartz crystal microbalance with dissipation monitoring (QCM-D), and chemical analyses were performed by polarization modulation-reflexion absorption infrared spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS) to assess the validity of the initial orthogonal assembly of APTES and thiol-OEG. Eventually, microscopy imaging of the modified Au/SiO(2) patterned substrates validated the specific binding of streptavidin on the SiO(2)/APTES areas, as well as the subsequent binding of biotinylated anti-rIgG and further detection of fluorescent rIgG on the functionalized SiO(2) areas. These results demonstrate a successful protocol for the preparation of patterned biofunctional surfaces, based on microfabricated Au/SiO(2) templates and supported by careful surface analysis. The strong immobilization of the biomolecules resulting from the described protocol is advantageous in particular for micropatterned substrates for cell-surface interactions.
NASA Technical Reports Server (NTRS)
McLinden, C. A.; Fioletov, V.; Boersma, K. F.; Kharol, S. K.; Krotkov, N.; Lamsal, L.; Makar, P. A.; Martin, R. V.; Veefkind, J. P.; Yang, K.
2014-01-01
Satellite remote sensing is increasingly being used to monitor air quality over localized sources such as the Canadian oil sands. Following an initial study, significantly low biases have been identified in current NO2 and SO2 retrieval products from the Ozone Monitoring Instrument (OMI) satellite sensor over this location resulting from a combination of its rapid development and small spatial scale. Air mass factors (AMFs) used to convert line-of-sight "slant" columns to vertical columns were re-calculated for this region based on updated and higher resolution input information including absorber profiles from a regional-scale (15 km × 15 km resolution) air quality model, higher spatial and temporal resolution surface reflectivity, and an improved treatment of snow. The overall impact of these new Environment Canada (EC) AMFs led to substantial increases in the peak NO2 and SO2 average vertical column density (VCD), occurring over an area of intensive surface mining, by factors of 2 and 1.4, respectively, relative to estimates made with previous AMFs. Comparisons are made with long-term averages of NO2 and SO2 (2005-2011) from in situ surface monitors by using the air quality model to map the OMI VCDs to surface concentrations. This new OMI-EC product is able to capture the spatial distribution of the in situ instruments (slopes of 0.65 to 1.0, correlation coefficients of greater than 0.9). The concentration absolute values from surface network observations were in reasonable agreement, with OMI-EC NO2 and SO2 biased low by roughly 30%. Several complications were addressed including correction for the interference effect in the surface NO2 instruments and smoothing and clear-sky biases in the OMI measurements. Overall these results highlight the importance of using input information that accounts for the spatial and temporal variability of the location of interest when performing retrievals.
DOT National Transportation Integrated Search
2014-07-01
The objective of this project was to investigate the use of Frequency Selective Surfaces (FSS) for structural health monitoring applications. Frequency Selective Surfaces (FSS) have long been used in the RF/microwave community to control scattering f...
NASA Astrophysics Data System (ADS)
Qu, T.; Lu, P.; Liu, C.; Wan, H.
2016-06-01
Western China is very susceptible to landslide hazards. As a result, landslide detection and early warning are of great importance. This work employs the SBAS (Small Baseline Subset) InSAR Technique for detection and monitoring of large-scale landslides that occurred in Li County, Sichuan Province, Western China. The time series INSAR is performed using descending scenes acquired from TerraSAR-X StripMap mode since 2014 to get the spatial distribution of surface displacements of this giant landslide. The time series results identify the distinct deformation zone on the landslide body with a rate of up to 150mm/yr. The deformation acquired by SBAS technique is validated by inclinometers from diverse boreholes of in-situ monitoring. The integration of InSAR time series displacements and ground-based monitoring data helps to provide reliable data support for the forecasting and monitoring of largescale landslide.
Single neuronal recordings using surface micromachined polysilicon microelectrodes.
Muthuswamy, Jit; Okandan, Murat; Jackson, Nathan
2005-03-15
Bulk micromachining techniques of silicon have been used successfully in the past several years to microfabricate microelectrodes for monitoring single neurons in acute and chronic experiments. In this study we report for the first time a novel surface micromachining technique to microfabricate a very thin polysilicon microelectrode that can be used for monitoring single-unit activity in the central nervous system. The microelectrodes are 3 mm long and 50 microm x 3.75 microm in cross-section. Excellent signal to noise ratios in the order of 25-35 dB were obtained while recording neuronal action potentials. The microelectrodes successfully penetrated the brains after a microincision of the dura mater. Chronic implantation of the microprobe for up to 33 days produced only minor gliosis. Since the polysilicon shank acts as a conductor, additional processing steps involved in laying conductor lines on silicon substrates are avoided. Further, surface micromachining allows for fabricating extremely thin microelectrodes which could result in decreased inflammatory responses. We conclude that the polysilicon microelectrode reported here could be a complementary approach to bulk-micromachined silicon microelectrodes for chronic monitoring of single neurons in the central nervous system.
Wu, Hsin-Yu; Cunningham, Brian T
2014-05-21
We demonstrate an approach for detection, identification, and kinetic monitoring of drugs flowing within tubing, through the use of a plasmonic nanodome array (PNA) surface. The PNA structures are fabricated using a low-cost nanoreplica molding process upon a flexible plastic substrate that is subsequently integrated with a flow cell that connects in series with ordinary intravenous (IV) drug delivery tubing. To investigate the potential clinical applications for point-of-care detection and real-time monitoring, we perform SERS detection of ten pharmaceutical compounds (hydrocodone, levorphanol, morphine, oxycodone, methadone, phenobarbital, dopamine, diltiazem, promethazine, and mitoxantrone). We demonstrate dose-dependent SERS signal magnitude, resulting in detection limits (ng ml(-1)) well below typical administered dosages (mg ml(-1)). Further, we show that the detected drugs are not permanently attached to the PNA surface, and thus our approach is capable of performing continuous monitoring of drug delivery as materials flow through IV tubing that is connected in series with the sensor. Finally, we demonstrate the potential co-detection of multiple drugs when they are mixed together, and show excellent reproducibility and stability of SERS measurements for periods extending at least five days. The capabilities reported here demonstrate the potential to use PNA SERS surfaces for enhancing the safety of IV drug delivery.
NASA Astrophysics Data System (ADS)
Tong, Xiaohua; Luo, Xin; Liu, Shuguang; Xie, Huan; Chao, Wei; Liu, Shuang; Liu, Shijie; Makhinov, A. N.; Makhinova, A. F.; Jiang, Yuying
2018-02-01
Remote sensing techniques offer potential for effective flood detection with the advantages of low-cost, large-scale, and real-time surface observations. The easily accessible data sources of optical remote sensing imagery provide abundant spectral information for accurate surface water body extraction, and synthetic aperture radar (SAR) systems represent a powerful tool for flood monitoring because of their all-weather capability. This paper introduces a new approach for flood monitoring by the combined use of both Landsat 8 optical imagery and COSMO-SkyMed radar imagery. Specifically, the proposed method applies support vector machine and the active contour without edges model for water extent determination in the periods before and during the flood, respectively. A map difference method is used for the flood inundation analysis. The proposed approach is particularly suitable for large-scale flood monitoring, and it was tested on a serious flood that occurred in northeastern China in August 2013, which caused immense loss of human lives and properties. High overall accuracies of 97.46% for the optical imagery and 93.70% for the radar imagery are achieved by the use of the techniques presented in this study. The results show that about 12% of the whole study area was inundated, corresponding to 5466 km2 of land surface.
Field application of passive SBSE for the monitoring of pesticides in surface waters.
Assoumani, A; Coquery, M; Liger, L; Mazzella, N; Margoum, C
2015-03-01
Spot sampling lacks representativeness for monitoring organic contaminants in most surface waters. Passive sampling has emerged as a cost-effective complementary sampling technique. We recently developed passive stir bar sorptive extraction (passive SBSE), with Twister from Gerstel, for monitoring moderately hydrophilic to hydrophobic pesticides (2.18 < log K ow < 5.11) in surface water. The aims of the present study were to assess this new passive sampler for the determination of representative average concentrations and to evaluate the contamination levels of two French rivers. Passive SBSE was evaluated for the monitoring of 16 pesticides in two rivers located in a small vineyard watershed during two 1-month field campaigns in spring 2010 and spring 2011. Passive SBSE was applied for periods of 1 or 2 weeks during the field campaigns and compared with spot sampling and weekly average automated sampling. The results showed that passive SBSE could achieve better time-representativeness than spot sampling and lower limits of quantification than automated sampling coupled with analytical SBSE for the pesticides studied. Finally, passive SBSE proved useful for revealing spatial and temporal variations in pesticide contamination of both rivers and the impact of rainfall and runoff on the river water quality.
Reconstruction of in-plane strain maps using hybrid dense sensor network composed of sensing skin
NASA Astrophysics Data System (ADS)
Downey, Austin; Laflamme, Simon; Ubertini, Filippo
2016-12-01
The authors have recently developed a soft-elastomeric capacitive (SEC)-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. Under plane stress conditions, the sensor output contains the additive measurement of the two principal strain components over the monitored surface. In applications where the evaluation of strain maps is useful, in structural health monitoring for instance, such signal must be decomposed into linear strain components along orthogonal directions. Previous work has led to an algorithm that enabled such decomposition by leveraging a dense sensor network configuration with the addition of assumed boundary conditions. Here, we significantly improve the algorithm’s accuracy by leveraging mature off-the-shelf solutions to create a hybrid dense sensor network (HDSN) to improve on the boundary condition assumptions. The system’s boundary conditions are enforced using unidirectional RSGs and assumed virtual sensors. Results from an extensive experimental investigation demonstrate the good performance of the proposed algorithm and its robustness with respect to sensors’ layout. Overall, the proposed algorithm is seen to effectively leverage the advantages of a hybrid dense network for application of the thin film sensor to reconstruct surface strain fields over large surfaces.
Detection and monitoring of surface micro-cracks by PPP-BOTDA.
Meng, Dewei; Ansari, Farhad; Feng, Xin
2015-06-01
Appearance of micrometer size surface cracks is common in structural elements such as welded connections, beams, and gusset plates in bridges. Brillouin scattering-based sensors are capable of making distributed strain measurements. Pre-pump-pulse Brillouin optical time domain analysis (PPP-BOTDA) provides a centimeter-level spatial resolution, which facilitates detection and monitoring of the cracks. In the work described here, in addition to the shift in Brillouin frequency (distributed strains), change in the Brillouin gain spectrum (BGS) width is investigated for the detection and monitoring of surface micro-cracks. A theoretical analysis was undertaken in order to verify the rationality of the proposed method. The theoretical approach involved simulation of strain within a segment of the optical fiber traversing a crack and use of the simulated strain distribution in the opto-mechanical relations in order to numerically obtain the change in the BGS. Simulations revealed that the increase in crack opening displacements is associated with increase in BGS width and decrease in its peak power. Experimental results also indicated that the increases in crack opening displacements are accompanied with increases in BGS widths. However, it will be difficult to use the decrease in BGS power peak as another indicator due to practical difficulties in establishing generalized power amplitude in all the experiments. The study indicated that, in combination with the shift in Brillouin frequency, the increase in BGS width will provide a strong tool for detection and monitoring of surface micro-crack growths.
To the National Map and beyond
Kelmelis, J.
2003-01-01
Scientific understanding, technology, and social, economic, and environmental conditions have driven a rapidly changing demand for geographic information, both digital and analog. For more than a decade, the U.S. Geological Survey (USGS) has been developing innovative partnerships with other government agencies and private industry to produce and distribute geographic information efficiently; increase activities in remote sensing to ensure ongoing monitoring of the land surface; and develop new understanding of the causes and consequences of land surface change. These activities are now contributing to a more robust set of geographic information called The National Map (TNM). The National Map is designed to provide an up-to-date, seamless, horizontally and vertically integrated set of basic digital geographic data, a frequent monitoring of changes on the land surface, and an understanding of the condition of the Earth's surface and many of the processes that shape it. The USGS has reorganized its National Mapping Program into three programs to address the continuum of scientific activities-describing (mapping), monitoring, understanding, modeling, and predicting. The Cooperative Topographic Mapping Program focuses primarily on the mapping and revision aspects of TNM. The National Map also includes results from the Land Remote Sensing and Geographic Analysis and Monitoring Programs that provide continual updates, new insights, and analytical tools. The National Map is valuable as a framework for current research, management, and operational activities. It also provides a critical framework for the development of distributed, spatially enabled decision support systems.
NASA Astrophysics Data System (ADS)
Johnson, Erika; Cowen, Edwin
2013-11-01
The effect of increased bed roughness on the free surface turbulence signature of an open channel flow is investigated with the goal of incorporating the findings into a methodology to remotely monitor volumetric flow rates. Half of a wide (B = 2 m) open channel bed is covered with a 3 cm thick layer of loose gravel (D50 = 0.6 cm). Surface PIV (particle image velocimetry) experiments are conducted for a range of flow depths (B/H = 10-30) and Reynolds numbers (ReH = 10,000-60,000). It is well established that bed roughness in wall-bounded flows enhances the vertical velocity fluctuations (e.g. Krogstad et al. 1992). When the vertical velocity fluctuations approach the free surface they are redistributed (e.g. Cowen et al. 1995) to the surface parallel component directions. It is anticipated and confirmed that the interaction of these two phenomena result in enhanced turbulence at the free surface. The effect of the rough bed on the integral length scales and the second order velocity structure functions calculated at the free surface are investigated. These findings have important implications for developing new technologies in stream gaging.
Multiplatform observations enabling albedo retrievals with high temporal resolution
NASA Astrophysics Data System (ADS)
Riihelä, Aku; Manninen, Terhikki; Key, Jeffrey; Sun, Qingsong; Sütterlin, Melanie; Lattanzio, Alessio; Schaaf, Crystal
2017-04-01
In this paper we show that combining observations from different polar orbiting satellite families (such as AVHRR and MODIS) is physically justifiable and technically feasible. Our proposed approach will lead to surface albedo retrievals at higher temporal resolution than the state of the art, with comparable or better accuracy. This study is carried out in the World Meteorological Organization (WMO) Sustained and coordinated processing of Environmental Satellite data for Climate Monitoring (SCOPE-CM) project SCM-02 (http://www.scope-cm.org/projects/scm-02/). Following a spectral homogenization of the Top-of-Atmosphere reflectances of bands 1 & 2 from AVHRR and MODIS, both observation datasets are atmospherically corrected with a coherent atmospheric profile and algorithm. The resulting surface reflectances are then fed into an inversion of the RossThick-LiSparse-Reciprocal surface bidirectional reflectance distribution function (BRDF) model. The results of the inversion (BRDF kernels) may then be integrated to estimate various surface albedo quantities. A key principle here is that the larger number of valid surface observations with multiple satellites allows us to invert the BRDF coefficients within a shorter time span, enabling the monitoring of relatively rapid surface phenomena such as snowmelt. The proposed multiplatform approach is expected to bring benefits in particular to the observation of the albedo of the polar regions, where persistent cloudiness and long atmospheric path lengths present challenges to satellite-based retrievals. Following a similar logic, the retrievals over tropical regions with high cloudiness should also benefit from the method. We present results from a demonstrator dataset of a global combined AVHRR-GAC and MODIS dataset covering the year 2010. The retrieved surface albedo is compared against quality-monitored in situ albedo observations from the Baseline Surface Radiation Network (BSRN). Additionally, the combined retrieval dataset is compared against MODIS C6 albedo/BRDF datasets to assess the quality of the multiplatform approach against current state of the art. This approach is not limited to AHVRR and MODIS observations. Provided that the spectral homogenization produces an acceptably good match, any instrument observing the Earth's surface in the visible and near-infrared wavelengths could, in principal, be included to further enhance the temporal resolution and accuracy of the retrievals. The SCOPE-CM initiative provides a potential framework for such expansion in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.
The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) began its environmental investigations at Everest, Kansas, in 2000. The work at Everest is implemented on behalf of the CCC/USDA by Argonne National Laboratory, under the oversight of the Kansas Department of Health and Environment (KDHE). The results of the environmental investigations have been reported in detail (Argonne 2001, 2003, 2006a,b). The lateral extent of the carbon tetrachloride in groundwater over the years of investigation has been interpreted as shown in Figure 1.1 (2001-2002 data), Figure 1.2 (2006 data), Figure 1.3 (2008 data), and Figure 1.4 (2009 data). Themore » pattern of groundwater flow and inferred contaminant migration has consistently been to the north-northwest from the former CCC/USDA facility toward the Nigh property, and then west-southwest from the Nigh property (e.g., Figure 1.5 [2008 data] and Figure 1.6 [2009 data]). Both the monitoring data for carbon tetrachloride and the low groundwater flow rates estimated for the Everest aquifer unit (Argonne 2003, 2006a,b, 2008) indicate slow contaminant migration. On the basis of the accumulated findings, in March 2009 the CCC/USDA developed a plan for annual monitoring of the groundwater and surface water. This current monitoring plan (Appendix A in the report of monitoring in 2009 [Argonne 2010]) was approved by the KDHE (2009a). Under this plan, the monitoring wells are sampled by the low-flow procedure, and sample preservation, shipping, and analysis activities are consistent with previous work at Everest. The annual sampling will continue until identified conditions at the site indicate a technical justification for a change. The first annual sampling event under the new monitoring plan took place in April 2009. The results of analyses for volatile organic compounds (VOCs) and water level measurements were consistent with previous observations (Figures 1.1-1.4). No carbon tetrachloride was detected in surface water of the intermittent creek or in tree branch samples collected at 18 locations along the creek banks. The complete results were reported previously (Argonne 2010). This report presents the results of the second annual sampling events, conducted in 2010. Included in the 2010 monitoring were the following: (1) Continued automatic and manual monitoring of groundwater levels. (2) Groundwater sampling on April 8-9, 2010. (3) Surface water sampling on April 8, 2010. (4) Vegetation sampling on July 28, 2010. (5) Indoor air sampling at selected residences on August 11-12, 2010. The activities are described in Section 2, and the results are discussed in Section 3. Conclusions and recommendations are presented in Section 4.« less
Processing Approaches for DAS-Enabled Continuous Seismic Monitoring
NASA Astrophysics Data System (ADS)
Dou, S.; Wood, T.; Freifeld, B. M.; Robertson, M.; McDonald, S.; Pevzner, R.; Lindsey, N.; Gelvin, A.; Saari, S.; Morales, A.; Ekblaw, I.; Wagner, A. M.; Ulrich, C.; Daley, T. M.; Ajo Franklin, J. B.
2017-12-01
Distributed Acoustic Sensing (DAS) is creating a "field as laboratory" capability for seismic monitoring of subsurface changes. By providing unprecedented spatial and temporal sampling at a relatively low cost, DAS enables field-scale seismic monitoring to have durations and temporal resolutions that are comparable to those of laboratory experiments. Here we report on seismic processing approaches developed during data analyses of three case studies all using DAS-enabled seismic monitoring with applications ranging from shallow permafrost to deep reservoirs: (1) 10-hour downhole monitoring of cement curing at Otway, Australia; (2) 2-month surface monitoring of controlled permafrost thaw at Fairbanks, Alaska; (3) multi-month downhole and surface monitoring of carbon sequestration at Decatur, Illinois. We emphasize the data management and processing components relevant to DAS-based seismic monitoring, which include scalable approaches to data management, pre-processing, denoising, filtering, and wavefield decomposition. DAS has dramatically increased the data volume to the extent that terabyte-per-day data loads are now typical, straining conventional approaches to data storage and processing. To achieve more efficient use of disk space and network bandwidth, we explore improved file structures and data compression schemes. Because noise floor of DAS measurements is higher than that of conventional sensors, optimal processing workflow involving advanced denoising, deconvolution (of the source signatures), and stacking approaches are being established to maximize signal content of DAS data. The resulting workflow of data management and processing could accelerate the broader adaption of DAS for continuous monitoring of critical processes.
Gao, Jun-Min; Wu, Lei; Chen, You-Peng; Zhou, Bin; Guo, Jin-Song; Zhang, Ke; Ouyang, Wen-Juan
2017-03-01
The water quality security of the Three Gorges Reservoir during different operating periods has been a subject of recent concern. This study is the first to report the spatiotemporal variability of organotins (OTs) in surface water under dynamic water level conditions in the Three Gorges Reservoir Region (TGRR). TGRR surface water was collected during three monitoring campaigns to analyze butyltins (BTs) and phenyltins (PTs) using a gas chromatography-mass spectrometry system. Our results showed that TGRR surface water was polluted by BTs and PTs, with mono-OTs being the dominant species. A wide range of BTs and PTs concentrations was observed across the study area, but tributyltin (TBT) displayed extensive spatial distribution, and the highest concentrations consistently occurred in the downstream region of the TGRR study area, with a maximum of 393.35 ng Sn/L in Zigui (S27). The total OTs contamination level decreased over time. The diphenyltin concentration exhibited significant seasonal variation, while other OTs showed seasonal changes only during two monitoring campaigns, with the exception of dibutyltin. An ecological risk assessment indicated that both TBT and triphenyltin posed risks to aquatic organisms in TGRR surface water. We urgently recommend continuous monitoring and further measures to prevent and control OTs pollution in the TGRR. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multi-parameter monitoring of a slow moving landslide in Gresten (Austria)
NASA Astrophysics Data System (ADS)
Canli, Ekrem; Thiebes, Benni; Engels, Alexander; Glade, Thomas; Schweigl, Joachim; Bertagnoli, Michael
2015-04-01
Landslides pose a major threat around the world, to both human life and infrastructure. This may be an even bigger issue in the near future, as an increased landslide activity is commonly listed as an expected impact of human-induced climate change, together with an increasing population growth and the further demand of living space. This requires sound and appropriate means of monitoring slopes prone to landsliding. Monitoring systems for investigating kinematic aspects of landslides aid in analyzing, interpreting, and ultimately understanding its spatio-temporal movement behavior. Landslides around the world greatly differ in terms of typology, movement patterns and geometry, thus, making it difficult to establish a one-fits-all monitoring solution. The linkage between multiple systems with automated instrumentation has often demonstrated the benefits of continuous surveillance in terms of predicting and early warning forthcoming landslide movements. Within this presentation, we introduce a recently established long-term monitoring site on the active Salcher landslide that makes use of an innovative multi-parameter system. The investigated landslide is situated in the municipality of Gresten (Austria) and extends over approx. 8000 m². This slow moving, deep-seated landslide is geologically located in the Gresten Klippenbelt (Helvetic Zone). The characteristic lithofacies are the Gresten Beds of Early Jurassic age that is covered by a sequence of marly and silty beds with intercalated sandy limestones. Together with the adjacent Flyschzone, this area exhibits one of the highest landslide susceptibility within Austria. The monitoring setup consists both of surface and subsurface systems. Surface measurements on multiple locations are performed with highly sensitive sensor networks that measure surface inclination and acceleration. These are wirelessly connected with each other, highly flexible and constructed with a high longevity, yet still at a high measurement rate (currently every five minutes). A permanently installed terrestrial laser scanner (TLS) performs a scan of the landslide surface once a day. The subsurface part of the monitoring system consists of manual and automatic inclinometers, piezometers for monitoring ground water level changes, TDR probes and a fully automatic geoelectrical monitoring profile for analyzing the spatially distributed changes of electrical resistivity over the entire length of the landslide. The monitoring site was established to last for at least a decade and all continuous data is automatically transferred via internet to an external server. Additionally, a weather station has been installed on the landslide. The collected data is used within further analyses (such as data correlation, threshold analysis, and spatio-temporal slope stability analysis). The presentation will focus on the first results of the monitoring system and will highlight ongoing and future work tasks including data processing, analysis and visualization within a web-based platform. The overall goal of the described system is to enable authorized users and decision makers to utilize the near real-time data and analysis results to issue alarms if potentially hazardous changes are recorded.
NASA Astrophysics Data System (ADS)
Corodeanu, S.; Chiriac, H.; Radulescu, L.; Lupu, N.
2014-05-01
Results on the development and testing of a novel magnetic sensor based on the detection of the magneto-impedance variation due to changes in the permeability of an amorphous wire are reported. The proposed application is the quasi-noncontact monitoring of the breathing frequency and heart rate for diagnosing sleep disorders. Patient discomfort is significantly decreased by transversally placing the sensitive element onto the surface of a flexible mattress in order to detect its deformation associated with cardiorespiratory activity and body movements. The developed sensor has a great application potential in monitoring the vital signs during sleep, with special advantages for children sleep monitoring.
Application of Glow Discharge Plasma to Alter Surface Properties of Materials
NASA Technical Reports Server (NTRS)
Trigwell, Steve; Buhler, Charles R.; Calle, Carlos I.
2005-01-01
Some polymer materials that are considered important for spaceport operations are rendered noncompliant when subjected to the Kennedy Space Center (KSC) Standard electrostatic testing. These materials operate in stringent environmental conditions, such as high humidity. Treating materials that fail electrostatic testing and altering their surface properties so that they become compliant would result in considerable cost savings. Significant improvement in electrostatic dissipation of Saf-T-Vu PVC after treatment with air Atmospheric Plasma Glow Discharge (APGD) was observed and the material now passed the KSC electrostatic test. The O:C ratio on the surface, as monitored by X-ray Photoelectron Spectroscopy, increased from 0.165 tO 0.275 indicating enhanced oxidation, and surface contact angle measurements decreased from 107.5 to 72.6 showing increased hydrophilicity that accounted for the increased conductivity. Monitoring of the aging showed that the materials hydrophobic recovery resulted in it failing the electrostatic test 30 hours after treatment. This was probably due to the out-diffusion of the added Zn, Ba, and Cd salt stabilizers detected on the surface and/or diffusion of low molecular weight oligomers. On going work includes improving the long term hydrophilicity by optimizing the APGD process with different gas mixtures. Treatment of other spaceport materials is also presented.
Evolution of the surface species of the V 2O 5-WO 3 catalysts
NASA Astrophysics Data System (ADS)
Najbar, M.; Brocławik, E.; Góra, A.; Camra, J.; Białas, A.; Wesełucha-Birczyńska, A.
2000-07-01
Vanadia-related species formed as a result of vanadium segregation at the surface of V-W oxide bronze crystallites were investigated. The structures of these species and their transformations induced by oxygen removal and oxygen adsorption were monitored using photoelectron spectroscopy and the FT Raman technique. Assignments of the MeO vibrational bands, based on the results of DFT calculations for model clusters, have been proposed. Two kinds of surface species are dominant depending on the tungsten content: V 4+-O-W 6+ at low tungsten content and V 5+-O-W 5+ at higher tungsten concentration.
Surface plasmon resonance application for herbicide detection
NASA Astrophysics Data System (ADS)
Chegel, Vladimir I.; Shirshov, Yuri M.; Piletskaya, Elena V.; Piletsky, Sergey A.
1998-01-01
The optoelectronic biosensor, based on Surface Plasmon Resonance (SPR) for detection of photosynthesis-inhibiting herbicides in aqueous solutions is presented. The pesticide capability to replace plastoquinone from its complex with D1 protein is used for the detection. This replacement reaction results in the changes of the optical characteristics of protein layer, immobilized on the gold surface. Monitoring of these changes with SPR-technique permit to determine 0.1 - 5.0 mkg/ml herbicide in solution within one hour.
Surface plasmon resonance application for herbicide detection
NASA Astrophysics Data System (ADS)
Chegel, Vladimir I.; Shirshov, Yuri M.; Piletskaya, Elena V.; Piletsky, Sergey A.
1997-12-01
The optoelectronic biosensor, based on Surface Plasmon Resonance (SPR) for detection of photosynthesis-inhibiting herbicides in aqueous solutions is presented. The pesticide capability to replace plastoquinone from its complex with D1 protein is used for the detection. This replacement reaction results in the changes of the optical characteristics of protein layer, immobilized on the gold surface. Monitoring of these changes with SPR-technique permit to determine 0.1 - 5.0 mkg/ml herbicide in solution within one hour.
NASA Astrophysics Data System (ADS)
Wu, Hsin-Yu; Cunningham, Brian T.
2014-04-01
We demonstrate an approach for detection, identification, and kinetic monitoring of drugs flowing within tubing, through the use of a plasmonic nanodome array (PNA) surface. The PNA structures are fabricated using a low-cost nanoreplica molding process upon a flexible plastic substrate that is subsequently integrated with a flow cell that connects in series with ordinary intravenous (IV) drug delivery tubing. To investigate the potential clinical applications for point-of-care detection and real-time monitoring, we perform SERS detection of ten pharmaceutical compounds (hydrocodone, levorphanol, morphine, oxycodone, methadone, phenobarbital, dopamine, diltiazem, promethazine, and mitoxantrone). We demonstrate dose-dependent SERS signal magnitude, resulting in detection limits (ng ml-1) well below typical administered dosages (mg ml-1). Further, we show that the detected drugs are not permanently attached to the PNA surface, and thus our approach is capable of performing continuous monitoring of drug delivery as materials flow through IV tubing that is connected in series with the sensor. Finally, we demonstrate the potential co-detection of multiple drugs when they are mixed together, and show excellent reproducibility and stability of SERS measurements for periods extending at least five days. The capabilities reported here demonstrate the potential to use PNA SERS surfaces for enhancing the safety of IV drug delivery.We demonstrate an approach for detection, identification, and kinetic monitoring of drugs flowing within tubing, through the use of a plasmonic nanodome array (PNA) surface. The PNA structures are fabricated using a low-cost nanoreplica molding process upon a flexible plastic substrate that is subsequently integrated with a flow cell that connects in series with ordinary intravenous (IV) drug delivery tubing. To investigate the potential clinical applications for point-of-care detection and real-time monitoring, we perform SERS detection of ten pharmaceutical compounds (hydrocodone, levorphanol, morphine, oxycodone, methadone, phenobarbital, dopamine, diltiazem, promethazine, and mitoxantrone). We demonstrate dose-dependent SERS signal magnitude, resulting in detection limits (ng ml-1) well below typical administered dosages (mg ml-1). Further, we show that the detected drugs are not permanently attached to the PNA surface, and thus our approach is capable of performing continuous monitoring of drug delivery as materials flow through IV tubing that is connected in series with the sensor. Finally, we demonstrate the potential co-detection of multiple drugs when they are mixed together, and show excellent reproducibility and stability of SERS measurements for periods extending at least five days. The capabilities reported here demonstrate the potential to use PNA SERS surfaces for enhancing the safety of IV drug delivery. Electronic supplementary information (ESI) available: Fabrication of PNA substrates, fabrication details of the flow cell, details of FDTD simulation, characterization of the scattering volume, and detection of diltiazem diluted in DI water and PBS. See DOI: 10.1039/c4nr00027g
Analysis of passive surface-wave noise in surface microseismic data and its implications
Forghani-Arani, F.; Willis, M.; Haines, S.; Batzle, M.; Davidson, M.
2011-01-01
Tight gas reservoirs are projected to be a major portion of future energy resources. Because of their low permeability, hydraulic fracturing of these reservoirs is required to improve the permeability and reservoir productivity. Passive seismic monitoring is one of the few tools that can be used to characterize the changes in the reservoir due to hydraulic fracturing. Although the majority of the studies monitoring hydraulic fracturing exploit down hole microseismic data, surface microseismic monitoring is receiving increased attention because it is potentially much less expensive to acquire. Due to a broader receiver aperture and spatial coverage, surface microseismic data may be more advantageous than down hole microseismic data. The effectiveness of this monitoring technique, however, is strongly dependent on the signal-to-noise ratio of the data. Cultural and ambient noise can mask parts of the waveform that carry information about the subsurface, thereby decreasing the effectiveness of surface microseismic analysis in identifying and locating the microseismic events. Hence, time and spatially varying suppression of the surface-wave noise ground roll is a critical step in surface microseismic monitoring. Here, we study a surface passive dataset that was acquired over a Barnett Shale Formation reservoir during two weeks of hydraulic fracturing, in order to characterize and suppress the surface noise in this data. We apply techniques to identify the characteristics of the passive ground roll. Exploiting those characteristics, we can apply effective noise suppression techniques to the passive data. ?? 2011 Society of Exploration Geophysicists.
NASA Technical Reports Server (NTRS)
Chen, W.; Dwight, D. W.; Wightman, J. P.
1978-01-01
Various surface preparations for titanium 6-4 alloy were studied. An anodizing method was investigated, and compared with the results of other chemical treatments, namely, phosphate/fluoride, Pasa-Jell and Turco. The relative durability of the different surface treatments was assessed by monitoring changes in surface chemistry and morphology occasioned by aging at 505 K (450 F). Basic electron spectroscopic data were collected for polyimide and polyphenylquinoxaline adhesives and synthetic precursors. Fractographic studies were completed for several combinations of adherend, adhesive, and testing conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.; Environmental Science Division
2007-06-30
This document reports the results of groundwater monitoring in September 2005 and March 2006 at the grain storage facility formerly operated at Morrill, Kansas, by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). These activities were the first and second twice yearly sampling events of the two-year monitoring program approved by the CCC/USDA and Kansas Department of Health and Environment (KDHE) project managers. The monitoring network sampled in September 2005 consisted of 9 monitoring wells (MW1S-MW5S and MW1D [installed in the mid 1990s] and MW6S-MW8S [installed in 2004]), plus 3 private wells (Isch, Rillinger, and Stone). Themore » groundwater samples collected in this first event were analyzed for volatile organic compounds (VOCs), dissolved hydrogen, and additional groundwater parameters to aid in evaluating the potential for reductive dechlorination processes. After the monitoring in September 2005, Argonne recommended expansion of the initial monitoring network. Previous sampling (August 2004) had already suggested that the initial network was inadequate to delineate the extent of the carbon tetrachloride plume. With the approval of the CCC/USDA and KDHE project managers, the monitoring network was expanded in January 2006 through the installation of 3 additional monitoring wells (MW9S-MW11S). Details of the monitoring well installations are reported in this document. The expanded monitoring network of 12 monitoring wells (MW1S-MW11S and MW1D) and 3 private wells (Isch, Rillinger, and Stone) was sampled in March 2006, the second monitoring event in the planned two-year program. Results of analyses for VOCs showed minor increases or decreases in contaminant levels at various locations but indicated that the leading edge of the contaminant plume is approaching the intermittent stream leading to Terrapin Creek. The groundwater samples collected in March 2006 were also analyzed for additional groundwater parameters to aid in the evaluation of the potential for reductive dechlorination processes. Preliminary screening of groundwater parameters provided inadequate evidence that reductive dechlorination of carbon tetrachloride is taking place at some locations on the former CCC/USDA property. Groundwater levels measured manually in October 2005, March 2006, and June 2006 were used to map the potentiometric surface at Morrill. The results were generally consistent with each other and with previous measurements, indicating a groundwater flow direction to the south-southeast from the former CCC/USDA facility. Data recorders installed in wells MW1S-MW8S in July 2004 are gathering long-term data on the groundwater elevation and gradient. Data downloaded in August 2004, March 2005, October 2005, and June 2006 indicate that two relatively upgradient wells near the former CCC/USDA facility responded distinctly to apparent rainfall/recharge events. In contrast, two downgradient wells south of the former facility showed virtually no response, probably because of the damping influence of the nearby surface drainages and shallow groundwater at their locations. The first two monitoring events of the planned two-year monitoring program for Morrill have demonstrated no clear pattern of changes in carbon tetrachloride concentrations, though the contaminated zone has expanded toward the intermittent stream. Argonne recommends that the monitoring program continue as approved and that surface water samples be collected in future monitoring events (September 2006, March 2007, and September 2007).« less
Law, Cheryl Suwen; Sylvia, Georgina M; Nemati, Madieh; Yu, Jingxian; Losic, Dusan; Abell, Andrew D; Santos, Abel
2017-03-15
We explore new approaches to engineering the surface chemistry of interferometric sensing platforms based on nanoporous anodic alumina (NAA) and reflectometric interference spectroscopy (RIfS). Two surface engineering strategies are presented, namely (i) selective chemical functionalization of the inner surface of NAA pores with amine-terminated thiol molecules and (ii) selective chemical functionalization of the top surface of NAA with dithiol molecules. The strong molecular interaction of Au 3+ ions with thiol-containing functional molecules of alkane chain or peptide character provides a model sensing system with which to assess the sensitivity of these NAA platforms by both molecular feature and surface engineering. Changes in the effective optical thickness of the functionalized NAA photonic films (i.e., sensing principle), in response to gold ions, are monitored in real-time by RIfS. 6-Amino-1-hexanethiol (inner surface) and 1,6-hexanedithiol (top surface), the most sensitive functional molecules from approaches i and ii, respectively, were combined into a third sensing strategy whereby the NAA platforms are functionalized on both the top and inner surfaces concurrently. Engineering of the surface according to this approach resulted in an additive enhancement in sensitivity of up to 5-fold compared to previously reported systems. This study advances the rational engineering of surface chemistry for interferometric sensing on nanoporous platforms with potential applications for real-time monitoring of multiple analytes in dynamic environments.
A Wireless Monitoring System for Cracks on the Surface of Reactor Containment Buildings.
Zhou, Jianguo; Xu, Yaming; Zhang, Tao
2016-06-14
Structural health monitoring with wireless sensor networks has been increasingly popular in recent years because of the convenience. In this paper, a real-time monitoring system for cracks on the surface of reactor containment buildings is presented. Customized wireless sensor networks platforms are designed and implemented with sensors especially for crack monitoring, which include crackmeters and temperature detectors. Software protocols like route discovery, time synchronization and data transfer are developed to satisfy the requirements of the monitoring system and stay simple at the same time. Simulation tests have been made to evaluate the performance of the system before full scale deployment. The real-life deployment of the crack monitoring system is carried out on the surface of reactor containment building in Daya Bay Nuclear Power Station during the in-service pressure test with 30 wireless sensor nodes.
Monitoring tropical vegetation succession with LANDSAT data
NASA Technical Reports Server (NTRS)
Robinson, V. B. (Principal Investigator)
1983-01-01
The shadowing problem, which is endemic to the use of LANDSAT in tropical areas, and the ability to model changes over space and through time are problems to be addressed when monitoring tropical vegetation succession. Application of a trend surface analysis model to major land cover classes in a mountainous region of the Phillipines shows that the spatial modeling of radiance values can provide a useful approach to tropical rain forest succession monitoring. Results indicate shadowing effects may be due primarily to local variations in the spectral responses. These variations can be compensated for through the decomposition of the spatial variation in both elevation and MSS data. Using the model to estimate both elevation and spectral terrain surface as a posteriori inputs in the classification process leads to improved classification accuracy for vegetation of cover of this type. Spatial patterns depicted by the MSS data reflect the measurement of responses to spatial processes acting at several scales.
NASA Astrophysics Data System (ADS)
Sivanantha, Ninnuja; Ma, Charles; Collins, David J.; Sesen, Muhsincan; Brenker, Jason; Coppel, Ross L.; Neild, Adrian; Alan, Tuncay
A popular approach to monitoring diseases and their diagnosis is through biological, pathological or immunological characterization. However, at a cellular level progression of certain diseases manifests itself through mechanical effects as well. Here, we present a method which exploits localised flow; surface acoustic wave (SAW) induced acoustic streaming in a 9 μL droplet to characterize the adhesive properties of red blood cells (healthy, gluteraldehyde treated and malaria infected) in approximately 50 seconds. Our results show a 79% difference in cell mobilization between healthy malaria infected RBCs (and a 39% difference between healthy and treated ones), indicating that the method can serve as a platform for rapid clinical diagnosis; where separation of two or more different cell populations in a mixed solution is desirable. It can also act as a key biomarker for monitoring some diseases offering quantitative measures of disease progression and response to therapy.
Structural health monitoring of plates with surface features using guided ultrasonic waves
NASA Astrophysics Data System (ADS)
Fromme, P.
2009-03-01
Distributed array systems for guided ultrasonic waves offer an efficient way for the long-term monitoring of the structural integrity of large plate-like structures. The measurement concept involving baseline subtraction has been demonstrated under laboratory conditions. For the application to real technical structures it needs to be shown that the methodology works equally well in the presence of structural and surface features. Problems employing this structural health monitoring concept can occur due to the presence of additional changes in the signal reflected at undamaged parts of the structure. The influence of the signal processing parameters and transducer placement on the damage detection and localization accuracy is discussed. The use of permanently attached, distributed sensors for the A0 Lamb wave mode has been investigated. Results are presented using experimental data obtained from laboratory measurements and Finite Element simulated signals for a large steel plate with a welded stiffener.
Monitoring displacements of an earthen dam using GNSS and remote sensing
NASA Astrophysics Data System (ADS)
Dardanelli, Gino; La Loggia, Goffredo; Perfetti, Nicola; Capodici, Fulvio; Puccio, Luigi; Maltese, Antonino
2014-10-01
This paper shows the results of a scientific research in which a GNSS continuous monitoring system for earth-dam deformations has been developed, then, deformations have been related with reservoir water surface and level. The experiment was conducted near Bivona (Sicily, Italy), on the Castello dam (Magazzolo Lake). On the top of the dam three control points were placed and three GNSS permanent stations were installed. The three stations continuously transmitted data to the control centre of the University of Palermo. The former has been determined using freely available satellite data (specifically Landsat 7 SLC-Off) collected during the whole study period (DOYs 101 to 348 2011). Issues related with the un-scanned rows filling and to better distinguish water from land pixels on the shoreline. The aim of this work is various: first of all, we want to evaluate whether the GPS post processing techniques can provide static results comparable to other monitoring techniques, such as spirit levelling. The study could take a significant importance given that the Italian legislation until today does not provide for the use of this technology to manage or monitor dams displacements or other civil engineering constructions. The use of GPS data in structural monitoring could in fact reduce some management costs. Usually the conventional GPS monitoring methods, where a base station GPS receiver must be located near the dam, did not ensure that the accuracy of results have been independent from the displacement of the crown (top end of dam). In this paper, a new approach in the area of study of the GNSS permanent network has been engaged to solve these problems. Field-testing results show that the new GNSS approach has excellent performances, and the monitoring of different section of the dam could reveal important information on its deformation, that its not operationally possible to retrieve elsewhere. The post-processing accuracy positioning is around 1-5 mm for the deformations monitoring of the Castello dam. Displacements of different sections of the dam reveal different behaviour (in time and periodicity) that looks to be related with water surface (and level) retrieved from remote sensing.
Electride Mediated Surface Enhanced Raman Scattering (SERS)
NASA Technical Reports Server (NTRS)
Anderson, Mark S. (Inventor)
2016-01-01
An electride may provide surface enhanced Raman scattering (SERS). The electride, a compound where the electrons serve as anions, may be a ceramic electride, such as a conductive ceramic derived from mayenite, or an organic electride, for example. The textured electride surface or electride particles may strongly enhance the Raman scattering of organic or other Raman active analytes. This may also provide a sensitive method for monitoring the chemistry and electronic environment at the electride surface. The results are evidence of a new class of polariton (i.e., a surface electride-polariton resonance mechanism) that is analogous to the surface plasmon-polariton resonance that mediates conventional SERS.
OTVE turbopump condition monitoring, task E.5
NASA Technical Reports Server (NTRS)
Coleman, Paul T.; Collins, J. J.
1989-01-01
Recent work has been carried out on development of isotope wear analysis and optical and eddy current technologies to provide bearing wear measurements and real time monitoring of shaft speed, shaft axial displacement and shaft orbit of the Orbit Transfer Vehicle hydrostatic bearing tester. Results show shaft axial displacement can be optically measured (at the same time as shaft orbital motion and speed) to within 0.3 mils by two fiberoptic deflectometers. Evaluation of eddy current probes showed that, in addition to measuring shaft orbital motion, they can be used to measure shaft speed without having to machine grooves on the shaft surface as is the usual practice for turbomachinery. The interim results of this condition monitoring effort are presented.
NASA Astrophysics Data System (ADS)
Petrochenko, Andrew V.; Konyakhin, Igor A.
2015-06-01
Actually during construction of the high building actively are used objects of various nonlinear surface, for example, sinuous (parabolic or hyperbolic) roofs of the sport complexes that require automatic deformation control [1,2,3,4]. This type of deformation has character of deflection that is impossible to monitor objectively with just one optoelectronic sensor (which is fixed on this surface). In this article is described structure of remote optoelectronic sensor, which is part of the optoelectronic monitoring system of nonlinear surface, and mathematical transformation of exterior orientation sensor elements in the coordinates of control points.
Statistical approaches used to assess and redesign surface water-quality-monitoring networks.
Khalil, B; Ouarda, T B M J
2009-11-01
An up-to-date review of the statistical approaches utilized for the assessment and redesign of surface water quality monitoring (WQM) networks is presented. The main technical aspects of network design are covered in four sections, addressing monitoring objectives, water quality variables, sampling frequency and spatial distribution of sampling locations. This paper discusses various monitoring objectives and related procedures used for the assessment and redesign of long-term surface WQM networks. The appropriateness of each approach for the design, contraction or expansion of monitoring networks is also discussed. For each statistical approach, its advantages and disadvantages are examined from a network design perspective. Possible methods to overcome disadvantages and deficiencies in the statistical approaches that are currently in use are recommended.
NASA Astrophysics Data System (ADS)
Chen, Yichin
2017-04-01
Mudstone badlands are the area characteristized by its rapid erosion and steep, fractured, and barren landforms. Monitoring the topography changes in badland help improve our knowledge of the hillslope and river processing on landforms and develop susceptibility model for surface erosion hazards. Recently, advances in unmanned aerial system (UAS) and close-range photogrammetry technology have opened up the possibility of effectively measuring topography changes with high spatiotemporal resolutions. In this study, we used the UAS and close-range photogrammetry technology to monitor the topography changes in a rapidly eroded badland, south-western Taiwan. A small mudstone hillslope with area of 0.2 ha approximately and with slope gradient of 37 degrees was selected as the study site. A widely used and commercial quadcopter equipped non-metric camera was used to take images with ground sampling distance (GSD) 5 mm approximately. The Pix4DMapper, a commercial close-range photogrammetry software, was used to perform stereo matching, extract point clouds, generate digital surface models (DSMs) and orthoimage. To control model accuracy, a set of ground control points was surveyed by using eGPS. The monitoring was carried out after every significant rainfall event that may induced observable erosion in the badland site. The results show that DSMs have the GSDs of 4.0 5.4 mm and vertical accuracy of 61 116 mm. The accuracy largely depends on the quality of ground control points. The spatial averaged erosion rate during six months of monitoring was 328 mm, which is higher in the gully sides than in the ridges. The erosion rate is positively correlated with the slope gradient and drainage contributing area that implies the important role of surface gully erosion in mudstone badland erosion. This study shows that UAS and close-range photogrammetry technology can be used to monitor the topography change in badland areas effectively and can provide high spatiotemporal resolutions of DSMs for developing distributed surface erosion models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, Arthur W; Diehl, J Rodney; Strazisar, Brian R
2012-05-01
Near-surface monitoring and subsurface characterization activities were undertaken in collaboration with the Southwest Regional Carbon Sequestration Partnership on their San Juan Basin coal-bed methane pilot test site near Navajo City, New Mexico. Nearly 18,407 short tons (1.670 × 107 kg) of CO{sub 2} were injected into 3 seams of the Fruitland coal between July 2008 and April 2009. Between September 18 and October 30, 2008, two additions of approximately 20 L each of perfluorocarbon (PFC) tracers were mixed with the CO{sub 2} at the injection wellhead. PFC tracers in soil-gas and in the atmosphere were monitored over a period ofmore » 2 years using a rectangular array of permanent installations. Additional monitors were placed near existing well bores and at other locations of potential leakage identified during the pre-injection site survey. Monitoring was conducted using sorbent containing tubes to collect any released PFC tracer from soil-gas or the atmosphere. Near-surface monitoring activities also included CO{sub 2} surface flux and carbon isotopes, soil-gas hydrocarbon levels, and electrical conductivity in the soil. The value of the PFC tracers was demonstrated when a significant leakage event was detected near an offset production well. Subsurface characterization activities, including 3D seismic interpretation and attribute analysis, were conducted to evaluate reservoir integrity and the potential that leakage of injected CO{sub 2} might occur. Leakage from the injection reservoir was not detected. PFC tracers made breakthroughs at 2 of 3 offset wells which were not otherwise directly observable in produced gases containing 20–30% CO{sub 2}. These results have aided reservoir geophysical and simulation investigations to track the underground movement of CO{sub 2}. 3D seismic analysis provided a possible interpretation for the order of appearance of tracers at production wells.« less
Georeferenced model simulations efficiently support targeted monitoring
NASA Astrophysics Data System (ADS)
Berlekamp, Jürgen; Klasmeier, Jörg
2010-05-01
The European Water Framework Directive (WFD) demands the good ecological and chemical status of surface waters. To meet the definition of good chemical status of the WFD surface water concentrations of priority pollutants must not exceed established environmental quality standards (EQS). Surveillance of the concentrations of numerous chemical pollutants in whole river basins by monitoring is laborious and time-consuming. Moreover, measured data do often not allow for immediate source apportionment which is a prerequisite for defining promising reduction strategies to be implemented within the programme of measures. In this context, spatially explicit model approaches are highly advantageous because they provide a direct link between local point emissions (e.g. treated wastewater) or diffuse non-point emissions (e.g. agricultural runoff) and resulting surface water concentrations. Scenario analyses with such models allow for a priori investigation of potential positive effects of reduction measures such as optimization of wastewater treatment. The geo-referenced model GREAT-ER (Geography-referenced Regional Exposure Assessment Tool for European Rivers) has been designed to calculate spatially resolved averaged concentrations for different flow conditions (e.g. mean or low flow) based on emission estimations for local point source emissions such as treated effluents from wastewater treatment plants. The methodology was applied to selected pharmaceuticals (diclofenac, sotalol, metoprolol, carbamazepin) in the Main river basin in Germany (approx. 27,290 km²). Average concentrations of the compounds were calculated for each river reach in the whole catchment. Simulation results were evaluated by comparison with available data from orienting monitoring and used to develop an optimal monitoring strategy for the assessment of water quality regarding micropollutants at the catchment scale.
Summary report of the workshop on the U.S. use of surface waves for monitoring the CTBT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritzwoller, M; Walter, W R
1998-09-01
The workshop addressed the following general research goals of relevance to monitoring and verifying the Comprehensive Test Ban Treaty (CTBT): A) To apprise participants of current and planned research in order to facilitate information exchange, collaboration, and peer review. B) To compare and discuss techniques for data selection, measurement, error assessment, modeling methodologies, etc. To compare results in regions where they overlap and understand the causes of obsenied differences. C) To hear about the U.S. research customer's (AFTAC and DOE Knowledge Base) current and anticipated interests in surface wave research. D) To discuss information flow and integration. How can researchmore » results be prepared for efficient use and integration into operational systems E) To identify and discuss fruitful future directions for research.« less
Photometric variability in earthshine observations.
Langford, Sally V; Wyithe, J Stuart B; Turner, Edwin L
2009-04-01
The identification of an extrasolar planet as Earth-like will depend on the detection of atmospheric signatures or surface non-uniformities. In this paper we present spatially unresolved flux light curves of Earth for the purpose of studying a prototype extrasolar terrestrial planet. Our monitoring of the photometric variability of earthshine revealed changes of up to 23% per hour in the brightness of Earth's scattered light at around 600 nm, due to the removal of specular reflection from the view of the Moon. This variability is accompanied by reddening of the spectrum and results from a change in surface properties across the continental boundary between the Indian Ocean and Africa's east coast. Our results based on earthshine monitoring indicate that specular reflection should provide a useful tool in determining the presence of liquid water on extrasolar planets via photometric observations.
1996 monitoring report for the Gunnison, Colorado, wetlands mitigation plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-01
The US Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project to clean up uranium mill tailings and other surface contamination at 24 abandoned uranium mill sites in 10 states. One of these abandoned mill sites was near the town of Gunnison, Colorado. Surface remediation was completed at the Gunnison site in December 1995. Remedial action resulted in the elimination of 4.3 acres of wetlands and mitigation of this loss is through the enhancement of 17.8 acres of riparian plant communities in six spring-fed areas on US Bureau of Land Management mitigation sites. A five-year monitoringmore » program was then implemented to document the response of vegetation and wildlife to the exclusion of livestock. This report provides the results of the third year of the monitoring program.« less
NASA Astrophysics Data System (ADS)
Sabra, K.
2006-12-01
The random nature of noise and scattered fields tends to suggest limited utility. Indeed, seismic or acoustic fields from random sources or scatterers are often considered to be incoherent, but there is some coherence between two sensors that receive signals from the same individual source or scatterer. An estimate of the Green's function (or impulse response) between two points can be obtained from the cross-correlation of random wavefields recorded at these two points. Recent theoretical and experimental studies in ultrasonics, underwater acoustics, structural monitoring and seismology have investigated this technique in various environments and frequency ranges. These results provide a means for passive imaging using only the random wavefields, without the use of active sources. The coherent wavefronts emerge from a correlation process that accumulates contributions over time from random sources whose propagation paths pass through both receivers. Results will be presented from experiments using ambient noise cross-correlations for the following applications: 1) passive surface waves tomography from ocean microseisms and 2) structural health monitoring of marine and airborne structures embedded in turbulent flow.
Alarifi, Ibrahim M.; Alharbi, Abdulaziz; Khan, Waseem S.; Swindle, Andrew; Asmatulu, Ramazan
2015-01-01
This paper presents an idea of using carbonized electrospun Polyacrylonitrile (PAN) fibers as a sensor material in a structural health monitoring (SHM) system. The electrospun PAN fibers are lightweight, less costly and do not interfere with the functioning of infrastructure. This study deals with the fabrication of PAN-based nanofibers via electrospinning followed by stabilization and carbonization in order to remove all non-carbonaceous material and ensure pure carbon fibers as the resulting material. Electrochemical impedance spectroscopy was used to determine the ionic conductivity of PAN fibers. The X-ray diffraction study showed that the repeated peaks near 42° on the activated nanofiber film were α and β phases, respectively, with crystalline forms. Contact angle, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were also employed to examine the surface, thermal and chemical properties of the carbonized electrospun PAN fibers. The test results indicated that the carbonized PAN nanofibers have superior physical properties, which may be useful for structural health monitoring (SHM) applications in different industries. PMID:28793615
Development of statistical linear regression model for metals from transportation land uses.
Maniquiz, Marla C; Lee, Soyoung; Lee, Eunju; Kim, Lee-Hyung
2009-01-01
The transportation landuses possessing impervious surfaces such as highways, parking lots, roads, and bridges were recognized as the highly polluted non-point sources (NPSs) in the urban areas. Lots of pollutants from urban transportation are accumulating on the paved surfaces during dry periods and are washed-off during a storm. In Korea, the identification and monitoring of NPSs still represent a great challenge. Since 2004, the Ministry of Environment (MOE) has been engaged in several researches and monitoring to develop stormwater management policies and treatment systems for future implementation. The data over 131 storm events during May 2004 to September 2008 at eleven sites were analyzed to identify correlation relationships between particulates and metals, and to develop simple linear regression (SLR) model to estimate event mean concentration (EMC). Results indicate that there was no significant relationship between metals and TSS EMC. However, the SLR estimation models although not providing useful results are valuable indicators of high uncertainties that NPS pollution possess. Therefore, long term monitoring employing proper methods and precise statistical analysis of the data should be undertaken to eliminate these uncertainties.
Leung, Shui-On; Gao, Kai; Wang, Guang Yu; Cheung, Benny Ka-Wa; Lee, Kwan-Yeung; Zhao, Qi; Cheung, Wing-Tai; Wang, Jun Zhi
2015-01-01
SM03, a chimeric antibody that targets the B-cell restricted antigen CD22, is currently being clinically evaluated for the treatment of lymphomas and other autoimmune diseases in China. SM03 binding to surface CD22 leads to rapid internalization, making the development of an appropriate cell-based bioassay for monitoring changes in SM03 bioactivities during production, purification, storage, and clinical trials difficult. We report herein the development of an anti-idiotype antibody against SM03. Apart from its being used as a surrogate antigen for monitoring SM03 binding affinities, the anti-idiotype antibody was engineered to express as fusion proteins on cell surfaces in a non-internalizing manner, and the engineered cells were used as novel "surrogate target cells" for SM03. SM03-induced complement-mediated cytotoxicity (CMC) against these "surrogate target cells" proved to be an effective bioassay for monitoring changes in Fc functions, including those resulting from minor structural modifications borne within the Fc-appended carbohydrates. The approach can be generally applied for antibodies that target rapidly internalizing or non-surface bound antigens. The combined use of the anti-idiotype antibody and the surrogate target cells could help evaluate clinical parameters associated with safety and efficacies, and possibly the mechanisms of action of SM03.
Minet, L; Gehr, R; Hatzopoulou, M
2017-11-01
The development of reliable measures of exposure to traffic-related air pollution is crucial for the evaluation of the health effects of transportation. Land-use regression (LUR) techniques have been widely used for the development of exposure surfaces, however these surfaces are often highly sensitive to the data collected. With the rise of inexpensive air pollution sensors paired with GPS devices, we witness the emergence of mobile data collection protocols. For the same urban area, can we achieve a 'universal' model irrespective of the number of locations and sampling visits? Can we trade the temporal representation of fixed-point sampling for a larger spatial extent afforded by mobile monitoring? This study highlights the challenges of short-term mobile sampling campaigns in terms of the resulting exposure surfaces. A mobile monitoring campaign was conducted in 2015 in Montreal; nitrogen dioxide (NO 2 ) levels at 1395 road segments were measured under repeated visits. We developed LUR models based on sub-segments, categorized in terms of the number of visits per road segment. We observe that LUR models were highly sensitive to the number of road segments and to the number of visits per road segment. The associated exposure surfaces were also highly dissimilar. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lu, Wentong; Singh, Anant Kumar; Khan, Sadia Afrin; Senapati, Dulal; Yu, Hongtao; Ray, Paresh Chandra
2010-12-29
Prostate cancer is the second leading cause of cancer-related death among the American male population, and the cost of treating prostate cancer patients is about $10 billion/year in the United States. Current treatments are mostly ineffective against advanced-stage prostate cancer and are often associated with severe side effects. Driven by these factors, we report a multifunctional, nanotechnology-driven, gold nano-popcorn-based surface-enhanced Raman scattering (SERS) assay for targeted sensing, nanotherapy treatment, and in situ monitoring of photothermal nanotherapy response during the therapy process. Our experimental data show that, in the presence of LNCaP human prostate cancer cells, multifunctional popcorn-shaped gold nanoparticles form several hot spots and provide a significant enhancement of the Raman signal intensity by several orders of magnitude (2.5 × 10(9)). As a result, it can recognize human prostate cancer cells at the 50-cells level. Our results indicate that the localized heating that occurs during near-infrared irradiation can cause irreparable cellular damage to the prostate cancer cells. Our in situ time-dependent results demonstrate for the first time that, by monitoring SERS intensity changes, one can monitor photothermal nanotherapy response during the therapy process. Possible mechanisms and operating principles of our SERS assay are discussed. Ultimately, this nanotechnology-driven assay could have enormous potential applications in rapid, on-site targeted sensing, nanotherapy treatment, and monitoring of the nanotherapy process, which are critical to providing effective treatment of cancer.
Lu, Wentong; Singh, Anant Kumar; Khan, Sadia Afrin; Senapati, Dulal; Yu, Hongtao; Ray, Paresh Chandra
2010-01-01
Prostate cancer is the second leading cause of cancer-related death among the American male population and the cost of treating prostate cancer patients is about $10 billion/year in the US. Current treatments are mostly ineffective against advanced stage prostate cancer disease and are often associated with severe side effects. Driven by the need, in this manuscript, we report multifunctional nanotechnology-driven gold nano-popcorn based surface enhanced Raman scattering (SERS) assay for targeted sensing, nanotherapy treatment and in-situ monitoring of photothermal nanotherapy response during the therapy process. Our experimental data show that in the presence of LNCaP human prostate cancer cell, multifunctional popcorn shape gold nanoparticle forms several hot spots and provides a significant enhancement of the Raman signal intensity by several orders of magnitude (2.5 × 109). As a result, it can recognize human prostate cancer cell in 50 cells level. Our results indicate that the localized heating that occurs during NIR irradiation is able to cause irreparable cellular damage of the prostate cancer cell. Our in-situ time dependent results demonstrates for the first time that by monitoring SERS intensity change, one can monitor photo thermal nanotherapy response during therapy process. Possible mechanisms and operating principle of our SERS assay have been discussed. Ultimately, this nanotechnology driven assay could have enormous potential applications in rapid, on-site targeted sensing, nanotherapy treatment and monitoring of nanotherapy process which is critical to providing effective treatment of cancer disease. PMID:21128627
Corrosion monitoring on a large steel pressure vessel by thin-layer activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, G.; Boulton, L.H.; Hodder, D.
1989-12-01
Thin-layer activation (TLA) is a technique in which a surface is irradiated by a nuclear accelerator and thereby labeled with an accurate depth profile of low-level radioactivity. By monitoring this activity it is possible to calculate how much of that surface has been removed by corrosion. As the radioactivity is marked by the emission of penetrating gamma rays, it is possible to monitor this corrosion remotely through several centimeters of steel. This technique has been used to monitor erosion-corrosion occurring on the inner carbon steel wall of a continuous Kraft pulp digester at a paper mill. Representative coupons of themore » same steel as the digester wall were irradiated and fixed to the walls in the liquor extraction zone during a maintenance shutdown. The loss of metal over the six months was measured by external monitoring of gamma radiation through the vessel wall, and converted to a corrosion rate. Subsequent weight-loss measurements and comparison with ultrasonic thickness measurements established that the corrosion rate measured gave accurate results over a much shorter time scale. TLA thus enables current, rather than historical corrosion rates to be measured in a large steel pressure vessel.« less
State-of-the-art lab chip sensors for environmental water monitoring
NASA Astrophysics Data System (ADS)
Jang, Am; Zou, Zhiwei; Kug Lee, Kang; Ahn, Chong H.; Bishop, Paul L.
2011-03-01
As a result of increased water demand and water pollution, both surface water and groundwater quantity and quality are of major concern worldwide. In particular, the presence of nutrients and heavy metals in water is a serious threat to human health. The initial step for the effective management of surface waters and groundwater requires regular, continuous monitoring of water quality in terms of contaminant distribution and source identification. Because of this, there is a need for screening and monitoring measurements of these compounds at contaminated areas. However, traditional monitoring techniques are typically still based on laboratory analyses of representative field-collected samples; this necessitates considerable effort and expense, and the sample may change before analysis. Furthermore, currently available equipment is so large that it cannot usually be made portable. Alternatively, lab chip and electrochemical sensing-based portable monitoring systems appear well suited to complement standard analytical methods for a number of environmental monitoring applications. In addition, this type of portable system could save tremendous amounts of time, reagent, and sample if it is installed at contaminated sites such as Superfund sites (the USA's worst toxic waste sites) and Resource Conservation and Recovery Act (RCRA) facilities or in rivers and lakes. Accordingly, state-of-the-art monitoring equipment is necessary for accurate assessments of water quality. This article reviews details on our development of these lab-on-a-chip (LOC) sensors.
NASA Astrophysics Data System (ADS)
Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin
2017-09-01
Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery.
Optical NIR monitoring of skeletal muscle contraction
NASA Astrophysics Data System (ADS)
Lago, Paolo; Gelmetti, Andrea; Pavesi, Roberta; Zambarbieri, Daniela
1996-12-01
NIR spectroscopy allows monitoring of muscle oxygenation and perfusion during contraction. The knowledge of modifications of blood characteristics in body tissues has relevant clinical interest. A compact and reliable device, which makes use of two laser diodes at 750 and 810 nm coupled with the skin surface through optical fibers, was tested. NIR and surface EMG signals during isometric contractions both in normal and ischaemic conditions were analyzed. A set of parameters from the 750/810 spectroscopic curve was analyzed. Two different categories depending on the recovery rate from maximal voluntary contraction to basal oxygenation conditions were found. This behavior can give information about metabolic modifications during muscle fatigue. Interesting results in testing isokinetic rehabilitation training were also obtained.
Using the Bongwana natural CO2 release to understand leakage processes and develop monitoring
NASA Astrophysics Data System (ADS)
Jones, David; Johnson, Gareth; Hicks, Nigel; Bond, Clare; Gilfillan, Stuart; Kremer, Yannick; Lister, Bob; Nkwane, Mzikayise; Maupa, Thulani; Munyangane, Portia; Robey, Kate; Saunders, Ian; Shipton, Zoe; Pearce, Jonathan; Haszeldine, Stuart
2016-04-01
Natural CO2 leakage along the Bongwana Fault in South Africa is being studied to help understand processes of CO2 leakage and develop monitoring protocols. The Bongwana Fault crops out over approximately 80 km in KwaZulu-Natal province, South Africa. In outcrop the fault is expressed as a broad fracture corridor in Dwyka Tillite, with fractures oriented approximately N-S. Natural emissions of CO2 occur at various points along the fault, manifest as travertine cones and terraces, bubbling in the rivers and as gas fluxes through soil. Exposed rock outcrop shows evidence for Fe-staining around fractures and is locally extensively kaolinitised. The gas has also been released through a shallow water well, and was exploited commercially in the past. Preliminary studies have been carried out to better document the surface emissions using near surface gas monitoring, understand the origin of the gas through major gas composition and stable and noble gas isotopes and improve understanding of the structural controls on gas leakage through mapping. In addition the impact of the leaking CO2 on local water sources (surface and ground) is being investigated, along with the seismic activity of the fault. The investigation will help to build technical capacity in South Africa and to develop monitoring techniques and plans for a future CO2 storage pilot there. Early results suggest that CO2 leakage is confined to a relatively small number of spatially-restricted locations along the weakly seismically active fault. Fracture permeability appears to be the main method by which the CO2 migrates to the surface. The bulk of the CO2 is of deep origin with a minor contribution from near surface biogenic processes as determined by major gas composition. Water chemistry, including pH, DO and TDS is notably different between CO2-rich and CO2-poor sites. Soil gas content and flux effectively delineates the fault trace in active leakage sites. The fault provides an effective testing ground for field-based monitoring with results to date indicating the methods and technologies tested successfully detect leaking CO2. Further work will investigate the source of the CO2 and attempt to quantify CO2 flux rates and detection thresholds.
Fiber-Optic Surface Temperature Sensor Based on Modal Interference.
Musin, Frédéric; Mégret, Patrice; Wuilpart, Marc
2016-07-28
Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.
The establishment of experimental watershed in Taiwan
NASA Astrophysics Data System (ADS)
Wang, Yu-Chi; Tsung, Shun-Chung; Wang, Hau-Wei; Chen, Cheng-Hsin; Chang, Ya-Chi; Ho, Jui-Yi; Lee, Shih-Chiang; Hong, Jian-Hao
2015-04-01
The rainfall distribution in Taiwan is non-uniform in space and unsteady in time. The water level in the river usually rises rapidly due to the steep slope gradient in the upland area of the watershed. In addition, urbanization and high rainfall intensity result in an increase in surface runoff and decrease the time of concentration. All of these lead to flooding-related disasters and influence people's lives. Thus, the establishment of a more complete hydro-information will increase our understanding of the characteristics of watersheds, prevent disasters, and mitigate damages. To overcome these deficiencies, the Water Resources Agency (WRA), Ministry of Economic Affairs has identified Yilan and Dianbao River Basin to develop a long-term monitoring, then Taiwan Typhoon and Flood Research Institute is responsible for this project. The monitoring sites had been installed in 2012. The sensors for monitoring include rainfall gauge, water level sensor, water surface velocity sensor and pressure-type water depth sensor. Totally, there are 73 sites in the experimental watershed, including the sites installed by the Central Weather Bureau and the Water Resources Agency. Over 30 million data have been collected and validated. Most of data have been passed the processes and considered reliable data. Then, three types of models are applied including rainfall-runoff, river routing and two-dimensional flood models. The simulation results can properly fit the monitored data in these selected events and indicates these models are proper for the experimental watersheds and suitable used for real-time warning. Finally, for purpose of hydrological monitoring and disaster mitigation, a website has been created to show the monitoring data. The users can login and browse the real time monitoring data and figure of temporal data in the past 24 hours and get the information for flood mitigation and emergent evacuation.
Interactions of Graphene Oxide Nanomaterials with Natural Organic Matter and Metal Oxide Surfaces
Interactions of graphene oxide (GO) with silica surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Both GO deposition and release were monitored on silica- and poly-l-lysine (PLL) coated surfaces as a function of GO concentration a...
Evaluation of Biofilms and the Effects of Biocides Thereon
NASA Technical Reports Server (NTRS)
Pierson, Duane L. (Inventor); Koenig, David W. (Inventor); Mishra, Saroj K. (Inventor)
2002-01-01
Biofilm formation is monitored by real-time continuous measurement. Images are formed of sessile cells on a surface and planktonic cells adjacent the surface. The attachment of cells to the surface is measured and quantitated, and sessile and planktonic cells are distinguished using image processing techniques. Single cells as well as colonies are monitored on or adjacent a variety of substrates. Flowing streams may be monitored. The effects of biocides on biofilms commonly isolated from recyclable water systems are measured.
NASA Astrophysics Data System (ADS)
Davitt, A. W. D.; Winter, J.; McDonald, K. C.; Escobar, V. M.; Steiner, N.
2017-12-01
The monitoring of staple and high-value crops is important for maintaining food security. The recent launch of numerous remote sensing satellites has created the ability to monitor vast amounts of crop lands, continuously and in a timely manner. This monitoring provides users with a wealth of information on various crop types over different regions of the world. However, a challenge still remains on how to best quantify and interpret the crop and surface characteristics that are measured by visible, near-infrared, and active and passive microwave radar. Currently, two NASA funded projects are examining the ability to monitor different types of crops in California with different remote sensing platforms. The goal of both projects is to develop a cost-effective monitoring tool for use by vineyard and crop managers. The first project is designed to examine the capability to monitor vineyard water management and soil moisture in Sonoma County using Soil Moisture Active Passive (SMAP), Sentinel-1A and -2, and Landsat-8. The combined mission products create thorough and robust measurements of surface and vineyard characteristics that can potentially improve the ability to monitor vineyard health. Incorporating the Michigan Microwave Canopy Scattering (MIMICS), a radiative transfer model, enables us to better understand surface and vineyard features that influence radar measurements from Sentinel-1A. The second project is a blended approach to analyze corn, rice, and wheat growth using Sentinel-1A products with Decision Support System for Agrotechnology Transfer (DSSAT) and MIMICS models. This project aims to characterize the crop structures that influence Sentinel-1A radar measurements. Preliminary results have revealed the corn, rice, and wheat structures that influence radar measurements during a growing season. The potential of this monitoring tool can be used for maintaining food security. This includes supporting sustainable irrigation practices, identifying crop health and yield across and within fields, and improving the identification of crop areas ready for harvest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-09-01
Environmental monitoring of the US Department of Energy's (DOE) Maywood Interim Storage Site (MISS) and surrounding area began in 1984. MISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The MISS Environmental monitoring programs was established to accommodate facility characteristics, applicable regulations, hazard potential, quantities and concentrations of materials released, extent and use of affected land and water, and localmore » public interest or concern. The environmental monitoring program at MISS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium, radium-226, and thorium-232 concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in surface water, sediment, and groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards; federal, state, and local applicable or relevant and appropriate requirements (ARARs); and/or DOE derived concentration guidelines (DCGs). Environmental standards, ARARs, and DCGs are established to protect public health and the environment. Results from the 1990 environmental monitoring program show that concentrations of the contaminants of concern were all below applicable standards. Because the site is used only for interim storage and produces no processing effluents, all monitoring, except for radon and direct gamma radiation, was done on a quarterly basis. 18 refs., 17 figs., 28 tabs.« less
The monocular visual imaging technology model applied in the airport surface surveillance
NASA Astrophysics Data System (ADS)
Qin, Zhe; Wang, Jian; Huang, Chao
2013-08-01
At present, the civil aviation airports use the surface surveillance radar monitoring and positioning systems to monitor the aircrafts, vehicles and the other moving objects. Surface surveillance radars can cover most of the airport scenes, but because of the terminals, covered bridges and other buildings geometry, surface surveillance radar systems inevitably have some small segment blind spots. This paper presents a monocular vision imaging technology model for airport surface surveillance, achieving the perception of scenes of moving objects such as aircrafts, vehicles and personnel location. This new model provides an important complement for airport surface surveillance, which is different from the traditional surface surveillance radar techniques. Such technique not only provides clear objects activities screen for the ATC, but also provides image recognition and positioning of moving targets in this area. Thereby it can improve the work efficiency of the airport operations and avoid the conflict between the aircrafts and vehicles. This paper first introduces the monocular visual imaging technology model applied in the airport surface surveillance and then the monocular vision measurement accuracy analysis of the model. The monocular visual imaging technology model is simple, low cost, and highly efficient. It is an advanced monitoring technique which can make up blind spot area of the surface surveillance radar monitoring and positioning systems.
Monitoring damage growth in titanium matrix composites using acoustic emission
NASA Technical Reports Server (NTRS)
Bakuckas, J. G., Jr.; Prosser, W. H.; Johnson, W. S.
1993-01-01
The application of the acoustic emission (AE) technique to locate and monitor damage growth in titanium matrix composites (TMC) was investigated. Damage growth was studied using several optical techniques including a long focal length, high magnification microscope system with image acquisition capabilities. Fracture surface examinations were conducted using a scanning electron microscope (SEM). The AE technique was used to locate damage based on the arrival times of AE events between two sensors. Using model specimens exhibiting a dominant failure mechanism, correlations were established between the observed damage growth mechanisms and the AE results in terms of the events amplitude. These correlations were used to monitor the damage growth process in laminates exhibiting multiple modes of damage. Results revealed that the AE technique is a viable and effective tool to monitor damage growth in TMC.
NASA Astrophysics Data System (ADS)
Zhou, Qing; Shao, Mingwang; Que, Ronghui; Cheng, Liang; Zhuo, Shujuan; Tong, Yanhua; Lee, Shuit-Tong
2011-05-01
Silver vanadate nanoribbons were synthesized via a hydrothermal process, which exhibited surface-enhanced Raman scattering effect. This surface-enhanced substrate was stable and reproducible for identifying human serum transferrin and human serum apotransferrin in the concentration of 1×10-5 M, which further exhibited significant sensitivity in monitoring the conversion of these two proteins in turn. This result showed that the silver vanadate nanoribbon might be employed as biomonitor in such systems.
A Wireless Monitoring System for Cracks on the Surface of Reactor Containment Buildings
Zhou, Jianguo; Xu, Yaming; Zhang, Tao
2016-01-01
Structural health monitoring with wireless sensor networks has been increasingly popular in recent years because of the convenience. In this paper, a real-time monitoring system for cracks on the surface of reactor containment buildings is presented. Customized wireless sensor networks platforms are designed and implemented with sensors especially for crack monitoring, which include crackmeters and temperature detectors. Software protocols like route discovery, time synchronization and data transfer are developed to satisfy the requirements of the monitoring system and stay simple at the same time. Simulation tests have been made to evaluate the performance of the system before full scale deployment. The real-life deployment of the crack monitoring system is carried out on the surface of reactor containment building in Daya Bay Nuclear Power Station during the in-service pressure test with 30 wireless sensor nodes. PMID:27314357
NASA Technical Reports Server (NTRS)
Watson, Andrew I.; Holle, Ronald L.; Lopez, Raul E.; Nicholson, James R.
1991-01-01
Since 1986, USAF forecasters at NASA-Kennedy have had available a surface wind convergence technique for use during periods of convective development. In Florida during the summer, most of the thunderstorm development is forced by boundary layer processes. The basic premise is that the life cycle of convection is reflected in the surface wind field beneath these storms. Therefore the monitoring of the local surface divergence and/or convergence fields can be used to determine timing, location, longevity, and the lightning hazards which accompany these thunderstorms. This study evaluates four years of monitoring thunderstorm development using surface wind convergence, particularly the average over the area. Cloud-to-ground (CG) lightning is related in time and space with surface convergence for 346 days during the summers of 1987 through 1990 over the expanded wind network at KSC. The relationships are subdivided according to low level wind flow and midlevel moisture patterns. Results show a one in three chance of CG lightning when a convergence event is identified. However, when there is no convergence, the chance of CG lightning is negligible.
Comparing digital data processing techniques for surface mine and reclamation monitoring
NASA Technical Reports Server (NTRS)
Witt, R. G.; Bly, B. G.; Campbell, W. J.; Bloemer, H. H. L.; Brumfield, J. O.
1982-01-01
The results of three techniques used for processing Landsat digital data are compared for their utility in delineating areas of surface mining and subsequent reclamation. An unsupervised clustering algorithm (ISOCLS), a maximum-likelihood classifier (CLASFY), and a hybrid approach utilizing canonical analysis (ISOCLS/KLTRANS/ISOCLS) were compared by means of a detailed accuracy assessment with aerial photography at NASA's Goddard Space Flight Center. Results show that the hybrid approach was superior to the traditional techniques in distinguishing strip mined and reclaimed areas.
NASA Astrophysics Data System (ADS)
Kosaka, Tatsuro; Osaka, Katsuhiko; Nakakita, Satoru; Fukuda, Takehito
2003-08-01
This paper describes cure and health monitoring of glass fiber reinforced plastics (GFRP) textile composites both during a resin transfer molding (RTM) process and in loading tests. Carbon fiber reinforced plastics (CFRP) textile composites also were used for a comparative study. Fiber Bragg grating (FBG) fiber optic sensors were embedded in FRP to monitor internal strain. From the results of cure monitoring, it was found that the embedded FBG sensors were useful to know when cured resin constrained fibers. It also appeared that specimens were subjected to friction stress resulted from difference of coefficient of thermal expansion between FRP and a stainless steel mold in cooling process of RTM molding. After the molding, tensile and fatigue tests were conducted. The results of tensile tests showed that output of the embedded FBG sensors agreed well that of surface-bonded strain gauges despite deterioration of reflected spectra form the sensors. From the results of fatigue tests, the FBG sensors showed good status until 100,000 cycles when specimens had no damage. From these results, it can be concluded that embedded FBG sensors have good capability of monitoring internal strain in textile FRP both during RTM process and in service.
Monitoring of the Earth's surface deformation in the area of water dam Zarnowiec
NASA Astrophysics Data System (ADS)
Mojzes, Marcel; Wozniak, Marek; Habel, Branislav; Macak, Marek
2017-04-01
Mathematical and physical research directly motivates geodetic community which can provide very accurate measurements for testing of the proposed models Earth's surface motion near the water dams should be monitored due to the security of the area. This is a process which includes testing of existing models and their physical parameters. Change of the models can improve the practical results for analyzing the trends of motion in the area of upper reservoir of water dam Zarnowiec. Since 1998 Warsaw University of Technology realized a research focused on the horizontal displacements of the upper reservoir of water dam Zarnowiec. The 15 selected control points located on the upper reservoir crown of the water dam were monitored by classical distance measurements. It was found out that changes in the object's geometry occur due to the variation of the water level. The control measurements of the changes in the object's geometry occurring during the process of emptying and filling of the upper reservoir of water dam were compared with the deformations computed using improved Boussinesqués method programmed in the software MATLAB and ANSYS for elastic and isotropic half space as derivation of suitable potentials extended to the loaded region. The details and numerical results of this process are presented This presentation was prepared within the project "National Centre for Diagnostic of the Earth's Surface Deformations in the Area of Slovakia", ITMS code: 26220220108.
Genovese, C.; Facciolà, A.; Palamara, M.A.R.; Squeri, R.
2017-01-01
Summary Introduction. Nosocomial infections are one of the greatest problems in public health. Several studies have highlighted the role played by the hospital environment as a possible source of transmission of nosocomial pathogens. Methods. A five-year monitoring of bacterial contamination on healthcare workers hands, surfaces most closely in contact with inpatient wards, operating theatres and "at rest" and "in use" operating theatre air samples. For the samples, we used sterile swabs, contact slides, manual API, and automated VITEK systems for identification. Results. In the five-year period, a total of 9396 samples were collected and analysed. In ward patients, 4398 samplings were carried out with 4.7%, 9.4%, 7%, 10.8% and 7.9% positive results respectively from 2010 to 2014. For hands, 648 samplings were carried out, with a positivity of 40.74%. In operating theatres, 4188 samples were taken, with a positivity of 11.9%. Regarding air in empty and full theatres, 1962 samplings were carried out with a positivity rate equal to 31.9%. The monitoring showed a low rate of contamination with a progressive decrease in the fiveyear period on operating theatres surfaces and hands, while there was an increase in the surgical site wards and in the air of operating rooms. Conclusions. Our investigation has revealed the presence of pathogens on the assessed surfaces and the need for environmental monitoring, which can be a valuable tool for reducing contamination. PMID:28900357
Bio-inspired Design Approached Antifouling Strategies
NASA Astrophysics Data System (ADS)
Fitzsimons, L.; Chapman, J.; Lawlor, A.; Regan, F.
2012-04-01
Biofouling exists as the undesirable accumulation of flora and fauna on a given substrate when immersed into an aquatic media. Its presence causes a range of deleterious effects for anyone faced in tackling the problem, which is more than often financially testing. Generally, the initial biofouling stage is stochastic and the attachment of microorganisms held fast in biofilm matrices is irreversible. Stability of the biofilm occurs when exopolymeric substances (EPS) are produced forming a protective surrounding, allowing the cohered microorganisms to colonise and thrive upon the surface. Therefore, if this initial stage of biofilm development can be prevented then it could be possible to prevent subsequent macro events that ensue. Environmental monitoring is one area that faces this challenge and forms the impetus of the work presented herein. In order to improve a monitoring device's lifetime, surface coatings with biocidal agents are applied to counteract these steps. This work shows the development of a range of novel materials, which demonstrate the ability to counteract and inhibit the initial stages of biofouling for monitoring devices. Natural bio-inspired surfaces have been developed using nano-functionalised coatings. All materials are tested in the field and positive results in reducing the biofouling challenge are demonstrated. The results from the deployment of antifouling materials, together with real-time, long-term water quality data from the test site are also shown.
Wear rate quantifying in real-time using the charged particle surface activation
NASA Astrophysics Data System (ADS)
Alexandreanu, B.; Popa-Simil, L.; Voiculescu, D.; Racolta, P. M.
1997-02-01
Surface activation, commonly known as Thin Layer Activation (TLA), is currently employed in over 30 accelerator laboratories around the world for wear and/or corrosion monitoring in industrial plants [1-6]. TLA was primarily designed and developed to meet requirements of potential industrial partners, in order to transfer this technique from research to industry. The method consists of accelerated ion bombardment of a surface of interest, e.g., a machine part subjected to wear. Loss of material owing to wear, erosive corrosion or abrasion is characterized by monitoring the resultant changes in radioactivity. In principle, depending upon the case at hand, one may choose to measure either the remnant activity of the component of interest or to monitor the activity of the debris. For applications of the second type, especially when a lubricating agent is involved, dedicated installations have been constructed and adapted to an engine or a tribological testing stand in order to assure oil circulation around an externally placed detection gauge. This way, the wear particles suspended in the lubricant can be detected and the material loss rates quantified in real time. Moreover, in specific cases, such as the one presented in this paper, remnant activity measurements prove to be useful tools for complementary results. This paper provides a detailed presentation of such a case: in situ resistance-to-wear testing of two types of piston rings.
Characterization and Spectral Monitoring of Coffee Lands in Brazil
NASA Astrophysics Data System (ADS)
Alves, H. M. R.; Volpato, M. M. L.; Vieira, T. G. C.; Maciel, D. A.; Gonçalves, T. G.; Dantas, M. F.
2016-06-01
In Brazil, coffee production has great economic and social importance. Despite this fact, there is still a shortage of information regarding its spatial distribution, crop management and environment. The aim of this study was to carry out spectral monitoring of coffee lands and to characterize their environments using geotechnologies. Coffee fields with contiguous areas over 0.01 km2 within a 488.5 km2 region in the south of Minas Gerais state were selected for the study. Spectral data from the sensors OLI/Landsat 8 and the Shuttle Radar Topography Mission from 2014 to 2015 were obtained, as well as information on production areas, surface temperature, vegetation indexes, altitude and slope, were gathered and analyzed. The results indicate that there is great variation in the NDVI and NDWI values, with means ranging from 0.21 to 0.91 (NDVI) and 0.108 to 0.543 (NDWI). The altitude ranged from 803 to 1150 m, and the surface temperature from 20.9°C to 27.6°C. The altitude and the surface temperature distribution patterns were correlated with the vegetation indexes. The slope classes were very homogeneous, predominantly with declivities between 8 to 20 %, characterized as wavy relief. This study made possible the characterization and monitoring of coffee lands and its results may be instrumental in decision-making processes related to coffee management.
NASA Astrophysics Data System (ADS)
Filippova, I.; Chanturiya, V.; Filippov, L.; Ryazantseva, M.; Bunin, I.
2013-03-01
Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and Transmission Electron Microscopy (TEM) have shown the variation of surface phase compositions of carbonate bearing pyrite and arsenopyrite as a result of the combined action of chemical oxidation and thermal processes after the treatment by high power electromagnetic pulses (HPEMP). The monitoring of the surface phase composition allowed to determine the correlation between the treatment conditions, the surface phase composition, and the flotation yield. Thus, HPEMP treatment may be regarded as a tool controlling the surface composition and the sorption ability of flotation collector onto minerals surface, and therefore, allowing to control the hydrophobic-hydrophilic surface balance. It was confirmed in this study that the flotation of pyrite with xanthate as a result of the influence HPEMP may vary depending on the presence of impurities such as calcite.
Optimization of hydrometric monitoring network in urban drainage systems using information theory.
Yazdi, J
2017-10-01
Regular and continuous monitoring of urban runoff in both quality and quantity aspects is of great importance for controlling and managing surface runoff. Due to the considerable costs of establishing new gauges, optimization of the monitoring network is essential. This research proposes an approach for site selection of new discharge stations in urban areas, based on entropy theory in conjunction with multi-objective optimization tools and numerical models. The modeling framework provides an optimal trade-off between the maximum possible information content and the minimum shared information among stations. This approach was applied to the main surface-water collection system in Tehran to determine new optimal monitoring points under the cost considerations. Experimental results on this drainage network show that the obtained cost-effective designs noticeably outperform the consulting engineers' proposal in terms of both information contents and shared information. The research also determined the highly frequent sites at the Pareto front which might be important for decision makers to give a priority for gauge installation on those locations of the network.
Numerical modeling of time-lapse monitoring of CO2 sequestration in a layered basalt reservoir
Khatiwada, M.; Van Wijk, K.; Clement, W.P.; Haney, M.
2008-01-01
As part of preparations in plans by The Big Sky Carbon Sequestration Partnership (BSCSP) to inject CO2 in layered basalt, we numerically investigate seismic methods as a noninvasive monitoring technique. Basalt seems to have geochemical advantages as a reservoir for CO2 storage (CO2 mineralizes quite rapidly while exposed to basalt), but poses a considerable challenge in term of seismic monitoring: strong scattering from the layering of the basalt complicates surface seismic imaging. We perform numerical tests using the Spectral Element Method (SEM) to identify possibilities and limitations of seismic monitoring of CO2 sequestration in a basalt reservoir. While surface seismic is unlikely to detect small physical changes in the reservoir due to the injection of CO2, the results from Vertical Seismic Profiling (VSP) simulations are encouraging. As a perturbation, we make a 5%; change in wave velocity, which produces significant changes in VSP images of pre-injection and post-injection conditions. Finally, we perform an analysis using Coda Wave Interferometry (CWI), to quantify these changes in the reservoir properties due to CO2 injection.
A surface acoustic wave ICP sensor with good temperature stability.
Zhang, Bing; Hu, Hong; Ye, Aipeng; Zhang, Peng
2017-07-20
Intracranial pressure (ICP) monitoring is very important for assessing and monitoring hydrocephalus, head trauma and hypertension patients, which could lead to elevated ICP or even devastating neurological damage. The mortality rate due to these diseases could be reduced through ICP monitoring, because precautions can be taken against the brain damage. This paper presents a surface acoustic wave (SAW) pressure sensor to realize ICP monitoring, which is capable of wireless and passive transmission with antenna attached. In order to improve the temperature stability of the sensor, two methods were adopted. First, the ST cut quartz was chosen as the sensor substrate due to its good temperature stability. Then, a differential temperature compensation method was proposed to reduce the effects of temperature. Two resonators were designed based on coupling of mode (COM) theory and the prototype was fabricated and verified using a system established for testing pressure and temperature. The experiment result shows that the sensor has a linearity of 2.63% and hysteresis of 1.77%. The temperature stability of the sensor has been greatly improved by using the differential compensation method, which validates the effectiveness of the proposed method.
Passive monitoring for near surface void detection using traffic as a seismic source
NASA Astrophysics Data System (ADS)
Zhao, Y.; Kuzma, H. A.; Rector, J.; Nazari, S.
2009-12-01
In this poster we present preliminary results based on our several field experiments in which we study seismic detection of voids using a passive array of surface geophones. The source of seismic excitation is vehicle traffic on nearby roads, which we model as a continuous line source of seismic energy. Our passive seismic technique is based on cross-correlation of surface wave fields and studying the resulting power spectra, looking for "shadows" caused by the scattering effect of a void. High frequency noise masks this effect in the time domain, so it is difficult to see on conventional traces. Our technique does not rely on phase distortions caused by small voids because they are generally too tiny to measure. Unlike traditional impulsive seismic sources which generate highly coherent broadband signals, perfect for resolving phase but too weak for resolving amplitude, vehicle traffic affords a high power signal a frequency range which is optimal for finding shallow structures. Our technique results in clear detections of an abandoned railroad tunnel and a septic tank. The ultimate goal of this project is to develop a technology for the simultaneous imaging of shallow underground structures and traffic monitoring near these structures.
Passive Fetal Heart Monitoring System
NASA Technical Reports Server (NTRS)
Bryant, Timothy D. (Inventor); Wynkoop, Mark W. (Inventor); Holloway, Nancy M. H. (Inventor); Zuckerwar, Allan J. (Inventor)
2004-01-01
A fetal heart monitoring system preferably comprising a backing plate having a generally concave front surface and a generally convex back surface, and at least one sensor element attached to the concave front surface for acquiring acoustic fetal heart signals produced by a fetus within a body. The sensor element has a shape that conforms to the generally concave back surface of the backing plate. In one embodiment, the at least one sensor element comprises an inner sensor, and a plurality of outer sensors surrounding the inner sensor. The fetal heart monitoring system can further comprise a web belt, and a web belt guide movably attached to the web belt. The web belt guide being is to the convex back surface of the backing plate.
Condition monitoring of an electro-magnetic brake using an artificial neural network
NASA Astrophysics Data System (ADS)
Gofran, T.; Neugebauer, P.; Schramm, D.
2017-10-01
This paper presents a data-driven approach to Condition Monitoring of Electromagnetic brakes without use of additional sensors. For safe and efficient operation of electric motor a regular evaluation and replacement of the friction surface of the brake is required. One such evaluation method consists of direct or indirect sensing of the air-gap between pressure plate and magnet. A larger gap is generally indicative of worn surface(s). Traditionally this has been accomplished by the use of additional sensors - making existing systems complex, cost- sensitive and difficult to maintain. In this work a feed-forward Artificial Neural Network (ANN) is learned with the electrical data of the brake by supervised learning method to estimate the air-gap. The ANN model is optimized on the training set and validated using the test set. The experimental results of estimated air-gap with accuracy of over 95% demonstrate the validity of the proposed approach.
Wang, Ying; Sun, Jie; Yang, Qingran; Lu, Wenbo; Li, Yan; Dong, Jian; Qian, Weiping
2015-11-21
The developed method for monitoring GST, an important drug metabolic enzyme, could greatly facilitate researches on relative biological fields. In this work, we have developed a SERS technique to monitor the absorbance behaviour of 6-mercaptopurine (6-MP) and its glutathione-S-transferase (GST)-accelerated glutathione (GSH)-triggered release behaviour on the surface of gold nanoflowers (GNFs), using the GNFs as excellent SERS substrates. The SERS signal was used as an indicator of absorbance or release of 6-MP on the gold surface. We found that GST can accelerate GSH-triggered release behaviour of 6-MP from the gold surface. We speculated that GST catalyzes nucleophilic GSH to competitively bind with the electrophilic substance 6-MP. Experimental results have proved that the presented SERS protocol can be utilized as an effective tool for accessing the release of anticancer drugs.
Soft microfluidic assemblies of sensors, circuits, and radios for the skin.
Xu, Sheng; Zhang, Yihui; Jia, Lin; Mathewson, Kyle E; Jang, Kyung-In; Kim, Jeonghyun; Fu, Haoran; Huang, Xian; Chava, Pranav; Wang, Renhan; Bhole, Sanat; Wang, Lizhe; Na, Yoon Joo; Guan, Yue; Flavin, Matthew; Han, Zheshen; Huang, Yonggang; Rogers, John A
2014-04-04
When mounted on the skin, modern sensors, circuits, radios, and power supply systems have the potential to provide clinical-quality health monitoring capabilities for continuous use, beyond the confines of traditional hospital or laboratory facilities. The most well-developed component technologies are, however, broadly available only in hard, planar formats. As a result, existing options in system design are unable to effectively accommodate integration with the soft, textured, curvilinear, and time-dynamic surfaces of the skin. Here, we describe experimental and theoretical approaches for using ideas in soft microfluidics, structured adhesive surfaces, and controlled mechanical buckling to achieve ultralow modulus, highly stretchable systems that incorporate assemblies of high-modulus, rigid, state-of-the-art functional elements. The outcome is a thin, conformable device technology that can softly laminate onto the surface of the skin to enable advanced, multifunctional operation for physiological monitoring in a wireless mode.
Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.
2009-01-01
A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.
Remote sensing of ephemeral water bodies in western Niger
Verdin, J.P.
1996-01-01
Research was undertaken to evaluate the feasibility of monitoring the small ephemeral water bodies of the Sahel with the 1.1 km resolution data of the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR). Twenty-one lakes of western Niger with good ground observation records were selected for examination. Thematic Mapper images from 1988 were first analysed to determine surface areas and temperature differences between water and adjacent land. Six AVHRR scenes from the 1988-89 dry season were then studied. It was found that a lake can be monitored until its surface area drops below 10 ha, in most cases. Furthermore, with prior knowledge of the location and shape of a water body, its surface area can be estimated from AVHRR band 5 data to within about 10 ha. These results are explained by the sharp temperature contrast between water and land, on the order of 13?? C.
Liu, Xuguang; Aziz, Tipu Z; Bain, Peter G
2005-06-01
The authors present practical evidence for the usefulness of intraoperative monitoring with surface electromyograms (sEMGs) from the affected muscles to assist electrode implantation and lesioning in patients with movement disorders. In 22 consecutive patients with various movement disorders, sEMGs were monitored in selected muscles during stereotactic surgery that involved either lesioning or electrode implantation. The electromyograms related to major motor symptoms such as tremor, rigidity, myoclonus, dystonia, and chorea were monitored and characterized on-line by both amplitude and frequency. Major motor symptoms were revealed by sEMGs recorded from the affected muscles. Tremor manifested as highly rhythmic bursts with a narrow frequency band; dyskinesias and chorea appeared as irregularly repeated bursts within a broad frequency range of 1 to 5 Hz; and rigidity and dystonia appeared as sustained high-frequency activity and co-contraction between antagonist muscles. The results suggest that intraoperative monitoring of sEMGs could help to functionally refine and confirm target localization. Surface EMGs could be used (1) as reference signals of the motor symptoms so that other signals, such as the oscillatory local field potentials simultaneously recorded via the implanted electrodes, could be correlated with the sEMGs and used to fine-tune or confirm the target localization; (2) to quantify the effects of acute electrical stimulation on the motor symptoms; and (3) to sensitively detect unwanted capsular responses induced by direct stimulation of the internal capsule. The authors conclude that intraoperative monitoring of sEMGs of the affected muscles of patients with movement disorders during stereotactic surgery provides sensitive and quantitative information that can contribute to improved electrode or lesion placement.
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter
2009-01-01
Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.
NASA Technical Reports Server (NTRS)
Gonzalez, F. A.; Waller, M. B.
1974-01-01
Description of a writing console which was used for monitoring handwriting behavior. The main feature of the console is a translucent Plexiglass paddle, pivoted on a thin bronze tube, with its top flat surface providing the writing surface. The console was used in experiments on two subjects under various schedules of monetary reinforcement for handwriting. The results suggest that handwriting is an effective approach to the analysis of human behavior.
Mori, Yoshitomo; Yoneda, Minoru; Shimada, Yoko; Fukutani, Satoshi; Ikegami, Maiko; Shimomura, Ryohei
2018-03-29
We investigated the depth profiles of radioactive Cs, ignition loss, and cation exchange capacity (CEC) in five types of forest soils sampled using scraper plates. We then simulated the monitored depth profiles in a compartment model, taking ignition loss as a parameter based on experimental results showing a positive correlation between ignition loss and the CEC. The calculated values were comparable with the monitored values, though some discrepancy was observed in the middle of the soil layer. Based on decontamination data on the surface dose rate and surface contamination concentration, we newly defined a surface residual index (SRI) to evaluate the residual radioactive Cs on surfaces. The SRI value tended to gradually decrease in forests and unpaved roads and was much smaller in forests and on unpaved roads than on paved roads. The radioactive Cs was assumed to have already infiltrated underground 18 months after the nuclear power plant accident, and the sinking was assumed to be ongoing. The SRI values measured on paved roads suggested that radioactive Cs remained on the surfaces, though a gradual infiltration was observed towards the end of the monitoring term. The SRI value is thought to be effective in grasping the rough condition of residual radioactive Cs quickly at sites of decontamination activity in the field. The SRI value may be serviceable for actual contamination works after further research is done to elucidate points such as the relation between the SRI and the infiltration of radioactive Cs in various types of objects.
NASA Astrophysics Data System (ADS)
Kasuya, Koichi; Motokoshi, Shinji; Taniguchi, Seiji; Nakai, Mitsuo; Tokunaga, Kazutoshi; Mroz, Waldemar; Budner, Boguslaw; Korczyc, Barbara
2015-02-01
Tungsten and SiC are candidates for the structural materials of the nuclear fusion reactor walls, while CVD poly-crystal diamond is candidate for the window material under the hazardous fusion stresses. We measured the surface endurance strength of such materials with commercial displacement sensors and our recent evaluation method. The pulsed high thermal input was put into the material surfaces by UV lasers, and the surface erosions were diagnosed. With the increase of the total number of the laser shots per position, the crater depth increased gradually. The 3D and 2D pictures of the craters were gathered and compared under various experimental conditions. For example, the maximum crater depths were plotted as a function of shot accumulated numbers, from which we evaluated the threshold thermal input for the surface erosions to be induced. The simple comparison-result showed that tungsten was stronger roughly two times than SiC. Then we proposed how to monitor the surface conditions of combined samples with such diamonds coated with thin tungsten layers, when we use such samples as parts of divertor inner walls, fusion chamber first walls, and various diagnostic windows. We investigated how we might be able to measure the inner surface erosions with the same kinds of displacement sensors. We found out the measurable maximum thickness of such diamond which is useful to monitor the erosion. Additionally we showed a new scheme of fusion reactor systems with injectors for anisotropic pellets and heating lasers under the probable use of W and/or SiC.
NASA Astrophysics Data System (ADS)
Kuroda, Keisuke; Hayashi, Takeshi; Do, An Thuan; Canh, Vu Duc; Nga, Tran Thi Viet; Funabiki, Ayako; Takizawa, Satoshi
2017-05-01
Over-exploited groundwater is expected to remain the predominant source of domestic water in suburban areas of Hanoi, Vietnam. In order to evaluate the effect on groundwater recharge, of decreasing surface-water bodies and land-use change caused by urbanization, the relevant groundwater systems and recharge pathways must be characterized in detail. To this end, water levels and water quality were monitored for 3 years regarding groundwater and adjacent surface-water bodies, at two typical suburban sites in Hanoi. Stable isotope (δ18O, δD of water) analysis and hydrochemical analysis showed that the water from both aquifers and aquitards, including the groundwater obtained from both the monitoring wells and the neighboring household tubewells, was largely derived from evaporation-affected surface-water bodies (e.g., ponds, irrigated farmlands) rather than from rivers. The water-level monitoring results suggested distinct local-scale flow systems for both a Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA). That is, in the case of the HUA, lateral recharge through the aquifer from neighboring ponds and/or irrigated farmlands appeared to be dominant, rather than recharge by vertical rainwater infiltration. In the case of the PCA, recharge by the above-lying HUA, through areas where the aquitard separating the two aquifers was relatively thin or nonexistent, was suggested. As the decrease in the local surface-water bodies will likely reduce the groundwater recharge, maintaining and enhancing this recharge (through preservation of the surface-water bodies) is considered as essential for the sustainable use of groundwater in the area.
Annual monitoring report for the Gunnison, Colorado, wetlands mitigation plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-10-01
The US Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project to clean up uranium mill tailings and other surface contamination at 24 abandoned uranium mill sites in 10 states. One of these abandoned mill sites is near the town of Gunnison, Colorado; surface remediation and the environmental impacts of remedial action are described in the Gunnison environmental assessment (EA) (DOE, 1992). Remedial action resulted in the elimination of 4.3 acres (ac) 1.7 hectares (ha) of wetlands and mitigation of this loss of wetlands is being accomplished through the enhance of 18.4 ac (7.5 ha) ofmore » riparian plant communities in six spring feed areas on Bureau of Land Management (BLM) land. The description of the impacted and mitigation wetlands is provided in the Mitigation and Monitoring Plan for Impacted Wetlands at the Gunnison UMTRA Project Site, Gunnison, Colorado (DOE, 1994), which is attached to the US Army corps of Engineers (USACE) Section 404 Permit. As part of the wetlands mitigation plan, the six mitigation wetlands were fenced in the fall of 1993 to exclude livestock grazing. Baseline of grazed conditions of the wetlands vegetation was determined during the summer of 1993 (DOE, 1994). A 5-year monitoring program of these six sites has been implemented to document the response of vegetation and wildlife to the exclusion of livestock. This annual monitoring report provides the results of the first year of the 5-year monitoring period.« less
[Surface water quality assessment in Miyun reservoir watershed, Beijing in the period 1980-2003].
Zhang, Wei-wei; Sun, Dan-feng; Li, Hong; Zhou, Lian-di
2010-07-01
Single factor water quality identification index was adopted to assess the surface water quality of Miyun reservoir watershed in Beijing using nearly 20 years monitoring data of 4 sites, also the surface water quality pollution sources were analyzed. The results indicated TP had the largest temporal variation at every monitoring site, coefficients of variation were 93.86%, 86.08%, 50.56% and 139.47%, respectively. The following element was Hg, the coefficients of its variation were 86.08%, 25.75%, 56.52% and 47.01%, respectively. While TN, permanganate index, BOD5, Pb and Cr were relatively stable with small coefficient of temporal variation. The permanganate index, BOD5, Pb and Cr did not exceed to the Chinese surface drinking water standard limit in the study period, while Hg had high pollution risk in several years, such as monitoring sites S1 and S3 in 1992, monitoring sites S4 in 1996. The major pollutants of Miyun reservoir watershed in Beijing were TN and TP, and TN had larger pollution risk compared with TP in most years. Comparing to that before the 1990s, the decade average fertilizer, pesticide and agricultural plastic mulch inputs after the 1990s had increased by 46%, 173% and 359%, respectively. The husbandry proportion in agriculture rose from 24.4% to 39.8%, and the average gross industrial production by 424%. The upstream of Miyun reservoir had larger pollution risk than its downstream. In addition, Chaohe watershed contributed more TN and TP to the reservoir than Baihe watershed.
NASA Astrophysics Data System (ADS)
Sato, H. P.; Nakajima, H.; Nakano, T.; Daimaru, H.
2014-12-01
Synthetic Aperture Radar (SAR) is the technique to obtain ground surface images using microwave that is emitted from and received on the antenna. The Kuchi-Sakamoto area, 2.2 km2 in precipitous mountains, central Japan, has suffered from frequent landslides, and slow landslide surface deformation has been monitored by on-site extensometer; however, such the monitoring method cannot detect the deformation in the whole area. Because satellite InSAR is effective tool to monitor slow landslide suface deformation, it is a promising tool for detecting precursor deformation and preparing effective measures against serious landslide disasters. In this study Advanced Land Observing Satellite (ALOS) / Phased Array type L-band SAR (PALSAR) data were used, and InSAR images were produced from the PALSAR data that were observed between 5 Sep 2008 and 21 Oct 2008 (from descending orbit) and between 20 Jul 2008 and 7 Sep 2009 (from ascending orbit). InSAR image from descending orbit was found to detect clear precursor landslide surface deformation on a slope; however, InSAR image on ascending orbit did not always detect clear precursor deformation. It is thought to be related with atmospheric moisture condition, length of observation baseline and so on. Furthermore, after phase unwrapping on InSAR images, 2.5-dimensional deformation was analized. This analysis needed both ascending and descending InSAR images and culculated quasi east-west deformation component (Figs. (a) and (b)) and quasi up-down deformation component (Figs. (c) and (d)). The resulting 2.5D calculation gave westward deformation and mixture of upward and downward deformations on the precursor landslide surface deformation slope (blue circles in Figs. (c) and (d)), where remarkable disrupted deep landslide occurred during Nov 2012 and 25 Jun 2013, judging from result of airborne LiDAR survey and field survey; the occurrence date is not precisely identified. The figure remains the issue that eliminating "real" precursor deformation from other candidate deformations. Preparation of this paper was supported by part of Individual Research Fund in College of Humanities and Sciences, Nihon University and part of Grants-in-Aid for Scientific Research, Challenging Exploratory (#25560185, Principal Investigator: Dr. Hiromu Daimaru).
Geoelectrical Monitoring of Ammonium Sorption Processes in a Biochar Filtration System
NASA Astrophysics Data System (ADS)
Wang, S. L.; Osei, C.; Rabinovich, A.; Ntarlagiannis, D.; Rouff, A.
2017-12-01
With the rise of modern agriculture, nutrient pollution has become an increasingly important environmental concern. A common problem is excess nitrogen which agricultural livestock farms often generate in the form of ammonium (NH4+). This highly soluble ion is easily transported through runoff and leaching, leading to water supply contamination and soil fertility decline. Biochar is the carbon-rich product of thermal decomposition of biomass in an oxygen-free environment. It is primarily used as a soil enhancer with other applications currently under research. Biochar's unique characteristics such as high surface area, high sorption capacity and long term biological and chemical stability make it a prime candidate for environmental applications such as contaminant regulation and waste effluent treatment. The spectral induced polarization (SIP) method is an established geoelectrical method that has been increasingly used in environmental investigations. SIP is unique among geophysical methods because it is sensitive not only to the bulk properties of the medium under investigation but also to the interfacial properties (e.g., mineral-fluid). The unique properties that make biochar attractive for environmental use are associated with surface properties (e.g., surface area, surface charge, presence of functional groups) that are expected to have a profound effect on SIP signals. This study presents early results on the use of the SIP method to monitor ammonium recycling of swine wastewater in a biochar filtration system. SIP measurements were taken continuously as biochar-packed columns were first injected with an ammonium wastewater solution (sorption phase) and then an ammonium-free solution (desorption phase). Geochemical monitoring showed that outflow ammonium concentration decreased during the sorption phase and increased during the desorption phase. The collected SIP data appear to be in agreement with the geochemical monitoring, providing a temporally continuous record of changes on the waste fluid and biochar surface. The results suggest that biochar successfully sorbs and releases ammonium and that the SIP method is sensitive these sorption processes. Further research is required for the quantitative interpretation of the SIP signals, including the signal source mechanism.
Monitoring of Surface Roughness in Aluminium Turning Process
NASA Astrophysics Data System (ADS)
Chaijareenont, Atitaya; Tangjitsitcharoen, Somkiat
2018-01-01
As the turning process is one of the most necessary process. The surface roughness has been considered for the quality of workpiece. There are many factors which affect the surface roughness. Hence, the objective of this research is to monitor the relation between the surface roughness and the cutting forces in aluminium turning process with a wide range of cutting conditions. The coated carbide tool and aluminium alloy (Al 6063) are used for this experiment. The cutting parameters are investigated to analyze the effects of them on the surface roughness which are the cutting speed, the feed rate, the tool nose radius and the depth of cut. In the case of this research, the dynamometer is installed in the turret of CNC turning machine to generate a signal while turning. The relation between dynamic cutting forces and the surface roughness profile is examined by applying the Fast Fourier Transform (FFT). The experimentally obtained results showed that the cutting force depends on the cutting condition. The surface roughness can be improved when increasing the cutting speed and the tool nose radius in contrast to the feed rate and the depth of cut. The relation between the cutting parameters and the surface roughness can be explained by the in-process cutting forces. It is understood that the in-process cutting forces are able to predict the surface roughness in the further research.
NASA Astrophysics Data System (ADS)
Dafflon, B.; Tran, A. P.; Wainwright, H. M.; Hubbard, S. S.; Peterson, J.; Ulrich, C.; Williams, K. H.
2015-12-01
Quantifying water and heat fluxes in the subsurface is crucial for managing water resources and for understanding the terrestrial ecosystem where hydrological properties drive a variety of biogeochemical processes across a large range of spatial and temporal scales. Here, we present the development of an advanced monitoring strategy where hydro-thermal-geophysical datasets are continuously acquired and further involved in a novel inverse modeling framework to estimate the hydraulic and thermal parameter that control heat and water dynamics in the subsurface and further influence surface processes such as evapotranspiration and vegetation growth. The measured and estimated soil properties are also used to investigate co-interaction between subsurface and surface dynamics by using above-ground aerial imaging. The value of this approach is demonstrated at two different sites, one in the polygonal shaped Arctic tundra where water and heat dynamics have a strong impact on freeze-thaw processes, vegetation and biogeochemical processes, and one in a floodplain along the Colorado River where hydrological fluxes between compartments of the system (surface, vadose zone and groundwater) drive biogeochemical transformations. Results show that the developed strategy using geophysical, point-scale and aerial measurements is successful to delineate the spatial distribution of hydrostratigraphic units having distinct physicochemical properties, to monitor and quantify in high resolution water and heat distribution and its linkage with vegetation, geomorphology and weather conditions, and to estimate hydraulic and thermal parameters for enhanced predictions of water and heat fluxes as well as evapotranspiration. Further, in the Colorado floodplain, results document the potential presence of only periodic infiltration pulses as a key hot moment controlling soil hydro and biogeochemical functioning. In the arctic, results show the strong linkage between soil water content, thermal parameters, thaw layer thickness and vegetation distribution. Overall, results of these efforts demonstrate the value of coupling various datasets at high spatial and temporal resolution to improve predictive understanding of subsurface and surface dynamics.
NASA Technical Reports Server (NTRS)
Wornom, D. E.; Woods, D. C.
1978-01-01
Surface and airborne field measurements of the cloud behavior and effluent dispersion from a solid rocket motor launch vehicle are presented. The measurements were obtained as part of a continuing launch vehicle effluent monitoring program to obtain experimental field measurements in order to evaluate a model used to predict launch vehicle environmental impact. Results show that the model tends to overpredict effluent levels.
Wang, Dan; Singhasemanon, Nan; Goh, Kean S
2016-11-15
Pesticides are routinely monitored in surface waters and resultant data are analyzed to assess whether their uses will damage aquatic eco-systems. However, the utility of the monitoring data is limited because of the insufficiency in the temporal and spatial sampling coverage and the inability to detect and quantify trace concentrations. This study developed a novel assessment procedure that addresses those limitations by combining 1) statistical methods capable of extracting information from concentrations below changing detection limits, 2) statistical resampling techniques that account for uncertainties rooted in the non-detects and insufficient/irregular sampling coverage, and 3) multiple lines of evidence that improve confidence in the final conclusion. This procedure was demonstrated by an assessment on chlorpyrifos monitoring data in surface waters of California's Central Valley (2005-2013). We detected a significant downward trend in the concentrations, which cannot be observed by commonly-used statistical approaches. We assessed that the aquatic risk was low using a probabilistic method that works with non-detects and has the ability to differentiate indicator groups with varying sensitivity. In addition, we showed that the frequency of exceedance over ambient aquatic life water quality criteria was affected by pesticide use, precipitation and irrigation demand in certain periods anteceding the water sampling events. Copyright © 2016 Elsevier B.V. All rights reserved.
Echarri, Víctor; Espinosa, Almudena; Rizo, Carlos
2017-12-08
Opaque enclosures of buildings play an essential role in the level of comfort experienced indoors and annual energy demand. The impact of solar radiation and thermal inertia of the materials that make up the multi-layer enclosures substantially modify thermal transmittance behaviour of the enclosures. This dynamic form of heat transfer, additionally affected by indoor HVAC systems, has a substantial effect on the parameters that define comfort. It also has an impact on energy demand within a daily cycle as well as throughout a one-year use cycle. This study describes the destructive monitoring of an existing block of flats located in Alicante. Once the enclosure was opened, sensors of temperature (PT100), air velocity, and relative humidity were located in the different layers of the enclosure, as well as in the interior and exterior surfaces. A pyranometer was also installed to measure solar radiation levels. A temperature data correction algorithm was drawn up to address irregularities produced in the enclosure. The algorithm was applied using a Raspberry Pi processor in the data collection system. The comparative results of temperature gradients versus non-destructive monitoring systems are presented, providing measures of the transmittance value, surface temperatures and indoor and outdoor air temperatures. This remote sensing system can be used in future studies to quantify and compare the energy savings of different enclosure construction solutions.
Five-year microbiological monitoring of wards and operating theatres in southern Italy.
La Fauci, V; Genovese, C; Facciolà, A; Palamara, M A R; Squeri, R
2017-06-01
Nosocomial infections are one of the greatest problems in public health. Several studies have highlighted the role played by the hospital environment as a possible source of transmission of nosocomial pathogens. A five-year monitoring of bacterial contamination on healthcare workers hands, surfaces most closely in contact with inpatient wards, operating theatres and "at rest" and "in use" operating theatre air samples. For the samples, we used sterile swabs, contact slides, manual API, and automated VITEK systems for identification. In the five-year period, a total of 9396 samples were collected and analysed. In ward patients, 4398 samplings were carried out with 4.7%, 9.4%, 7%, 10.8% and 7.9% positive results respectively from 2010 to 2014. For hands, 648 samplings were carried out, with a positivity of 40.74%. In operating theatres, 4188 samples were taken, with a positivity of 11.9%. Regarding air in empty and full theatres, 1962 samplings were carried out with a positivity rate equal to 31.9%. The monitoring showed a low rate of contamination with a progressive decrease in the fiveyear period on operating theatres surfaces and hands, while there was an increase in the surgical site wards and in the air of operating rooms. Our investigation has revealed the presence of pathogens on the assessed surfaces and the need for environmental monitoring, which can be a valuable tool for reducing contamination.
Echarri, Víctor; Espinosa, Almudena; Rizo, Carlos
2017-01-01
Opaque enclosures of buildings play an essential role in the level of comfort experienced indoors and annual energy demand. The impact of solar radiation and thermal inertia of the materials that make up the multi-layer enclosures substantially modify thermal transmittance behaviour of the enclosures. This dynamic form of heat transfer, additionally affected by indoor HVAC systems, has a substantial effect on the parameters that define comfort. It also has an impact on energy demand within a daily cycle as well as throughout a one-year use cycle. This study describes the destructive monitoring of an existing block of flats located in Alicante. Once the enclosure was opened, sensors of temperature (PT100), air velocity, and relative humidity were located in the different layers of the enclosure, as well as in the interior and exterior surfaces. A pyranometer was also installed to measure solar radiation levels. A temperature data correction algorithm was drawn up to address irregularities produced in the enclosure. The algorithm was applied using a Raspberry Pi processor in the data collection system. The comparative results of temperature gradients versus non-destructive monitoring systems are presented, providing measures of the transmittance value, surface temperatures and indoor and outdoor air temperatures. This remote sensing system can be used in future studies to quantify and compare the energy savings of different enclosure construction solutions. PMID:29292781
D'Attilio, Michele; Di Meo, Silvio; Perinetti, Giuseppe; Filippi, Maria Rita; Tecco, Simona; D'Alconzo, Francesco; Festa, Felice
2003-01-01
This study was aimed at evaluating the effects of a novel physiotherapy machine called MAGMA (AntiGravitary Modification of the Myotensions of Asset) on postural and masticatory muscles of subjects with myogenic cranio-cervical-mandibular dysfunction (CMD), by using surface electromyography (sEMG). Fifteen subjects, nine males and six females (mean age 27.6 years), with CMD were included in the study. The bilaterally monitored muscles were: masseter, anterior and posterior temporalis, digastric, posterior cervical, sternocleidomastoid, and upper and lower trapezius. All muscles were monitored at rest, with a second record of maximal voluntary clenching (MVC) for both the masseter and anterior temporalis. Patients were subjected to MAGMA therapy for one session/week of 30 min over ten weeks. The surface EMG activity was recorded twice, at the baseline and at the end of the therapy. After MAGMA therapy, the sEMG activity at rest of the monitored muscles was significantly better when compared to the baseline; the only exception was the anterior and posterior temporalis muscles which did not improve. On the contrary, with the MVC, all the monitored muscles (masseter and anterior temporalis) significantly improved their sEMG activity. Although more investigations are needed, these results indicate that the use of such antigravitary therapy can provide a tool for resolving myogenic CMD.
Gellynck, Karolien; Kodeck, Valérie; Van De Walle, Elke; Kersemans, Ken; De Vos, Filip; Declercq, Heidi; Dubruel, Peter; Vlaminck, Lieven
2015-01-01
Continuous glucose monitoring (CGM) is crucial in diabetic care. Long-term CGM systems however require an accurate sensor as well as a suitable measuring environment. Since large intravenous sensors are not feasible, measuring inside the interstitial fluid is considered the best alternative. This option, unfortunately, has the drawback of a lag time with blood glucose values. A good strategy to circumvent this is to enhance tissue integration and enrich the peri-implant vasculature. Implants of different optically transparent biomaterials (poly(methyl-methacrylate) [PMMA] and poly(dimethylsiloxane) [PDMS]) – enabling glucose monitoring in the near-infrared (NIR) spectrum – were surface-treated and subsequently implanted in goats at various implantation sites for up to 3 months. The overall in vivo biocompatibility, tissue integration, and vascularization at close proximity of the surfaces of these materials were assessed. Histological screening showed similar tissue reactions independent of the implantation site. No significant inflammation reaction was observed. Tissue integration and vascularization correlated, to some extent, with the biomaterial composition. A modification strategy, in which a vascular endothelial-cadherin antibody was coupled to the biomaterials surface through a dopamine layer, showed significantly enhanced vascularization 3 months after subcutaneous implantation. Our results suggest that the developed strategy enables the creation of tissue interactive NIR transparent packaging materials, opening the possibility of continuous glucose monitoring. PMID:25304314
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.; Environmental Science Division
In September 2005, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) initiated periodic sampling of groundwater in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Morrill, Kansas. The sampling at Morrill is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE 2005), to monitor levels of carbon tetrachloride contamination identified in the groundwater at this site (Argonne 2004, 2005a). This report provides results for monitoring events in April and September 2009. Under the KDHE-approvedmore » monitoring plan (Argonne 2005b), groundwater was initially sampled twice yearly for a period of two years (in fall 2005, in spring and fall 2006, and in spring and fall 2007). The samples were analyzed for volatile organic compounds (VOCs), as well as for selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The analytical results for groundwater sampling events at Morrill from September 2005 to October 2008 were documented previously (Argonne 2006a,b, 2007, 2008a,b, 2009). Those results consistently demonstrated the presence of carbon tetrachloride contamination, at levels exceeding the KDHE Tier 2 risk-based screening level of 5.0 {micro}g/L for this compound, in a groundwater plume extending generally south-southeastward from the former CCC/USDA facility, toward Terrapin Creek at the south edge of the town. Low levels ({le} 1.3 {micro}g/L) of carbon tetrachloride were persistently detected at monitoring well MW8S, on the bank of an intermittent tributary to Terrapin Creek. This observation suggested a possible risk of contamination of the surface waters of the creek. That concern is the regulatory driver for ongoing monitoring. In light of the early findings, in 2006 the CCC/USDA recommended expansion of the approved monitoring program to include the collection and analysis of surface water samples along Terrapin Creek (Argonne 2006a). At the request of the KDHE (2007a), locations for both surface water and shallow sediment sampling were discussed with the KDHE in January 2007. An addendum to the existing monitoring plan (Appendix A) and a standard operating procedure (SOP AGEM-15; Appendix B) for sediment sampling were submitted to the KDHE on the basis of these discussions and were subsequently approved (KDHE 2008b). Results of sediment sampling prior to 2009 were reported previously (Argonne 2008a,b; 2009). To supplement the original scope of the monitoring, Argonne also sampled natural vegetation along Terrapin Creek in October 2006, April 2007, and July 2007 for analyses for VOCs. The results of these plant tissue analyses were reported previously (Argonne 2008a, 2009). The April and September 2009 sampling events reported here represent a continuation of the two-year monitoring program, as requested by the KDHE (2007b). The groundwater sampling is presently conducted, in accord with the monitoring plan (Argonne 2005b) and the addendum to that plan (Appendix A in this report), in a network of 12 monitoring wells and 3 private wells (Figure 1.1), at locations approved by the KDHE (2008b). The findings of the April and September 2009 monitoring events at Morrill support the following conclusions: (1) Groundwater flow during the early spring and the later part of this review period was predominantly to the south-southeast, from the vicinity of the former CCC/USDA facility toward Terrapin Creek. In late spring, a slight shift occurred toward more southerly groundwater flow (possibly southwesterly in the immediate vicinity of the intermittent tributary that flows into Terrapin Creek). This shift in the late spring reflected transient seasonal precipitation and recharge that resulted in higher groundwater levels at this time. (2) No significant changes were observed in the levels or distribution of carbon tetrachloride in the groundwater at Morrill during the current review period, or in comparison to the results of the spring and fall 2008 monitoring events. A maximum carbon tetrachloride concentration of 28-30 {micro}g/L was identified in groundwater - at well MW3S - during both the April and September 2009 sampling events. (3) No carbon tetrachloride contamination was detected in surface waters or shallow streambed sediments sampled at five locations along Terrapin Creek, downgradient from the former CCC/USDA facility. (4) Sampling of tree branch tissues from existing trees for VOCs analyses can be an indicator of shallow subsurface groundwater contamination. Detections of carbon tetrachloride in vegetation at the Morrill site to date have been generally consistent with the documented location of the groundwater plume.« less
PESTICIDE TRANSFER EFFICIENCIES FROM HOUSEHOLD SURFACES TO FOODS
Traditional dietary pesticide exposure assessments have focused on contamination during production (e.g., pesticides in agriculture). However, recent residential monitoring studies have demonstrated that a significant portion of infant and children's total exposure can result fr...
NASA Technical Reports Server (NTRS)
Fairlie, T. D.; Szykman, Jim; Pierce, Robert B.; Gilliland, A. B.; Engel-Cox, Jill; Weber, Stephanie; Kittaka, Chieko; Al-Saadi, Jassim A.; Scheffe, Rich; Dimmick, Fred;
2008-01-01
The Clean Air Interstate Rule (CAIR) is expected to reduce transport of air pollutants (e.g. fine sulfate particles) in nonattainment areas in the Eastern United States. CAIR highlights the need for an integrated air quality observational and modeling system to understand sulfate as it moves in multiple dimensions, both spatially and temporally. Here, we demonstrate how results from an air quality model can be combined with a 3d monitoring network to provide decision makers with a tool to help quantify the impact of CAIR reductions in SO2 emissions on regional transport contributions to sulfate concentrations at surface monitors in the Baltimore, MD area, and help improve decision making for strategic implementation plans (SIPs). We sample results from the Community Multiscale Air Quality (CMAQ) model using ensemble back trajectories computed with the NASA Langley Research Center trajectory model to provide Lagrangian time series and vertical profile information, that can be compared with NASA satellite (MODIS), EPA surface, and lidar measurements. Results are used to assess the regional transport contribution to surface SO4 measurements in the Baltimore MSA, and to characterize the dominant source regions for low, medium, and high SO4 episodes.
Surface-enhanced Raman as a water monitor for warfare agents
NASA Astrophysics Data System (ADS)
Spencer, Kevin M.; Sylvia, James M.; Clauson, Susan L.; Janni, James A.
2002-02-01
The threat of chemical warfare agents being released upon civilian and military personnel continues to escalate. One aspect of chemical preparedness is to analyze and protect the portable water supply for the military. Chemical nerve, blister, and choking agents, as well as biological threats must all be analyzed and low limits of detection must be verified. For chemical agents, this generally means detection down to the low ppb levels. Surface-Enhanced Raman Spectroscopy (SERS) is a spectroscopic technique that can detect trace levels of contaminants directly in the aqueous environment. In this paper, results are presented on the use of SERS to detect chemical and biological agent simulants with an end goal of creating a Joint Service Agent Water Monitor. Detection of cyanide, 2-chloroethyl ethyl sulfide, phosphonates, Gram-positive and Gram-negative bacteria using SERS has been performed and is discussed herein. Aspects of transferring laboratory results to an unattended field instrument are also discussed.
A new approach to correct for absorbing aerosols in OMI UV
NASA Astrophysics Data System (ADS)
Arola, A.; Kazadzis, S.; Lindfors, A.; Krotkov, N.; Kujanpää, J.; Tamminen, J.; Bais, A.; di Sarra, A.; Villaplana, J. M.; Brogniez, C.; Siani, A. M.; Janouch, M.; Weihs, P.; Webb, A.; Koskela, T.; Kouremeti, N.; Meloni, D.; Buchard, V.; Auriol, F.; Ialongo, I.; Staneck, M.; Simic, S.; Smedley, A.; Kinne, S.
2009-11-01
Several validation studies of surface UV irradiance based on the Ozone Monitoring Instrument (OMI) satellite data have shown a high correlation with ground-based measurements but a positive bias in many locations. The main part of the bias can be attributed to the boundary layer aerosol absorption that is not accounted for in the current satellite UV algorithms. To correct for this shortfall, a post-correction procedure was applied, based on global climatological fields of aerosol absorption optical depth. These fields were obtained by using global aerosol optical depth and aerosol single scattering albedo data assembled by combining global aerosol model data and ground-based aerosol measurements from AERONET. The resulting improvements in the satellite-based surface UV irradiance were evaluated by comparing satellite and ground-based spectral irradiances at various European UV monitoring sites. The results generally showed a significantly reduced bias by 5-20%, a lower variability, and an unchanged, high correlation coefficient.
NASA Astrophysics Data System (ADS)
Marras, L.; Fontana, R.; Gambino, M. C.; Greco, M.; Materazzi, M.; Pampaloni, E.; Pezzati, L.; Poggi, P.
The knowledge of the shape of an artwork is an important element for its study and conservation. When dealing with a stone statue, roughness measurement is a very useful contribution to document its surface conditions, to assess either changes due to restoration intervention or surface decays due to weathering agents, and to monitor its time-evolution in terms of shape variations. In this work we present the preliminary results of the statistical analysis carried out on acquired data relative to six areas of the Michelangelo's David marble statue, representative of differently degraded surfaces. Determination of the roughness and its relative characteristic wavelength is shown.
Application of IEM model on soil moisture and surface roughness estimation
NASA Technical Reports Server (NTRS)
Shi, Jiancheng; Wang, J. R.; Oneill, P. E.; Hsu, A. Y.; Engman, E. T.
1995-01-01
Monitoring spatial and temporal changes of soil moisture are of importance to hydrology, meteorology, and agriculture. This paper reports a result on study of using L-band SAR imagery to estimate soil moisture and surface roughness for bare fields. Due to limitations of the Small Perturbation Model, it is difficult to apply this model on estimation of soil moisture and surface roughness directly. In this study, we show a simplified model derived from the Integral Equation Model for estimation of soil moisture and surface roughness. We show a test of this model using JPL L-band AIRSAR data.
Monitoring monthly surface water dynamics of Dongting Lake using Sentinel-1 data at 10 m.
Xing, Liwei; Tang, Xinming; Wang, Huabin; Fan, Wenfeng; Wang, Guanghui
2018-01-01
High temporal resolution water distribution maps are essential for surface water monitoring because surface water exhibits significant inner-annual variation. Therefore, high-frequency remote sensing data are needed for surface water mapping. Dongting Lake, the second-largest freshwater lake in China, is famous for the seasonal fluctuations of its inundation extents in the middle reaches of the Yangtze River. It is also greatly affected by the Three Gorges Project. In this study, we used Sentinel-1 data to generate surface water maps of Dongting Lake at 10 m resolution. First, we generated the Sentinel-1 time series backscattering coefficient for VH and VV polarizations at 10 m resolution by using a monthly composition method. Second, we generated the thresholds for mapping surface water at 10 m resolution with monthly frequencies using Sentinel-1 data. Then, we derived the monthly surface water distribution product of Dongting Lake in 2016, and finally, we analyzed the inner-annual surface water dynamics. The results showed that: (1) The thresholds were -21.56 and -15.82 dB for the backscattering coefficients for VH and VV, respectively, and the overall accuracy and Kappa coefficients were above 95.50% and 0.90, respectively, for the VH backscattering coefficient, and above 94.50% and 0.88, respectively, for the VV backscattering coefficient. The VV backscattering coefficient achieved lower accuracy due to the effect of the wind causing roughness on the surface of the water. (2) The maximum and minimum areas of surface water were 2040.33 km 2 in July, and 738.89 km 2 in December. The surface water area of Dongting Lake varied most significantly in April and August. The permanent water acreage in 2016 was 556.35 km 2 , accounting for 19.65% of the total area of Dongting Lake, and the acreage of seasonal water was 1525.21 km 2 . This study proposed a method to automatically generate monthly surface water at 10 m resolution, which may contribute to monitoring surface water in a timely manner.
NASA Astrophysics Data System (ADS)
Rodrigues, Harley F.; Capistrano, Gustavo; Mello, Francyelli M.; Zufelato, Nicholas; Silveira-Lacerda, Elisângela; Bakuzis, Andris F.
2017-05-01
Non-invasive and real-time monitoring of the heat delivery during magnetic nanoparticle hyperthermia (MNH) is of fundamental importance to predict clinical outcomes for cancer treatment. Infrared thermography (IRT) can determine the surface temperature due to three-dimensional heat delivery inside a subcutaneous tumor, an argument that is supported by numerical simulations. However, for precise temperature determination, it is of crucial relevance to use a correct experimental configuration. This work reports an MNH study using a sarcoma 180 murine tumor containing 3.9 mg of intratumorally injected manganese-ferrite nanoparticles. MNH was performed at low field amplitude and non-uniform field configuration. Five 30 min in vivo magnetic hyperthermia experiments were performed, monitoring the surface temperature with a fiber optical sensor and thermal camera at distinct angles with respect to the animal’s surface. The results indicate that temperature errors as large as 7~\\circ C can occur if the experiment is not properly designed. A new IRT error model is found to explain the data. More importantly, we show how to precisely monitor temperature with IRT during hyperthermia, which could positively impact heat dosimetry and clinical planning.
Rodrigues, Harley F; Capistrano, Gustavo; Mello, Francyelli M; Zufelato, Nicholas; Silveira-Lacerda, Elisângela; Bakuzis, Andris F
2017-05-21
Non-invasive and real-time monitoring of the heat delivery during magnetic nanoparticle hyperthermia (MNH) is of fundamental importance to predict clinical outcomes for cancer treatment. Infrared thermography (IRT) can determine the surface temperature due to three-dimensional heat delivery inside a subcutaneous tumor, an argument that is supported by numerical simulations. However, for precise temperature determination, it is of crucial relevance to use a correct experimental configuration. This work reports an MNH study using a sarcoma 180 murine tumor containing 3.9 mg of intratumorally injected manganese-ferrite nanoparticles. MNH was performed at low field amplitude and non-uniform field configuration. Five 30 min in vivo magnetic hyperthermia experiments were performed, monitoring the surface temperature with a fiber optical sensor and thermal camera at distinct angles with respect to the animal's surface. The results indicate that temperature errors as large as [Formula: see text]C can occur if the experiment is not properly designed. A new IRT error model is found to explain the data. More importantly, we show how to precisely monitor temperature with IRT during hyperthermia, which could positively impact heat dosimetry and clinical planning.
Clinical monitoring of early caries lesions using cross polarization optical coherence tomography
NASA Astrophysics Data System (ADS)
Fried, Daniel; Staninec, Michal; Darling, Cynthia L.; Chan, Kenneth H.; Pelzner, Roger B.
New methods are needed for the nondestructive measurement of tooth demineralization and remineralization and to monitor the progression of incipient caries lesions (tooth decay) for effective nonsurgical intervention and to evaluate the performance of anti-caries treatments such as chemical treatments or laser irradiation. Studies have shown that optical coherence tomography (OCT) has great potential to fulfill this role, since it can be used to measure the depth and severity of early lesions with an axial resolution exceeding 10-μm. It is easy to apply in vivo and it can be used to image the convoluted topography of tooth occlusal surfaces. In this paper we present early results from two clinical studies underway to measure the effect of fluoride intervention on early lesions. CP-OCT was used to monitor early lesions on enamel and root surfaces before and after intervention with fluoride varnish. The lesion depth and internal structure were resolved for all the lesions examined and some lesions had well defined surface zones of lower reflectivity that may be indicative of arrested lesions. Changes were also noted in the structure of some of the lesions after fluoride intervention.
NASA Technical Reports Server (NTRS)
Anderson, Eric
2016-01-01
SERVIR is a joint NASA - US Agency for International Development (USAID) project to improve environmental decision-making using Earth observations and geospatial technologies. A common need identified among SERVIR regions has been improved information for disaster risk reduction and in specific surface water and flood extent mapping, monitoring and forecasting. Of the 70 SERVIR products (active, complete, and in development), 4 are related to surface water and flood extent mapping, monitoring or forecasting. Visit http://www.servircatalog.net for more product details.
Efficient near-real-time monitoring of 3D surface displacements in complex landslide scenarios
NASA Astrophysics Data System (ADS)
Allasia, Paolo; Manconi, Andrea; Giordan, Daniele; Baldo, Marco; Lollino, Giorgio
2013-04-01
Ground deformation measurements play a key role in monitoring activities of landslides. A wide spectrum of instruments and methods is nowadays available, going from in-situ to remote sensing approaches. In emergency scenarios, monitoring is often based on automated instruments capable to achieve accurate measurements, possibly with a very high temporal resolution, in order to achieve the best information about the evolution of the landslide in near-real-time, aiming at early warning purposes. However, the available tools for a rapid and efficient exploitation, understanding and interpretation of the retrieved measurements is still a challenge. This issue is particularly relevant in contexts where monitoring is fundamental to support early warning systems aimed at ensuring safety to people and/or infrastructures. Furthermore, in many cases the results obtained might be of difficult reading and divulgation, especially when people of different backgrounds are involved (e.g. scientists, authorities, civil protection operators, decision makers, etc.). In this work, we extend the concept of automatic and near real time from the acquisition of measurements to the data processing and divulgation, in order to achieve an efficient monitoring of surface displacements in landslide scenarios. We developed an algorithm that allows to go automatically and in near-real-time from the acquisition of 3D displacements on a landslide area to the efficient divulgation of the monitoring results via WEB. This set of straightforward procedures is called ADVICE (ADVanced dIsplaCement monitoring system for Early warning), and has been already successfully applied in several emergency scenarios. The algorithm includes: (i) data acquisition and transfer protocols; (ii) data collection, filtering, and validation; (iii) data analysis and restitution through a set of dedicated software, such as ©3DA [1]; (iv) recognition of displacement/velocity threshold and early warning (v) short term prediction of the temporal evolution of the landslide, e.g. through the failure forecast method; (vi) publication of the results on a dedicated webpage. Here we show the results gained in the area of Montaguto (southern Italy, ca. 100 km northeast from Naples), where a large-scale earthflow reached the bottom of the valley and severely damaged the SP90 provincial road, as well as the national railroad [2]. We discuss how the use of ADVICE has speed-up and facilitated the understanding of the landslide evolution, the communication of the monitoring results to the partners, and consequently the decision-making process in a critical landslide scenario. [1] Manconi, A., P. Allasia, D. Giordan, M. Baldo, G. Lollino and A. Corazza, Near-real-time 3D surface deformation model obtained via RTS measurements. In Procedings of World Landslide Forum 2, October 3-9, 2011, Rome, Italy. [2] Giordan, D., P. Allasia, A. Manconi, M. Baldo, G. Lollino, M. Santangelo, M. Cardinali and F. Guzzetti, "Morphological evolution of a large earthflow: the Montaguto landslide southern Italy", Geomorphology, in press.
NASA Technical Reports Server (NTRS)
Wynne, Randolph H.; Lillesand, Thomas M.
1993-01-01
The research reported herein focused on the general hypothesis that satellite remote sensing of large-area, long-term trends in lake ice phenology (formation and breakup) is a robust, integrated measure of regional and global climate change. To validate this hypothesis, we explored the use of data from the Advanced Very High Resolution Radiometer (AVHRR) to discriminate the presence and extent of lake ice during the winter of 1990-1991 on the 45 lakes and reservoirs in Wisconsin with a surface area greater than 1,000 hectares. Our results suggest both the feasibility of using the AVHRR to determine the date of lake ice breakup as well as the strong correlation (R= -0.87) of the date so derived with local surface-based temperature measurements. These results suggest the potential of using current and archival satellite data to monitor changes in the date of lake ice breakup as a means of detecting regional 'signals' of greenhouse warming.
Alderisio, K A; Villegas, L F; Ware, M W; McDonald, L A; Xiao, L; Villegas, E N
2017-12-01
USEPA Method 1623, or its equivalent, is currently used to monitor for protozoan contamination of surface drinking water sources worldwide. At least three approved staining kits used for detecting Cryptosporidium and Giardia are commercially available. This study focuses on understanding the differences among staining kits used for Method 1623. Merifluor and EasyStain labelling kits were used to monitor Cryptosporidium oocyst and Giardia cyst densities in New York City's raw surface water sources. In the year following a change to the approved staining kits for use with Method 1623, an anomaly was noted in the occurrence of Giardia cysts in New York City's raw surface water. Specifically, Merifluor-stained samples had higher Giardia cyst densities as compared with those stained with EasyStain. Side by side comparison revealed significantly lower fluorescence intensities of Giardia muris as compared with Giardia duodenalis cysts when labelled with EasyStain. This study showed very poor fluorescence intensity signals by EasyStain on G. muris cysts resulting in lower cyst counts, while Merifluor, with its broader Giardia cyst staining specificity, resulted in higher cyst counts, when using Methods 1623. These results suggest that detected Giardia cyst concentrations are dependent on the staining kits used, which can result in a more or less conservative estimation of occurrences and densities of zoonotic Giardia cysts by detecting a broader range of Giardia species/Assemblages. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-06-01
This Sampling and Analysis Plan addresses surface water monitoring, sampling, and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Surface water monitoring will be conducted at nine sites within WAG 6. Activities to be conducted will include the installation, inspection, and maintenance of automatic flow-monitoring and sampling equipment and manual collection of variousmore » water and sediment samples. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the surface water monitoring, sampling, and analysis will aid in evaluating risk associated with contaminants migrating off-WAG, and will be used in calculations to establish relationships between contaminant concentration (C) and flow (Q). The C-Q relationship will be used in calculating the cumulative risk associated with the off-WAG migration of contaminants.« less
NASA Technical Reports Server (NTRS)
Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; 4 Blyth, Eleanor; de Roo, Ad; Doell. Petra; Ek, Mike; Famiglietti, James;
2011-01-01
Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (approx.10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 10(exp 9) unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a grand challenge to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.
NASA Astrophysics Data System (ADS)
Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; Blyth, Eleanor; de Roo, Ad; DöLl, Petra; Ek, Mike; Famiglietti, James; Gochis, David; van de Giesen, Nick; Houser, Paul; Jaffé, Peter R.; Kollet, Stefan; Lehner, Bernhard; Lettenmaier, Dennis P.; Peters-Lidard, Christa; Sivapalan, Murugesu; Sheffield, Justin; Wade, Andrew; Whitehead, Paul
2011-05-01
Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (˜10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a "grand challenge" to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.
Novel method for water vapour monitoring using wireless communication networks measurements
NASA Astrophysics Data System (ADS)
David, N.; Alpert, P.; Messer, H.
2009-04-01
We propose a new technique for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Water vapour plays a crucial part in a variety of atmospheric processes. As the most influential of greenhouse gases, it absorbs long-wave terrestrial radiation. The water vapour cycle of evaporation and recondensation is a major energy redistributing mechanism transferring heat energy from the Earth's surface to the atmosphere. Additionally, humidity has an important role in weather forecasting as a key variable required for initialization of atmospheric models and hazard warning techniques. However, current methods of monitoring humidity suffer from low spatial resolution, high cost or a lack of precision when measuring near ground levels. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, the proposed method can provide moisture observations at high temporal and spatial resolution. Further, the implementation cost is minimal, since the data used is already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which include absence of rain, fog or clouds along the propagation path. We present results from real-data measurements taken from microwave links used in a backhaul cellular network that show very good agreement with surface station humidity measurements.
Liao, Chunyang; Richards, Jaben; Taylor, Allison R; Gan, Jay
2017-12-01
Widespread use of insecticides for the control of urban pests such as ants, termites, and spiders has resulted in contamination and toxicity in urban aquatic ecosystems in different regions of the world. Passive samplers are a convenient and integrative tool for in situ monitoring of trace contaminants in surface water. However, the performance of a passive sampler depends closely on its affinity for the target analytes, making passive samplers highly specific to the types of contaminants being monitored. The goal of this study was to develop a passive sampler compatible with a wide range of insecticides, including the strongly hydrophobic pyrethroids and the weakly hydrophobic fipronil and organophosphates. Of six candidate polymeric thin films, polyurethane film (PU) was identified to be the best at enriching the test compounds. The inclusion of stable isotope labeled analogs as performance reference compounds (PRCs) further allowed the use of PU film for pyrethroids under non-equilibrium conditions. The PU sampler was tested in a large aquarium with circulatory water flow, and also deployed at multiple sites in surface streams in southern California. The concentrations of pesticides derived from the PU sampler ranged from 0.5 to 18.5 ng/L, which were generally lower than the total chemical concentration measured by grab samples, suggesting that suspended particles and dissolved organic matter in water rendered them less available. The influence of suspended particles and dissolved organic matter on bioavailability was more pronounced for pyrethroids than for fipronils. The results show that the developed PU film sampler, when coupled with PRCs, may be used for rapid and sensitive in-situ monitoring of a wide range of insecticides in surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Manipulating and Monitoring On-Surface Biological Reactions by Light-Triggered Local pH Alterations.
Peretz-Soroka, Hagit; Pevzner, Alexander; Davidi, Guy; Naddaka, Vladimir; Kwiat, Moria; Huppert, Dan; Patolsky, Fernando
2015-07-08
Significant research efforts have been dedicated to the integration of biological species with electronic elements to yield smart bioelectronic devices. The integration of DNA, proteins, and whole living cells and tissues with electronic devices has been developed into numerous intriguing applications. In particular, the quantitative detection of biological species and monitoring of biological processes are both critical to numerous areas of medical and life sciences. Nevertheless, most current approaches merely focus on the "monitoring" of chemical processes taking place on the sensing surfaces, and little efforts have been invested in the conception of sensitive devices that can simultaneously "control" and "monitor" chemical and biological reactions by the application of on-surface reversible stimuli. Here, we demonstrate the light-controlled fine modulation of surface pH by the use of photoactive molecularly modified nanomaterials. Through the use of nanowire-based FET devices, we showed the capability of modulating the on-surface pH, by intensity-controlled light stimulus. This allowed us simultaneously and locally to control and monitor pH-sensitive biological reactions on the nanodevices surfaces, such as the local activation and inhibition of proteolytic enzymatic processes, as well as dissociation of antigen-antibody binding interactions. The demonstrated capability of locally modulating the on-surface effective pH, by a light stimuli, may be further applied in the local control of on-surface DNA hybridization/dehybridization processes, activation or inhibition of living cells processes, local switching of cellular function, local photoactivation of neuronal networks with single cell resolution and so forth.
NASA Astrophysics Data System (ADS)
Kumar, Manish; Raghuwanshi, Sanjeev Kumar
2018-02-01
In recent years, food safety issues caused by contamination of chemical substances or microbial species have raised a major area of concern to mankind. The conventional chromatography-based methods for detection of chemical are based on human-observation and slow for real-time monitoring. The surface plasmon resonance (SPR) sensors offers the capability of detection of very low concentrations of adulterated chemical and biological agents for real-time by monitoring. Thus, adulterant agent in food gives change in refractive index of pure food result in corresponding phase change. These changes can be detected at the output and can be related to the concentration of the chemical species present at the point.
NASA Astrophysics Data System (ADS)
Ben, R.; Chalaturnyk, R.; Gardner, C.; Hawkes, C.; Johnson, J.; White, D.; Whittaker, S.
2008-12-01
In July 2000, a major research project was initiated to study the geological storage of CO2 as part of a 5000 tonnes/day EOR project planned for the Weyburn Field in Saskatchewan, Canada. Major objectives of the IEA GHG Weyburn CO2 monitoring and storage project included: assessing the integrity of the geosphere encompassing the Weyburn oil pool for effective long-term storage of CO2; monitoring the movement of the injected CO2, and assessing the risk of migration of CO2 from the injection zone (approximately 1500 metres depth) to the surface. Over the period 2000-2004, a diverse group of 80+ researchers worked on: geological, geophysical, and hydrogeological characterizations at both the regional (100 km beyond the field) and detailed scale (10 km around the field); conducted time-lapse geophysical surveys; carried out surface and subsurface geochemical surveys; and undertook numerical reservoir simulations. Results of the characterization were used for a performance assessment that concluded the risk of CO2 movement to the biosphere was very small. By September 2007, more than 14 Mtonnes of CO2 had been injected into the Weyburn reservoir, including approximately 3 Mtonnes recycled from oil production. A "Final Phase" research project was initiated (2007- 2011) to contribute to a "Best Practices" guide for long-term CO2 storage in EOR settings. Research objectives include: improving the geoscience characterization; further detailed analysis and data collection on the role of wellbores; additional geochemical and geophysical monitoring activities; and an emphasis on quantitative risk assessments using multiple analysis techniques. In this talk a review of results from Phase I will be presented followed by plans and initial results for the Final Phase.
Hanford Site near-facility environmental monitoring annual report, calendar year 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, C.J.
1998-07-28
Near-facility environmental monitoring provides a means to measure the impacts of operations, waste management, and remediation activities on the environment adjacent to facilities and ensure compliance with local, state, and federal environmental regulations. Specifically, near-facility environmental monitoring monitors new and existing sites, processes, and facilities for potential impacts and releases; fugitive emissions and diffuse sources associated with contaminated areas, facilities (both active and those undergoing surveillance and maintenance), and environmental restoration activities. External radiation, ambient air particulates, ground and surface water, soil, sediment, and biota (plants and animals) are sampled or monitored. Parameters include, as appropriate, radionuclides; radiation fields; chemicalmore » or physical constituents, such as nitrates; pH; and water temperature. All ambient air results were below the US Department of Energy (DOE) Derived Concentration Guides (DCGs). Groundwater concentrations at the two wells at the 107-N Facility were below both the DOE DCG and US Environmental Protection Agency Interim Drinking Water Standards for gamma emitting radionuclides. Soil and vegetation results were generally within historic ranges and mostly below the Accessible Soil Concentration limits (included in HNF-PRO-454, Inactive Waste Sites) with the exception of one soil sampling location at 1 00 N Area. External radiation fields continued an overall downward trend. Surface water disposal unit samples (water, sediment, and aquatic vegetation) showed radionuclide concentrations below their respective DCG and Accessible Soil Concentration limits. The 100 N Area Columbia river shoreline springs results were below DCGs with the exception of one Sr concentration. More than 4,600 ha (11,300 acres) of radiologically controlled areas were surveyed in 1997, approximately the same as in 1996.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC for the Environmental Compliance Department ES&H Division, Y-12 National Security Complex Oak Ridge, Tennessee
2003-09-30
This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2004 at the U.S. Department of Energy (DOE) Y-12 National Security Complex that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2004 will be in accordance with the following requirements of DOE Order 5400.1: (1) to maintain surveillance of existing and potential groundwater contamination sources; (2) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are mostmore » likely to migrate beyond the Oak Ridge Reservation property line; (3) to identify and characterize long-term trends in groundwater quality at Y-12; and (4) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2004 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2004 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2004-09-30
This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2005 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2005 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to maintain surveillance of existing and potential groundwater contamination sources; (2) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminantsmore » are most likely to migrate beyond the Oak Ridge Reservation property line; (3) to identify and characterize long-term trends in groundwater quality at Y-12; and (4) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2005 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2005 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.« less
NASA Astrophysics Data System (ADS)
Chambers, J. E.; Meldrum, P.; Gunn, D.; Wilkinson, P. B.; Uhlemann, S.; Swift, R. T.; Kuras, O.; Inauen, C.; Hutchinson, D.; Butler, S.
2016-12-01
ERT monitoring has been demonstrated in numerous studies as an effective means of imaging near surface processes for applications as diverse as permafrost studies and contaminated land assessment. A limiting factor in applying time-lapse ERT for long-term studies in remote locations has been the availability of cost-effective ERT measurement systems designed specifically for monitoring applications. Typically, monitoring is undertaken using repeated manual data collection, or by building conventional survey instruments into a monitoring setup. The latter often requires high power and is therefore difficult to operate remotely without access to mains electricity. We describe the development of a low-power resistivity imaging system designed specifically for remote monitoring, taking advantage of, e.g., solar power and data telemetry. Here, we present the results of two field deployments. The system has been installed on an active railway cutting to provide insights into the effect of vegetation on the moisture dynamics in unstable infrastructure slopes and to gather subsurface information for pro-active remediation measures. The system, comprising 255 electrodes, acquires 4596 reciprocal measurement pairs twice daily during standard operation. In case of severe weather events, the measurement schedule is reactively changed, to gather high temporal resolution data to image rainfall infiltration processes. The system has also been installed along a leaking and marginally stable canal embankment; a less favourable location for remote monitoring, with limited solar power and poor mobile reception. Nevertheless, the acquired data indicated the effectiveness of remedial actions on the canal. The ERT results showed that one leak was caused by the canal and fixed during remediation, while two other "leaks" were shown to be effects of groundwater dynamics. The availability of cost-effective, low-power ERT monitoring instrumentation, combined with an automated workflow of data processing and visualisation, has the potential to contribute to a step-change in the management and early warning of slope instability.
NASA Technical Reports Server (NTRS)
Imhoff, M.; Vermillion, C.
1986-01-01
The synoptic view afforded by orbiting Earth sensors can be extremely valuable for resource evaluation, environmental monitoring and development planning. For many regions of the world, however, cloud cover has prevented the acquisition of remotely sensed data during the most environmentally stressful periods of the year. This paper discusses how synthetic aperture imaging radar can be used to provide valuable data about the condition of the Earth's surface during periods of bad weather. Examples are given of applications using data from the Shuttle Imaging Radars (SIR) A and B for agriculture land use and crop condition assessment, monsoon flood boundary and flood damage assessment, water resource monitoring and terrain modeling, coastal forest mapping and vegetation penetration, and coastal development monitoring. Recent SIR-B results in Bangladesh are emphasized, radar system basics are reviewed and future SAR systems discussed.
NASA Technical Reports Server (NTRS)
Imhoff, Marc L.; Vermillion, C. H.
1986-01-01
The synoptic view afforded by orbiting Earth sensors can be extremely valuable for resource evaluation, environmental monitoring and development planning. For many regions of the world, however, cloud cover has prevented the acquisition of remotely sensed data during the most environmentally stressful periods of the year. How synthetic aperture imaging radar can be used to provide valuable data about the condition of the Earth's surface during periods of bad weather is discussed. Examples are given of applications using data from the Shuttle Imaging Radars (SIR) A and B for agricultural land use and crop condition assessment, monsoon flood boundary and flood damage assessment, water resource monitoring and terrain modeling, coastal forest mapping and vegetation penetration, and coastal development monitoring. Recent SIR-B results in Bangladesh are emphasized, radar system basics are reviewed and future SAR systems are discussed.
NASA Astrophysics Data System (ADS)
Petrick, Lauren; Dubowski, Yael
2010-05-01
Tobacco smoking is well known as a significant source of primary indoor air pollutants. However, only recently has it been recognized that the impact of Tobacco smoking may continue even after the cigarette has been extinguished (i.e., third hand smoke) due to the effect of indoor surfaces. These surfaces may affect the fate of tobacco smoke in the form of secondary reactions and pollutants, including secondary organic aerosol (SOA) formation. Fourier Transform Infrared spectrometry with Attenuated Total Reflection (FTIR-ATR) in tandem with a Scanning Mobility Particle Sizing (SMPS) system was used to monitor the ozonation of cellulose sorbed nicotine and resulting SOA formation. SOA formation began at onset of ozone introduction ([O3] = 60 ± 5 ppb) with a size distribution of dp ≤ 25 nm, and was determined to be a result of heterogeneous reaction (opposed to homogeneous). SOA yield from reacted surface nicotine was on the order of 10 %. Simultaneous to SOA monitoring, FTIR-ATR spectra showed surface changes in the nicotine film as the reaction progressed, revealing a pseudo first-order surface reaction rate of 0.0026 ± 0.0008 min-1. Identified surface oxidation products included: cotinine, myosmine, methylnicotinamide and nicotyrine. Surface reaction rate was found to be partially inhibited at high relative humidity. Given the toxicity of some of the identified products (e.g., cotinine has shown potential mutagenicity and teratogenicity) and that small particles may contribute to adverse health effects, the present study indicates that exposure to 3rd hand smoke ozonation products may pose additional health risks.
Application of satellite radar altimetry for near-real time monitoring of floods
NASA Astrophysics Data System (ADS)
Lee, H.; Calmant, S.; Shum, C.; Kim, J.; Huang, Z.; Bettadpur, S. V.; Alsdorf, D. E.
2011-12-01
According to the 2004 UNESCO World Disasters Report, it is estimated that flooding affected 116 million people globally, causing about 7000 deaths and leading to $7.5 billion in losses. The report also indicates that flood is the most frequently occurring disaster type among all other natural disasters. Hence, timely monitoring of changing of river, wetland and lake/reservoir levels is important to support disaster monitoring and proper response. Yet, we have surprisingly poor knowledge of the spatial and temporal dynamics of surface water discharge and storage changes globally. Although satellite radar altimetry has been successfully used to observe water height changes over rivers, lakes, reservoirs, and wetlands, there have been few studies for near-real time monitoring of floods mainly due to its limited spatial and temporal sampling of surface water elevations. In this study, we monitor flood by examining its spatial and temporal origin of the flooding and its timely propagation using multiple altimeter-river intersections over the entire hydrologic basin. We apply our method to the Amazon 2009 flood event that caused the most severe flooding in more than two decades. We also compare our results with inundated areas estimated from ALOS PALSAR ScanSAR measurements and GRACE 15-day Quick-Look (QL) gravity field data product. Our developed method would potentially enhance the capability of satellite altimeter toward near-real time monitoring of floods and mitigating their hazards.
Acoustic wave device using plate modes with surface-parallel displacement
Martin, Stephen J.; Ricco, Antonio J.
1992-01-01
Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes therebetween. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them.
Acoustic wave device using plate modes with surface-parallel displacement
Martin, S.J.; Ricco, A.J.
1992-05-26
Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes there between. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them. 6 figs.
Acoustic wave device using plate modes with surface-parallel displacement
Martin, S.J.; Ricco, A.J.
1988-04-29
Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes therebetween. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them. 6 figs.
Armani, Mariachiara; Civettini, Michele; Conedera, Gabriella; Favretti, Michela; Lombardo, Dorotea; Lucchini, Rosaria; Paternolli, Sabrina; Pezzuto, Alessandra; Rabini, Michela; Arcangeli, Giuseppe
2016-01-01
Over the past few years, the demand for the introduction of fish products in public canteens (schools, hospitals and nursing-homes) has grown due to their good nutritional proprieties. The particular health conditions and sensitivity of some groups of consumers exposes them to greater risks of food poisoning. It is therefore important to monitor the raw materials that end up in mass catering implementing strategies of mass catering control, both with self-monitoring strategies and with regular controls performed by the competent health authorities. The purpose of this study is to assess the overall quality of seafood dealt out from public catering services located in Northeast Italy. In this paper we illustrate the results of microbiological analysis performed on 135 fish samples (58% of samples were raw fishes, 27% cooked fishes, 6% raw fish products, 9% cooked fish products) and species identification performed on 102 fish samples. Additionally, 135 environmental swabs were collected to determine the effectiveness of cleaning and sanitation of food contact (cutting boards, cooking equipment and food processing surfaces) and non-contact (refrigerator wall and handle, tap lever) surfaces. Of raw seafood samples, 24% had total aerobic mesophilic bacteria count >105 CFU/g and for Enterobacteriaceae the faecal contamination was excluded since no Salmonella spp. and Escherichia coli were isolated. Just 3.8% of raw seafood samples resulted positive for Listeria monocytogenes. The results of swab samples of cooking utensils and surfaces showed that sanitation practices should be improved. Molecular analysis for fish species identification revealed a mislabelling for 25% of sampled fishes. The results of this survey can provide valuable information for monitoring and surveillance programmes for the control of quality of fish and fish products. PMID:27995098
Chen, Yun-Hao; Jiang, Jin-Bao; Steven, Michael D; Gong, A-Du; Li, Yi-Fan
2012-07-01
With the global climate warming, reducing greenhouse gas emissions becomes a focused problem for the world. The carbon capture and storage (CCS) techniques could mitigate CO2 into atmosphere, but there is a risk in case that the CO2 leaks from underground. The objective of this paper is to study the chlorophyll contents (SPAD value), relative water contents (RWC) and leaf spectra changing features of beetroot under CO2 leakage stress through field experiment. The result shows that the chlorophyll contents and RWC of beetroot under CO2 leakage stress become lower than the control beetroot', and the leaf reflectance increases in the 550 nm region and decreases in the 680nm region. A new vegetation index (R550/R680) was designed for identifying beetroot under CO2 leakage stress, and the result indicates that the vegetation index R550/R680 could identify the beetroots after CO2 leakage for 7 days. The index has strong sensitivity, stability and identification for monitoring the beetroots under CO2 stress. The result of this paper has very important meaning and application values for selecting spots of CCS project, monitoring and evaluating land-surface ecology under CO2 stress and monitoring the leakage spots by using remote sensing.
Surface currents in the Bohai Sea derived from the Korean Geostationary Ocean Color Imager (GOCI)
NASA Astrophysics Data System (ADS)
Jiang, L.; Wang, M.
2016-02-01
The first geostationary ocean color satellite sensor, the Geostationary Ocean Color Imager (GOCI) onboard the Korean Communication, Ocean, and Meteorological Satellite can monitor and measure ocean phenomena over an area of 2500 × 2500 km2 around the western Pacific region centered at 36°N and 130°E. Hourly measurements during the day around 9:00 to 16:00 local time are a unique capability of GOCI to monitor ocean features of higher temporal variability. In this presentation, we show some recent results of GOCI-derived ocean surface currents in the Bohai Sea using the Maximum Cross-Correlation (MCC) feature tracking method and compare the results with altimetry-inversed tidal current observations produced from Oregon State University (OSU) Tidal Inversion Software (OTIS). The performance of the GOCI-based MCC method is assessed and the discrepancies between the GOCI- and OTIS-derived currents are evaluated. A series of sensitivity studies are conducted with images from various satellite products and of various time differences, MCC adjustable parameters, and influence from other forcings such as wind, to find the best setups for optimal MCC performance. Our results demonstrate that GOCI can effectively provide real-time monitoring of not only water optical, biological, and biogeochemical variability, but also the physical dynamics in the region.
Microbial Monitoring of Surface Water in South Africa: An Overview
Luyt, Catherine D.; Tandlich, Roman; Muller, Wilhelmine J.; Wilhelmi, Brendan S.
2012-01-01
Infrastructural problems force South African households to supplement their drinking water consumption from water resources of inadequate microbial quality. Microbial water quality monitoring is currently based on the Colilert®18 system which leads to rapidly available results. Using Escherichia coli as the indicator microorganism limits the influence of environmental sources on the reported results. The current system allows for understanding of long-term trends of microbial surface water quality and the related public health risks. However, rates of false positive for the Colilert®18-derived concentrations have been reported to range from 7.4% to 36.4%. At the same time, rates of false negative results vary from 3.5% to 12.5%; and the Colilert medium has been reported to provide for cultivation of only 56.8% of relevant strains. Identification of unknown sources of faecal contamination is not currently feasible. Based on literature review, calibration of the antibiotic-resistance spectra of Escherichia coli or the bifidobacterial tracking ratio should be investigated locally for potential implementation into the existing monitoring system. The current system could be too costly to implement in certain areas of South Africa where the modified H2S strip test might be used as a surrogate for the Colilert®18. PMID:23066390
Synergy of Earth Observation and In-Situ Monitoring Data for Flood Hazard Early Warning System
NASA Astrophysics Data System (ADS)
Brodsky, Lukas; Kodesova, Radka; Spazierova, Katerina
2010-12-01
In this study, we demonstrate synergy of EO and in-situ monitoring data for early warning flood hazard system in the Czech Republic developed within ESA PECS project FLOREO. The development of the demonstration system is oriented to support existing monitoring activities, especially snow melt and surface water runoff contributing to flooding events. The system consists of two main parts accordingly, the first is snow cover and snow melt monitoring driven mainly by EO data and the other is surface water runoff modeling and monitoring driven by synergy of in-situ and EO data.
Pesticide monitoring in surface water and groundwater using passive samplers
NASA Astrophysics Data System (ADS)
Kodes, V.; Grabic, R.
2009-04-01
Passive samplers as screening devices have been used within a czech national water quality monitoring network since 2002 (SPMD and DGT samplers for non polar substances and metals). The passive sampler monitoring of surface water was extended to polar substances, in 2005. Pesticide and pharmaceutical POCIS samplers have been exposed in surface water at 21 locations and analysed for polar pesticides, perfluorinated compounds, personal care products and pharmaceuticals. Pesticide POCIS samplers in groundwater were exposed at 5 locations and analysed for polar pesticides. The following active substances of plant protection products were analyzed in surface water and groundwater using LC/MS/MS: 2,4,5-T, 2,4-D, Acetochlor, Alachlor, Atrazine, Atrazine_desethyl, Azoxystrobin, Bentazone, Bromacil, Bromoxynil, Carbofuran, Clopyralid, Cyanazin, Desmetryn, Diazinon, Dicamba, Dichlobenil, Dichlorprop, Dimethoat, Diuron, Ethofumesate, Fenarimol, Fenhexamid, Fipronil, Fluazifop-p-butyl, Hexazinone, Chlorbromuron, Chlorotoluron, Imazethapyr, Isoproturon, Kresoxim-methyl, Linuron, MCPA, MCPP, Metalaxyl, Metamitron, Methabenzthiazuron, Methamidophos, Methidathion, Metobromuron, Metolachlor, Metoxuron, Metribuzin, Monolinuron, Nicosulfuron, Phorate, Phosalone, Phosphamidon, Prometryn, Propiconazole, Propyzamide, Pyridate, Rimsulfuron, Simazine, Tebuconazole, Terbuthylazine, Terbutryn, Thifensulfuron-methyl, Thiophanate-methyl and Tri-allate. The POCIS samplers performed very well being able to provide better picture than grab samples. The results show that polar pesticides and also perfluorinated compounds, personal care products and pharmaceuticals as well occur in hydrosphere of the Czech republic. Acknowledgment: Authors acknowledge the financial support of grant No. 2B06095 by the Ministry of Education, Youth and Sports.
Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface
2008-08-01
seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER
Ciampi, Simone; Guan, Bin; Darwish, Nadim A; Zhu, Ying; Reece, Peter J; Gooding, J Justin
2012-12-21
Herein, mesoporous silicon (PSi) is configured as a single sensing device that has dual readouts; as a photonic crystal sensor in a Rugate filter configuration, and as a high surface area porous electrode. The as-prepared PSi is chemically modified to provide it with stability in aqueous media and to allow for the subsequent coupling of chemical species, such as via Cu(I)-catalyzed cycloaddition reactions between 1-alkynes and azides ("click" reactions). The utility of the bimodal capabilities of the PSi sensor for monitoring surface coupling procedures is demonstrated by the covalent coupling of a ferrocene derivative, as well as by demonstrating ligand-exchange reactions (LER) at the PSi surface. Both types of reactions were monitored through optical reflectivity measurements, as well as electrochemically via the oxidation/reduction of the surface tethered redox species.
NASA Astrophysics Data System (ADS)
Watlet, Arnaud; Poulain, Amaël; Van Camp, Michel; Francis, Olivier; Triantafyllou, Antoine; Rochez, Gaëtan; Hallet, Vincent; Kaufmann, Olivier
2016-04-01
The vadose zone of karst systems plays an important role on the water dynamics. In particular, temporary perched aquifers can appear in the subsurface due to changes of weather conditions, reduced evapotranspiration and the vertical gradients of porosity and permeability. Although many difficulties are usually encountered when studying karst environments due to their heterogeneities, cave systems offer an outstanding opportunity to investigate vadose zone from the inside. We present a multi-scale study covering two years of hydrogeological and geophysical monitoring of the Lomme Karst System (LKS) located in the Variscan fold-and-thrust belt (Belgium), a region (~ 3000 ha) that shows many karstic networks within Devonian limestone units. Hydrogeological data cover the whole LKS and involve e.g. flows and levels monitoring or tracer tests performed in both vadose and saturated zones. Such data bring valuable information on the hydrological context of the studied area at the catchment scale. Combining those results with geophysical measurements allows validating and imaging them at a smaller scale, with more integrative techniques. Hydrogeophysical measurements are focused on only one cave system of the LKS, at the Rochefort site (~ 40 ha), taking benefit of the Rochefort Cave Laboratory (RCL) infrastructures. In this study, a microgravimetric monitoring and an Electrical Resistivity Tomography (ERT) monitoring are involved. The microgravimetric monitoring consists in a superconducting gravimeter continuously measuring gravity changes at the surface of the RCL and an additional relative gravimeter installed in the underlying cave located 35 meters below the surface. While gravimeters are sensible to changes that occur in both the vadose zone and the saturated zone of the whole cave system, combining their recorded signals allows enhancing vadose zone's gravity changes. Finally, the surface ERT monitoring provide valuable information at the (sub)-meter scale on the hydrological processes that occur in the vadose zone. Seasonal water variations and preferential flow path are observed. This helps separating the hydrological signature of the vadose zone from that of the saturated zone.
Sañudo-Fontaneda, Luis A; Charlesworth, Susanne M; Castro-Fresno, Daniel; Andres-Valeri, Valerio C A; Rodriguez-Hernandez, Jorge
2014-01-01
Pervious pavements have become one of the most used sustainable urban drainage system (SUDS) techniques in car parks. This research paper presents the results of monitoring water quality from several experimental car park areas designed and constructed in Spain with bays made of interlocking concrete block pavement, porous asphalt, polymer-modified porous concrete and reinforced grass with plastic and concrete cells. Moreover, two different sub-base materials were used (limestone aggregates and basic oxygen furnace slag). This study therefore encompasses the majority of the materials used as permeable surfaces and sub-base layers all over the world. Effluent from the test bays was monitored for dissolved oxygen, pH, electric conductivity, total suspended solids, turbidity and total petroleum hydrocarbons in order to analyze the behaviour shown by each combination of surface and sub-base materials. In addition, permeability tests were undertaken in all car parks using the 'Laboratorio Caminos Santander' permeameter and the Cantabrian Portable Infiltrometer. All results are presented together with the influence of surface and sub-base materials on water quality indicators using bivariate correlation statistical analysis at a confidence level of 95%. The polymer-modified porous concrete surface course in combination with limestone aggregate sub-base presented the best performance.
Permeable Pavement Research - Edison, New Jersey
This presentation provides the background and summary of results collected at the permeable pavement parking lot monitored at the EPA facility in Edison, NJ. This parking lot is surfaced with permeable interlocking concrete pavers (PICP), pervious concrete, and porous asphalt. ...
NASA Astrophysics Data System (ADS)
Sabet Divsholi, Bahador; Yang, Yaowen
2011-04-01
Piezoelectric lead zirconate titanate (PZT) transducers have been used for health monitoring of various structures over the last two decades. There are three methods to install the PZT transducers to structures, namely, surface bonded, reusable setup and embedded PZTs. The embedded PZTs and reusable PZT setups can be used for concrete structures during construction. On the other hand, the surface bonded PZTs can be installed on the existing structures. In this study, the applicability and limitations of each installation method are experimentally studied. A real size concrete structure is cast, where the surface bonded, reusable setup and embedded PZTs are installed. Monitoring of concrete hydration and structural damage is conducted by the electromechanical impedance (EMI), wave propagation and wave transmission techniques. It is observed that embedded PZTs are suitable for monitoring the hydration of concrete by using both the EMI and the wave transmission techniques. For damage detection in concrete structures, the embedded PZTs can be employed using the wave transmission technique, but they are not suitable for the EMI technique. It is also found that the surface bonded PZTs are sensitive to damage when using both the EMI and wave propagation techniques. The reusable PZT setups are able to monitor the hydration of concrete. However they are less sensitive in damage detection in comparison to the surface bonded PZTs.
Electrodeless QCM-D for lipid bilayer applications.
Kunze, Angelika; Zäch, Michael; Svedhem, Sofia; Kasemo, Bengt
2011-01-15
An electrodeless quartz crystal microbalance with dissipation monitoring (QCM-D) setup is used to monitor the formation of supported lipid bilayers (SLBs) on bare quartz crystal sensor surfaces. The kinetic behavior of the formation of a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) SLB on SiO(2) surfaces is discussed and compared for three cases: (i) a standard SiO(2) film deposited onto the gold electrode of a quartz crystal, (ii) an electrodeless quartz crystal with a sputter-coated SiO(2) film, and (iii) an uncoated electrodeless quartz crystal sensor surface. We demonstrate, supported by imaging the SLB on an uncoated electrodeless surface using atomic force microscopy (AFM), that a defect-free, completely covering bilayer is formed in all three cases. Differences in the kinetics of the SLB formation on the different sensor surfaces are attributed to differences in surface roughness. The latter assumption is supported by imaging the different surfaces using AFM. We show furthermore that electrodeless quartz crystal sensors can be used not only for the formation of neutral SLBs but also for positively and negatively charged SLBs. Based on our results we propose electrodeless QCM-D to be a valuable technique for lipid bilayer and related applications providing several advantages compared to electrode-coated surfaces like optical transparency, longer lifetime, and reduced costs. Copyright © 2010 Elsevier B.V. All rights reserved.
Davidson, C A; Griffith, C J; Peters, A C; Fielding, L M
1999-01-01
The minimum bacterial detection limits and operator reproducibility of the Biotrace Clean-Tracetrade mark Rapid Cleanliness Test and traditional hygiene swabbing were determined. Areas (100 cm2) of food grade stainless steel were separately inoculated with known levels of Staphylococcus aureus (NCTC 6571) and Escherichia coli (ATCC 25922). Surfaces were sampled either immediately after inoculation while still wet, or after 60 min when completely dry. For both organisms the minimum detection limit of the ATP Clean-Tracetrade mark Rapid Cleanliness Test was 10(4) cfu/100 cm2 (p < 0.05) and was the same for wet and dry surfaces. Both organism type and surface status (i.e. wet or dry) influenced the minimum detection limits of hygiene swabbing, which ranged from 10(2) cfu/100 cm2 to >10(7) cfu/100 cm2. Hygiene swabbing percentage recovery rates for both organisms were less than 0.1% for dried surfaces but ranged from 0.33% to 8.8% for wet surfaces. When assessed by six technically qualified operators, the Biotrace Clean-Tracetrade mark Rapid Cleanliness Test gave superior reproducibility for both clean and inoculated surfaces, giving mean coefficients of variation of 24% and 32%, respectively. Hygiene swabbing of inoculated surfaces gave a mean CV of 130%. The results are discussed in the context of hygiene monitoring within the food industry. Copyright 1999 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Sonato, Agnese; Silvestri, Davide; Ruffato, Gianluca; Zacco, Gabriele; Romanato, Filippo; Morpurgo, Margherita
2013-12-01
Grating Coupled-Surface Plasmon reflectivity measurements carried out under azimuth and polarization control (GC-SPR φ ≠ 0°) were used to optimize the process of gold surface dressing with poly(ethylene oxide) (PEO) derivatives of different molecular weight, with the final goal to maximize the discrimination between specific and non-specific binding events occurring at the surface. The kinetics of surface deposition of thiol-ending PEOs (0.3, 2 and 5 kDa), introduced as antifouling layers, was monitored. Non-specific binding events upon immersion of the surfaces into buffers containing either 0.1% bovine serum albumin or 1% Goat Serum, were evaluated as a function of polymer size and density. A biorecognition event between avidin and biotin was then monitored in both buffers at selected low and high polymer surface densities and the contribution of analyte and fouling elements to the signal was precisely quantified. The 0.3 kDa PEO film was unable to protect the surface from non-specific interactions at any tested density. On the other hand, the 2 and 5 kDa polymers at their highest surface densities guaranteed full protection from non-specific interactions from both buffers. These densities were reached upon a long deposition time (24-30 h). The results pave the way toward the application of this platform for the detection of low concentration and small dimension analytes, for which both non-fouling and high instrumental sensitivity are fundamental requirements.
Single-molecule enzymology based on the principle of the Millikan oil drop experiment.
Leiske, Danielle L; Chow, Andrea; Dettloff, Roger; Farinas, Javier
2014-03-01
The ability to monitor the progress of single-molecule enzyme reactions is often limited by the need to use fluorogenic substrates. A method based on the principle of the Millikan oil drop experiment was developed to monitor the change in charge of substrates bound to a nanoparticle and offers a means of detecting single-enzyme reactions without fluorescence detection. As a proof of principle of the ability to monitor reactions that result in a change in substrate charge, polymerization on a single DNA template was detected. A custom oligonucleotide was synthesized that allowed for the attachment of single DNA templates to gold nanoparticles with a single polymer tether. The nanoparticles were then tethered to the surface of a microfluidic channel where the positions of the nanoparticles, subjected to an oscillating electric field, were monitored using dark field microscopy. With short averaging times, the signal-to-noise level was low enough to discriminate changes in charge of less than 1.2%. Polymerization of a long DNA template demonstrated the ability to use the system to monitor single-molecule enzymatic activity. Finally, nanoparticle surfaces were modified with thiolated moieties to reduce and/or shield the number of unproductive charges and allow for improved sensitivity. Copyright © 2013 Elsevier Inc. All rights reserved.
Single-Molecule Enzymology Based On The Principle Of The Millikan Oil Drop Experiment
Leiske, Danielle L.; Chow, Andrea; Dettloff, Roger; Farinas, Javier
2014-01-01
The ability to monitor the progress of single molecule enzyme reactions is often limited by the need to use fluorogenic substrates. A method based on the principle of the Millikan Oil Drop Experiment was developed to monitor the change in charge of substrates bound to a nanoparticle and offers a means of detecting single enzyme reactions without fluorescence detection. As a proof of principle of the ability to monitor reactions which result in a change in substrate charge, polymerization on a single DNA template was detected. A custom oligonucleotide was synthesized which allowed for the attachment of single DNA templates to gold nanoparticles with a single polymer tether. The nanoparticles were then tethered to the surface of a microfluidic channel where the positions of the nanoparticles, subjected to an oscillating electric field, were monitored using darkfield microscopy. With short averaging times, the signal-to-noise level was low enough to discriminate changes in charge of less than 1.2%. Polymerization of a long DNA template demonstrated the ability to use the system to monitor single molecule enzymatic activity. Finally, nanoparticle surfaces were modified with thiolated moieties in order to reduce and/or shield the number of unproductive charges and allow for improved sensitivity. PMID:24291542
Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T
2012-09-01
This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.
The Salcher landslide observatory: a new long-term monitoring site in Austria
NASA Astrophysics Data System (ADS)
Canli, Ekrem; Engels, Alexander; Glade, Thomas; Schweigl, Joachim; Bertagnoli, Michael
2016-04-01
Landslides pose a significant hazard in the federal district of Lower Austria. The Geological Survey of Lower Austria is responsible for detailed site investigations as well as the planning and installation of protective measures. The most landslide prone area in Lower Austria is within the Rhenodanubian Flyschzone whose materials consist of alterations of fine grained layers (clayey shales, silty shales, marls) and sandstones. It exhibits over 6200 landslides within an area of approx. 1300 km². For areas susceptible to landsliding, protection works are not feasible or simply too costly. Therefore, monitoring systems have been installed in the past, most of them, however, are not operated automatically and require field visits for data readouts. Thus, it is difficult to establish any relation between initiating and controlling factors to gain a comprehensive understanding of the underlying process mechanism that is essential for any early warning applications. In this presentation, we present the design and first results of an automated landslide monitoring system in Gresten (Lower Austria). The deep-seated, slow moving Salcher landslide extends over approx. 8000 m² and is situated adjacent to residential buildings and infrastructure. This monitoring setup is designed to run for at least a decade to account for investigations of long term sliding dynamics and pattern. Historically the Salcher landslide has shown shorter phases with accelerated movements followed by longer phases with barely any movements. Those periods of inactivity commonly exceed regular project durations, thus it is important to cover longer periods. Such slope dynamics can be investigated throughout many parts in the world, thus this monitoring might allow to understand better also landslides with infrequent movement patterns. The monitoring setup consists of surface as well as subsurface installations. All installations are connected to permanent power supply, are taking the respective reading at a fixed time interval and are embedded within a WiFi network. All measured data is sent immediately to a server in Vienna and thus, all information is available in real-time. Surface monitoring devices cover a meteorological station measuring rainfall, temperature, radiation and air pressure and a permanent long-range Terrestrial Laserscanning (pTLS) station performing a high resolution scan of the entire landslide surface once a day. The subsurface devices include TDR probes and a fully automated geoelectrical monitoring profile for analyzing the spatial distribution of resistivity changes (attributed to changes in soil moisture) over the entire length of the landslide. Along this longitudinal profile, four piezometers are installed to monitor groundwater fluctuations. This is accompanied by an automated inclinometer chain for assessing horizontal displacements in the subsurface. The presentation will focus on the first results of the monitoring system and will highlight ongoing and future work tasks including data processing, analysis and visualization within a web-based platform. The overall goal of the described system is to enable authorized users and decision makers to utilize real-time data and analysis results to issue alarms if potentially hazardous changes are recorded.
The importance of atmospheric monitoring at the Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Dawson, Bruce R.
The Pierre Auger Observatory is an ultra-high energy cosmic ray experiment employing a giant surface array of particle detectors together with telescopes to image fluorescence light from extensive air showers in the atmosphere. The atmosphere is the medium in which the incoming cosmic rays deposit their energy, and as a result we must monitor the characteristics of the atmosphere, including its density profile and light transmission properties, over the Observatory area of 3000 square kilometres.
Visual monitoring of the melting front propagation in a paraffin-based PCM
NASA Astrophysics Data System (ADS)
Charvát, Pavel; Štětina, Josef; Mauder, Tomáš; Klimeš, Lubomír
Experiments were carried out in an environmental chamber with the aim to monitor the melting front propagation in a rectangular cavity filled with a paraffin-based Phase Change Material (PCM). The PCM was contained in transparent containers with the heat flux introduced by means of an electric heating element. The stabilized power source was used to maintain the constant heat output of the heating elements. The experiments were performed for the heat flux introduced at the side wall of the container and at the upper surface of the PCM. The paraffin-based PCM RT28HC with the phase change temperature of 28 °C was used in the experiments. The temperature in the environmental chamber was maintained at the melting temperature of the PCM. The propagation of the melting front was monitored with a digital camera and temperatures at several locations were monitored with RTDs and thermocouples. Significant natural convection was observed for the heat flux introduced at the side wall of the container. As a result the melting front propagated much faster at the top of the container than at its bottom. The heat flux introduced at the upper-surface of the PCM resulted in almost one-dimensional propagation of the melting front. The acquired data are to be used for validation of an in-house developed numerical model based on the front-tracking method.
40 CFR 98.448 - Geologic sequestration monitoring, reporting, and verification (MRV) plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... than 1 year. (2) Identification of potential surface leakage pathways for CO2 in the maximum monitoring area and the likelihood, magnitude, and timing, of surface leakage of CO2 through these pathways. (3) A...
40 CFR 98.448 - Geologic sequestration monitoring, reporting, and verification (MRV) plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... than 1 year. (2) Identification of potential surface leakage pathways for CO2 in the maximum monitoring area and the likelihood, magnitude, and timing, of surface leakage of CO2 through these pathways. (3) A...
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation.
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation. PMID:25405760
A data-driven approach of load monitoring on laminated composite plates using support vector machine
NASA Astrophysics Data System (ADS)
Gwon, Y. S.; Fekrmandi, H.
2018-03-01
In this study, the surface response to excitation method (SuRE) is investigated using a data-driven method for load monitoring on a laminated composite plate structure. The SuRE method is an emerging approach in ultrasonic wavebased structural health monitoring (SHM) field. In this method, a range of high-frequency, surface-guided waves are excited on the structure using piezoceramic elements. The waves propagate on the structure and interact with internal or surface damages. Initially, a baseline data of the intact structure is created by measuring the frequency transfer function between the excitation and sensing point. The integrity of structure is evaluated by monitoring changes in the frequency spectrums. The SuRE method has effectively been used for a variety of SHM applications including the detection of loose bolts, delamination in composite structures, internal corrosion in pipelines, and load and impact monitoring. Data obtained using the SuRE method was used for identifying the location of the applied load on a laminated composite plate using Support Vector Machine (SVM). A set of two piezoelectric elements were attached on the surface of the plate. A sweep excitation (150-250 kHz) generated surface-guided waves, and the transmitted waves were monitored at the sensory positions. The reference data set was measured simultaneously from the sensors. The plate was subjected to static loads while health monitoring data was being captured using the SuRE method. The confusion matrix indicated that the model classified correctly with up to 99.8% accuracy.
Dust emissions from unpaved roads on the Colorado Plateau
NASA Astrophysics Data System (ADS)
Duniway, M.; Flagg, C.; Belnap, J.
2013-12-01
On the Colorado Plateau, elevated levels of aeolian dust have become a major land management and policy concern due to its influence on climate, weather, terrestrial ecosystem dynamics, landscape development and fertility, melting of snow and ice, air quality, and human health. Most desert soil surfaces are stabilized by plants, rocks, and/or physical or biological soil crusts, but once disturbed, sediment production from these surfaces can increase dramatically. Road development and use is a common surface disturbing activity in the region. The extent and density of roads and road networks is rapidly increasing due to continued energy exploration, infrastructure development, and off-highway recreation activities. Though it is well known that unpaved roads produce dust, the relative contribution of dust from existing roads or the implications of future road development to regional dust loading is unknown. To address this need, we have initiated a multifaceted research effort to evaluating dust emissions from unpaved roads regionally. At 34 sites arranged across various road surfaces and soil textures in southeastern Utah, we are: 1) monitoring dust emissions, local wind conditions, and vehicle traffic and 2) evaluating fugitive dust potential using a portable wind tunnel and measuring road characteristics that affect dust production. We will then 3) develop a GIS-based model that integrates results from 1 & 2 to estimate potential dust contributions from current and future scenarios of regional road development. Passive, horizontal sediment traps were installed at three distances downwind from the road edge. One control trap was placed upwind of the samplers to account for local, non-road dust emissions. An electronic vehicle counter and anemometer were also installed at monitoring sites. Dust samples were collected every three months at fixed heights, 15 cm up to 100 cm above the soil surface, from March 2010 to the present. Threshold friction velocities (TFV), the minimum wind velocity required to initiate erosion, and sediment production were also quantified using a portable wind tunnel at monitoring sites. Additionally, numerous characteristics including gravel cover, particle-size distribution, soil compaction, and loose-erodible material were measured on road surfaces at monitoring sites. Preliminary results suggest that roads are an important regional dust source, as emissions from roads are comparable to non-road, rural sources that are being monitored concurrently. While gravel roads produce more dust per day on average, per vehicle emissions are larger on dirt roads. Dust flux decreases with distance from the road edge on all road types, however this decline is less pronounced on dirt roads. Portable wind tunnel results indicate that TFV is consistently lower on dirt versus gravel roads across all soil types. Fugitive dust flux is generally larger and more variable on dirt roads compared to gravel roads. Initial analyses suggest that several easily measurable road surface characteristics can potentially be used to predict both TFV and sediment production, including: total gravel cover, gravel particle-size classes, clay content, and road compaction. The relation between TFV and total gravel cover in particular appears to be non-linear, with TFV increasing rapidly above ~40% gravel cover.
Nitinol Temperature Monitoring Devices
1976-01-09
AD-A021 578 NITINOL TEMPERATURE MONITORING DEVICES William J. Buehler, et al Naval Surface Weapons Center Silver Spring, Maryland 9 January 1976...LABORATORY S NITINOL TEMPERATURE MONITORING DEVICES 9 JANUARY 1976 NAVAL SURFACE WEAPONS CENTER WHITE OAK LABORATORY SILVER SPRING, MARYLAND 20910 * Approved...GOVT ACCESSION NO. 3. RECIPIIENT’S CATALOG NUMBER NSWC/WOL/TR 75-140 ____ ______ 4 TITLE (and Subtitle) 5. TYPE OF REPCRT & PERIOD COVERED Nitinol
Agricultural land use and N losses to water: the case study of a fluvial park in northern Italy.
Morari, F; Lugato, E; Borin, M
2003-01-01
An integrated water resource management programme has been under way since 1999 to reduce agricultural water pollution in the River Mincio fluvial park. The experimental part of the programme consisted of: a) a monitoring phase to evaluate the impact of conventional and environmentally sound techniques (Best Management Practices, BMPs) on water quality; this was done on four representative landscape units, where twelve fields were instrumented to monitor the soil, surface and subsurface water quality; b) a modelling phase to extend the results obtained at field scale to the whole territory of the Mincio watershed. For this purpose a GIS developed in the Arc/Info environment was integrated into the CropSyst model. The model had previously been calibrated to test its ability to describe the complexity of the agricultural systems. The first results showed a variable efficiency of the BMPs depending on the interaction between management and pedo-climatic conditions. In general though, the BMPs had positive effects in improving the surface and subsurface water quality. The CropSyst model was able to describe the agricultural systems monitored and its linking with the GIS represented a valuable tool for identifying the vulnerable areas within the watershed.
NASA Technical Reports Server (NTRS)
Steffen, K.; Abdalati, W.; Stroeve, J.; Nolin, A.; Box, J.; Key, J.; Zwally, J.; Stober, M.; Kreuter, J.
1996-01-01
The proposed research involves the application of multispectral satellite data in combination with ground truth measurements to monitor surface properties of the Greenland Ice Sheet which are essential for describing the energy and mass of the ice sheet. Several key components of the energy balance are parameterized using satellite data and in situ measurements. The analysis has been done for a 6 to 17 year time period in order to analyze the seasonal and interannual variations of the surface processes and the climatology. Our goal was to investigate to what accuracy and over what geographic areas large scale snow properties and radiative fluxes can be derived based upon a combination of available remote sensing and meteorological data sets. For the understanding of the surface processes a field program was designed to collect information on spectral albedo, specular reflectance, soot content, grain size and the physical properties of different snow types. Further, the radiative and turbulent fluxes at the ice/snow surface were monitored for the parameterization and interpretation of the satellite data. Highlights include AVHRR time series and surface based radiation measurements, passive microwave time series, and geodetic results from the ETH/CU camp.
A New Paradigm in Earth Environmental Monitoring with the CYGNSS Small Satellite Constellation
NASA Technical Reports Server (NTRS)
Ruf, C. S.; Chew, C.; Lang, T.; Morris, M. G.; Kyle, K.; Ridley, A.; Balasubramaniam, R.
2018-01-01
A constellation of small, low-cost satellites is able to make scientifically valuable measurements of the Earth which can be used for weather forecasting, disaster monitoring, and climate studies. Eight CYGNSS satellites were launched into low Earth orbit on December 15, 2016. Each satellite carries a science radar receiver which measures GPS signals reflected from the Earth surface. The signals contain information about the surface, including wind speed over ocean and soil moisture and flooding over land. The satellites are distributed around the globe so that measurements can be made more often to capture extreme weather events. Innovative engineering approaches are used to reduce per satellite cost, increase the number in the constellation, and improve temporal sampling. These include the use of differential drag rather than propulsion to adjust the spacing between satellites and the use of existing GPS signals as the science radars’ transmitter. Initial on-orbit results demonstrate the scientific utility of the CYGNSS observations, and suggest that a new paradigm in spaceborne Earth environmental monitoring is possible.
NASA Astrophysics Data System (ADS)
Ovidiu, Avram; Rusu, Emil; Maftei, Raluca-Mihaela; Ulmeanu, Antonio; Scutelnicu, Ioan; Filipciuc, Constantina; Tudor, Elena
2017-12-01
Electrometry is most frequently applied geophysical method to examine dynamical phenomena related to the massive salt presence due to resistivity contrasts between salt, salt breccia and geological covering formations. On the vertical resistivity sections obtained with VES devices these three compartments are clearly differentiates by high resistivity for the massive salt, very low for salt breccia and variable for geological covering formations. When the land surface is inclined, shallow formations are moving gravitationally on the salt back, producing a landslide. Landslide monitoring involves repeated periodically measurements of geoelectrical profiles into a grid covering the slippery surface, in the same conditions (climate, electrodes position, instrument and measurement parameters). The purpose of monitoring landslides in Slanic Prahova area, was to detect the changes in resistivity distribution profiles to superior part of subsoil measured in 2014 and 2015. Measurement grid include several representative cross sections in susceptibility to landslides point of view. The results are graphically represented by changing the distribution of topography and resistivity differences between the two sets of geophysical measurements.
Adaptive noise cancelling and time-frequency techniques for rail surface defect detection
NASA Astrophysics Data System (ADS)
Liang, B.; Iwnicki, S.; Ball, A.; Young, A. E.
2015-03-01
Adaptive noise cancelling (ANC) is a technique which is very effective to remove additive noises from the contaminated signals. It has been widely used in the fields of telecommunication, radar and sonar signal processing. However it was seldom used for the surveillance and diagnosis of mechanical systems before late of 1990s. As a promising technique it has gradually been exploited for the purpose of condition monitoring and fault diagnosis. Time-frequency analysis is another useful tool for condition monitoring and fault diagnosis purpose as time-frequency analysis can keep both time and frequency information simultaneously. This paper presents an ANC and time-frequency application for railway wheel flat and rail surface defect detection. The experimental results from a scaled roller test rig show that this approach can significantly reduce unwanted interferences and extract the weak signals from strong background noises. The combination of ANC and time-frequency analysis may provide us one of useful tools for condition monitoring and fault diagnosis of railway vehicles.
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor)
2008-01-01
Disclosed is a method of producing cones and pillars on polymethylmethacralate (PMMA) optical fibers for glucose monitoring. The method, in one embodiment, consists of using electron beam evaporation to deposit a non-contiguous thin film of aluminum on the distal ends of the PMMA fibers. The partial coverage of aluminum on the fibers is randomly, but rather uniformly distributed across the end of the optical fibers. After the aluminum deposition, the ends of the fibers are then exposed to hyperthermal atomic oxygen, which oxidizes the areas that are not protected by aluminum. The resulting PMMA fibers have a greatly increased surface area and the cones or pillars are sufficiently close together that the cellular components in blood are excluded from passing into the valleys between the cones and pillars. The optical fibers are then coated with appropriated surface chemistry so that they can optically sense the glucose level in the blood sample than that with conventional glucose monitoring.
Monitoring of environmental effects of coal strip mining from satellite imagery
NASA Technical Reports Server (NTRS)
Brooks, R. L.; Parra, C. G.
1976-01-01
This paper evaluates satellite imagery as a means of monitoring coal strip mines and their environmental effects. The satellite imagery employed is Skylab EREP S-190A and S-190B from SL-2, SL-3 and SL-4 missions; a large variety of camera/film/filter combinations has been reviewed. The investigation includes determining the applicability of satellite imagery for detection of disturbed acreage in areas of coal surface mining as well as the much more detailed monitoring of specific surface-mining operations, including: active mines, inactive mines, highwalls, ramp roads, pits, water impoundments and their associated acidity, graded areas and types of grading, and reclamed areas. Techniques have been developed to enable mining personnel to utilize this imagery in a practical and economic manner, requiring no previous photo-interpretation background and no purchases of expensive viewing or data-analysis equipment. To corroborate the photo-interpretation results, on-site observations were made in the very active mining area near Madisonville, Kentucky.
Furlong, Edward T.; Gray, James L.; Quanrud, David M.; Teske, Sondra S.; Werner, Stephen L.; Esposito, Kathleen; Marine, Jeremy; Ela, Wendell P.; Zaugg, Steven D.; Phillips, Patrick J.; Stinson, Beverley
2012-01-01
The ubiquitous presence of pharmaceuticals and other emerging contaminants, or trace organic compounds, in surface water has resulted in research and monitoring efforts to identify contaminant sources to surface waters and to better understand loadings from these sources. Wastewater treatment plant discharges have been identified as an important point source of trace organic compounds to surface water and understanding the transport and transformation of these contaminants through wastewater treatment process is essential to controlling their introduction to receiving waters.
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Reiter, Elmar R.
1986-01-01
A research program has been started in which operationally available weather satellites radiance data are used to reconstruct various properties of the diurnal surface energy budget over sites for which detailed estimates of the complete radiation, heat, and moisture exchange process are available. In this paper, preliminary analysis of the 1985 Gobi Desert summer period results is presented. The findings demonstrate various important relationships concerning the feasibility of retrieving the amplitudes of the diurnal surface energy budget processes for daytime and nighttime conditions.
Garonne River monitoring from Signal-to-Noise Ratio data collected by a single geodetic receiver
NASA Astrophysics Data System (ADS)
Roussel, Nicolas; Frappart, Frédéric; Darrozes, José; Ramillien, Guillaume; Bonneton, Philippe; Bonneton, Natalie; Detandt, Guillaume; Roques, Manon; Orseau, Thomas
2016-04-01
GNSS-Reflectometry (GNSS-R) altimetry has demonstrated a strong potential for water level monitoring through the last decades. Interference Pattern Technique (IPT) based on the analysis of the Signal-to-Noise Ratio (SNR) estimated by a GNSS receiver, presents the main advantage of being applicable everywhere by using a single geodetic antenna and a classical GNSS receiver. Such a technique has already been tested in various configurations of acquisition of surface-reflected GNSS signals with an accuracy of a few centimeters. Nevertheless, classical SNR analysis method used to estimate the variations of the reflecting surface height h(t) has a limited domain of validity due to its variation rate dh/dt(t) assumed to be negligible. In [1], authors solve this problem with a "dynamic SNR method" taking the dynamic of the surface into account to conjointly estimate h(t) and dh/dt(t) over areas characterized by high amplitudes of tides. If the performance of this dynamic SNR method is already well-established for ocean monitoring [1], it was not validated in continental areas (i.e., river monitoring). We carried out a field study during 3 days in August and September, 2015, using a GNSS antenna to measure the water level variations in the Garonne River (France) in Podensac located 140 km downstream of the estuary mouth. In this site, the semi-diurnal tide amplitude reaches ~5 m. The antenna was located ~10 m above the water surface, and reflections of the GNSS electromagnetic waves on the Garonne River occur until 140 m from the antenna. Both classical SNR method and dynamic SNR method are tested and results are compared. [1] N. Roussel, G. Ramillien, F. Frappart, J. Darrozes, A. Gay, R. Biancale, N. Striebig, V. Hanquiez, X. Bertin, D. Allain : "Sea level monitoring and sea state estimate using a single geodetic receiver", Remote Sensing of Environment 171 (2015) 261-277.
The Potential of Time Series Based Earth Observation for the Monitoring of Large River Deltas
NASA Astrophysics Data System (ADS)
Kuenzer, C.; Leinenkugel, P.; Huth, J.; Ottinger, M.; Renaud, F.; Foufoula-Georgiou, E.; Vo Khac, T.; Trinh Thi, L.; Dech, S.; Koch, P.; Le Tissier, M.
2015-12-01
Although river deltas only contribute 5% to the overall land surface, nearly six hundred million people live in these complex social-ecological environments, which combine a variety of appealing locational advantages. In many countries deltas provide the major national contribution to agricultural and industrial production. At the same time these already very dynamic environments are exposed to a variety of threats, including the disturbance and replacement of valuable ecosystems, increasing water, soil, and air pollution, human induced land subsidence, sea level rise, as well upstream developments impacting water and sediment supplies. A constant monitoring of delta systems is thus of utmost relevance for understanding past and current land surface change and anticipating possible future developments. We present the potential of Earth Observation based analyses and derived novel information products that can play a key role in this context. Along with the current trend of opening up numerous satellite data archives go increasing capabilities to explore big data. Whereas in past decades remote sensing data were analysed based on the spectral-reflectance-defined 'finger print' of individual surfaces, we mainly exploit the 'temporal fingerprints' of our land surface in novel pathways of data analyses at differing spatial-, and temporally-dense scales. Following our results on an Earth Observation based characterization of large deltas globally, we present in depth results from the Mekong Delta in Vietnam, the Yellow River Delta in China, the Niger Delta in Nigeria, as well as additional deltas, focussing on the assessment of river delta flood and inundation dynamics, river delta coastline dynamics, delta morphology dynamics including the quantification of erosion and accretion processes, river delta land use change and trends, as well as the monitoring of compliance to environmental regulations.
Hausemann, A; Hofmann, H; Otto, U; Heudorf, Ursel
2015-06-01
In addition to hand hygiene and reprocessing of medical products, cleaning and disinfection of surfaces is also an important issue in the prevention of germ transmission and by implication infections. Therefore, in 2014, the quality of the structure, process and result of surface preparation of all hospitals in Frankfurt am Main, Germany, was monitored. All 17 hospitals transferred information on the quality of structure. Process quality was obtained through direct observation during cleaning and disinfection of rooms and their plumbing units. Result quality was gained using the fluorescent method, i.e. marking surfaces with a fluorescent liquid and testing if this mark has been sufficiently removed by cleaning. Structure quality: in all hospitals the employees were trained regularly. In 12 of them, the foremen had the required qualifications, in 6 hospitals unclarity as to the intersection of the cleaning and care services remained. In 14 hospitals only visible contamination was cleaned on the weekends, whereas complete cleaning was reported to take place in 12 hospitals on Saturdays and in 2 hospitals on Sundays. The contractually stipulated cleaning (observations specified in brackets) averaged 178 m(2)/h (148 m(2)/h) per patient room and 69 m(2)/h (33 m(2)/h) for bathrooms. Process quality: during process monitoring, various hand contact surfaces were prepared insufficiently. Result quality: 63 % of fluorescent markings were appropriately removed. The need for improvement is given especially in the area of the qualification of the foremen and a in a clear definition of the intersection between cleaning and care services, as well as in the regulations for weekends and public holidays.
An introduction to orbit dynamics and its application to satellite-based earth monitoring systems
NASA Technical Reports Server (NTRS)
Brooks, D. R.
1977-01-01
The long term behavior of satellites is studied at a level of complexity suitable for the initial planning phases of earth monitoring missions. First-order perturbation theory is used to describe in detail the basic orbit dynamics of satellite motion around the earth and relative to the sun. Surface coverage capabilities of satellite orbits are examined. Several examples of simulated observation and monitoring missions are given to illustrate representative applications of the theory. The examples stress the need for devising ways of maximizing total mission output in order to make the best possible use of the resultant data base as input to those large-scale, long-term earth monitoring activities which can best justify the use of satellite systems.
Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin
2017-09-01
Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Self-sensing of temperature rises on light emitting diode based optrodes
NASA Astrophysics Data System (ADS)
Dehkhoda, Fahimeh; Soltan, Ahmed; Ponon, Nikhil; Jackson, Andrew; O'Neill, Anthony; Degenaar, Patrick
2018-04-01
Objective. This work presents a method to determine the surface temperature of microphotonic medical implants like LEDs. Our inventive step is to use the photonic emitter (LED) employed in an implantable device as its own sensor and develop readout circuitry to accurately determine the surface temperature of the device. Approach. There are two primary classes of applications where microphotonics could be used in implantable devices; opto-electrophysiology and fluorescence sensing. In such scenarios, intense light needs to be delivered to the target. As blue wavelengths are scattered strongly in tissue, such delivery needs to be either via optic fibres, two-photon approaches or through local emitters. In the latter case, as light emitters generate heat, there is a potential for probe surfaces to exceed the 2 °C regulatory. However, currently, there are no convenient mechanisms to monitor this in situ. Main results. We present the electronic control circuit and calibration method to monitor the surface temperature change of implantable optrode. The efficacy is demonstrated in air, saline, and brain. Significance. This paper, therefore, presents a method to utilize the light emitting diode as its own temperature sensor.
Probing organic field effect transistors in situ during operation using SFG.
Ye, Hongke; Abu-Akeel, Ashraf; Huang, Jia; Katz, Howard E; Gracias, David H
2006-05-24
In this communication, we report results obtained using surface-sensitive IR+Visible Sum Frequency Generation (SFG) nonlinear optical spectroscopy on interfaces of organic field effect transistors during operation. We observe remarkable correlations between trends in the surface vibrational spectra and electrical properties of the transistor, with changes in gate voltage (VG). These results suggest that field effects on electronic conduction in thin film organic semiconductor devices are correlated to interfacial nonlinear optical characteristics and point to the possibility of using SFG spectroscopy to monitor electronic properties of OFETs.
Drought monitoring using remote sensing of evapotranspiration
USDA-ARS?s Scientific Manuscript database
Drought assessment is a complex endeavor, requiring monitoring of deficiencies in multiple components of the hydrologic budget. Precipitation anomalies reflect variability in water supply to the land surface, while soil moisture (SM), ground and surface water anomalies reflect deficiencies in moist...
Ma, Xiangmeng; Armas, Stephanie M; Soliman, Mikhael; Lytle, Darren A; Chumbimuni-Torres, Karin; Tetard, Laurene; Lee, Woo Hyoung
2018-02-20
A novel method using a micro-ion-selective electrode (micro-ISE) technique was developed for in situ lead monitoring at the water-metal interface of a brass-leaded solder galvanic joint in a prepared chlorinated drinking water environment. The developed lead micro-ISE (100 μm tip diameter) showed excellent performance toward soluble lead (Pb 2+ ) with sensitivity of 22.2 ± 0.5 mV decade -1 and limit of detection (LOD) of 1.22 × 10 -6 M (0.25 mg L -1 ). The response time was less than 10 s with a working pH range of 2.0-7.0. Using the lead micro-ISE, lead concentration microprofiles were measured from the bulk to the metal surface (within 50 μm) over time. Combined with two-dimensional (2D) pH mapping, this work clearly demonstrated that Pb 2+ ions build-up across the lead anode surface was substantial, nonuniform, and dependent on local surface pH. A large pH gradient (ΔpH = 6.0) developed across the brass and leaded-tin solder joint coupon. Local pH decreases were observed above the leaded solder to a pH as low as 4.0, indicating it was anodic relative to the brass. The low pH above the leaded solder supported elevated lead levels where even small local pH differences of 0.6 units (ΔpH = 0.6) resulted in about four times higher surface lead concentrations (42.9 vs 11.6 mg L -1 ) and 5 times higher fluxes (18.5 × 10 -6 vs 3.5 × 10 -6 mg cm -2 s -1 ). Continuous surface lead leaching monitoring was also conducted for 16 h.
NASA Astrophysics Data System (ADS)
Kim, J.; Ryu, Y.; Jiang, C.; Hwang, Y.
2016-12-01
Near surface sensors are able to acquire more reliable and detailed information with higher temporal resolution than satellite observations. Conventional near surface sensors usually work individually, and thus they require considerable manpower from data collection through information extraction and sharing. Recent advances of Internet of Things (IoT) provides unprecedented opportunities to integrate various low-cost sensors as an intelligent near surface observation system for monitoring ecosystem structure and functions. In this study, we developed a Smart Surface Sensing System (4S), which can automatically collect, transfer, process and analyze data, and then publish time series results on public-available website. The system is composed of micro-computer Raspberry pi, micro-controller Arduino, multi-spectral spectrometers made from Light Emitting Diode (LED), visible and near infrared cameras, and Internet module. All components are connected with each other and Raspberry pi intelligently controls the automatic data production chain. We did intensive tests and calibrations in-lab. Then, we conducted in-situ observations at a rice paddy field and a deciduous broadleaf forest. During the whole growth season, 4S obtained landscape images, spectral reflectance in red, green, blue, and near infrared, normalized difference vegetation index (NDVI), fraction of photosynthetically active radiation (fPAR), and leaf area index (LAI) continuously. Also We compared 4S data with other independent measurements. NDVI obtained from 4S agreed well with Jaz hyperspectrometer at both diurnal and seasonal scales (R2 = 0.92, RMSE = 0.059), and 4S derived fPAR and LAI were comparable to LAI-2200 and destructive measurements in both magnitude and seasonal trajectory. We believe that the integrated low-cost near surface sensor could help research community monitoring ecosystem structure and functions closer and easier through a network system.
Surface finish measurement studies
NASA Technical Reports Server (NTRS)
Teague, E. C.
1983-01-01
The performance of stylus instruments for measuring the topography of National Transonic Facility (NTF) model surfaces both for monitoring during fabrication and as an absolute measurement of topography was evaluated. It was found that the shop-grade instruments can damage the surface of models and that their use for monitoring fabrication procedures can lead to surface finishes that are substantially out of range in critical areas of the leading edges. The development of a prototype light-scattering instrument which would allow for rapid assessment of the surface finish of a model is also discussed.
On the feasibility of borehole-to-surface electromagnetics for monitoring CO2 sequestration
NASA Astrophysics Data System (ADS)
Wilson, G. A.; Zhdanov, M. S.; Hibbs, A. D.; Black, N.; Gribenko, A. V.; Cuma, M.; Agundes, A.; Eiskamp, G.
2012-12-01
Carbon capture and storage (CCS) projects rely on storing supercritical CO2 in deep saline reservoirs where buoyancy forces drive the injected CO2 upward into the aquifer until a seal is reached. The permanence of the sequestration depends entirely on the long-term geological integrity of the seal. Active geophysical monitoring of the sequestration is critical for informing CO2 monitoring, accounting and verification (MVA) decisions. During injection, there exists a correlation between the changes in CO2 and water saturations in a saline reservoir. Dissolved salts react with the CO2 to precipitate out as carbonates, thereby generally decreasing the electrical resistivity. As a result, there is a correlation between the change in fluid saturation and measured electromagnetic (EM) fields. The challenge is to design an EM survey appropriate for monitoring large, deep reservoirs. Borehole-to-surface electromagnetic (BSEM) surveys consist of borehole-deployed galvanic transmitters and a surface-based array of electric and magnetic field sensors. During a recent field trial, it was demonstrated that BSEM could successfully identify the oil-water contact in the water-injection zone of a carbonate reservoir. We review the BSEM methodology, and perform full-field BSEM modeling. The 3D resistivity models used in this study are based on dynamic reservoir simulations of CO2 injection into a saline reservoir. Although the electric field response at the earth's surface is low, we demonstrate that it can be accurately measured and processed with novel methods of noise cancellation and sufficient stacking over the period of monitoring to increase the signal-to-noise ratio for subsequent seismic- and well-constrained 3D inversion. For long-term or permanent monitoring, we discuss the deployment of novel electric field sensors with chemically inert electrodes that couple to earth in a capacitive manner. This capacitive coupling is a purely EM phenomenon, which, to first order, has no temperature, ionic concentration or corrosion effects and has unprecedented fidelity. This makes the capacitive E-field sensor ideal for CCS applications which require very stable operation over a wide range of ground temperature and moisture level variation, for extended periods of time.
Sorenson, S.K.; Cascos, P.V.; Glass, R.L.
1984-01-01
A program to monitor the ground- and surface water quality in the Livermore-Amador Valley has been operated since 1976. As of 1982, this monitoring network consisted of approximately 130 wells, about 100 of which were constructed specifically for this program, and 9 surface water stations. Increased demand on the groundwater for municipal and industrial water supply in the past has caused a decline in water levels and a gradual buildup of salts from natural surface-water recharge and land disposal of treated wastewater from waste treatment plants. Results of this study identify the salt buildup to be the major problem with the groundwater quality. Established water quality objectives for dissolved solids are exceeded in 52 of 130 wells. Concentrations of dissolved nitrate are also in excess of basin objectives and health standards. Water quality in both surface and groundwater is highly variable areally. Magnesium to calcium magnesium bicarbonate groundwater are found in the areas where most of the high volume municipal wells are located. Large areas of sodium bicarbonate water occur in the northern part of the valley. Except for two stations on Arroyo Las Positas which has sodium chloride water, surface water is mixed-cation bicarbonate water. (USGS)
Pereira, André M P T; Silva, Liliana J G; Lino, Celeste M; Meisel, Leonor M; Pena, Angelina
2016-02-01
In line with the Directive 2013/39/EU the most representative surface waters, regarding pharmaceuticals contamination, were selected based on a Portuguese nationwide monitoring exercise. To meet this purpose, and given that wastewater treatment plants (WWTPs) are regarded as the major point sources of pharmaceuticals environmental contamination, the occurrence, fate and environmental risk assessment (ERA) of eleven of the most consumed pharmaceuticals, belonging to several therapeutic classes were assessed in 15 WWTPs (influents (WWIs) and effluents (WWEs)), from five different regions during one year (4 sampling campaigns). Results showed that all samples were contaminated with at least 1, and up to 8 from the 11 targeted pharmaceuticals. The highest concentrations observed were 150 and 33 μg L(-1) for WWI and WWE, respectively. Regarding temporal and spacial influence, winter, Alentejo, Algarve and Center regions presented higher mass loads. The ERA posed by 7 of the selected pharmaceuticals presented a risk quotient higher than 1 to the three trophic levels. Our findings highlighted that the rivers Mondego, Tagus, Ave, Trancão, Fervença and Xarrama should be selected as surface water monitoring stations. This study gives a good overview on pharmaceuticals contamination in WWTPs and its impact on surface waters in Portugal. Thus, a more integrative approach to rank and prioritize pharmaceuticals, based on an integrated assessment of ERA and exposure of surface water, was provided to support the future selection of the 6 most representative monitoring stations in Portugal, as required by the above mentioned directive. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Baker, G. S.; Wu, Y.; Hubbard, S. S.; Wu, W.; Gaines, D. P.; Pratt, J. C.; Modi, A. L.; Watson, D.; Jardine, P.
2009-05-01
We present results from surface time-lapse electrical resistivity tomography (TLERT) data collected within a uranium-contaminated unconfined aquifer underlying the Oak Ridge Field Research Center (ORFRC) located at the Oak Ridge National Laboratory (ORNL) in Tennessee. As part of an Integrated Field Research Challenge (IFRC) project supported by the DOE Environmental Remediation Sciences Program (ERSP), bioreduction of U(VI) to U(IV) with ethanol as an electron donor has been tested during the last four years. Low U concentration (below US EPA MCL of 0.03 mg/L) can be achieved by frequent injection of electron donor. To reduce the costs and improve the sustainability for remediation and site maintenance, our IFRC team is exploring the effectiveness of a slowly degrading substrate such as commercial emulsified vegetable oil substrate (EVO) as alternative electron donor sources. Laboratory batch and flow-through column experiments were carried out to investigate the sensitivity of various physical properties (e.g., electrical conductivity) to EVO injection to test the applicability of geophysics as a monitoring tool at the field scale. Results revealed increased electrical conductivity during both EVO injection and subsequent degradation of surfactant with an overall increase in conductivity of ˜35%; thus, surface TLERT was selected as a monitoring tool to supplement well fluid samples. The field stimulation test began at Area 2 during early February 2009. Prior to the injection of the EVO, preliminary characterization completed, including a geochemical survey of the ground water from ˜50 wells, microbial samples of groundwater and sediment collected from selected wells, and site hydrology characterized by bromide tracer test and surface ERT methods. On February 9, 2009, diluted EVO solution (20% concentration, 900 gal vol) was injected into three injection wells within 1.5 hours. Distribution of the injected EVO and accompanying biogeochemical processes has been monitored since injection through analysis of numerous well fluid samples and TLERT data from 2 profiles. Initial TLERT data were collected at the 2 profiles over a two-week period at 12 different time steps. The surface profiles, situated parallel to and perpendicular to the major flow direction (as delineated by tracer tests), are each 40 m long and consist of 52 electrodes spaced at 0.75 m. Initial analysis indicate good correlation between well fluid samples and TLERT data and allow for improved extrapolation of well data to the field scale. Long-term monitoring is in place to track the continuing hydrologic dynamics and reduction duration in this test area throughout Spring 2009.
Liu, X M; Wu, S L; Chu, Paul K; Chung, C Y; Chu, C L; Chan, Y L; Lam, K O; Yeung, K W K; Lu, W W; Cheung, K M C; Luk, K D K
2009-06-01
Plasma immersion ion implantation (PIII) is an effective method to increase the corrosion resistance and inhibit nickel release from orthopedic NiTi shape memory alloy. Nitrogen was plasma-implanted into NiTi using different pulsing frequencies to investigate the effects on the nano-scale surface morphology, structure, wettability, as well as biocompatibility. X-ray photoelectron spectroscopy (XPS) results show that the implantation depth of nitrogen increases with higher pulsing frequencies. Atomic force microscopy (AFM) discloses that the nano-scale surface roughness increases and surface features are changed from islands to spiky cones with higher pulsing frequencies. This variation in the nano surface structures leads to different surface free energy (SFE) monitored by contact angle measurements. The adhesion, spreading, and proliferation of osteoblasts on the implanted NiTi surface are assessed by cell culture tests. Our results indicate that the nano-scale surface morphology that is altered by the implantation frequencies impacts the surface free energy and wettability of the NiTi surfaces, and in turn affects the osteoblast adhesion behavior.
Smoothing Polymer Surfaces by Solvent-Vapor Exposure
NASA Astrophysics Data System (ADS)
Anthamatten, Mitchell
2003-03-01
Ultra-smooth polymer surfaces are of great importance in a large body of technical applications such as optical coatings, supermirrors, waveguides, paints, and fusion targets. We are investigating a simple approach to controlling surface roughness: by temporarily swelling the polymer with solvent molecules. As the solvent penetrates into the polymer, its viscosity is lowered, and surface tension forces drive surface flattening. To investigate sorption kinetics and surface-smoothing phenomena, a series of vapor-deposited poly(amic acid) films were exposed to dimethyl sulfoxide vapors. During solvent exposure, the surface topology was continuously monitored using light interference microscopy. The resulting power spectra indicate that high-frequency defects smooth faster than low-frequency defects. This frequency dependence was studied by depositing polymer films onto a series of 2D sinusoidal surfaces and performing smoothing experiments. Results show that the amplitudes of the sinusoidal surfaces decay exponentially with solvent exposure time, and the exponential decay constants are proportional to surface frequency. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC
This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2009 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination andmore » determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2009 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2009 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2009 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3; sample collection methods and procedures are described in Section 4; and Section 5 lists the documents cited for more detailed operational and technical information.« less
Recent progress in online ultrasonic process monitoring
NASA Astrophysics Data System (ADS)
Wen, Szu-Sheng L.; Chen, Tzu-Fang; Ramos-Franca, Demartonne; Nguyen, Ky T.; Jen, Cheng-Kuei; Ihara, Ikuo; Derdouri, A.; Garcia-Rejon, Andres
1998-03-01
On-line ultrasonic monitoring of polymer co-extrusion and gas-assisted injection molding are presented. During the co- extrusion of high density polyethylene and Santoprene ultrasonic sensors consisting of piezoelectric transducers and clad ultrasonic buffer rods are used to detect the interface between these two polymers and the stability of the extrusion. The same ultrasonic sensor also measures the surface temperature of the extruded polymer. The results indicate that temperature measurements using ultrasound have a faster response time than those obtained by conventional thermocouple. In gas-assisted injection molding the polymer and gas flow front positions are monitored simultaneously. This information may be used to control the plunger movement.
Schilling, K.E.; Thompson, C.A.
2000-01-01
Land use and surface water data for nitrogen and pesticides (1995 to 1997) are reported for the Walnut Creek Watershed Monitoring Project, Jasper County Iowa. The Walnut Creek project was established in 1995 as a nonpoint source monitoring program in relation to watershed habitat restoration and agricultural management changes implemented at the Neal Smith National Wildlife Refuge by the U.S. Fish and Wildlife Service. The monitoring project utilizes a paired-watershed approach (Walnut and Squaw creeks) as well as upstream/downstream comparisons on Walnut for analysis and tracking of trends. From 1992 to 1997, 13.4 percent of the watershed was converted from row crop to native prairie in the Walnut Creek watershed. Including another 6 percent of watershed farmed on a cash-rent basis, land use changes have been implemented on 19.4 percent of the watershed by the USFWS. Nitrogen and pesticide applications were reduced an estimated 18 percent and 28 percent in the watershed from land use changes. Atrazine was detected most often in surface water with frequencies of detection ranging from 76-86 percent. No significant differences were noted in atrazine concentrations between Walnut and Squaw Creek. Nitrate-N concentrations measured in both watersheds were similar; both basins showed a similar pattern of detection and an overall reduction in nitrate-N concentrations from upstream to downstream monitoring sites. Water quality improvements are suggested by nitrate-N and chloride ratios less than one in the Walnut Creek watershed and low nitrate-N concentrations measured in the subbasin of Walnut Creek containing the greatest amount of land use changes. Atrazine and nitrate-N concentrations from the lower portion of the Walnut Creek watershed (including the prairie restoration area) may be decreasing in relation to the upstream untreated component of the watershed. The frequencies of pesticide detections and mean nitrate-N concentrations appear related to the percentage of row crop in the basins and subbasins. Although some results are encouraging, definitive water quality improvements have not been observed during the first three years of monitoring. Possible reasons include: (1) more time is needed to adequately detect changes; (2) the size of the watershed is too large to detect improvements; (3) land use changes are not located in the area of the watershed where they would have greatest effect; or (4) water quality improvements have occurred but have been missed by the project monitoring design. Longer-term monitoring will allow better evaluation of the impact of restoration activities on water quality.An overview is given on the Walnut Creek Watershed Monitoring Project established as a nonpoint source monitoring program in relation to watershed habitat restoration and agricultural management changes implemented at the Neal Smith National Wildlife Refuge by the U.S. Fish and Wildlife Services. Focus is on land use and surface water data for nitrogen and pesticides. Initial results obtained for the first three years of monitoring are discussed.
NASA Astrophysics Data System (ADS)
Zellner, Michael; McNeil, Wendy; Gray, George, III; Huerta, David; King, Nicholas; Neal, George; Payton, Jeremy; Rubin, Jim; Stevens, Gerald; Turley, William; Buttler, William
2008-03-01
This effort investigates surface-preparation methods to enhance dynamic surface-property measurements of shocked metal surfaces. To assess the ability of making reliable and consistent dynamic surface-property measurements, the amount of material ejected from the free-surface upon shock release to vacuum (ejecta) was monitored for shocked Al-1100 and Sn targets. Four surface preparation methods were considered: fly-cut machined finish, diamond-turned machine finish, polished finish, and ball-rolled. The samples were shock loaded by in-contact detonation of HE PBX-9501 on the front-side of the metal coupons. Ejecta production at the back-side or free-side of the metal coupons was monitored using piezoelectric pins, optical shadowgraphy, and x-ray attenuation radiography.
NASA Astrophysics Data System (ADS)
Zellner, M. B.; Vogan McNeil, W.; Gray, G. T.; Huerta, D. C.; King, N. S. P.; Neal, G. E.; Valentine, S. J.; Payton, J. R.; Rubin, J.; Stevens, G. D.; Turley, W. D.; Buttler, W. T.
2008-04-01
This effort investigates surface-preparation methods to enhance dynamic surface-property measurements of shocked metal surfaces. To assess the ability of making reliable and consistent dynamic surface-property measurements, the amount of material ejected from the free surface upon shock release to vacuum (ejecta) was monitored for shocked Al-1100 and Sn targets. Four surface-preparation methods were considered: Fly-cut machine finish, diamond-turned machine finish, polished finish, and ball rolled. The samples were shock loaded by in-contact detonation of HE PBX-9501 on the front side of the metal coupons. Ejecta production at the back side or free side of the metal coupons was monitored using piezoelectric pins, optical shadowgraphy, and x-ray attenuation radiography.
Wang, Hui; Liu, Chunyue; Rong, Luge; Wang, Xiaoxu; Sun, Lina; Luo, Qing; Wu, Hao
2018-01-09
River monitoring networks play an important role in water environmental management and assessment, and it is critical to develop an appropriate method to optimize the monitoring network. In this study, an effective method was proposed based on the attainment rate of National Grade III water quality, optimal partition analysis and Euclidean distance, and Hun River was taken as a method validation case. There were 7 sampling sites in the monitoring network of the Hun River, and 17 monitoring items were analyzed once a month during January 2009 to December 2010. The results showed that the main monitoring items in the surface water of Hun River were ammonia nitrogen (NH 4 + -N), chemical oxygen demand, and biochemical oxygen demand. After optimization, the required number of monitoring sites was reduced from seven to three, and 57% of the cost was saved. In addition, there were no significant differences between non-optimized and optimized monitoring networks, and the optimized monitoring networks could correctly represent the original monitoring network. The duplicate setting degree of monitoring sites decreased after optimization, and the rationality of the monitoring network was improved. Therefore, the optimal method was identified as feasible, efficient, and economic.
Wang, Jianhao; Fan, Jie; Liu, Li; Ding, Shumin; Liu, Xiaoqian; Wang, Jianpeng; Gao, Liqian; Chattopadhaya, Souvik; Miao, Peng; Xia, Jiang; Qiu, Lin; Jiang, Pengju
2017-10-01
Herein, a novel assay has been developed for monitoring PreScission protease (His-PSP) mediated enzyme cleavage of ATTO 590 labeled peptide substrate (ATTO-LEV). This novel method is based on combining the use of capillary electrophoresis and fluorescence detection (CE-FL) to dynamically monitor the enzyme cleavage activity. A multivalent peptide substrate was first constructed by immobilizing His-tagged ATTO 590 labeled peptide substrate (ATTO-LEVH6) onto the surface of CdSe/ZnS quantum dots (QDs). Once successfully immobilized, the novel multivalent peptide substrate resulted in the Förster resonance energy transfer (FRET) from QDs to ATTO 590. The ATTO-LEVH6-QD assembly was then incubated with His-PSP to study the proteolytic cleavage of surface bound ATTO-LEVH6 by CE-FL. Our data suggests that PreScission-mediated proteolytic cleavage is enzyme concentration- and incubation time-dependent. By combining capillary electrophoresis, QDs and FRET, our study herein not only provides a new method for the detection and dynamically monitoring of PSP enzyme cleavage activity, but also can be extended to the detection of many other enzymes and proteases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Guardiani, Carlotta; Amabile, Anna Sara; Jochum, Birgit; Ottowitz, David; Supper, Robert
2017-04-01
One of the main precursors for landslide activation/reactivation is intense and prolonged precipitation, with consequent pore water pressure rise due to infiltration of rainfall that seeps into the ground. Monitoring hydrological parameters such as precipitation, water content and pore pressure, in combination with displacement analysis for early warning purposes, is necessary to understand the triggering processes. Since the reduction over time of electrical resistivity corresponds to an increase of water content, electrical resistivity monitoring can help to interpret the modifications of slope saturation conditions after heavy rainfalls. In this study, we present the results of the ERT monitoring data from two landslide areas, Laakirchen (47.961692N, 13.809897E) and Rosano (44.662453N, 9.104703E). During March 2010, a shallow rotational landslide was triggered by snow melting and intense rainfall in Laakirchen, in the vicinity of a newly constructed house. Laakirchen landslide was monitored by geophysical/geotechnical measurements from September 2011 to June 2013. In December 2004, Rosano landslide reactivation affected rural buildings: slope deformations caused mainly damages to properties, infrastructures and lifelines. Rosano landslide has been defined as a composite landslide, with a general dynamic behavior that can be regarded as a slow earthflow. The installation of the monitoring system took place in July 2012 and the data acquisition lasted until April 2015. These sites are part of the geoelectrical monitoring network set up by the Geological Survey of Austria for testing the self-developed GEOMON4D geoelectrical system, in combination with complementary geotechnical monitoring sensors (rain gauge, automatic inclinometer, water pressure and water content sensors) to support the interpretation of the electrical response of the near surface (R. Supper et al., 2014). The measurements were funded by the TEMPEL project (Austrian Science Fund, TRP 175-N21) and the LAMOND project in the frame of the ESS program of the Austrian Academy of Science. Focusing on the most intense precipitation events, the apparent resistivity data have been processed with an innovative 4D-inversion algorithm (J. H. Kim, 2009, developed within the cooperation between GSA and KIGAM). The results show that intense rainfalls have a direct and immediate impact on resistivity pattern, causing identifiable reductions (around 10%) in the near surface, due to the greater variation of the saturation coefficient. We conclude that long-term resistivity monitoring is capable of providing wide-area knowledge with high spatial resolution about the achievement of a certain degree of saturation in the subsurface. Amabile, A.S. (2016). Geoelectrical methods for landslide monitoring: the case study of Laakirchen, Upper Austria (Unpublished Master thesis). University of Salerno, Fisciano, Italy. Guardiani, C. (2016). Long-term electrical resistivity data analysis for landslide monitoring: the case study of Rosano (Unpublished Master thesis). Politecnico di Milano, Milano, Italy. Kim, J.-H., Yi, M.-J., Park, S.-G., & Kim, J. G. (2009). 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model. Journal of Applied Geophysics, 68(4), 522-532. Supper, R., Ottowitz, D., Jochum, B., Kim, J.-H., Römer, A., Baron, I., S. Pfeiler, M. Lovisolo, S. Gruber and Vecchiotti, F. (2014). Geoelectrical monitoring: an innovative method to supplement landslide surveillance and early warning. Near Surface Geophysics, 12(2007), 133-150.
Wear detection by means of wavelet-based acoustic emission analysis
NASA Astrophysics Data System (ADS)
Baccar, D.; Söffker, D.
2015-08-01
Wear detection and monitoring during operation are complex and difficult tasks especially for materials under sliding conditions. Due to the permanent contact and repetitive motion, the material surface remains during tests non-accessible for optical inspection so that attrition of the contact partners cannot be easily detected. This paper introduces the relevant scientific components of reliable and efficient condition monitoring system for online detection and automated classification of wear phenomena by means of acoustic emission (AE) and advanced signal processing approaches. The related experiments were performed using a tribological system consisting of two martensitic plates, sliding against each other. High sensitive piezoelectric transducer was used to provide the continuous measurement of AE signals. The recorded AE signals were analyzed mainly by time-frequency analysis. A feature extraction module using a novel combination of Short-Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT) were used for the first time. A detailed correlation analysis between complex signal characteristics and the surface damage resulting from contact fatigue was investigated. Three wear process stages were detected and could be distinguished. To obtain quantitative and detailed information about different wear phases, the AE energy was calculated using STFT and decomposed into a suitable number of frequency levels. The individual energy distribution and the cumulative AE energy of each frequency components were analyzed using CWT. Results show that the behavior of individual frequency component changes when the wear state changes. Here, specific frequency ranges are attributed to the different wear states. The study reveals that the application of the STFT-/CWT-based AE analysis is an appropriate approach to distinguish and to interpret the different damage states occurred during sliding contact. Based on this results a new generation of condition monitoring systems can be build, able to evaluate automatically the surface condition of machine components with sliding surfaces.
High-precision surface analysis of the roughness of Michelangelo's David
NASA Astrophysics Data System (ADS)
Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Materazzi, Marzia; Pampaloni, Enrico; Pezzati, Luca
2003-10-01
The knowledge of the shape of an artwork is an important element for its study and conservation. When dealing with a statue, roughness measurement is a very useful contribution to document its surface conditions, to assess either changes due to restoration intervention or surface decays due to wearing agents, and to monitor its time-evolution in terms of shape variations. In this work we present the preliminary results of the statistical analysis carried out on acquired data relative to six areas of the Michelangelo"s David marble statue, representative of differently degraded surfaces. Determination of the roughness and its relative characteristic wavelength is shown.
Global surface temperatures and the atmospheric electrical circuit
NASA Technical Reports Server (NTRS)
Price, Colin
1993-01-01
To monitor future global temperature trends, it would be extremely useful if parameters nonlinearly related to surface temperature could be found, thereby amplifying any warming signal that may exist. Evidence that global thunderstorm activity is nonlinearly related to diurnal, seasonal and interannual temperature variations is presented. Since global thunderstorm activity is also well correlated with the earth's ionospheric potential, it appears that variations of ionospheric potential, that can be measured at a single location, may be able to supply valuable information regarding global surface temperature fluctuations. The observations presented enable a prediction that a 1 percent increase in global surface temperatures may result in a 20 percent increase in ionospheric potential.
NASA Astrophysics Data System (ADS)
Burnison, S. A.; Ditty, P.; Gorecki, C. D.; Hamling, J. A.; Steadman, E. N.; Harju, J. A.
2013-12-01
The Plains CO2 Reduction (PCOR) Partnership, led by the Energy & Environmental Research Center, is working with Denbury Onshore LLC to determine the effect of a large-scale injection of carbon dioxide (CO2) into a deep clastic reservoir for the purpose of simultaneous CO2 enhanced oil recovery (EOR) and to study incidental CO2 storage at the Bell Creek oil field located in southeastern Montana. This project will reduce CO2 emissions by more than 1 million tons a year while simultaneously recovering an anticipated 30 million barrels of incremental oil. The Bell Creek project provides a unique opportunity to use and evaluate a comprehensive suite of technologies for monitoring, verification, and accounting (MVA) of CO2 on a large-scale. The plan incorporates multiple geophysical technologies in the presence of complementary and sometimes overlapping data to create a comprehensive data set that will facilitate evaluation and comparison. The MVA plan has been divided into shallow and deep subsurface monitoring. The deep subsurface monitoring plan includes 4-D surface seismic, time-lapse 3-D vertical seismic profile (VSP) surveys incorporating a permanent borehole array, and baseline and subsequent carbon-oxygen logging and other well-based measurements. The goal is to track the movement of CO2 in the reservoir, evaluate the recovery/storage efficiency of the CO2 EOR program, identify fluid migration pathways, and determine the ultimate fate of injected CO2. CO2 injection at Bell Creek began in late May 2013. Prior to injection, a monitoring and characterization well near the field center was drilled and outfitted with a distributed temperature-monitoring system and three down-hole pressure gauges to provide continuous real-time data of the reservoir and overlying strata. The monitoring well allows on-demand access for time-lapse well-based measurements and borehole seismic instrumentation. A 50-level permanent borehole array of 3-component geophones was installed in a second monitoring well. A pre-injection series of carbon-oxygen logging across the reservoir was acquired in 35 wells. The baseline 3-D surface seismic survey was acquired in September 2012. A 3-D VSP incorporating two wells and 2 square miles of overlapping seismic coverage in the middle of the field was acquired in May 2013. Initial iterations of geologic modeling and reservoir simulation of the field have been completed. Currently, passive seismic monitoring with the permanent borehole array is being conducted during injection. Interpretation results from the baseline surface 3-D survey and preliminary results from the baseline 3-D VSP are being evaluated and integrated into the reservoir model. The PCOR Partnership's philosophy is to combine site characterization, modeling, and monitoring strategies into an iterative process to produce descriptive integrated results. The comprehensive effort at Bell Creek will allow a comparison of the effectiveness of several complementary geophysical and well-based methods in meeting the goals of the deep subsurface monitoring effort.
Weber, Stephanie A; Insaf, Tabassum Z; Hall, Eric S; Talbot, Thomas O; Huff, Amy K
2016-11-01
An enhanced research paradigm is presented to address the spatial and temporal gaps in fine particulate matter (PM 2.5 ) measurements and generate realistic and representative concentration fields for use in epidemiological studies of human exposure to ambient air particulate concentrations. The general approach for research designed to analyze health impacts of exposure to PM 2.5 is to use concentration data from the nearest ground-based air quality monitor(s), which typically have missing data on the temporal and spatial scales due to filter sampling schedules and monitor placement, respectively. To circumvent these data gaps, this research project uses a Hierarchical Bayesian Model (HBM) to generate estimates of PM 2.5 in areas with and without air quality monitors by combining PM 2.5 concentrations measured by monitors, PM 2.5 concentration estimates derived from satellite aerosol optical depth (AOD) data, and Community-Multiscale Air Quality (CMAQ) model predictions of PM 2.5 concentrations. This methodology represents a substantial step forward in the approach for developing representative PM 2.5 concentration datasets to correlate with inpatient hospitalizations and emergency room visits data for asthma and inpatient hospitalizations for myocardial infarction (MI) and heart failure (HF) using case-crossover analysis. There were two key objective of this current study. First was to show that the inputs to the HBM could be expanded to include AOD data in addition to data from PM 2.5 monitors and predictions from CMAQ. The second objective was to determine if inclusion of AOD surfaces in HBM model algorithms results in PM 2.5 air pollutant concentration surfaces which more accurately predict hospital admittance and emergency room visits for MI, asthma, and HF. This study focuses on the New York City, NY metropolitan and surrounding areas during the 2004-2006 time period, in order to compare the health outcome impacts with those from previous studies and focus on any benefits derived from the changes in the HBM model surfaces. Consistent with previous studies, the results show high PM 2.5 exposure is associated with increased risk of asthma, myocardial infarction and heart failure. The estimates derived from concentration surfaces that incorporate AOD had a similar model fit and estimate of risk as compared to those derived from combining monitor and CMAQ data alone. Thus, this study demonstrates that estimates of PM 2.5 concentrations from satellite data can be used to supplement PM 2.5 monitor data in the estimates of risk associated with three common health outcomes. Results from this study were inconclusive regarding the potential benefits derived from adding AOD data to the HBM, as the addition of the satellite data did not significantly increase model performance. However, this study was limited to one metropolitan area over a short two-year time period. The use of next-generation, high temporal and spatial resolution satellite AOD data from geostationary and polar-orbiting satellites is expected to improve predictions in epidemiological studies in areas with fewer pollutant monitors or over wider geographic areas. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Hanslík, Eduard; Marešová, Diana; Juranová, Eva; Sedlářová, Barbora
2017-12-01
During the routine operation, nuclear power plants discharge waste water containing a certain amount of radioactivity, whose main component is the artificial radionuclide tritium. The amounts of tritium released into the environment are kept within the legal requirements, which minimize the noxious effects of radioactivity, but the activity concentration is well measurable in surface water of the recipient. This study compares amount of tritium activity in waste water from nuclear power plants and the tritium activity detected at selected relevant sites of surface water quality monitoring. The situation is assessed in the catchment of the Vltava and Elbe Rivers, affected by the Temelín Nuclear Power Plant as well as in the Jihlava River catchment (the Danube River catchment respectively), where the waste water of the Dukovany Nuclear Power Plant is discharged. The results show a good agreement of the amount of released tritium stated by the power plant operator and the tritium amount detected in the surface water and highlighted the importance of a robust independent monitoring of tritium discharged from a nuclear power plant which could be carried out by water management authorities. The outputs of independent monitoring allow validating the values reported by a polluter and expand opportunities of using tritium as e.g. tracer. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of disinfectants on glucose monitors.
Mahoney, John J; Lim, Christine G
2012-01-01
Monitoring blood glucose levels is an integral part of routine diabetes management. To minimize the risk of transmission of bloodborne pathogens during monitoring, the Centers for Disease Control and Prevention (CDC) recommends that glucose meters be disinfected after each use whenever they are used to test multiple patients. The objective of this study is to assess the compatibility of some common disinfectants with certain blood glucose meter systems. We tested six disinfectants for adverse impact on meter performance or the exterior meter surfaces. The disinfectants tested were 0.525% sodium hypochlorite, 20% 2-propanol and 10% ethanol, 17.2% isopropanol, 55% isopropanol, 70% isopropanol, and hydrogen peroxide. To assess meter performance, we tested OneTouch® Ultra® blood glucose monitoring systems with control solution before and after application of either water or disinfectant. To assess the effect on exterior meter surfaces, we performed a soaking test to simulate long-term exposure to disinfectant. Paired t-test results showed that the control solution data associated with disinfectant and with water application were not significantly different for each meter type. However, most of the meter types were adversely affected by hydrogen peroxide and/or by the higher concentrations of alcohol-based disinfectants. Although none of the six disinfectants affected meter performance, hydrogen peroxide and isopropanol >20% adversely affected the exterior surfaces of the tested meters. When complying with CDC instructions for meter disinfection, users should use caution and choose disinfectants that have been validated by the meter manufacturer. © 2012 Diabetes Technology Society.
Monitoring surface water quality using social media in the context of citizen science
NASA Astrophysics Data System (ADS)
Zheng, Hang; Hong, Yang; Long, Di; Jing, Hua
2017-02-01
Surface water quality monitoring (SWQM) provides essential information for water environmental protection. However, SWQM is costly and limited in terms of equipment and sites. The global popularity of social media and intelligent mobile devices with GPS and photography functions allows citizens to monitor surface water quality. This study aims to propose a method for SWQM using social media platforms. Specifically, a WeChat-based application platform is built to collect water quality reports from volunteers, which have been proven valuable for water quality monitoring. The methods for data screening and volunteer recruitment are discussed based on the collected reports. The proposed methods provide a framework for collecting water quality data from citizens and offer a primary foundation for big data analysis in future research.
Health monitoring method for composite materials
Watkins, Jr., Kenneth S.; Morris, Shelby J [Hampton, VA
2011-04-12
An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.
Adsorption of silica colloids onto like-charged silica surfaces of different roughness
Dylla-Spears, R.; Wong, L.; Shen, N.; ...
2017-01-17
Particle adsorption was explored in a model optical polishing system, consisting of silica colloids and like-charged silica surfaces. The adsorption was monitored in situ under various suspension conditions, in the absence of surfactants or organic modifiers, using a quartz crystal microbalance with dissipation monitoring (QCM-D). Changes in surface coverage with particle concentration, particle size, pH, ionic strength and ionic composition were quantified by QCM-D and further characterized ex situ by atomic force microscopy (AFM). A Monte Carlo model was used to describe the kinetics of particle deposition and provide insights on scaling with particle concentration. Transitions from near-zero adsorption tomore » measurable adsorption were compared with equilibrium predictions made using the Deraguin-Verwey-Landau-Overbeek (DLVO) theory. In addition, the impact of silica surface roughness on the propensity for particle adsorption was studied on various spatial scale lengths by intentionally roughening the QCM sensor surface using polishing methods. It was found that a change in silica surface roughness at the AFM scale from 1.3 nm root-mean-square (rms) to 2.7 nm rms resulted in an increase in silica particle adsorption of 3-fold for 50-nm diameter particles and 1.3-fold for 100-nm diameter particles—far exceeding adsorption observed by altering suspension conditions alone, potentially because roughness at the proper scale reduces the total separation distance between particle and surface.« less
A climatology of visible surface reflectance spectra
NASA Astrophysics Data System (ADS)
Zoogman, Peter; Liu, Xiong; Chance, Kelly; Sun, Qingsong; Schaaf, Crystal; Mahr, Tobias; Wagner, Thomas
2016-09-01
We present a high spectral resolution climatology of visible surface reflectance as a function of wavelength for use in satellite measurements of ozone and other atmospheric species. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument is planned to measure backscattered solar radiation in the 290-740 nm range, including the ultraviolet and visible Chappuis ozone bands. Observation in the weak Chappuis band takes advantage of the relative transparency of the atmosphere in the visible to achieve sensitivity to near-surface ozone. However, due to the weakness of the ozone absorption features this measurement is more sensitive to errors in visible surface reflectance, which is highly variable. We utilize reflectance measurements of individual plant, man-made, and other surface types to calculate the primary modes of variability of visible surface reflectance at a high spectral resolution, comparable to that of TEMPO (0.6 nm). Using the Moderate-resolution Imaging Spectroradiometer (MODIS) Bidirection Reflectance Distribution Function (BRDF)/albedo product and our derived primary modes we construct a high spatial resolution climatology of wavelength-dependent surface reflectance over all viewing scenes and geometries. The Global Ozone Monitoring Experiment-2 (GOME-2) Lambertian Equivalent Reflectance (LER) product provides complementary information over water and snow scenes. Preliminary results using this approach in multispectral ultraviolet+visible ozone retrievals from the GOME-2 instrument show significant improvement to the fitting residuals over vegetated scenes.
1973 environmental monitoring report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hull, A.P.; Ash, J.A.
1974-03-01
>Results from radiation monitoring during 1973 in the environment of the Brookhaven National Laboratory are presented. Data are included on: the gross alpha and BETA activity and content of tritium and gamma-emitting radionuclides in surface air; gross BETA activity and gamma and tritium content in atmospheric precipitation; activities and concentration of gamma emitters in liquid effiuents and ground water; gross BETA , tritium and /sup 90/Sr in effluents; gross BETA and tritl um in surface waters; /sup 90/Sr and gamma- emitting radionuclides in river ecosystem; gross alpha , gross BETA , tritium, / sup 90/Sr, and /sup 137/Cs in groundmore » and well water; /sup 137/Cs, K, /sup 131/I, and /sup 90/Sr content in area milk; and gamma-emitting radionuclides in soils and grasses. (LCL)« less
NASA Astrophysics Data System (ADS)
Basilevsky, A. T.; Shalygina, O. S.; Bondarenko, N. V.; Shalygin, E. V.; Markiewicz, W. J.
2017-09-01
The aim of this work is a comparative study of several typical radar-dark parabolas, the neighboring plains and some other geologic units seen in the study areas which include craters Adivar, Bassi, Bathsheba, du Chatelet and Sitwell, at two depths scales: the upper several meters of the study object available through the Magellan-based microwave (at 12.6 cm wavelength) properties (microwave emissivity, Fresnel reflectivity, large-scale surface roughness, and radar cross-section), and the upper hundreds microns of the object characterized by the 1 micron emissivity resulted from the analysis of the near infra-red (NIR) irradiation of the night-side of the Venusian surface measured by the Venus Monitoring Camera (VMC) on-board of Venus Express (VEx).
Modification and intercalation of layered zirconium phosphates: a solid-state NMR monitoring.
Bakhmutov, Vladimir I; Kan, Yuwei; Sheikh, Javeed Ahmad; González-Villegas, Julissa; Colón, Jorge L; Clearfield, Abraham
2017-07-01
Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy-polyethyleneglycol-monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid-state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13 C{ 1 H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton-phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
A simplified Suomi NPP VIIRS dust detection algorithm
NASA Astrophysics Data System (ADS)
Yang, Yikun; Sun, Lin; Zhu, Jinshan; Wei, Jing; Su, Qinghua; Sun, Wenxiao; Liu, Fangwei; Shu, Meiyan
2017-11-01
Due to the complex characteristics of dust and sparse ground-based monitoring stations, dust monitoring is facing severe challenges, especially in dust storm-prone areas. Aim at constructing a high-precision dust storm detection model, a pixel database, consisted of dusts over a variety of typical feature types such as cloud, vegetation, Gobi and ice/snow, was constructed, and their distributions of reflectance and Brightness Temperatures (BT) were analysed, based on which, a new Simplified Dust Detection Algorithm (SDDA) for the Suomi National Polar-Orbiting Partnership Visible infrared Imaging Radiometer (NPP VIIRS) is proposed. NPP VIIRS images covering the northern China and Mongolian regions, where features serious dust storms, were selected to perform the dust detection experiments. The monitoring results were compared with the true colour composite images, and results showed that most of the dust areas can be accurately detected, except for fragmented thin dusts over bright surfaces. The dust ground-based measurements obtained from the Meteorological Information Comprehensive Analysis and Process System (MICAPS) and the Ozone Monitoring Instrument Aerosol Index (OMI AI) products were selected for comparison purposes. Results showed that the dust monitoring results agreed well in the spatial distribution with OMI AI dust products and the MICAPS ground-measured data with an average high accuracy of 83.10%. The SDDA is relatively robust and can realize automatic monitoring for dust storms.
High-performance liquid chromatography determination of red wine tannin stickiness.
Revelette, Matthew R; Barak, Jennifer A; Kennedy, James A
2014-07-16
Red wine astringency is generally considered to be the sensory result of salivary protein precipitation following tannin-salivary protein interaction and/or tannin adhering to the oral mucosa. Astringency in red wine is often described using qualitative terms, such as hard and soft. Differences in qualitative description are thought to be due in part to the tannin structure. Tannin chemistry contributions to qualitative description have been shown to correlate with the enthalpy of interaction between tannin and a hydrophobic surface. On the basis of these findings, a method was developed that enabled the routine determination of the thermodynamics of the tannin interaction with a hydrophobic surface (polystyrene divinylbenzene) for tannins in red wine following direct injection. The optimized analytical method monitored elution at four different column temperatures (25-40 °C, in 5 °C increments), had a 20 min run time, and was monitored at 280 nm. The results of this study confirm that the calculated thermodynamics of the interaction are intensive and, therefore, provide specific thermodynamic information. Variation in the enthalpy of interaction between tannin and a hydrophobic surface (tannin stickiness) is a unique, concentration-independent analytical parameter. The method, in addition to providing information on tannin stickiness, provides the tannin concentration.
NASA Astrophysics Data System (ADS)
Stevens, C. L.; Phillips, A.; Young, S.; Counts, A.
2017-12-01
Sustained drought conditions have contributed to a significant decrease in the volume of the Colorado River in the Lake Mead reservoir and lower portion of the Grand Canyon. As a result, changes in riparian conditions have occurred in the region, such as sediment exposure and receding vegetation. These changes have large negative impacts on ecological health, including water and air pollution, aquatic, terrestrial and avian habitat alterations, and invasive species introduction. Scientists at Grand Canyon National Park seek to quantify changes in water surface and land cover area in the Lower Grand Canyon from 1998 to 2016 to better understand the effects of these changing conditions within the park. Landsat imagery was used to detect changes of the water surface and land cover area across this time period to assess the effects of long-term drought on the riparian zone. The resulting land cover and water surface time-series from this project will assist in monitoring future changes in water, sediment, and vegetation extent, increasing the ability of park scientists to create adaptation strategies for the ecosystem in the Lower Grand Canyon.
Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing
2017-01-01
Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface. PMID:28327510
Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing
2017-03-22
Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface.
NASA Astrophysics Data System (ADS)
Blessent, Daniela; Barco, Janet; Temgoua, André Guy Tranquille; Echeverrri-Ramirez, Oscar
2017-03-01
Numerical results are presented of surface-subsurface water modeling of a natural hillslope located in the Aburrá Valley, in the city of Medellín (Antioquia, Colombia). The integrated finite-element hydrogeological simulator HydroGeoSphere is used to conduct transient variably saturated simulations. The objective is to analyze pore-water pressure and saturation variation at shallow depths, as well as volumes of water infiltrated in the porous medium. These aspects are important in the region of study, which is highly affected by soil movements, especially during the high-rain seasons that occur twice a year. The modeling exercise considers rainfall events that occurred between October and December 2014 and a hillslope that is currently monitored because of soil instability problems. Simulation results show that rainfall temporal variability, mesh resolution, coupling length, and the conceptual model chosen to represent the heterogeneous soil, have a noticeable influence on results, particularly for high rainfall intensities. Results also indicate that surface-subsurface coupled modeling is required to avoid unrealistic increase in hydraulic heads when high rainfall intensities cause top-down saturation of soil. This work is a first effort towards fostering hydrogeological modeling expertise that may support the development of monitoring systems and early landslide warning in a country where the rainy season is often the cause of hydrogeological tragedies associated with landslides, mud flow or debris flow.
De Liguoro, Marco; Bona, Mirco Dalla; Gallina, Guglielmo; Capolongo, Francesca; Gallocchio, Federica; Binato, Giovanni; Di Leva, Vincenzo
2014-03-01
In this study, 50 livestock watering sources (ground water) and 50 field irrigation sources (surface water) from various industrialised areas of the Veneto region were monitored for chemical contaminants. From each site, four water samples (one in each season) were collected during the period from summer 2009 through to spring 2010. Surface water samples and ground water samples were first screened for toxicity using the growth inhibition test on Pseudokirchneriella subcapitata and the immobilisation test on Daphnia magna, respectively. Then, based on the results of these toxicity tests, 28 ground water samples and 26 surface water samples were submitted to chemical analysis for various contaminants (insecticides/acaricides, fungicides, herbicides, metals and anions) by means of UPLC-MS(n) HPLC-MS(n), AAS and IEC. With the exception of one surface water sample where the total pesticides concentration was greater than 4 μg L(-1), positive samples (51.9 %) showed only traces (nanograms per liter) of pesticides. Metals were generally under the detection limit. High concentrations of chlorines (up to 692 mg L(-1)) were found in some ground water samples while some surface water samples showed an excess of nitrites (up to 336 mg L(-1)). Detected levels of contamination were generally too low to justify the toxicity recorded in bioassays, especially in the case of surface water samples, and analytical results painted quite a reassuring picture, while tests on P. subcapitata showed a strong growth inhibition activity. It was concluded that, from an ecotoxicological point of view, surface waters used for field irrigation in the Veneto region cannot be considered safe.
NASA Astrophysics Data System (ADS)
Li, Xiaojun; Xin, Xiaozhou; Peng, Zhiqing; Zhang, Hailong; Li, Li; Shao, Shanshan; Liu, Qinhuo
2017-10-01
Evapotranspiration (ET) plays an important role in surface-atmosphere interactions and can be monitored using remote sensing data. The visible infrared imaging radiometer suite (VIIRS) sensor is a generation of optical satellite sensors that provide daily global coverage at 375- to 750-m spatial resolutions with 22 spectral channels (0.412 to 12.05 μm) and capable of monitoring ET from regional to global scales. However, few studies have focused on methods of acquiring ET from VIIRS images. The objective of this study is to introduce an algorithm that uses the VIIRS data and meteorological variables to estimate the energy budgets of land surfaces, including the net radiation, soil heat flux, sensible heat flux, and latent heat fluxes. A single-source model that based on surface energy balance equation is used to obtain surface heat fluxes within the Zhangye oasis in China. The results were validated using observations collected during the HiWATER (Heihe Watershed Allied Telemetry Experimental Research) project. To facilitate comparison, we also use moderate resolution imaging spectrometer (MODIS) data to retrieve the regional surface heat fluxes. The validation results show that it is feasible to estimate the turbulent heat flux based on the VIIRS sensor and that these data have certain advantages (i.e., the mean bias error of sensible heat flux is 15.23 W m-2) compared with MODIS data (i.e., the mean bias error of sensible heat flux is -29.36 W m-2). Error analysis indicates that, in our model, the accuracies of the estimated sensible heat fluxes rely on the errors in the retrieved surface temperatures and the canopy heights.
Potentiometric and electrokinetic signatures of iron(II) interactions with (α,γ)-Fe2O3.
Toczydłowska, Diana; Kędra-Królik, Karolina; Nejbert, Krzysztof; Preočanin, Tajana; Rosso, Kevin M; Zarzycki, Piotr
2015-10-21
The electrochemical signatures of Fe(II) interactions with iron(III) oxides are poorly understood, despite their importance in controlling the amount of mobilized iron. Here, we report the potentiometric titration of α,γ-Fe2O3 oxides exposed to Fe(II) ions. We monitored in situ surface and ζ potentials, the ratio of mobilized ferric to ferrous, and the periodically analyzed nanoparticle crystal structure using X-ray diffraction. Electrokinetic potential reveals weak but still noticeable specific sorption of Fe(II) to the oxide surface under acidic conditions, and pronounced adsorption under alkaline conditions that results in a surface potential reversal. By monitoring the aqueous iron(II/III) fraction, we found that the addition of Fe(II) ions produces platinum electrode response consistent with the iron solubility-activity curve. Although, XRD analysis showed no evidence of γ-Fe2O3 transformations along the titration pathway despite iron cycling between aqueous and solid reservoirs, the magnetite formation cannot be ruled out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jin; Li, Wenbin; Zhu, Mao
2014-03-15
The localized surface plasmon resonances (LSPRs) of gold particles assembled on a crystal plate are a powerful tool for biological sensors. Here, we prepare gold colloids in different pH solutions. We monitor the effects of the particle radius and particle coverage on the absorption spectra of AT-cut (r-face dihedral angle of about 3°) crystal plates supporting gold nanoparticles. The surface morphologies were monitored on silicon dioxide substrates using ultraviolet and visible (UV-vis) spectroscopy, and atomic force microscopy (AFM). The results showed that the gold particle coverage decreases with increasing pH value of the gold colloid solution. This phenomenon demonstrates thatmore » self-assembled gold surfaces were formed via the electrostatic adsorption of gold particles on the positively charged, ionized amino groups on the crystal plates in the acidic solution. The spectrum of gold nanoparticles with different coverage degree on the crystal plates showed that the LSPR properties are highly dependent on pH.« less
Noise suppression in surface microseismic data by τ-p transform
Forghani-Arani, Farnoush; Batzle, Mike; Behura, Jyoti; Willis, Mark; Haines, Seth; Davidson, Michael
2013-01-01
Surface passive seismic methods are receiving increased attention for monitoring changes in reservoirs during the production of unconventional oil and gas. However, in passive seismic data the strong cultural and ambient noise (mainly surface-waves) decreases the effectiveness of these techniques. Hence, suppression of surface-waves is a critical step in surface microseismic monitoring. We apply a noise suppression technique, based on the τ — p transform, to a surface passive seismic dataset recorded over a Barnett Shale reservoir undergoing a hydraulic fracturing process. This technique not only improves the signal-to-noise ratios of added synthetic microseismic events, but it also preserves the event waveforms.
Measurement of deformations of models in a wind tunnel
NASA Astrophysics Data System (ADS)
Charpin, F.; Armand, C.; Selvaggini, R.
Techniques used at the ONERA Modane Center to monitor geometric variations in scale-models in wind tunnel trials are described. The methods include: photography of reflections from mirrors embedded in the model surface; laser-based torsiometry with polarized mirrors embedded in the model surface; predictions of the deformations using numerical codes for the model surface mechanical characteristics and the measured surface stresses; and, use of an optical detector to monitor the position of luminous fiber optic sources emitting from the model surfaces. The data enhance the confidence that the wind tunnel aerodynamic data will correspond with the in-flight performance of full scale flight surfaces.
NASA Technical Reports Server (NTRS)
Monford, Leo G. (Inventor)
1990-01-01
Improved techniques are provided for alignment of two objects. The present invention is particularly suited for three-dimensional translation and three-dimensional rotational alignment of objects in outer space. A camera 18 is fixedly mounted to one object, such as a remote manipulator arm 10 of the spacecraft, while the planar reflective surface 30 is fixed to the other object, such as a grapple fixture 20. A monitor 50 displays in real-time images from the camera, such that the monitor displays both the reflected image of the camera and visible markings on the planar reflective surface when the objects are in proper alignment. The monitor may thus be viewed by the operator and the arm 10 manipulated so that the reflective surface is perpendicular to the optical axis of the camera, the roll of the reflective surface is at a selected angle with respect to the camera, and the camera is spaced a pre-selected distance from the reflective surface.
Improved docking alignment system
NASA Technical Reports Server (NTRS)
Monford, Leo G. (Inventor)
1988-01-01
Improved techniques are provided for the alignment of two objects. The present invention is particularly suited for 3-D translation and 3-D rotational alignment of objects in outer space. A camera is affixed to one object, such as a remote manipulator arm of the spacecraft, while the planar reflective surface is affixed to the other object, such as a grapple fixture. A monitor displays in real-time images from the camera such that the monitor displays both the reflected image of the camera and visible marking on the planar reflective surface when the objects are in proper alignment. The monitor may thus be viewed by the operator and the arm manipulated so that the reflective surface is perpendicular to the optical axis of the camera, the roll of the reflective surface is at a selected angle with respect to the camera, and the camera is spaced a pre-selected distance from the reflective surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
2006-01-01
This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2006 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2006 will be in accordance with DOE Order 540.1 requirements and the following goals: {sm_bullet} to maintain surveillance of existing and potential groundwater contamination sources; {sm_bullet} to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminantsmore » are most likely to migrate beyond the Oak Ridge Reservation property line; {sm_bullet} to identify and characterize long-term trends in groundwater quality at Y-12; and ! to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2006 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2006 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2006 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3; sample collection methods and procedures are described in Section 4; and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. The monitoring frequency and selection criteria for each sampling location is in Appendix C. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix D. If issued, addenda to this plan will be inserted in Appendix E, and Groundwater Monitoring Schedules (when issued) will be inserted in Appendix F. Guidance for managing purged groundwater is provided in Appendix G.« less
Tsao, Yu-Chia; Tsai, Woo-Hu; Shih, Wen-Ching; Wu, Mu-Shiang
2013-01-01
An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings. PMID:23881144
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-02-01
This annual monitoring report contains groundwater and surface water monitoring data obtained in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) during calendar year (CY) 1996. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge west of Scarboro Road and east of an unnamed drainage feature southwest of the US Department of Energy (DOE) Oak Ridge Y-12 Plant (unless otherwise noted, directions are in reference to the Y-12 Plant administrative grid). The Chestnut Ridge Regime contains several sites used for management of hazardous and nonhazardous wastes associated with plant operations. Groundwater and surface water quality monitoring associated with thesemore » waste management sites is performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). Included in this annual monitoring report are the groundwater monitoring data obtained in compliance with the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit for the Chestnut Ridge Regime (post-closure permit) issued by the Tennessee Department of Environment and Conservation (TDEC) in June 1996. Besides the signed certification statement and the RCRA facility information summarized below, condition II.C.6 of the post-closure permit requires annual reporting of groundwater monitoring activities, inclusive of the analytical data and results of applicable data evaluations, performed at three RCRA hazardous waste treatment, storage, or disposal (TSD) units: the Chestnut Ridge Sediment Disposal Basin (Sediment Disposal Basin), the Chestnut Ridge Security Pits (Security Pits), and Kerr Hollow Quarry.« less
Tsao, Yu-Chia; Tsai, Woo-Hu; Shih, Wen-Ching; Wu, Mu-Shiang
2013-07-23
An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings.
Optimization of PZT ceramic IDT sensors for health monitoring of structures.
Takpara, Rafatou; Duquennoy, Marc; Ouaftouh, Mohammadi; Courtois, Christian; Jenot, Frédéric; Rguiti, Mohamed
2017-08-01
Surface acoustic waves (SAW) are particularly suited to effectively monitoring and characterizing structural surfaces (condition of the surface, coating, thin layer, micro-cracks…) as their energy is localized on the surface, within approximately one wavelength. Conventionally, in non-destructive testing, wedge sensors are used to the generation guided waves but they are especially suited to flat surfaces and sized for a given type material (angle of refraction). Additionally, these sensors are quite expensive so it is quite difficult to leave the sensors permanently on the structure for its health monitoring. Therefore we are considering in this study, another type of ultrasonic sensors, able to generate SAW. These sensors are interdigital sensors or IDT sensors for InterDigital Transducer. This paper focuses on optimization of IDT sensors for non-destructive structural testing by using PZT ceramics. The challenge was to optimize the dimensional parameters of the IDT sensors in order to efficiently generate surface waves. Acoustic tests then confirmed these parameters. Copyright © 2017 Elsevier B.V. All rights reserved.
A quality monitor and monitoring technique employing optically stimulated electron emission
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Welch, Christopher S. (Inventor); Joe, Edmond J. (Inventor); Hefner, Bill Bryan, Jr. (Inventor)
1995-01-01
A light source directs ultraviolet light onto a test surface and a detector detects a current of photoelectrons generated by the light. The detector includes a collector which is positively biased with respect to the test surface. Quality is indicated based on the photoelectron current. The collector is then negatively biased to replace charges removed by the measurement of a nonconducting substrate to permit subsequent measurements. Also, the intensity of the ultraviolet light at a particular wavelength is monitored and the voltage of the light source varied to maintain the light a constant desired intensity. The light source is also cooled via a gas circulation system. If the test surface is an insulator, the surface is bombarded with ultraviolet light in the presence of an electron field to remove the majority of negative charges from the surface. The test surface is then exposed to an ion field until it possesses no net charge. The technique described above is then performed to assess quality.
Lynch, Heather E.; Stewart, Shelley M.; Kepler, Thomas B.; Sempowski, Gregory D.; Alam, S. Munir
2014-01-01
Establishment of humoral immunity against pathogens is dependent on events that occur in the germinal center and the subsequent induction of high-affinity neutralizing antibodies. Quantitative assays that allow monitoring of affinity maturation and duration of antibody responses can provide useful information regarding the efficacy of vaccines and adjuvants. Using an anthrax protective antigen (rPA) and alum model antigen/adjuvant system, we describe a methodology for monitoring antigen-specific serum antibody concentration and avidity by surface plasmon resonance during primary and secondary immune responses. Our analyses showed that following a priming dose in mice, rPA-specific antibody concentration and avidity increases over time and reaches a maximal response in about six weeks, but gradually declines in the absence of antigenic boost. Germinal center reactions were observed early with maximal development achieved during the primary response, which coincided with peak antibody avidity responses to primary immunization. Boosting with antigen resulted in a rapid increase in rPA-specific antibody concentration and five-fold increase in avidity, which was not dependent on sustained GC development. The described methodology couples surface plasmon resonance-based plasma avidity measurements with germinal center analysis and provides a novel way to monitor humoral responses that can play a role in facilitating vaccine and adjuvant development. PMID:24316020
Woltering, R; Hoffmann, G; Isermann, J; Heudorf, U
2016-11-01
Background and Objective: An assessment of cleaning and disinfection in hospitals by the use of objective surveillance and review of mandatory corrective measures was undertaken. Methods: A prospective examination of the cleaning and disinfection of surfaces scheduled for daily cleaning in 5 general care hospitals by use of an ultraviolet fluorescence targeting method (UVM) was performed, followed by structured educational and procedural interventions. The survey was conducted in hospital wards, operating theatres and intensive care units. Cleaning performance was measured by complete removal of UVM. Training courses and reinforced self-monitoring were implemented after the first evaluation. 6 months later, we repeated the assessment for confirmation of success. Results: The average cleaning performance was 34% (31/90) at base-line with significant differences between the 5 hospitals (11-67%). The best results were achieved in intensive care units (61%) and operating theatres (58%), the worst results in hospital wards (22%). The intervention significantly improved cleaning performance up to an average of 69% (65/94; +34.7%; 95% confidence interval (CI): 21.2-48.3; p<0.05), with differences between the hospitals (20-95%). The largest increase was achieved in hospital wards (+45%; CI 29.2-60.8; p<0.05). Improvements in operating theatres (+22.9%; CI 10.9-56.7) and intensive care units (+5.6%; CI 25.8-36.9) were statistically not significant. Conclusions: The monitoring of cleaning and disinfection of surfaces by fluorescence targeting is appropriate for evaluating hygiene regulations. An intervention can lead to a significant improvement of cleaning performance. As part of a strategy to improve infection control in hospitals, fluorescence targeting enables a simple inexpensive and effective surveillance of the cleaning performance and corrective measures. © Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.; Environmental Science Division
In April 2008, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) conducted groundwater sampling for the analysis of volatile organic compounds (VOCs) in the existing network of monitoring points at Everest, Kansas (Argonne 2008). The objective of the 2008 investigation was to monitor the distribution of carbon tetrachloride contamination in groundwater previously identified in CCC/USDA site characterization and groundwater sampling studies at Everest in 2000-2006 (Argonne 2001, 2003, 2006a,b). The work at Everest is being undertaken on behalf of the CCC/USDA by Argonne National Laboratory, under the oversight of the Kansas Department of Health and Environment (KDHE).more » The findings of the 2008 investigation were as follows: (1) Measurements of groundwater levels obtained manually and through the use of automatic recorders demonstrated a consistent pattern of groundwater flow - and inferred contaminant migration - to the north-northwest from the former CCC/USDA facility toward the Nigh property, and then west-southwest from the Nigh property toward the intermittent creek that lies west of the former CCC/USDA facility and the Nigh property. (2) The range of concentrations and the areal distribution of carbon tetrachloride identified in the groundwater at Everest in April 2008 were generally consistent with previous results. The results of the 2008 sampling (reflecting the period from 2006 to 2008) and the earlier investigations at Everest (representing the period from 2000 to 2006) show that no significant downgradient extension of the carbon tetrachloride plume occurred from 2000 to 2008. (3) The slow contaminant migration indicated by the monitoring data is qualitatively consistent with the low groundwater flow rates in the Everest aquifer unit estimated previously on the basis of site-specific hydraulic testing (Argonne 2006a,b). (4) The April 2008 and earlier sampling results demonstrate that the limits of the plume have been effectively, identified by the existing network of monitoring points and have not changed significantly during the CCC/USDA investigation program. The carbon tetrachloride distribution within the plume has continued to evolve, however, with relatively constant or apparently decreasing contaminant levels at most sampling locations. In response to these findings, the KDHE requested that the CCC/USDA develop a plan for annual monitoring of the groundwater and surface water at Everest, to facilitate continued tracking of the carbon tetrachloride plume at this site (KDHE 2009a). A recommendation for annual sampling (for analyses of VOCs) of 16 existing groundwater monitoring points within and near the identified contaminant migration pathway and surface water sampling at 5 locations along the intermittent creek west (downgradient) of the identified plume was presented by the CCC/USDA (Appendix A) and approved by the KDHE (2009b) for implementation. The monitoring wells will be sampled according to the low-flow procedure, and sample preservation, shipping, and analysis activities will be consistent with previous work at Everest. The annual sampling will continue until identified conditions at the site indicate a technical justification for a change. This report summarizes the results of sampling and monitoring activities conducted at the Everest site since completion of the April 2008 groundwater sampling event (Argonne 2008). The investigations performed during the current review period (May 2008 to October 2009) were as follows: (1) With one exception, the KDHE-approved groundwater and surface water monitoring points were sampled on April 24-27, 2009. In this event, well PT1 was inadvertently sampled instead of the adjacent well MW04. This investigation represents the first groundwater and surface water sampling event performed under the current plan for annual monitoring approved by the KDHE. (2) Ongoing monitoring of the groundwater levels at Everest is performed with KDHE approval. The levels in selected monitoring wells are recorded continuously, by using downhole pressure sensors equipped with automatic data loggers, and periodically are also measured manually. Groundwater level data were recovered during the current review period on September 19, 2008, and on March 25, April 25-27, and October 20, 2009. (3) Argonne experience has demonstrated that the sampling and analysis (for VOCs) of native vegetation, and particularly tree tissues, often provides a sensitive indicator of possible carbon tetrachloride contamination in the surface water or shallow groundwater within the plant rooting zone. With the approval of the CCC/USDA, on August 28, 2009, samples of tree branch tissues were therefore collected for analyses at 18 locations along the intermittent creek west (downgradient) of the former CCC/USDA facility and the Nigh property.« less
NASA Technical Reports Server (NTRS)
Vandegriend, A. A.; Owe, M.; Vugts, H. F.; Ramothwa, G. K.
1992-01-01
The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. Results of the first part of the program (Botswana 1) which ran from 1 Jan. 1988 - 31 Dec. 1990 are summarized. Botswana 1 consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components in general are described and activities performed during the surface energy modeling component including the extensive field campaign are summarized. The results of the passive microwave component are summarized. The key of the field campaign was a multilevel approach, whereby measurements by various similar sensors were made at several altitudes and resolution. Data collection was performed at two adjacent sites of contrasting surface character. The following measurements were made: micrometeorological measurements, surface temperatures, soil temperatures, soil moisture, vegetation (leaf area index and biomass), satellite data, aircraft data, atmospheric soundings, stomatal resistance, and surface emissivity.
Tribological interaction between polytetrafluoroethylene and silicon oxide surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uçar, A.; Çopuroğlu, M.; Suzer, S., E-mail: suzer@fen.bilkent.edu.tr
2014-10-28
We investigated the tribological interaction between polytetrafluoroethylene (PTFE) and silicon oxide surfaces. A simple rig was designed to bring about a friction between the surfaces via sliding a piece of PTFE on a thermally oxidized silicon wafer specimen. A very mild inclination (∼0.5°) along the sliding motion was also employed in order to monitor the tribological interaction in a gradual manner as a function of increasing contact force. Additionally, some patterns were sketched on the silicon oxide surface using the PTFE tip to investigate changes produced in the hydrophobicity of the surface, where the approximate water contact angle was 45°more » before the transfer. The nature of the transferred materials was characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). XPS results revealed that PTFE was faithfully transferred onto the silicon oxide surface upon even at the slightest contact and SEM images demonstrated that stable morphological changes could be imparted onto the surface. The minimum apparent contact pressure to realize the PTFE transfer is estimated as 5 kPa, much lower than reported previously. Stability of the patterns imparted towards many chemical washing processes lead us to postulate that the interaction is most likely to be chemical. Contact angle measurements, which were carried out to characterize and monitor the hydrophobicity of the silicon oxide surface, showed that upon PTFE transfer the hydrophobicity of the SiO{sub 2} surface could be significantly enhanced, which might also depend upon the pattern sketched onto the surface. Contact angle values above 100° were obtained.« less
Aerosol radiative forcing from GEO satellite data over land surfaces
NASA Astrophysics Data System (ADS)
Costa, Maria J.; Silva, Ana M.
2005-10-01
Aerosols direct and indirect effects on the Earth's climate are widely recognized but have yet to be adequately quantified. Difficulties arise due to the very high spatial and temporal variability of aerosols, which is a major cause of uncertainties in radiative forcing studies. The effective monitoring of the global aerosol distribution is only made possible by satellite monitoring and this is the reason why the interest in aerosol observations from satellite passive radiometers is steadily increasing. From the point of view of the study of land surfaces, the atmosphere with its constituents represents an obscurant whose effects should be as much as possible eliminated, being this process sometimes referred to as atmospheric correction. In absence of clouds and using spectral intervals where gas absorption can be avoided to a great extent, only the aerosol effect remains to be corrected. The monitoring of the aerosol particles present in the atmosphere is then crucial to succeed in doing an accurate atmospheric correction, otherwise the surface properties may be inadequately characterised. However, the atmospheric correction over land surfaces turns out to be a difficult task since surface reflection competes with the atmospheric component of the signal. On the other hand, a single mean pre-established aerosol characterisation would not be sufficient for this purpose due to very high spatial and temporal variability of aerosols and their unpredictability, especially what concerns particulary intense "events" such as biomass burning and forest fires, desert dust episodes and volcanic eruptions. In this context, an operational methodology has been developed at the University of Evora - Evora Geophysics Centre (CGE), in the framework of the Satellite Application Facility for Land Surface Analysis - Land SAF, to derive an Aerosol Product from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) data, flying on the Geostationary (GEO) satellite system Meteosat-8. The aerosol characterization obtained is used to calculate the fluxes and estimate the aerosol radiative forcing at the top of the atmosphere. The methodology along with the results of the aerosol properties and radiative forcing using SEVIRI images is presented. The aerosol optical thickness results are compared with ground-based measurements from the Aerosol Robotic NETwork (AERONET), to assess the accuracy of the methodology presented.
NASA Astrophysics Data System (ADS)
Estoque, Ronald C.; Murayama, Yuji
2017-11-01
Since it was first described about two centuries ago and due to its adverse impacts on urban ecological environment and the overall livability of cities, the urban heat island (UHI) phenomenon has been, and still is, an important research topic across various fields of study. However, UHI studies on cities in mountain regions are still lacking. This study aims to contribute to this endeavor by monitoring and examining the formation of surface UHI (SUHI) in a tropical mountain city of Southeast Asia -Baguio City, the summer capital of the Philippines- using Landsat data (1987-2015). Based on mean surface temperature difference between impervious surface (IS) and green space (GS1), SUHI intensity (SUHII) in the study area increased from 2.7 °C in 1987 to 3.4 °C in 2015. Between an urban zone (>86% impervious) and a rural zone (<10% impervious) along the urban-rural gradient, it increased from 4.0 °C in 1987 to 8.2 °C in 2015. These results are consistent with the rapid urbanization of the area over the same period, which resulted in a rapid expansion of impervious surfaces and substantial loss of green spaces. Together with landscape composition variables (e.g. fraction of IS), topographic variables (e.g. hillshade) can help explain a significant amount of spatial variations in surface temperature in the area (R2 = 0.56-0.85) (p < 0.001). The relative importance of the 'fraction of IS' variable also increased, indicating that its unique explanatory and predictive power concerning the spatial variations of surface temperature increases as the city size becomes bigger and SUHI gets more intense. Overall, these results indicate that the cool temperature of the study area being situated in a mountain region did not hinder the formation of SUHI. Thus, the formation and effects of UHIs, including possible mitigation and adaptation measures, should be considered in landscape planning for the sustainable urban development of the area.
NASA Technical Reports Server (NTRS)
Scheuring, Richard A.; Hamilton, Doug; Jones, Jeffrey A.; Alexander, David
2009-01-01
There are currently several physiological monitoring requirements for EVA in the Human-Systems Interface Requirements (HSIR) document. There are questions as to whether the capability to monitor heart rhythm in the lunar surface space suit is a necessary capability for lunar surface operations. Similarly, there are questions as to whether the capability to monitor heart rhythm during a cabin depressurization scenario in the launch/landing space suit is necessary. This presentation seeks to inform space medicine personnel of recommendations made by an expert panel of cardiovascular medicine specialists regarding in-suit ECG heart rhythm monitoring requirements during lunar surface operations. After a review of demographic information and clinical cases and panel discussion, the panel recommended that ECG monitoring capability as a clinical tool was not essential in the lunar space suit; ECG monitoring was not essential in the launch/landing space suit for contingency scenarios; the current hear rate monitoring capability requirement for both launch/landing and lunar space suits should be maintained; lunar vehicles should be required to have ECG monitoring capability with a minimum of 5-lead ECG for IVA medical assessments; and, exercise stress testing for astronaut selection and retention should be changed from the current 85% maximum heart rate limit to maximal, exhaustive 'symptom-limited' testing to maximize diagnostic utility as a screening tool for evaluating the functional capacity of astronauts and their cardiovascular health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-01
This document describes the environmental monitoring program at the Niagara Falls Storage Site (NFSS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring at NFSS began in 1981. The site is owned by the US Department of Energy (DOE) and is assigned to the DOE Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program atmore » NFSS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium and radium-226 concentrations in surface water, sediments, and groundwater. Additionally, several nonradiological parameters including seven metals are routinely measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.« less
Niagara Falls Storage Site annual environmental report for calendar year 1991, Lewiston, New York
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-01
This document describes the environmental monitoring program at the Niagara Falls Storage Site (NFSS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring at NFSS began in 1981. The site is owned by the US Department of Energy (DOE) and is assigned to the DOE Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program atmore » NFSS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium and radium-226 concentrations in surface water, sediments, and groundwater. Additionally, several nonradiological parameters including seven metals are routinely measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.« less
A Hybrid Numerical Analysis Method for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Staroselsky, Alexander
2001-01-01
A new hybrid surface-integral-finite-element numerical scheme has been developed to model a three-dimensional crack propagating through a thin, multi-layered coating. The finite element method was used to model the physical state of the coating (far field), and the surface integral method was used to model the fatigue crack growth. The two formulations are coupled through the need to satisfy boundary conditions on the crack surface and the external boundary. The coupling is sufficiently weak that the surface integral mesh of the crack surface and the finite element mesh of the uncracked volume can be set up independently. Thus when modeling crack growth, the finite element mesh can remain fixed for the duration of the simulation as the crack mesh is advanced. This method was implemented to evaluate the feasibility of fabricating a structural health monitoring system for real-time detection of surface cracks propagating in engine components. In this work, the authors formulate the hybrid surface-integral-finite-element method and discuss the mechanical issues of implementing a structural health monitoring system in an aircraft engine environment.
NASA Astrophysics Data System (ADS)
Dehotin, Judicaël; Breil, Pascal; Braud, Isabelle; de Lavenne, Alban; Lagouy, Mickaël; Sarrazin, Benoît
2015-06-01
Surface runoff is one of the hydrological processes involved in floods, pollution transfer, soil erosion and mudslide. Many models allow the simulation and the mapping of surface runoff and erosion hazards. Field observations of this hydrological process are not common although they are crucial to evaluate surface runoff models and to investigate or assess different kinds of hazards linked to this process. In this study, a simple field monitoring network is implemented to assess the relevance of a surface runoff susceptibility mapping method. The network is based on spatially distributed observations (nine different locations in the catchment) of soil water content and rainfall events. These data are analyzed to determine if surface runoff occurs. Two surface runoff mechanisms are considered: surface runoff by saturation of the soil surface horizon and surface runoff by infiltration excess (also called hortonian runoff). The monitoring strategy includes continuous records of soil surface water content and rainfall with a 5 min time step. Soil infiltration capacity time series are calculated using field soil water content and in situ measurements of soil hydraulic conductivity. Comparison of soil infiltration capacity and rainfall intensity time series allows detecting the occurrence of surface runoff by infiltration-excess. Comparison of surface soil water content with saturated water content values allows detecting the occurrence of surface runoff by saturation of the soil surface horizon. Automatic records were complemented with direct field observations of surface runoff in the experimental catchment after each significant rainfall event. The presented observation method allows the identification of fast and short-lived surface runoff processes at a small spatial and temporal resolution in natural conditions. The results also highlight the relationship between surface runoff and factors usually integrated in surface runoff mapping such as topography, rainfall parameters, soil or land cover. This study opens interesting prospects for the use of spatially distributed measurement for surface runoff detection, spatially distributed hydrological models implementation and validation at a reasonable cost.
Velpuri, Naga Manohar; Senay, Gabriel B.; Rowland, James; Verdin, James P.; Alemu, Henok; Melesse, Assefa M.; Abtew, Wossenu; Setegn, Shimelis G.
2014-01-01
Continental Africa has the highest volume of water stored in wetlands, large lakes, reservoirs, and rivers, yet it suffers from problems such as water availability and access. With climate change intensifying the hydrologic cycle and altering the distribution and frequency of rainfall, the problem of water availability and access will increase further. Famine Early Warning Systems Network (FEWS NET) funded by the United States Agency for International Development (USAID) has initiated a large-scale project to monitor small to medium surface water points in Africa. Under this project, multisource satellite data and hydrologic modeling techniques are integrated to monitor several hundreds of small to medium surface water points in Africa. This approach has been already tested to operationally monitor 41 water points in East Africa. The validation of modeled scaled depths with field-installed gauge data demonstrated the ability of the model to capture both the spatial patterns and seasonal variations. Modeled scaled estimates captured up to 60 % of the observed gauge variability with a mean root-mean-square error (RMSE) of 22 %. The data on relative water level, precipitation, and evapotranspiration (ETo) for water points in East and West Africa were modeled since 1998 and current information is being made available in near-real time. This chapter presents the approach, results from the East African study, and the first phase of expansion activities in the West Africa region. The water point monitoring network will be further expanded to cover much of sub-Saharan Africa. The goal of this study is to provide timely information on the water availability that would support already established FEWS NET activities in Africa. This chapter also presents the potential improvements in modeling approach to be implemented during future expansion in Africa.
Retrieval of AOD and PM2.5 Concentrations over Urban Areas of Shenyang City using MODIS Data
NASA Astrophysics Data System (ADS)
Wang, Z.
2016-12-01
Atmospheric aerosols play an important part in the Earth's radiation balance as well as global climate change, aerosols also have very important impact on environment as well as human and other organisms' health, PM2.5 and other small particle aerosols, can enter bronchi directly, thus causing bronchitis, cardiovascular disease, asthma and so on.Detection of AOD by satellite and remote sensing is currently one of the hotest issues , diffierent from the traditional monitoring method, this method has much more advantanges, for emample wide area coverage, fast and convenient etc. So it is possible for people to know the regional changes of AOD real time over large area. Now, detection aerosol by RS technology has reached a high level in marine and dense vegetation land areas, but result is not ideal for urban areas, the higher surface reflectance in urban areas is a bottleneck of AOD retrieval. Focus on the high surface reflectance and low accuracy of the AOD products of urban areas, this paper propose an algorithm coupled with surface reflectance to get red band surface reflectance, based on Dens Dark Vegetation algorithm and geometrical optics model theory, to distinguish urban reflectivity from other targets. Considering the appropriate aerosol model which adapt to season and other proper parameters, this paper uses 6S model to establish look-up table, thus retrieve AOD for urban as well as other high reflectance areas. This paper take Shenyang region as pilot area, then retrieve the AOD and PM2.5 concentration of Shenyang in 2015 based on MODIS data, thus get 1km resolution distribution map, and then analyzed the results in spatial, intensity and temporal. At last, real-time monitoring data from the ground monitor station is used to verify the outcome, the results have good accuracy and the the correlation reached 0.9004 when the weather is sunny. The research shows that this algorithm has relatively higher precision and certain universality. This method has better applicability to retrieve AOD and PM2.5 concentration by remote sensing in Shenyang and Liaoning Provience, and owes guiding and reference significance, and it has a high value in terms of atmospheric environment monitoring.
NASA Astrophysics Data System (ADS)
Davaze, Lucas; Rabatel, Antoine; Arnaud, Yves; Sirguey, Pascal; Six, Delphine; Letreguilly, Anne; Dumont, Marie
2017-04-01
Increasing the number of glaciers monitored for surface mass balance is very challenging, especially using laborious methods based on in situ data. Complementary methods are therefore required to quantify the surface mass balance of unmonitored glaciers. The current study relies on the so-called albedo method, based on the analysis of albedo maps retrieved from optical satellite imagery acquired since 2000 by the MODIS sensor, onboard of TERRA satellite. Recent studies performed on single glaciers in the French Alps, the Himalayas or the Southern Alps of New Zealand revealed substantial relationships between summer minimum glacier-wide surface albedo and annual mass balance, because this minimum surface albedo is directly related to accumulation-area ratio and the equilibrium-line altitude. On the basis of 30 glaciers located in the French Alps where annual surface mass balance are available, our study conducted on the period 2000-2015 confirms the robustness and reliability of the relationship between the summer minimum surface albedo and the annual surface mass balance. At the seasonal scale, the integrated summer surface albedo is significantly correlated with the summer mass balance of the six glaciers seasonally surveyed. For the winter season, four of the six glaciers showed a significant correlation when linking the winter surface mass balance and the integrated winter surface albedo, using glacier-dependent thresholds to filter the albedo signal. Sensitivity study on the computed cloud detection algorithm revealed high confidence in retrieved albedo maps. These results are promising to monitor both annual and seasonal glacier-wide surface mass balances of individual glaciers at a regional scale using optical satellite images.
Clinical monitoring of smooth surface enamel lesions using CP-OCT during nonsurgical intervention.
Chan, Kenneth H; Tom, Henry; Lee, Robert C; Kang, Hobin; Simon, Jacob C; Staninec, Michal; Darling, Cynthia L; Pelzner, Roger B; Fried, Daniel
2016-12-01
Studies have shown that cross-polarization optical coherence tomography (CP-OCT) can be used to image the internal structure of carious lesions in vivo. The objective of this study was to show that CP-OCT can be used to monitor changes in the internal structure of early active carious lesions on smooth surfaces during non-surgical intervention with fluoride. Lesions on the smooth surfaces of teeth were imaged using CP-OCT on 17 test subjects. Lesion structural changes were monitored during fluoride varnish application at 6-week intervals for 30 weeks. The lesion depth (L d ), integrated reflectivity (ΔR), and surface zone thickness (S z ) were monitored. A distinct transparent surface zone that may be indicative of lesion arrestment was visible in CP-OCT images on 62/63 lesions before application of fluoride varnish. The lesion depth and internal structure were resolved for all the lesions. The overall change in the mean values for L d , ΔR, and S z for all the lesions was minimal and was not significant during the study (P > 0.05). Only 5/63 lesions manifested a significant increase in S z during intervention. Even though it appears that most of the lesions manifested little change with fluoride varnish application in the 30 weeks of the study, CP-OCT was able to measure the depth and internal structure of all the lesions including the thickness of the important transparent surface zone located at the surface of the lesions, indicating that CP-OCT is ideally suited for monitoring lesion severity in vivo. Lasers Surg. Med. 48:915-923, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Microbial Monitoring of Crewed Habitats in Space—Current Status and Future Perspectives
Yamaguchi, Nobuyasu; Roberts, Michael; Castro, Sarah; Oubre, Cherie; Makimura, Koichi; Leys, Natalie; Grohmann, Elisabeth; Sugita, Takashi; Ichijo, Tomoaki; Nasu, Masao
2014-01-01
Previous space research conducted during short-term flight experiments and long-term environmental monitoring on board orbiting space stations suggests that the relationship between humans and microbes is altered in the crewed habitat in space. Both human physiology and microbial communities adapt to spaceflight. Microbial monitoring is critical to crew safety in long-duration space habitation and the sustained operation of life support systems on space transit vehicles, space stations, and surface habitats. To address this critical need, space agencies including NASA (National Aeronautics and Space Administration), ESA (European Space Agency), and JAXA (Japan Aerospace Exploration Agency) are working together to develop and implement specific measures to monitor, control, and counteract biological contamination in closed-environment systems. In this review, the current status of microbial monitoring conducted in the International Space Station (ISS) as well as the results of recent microbial spaceflight experiments have been summarized and future perspectives are discussed. PMID:25130885
NASA Astrophysics Data System (ADS)
Sacuto, S.; Jorissen, A.; Cruzalèbes, P.; Pasquato, E.; Chiavassa, A.; Spang, A.; Rabbia, Y.; Chesneau, O.
2011-09-01
A monitoring of surface brightness asymmetries in evolved giants and supergiants is necessary to estimate the threat that they represent to accurate Gaia parallaxes. Closure-phase measurements obtained with AMBER/VISA in a 3-telescope configuration are fitted by a simple model to constrain the photocenter displacement. The results for the C-type star TX Psc show a large deviation of the photocenter displacement that could bias the Gaia parallax.
Geary, Phillip; Lucas, Steven
2018-02-03
Aquaculture in many coastal estuaries is threatened by diffuse sources of runoff from different land use activities. The poor performance of septic tank systems (STS), as well as runoff from agriculture, may contribute to the movement of contaminants through ground and surface waters to estuaries resulting in oyster contamination, and following their consumption, impacts to human health. In monitoring individual STS in sensitive locations, it is possible to show that nutrients and faecal contaminants are transported through the subsurface in sandy soils off-site with little attenuation. At the catchment scale however, there are always difficulties in discerning direct linkages between failing STS and water contamination due to processes such as effluent dilution, adsorption, precipitation and vegetative uptake. There is often substantial complexity in detecting and tracing effluent pathways from diffuse sources to water bodies in field studies. While source tracking as well as monitoring using tracers may assist in identifying potential pathways from STS to surface waters and estuaries, there are difficulties in scaling up from monitored individual systems to identify their contribution to the cumulative impact which may be apparent at the catchment scale. The processes which may be obvious through monitoring and dominate at the individual scale may be masked and not readily discernible at the catchment scale due to impacts from other land use activities.
AE Monitoring of Diamond Turned Rapidly Soldified Aluminium 443
NASA Astrophysics Data System (ADS)
Onwuka, G.; Abou-El-Hossein, K.; Mkoko, Z.
2017-05-01
The fast replacement of conventional aluminium with rapidly solidified aluminium alloys has become a noticeable trend in the current manufacturing industries involved in the production of optics and optical molding inserts. This is as a result of the improved performance and durability of rapidly solidified aluminium alloys when compared to conventional aluminium. Melt spinning process is vital for manufacturing rapidly solidified aluminium alloys like RSA 905, RSA 6061 and RSA 443 which are common in the industries today. RSA 443 is a newly developed alloy with few research findings and huge research potential. There is no available literature focused on monitoring the machining of RSA 443 alloys. In this research, Acoustic Emission sensing technique was applied to monitor the single point diamond turning of RSA 443 on an ultrahigh precision lathe machine. The machining process was carried out after careful selection of feed, speed and depths of cut. The monitoring process was achieved with a high sampling data acquisition system using different tools while concurrent measurement of the surface roughness and tool wear were initiated after covering a total feed distance of 13km. An increasing trend of raw AE spikes and peak to peak signal were observed with an increase in the surface roughness and tool wear values. Hence, acoustic emission sensing technique proves to be an effective monitoring method for the machining of RSA 443 alloy.
Zheng, Jinkai; Fang, Xiang; Cao, Yong; Xiao, Hang; He, Lili
2013-01-01
To develop an accurate and convenient method for monitoring the production of citrus-derived bioactive 5-demethylnobiletin from demethylation reaction of nobiletin, we compared surface enhanced Raman spectroscopy (SERS) methods with a conventional HPLC method. Our results show that both the substrate-based and solution-based SERS methods correlated with HPLC method very well. The solution method produced lower root mean square error of calibration and higher correlation coefficient than the substrate method. The solution method utilized an ‘affinity chromatography’-like procedure to separate the reactant nobiletin from the product 5-demthylnobiletin based on their different binding affinity to the silver dendrites. The substrate method was found simpler and faster to collect the SERS ‘fingerprint’ spectra of the samples as no incubation between samples and silver was needed and only trace amount of samples were required. Our results demonstrated that the SERS methods were superior to HPLC method in conveniently and rapidly characterizing and quantifying 5-demethylnobiletin production. PMID:23885986
Field comparison of portable and stationary instruments for outdoor urban air exposure assessments
NASA Astrophysics Data System (ADS)
Viana, M.; Rivas, I.; Reche, C.; Fonseca, A. S.; Pérez, N.; Querol, X.; Alastuey, A.; Álvarez-Pedrerol, M.; Sunyer, J.
2015-12-01
The performance of three portable monitors (micro-aethalometer AE51, DiscMini, Dusttrak DRX) was assessed for outdoor air exposure assessment in a representative Southern European urban environment. The parameters evaluated were black carbon, particle number concentration, alveolar lung-deposited surface area, mean particle diameter, PM10, PM2.5 and PM1. The performance was tested by comparison with widely used stationary instruments (MAAP, CPC, SMPS, NSAM, GRIMM aerosol spectrometer). Results evidenced a good agreement between most portable and stationary instruments, with R2 values mostly >0.80. Relative differences between portable and stationary instruments were mostly <20%, and <10% between different units of the same instrument. The only exception was found for the Dusttrak DRX measurements, for which occasional concentration jumps in the time series were detected. Our results validate the performance of the black carbon, particle number concentration, particle surface area and mean particle diameter monitors as indicative instruments (tier 2) for outdoor air exposure assessment studies.
Assessment of Provisional MODIS-derived Surfaces Related to the Global Carbon Cycle
NASA Astrophysics Data System (ADS)
Cohen, W. B.; Maiersperger, T. K.; Turner, D. P.; Gower, S. T.; Kennedy, R. E.; Running, S. W.
2002-12-01
The global carbon cycle is one of the most important foci of an emerging global biosphere monitoring system. A key component of such a system is the MODIS sensor, onboard the Terra satellite platform. Biosphere monitoring requires an integrated program of satellite observations, Earth-system models, and in situ data. Related to the carbon cycle, MODIS science teams routinely develop a variety of global surfaces such as land cover, leaf area index, and net primary production using MODIS data and functional algorithms. The quality of these surfaces must be evaluated to determine their effectiveness for global biosphere monitoring. A project called BigFoot (http://www.fsl.orst.edu/larse/bigfoot/) is an organized effort across nine biomes to assess the quality of the abovementioned surfaces: (1) Arctic tundra; (2) boreal evergreen needle-leaved forest; temperate (3) cropland, (4) grassland, (5) evergreen needle-leaved forest, and (6) deciduous broad-leaved forest; desert (7) grassland and (8) shrubland; and (9) tropical evergreen broad-leaved forest. Each biome is represented by a site that has an eddy-covariance flux tower that measures water vapor and CO2 fluxes. Flux tower footprints are relatively small-approximately 1 km2. BigFoot characterizes 25 km2 around each tower, using field data, Landsat ETM+ image data, and ecosystem process models. Our innovative field sampling design incorporates a nested spatial series to facilitate geostatistical analyses, samples the ecological variability at a site, and is logistically efficient. Field data are used both to develop site-specific algorithms for mapping/modeling the variables of interest and to characterize the errors in derived BigFoot surfaces. Direct comparisons of BigFoot- and MODIS-derived surfaces are made to help understand the sources of error in MODIS-derived surfaces and to facilitate improvements to MODIS algorithms. Results from four BigFoot sites will be presented.
Body surface mounted biomedical monitoring system using Bluetooth.
Nambu, Masayuki
2007-01-01
Continuous monitoring in daily life is important for the health condition control of the elderly. However, portable or wearable devices need to carry by user on their own will. On the other hand, implantation sensors are not adoptable, because of generic users dislike to insert the any object in the body for monitoring. Therefore, another monitoring system of the health condition to carry it easily is necessary. In addition, ID system is necessary even if the subject live with few families. Furthermore, every measurement system should be wireless system, because not to obstruct the daily life of the user. In this paper, we propose the monitoring system, which is mounted on the body surface. This system will not obstruct the action or behavior of user in daily life, because this system attached the body surface on the back of the user. In addition, this system has wireless communication system, using Bluetooth, and acquired data transfer to the outside of the house via the Internet.
García, Mónica; Villagarcía, Luis; Contreras, Sergio; Domingo, Francisco; Puigdefábregas, Juan
2007-01-01
Three operative models with minimum input data requirements for estimating the partition of available surface energy into sensible and latent heat flux using ASTER data have been evaluated in a semiarid area in SE Spain. The non-evaporative fraction (NEF) is proposed as an indicator of the surface water deficit. The best results were achieved with NEF estimated using the “Simplified relationship” for unstable conditions (NEFSeguin) and with the S-SEBI (Simplified Surface Energy Balance Index) model corrected for atmospheric conditions (NEFS-SEBIt,) which both produced equivalent results. However, results with a third model, NEFCarlson, that estimates the exchange coefficient for sensible heat transfer from NDVI, were unrealistic for sites with scarce vegetation cover. These results are very promising for an operative monitoring of the surface water deficit, as validation with field data shows reasonable errors, within those reported in the literature (RMSE were 0.18 and 0.11 for the NEF, and 29.12 Wm-2 and 25.97 Wm-2 for sensible heat flux, with the Seguin and S-SEBIt models, respectively).
NASA Technical Reports Server (NTRS)
Solomon, J. L.; Miller, W. F.; Quattrochi, D. A.
1979-01-01
In a cooperative project with the Geological Survey of Alabama, the Mississippi State Remote Sensing Applications Program has developed a single purpose, decision-tree classifier using band-ratioing techniques to discriminate various stages of surface mining activity. The tree classifier has four levels and employs only two channels in classification at each level. An accurate computation of the amount of disturbed land resulting from the mining activity can be made as a product of the classification output. The utilization of Landsat data provides a cost-efficient, rapid, and accurate means of monitoring surface mining activities.
InSAR Monitoring of Surface Deformation in Alberta's Oil Sands
NASA Astrophysics Data System (ADS)
Pearse, J.; Singhroy, V.; Li, J.; Samsonov, S. V.; Shipman, T.; Froese, C. R.
2013-05-01
Alberta's oil sands are among the world's largest deposits of crude oil, and more than 80% of it is too deep to mine, so unconventional in-situ methods are used for extraction. Most in situ extraction techniques, such as Steam-Assisted Gravity Drainage (SAGD), use steam injection to reduce the viscosity of the bitumen, allowing it to flow into wells to be pumped to the surface. As part of the oil sands safety and environmental monitoring program, the energy regulator uses satellite radar to monitor surface deformation associated with in-situ oil extraction. The dense vegetation and sparse infrastructure in the boreal forest of northern Alberta make InSAR monitoring a challenge; however, we have found that surface heave associated with steam injection can be detected using traditional differential InSAR. Infrastructure and installed corner reflectors also allow us to use persistent scatterer methods to obtain time histories of deformation at individual sites. We have collected and processed several tracks of RADARSAT-2 data over a broad area of the oil sands, and have detected surface deformation signals of approximately 2-3 cm per year, with time series that correlate strongly with monthly SAGD steam injection volumes.
Osimani, Andrea; Garofalo, Cristiana; Clementi, Francesca; Tavoletti, Stefano; Aquilanti, Lucia
2014-01-01
ATP bioluminescence monitoring and traditional microbiological analyses (viable counting of total mesophilic aerobes, coliforms and Escherichia coli) were used to evaluate the effectiveness of Sanitation Standard Operating Procedures (SSOP) at a university canteen which uses a HACCP-based approach. To that end, 10 cleaning control points (CPs), including food contact surfaces at risk of contamination from product residues or microbial growth, were analysed during an 8-month monitoring period. Arbitrary acceptability limits were set for both microbial loads and ATP bioluminescence readings. A highly significant correlation (r = 0.99) between the means of ATP bioluminescence readings and the viable counts of total mesophilic aerobes was seen, thus revealing a strong association of these parameters with the level of surface contamination. Among CPs, the raw meat and multi-purpose chopping boards showed the highest criticalities. Although ATP bioluminescence technology cannot substitute traditional microbiological analyses for the determination of microbial load on food contact surfaces, it has proved to be a powerful tool for the real time monitoring of surface cleanliness at mass catering plants, for verify the correct application of SSOP, and hence for their implementation/revision in the case of poor hygiene. PMID:25329534
NASA Technical Reports Server (NTRS)
Jones, Jason; Burbank, Renane; Billiot, Amanda; Schultz, Logan
2011-01-01
This presentation discusses use of 4 kilometer satellite-based sea surface temperature (SST) data to monitor and assess coral reef areas of the Florida Keys. There are growing concerns about the impacts of climate change on coral reef systems throughout the world. Satellite remote sensing technology is being used for monitoring coral reef areas with the goal of understanding the climatic and oceanic changes that can lead to coral bleaching events. Elevated SST is a well-documented cause of coral bleaching events. Some coral monitoring studies have used 50 km data from the Advanced Very High Resolution Radiometer (AVHRR) to study the relationships of sea surface temperature anomalies to bleaching events. In partnership with NOAA's Office of National Marine Sanctuaries and the University of South Florida's Institute for Marine Remote Sensing, this project utilized higher resolution SST data from the Terra's Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR. SST data for 2000-2010 was employed to compute sea surface temperature anomalies within the study area. The 4 km SST anomaly products enabled visualization of SST levels for known coral bleaching events from 2000-2010.
Osimani, Andrea; Garofalo, Cristiana; Clementi, Francesca; Tavoletti, Stefano; Aquilanti, Lucia
2014-10-17
ATP bioluminescence monitoring and traditional microbiological analyses (viable counting of total mesophilic aerobes, coliforms and Escherichia coli) were used to evaluate the effectiveness of Sanitation Standard Operating Procedures (SSOP) at a university canteen which uses a HACCP-based approach. To that end, 10 cleaning control points (CPs), including food contact surfaces at risk of contamination from product residues or microbial growth, were analysed during an 8-month monitoring period. Arbitrary acceptability limits were set for both microbial loads and ATP bioluminescence readings. A highly significant correlation (r = 0.99) between the means of ATP bioluminescence readings and the viable counts of total mesophilic aerobes was seen, thus revealing a strong association of these parameters with the level of surface contamination. Among CPs, the raw meat and multi-purpose chopping boards showed the highest criticalities. Although ATP bioluminescence technology cannot substitute traditional microbiological analyses for the determination of microbial load on food contact surfaces, it has proved to be a powerful tool for the real time monitoring of surface cleanliness at mass catering plants, for verify the correct application of SSOP, and hence for their implementation/revision in the case of poor hygiene.
TLA — markers and nuclear scanning method for wear rate monitoring
NASA Astrophysics Data System (ADS)
Stan-Sion, C.; Plostinaru, D.; Ivan, A.; Ivanov, E.; Dudu, D.; Catana, M.; Roman, M.
1994-08-01
Two new extensions of the TLA-direct measuring method are presented: the TLA-markers for wear control and the nuclear scanning method for monitoring wear non-uniformity on large surfaces. Both methods were applied to measure the material loss on the surface of railway car brake disks.
Sanada, Yukihisa; Orita, Tadashi; Torii, Tatsuo
2016-12-01
Aerial radiological survey using an unmanned aerial vehicle (UAV) was applied to measurement surface contamination around the Fukushima Daiichi nuclear power station (FDNPS). An unmanned helicopter monitoring system (UHMS) was developed to survey the environmental effect of radioactive cesium scattered as a result of the FDNPS accident. The UHMS was used to monitor the area surrounding the FDNPS six times from 2012 to 2015. Quantitative changes in the radioactivity distribution trend were revealed from the results of these monitoring runs. With this information, we found that the actual reduction of dose rate was faster than the one calculated with radiocesium physical half-life. It is indicated that the attenuation effect of radiation by radiocesium penetration in soil is dominant as for reason of reduction of dose rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Informing Drought Preparedness and Response with the South Asia Land Data Assimilation System
NASA Astrophysics Data System (ADS)
Zaitchik, B. F.; Ghatak, D.; Matin, M. A.; Qamer, F. M.; Adhikary, B.; Bajracharya, B.; Nelson, J.; Pulla, S. T.; Ellenburg, W. L.
2017-12-01
Decision-relevant drought monitoring in South Asia is a challenge from both a scientific and an institutional perspective. Scientifically, climatic diversity, inconsistent in situ monitoring, complex hydrology, and incomplete knowledge of atmospheric processes mean that monitoring and prediction are fraught with uncertainty. Institutionally, drought monitoring efforts need to align with the information needs and decision-making processes of relevant agencies at national and subnational levels. Here we present first results from an emerging operational drought monitoring and forecast system developed and supported by the NASA SERVIR Hindu-Kush Himalaya hub. The system has been designed in consultation with end users from multiple sectors in South Asian countries to maximize decision-relevant information content in the monitoring and forecast products. Monitoring of meteorological, agricultural, and hydrological drought is accomplished using the South Asia Land Data Assimilation System, a platform that supports multiple land surface models and meteorological forcing datasets to characterize uncertainty, and subseasonal to seasonal hydrological forecasts are produced by driving South Asia LDAS with downscaled meteorological fields drawn from an ensemble of global dynamically-based forecast systems. Results are disseminated to end users through a Tethys online visualization platform and custom communications that provide user oriented, easily accessible, timely, and decision-relevant scientific information.
NASA Astrophysics Data System (ADS)
Rascle, Nicolas; Molemaker, Jeroen; Marié, Louis; Nouguier, Frédéric; Chapron, Bertrand; Lund, Björn; Mouche, Alexis
2017-06-01
Fine-scale current gradients at the ocean surface can be observed by sea surface roughness. More specifically, directional surface roughness anomalies are related to the different horizontal current gradient components. This paper reports results from a dedicated experiment during the Lagrangian Submesoscale Experiment (LASER) drifter deployment. A very sharp front, 50 m wide, is detected simultaneously in drifter trajectories, sea surface temperature, and sea surface roughness. A new observational method is applied, using Sun glitter reflections during multiple airplane passes to reconstruct the multiangle roughness anomaly. This multiangle anomaly is consistent with wave-current interactions over a front, including both cross-front convergence and along-front shear with cyclonic vorticity. Qualitatively, results agree with drifters and X-band radar observations. Quantitatively, the sharpness of roughness anomaly suggests intense current gradients, 0.3 m s-1 over the 50 m wide front. This work opens new perspectives for monitoring intense oceanic fronts using drones or satellite constellations.
Surface roughness formation during shot peen forming
NASA Astrophysics Data System (ADS)
Koltsov, V. P.; Vinh, Le Tri; Starodubtseva, D. A.
2018-03-01
Shot peen forming (SPF) is used for forming panels and skins, and for hardening. As a rule, shot peen forming is performed after milling. Surface roughness is a complex structure, a combination of an original microrelief and shot peen forming indentations of different depths and chaotic distribution along the surface. As far as shot peen forming is a random process, surface roughness resulted from milling and shot peen forming is random too. During roughness monitoring, it is difficult to determine the basic surface area which would ensure accurate results. It can be assumed that the basic area depends on the random roughness which is characterized by the degree of shot peen forming coverage. The analysis of depth and shot peen forming indentations distribution along the surface made it possible to identify the shift of an original center profile plane and create a mathematical model for the arithmetic mean deviation of the profile. Experimental testing proved model validity and determined an inversely proportional dependency of the basic area on the degree of coverage.
Application of GRACE for Monitoring Groundwater in Data Scarce Regions
NASA Technical Reports Server (NTRS)
Rodell, Matt; Li, Bailing; Famiglietti, Jay; Zaitchik, Ben
2012-01-01
In the United States, groundwater storage is somewhat well monitored (spatial and temporal data gaps notwithstanding) and abundant data are freely and easily accessible. Outside of the U.S., groundwater often is not monitored systematically and where it is the data are rarely centralized and made available. Since 2002 the Gravity Recovery and Climate Experiment (GRACE) satellite mission has delivered gravity field observations which have been used to infer variations in total terrestrial water storage, including groundwater, at regional to continental scales. Challenges to using GRACE for groundwater monitoring include its relatively coarse spatial and temporal resolutions, its inability to differentiate groundwater from other types of water on and under the land surface, and typical 2-3 month data latency. Data assimilation can be used to overcome these challenges, but uncertainty in the results remains and is difficult to quantify without independent observations. Nevertheless, the results are preferable to the alternative - no data at all- and GRACE has already revealed groundwater variability and trends in regions where only anecdotal evidence existed previously.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Findlay, Rick; Kautsky, Mark
2015-12-01
The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 20–22 and 27, 2015. Several of the land owners were not available to allow access to their respective properties, which created the need for several sample collection trips. This report documents the analytical results of the Rulison monitoring event and includes the trip report and the data validation package (Appendix A). The groundwater and surface water monitoring were shipped to the GEL Group Inc. laboratories for analysis. All requested analyses were successfully completed.more » Samples were analyzed for gamma-emitting radionuclides by high- resolution gamma spectrometry. Tritium was analyzed using two methods, the conventional tritium method, which has a detection limit on the order of 400 picocuries per liter (pCi/L), and the enriched method (for selected samples), which has a detection limit on the order of 3 pCi/L.« less
Land surface dynamics monitoring using microwave passive satellite sensors
NASA Astrophysics Data System (ADS)
Guijarro, Lizbeth Noemi
Soil moisture, surface temperature and vegetation are variables that play an important role in our environment. There is growing demand for accurate estimation of these geophysical parameters for the research of global climate models (GCMs), weather, hydrological and flooding models, and for the application to agricultural assessment, land cover change, and a wide variety of other uses that meet the needs for the study of our environment. The different studies covered in this dissertation evaluate the capabilities and limitations of microwave passive sensors to monitor land surface dynamics. The first study evaluates the 19 GHz channel of the SSM/I instrument with a radiative transfer model and in situ datasets from the Illinois stations and the Oklahoma Mesonet to retrieve land surface temperature and surface soil moisture. The surface temperatures were retrieved with an average error of 5 K and the soil moisture with an average error of 6%. The results show that the 19 GHz channel can be used to qualitatively predict the spatial and temporal variability of surface soil moisture and surface temperature at regional scales. In the second study, in situ observations were compared with sensor observations to evaluate aspects of low and high spatial resolution at multiple frequencies with data collected from the Southern Great Plains Experiment (SGP99). The results showed that the sensitivity to soil moisture at each frequency is a function of wavelength and amount of vegetation. The results confirmed that L-band is more optimal for soil moisture, but each sensor can provide soil moisture information if the vegetation water content is low. The spatial variability of the emissivities reveals that resolution suffers considerably at higher frequencies. The third study evaluates C- and X-bands of the AMSR-E instrument. In situ datasets from the Soil Moisture Experiments (SMEX03) in South Central Georgia were utilized to validate the AMSR-E soil moisture product and to derive surface soil moisture with a radiative transfer model. The soil moisture was retrieved with an average error of 2.7% at X-band and 6.7% at C-band. The AMSR-E demonstrated its ability to successfully infer soil moisture during the SMEX03 experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foxall, W; Vincent, P; Walter, W
1999-07-23
We have previously presented simple elastic deformation modeling results for three classes of seismic events of concern in monitoring the CTBT--underground explosions, mine collapses and earthquakes. Those results explored the theoretical detectability of each event type using synthetic aperture radar interferometry (InSAR) based on commercially available satellite data. In those studies we identified and compared the characteristics of synthetic interferograms that distinguish each event type, as well the ability of the interferograms to constrain source parameters. These idealized modeling results, together with preliminary analysis of InSAR data for the 1995 mb 5.2 Solvay mine collapse in southwestern Wyoming, suggested thatmore » InSAR data used in conjunction with regional seismic monitoring holds great potential for CTBT discrimination and seismic source analysis, as well as providing accurate ground truth parameters for regional calibration events. In this paper we further examine the detectability and ''discriminating'' power of InSAR by presenting results from InSAR data processing, analysis and modeling of the surface deformation signals associated with underground explosions. Specifically, we present results of a detailed study of coseismic and postseismic surface deformation signals associated with underground nuclear and chemical explosion tests at the Nevada Test Site (NTS). Several interferograms were formed from raw ERS-1/2 radar data covering different time spans and epochs beginning just prior to the last U.S. nuclear tests in 1992 and ending in 1996. These interferograms have yielded information about the nature and duration of the source processes that produced the surface deformations associated with these events. A critical result of this study is that significant post-event surface deformation associated with underground nuclear explosions detonated at depths in excess of 600 meters can be detected using differential radar interferometry. An immediate implication of this finding is that underground nuclear explosions may not need to be captured coseismically by radar images acquired before and after an event in order to be detectable. This has obvious advantages in CTBT monitoring since suspect seismic events--which usually can be located within a 100 km by 100 km area of an ERS-1/2 satellite frame by established seismic methods-can be imaged after the event has been identified and located by existing regional seismic networks. Key Words: InSAR, SLC images, interferogram, synthetic interferogram, ERS-1/2 frame, phase unwrapping, DEM, coseismic, postseismic, source parameters.« less
Sensors of vibration and acoustic emission for monitoring of boring with skiving cutters
NASA Astrophysics Data System (ADS)
Shamarin, N. N.; Filippov, A. V.; Podgornyh, O. A.; Filippova, E. O.
2017-01-01
Diagnosing processing system conditions is a key area in automation of modern machinery production. The article presents the results of a preliminary experimental research of the boring process using conventional and skiving cutters under the conditions of the low stiffness processing system. Acoustic emission and vibration sensors are used for cutting process diagnosis. Surface roughness after machining is determined using a laser scanning microscope. As a result, it is found that the use of skiving cutters provides greater stability of the cutting process and lower surface roughness as compared with conventional cutters.
Selbig, William R.; Buer, Nicolas
2018-05-11
Three permeable pavement surfaces - asphalt (PA), concrete (PC), and interlocking pavers (PIP) - were evaluated side-by-side to measure changes to the infiltrative capacity and water quality of stormwater runoff originating from a conventional asphalt parking lot in Madison, Wisconsin. During the 24-month monitoring period (2014-16), all three permeable pavements resulted in statistically significant reductions in the cumulative load of solids (total suspended solids and suspended sediment), total phosphorus, Escherichia coli (E. coli), and Enterococci. Most of the removal occurred through capture and retention in the void spaces of each permeable surface and aggregate base. The largest reduction in total suspended solids was for PC at 80 percent, followed by PIP and PA at 69 and 65 percent, respectively. Reductions (generally less than 50 percent) in total phosphorus also were observed, which might have been tempered by increases in the dissolved fraction observed in PIP and PA. Conversely, PC results indicated a slight reduction in dissolved phosphorus but failed to meet statistical significance. E. coli and Enterococci were reduced by about 80 percent for PC, almost twice the amount observed for PIP and PA.Results for the PIP and PC surfaces initially indicated higher pollutant load reduction than results for the PA surface. The efficiency of PIP and PC surfaces capturing sediment, however, led to a decline in infiltration rates that resulted in more runoff flowing over, not through, the permeable surface. This result led to a decline in treatment until the permeable surface was partially restored through maintenance practices, to which PIP responded more dramatically than PC or PA. Conversely, the PA surface was capable of infiltrating most of the influent runoff volume during the monitoring period and, thus, continued to provide some level of treatment. The combined effect of underdrain and overflow drainage resulted in similar pollutant treatment for all three permeable surfaces.Temperatures below each permeable surface generally followed changes in air temperature with a more gradual response observed in deeper layers. Therefore, permeable pavement may do little to mitigate heated runoff during summer. During winter, deeper layers remained above freezing even when air temperature was below freezing. Although temperatures were not high enough to melt snow or ice accumulated on the surface, temperatures below each permeable pavement did allow void spaces to remain open, which promoted infiltration of melted ice and snow as air temperatures rose above freezing. These open void spaces could potentially reduce the need for application of deicing agents in winter because melted snow and ice would infiltrate, thereby preventing refreezing of pooled water in what is known as the “black ice” effect.
Monitoring Tensile Fatigue of Superelastic NiTi Wire in Liquids by Electrochemical Potential
NASA Astrophysics Data System (ADS)
Racek, Jan; Stora, Marc; Šittner, Petr; Heller, Luděk; Kopeček, Jaromir; Petrenec, Martin
2015-06-01
Fatigue of superelastic NiTi wires was investigated by cyclic tension in simulated biofluid. The state of the surface of the fatigued NiTi wire was monitored by following the evolution of the electrochemical open circuit potential (OCP) together with macroscopic stresses and strains. The ceramic TiO2 oxide layer on the NiTi wire surface cannot withstand the large transformation strain and fractures in the first cycle. Based on the analysis of the results of in situ OCP experiments and SEM observation of cracks, it is claimed that the cycled wire surface develops mechanochemical reactions at the NiTi/liquid interface leading to cumulative generation of hydrogen, uptake of the hydrogen by the NiTi matrix, local loss of the matrix strength, crack transfer into the NiTi matrix, accelerated crack growth, and ultimately to the brittle fracture of the wire. Fatigue degradation is thus claimed to originate from the mechanochemical processes occurring at the excessively deforming surface not from the accumulation of defects due to energy dissipative bulk deformation processes. Ironically, combination of the two exciting properties of NiTi—superelasticity due to martensitic transformation and biocompatibility due to the protective TiO2 surface oxide layer—leads to excessive fatigue damage during cyclic mechanical loading in biofluids.
Kögler, Martin; Paul, Andrea; Anane, Emmanuel; Birkholz, Mario; Bunker, Alex; Viitala, Tapani; Maiwald, Michael; Junne, Stefan; Neubauer, Peter
2018-06-08
The application of Raman spectroscopy as a monitoring technique for bioprocesses is severely limited by a large background signal originating from fluorescing compounds in the culture media. Here we compare time-gated Raman (TG-Raman)-, continuous wave NIR-process Raman (NIR-Raman) and continuous wave micro-Raman (micro-Raman) approaches in combination with surface enhanced Raman spectroscopy (SERS) for their potential to overcome this limit. For that purpose, we monitored metabolite concentrations of Escherichia coli bioreactor cultivations in cell-free supernatant samples. We investigated concentration transients of glucose, acetate, AMP and cAMP at alternating substrate availability, from deficiency to excess. Raman and SERS signals were compared to off-line metabolite analysis of carbohydrates, carboxylic acids and nucleotides. Results demonstrate that SERS, in almost all cases, led to a higher number of identifiable signals and better resolved spectra. Spectra derived from the TG-Raman were comparable to those of micro-Raman resulting in well-discernable Raman peaks, which allowed for the identification of a higher number of compounds. In contrast, NIR-Raman provided a superior performance for the quantitative evaluation of analytes, both with and without SERS nanoparticles when using multivariate data analysis. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.
Iglesias, Alejandra; Nebot, Carolina; Vázquez, Beatriz I.; Coronel-Olivares, Claudia; Franco Abuín, Carlos M.; Cepeda, Alberto
2014-01-01
Drug residues are considered environmental contaminants, and their occurrence has recently become a matter of concern. Analytical methods and monitoring systems are therefore required to control the continuous input of these drug residues into the environment. This article presents a suitable HPLC-ESI-MS/MS method for the simultaneous extraction, detection and quantification of residues of 13 drugs (antimicrobials, glucocorticosteroids, anti-inflammatories, anti-hypertensives, anti-cancer drugs and triphenylmethane dyes) in surface water. A monitoring study with 549 water samples was carried out in northwestern Spain to detect the presence of drug residues over two sampling periods during 2010, 2011 and 2012. Samples were collected from rural areas with and without farming activity and from urban areas. The 13 analytes were detected, and 18% of the samples collected showed positive results for the presence of at least one analyte. More collection sites were located in rural areas than in urban areas. However, more positive samples with higher concentrations and a larger number of analytes were detected in samples collected from sites located after the discharge of a WWTP. Results indicated that the WWTPs seems to act as a concentration point. Positive samples were also detected at a site located near a drinking water treatment plant. PMID:24837665
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-03-26
The Tansitor Electronics, Inc. site, located in Bennington, Bennington County, Vermont, has been proposed by the Environmental Protection Agency for inclusion onto the National Priorities List (NPL). Most of the investigations into site contamination have been coordinated by the Vermont Department of Environmental Conservation. Tansitor Electronics, Inc. operates an electronic capacitor manufacturing facility on a 36-acre parcel located along Route 9 and about 3 miles west of downtown Bennington, Bennington County, Vermont. The site is of potential public health concern because of the risk to human health resulting from possible exposure to hazardous substances at concentrations that may result inmore » adverse health effects. There are no monitoring data or information indicating that appreciable human exposure to site-related contaminants is currently occurring. However, additional monitoring data or information is needed to evaluate the on-site and off-site ground water (shallow aquifer and bedrock aquifer), ambient air, sediment, surface soil, and surface water. The monitoring data or information may form the basis of future ATSDR evaluation of the undefined human exposure pathways and public health implications associated with these pathways. The site is not recommended for follow-up health activities at this time.« less
Adie, E J; Kalinka, S; Smith, L; Francis, M J; Marenghi, A; Cooper, M E; Briggs, M; Michael, N P; Milligan, G; Game, S
2002-11-01
G protein-coupled receptors (GPCRs) are the largest family of proteins involved in transmembrane signal transduction and are actively studied because of their suitability as therapeutic small-molecule drug targets. Agonist activation of GPCRs almost invariably results in the receptor being desensitized. One of the key events in receptor desensitization is the sequestration of the receptor from the cell surface into acidic intracellular endosomes. Therefore, a convenient, generic, and noninvasive monitor of this process is desirable. A novel, pH-sensitive, red-excited fluorescent dye, CypHer 5, was synthesized. This dye is non-fluorescent at neutral pH and is fluorescent at acidic pH. Anti-epitope antibodies labeled with this dye were internalized in an agonist concentration- and time-dependent manner, following binding on live cells to a range of GPCRs that had been modified to incorporate the epitope tags in their extracellular N-terminal domain. This resulted in a large signal increase over background. When protonated, the red fluorescence of CypHer 5 provides a generic reagent suitable for monitoring the internalization of GPCRs into acidic vesicles. This approach should be amenable to the study of many other classes of cell surface receptors that also internalize following stimulation.
Weidemaier, Kristin; Carruthers, Erin; Curry, Adam; Kuroda, Melody; Fallows, Eric; Thomas, Joseph; Sherman, Douglas; Muldoon, Mark
2015-04-02
We describe a new approach for the real-time detection and identification of pathogens in food and environmental samples undergoing culture. Surface Enhanced Raman Scattering (SERS) nanoparticles are combined with a novel homogeneous immunoassay to allow sensitive detection of pathogens in complex samples such as stomached food without the need for wash steps or extensive sample preparation. SERS-labeled immunoassay reagents are present in the cultural enrichment vessel, and the signal is monitored real-time through the wall of the vessel while culture is ongoing. This continuous monitoring of pathogen load throughout the enrichment process enables rapid, hands-free detection of food pathogens. Furthermore, the integration of the food pathogen immunoassay directly into the enrichment vessel enables fully biocontained food safety testing, thereby significantly reducing the risk of contaminating the surrounding environment with enriched pathogens. Here, we present experimental results showing the detection of E. coli, Salmonella, or Listeria in several matrices (raw ground beef, raw ground poultry, chocolate milk, tuna salad, spinach, brie cheese, hot dogs, deli turkey, orange juice, cola, and swabs and sponges used to sample a stainless steel surface) using the SERS system and demonstrate the accuracy of the approach compared to plating results. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Xiuhong; Cheng, Xiao; Yang, Rongjin; Liu, Qiang; Qiu, Yubao; Zhang, Jialin; Cai, Erli; Zhao, Long
2016-01-01
Of the modern technologies in polar-region monitoring, the remote sensing technology that can instantaneously form large-scale images has become much more important in helping acquire parameters such as the freezing and melting of ice as well as the surface temperature, which can be used in the research of global climate change, Antarctic ice sheet responses, and cap formation and evolution. However, the acquirement of those parameters is impacted remarkably by the climate and satellite transit time which makes it almost impossible to have timely and continuous observation data. In this research, a wireless sensor-based online monitoring platform (WSOOP) for the extreme polar environment is applied to obtain a long-term series of data which is site-specific and continuous in time. Those data are compared and validated with the data from a weather station at Zhongshan Station Antarctica and the result shows an obvious correlation. Then those data are used to validate the remote sensing products of the freezing and melting of ice and the surface temperature and the result also indicated a similar correlation. The experiment in Antarctica has proven that WSOOP is an effective system to validate remotely sensed data in the polar region. PMID:27869668
Li, Xiuhong; Cheng, Xiao; Yang, Rongjin; Liu, Qiang; Qiu, Yubao; Zhang, Jialin; Cai, Erli; Zhao, Long
2016-11-17
Of the modern technologies in polar-region monitoring, the remote sensing technology that can instantaneously form large-scale images has become much more important in helping acquire parameters such as the freezing and melting of ice as well as the surface temperature, which can be used in the research of global climate change, Antarctic ice sheet responses, and cap formation and evolution. However, the acquirement of those parameters is impacted remarkably by the climate and satellite transit time which makes it almost impossible to have timely and continuous observation data. In this research, a wireless sensor-based online monitoring platform (WSOOP) for the extreme polar environment is applied to obtain a long-term series of data which is site-specific and continuous in time. Those data are compared and validated with the data from a weather station at Zhongshan Station Antarctica and the result shows an obvious correlation. Then those data are used to validate the remote sensing products of the freezing and melting of ice and the surface temperature and the result also indicated a similar correlation. The experiment in Antarctica has proven that WSOOP is an effective system to validate remotely sensed data in the polar region.
Visual detection of multiple genetically modified organisms in a capillary array.
Shao, Ning; Chen, Jianwei; Hu, Jiaying; Li, Rong; Zhang, Dabing; Guo, Shujuan; Hui, Junhou; Liu, Peng; Yang, Litao; Tao, Sheng-Ce
2017-01-31
There is an urgent need for rapid, low-cost multiplex methodologies for the monitoring of genetically modified organisms (GMOs). Here, we report a C[combining low line]apillary A[combining low line]rray-based L[combining low line]oop-mediated isothermal amplification for M[combining low line]ultiplex visual detection of nucleic acids (CALM) platform for the simple and rapid monitoring of GMOs. In CALM, loop-mediated isothermal amplification (LAMP) primer sets are pre-fixed to the inner surface of capillaries. The surface of the capillary array is hydrophobic while the capillaries are hydrophilic, enabling the simultaneous loading and separation of the LAMP reaction mixtures into each capillary by capillary forces. LAMP reactions in the capillaries are then performed in parallel, and the results are visually detected by illumination with a hand-held UV device. Using CALM, we successfully detected seven frequently used transgenic genes/elements and five plant endogenous reference genes with high specificity and sensitivity. Moreover, we found that measurements of real-world blind samples by CALM are consistent with results obtained by independent real-time PCRs. Thus, with an ability to detect multiple nucleic acids in a single easy-to-operate test, we believe that CALM will become a widely applied technology in GMO monitoring.
Iglesias, Alejandra; Nebot, Carolina; Vázquez, Beatriz I; Coronel-Olivares, Claudia; Abuín, Carlos M Franco; Cepeda, Alberto
2014-05-15
Drug residues are considered environmental contaminants, and their occurrence has recently become a matter of concern. Analytical methods and monitoring systems are therefore required to control the continuous input of these drug residues into the environment. This article presents a suitable HPLC-ESI-MS/MS method for the simultaneous extraction, detection and quantification of residues of 13 drugs (antimicrobials, glucocorticosteroids, anti-inflammatories, anti-hypertensives, anti-cancer drugs and triphenylmethane dyes) in surface water. A monitoring study with 549 water samples was carried out in northwestern Spain to detect the presence of drug residues over two sampling periods during 2010, 2011 and 2012. Samples were collected from rural areas with and without farming activity and from urban areas. The 13 analytes were detected, and 18% of the samples collected showed positive results for the presence of at least one analyte. More collection sites were located in rural areas than in urban areas. However, more positive samples with higher concentrations and a larger number of analytes were detected in samples collected from sites located after the discharge of a WWTP. Results indicated that the WWTPs seems to act as a concentration point. Positive samples were also detected at a site located near a drinking water treatment plant.
Spiral Bevel Gear Damage Detection Using Decision Fusion Analysis
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Handschuh, Robert F.; Afjeh, Abdollah A.
2002-01-01
A diagnostic tool for detecting damage to spiral bevel gears was developed. Two different monitoring technologies, oil debris analysis and vibration, were integrated using data fusion into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual monitoring technologies. This diagnostic tool was evaluated by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spiral Bevel Gear Fatigue Rigs. Data was collected during experiments performed in this test rig when pitting damage occurred. Results show that combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spiral bevel gears.
Coastal water monitoring using a vertical profiler
NASA Astrophysics Data System (ADS)
Kim, Dong Guk; Seo, Seongbong; Park, Young-Gyu; Min, Hong Sik
2017-04-01
Using a profiler system, the Aqualog, composed of a moored wire and a carrier in which a CTD was installed, we have been monitoring coastal water in Korea since August 2016. With this monitoring system, we were able to observe rapid warming of surface water that resulted in large damage to fish farms. The profiles showed that the warming was associated with low salinity water due to the fresh water discharge from the Yangtze River. We also observed change in water properties due to a typhoon. Along the Korean coast there are many aquafarms, which are becoming more vulnerable to environmental change. With the data from the profiler we would be able to help the aquafarms to sustain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC
2009-09-01
This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2010 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2010 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contaminationmore » and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2010 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2010 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2010 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2010) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.« less
Monitoring Mediterranean marine pollution using remote sensing and hydrodynamic modelling
NASA Astrophysics Data System (ADS)
La Loggia, Goffredo; Capodici, Fulvio; Ciraolo, Giuseppe; Drago, Aldo; Maltese, Antonino
2011-11-01
Human activities contaminate both coastal areas and open seas, even though impacts are different in terms of pollutants, ecosystems and recovery time. In particular, Mediterranean offshore pollution is mainly related to maritime transport of oil, accounting for 25% of the global maritime traffic and, during the last 25 years, for nearly 7% of the world oil accidents, thus causing serious biological impacts on both open sea and coastal zone habitats. This paper provides a general review of maritime pollution monitoring using integrated approaches of remote sensing and hydrodynamic modeling; focusing on the main results of the MAPRES (Marine pollution monitoring and detection by aerial surveillance and satellite images) research project on the synergistic use of remote sensing, forecasting, cleanup measures and environmental consequences. The paper also investigates techniques of oil spill detection using SAR images, presenting the first results of "Monitoring of marine pollution due to oil slick", a COSMO-SkyMed funded research project where X-band SAR constellation images provided by the Italian Space Agency are used. Finally, the prospect of using real time observations of marine surface conditions is presented through CALYPSO project (CALYPSO-HF Radar Monitoring System and Response against Marine Oil Spills in the Malta Channel), partly financed by the EU under the Operational Programme Italia-Malta 2007-2013. The project concerns the setting up of a permanent and fully operational HF radar observing system, capable of recording surface currents (in real-time with hourly updates) in the stretch of sea between Malta and Sicily. A combined use of collected data and numerical models, aims to optimize intervention and response in the case of marine oil spills.
Real-time monitoring of moisture levels in wound dressings in vitro: an experimental study.
McColl, David; Cartlidge, Brian; Connolly, Patricia
2007-10-01
Retaining an appropriate level of moisture at the interface between a healing wound and an applied dressing is considered to be critical for effective wound healing. Failure to control exudate at this interface can result in maceration or drying out of the wound surface. The ability to control moisture balance at the wound interface is therefore a key aspect of wound dressing performance. To date it has not been possible to monitor in any effective manner the distribution of moisture within dressings or how this varies with time. A new measurement system is presented based on sensors placed at the wound/dressing interface which are capable of monitoring moisture levels in real time. The system comprises a model wound bed and sensor array complete with fluid injection path to mimic exudate flow. Eight monitoring points, situated beneath the test dressing, allow the moisture profile across the complete dressing to be measured both during and after fluid injection. The system has been used to evaluate the performance of four foam dressings, a composite hydrofibre dressing and a film dressing. Stark contrasts in the performance of the wound contact layer were found between the different wound dressing types. The composite hydrofibre dressing retained moisture at the wound interface throughout the experiments while areas of the foam dressing quickly became dry, even during constant injection of fluid. The abundance of sensors allowed a moisture map of the surface of the wound dressing to be constructed, illustrating that the moisture profile was not uniform across several of the dressings tested during absorption and evaporation of liquid. These results raise questions as to how the dressings behave on a wound in vivo and indicate the need for a similar clinical monitoring system for tracking wound moisture levels.
NASA Astrophysics Data System (ADS)
Ceballos, Jorge; Micheletti, Natan; Rabatel, Antoine; Mölg, Nico; Zemp, Michael
2015-04-01
Colombia (South America) has six small glaciers (total glacierized area of 45 Km2); their geographical location, close to zero latitude, makes them very sensitive to climate changes. An extensive monitoring program is being performed since 2006 on two glaciers, with international cooperation supports. This presentation summarizes the results of glacier changes in Colombia and includes the latest results obtained within the CATCOS Project - Phase 1 (Capacity Building and Twinning for Climate Observing Systems) signed between Colombia and Switzerland, and within the Joint Mixte Laboratory GREAT-ICE (IRD - France), with the application of LiDAR technology and GPR-based ice thickness measurements at Conejeras Glacier. Conejeras Glacier (Lat. N. 4° 48' 56"; Long. W. 75° 22' 22"; Alt. Max. 4915m.; Alt. Min. 4730m. Area 0.2 Km2) is located on the north-western side of Santa Isabel Volcano. This glacier belongs to global glacier monitoring network of the World Glacier Monitoring Service (WGMS-ID: 2721). The surface mass balance is calculated monthly using the direct glaciological method. Between April 2006 and May 2014, Conejeras Glacier showed a cumulative loss of -21 m w.e. The CATCOS Project allowed to improve the glacier monitoring system in Colombia with two main actions: (1) a terrestrial laser scanner survey (RIEGL VZ-6000 terrestrial laser scanner, property of Universities of Lausanne and Fribourg); and (2) ice thickness measurements (Blue System Integration Ltd. Ice Penetrating Radar of property of IRD). The terrestrial laser-scanning survey allowed to realize an accurate digital terrain model of the glacier surface with 13 million points and a decimetric resolution. Ice thickness measurements showed an average glacier thickness of 22 meters and a maximum of 52 meters.
OGO-6 gas-surface energy transfer experiment
NASA Technical Reports Server (NTRS)
Mckeown, D.; Dummer, R. S.; Bowyer, J. M., Jr.; Corbin, W. E., Jr.
1973-01-01
The kinetic energy flux of the upper atmosphere was analyzed using OGO-6 data. Energy transfer between 10 microwatts/sq cm and 0.1 W/sq cm was measured by short-term frequency changes of temperature-sensitive quartz crystals used in the energy transfer probe. The condition of the surfaces was continuously monitored by a quartz crystal microbalance to determine the effect surface contamination had on energy accommodation. Results are given on the computer analysis and laboratory tests performed to optimize the operation of the energy transfer probe. Data are also given on the bombardment of OGO-6 surfaces by high energy particles. The thermoelectrically-cooled quartz crystal microbalance is described in terms of its development and applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.; Environmental Science Division
This document summarizes the performance of the groundwater and surface water restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Murdock, Nebraska, during the initial period of systems operation, from June 2005 through December 2006. In the Murdock project, several innovative technologies are being used to remove carbon tetrachloride contamination from a shallow aquifer underlying the town, as well as from water naturally discharged to the surface at the headwaters of a small creek (a tributary to Pawnee Creek) north of the town (Figure 1.1). Themore » restoration activities at Murdock are being conducted by the CCC/USDA as a non-time-critical removal action under the regulatory authority and supervision of the U.S. Environmental Protection Agency (EPA), Region VII. Argonne National Laboratory assisted the CCC/USDA by providing technical oversight for the restoration effort and facilities during this review period. Included in this report are the results of all sampling and monitoring activities performed in accord with the EPA-approved Monitoring Plan for this site (Argonne 2006), as well as additional investigative activities conducted during the review period. This document presents overviews of the treatment facilities (Section 2) and site operations and activities (Section 3), then describes the groundwater, surface water, vegetation, and atmospheric monitoring results (Section 4) and modifications and costs during the review period (Section 5). Section 6 summarizes the initial period of operation.« less
,
1994-01-01
In 1990, the U.S. Geological Survey (USGS), in cooperation with the Idaho Department of Health and Welfare, Division of Environmental Quality, implemented a statewide water-quality monitoring program in response to Idaho's antidegradation policy as required by the Clean Water Act. The program objective is to provide water-quality managers with a coordinated statewide network to detect trends in surface-water quality. The monitoring program includes the collection and analysis of samples from 56 sites on the Bear, Clearwater, Kootenai, Pend Oreille, Salmon, Snake, and Spokane Rivers and their tributaries (fig. 1). Samples are collected every year at 5 sites (annual sites) in drainage basins where long-term water-quality management is practiced, every other year at 19 sites (biennial sites) in basins where land and water uses change slowly, and every third year at 32 sites (triennial sites) where future development may affect water quality. Each year, 25 of the 56 sites are sampled. This report discusses results of sampling at five annual sites. During water years 1990-93 (October 1, 1989, through September 30, 1993), samples were collected six times per year at the five annual sites (fig. 1). Onsite analyses were made for discharge, specific conductance, pH, temperature, dissolved oxygen, bacteria (fecal coliform and fecal streptococci), and alkalinity. Laboratory analyses were made for major ions, nutrients, trace elements, and suspended sediment. Suspended sediment, nitrate, fecal coliform, trace elements, and specific conductance were used to characterize surface-water quality. Because concentrations of all trace elements except zinc were near detection limits, only zinc is discussed.
Impervious surfaces and sewer pipe effects on stormwater runoff temperature
NASA Astrophysics Data System (ADS)
Sabouri, F.; Gharabaghi, B.; Mahboubi, A. A.; McBean, E. A.
2013-10-01
The warming effect of the impervious surfaces in urban catchment areas and the cooling effect of underground storm sewer pipes on stormwater runoff temperature are assessed. Four urban residential catchment areas in the Cities of Guelph and Kitchener, Ontario, Canada were evaluated using a combination of runoff monitoring and modelling. The stormwater level and water temperature were monitored at 10 min interval at the inlet of the stormwater management ponds for three summers 2009, 2010 and 2011. The warming effect of the ponds is also studied, however discussed in detail in a separate paper. An artificial neural network (ANN) model for stormwater temperature was trained and validated using monitoring data. Stormwater runoff temperature was most sensitive to event mean temperature of the rainfall (EMTR) with a normalized sensitivity coefficient (Sn) of 1.257. Subsequent levels of sensitivity corresponded to the longest sewer pipe length (LPL), maximum rainfall intensity (MI), percent impervious cover (IMP), rainfall depth (R), initial asphalt temperature (AspT), pipe network density (PND), and rainfall duration (D), respectively. Percent impervious cover of the catchment area (IMP) was the key parameter that represented the warming effect of the paved surfaces; sensitivity analysis showed IMP increase from 20% to 50% resulted in runoff temperature increase by 3 °C. The longest storm sewer pipe length (LPL) and the storm sewer pipe network density (PND) are the two key parameters that control the cooling effect of the underground sewer system; sensitivity analysis showed LPL increase from 345 to 966 m, resulted in runoff temperature drop by 2.5 °C.
Effects of Flexible Dry Electrode Design on Electrodermal Activity Stimulus Response Detection.
Haddad, Peter A; Servati, Amir; Soltanian, Saeid; Ko, Frank; Servati, Peyman
2017-12-01
The focus of this research is to evaluate the effects of design parameters including surface area, distance between and geometry of dry flexible electrodes on electrodermal activity (EDA) stimulus response detection. EDA is a result of the autonomic nervous system being stimulated, which causes sweat and changes the electrical characteristics of the skin. Standard silver/silver chloride (Ag/AgCl) EDA electrodes are rigid and lack conformability in contact with skin. In this study, flexible dry Ag/AgCl EDA electrodes were fabricated on a compliant substrate, used to monitor EDA stimulus responses and compared to results simultaneously collected by rigid dry Ag/AgCl electrodes. A repeatable fabrication process for flexible Ag/AgCl electrodes has been established. Surface area, distance between and geometry of electrodes are shown to affect the detectability of the EDA response and the minimum number of sweat glands to be covered by the electrodes has been estimated at 140, or more, in order to maintain functionality. The optimal flexible EDA electrode is a serpentine design with a 0.15 cm 2 surface area and a 0.20 cm distance with an average Pearson correlation coefficient of . Fabrication of flexible electrodes is described and an understanding of the effects of electrode designs on the EDA stimulus response detection has been established and is potentially related to the coverage of sweat glands. This work presents a novel systematic approach to understand the effects of electrode designs on monitoring EDA which is of importance for the design of wearable EDA monitoring devices.
NASA Astrophysics Data System (ADS)
Prokešová, Roberta; Kardoš, Miroslav; Tábořík, Petr; Medveďová, Alžbeta; Stacke, Václav; Chudý, František
2014-11-01
Large earthflow-type landslides are destructive mass movement phenomena with highly unpredictable behaviour. Knowledge of earthflow kinematics is essential for understanding the mechanisms that control its movements. The present paper characterises the kinematic behaviour of a large earthflow near the village of Ľubietová in Central Slovakia over a period of 35 years following its most recent reactivation in 1977. For this purpose, multi-temporal spatial data acquired by point-based in-situ monitoring and optical remote sensing methods have been used. Quantitative data analyses including strain modelling and DEM differencing techniques have enabled us to: (i) calculate the annual landslide movement rates; (ii) detect the trend of surface displacements; (iii) characterise spatial variability of movement rates; (iv) measure changes in the surface topography on a decadal scale; and (v) define areas with distinct kinematic behaviour. The results also integrate the qualitative characteristics of surface topography, in particular the distribution of surface structures as defined by a high-resolution DEM, and the landslide subsurface structure, as revealed by 2D resistivity imaging. Then, the ground surface kinematics of the landslide is evaluated with respect to the specific conditions encountered in the study area including slope morphology, landslide subsurface structure, and local geological and hydrometeorological conditions. Finally, the broader implications of the presented research are discussed with particular focus on the role that strain-related structures play in landslide kinematic behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dylla-Spears, R.; Wong, L.; Shen, N.
Particle adsorption was explored in a model optical polishing system, consisting of silica colloids and like-charged silica surfaces. The adsorption was monitored in situ under various suspension conditions, in the absence of surfactants or organic modifiers, using a quartz crystal microbalance with dissipation monitoring (QCM-D). Changes in surface coverage with particle concentration, particle size, pH, ionic strength and ionic composition were quantified by QCM-D and further characterized ex situ by atomic force microscopy (AFM). A Monte Carlo model was used to describe the kinetics of particle deposition and provide insights on scaling with particle concentration. Transitions from near-zero adsorption tomore » measurable adsorption were compared with equilibrium predictions made using the Deraguin-Verwey-Landau-Overbeek (DLVO) theory. In addition, the impact of silica surface roughness on the propensity for particle adsorption was studied on various spatial scale lengths by intentionally roughening the QCM sensor surface using polishing methods. It was found that a change in silica surface roughness at the AFM scale from 1.3 nm root-mean-square (rms) to 2.7 nm rms resulted in an increase in silica particle adsorption of 3-fold for 50-nm diameter particles and 1.3-fold for 100-nm diameter particles—far exceeding adsorption observed by altering suspension conditions alone, potentially because roughness at the proper scale reduces the total separation distance between particle and surface.« less
Calver, Christina F; Liu, Hsiao-Wei; Cosa, Gonzalo
2015-11-03
Herein we report the real-time observation of the interaction dynamics between cationic liposomes flowing in solution and a surface-immobilized charged scaffolding formed by the deposition of conjugated polyanion poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene (MPS-PPV) onto 100-nm-diameter SiO2 nanoparticles (NPs). Contact of the freely floating liposomes with the polymer-coated surfaces led to the formation of supported lipid bilayers (SLBs). The interaction of the incoming liposomes with MPS-PPV adsorbed on individual SiO2 nanoparticles promoted the deaggregation of the polymer conformation and led to large emission intensity enhancements. Single-particle total internal reflection fluorescence microscopy studies exploited this phenomenon as a way to monitor the deformation dynamics of liposomes on surface-immobilized NPs. The MPS-PPV emission enhancement (up to 25-fold) reflected on the extent of membrane contact with the surface of the NP and was correlated with the size of the incoming liposome. The time required for the MPS-PPV emission to reach a maximum (ranging from 400 to 1000 ms) revealed the dynamics of membrane deformation and was also correlated with the liposome size. Cryo-TEM experiments complemented these results by yielding a structural view of the process. Immediately following the mixing of liposomes and NPs the majority of NPs had one or more adsorbed liposomes, yet the presence of a fully formed SLB was rare. Prolonged incubation of liposomes and NPs showed completely formed SLBs on all of the NPs, confirming that the liposomes eventually ruptured to form SLBs. We foresee that the single-particle studies we report herein may be readily extended to study membrane dynamics of other lipids including cellular membranes in live cell studies and to monitor the formation of polymer-cushioned SLBs.
NASA Astrophysics Data System (ADS)
Houborg, R.; McCabe, M. F.; Rosas Aguilar, J.; Anderson, M. C.; Hain, C.
2014-12-01
The Middle East and North Africa (MENA) region is an area characterized by limited fresh water resources, an often inefficient use of these, and relatively poor in-situ monitoring as a result of sparse meteorological observations. Enhanced satellite-based monitoring systems are needed for aiding local water resource and agricultural management activities in these data poor arid environments. A multi-sensor and multi-scale land-surface flux monitoring capacity is being implemented over parts of MENA in order to provide meaningful decision support at relevant spatiotemporal scales. The integrated modeling system uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI), and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) in conjunction with model reanalysis data and remotely sensed data from polar orbiting (Landsat and MODIS; MODerate resolution Imaging Spectroradiometer) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate daily estimates of land surface fluxes down to sub-field scale (i.e. 30 m). Within this modeling system, thermal infrared satellite data provide information about the sub-surface moisture status and plant stress, obviating the need for precipitation input and error-prone soil surface characterizations. In this study, the integrated ALEXI-DisALEXI-STARFM framework is applied over an irrigated agricultural region in Saudi Arabia, and the daily estimates of Landsat scale water, energy and carbon fluxes are evaluated against available flux tower observations and other independent in-situ and satellite-based records. The study addresses the challenges associated with time-continuous sub-field scale mapping of land-surface fluxes in a harsh desert environment, and looks into the optimization of model descriptions and parameterizations and meteorological forcing and vegetation inputs for application over these regions.
NASA Astrophysics Data System (ADS)
Di Tullio, M.; Nocchi, F.; Camplani, A.; Emanuelli, N.; Nascetti, A.; Crespi, M.
2018-04-01
The glaciers are a natural global resource and one of the principal climate change indicator at global and local scale, being influenced by temperature and snow precipitation changes. Among the parameters used for glacier monitoring, the surface velocity is a key element, since it is connected to glaciers changes (mass balance, hydro balance, glaciers stability, landscape erosion). The leading idea of this work is to continuously retrieve glaciers surface velocity using free ESA Sentinel-1 SAR imagery and exploiting the potentialities of the Google Earth Engine (GEE) platform. GEE has been recently released by Google as a platform for petabyte-scale scientific analysis and visualization of geospatial datasets. The algorithm of SAR off-set tracking developed at the Geodesy and Geomatics Division of the University of Rome La Sapienza has been integrated in a cloud based platform that automatically processes large stacks of Sentinel-1 data to retrieve glacier surface velocity field time series. We processed about 600 Sentinel-1 image pairs to obtain a continuous time series of velocity field measurements over 3 years from January 2015 to January 2018 for two wide glaciers located in the Northern Patagonian Ice Field (NPIF), the San Rafael and the San Quintin glaciers. Several results related to these relevant glaciers also validated with respect already available and renown software (i.e. ESA SNAP, CIAS) and with respect optical sensor measurements (i.e. LANDSAT8), highlight the potential of the Big Data analysis to automatically monitor glacier surface velocity fields at global scale, exploiting the synergy between GEE and Sentinel-1 imagery.
NASA Astrophysics Data System (ADS)
So, Hongyun; Lim, Jongwoo; Suria, Ateeq J.; Senesky, Debbie G.
2017-07-01
Highly antireflective heterostructured aluminum gallium nitride (AlGaN)/GaN ultraviolet (UV) photodetectors were demonstrated using a combination of inverted pyramidal surfaces and zinc oxide nanorod arrays (i.e., antireflective surface modification) to enhance the optical sensitivity. The microfabricated hierarchical surfaces significantly reduced the average surface reflectance to less than 0.3% in the UV region and less than 1% in the visible light region, allowing near-perfect absorption of incident light regardless of the angle of incidence (5-80°). As a result, the photodetectors fabricated on highly antireflective AlGaN/GaN surfaces showed higher sensitivity and responsivity over a broad range of incidence angles compared to photodetectors on planar AlGaN/GaN surfaces, supporting the use of a hierarchically modified sensing surface for omnidirectional UV monitoring with higher sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virginia L. Finley
The purpose of this report is to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of the Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2001 environmental surveillance and monitoring program for PPPL are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2001. PPPL has engaged in fusion energy research since 1951. The vision of the Laboratory is to create innovations to make fusion power a practicalmore » reality--a clean, alternative energy source. The Year 2001 marked the third year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. In 2001, PPPL's radiological environmental monitoring program measured tritium in the air at on- and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations; also included in PPPL's radiological environmental monitoring program, are water monitoring--precipitation, ground-, surface-, and waste-waters. PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the D-site stack; the data are presented in this report. Groundwater monitoring continue d under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the low levels of volatile organic compounds in an area adjacent to PPPL. In 2001, PPPL was in compliance with its permit limits for surface and sanitary discharges and had no reportable releases. Additionally, as part of DOE's program for the purchase of recycled content and other environmentally preferred products, PPPL has ranked in the excellent category of 80 to 90% of the goal.« less
Monitoring Earth Surface Dynamics With Optical Imagery
NASA Astrophysics Data System (ADS)
Leprince, Sébastien; Berthier, Etienne; Ayoub, François; Delacourt, Christophe; Avouac, Jean-Philippe
2008-01-01
The increasing availability of high-quality optical satellite images should allow, in principle, continuous monitoring of Earth's surface changes due to geologic processes, climate change, or anthropic activity. For instance, sequential optical images have been used to measure displacements at Earth's surface due to coseismic ground deformation [e.g., Van Puymbroeck et al., 2000], ice flow [Scambos et al., 1992; Berthier et al., 2005], sand dune migration [Crippen, 1992], and landslides [Kääb, 2002; Delacourt et al., 2004]. Surface changes related to agriculture, deforestation, urbanization, and erosion-which do not involve ground displacement-might also be monitored, provided that the images can be registered with sufficient accuracy. Although the approach is simple in principle, its use is still limited, mainly because of geometric distortion of the images induced by the imaging system, biased correlation techniques, and implementation difficulties.
Currently accepted culture-based monitoring methods for fecal indicator bacteria in surface waters take at least 24 hr to determine if unacceptable levels of fecal pollution have reached our recreational beaches. During this waiting period changing water conditions may result eit...
NASA Astrophysics Data System (ADS)
Tower, Joshua P.; Kamieniecki, Emil; Nguyen, M. C.; Danel, Adrien
1999-08-01
The Surface Charge Profiler (SCP) has been introduced for monitoring and development of silicon epitaxial processes. The SCP measures the near-surface doping concentration and offers advantages that lead to yield enhancement in several ways. First, non-destructive measurement technology enables in-line process monitoring, eliminating the need to sacrifice production wafers for resistivity measurements. Additionally, the full-wafer mapping capability helps in development of improved epitaxial growth processes and early detection of reactor problems. As examples, we present the use of SCP to study the effects of susceptor degradation in barrel reactors and to study autodoping for development of improved dopant uniformity.
Barlow, Jeannie R.; Coupe, Richard H.
2012-01-01
During April 2007 through September 2008, the USGS collected hydrogeologic and water-quality data from a site on the Bogue Phalia to evaluate the role of groundwater and surface-water interaction on the transport of nitrate to the shallow sand and gravel aquifer underlying the Mississippi Alluvial Plain in northwestern Mississippi. A two-dimensional groundwater/surface-water exchange model was developed using temperature and head data and VS2DH, a variably saturated flow and energy transport model. Results from this model showed that groundwater/surface-water exchange at the site occurred regularly and recharge was laterally extensive into the alluvial aquifer. Nitrate was consistently reported in surface-water samples (n = 52, median concentration = 39.8 μmol/L) although never detected in samples collected from in-stream piezometers or shallow monitoring wells adjacent to the stream (n = 46). These two facts, consistent detections of nitrate in surface water and no detections of nitrate in groundwater, coupled with model results that indicate large amounts of surface water moving through an anoxic streambed, support the case for denitrification and nitrate loss through the streambed.
NASA Astrophysics Data System (ADS)
Stadler, Philipp; Farnleitner, Andreas H.; Sommer, Regina; Kumpan, Monika; Zessner, Matthias
2014-05-01
For the near real time and on-site detection of microbiological fecal pollution of water, the measurement of beta-D- Glucuronidase (GLUC) enzymatic activity has been suggested as a surrogate parameter and has been already successfully operated for water quality monitoring of ground water resources (Ryzinska-Paier et al. 2014). Due to possible short measure intervals of three hours, this method has high potential as a water quality monitoring tool. While cultivation based standard determination takes more than one working day (Cabral 2010) the potential advantage of detecting the GLUC activity is the high temporal measuring resolution. Yet, there is still a big gap of knowledge on the fecal indication capacity of GLUC (specificity, sensitivity, persistence, etc.) in relation to potential pollution sources and catchment conditions (Cabral 2010, Ryzinska-Paier et al. 2014). Furthermore surface waters are a big challenge for automated detection devices in a technical point of view due to the high sediment load during event conditions. This presentation shows results gained form two years of monitoring in an experimental catchment (HOAL) dominated by agricultural land use. Two enzymatic measurement devices are operated parallel at the catchment outlet to test the reproducibility and precision of the method. Data from continuous GLUC monitoring under both base flow and event conditions is compared with reference samples analyzed by standardized laboratory methods for fecal pollution detection (e.g. ISO 16649-1, Colilert18). It is shown that rapid enzymatic on-site GLUC determination can successfully be operated from a technical point of view for surface water quality monitoring under the observed catchment conditions. The comparison of enzyme activity with microbiological standard analytics reveals distinct differences in the dynamic of the signals during event conditions. Cabral J. P. S. (2010) "Water Microbiology. Bacterial Pathogens and Water" International Journal of Environmental Research and Public Health 7 (10): 3657-3703. Ryzinska-Paier, G., T. Lendenfeld, K. Correa, P. Stadler, A.P. Blaschke, R. L. Mach, H. Stadler, AKT Kirschner und A.H. Farnleitner (2014) A sensitive and robust method for automated on-line monitoring of enzymatic activities in water and water resources. Water Sci. Technol. in press
Brittleness Effect on Rock Fatigue Damage Evolution
NASA Astrophysics Data System (ADS)
Nejati, Hamid Reza; Ghazvinian, Abdolhadi
2014-09-01
The damage evolution mechanism of rocks is one of the most important aspects in studying of rock fatigue behavior. Fatigue damage evolution of three rock types (onyx marble, sandstone and soft limestone) with different brittleness were considered in the present study. Intensive experimental tests were conducted on the chosen rock samples and acoustic emission (AE) sensors were used in some of them to monitor the fracturing process. Experimental tests indicated that brittleness strongly influences damage evolution of rocks in the course of static and dynamic loading. AE monitoring revealed that micro-crack density induced by the applied loads during different stages of the failure processes increases as rock brittleness increases. Also, results of fatigue tests on the three rock types indicated that the rock with the most induced micro-cracks during loading cycles has the least fatigue life. Furthermore, the condition of failure surfaces of the studied rocks samples, subjected to dynamic and static loading, were evaluated and it was concluded that the roughness of failure surfaces is influenced by loading types and rock brittleness. Dynamic failure surfaces were rougher than static ones and low brittle rock demonstrate a smoother failure surface compared to high brittle rock.
An analysis of spatial representativeness of air temperature monitoring stations
NASA Astrophysics Data System (ADS)
Liu, Suhua; Su, Hongbo; Tian, Jing; Wang, Weizhen
2018-05-01
Surface air temperature is an essential variable for monitoring the atmosphere, and it is generally acquired at meteorological stations that can provide information about only a small area within an r m radius ( r-neighborhood) of the station, which is called the representable radius. In studies on a local scale, ground-based observations of surface air temperatures obtained from scattered stations are usually interpolated using a variety of methods without ascertaining their effectiveness. Thus, it is necessary to evaluate the spatial representativeness of ground-based observations of surface air temperature before conducting studies on a local scale. The present study used remote sensing data to estimate the spatial distribution of surface air temperature using the advection-energy balance for air temperature (ADEBAT) model. Two target stations in the study area were selected to conduct an analysis of spatial representativeness. The results showed that one station (AWS 7) had a representable radius of about 400 m with a possible error of less than 1 K, while the other station (AWS 16) had the radius of about 250 m. The representable radius was large when the heterogeneity of land cover around the station was small.
NASA Astrophysics Data System (ADS)
Moshammer, Hanns; Neuberger, Manfred
At a central elementary school in the capital of Upper Austria children aged 7-10 years underwent repeated respiratory health checkups (questionnaires, diaries, spirometry). Between March and May 2001 the daily means of the signals of a diffusion charging sensor, measuring the "active surface" of suspended particles, and a photoelectric aerosol sensor, measuring the particle-bound polycyclic aromatic hydrocarbons, were related to spirometric results of the total 164 children examined and to the daily symptom scores of a susceptible subgroup. Significant reductions of forced vital capacity ( p=0.006) and forced expiratory volume in the first second ( p=0.001) and significant increases of wheezing ( p=0.001), shortness of breath ( p=0.041), cough in the evening ( p=0.031) and at night ( p=0.018) were found with increase of "active surface" of suspended particles measured at the adjacent outdoor monitoring station, but not with the increase of particle-bound polycyclic aromatic hydrocarbons. Monitoring "active surface" of particles with diameters of about 10 nm-1 μm by means of a diffusion charging sensor might provide additional information in surveillance of particulate matter for prevention of acute effects on respiratory health.
Experimental demonstration of remote, passive acousto-optic sensing.
Antonelli, Lynn; Blackmon, Fletcher
2004-12-01
Passively detecting underwater sound from the air can allow aircraft and surface vessels to monitor the underwater acoustic environment. Experimental research into an optical hydrophone is being conducted for remote, aerial detection of underwater sound. A laser beam is directed onto the water surface to measure the velocity of the vibrations occurring as the underwater acoustic signal reaches the water surface. The acoustically generated surface vibrations modulate the phase of the laser beam. Sound detection occurs when the laser is reflected back towards the sensor. Therefore, laser alignment on the specularly reflecting water surface is critical. As the water surface moves, the laser beam is reflected away from the photodetector and no signal is obtained. One option to mitigate this problem is to continually steer the laser onto a spot on the water surface that provides a direct back-reflection. Results are presented from a laboratory test that investigates the feasibility of the acousto-optic sensor detection on hydrostatic and hydrodynamic surfaces using a laser Doppler vibrometer in combination with a laser-based, surface normal glint tracker for remotely detecting underwater sound. This paper outlines the acousto-optic sensor and tracker concepts and presents experimental results comparing sensor operation under various sea surface conditions.
Importance of A Priori Vertical Ozone Profiles for TEMPO Air Quality Retrievals
NASA Astrophysics Data System (ADS)
Johnson, M. S.; Sullivan, J. T.; Liu, X.; Zoogman, P.; Newchurch, M.; Kuang, S.; McGee, T. J.; Leblanc, T.
2017-12-01
Ozone (O3) is a toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address the limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm is suggested to use a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB-Clim) O3 climatology). This study evaluates the TB-Clim dataset and model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time data assimilation model products (NASA GMAO's operational GEOS-5 FP model and reanalysis data from MERRA2) and a full chemical transport model (CTM), GEOS-Chem. In this study, vertical profile products are evaluated with surface (0-2 km) and tropospheric (0-10 km) TOLNet observations and the theoretical impact of individual a priori profile sources on the accuracy of TEMPO O3 retrievals in the troposphere and at the surface are presented. Results indicate that while the TB-Clim climatological dataset can replicate seasonally-averaged tropospheric O3 profiles, model-simulated profiles from a full CTM resulted in more accurate tropospheric and surface-level O3 retrievals from TEMPO when compared to hourly and daily-averaged TOLNet observations. Furthermore, it is shown that when large surface O3 mixing ratios are observed, TEMPO retrieval values at the surface are most accurate when applying CTM a priori profile information compared to all other data products.
A New Paradigm in Earth Environmental Monitoring with the CYGNSS Small Satellite Constellation.
Ruf, Christopher S; Chew, Clara; Lang, Timothy; Morris, Mary G; Nave, Kyle; Ridley, Aaron; Balasubramaniam, Rajeswari
2018-06-08
A constellation of small, low-cost satellites is able to make scientifically valuable measurements of the Earth which can be used for weather forecasting, disaster monitoring, and climate studies. Eight CYGNSS satellites were launched into low Earth orbit on December 15, 2016. Each satellite carries a science radar receiver which measures GPS signals reflected from the Earth surface. The signals contain information about the surface, including wind speed over ocean, and soil moisture and flooding over land. The satellites are distributed around their orbit plane so that measurements can be made more often to capture extreme weather events. Innovative engineering approaches are used to reduce per satellite cost, increase the number in the constellation, and improve temporal sampling. These include the use of differential drag rather than propulsion to adjust the spacing between satellites and the use of existing GPS signals as the science radars' transmitter. Initial on-orbit results demonstrate the scientific utility of the CYGNSS observations, and suggest that a new paradigm in spaceborne Earth environmental monitoring is possible.
NASA Astrophysics Data System (ADS)
Saygin, E.; Lumley, D. E.
2017-12-01
We use continuous seismic data recorded with an array of 909 buried geophones at Otway, South Australia, to investigate the potential of using ambient seismic noise for time-lapse monitoring of the subsurface. The array was installed prior to a 15,000 ton CO2 injection in 2016-17, in order to detect and monitor the evolution of the injected CO2 plume, and any associated microseismic activity. Continuously recorded data from the vertical components of the geophone array were cross-correlated to retrieve the inter-station Green's functions. The dense collection of Green's functions contains diving body waves and surface Rayleigh waves. Green's Functions were then compared with each other at different time frames including the pre-injection period to track subtle changes in the travel times due to the CO2 injection. Our results show a clear change in the velocities of Green's functions at the start of injection for both body waves and surface waves for wave paths traversing the injection area, whereas the observed changes are much smaller for areas which are far from the injection well.
NASA Astrophysics Data System (ADS)
Lewińska, Paulina; Matuła, Rafał; Dyczko, Artur
2018-01-01
Spoil tips are anthropogenic terrain structures built of leftover (coal) mining materials. They consist mostly of slate and sandstone or mudstone but also include coal and highly explosive coal dust. Coal soil tip fires cause an irreversible degradation to the environment. Government organizations notice the potential problem of spoil tip hazard and are looking for ways of fast monitoring of their temperature and inside structure. In order to test new monitoring methods an experimental was performed in the area of spoil tip of Lubelski Węgiel "Bogdanka" S.A. A survey consisted of creating a 3D discreet thermal model. This was done in order to look for potential fire areas. MASW (Multichannel analysis of surface wave) was done in order to find potential voids within the body of a tip. Existing data was digitalized and a 3D model of object's outside and inside was produced. This article provides results of this survey and informs about advantages of such an approach.
NASA Astrophysics Data System (ADS)
Hua, H.; Owen, S. E.; Yun, S.; Lundgren, P.; Fielding, E. J.; Agram, P.; Manipon, G.; Stough, T. M.; Simons, M.; Rosen, P. A.; Wilson, B. D.; Poland, M. P.; Cervelli, P. F.; Cruz, J.
2013-12-01
Space-based geodetic measurement techniques such as Interferometric Synthetic Aperture Radar (InSAR) and Continuous Global Positioning System (CGPS) are now important elements in our toolset for monitoring earthquake-generating faults, volcanic eruptions, hurricane damage, landslides, reservoir subsidence, and other natural and man-made hazards. Geodetic imaging's unique ability to capture surface deformation with high spatial and temporal resolution has revolutionized both earthquake science and volcanology. Continuous monitoring of surface deformation and surface change before, during, and after natural hazards improves decision-making from better forecasts, increased situational awareness, and more informed recovery. However, analyses of InSAR and GPS data sets are currently handcrafted following events and are not generated rapidly and reliably enough for use in operational response to natural disasters. Additionally, the sheer data volumes needed to handle a continuous stream of InSAR data sets also presents a bottleneck. It has been estimated that continuous processing of InSAR coverage of California alone over 3-years would reach PB-scale data volumes. Our Advanced Rapid Imaging and Analysis for Monitoring Hazards (ARIA-MH) science data system enables both science and decision-making communities to monitor areas of interest with derived geodetic data products via seamless data preparation, processing, discovery, and access. We will present our findings on the use of hybrid-cloud computing to improve the timely processing and delivery of geodetic data products, integrating event notifications from USGS to improve the timely processing for response, as well as providing browse results for quick looks with other tools for integrative analysis.
Test Plan to Assess Fire Effects on the Function of an Engineered Surface Barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Anderson L.; Berlin, Gregory T.; Cammann, Jerry W.
2008-09-29
Wildfire is a frequent perturbation in shrub steppe ecosystems, altering the flora, fauna, atmosphere, and soil of these systems. Research on the fire effects has focused mostly on natural ecosystems with essentially no attention on engineered systems like surface barriers. The scope of the project is to use a simulated wildfire to induce changes in an engineered surface barrier and document the effects on barrier performance. The main objective is to quantify the effects of burning and the resulting post-fire conditions on alterations in soil physical properties; hydrologic response, particularly the water balance; geochemical properties; and biological properties. A secondarymore » objective is to use the lessons learned to maximize fire protection in the design of long-term monitoring systems based on electronic sensors. A simulated wildfire will be initiated, controlled and monitored at the 200-BP-1 barrier in collaboration with the Hanford Fire Department during the fall of 2008. The north half of the barrier will be divided into nine 12 x 12 m plots, each of which will be randomly assigned a fuel load of 2 kg m-2 or 4 kg m-2. Each plot will be ignited around the perimeter and flames allowed to carry to the centre. Any remaining unburned vegetation will be manually burned off using a drip torch. Progress of the fire and its effects will be monitored using point measurements of thermal, hydrologic, and biotic variables. Three measures of fire intensity will be used to characterize fire behavior: (1) flame height, (2) the maximum temperature at three vertical profile levels, and (3) total duration of elevated temperature at these levels. Pre-burn plant information, including species diversity, plant height, and canopy diameter will be measured on shrubs from the plots to be burned and from control plots at the McGee ranch. General assessments of shrub survival, recovery, and recruitment will be made after the fire. Near-surface soil samples will be collected pre- and post-burn to determine changes in the gravel content of the surface layer so as to quantify inflationary or deflationary responses to fire and to reveal the ability of the surface to resist post-fire erosive stresses. Measures of bulk density, water repellency, water retention, and hydraulic conductivity will be used to characterize changes in infiltration rates and water storage capacity following the fire. Samples will also be analyzed to quantify geochemical changes including changes in soil pH, cation exchange capacity, specific surface area, and the concentration of macro nutrients (e.g. N, P, K) and other elements such as Na, Mg, Ca, that are critical to the post-fire recovery revegetation. Soil CO2 emissions will be measured monthly for one year following the burn to document post-fire stimulation of carbon turnover and soil biogenic emissions. Surface and subsurface temperature measurements at and near monitoring installations will be used to document fire effects on electronic equipment. The results of this study will be used to bridge the gaps in knowledge on the effects of fire on engineered ecosystems (e.g. surface barriers), particularly the hydrologic and biotic characteristics that govern the water and energy balance. These results will also support the development of practical fire management techniques for barriers that are compatible with wildfire suppression strategies. Furthermore, lessons learned will be use to develop installation strategies needed to protect electronic monitoring equipment from the intense heat of fire and the potential damaging effects of smoke and fire extinguishing agents. Such information is needed to better understand long-term barrier performance under extreme conditions, especially if site maintenance and operational funding is lost for activities such as barrier revegetation.« less
Chen, Li-ding; Peng, Hong-jia; Fu, Bo-Jie; Qiu, Jun; Zhang, Shu-rong
2005-01-01
Surface waters can be contaminated by human activities in two ways: (1) by point sources, such as sewage treatment discharge and storm-water runoff; and (2) by non-point sources, such as runoff from urban and agricultural areas. With point-source pollution effectively controlled, non-point source pollution has become the most important environmental concern in the world. The formation of non-point source pollution is related to both the sources such as soil nutrient, the amount of fertilizer and pesticide applied, the amount of refuse, and the spatial complex combination of land uses within a heterogeneous landscape. Land-use change, dominated by human activities, has a significant impact on water resources and quality. In this study, fifteen surface water monitoring points in the Yuqiao Reservoir Basin, Zunhua, Hebei Province, northern China, were chosen to study the seasonal variation of nitrogen concentration in the surface water. Water samples were collected in low-flow period (June), high-flow period (July) and mean-flow period (October) from 1999 to 2000. The results indicated that the seasonal variation of nitrogen concentration in the surface water among the fifteen monitoring points in the rainfall-rich year is more complex than that in the rainfall-deficit year. It was found that the land use, the characteristics of the surface river system, rainfall, and human activities play an important role in the seasonal variation of N-concentration in surface water.
30 CFR 57.22603 - Blasting from the surface (II-A mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... MINES Safety Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22603 Blasting from the surface (II-A mines). (a) All development, production, and bench rounds shall be initiated from the... least one atmospheric monitoring sensor. (b) If the monitoring system indicates that methane in the mine...
30 CFR 57.22603 - Blasting from the surface (II-A mines).
Code of Federal Regulations, 2014 CFR
2014-07-01
... MINES Safety Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22603 Blasting from the surface (II-A mines). (a) All development, production, and bench rounds shall be initiated from the... least one atmospheric monitoring sensor. (b) If the monitoring system indicates that methane in the mine...