Zhang, Fengjiao; Mohammadi, Erfan; Luo, Xuyi; ...
2017-10-02
It is well-known that substrate surface properties have a profound impact on morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution coated semiconducting polymers, as the substratedirected thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We performmore » in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing a donor-accepter (D-A) conjugated polymer. Here, we find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate lead to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step towards establishing design rules and understanding the critical role of substrates in determining morphology of solution coated thin films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fengjiao; Mohammadi, Erfan; Luo, Xuyi
It is well-known that substrate surface properties have a profound impact on morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution coated semiconducting polymers, as the substratedirected thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We performmore » in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing a donor-accepter (D-A) conjugated polymer. Here, we find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate lead to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step towards establishing design rules and understanding the critical role of substrates in determining morphology of solution coated thin films.« less
NASA Astrophysics Data System (ADS)
Yoon, Joonseok; Park, Changwoo; Park, Sungkyun; Mun, Bongjin Simon; Ju, Honglyoul
2015-10-01
We investigate surface morphology and electrical properties of VO2 films fabricated by direct thermal oxidation method. The VO2 film prepared with oxidation temperature at 580 °C exhibits excellent qualities of VO2 characteristics, e.g. a metal-insulator transition (MIT) near 67 °C, a resistivity ratio of ∼2.3 × 104, and a bandgap of 0.7 eV. The analysis of surface morphology with electrical resistivity of VO2 films reveals that the transport properties of VO2 films are closely related to the grain size and surface roughness that vary with oxidation annealing temperatures.
Brzeska, Joanna; Morawska, Magda; Heimowska, Aleksandra; Sikorska, Wanda; Wałach, Wojciech; Hercog, Anna; Kowalczuk, Marek; Rutkowska, Maria
2018-01-01
The surface morphology and thermal properties of polyurethanes can be correlated to their chemical composition. The hydrophilicity, surface morphology, and thermal properties of polyurethanes (differed in soft segments and in linear/cross-linked structure) were investigated. The influence of poly([ R , S ]-3-hydroxybutyrate) presence in soft segments and blending of polyurethane with polylactide on surface topography were also estimated. The linear polyurethanes (partially crystalline) had the granular surface, whereas the surface of cross-linked polyurethanes (almost amorphous) was smooth. Round aggregates of polylactide un-uniformly distributed in matrix of polyurethane were clearly visible. It was concluded that some modification of soft segment (by mixing of poly([ R , S ]-3-hydroxybutyrate) with different polydiols and polytriol) and blending of polyurethanes with small amount of polylactide influence on crystallinity and surface topography of obtained polyurethanes.
Andrés, Juan; Gracia, Lourdes; Gouveia, Amanda Fernandes; Ferrer, Mateus Meneghetti; Longo, Elson
2015-10-09
Morphology is a key property of materials. Owing to their precise structure and morphology, crystals and nanocrystals provide excellent model systems for joint experimental and theoretical investigations into surface-related properties. Faceted polyhedral crystals and nanocrystals expose well-defined crystallographic planes depending on the synthesis method, which allow for thoughtful investigations into structure-reactivity relationships under practical conditions. This feature article introduces recent work, based on the combined use of experimental findings and first-principles calculations, to provide deeper knowledge of the electronic, structural, and energetic properties controlling the morphology and the transformation mechanisms of different metals and metal oxides: Ag, anatase TiO2, BaZrO3, and α-Ag2WO4. According to the Wulff theorem, the equilibrium shapes of these systems are obtained from the values of their respective surface energies. These investigations are useful to gain further understanding of how to achieve morphological control of complex three-dimensional crystals by tuning the ratio of the surface energy values of the different facets. This strategy allows the prediction of possible morphologies for a crystal and/or nanocrystal by controlling the relative values of surface energies.
[Corrosion resistant properties of different anodized microtopographies on titanium surfaces].
Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian
2015-12-01
To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.
NASA Astrophysics Data System (ADS)
Artyushkova, Kateryna; Pylypenko, Svitlana; Dowlapalli, Madhu; Atanassov, Plamen
2012-09-01
Linking durability of carbon blacks, expressed as their oxidation resistance, used in PEMFCs as catalyst supports, with their chemistry and morphology is an important task towards designing carbon blacks with desired properties. Structure-to-property relationship between surface chemistry determined by X-ray photoelectron spectroscopy (XPS), morphological structure determined by digital image processing of scanning electron microscopy (SEM) images, physical properties, and electrochemical corrosion behavior determined in an air-breathing gas-diffusion electrode is studied for several un-altered and several modified carbon blacks. We are showing that surface chemistry, graphitic content and certain physical characteristics such as Brunauer-Emmett-Teller (BET) surface area and pore volume, determined by nitrogen adsorptions are not sufficient to explain high corrosion instability of types of carbon blacks. Inclusion of morphological characteristics, such as roughness, texture and shape parameters provide for more inclusive description and therefore more complete structure-to-property correlations of corrosion behavior of carbon blacks. This paper presents the first direct statistically-derived structure-to-property relationship, developed by multivariate analysis (MVA) that links chemical and physical structural properties of the carbon blacks to their critical properties as supports for PEMFC catalysts. We have found that balance between electrocatalytic activity and high resistance towards oxidation and corrosion is achieved by balance between amount of graphitic content and surface oxide coverage, smaller overall roughness and, finally, larger amount of big elongated and loose, and, hypothetically, more hydrophobic pores.
Impact of x-Linkable Polymer Blends on Phase Morphology and Adhesion
NASA Astrophysics Data System (ADS)
Liu, Chun; Wan, Grace; Keene, Ellen; Harris, Joseph; Zhang, Sipei; Anderson, Stephanie; Li Pi Shan, Colin
Adhesion to dissimilar substrate is highly important to multiple industrial applications such as automotive adhesives, food packaging, transportation etc. Adhesive design has to include components that are affinity to both substrates, e.g. high surface energy polar and low surface non-polar substrates. Typically, these adhesive components are thermodynamically incompatible with each other, leading to macrophase separation and thus adhesive failure. By using functional adhesive components plus some additives, the adhesive can be in-situ cross-linked to prevent the macrophase separation with controlled phase morphology. Herein, we present the study on a cross-linkable adhesive formulation consisting of acrylic emulsion and polyolefin aqueous dispersion with additives for enhancing cross-linking and controlled phase morphologies. Contact angle measurement and ATR-IR spectroscopy are used to characterize the properties of adhesive surface. DMA is used to study the mechanical property of adhesive before and after cross-linking. The detailed phase morphologies are revealed by AFM, SEM and TEM. The resulting adhesive morphologies are correlated with the adhesive performance to establish structure-property relationship.
NASA Astrophysics Data System (ADS)
Mwankemwa, Benard S.; Akinkuade, Shadrach; Maabong, Kelebogile; Nel, Jackie M.; Diale, Mmantsae
2018-04-01
We report on effect of surface morphology on the optical and electrical properties of chemical bath deposited Zinc oxide (ZnO) nanostructures. ZnO nanostructures were deposited on the seeded conducting indium doped tin oxide substrate positioned in three different directions in the growth solution. Field emission scanning electron microscopy was used to evaluate the morphological properties of the synthesized nanostructures and revealed that the positioning of the substrate in the growth solution affects the surface morphology of the nanostructures. The optical absorbance, photoluminescence and Raman spectroscopy of the resulting nanostructures are discussed. The electrical characterization of the Schottky diode such as barrier height, ideality factor, rectification ratios, reverse saturation current and series resistance were found to depend on the nanostructures morphology. In addition, current transport mechanism in the higher forward bias of the Schottky diode was studied and space charge limited current was found to be the dominant transport mechanism in all samples.
NASA Astrophysics Data System (ADS)
Zhao, Zhi-Jun; Hwang, Soon Hyoung; Jeon, Sohee; Jung, Joo-Yun; Lee, Jihye; Choi, Dae-Geun; Choi, Jun-Hyuk; Park, Sang-Hu; Jeong, Jun-Ho
2017-10-01
In this paper, we demonstrate that use of different nanoimprint resins as a polymer pattern has a significant effect on the morphology of silver (Ag) nanowires deposited via an E-beam evaporator. RM-311 and Ormo-stamp resins are chosen as a polymer pattern to form a line with dimensions of width (100 nm) × space (100 nm) × height (120 nm) by using nanoimprint lithography (NIL). Their contact angles are then measured to evaluate their surface energies. In order to compare the properties of the Ag nanowires deposited on the various polymer patterns with different surface energies, hydrophobic surface treatment of the polymer pattern surface is implemented using self-assembled monolayers. In addition, gold and aluminum nanowires are fabricated for comparison with the Ag nanowires, with the differences in the nanowire morphologies being determined by the different atomic properties. The monocrystalline and polycrystalline structures of the various Ag nanowire formations are observed using transmission electron microscopy. In addition, the melting temperatures and optical properties of four kinds of Ag nanowire morphologies deposited on various polymer patterns are evaluated using a hot plate and an ultraviolet-visible (UV-vis) spectrometer, respectively. The results indicate that the morphology of the Ag nanowire determines the melting temperature and the transmission. We believe that these findings will greatly aid the development of NIL, along with physical evaporation and chemical deposition techniques, and will be widely employed in optics, biology, and surface wettability applications.
Wang, Gui-Xue; Shen, Yang; Zhang, He; Quan, Xue-Jun; Yu, Qing-Song
2008-06-15
Two different surface modification techniques were used to change the surface morphology and roughness of stents at the micrometer level, and eventually improve their surface adhesion properties with respect to endothelial cells. One was chemical erosion followed by sol-gel TiO(2) coating, and the other was low temperature gas plasma deposition. After surface modification, the biocompatibility including the anticoagulation properties, hydrophilicity, and corrosion resistance of these stents was evaluated. It was found that both techniques could change the surface morphology of the stents with microroughness. In comparison with the control, the treated NiTi alloy intravascular stents showed increased surface hydrophilicity and enhanced anticoagulation properties. However, the corrosion properties of the stents were not improved significantly.
Morphological properties of collagen fibers in porcine lamina propria
Johanes, Iecun; Mihelc, Elaine; Sivasankar, Mahalakshmi; Ivanisevic, Albena
2009-01-01
Objectives Collagen influences the biomechanical properties of vocal folds. Altered collagen morphology has been implicated in dysphonia associated with aging and scarring. Documenting the morphological properties of native collagen in healthy vocal folds is essential to understand the structural and functional alterations to collagen with aging and disease. Our primary objective was to quantify the morphological properties of collagen in the vocal fold lamina propria. Our secondary exploratory objective was to investigate the effects of pepsin exposure on the morphological properties of collagen in the lamina propria. Design Experimental, in vitro study with porcine model. Methods Lamina propria was dissected from 26 vocal folds and imaged with Atomic Force Microscopy (AFM). Morphological data on d-periodicity, diameter, and roughness of collagen fibers were obtained. To investigate the effects of pepsin exposure on collagen morphology, vocal fold surface was exposed to pepsin or sham challenge prior to lamina propria dissection and AFM imaging. Results The d-periodicity, diameter, and roughness values for native vocal fold collagen are consistent with literature reports for collagen fibers in other body tissue. Pepsin exposure on vocal fold surface did not appear to change the morphological properties of collagen fibers in the lamina propria. Conclusions Quantitative data on collagen morphology were obtained at nanoscale resolution. Documenting collagen morphology in healthy vocal folds is critical for understanding the physiological changes to collagen with aging and scarring, and for designing biomaterials that match the native topography of lamina propria. PMID:20171830
Zhao, Yue; Li, Dong-sheng; Xing, Shou-xiang; Yang, De-ren; Jiang, Min-hua
2005-01-01
This paper reports the surface morphology and I-V curves of porous silicon (PS) samples and related devices. The observed fabrics on the PS surface were found to affect the electrical property of PS devices. When the devices were operated under different external bias (10 V or 3 V) for 10 min, their observed obvious differences in electrical properties may be due to the different control mechanisms in the Al/PS interface and PS matrix morphology. PMID:16252350
Morphological characteristics and barrier properties of thermoplastic starch/chitosan blown film.
Dang, Khanh Minh; Yoksan, Rangrong
2016-10-05
Fabrication of starch-based edible film using blown film extrusion is challenging and interesting because this process provides continuous operation with shorter production time and lower energy consumption, is less labor intensive, and results in higher productivity than the conventional solution casting technique. Previously, we reported on the preparation and some properties of thermoplastic starch/chitosan (TPS/CTS) blown films; however, their morphological characteristics and barrier properties had not yet been elucidated. The present work thus aims to investigate the effect of chitosan (0.37-1.45%) on morphological characteristics, water vapor and oxygen barrier properties as well as hydrophilicity of the TPS and TPS/CTS films. The relationship between morphological characteristics and properties of the films was also discussed. Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and X-ray photoelectron spectroscopy (XPS) confirmed the distribution and deposition of chitosan on the film surface. The existence of chitosan on the surface imparted the improved water vapor and oxygen barrier properties and the reduced surface hydrophilicity to the film. The results suggest that this biodegradable bio-based TPS/CTS film could potentially be used as an edible film for food and pharmaceutical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sardar, Maryam; Chen, Jun; Ullah, Zaka; Jelani, Mohsan; Tabassum, Aasma; Cheng, Ju; Sun, Yuxiang; Lu, Jian
2017-12-01
We irradiate the single crystal boron-doped silicon (Si) with different number of laser pulses at constant fluence (7.5 J cm-2) in ambient air using Nd:YAG laser and examine its surface morphology and photoelectric properties in details. The results obtained from optical micrographs reveal the increase in heat affected zone (HAZ) and melted area of laser irradiated Si with increasing number of laser pulses. The SEM micrographs evidence the formation of various surface morphologies like laser induced periodic surface structures, crater, microcracks, clusters, cavities, pores, trapped bubbles, nucleation sites, micro-bumps, redeposited material and micro- and nano-particles on the surface of irradiated Si. The surface profilometry analysis informs that the depth of crater is increased with increase in number of incident laser pulses. The spectroscopic ellipsometry reveals that the multipulse irradiation of Si changes its optical properties (refractive index and extinction coefficient). The current-voltage (I-V) characteristic curves of laser irradiated Si show that although the multipulse laser irradiation produces considerable number of surface defects and damages, the electrical properties of Si are well sustained after the multipulse irradiation. The current findings suggest that the multipulse irradiation can be an effective way to tune the optical properties of Si for the fabrication of wide range of optoelectronic devices.
A novel approach to enhancement of surface properties of CdO films by using surfactant: dextrin
NASA Astrophysics Data System (ADS)
Sahin, Bünyamin; Bayansal, Fatih; Yüksel, Mustafa
2015-12-01
We studied the effect of an organic surfactant, dextrin, concentration on structural, morphological and optical properties of nanostructured CdO films deposited on glass substrates by using an easy and low-cost SILAR method. Microstructures of the nanostructured CdO films were optimized by adjusting dextrin concentration. XRD, SEM and UV-Vis Spectroscopy were used to study phase structure, surface morphology and optical properties of CdO films. Furthermore, effects of dextrin concentration on the surface roughness characteristics of CdO samples were reported. The results showed that the presence of organic surfactant highly affected the physical properties of CdO nanomaterials.
NASA Astrophysics Data System (ADS)
Kannan, Palanisamy; Dolinska, Joanna; Maiyalagan, Thandavarayan; Opallo, Marcin
2014-09-01
Numerous properties from metal nanostructures can be tuned by controlling both their size and shape. In particular, the latter is extremely important because the type of crystalline surface affects the surface electronic density. This paper describes a simple approach to the synthesis of highly-structured, anisotropic palladium nanostructured dendrites. They were obtained using an eco-friendly biomolecule 5-hydroxytryptophan, which acts as both a reducing and stabilizing agent. The growth mechanism is proposed for the evolution of dendrites morphology. It was found that the concentration of 5-hydroxytryptophan played a vital role on the morphology of the nanostructured Pd dendrites. This nanomaterial shows enhanced electrocatalytic performance towards the oxidation of formic acid, and it exhibits surface-enhanced Raman scattering properties towards the prostate specific antigen. These properties may be explored in fuel cells and biosensors, respectively.Numerous properties from metal nanostructures can be tuned by controlling both their size and shape. In particular, the latter is extremely important because the type of crystalline surface affects the surface electronic density. This paper describes a simple approach to the synthesis of highly-structured, anisotropic palladium nanostructured dendrites. They were obtained using an eco-friendly biomolecule 5-hydroxytryptophan, which acts as both a reducing and stabilizing agent. The growth mechanism is proposed for the evolution of dendrites morphology. It was found that the concentration of 5-hydroxytryptophan played a vital role on the morphology of the nanostructured Pd dendrites. This nanomaterial shows enhanced electrocatalytic performance towards the oxidation of formic acid, and it exhibits surface-enhanced Raman scattering properties towards the prostate specific antigen. These properties may be explored in fuel cells and biosensors, respectively. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02896a
Growth of high-quality AlN epitaxial film by optimizing the Si substrate surface
NASA Astrophysics Data System (ADS)
Huang, Liegen; Li, Yuan; Wang, Wenliang; Li, Xiaochan; zheng, Yulin; Wang, Haiyan; Zhang, Zichen; Li, Guoqiang
2018-03-01
High-quality AlN epitaxial films have been grown on Si substrates by optimizing the hydrofluoric acid (HF) solution for cleaning of Si substrates. Effect of the Si substrate surface on the surface morphology and structural property of AlN epitaxial films is investigated in detail. It is revealed that as the concentration of HF solution increases from 0 to 2.0%, the surface morphology and the crystalline quality are initially improved and then get worse, and show an optimized value at 1.5%. The as-grown ∼200 nm-thick AlN epitaxial films on Si substrates grown with HF solution of 1.5% reveal the root-mean-square (RMS) surface roughness of 0.49 nm and the full-width at half-maximum for AlN(0002) X-ray rocking curve of 0.35°, indicating the smooth surface morphology and the high crystalline quality. The corresponding mechanism is proposed to interpret the effect of Si substrate surface on surface morphology and structural property of AlN epitaxial films, and provides an effective approach for the perspective fabrication of AlN-based devices.
Hulsman, Marc; Hulshof, Frits; Unadkat, Hemant; Papenburg, Bernke J; Stamatialis, Dimitrios F; Truckenmüller, Roman; van Blitterswijk, Clemens; de Boer, Jan; Reinders, Marcel J T
2015-03-01
Surface topographies of materials considerably impact cellular behavior as they have been shown to affect cell growth, provide cell guidance, and even induce cell differentiation. Consequently, for successful application in tissue engineering, the contact interface of biomaterials needs to be optimized to induce the required cell behavior. However, a rational design of biomaterial surfaces is severely hampered because knowledge is lacking on the underlying biological mechanisms. Therefore, we previously developed a high-throughput screening device (TopoChip) that measures cell responses to large libraries of parameterized topographical material surfaces. Here, we introduce a computational analysis of high-throughput materiome data to capture the relationship between the surface topographies of materials and cellular morphology. We apply robust statistical techniques to find surface topographies that best promote a certain specified cellular response. By augmenting surface screening with data-driven modeling, we determine which properties of the surface topographies influence the morphological properties of the cells. With this information, we build models that predict the cellular response to surface topographies that have not yet been measured. We analyze cellular morphology on 2176 surfaces, and find that the surface topography significantly affects various cellular properties, including the roundness and size of the nucleus, as well as the perimeter and orientation of the cells. Our learned models capture and accurately predict these relationships and reveal a spectrum of topographies that induce various levels of cellular morphologies. Taken together, this novel approach of high-throughput screening of materials and subsequent analysis opens up possibilities for a rational design of biomaterial surfaces. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hysen, T.; Al-Harthi, Salim; Al-Omari, I. A.; Geetha, P.; Lisha, R.; Ramanujan, R. V.; Sakthikumar, D.; Anantharaman, M. R.
2013-09-01
Co-Fe-Si based films exhibit high magnetic moments and are highly sought after for applications like soft under layers in perpendicular recording media to magneto-electro-mechanical sensor applications. In this work the effect of annealing on structural, morphological and magnetic properties of Co-Fe-Si thin films was investigated. Compositional analysis using X-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a native oxide surface layer consisting of oxides of Co, Fe and Si on the surface. The morphology of the as deposited films shows mound like structures conforming to the Volmer-Weber growth model. Nanocrystallisation of amorphous films upon annealing was observed by glancing angle X-ray diffraction and transmission electron microscopy. The evolution of magnetic properties with annealing is explained using the Herzer model. Vibrating sample magnetometry measurements carried out at various angles from 0° to 90° to the applied magnetic field were employed to study the angular variation of coercivity. The angular variation fits the modified Kondorsky model. Interestingly, the coercivity evolution with annealing deduced from magneto-optical Kerr effect studies indicates a reverse trend compared to magetisation observed in the bulk. This can be attributed to a domain wall pinning at native oxide layer on the surface of thin films. The evolution of surface magnetic properties is correlated with morphology evolution probed using atomic force microscopy. The morphology as well as the presence of the native oxide layer dictates the surface magnetic properties and this is corroborated by the apparent difference in the bulk and surface magnetic properties.
Tensorial Minkowski functionals of triply periodic minimal surfaces
Mickel, Walter; Schröder-Turk, Gerd E.; Mecke, Klaus
2012-01-01
A fundamental understanding of the formation and properties of a complex spatial structure relies on robust quantitative tools to characterize morphology. A systematic approach to the characterization of average properties of anisotropic complex interfacial geometries is provided by integral geometry which furnishes a family of morphological descriptors known as tensorial Minkowski functionals. These functionals are curvature-weighted integrals of tensor products of position vectors and surface normal vectors over the interfacial surface. We here demonstrate their use by application to non-cubic triply periodic minimal surface model geometries, whose Weierstrass parametrizations allow for accurate numerical computation of the Minkowski tensors. PMID:24098847
NASA Astrophysics Data System (ADS)
Zhang, Chengshuang; Li, Cuiyun; Wang, Baiya; Wang, Bin; Cui, Hong
2013-07-01
Poly(p-phenylene benzobisoxazole) (PBO) fiber was modified by atmospheric air plasma treatment. The effects of plasma treatment power and speed on both surface properties of PBO fibers and interfacial properties of PBO/epoxy composites were investigated. Surface chemical composition of PBO fibers were analyzed by X-ray photoelectron spectroscopy (XPS). Surface morphologies of the fibers and interface structures of the composites were examined using scanning electron microscopy (SEM). Interfacial adhesion property of the composites was evaluated by interlaminar shear strength (ILSS). Mechanical properties of PBO multifilament were measured by universal testing machine. The results indicate that atmospheric air plasma treatment introduced some polar or oxygen-containing groups to PBO fiber surfaces, enhanced surface roughness and changed surface morphologies of PBO fibers by plasma etching and oxidative reactions. The plasma treatment also improved interfacial adhesion of PBO/epoxy composites but has little effect on tensile properties of PBO multifilament. The ILSS of PBO/epoxy composites increased to 40.0 MPa after atmospheric air plasma treatment with plasma treatment power of 300 W and treatment speed of 6 m/min.
Zhang, Lei; Lu, Jin-Zhong; Zhang, Yong-Kang; Ma, Hai-Le; Luo, Kai-Yu; Dai, Feng-Ze
2017-01-01
Effects of laser shock processing (LSP) on the cavitation erosion resistance of laser weldments were investigated by optical microscope (OM), scanning electron microscope (SEM) observations, roughness tester, micro hardness tester, and X-ray diffraction (XRD) technology. The morphological microstructures were characterized. Cumulative mass loss, incubation period, erosion rate, and damaged surface areas were monitored during cavitation erosion. Surface roughness, micro-hardness, and residual stress were measured in different zones. Results showed that LSP could improve the damage of morphological microstructures and mechanical properties after cavitation erosion. The compressive residual stresses were generated during the process of LSP, which was an effective guarantee for the improvement of the above mentioned properties. PMID:28772652
Impact of surface morphology on the properties of light emission in InGaN epilayers
NASA Astrophysics Data System (ADS)
Kristijonas Uždavinys, Tomas; Marcinkevičius, Saulius; Mensi, Mounir; Lahourcade, Lise; Carlin, Jean-François; Martin, Denis; Butté, Raphaël; Grandjean, Nicolas
2018-05-01
Scanning near-field optical microscopy was used to study the influence of the surface morphology on the properties of light emission and alloy composition in InGaN epitaxial layers grown on GaN substrates. A strong correlation between the maps of the photoluminescence (PL) peak energy and the gradient of the surface morphology was observed. This correlation demonstrates that the In incorporation strongly depends on the geometry of the monolayer step edges that form during growth in the step-flow mode. The spatial distribution of nonradiative recombination centers — evaluated from PL intensity maps — was found to strongly anticorrelate with the local content of In atoms in the InGaN alloy.
NASA Astrophysics Data System (ADS)
Guo, Shusen; Cao, Yongzhi; Sun, Tao; Zhang, Junjie; Gu, Le; Zhang, Chuanwei; Xu, Zhiqiang
2018-05-01
Molecular dynamics (MD) simulations were used to provide insights into the influence of nano-scale surface morphology on adsorptive behavior of Potassium stearate molecules on diamond-like carbon (DLC) substrates. Particular focus was given to explain that how the distinctive geometric properties of different surface morphologies affect the equilibrium structures and substrate-molecules interactions of monolayers, which was achieved through adsorptive analysis methods including adsorptive process, density profile, density distribution and surface potential energy. Analysis on surface potential energy demonstrated that the adsorptivity of amorphous smooth substrate is uniformly distributed over the surface, while DLC substrates with different surface morphologies appear to be more potentially corrugated, which improves the adsorptivity significantly. Because of the large distance of molecules from carbon atoms located at the square groove bottom, substrate-molecules interactions vanish significantly, and thus potassium stearate molecules cannot penetrate completely into the square groove. It can be observed that the equilibrium substrate-molecules interactions of triangle groove and semi-circle groove are much more powerful than that of square groove due to geometrically advantageous properties. These findings provided key information of optimally design of solid substrates with controllable adsorptivity.
NASA Astrophysics Data System (ADS)
Ribeiro, R. A. P.; de Lazaro, S. R.; Gracia, L.; Longo, E.; Andrés, J.
2018-05-01
Precisely controlling the different aspects of the morphology and magnetic properties of metal oxides are fundamental to materials design. A theoretical approach, based on the Wulff construction and magnetization density (M) index, is presented to clarify the relation between the morphology and surface magnetism. The M index allows us to evaluate the uncompensated spins at the (1 0 0), (1 1 0), (1 1 1) and (1 1 2) surfaces of Co3O4 with a spinel structure. The investigated morphologies show an excellent agreement with the experimental results, with the main contribution coming from the (1 0 0) and (1 1 1) magnetic planes. The present results are also helpful in clarifying the intriguing magnetic properties reported for Co3O4 nanoparticles, suggesting that the same technique may serve as a guide for the study of shape-oriented magnetic materials.
Surface morphology and electrochemical studies on polyaniline/CuO nano composites
NASA Astrophysics Data System (ADS)
Ashokkumar, S. P.; Vijeth, H.; Yesappa, L.; Niranjana, M.; Vandana, M.; Basappa, M.; Devendrappa, H.
2018-05-01
An electrochemically synthesized Polyaniline (PANI) and Polyaniline/copper oxide (PCN) nano composite have studied the morphology and electrochemical properties. The composite is characterized by X-ray diffraction (XRD) and surface morphology was studied using FESEM and electrochemical behavior is studied using cyclic voltammetry (CV) technique. The CV curves shows rectangular shaped curve and they have contribution to electrical double layer capacitance (EDCL).
Low earth orbit durability evaluation of Haynes 188 solar receiver material
NASA Technical Reports Server (NTRS)
De Groh, Kim K.; Rutledge, Sharon K.; Burke, Christopher A.; Dever, Therese M.; Olle, Raymond M.; Terlep, Judith A.
1992-01-01
The effects of elevated-temperature vacuum and elevated-temperature atomic oxygen exposure on the mass, surface chemistry, surface morphology, and optical properties of Haynes 188, a possible heat receiver material for space-based solar dynamic power systems, have been studied. Pristine and surface modified Haynes 188 were exposed to vacuum less than or equal to 10 exp -6 torr at 820 C for 5215.5 h, and to atomic oxygen in an air plasma asher at 34 and 827 C for fluences up to 5.6 x 10 exp 21 atoms/sq cm. Results obtained indicate that vacuum heat treatment caused surface morphology and chemistry changes with corresponding optical property changes. Atomic oxygen exposure caused optical property changes which diminished with time. Mass changes are considered to be negligible for both exposures.
Lee, Wen-Hsi; Wang, Chun-Chieh
2010-02-01
In this study, the effect of surface energy and roughness of the nanocomposite gate dielectric on pentacene morphology and electrical properties of pentacene OTFT are reported. Nanoparticles TiO2 were added in the polyimide matrix to form a nanocomposite which has a significantly different surface characteristic from polyimide, leading to a discrepancy in the structural properties of pentacene growth. A growth mode of pentacene deposited on the nanocomposite is proposed to explain successfully the effect of surface properties of nanocomposite gate dielectric such as surface energy and roughness on the pentacene morphology and electrical properties of OTFT. To obtain the lower surface energy and smoother surface of nanocomposite gate dielectric that is responsible for the desired crystalline, microstructure of pentacene and electrical properties of device, a bottom contact OTFT-pentacene deposited on the double-layer nanocomposite gate dielectric consisting of top smoothing layer of the neat polyimide and bottom layer of (PI+ nano-TiO2 particles) nanocomposite has been successfully demonstrated to exhibit very promising performance including high current on to off ratio of about 6 x 10(5), threshold voltage of -10 V and moderately high filed mobility of 0.15 cm2V(-1)s(-1).
NASA Technical Reports Server (NTRS)
Wang, J.; Magee, D.; Schneider, J. A.
2009-01-01
The dynamic mechanical properties and fracture surface morphologies were evaluated for a commercial epoxy resin toughened with two types of core-shell rubber (CSR) toughening agents (Kane Ace(Registered TradeMark) MX130 and MX960). The impact resistance (R) was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The resulting fracture surface morphologies were examined using Scanning Electron Microscopy (SEM). Fractographic observations of the CSR toughened epoxy tested at ambient temperature, showed a fracture as characterized by slender dendrite textures with large voids. The increasing number of dendrites and decreasing size of scale-like texture with more CSR particles corresponded with increased R. As the temperature decreased to Liquid Nitrogen (LN 2), the fracture surfaces showed a fracture characterized by a rough, torn texture containing many river markings and deep furrows.
Surface Morphology and Tooth Adhesion of a Novel Nanostructured Dental Restorative Composite
Salerno, Marco; Loria, Patrizia; Matarazzo, Giunio; Tomè, Francesco; Diaspro, Alberto; Eggenhöffner, Roberto
2016-01-01
Recently, a novel dental restorative composite based on nanostructured micro-fillers of anodic porous alumina has been proposed. While its bulk properties are promising thanks to decreased aging and drug delivery capabilities, its surface properties are still unknown. Here we investigated the surface morphology and the adhesion to tooth dentin of this composite as prepared. For comparison, we used two commercial composites: Tetric EVO Flow (Ivoclar) and Enamel HRi Plus (Micerium). The surface morphology was characterized by atomic force microscopy and the adhesion strength by tensile tests. The experimental composite is rougher than the commercial composites, with root mean square roughness of ~549 nm against 170–511 nm, and presents an adhesion strength of ~15 MPa against 19–21 MPa. These results show at the same time some proximity to the commercial composites, but also the need for optimization of the experimental material formulation. PMID:28773327
Dulal, Nabeen; Shanks, Robert; Gengenbach, Thomas; Gill, Harsharn; Chalmers, David; Adhikari, Benu; Pardo Martinez, Isaac
2017-11-01
The amount and distribution of slip agents, erucamide, and behenamide, on the surface of high-density polyethene, is determined by integral characteristics of slip agent structure and polymer morphology. A suite of surface analysis techniques was applied to correlate physicochemical properties with slip-additive migration behaviour and their surface morphology. The migration, surface morphology and physicochemical properties of the slip additives, crystallinity and orientation of polyethene spherulites and interaction between slip additives and high-density polyethene influence the surface characteristics. The high-density polyethene closures were produced with erucamide and behenamide separately and stored until they produced required torque. Surface composition was determined employing spectroscopy and gas chromatography. The distribution of additives was observed under optical, scanning electron and atomic force microscopes. The surface energy, crystallinity and application torque were measured using contact angle, differential scanning calorimeter and a torque force tester respectively. Each slip additive produced a characteristic amide peak at 1645cm -1 in infrared spectroscopy and peaks of oxygen and nitrogen in X-ray photoelectron spectroscopy, suggesting their presence on the surface. The erucamide produced placoid scale-like structures and behenamide formed denticulate structures. The surface erucamide and behenamide responsible for reducing the torque was found to be 15.7µg/cm 2 and 1.7µg/cm 2 . Copyright © 2017 Elsevier Inc. All rights reserved.
Zhou, Xing; Fang, Changqing; Lei, Wanqing; Du, Jie; Huang, Tingyi; Li, Yan; Cheng, Youliang
2016-01-01
Water plays important roles in organic reactions such as polyurethane synthesis, and the aqueous solution environment affects polymer morphology and other properties. This paper focuses on the morphology and surface properties of waterborne polyurethane resulting from the organic reaction in water involving different forms (solid and liquid), temperatures and aqueous solutions. We provide evidence from TEM observations that the appearance of polyurethane nanoparticles in aqueous solutions presents diverse forms, including imperfect spheres, perfect spheres, perfect and homogenous spheres and tubes. Based on the results on FTIR, GPC, AFM and XRD experiments, we suggest that the shape of the nanoparticles may be decided by the crimp degree (i.e., the degree of polyurethane chains intertangling in the water environment) and order degree, which are determined by the molecular weight (Mn) and hydrogen bonds. Meanwhile, solid water and high-temperature water can both reduce hard segments that gather on the polyurethane film surface to reduce hydrophilic groups and produce a soft surface. Our findings show that water may play key roles in aqueous polymer formation and bring order to molecular chains. PMID:27687001
Effect of fibre laser marking on surface properties and corrosion resistance of a Fe-Ni-Cr alloy
NASA Astrophysics Data System (ADS)
Astarita, Antonello; Mandolfino, Chiara; Lertora, Enrico; Gambaro, Carla; Squillace, Antonino; Scherillo, Fabio
2017-10-01
Fiber laser techniques are increasing their use in many applications, including modification of material surface properties. In particular they are often used for materials' marking as a non-contact processing. In spite of this, the impact of the laser beam on the surface causes metallurgical and morphological changes. The developments during the laser-material interaction can also affect other surface properties, especially corrosion properties which are crucial in the case of Iron-Nickel alloys. Effect of laser marking on a Fe-Cr-Ni alloy using a Tm-fibre laser (IPG Photonics TRL1904; maximum power: 50W, wavelength: 1904 nm), is described in this paper. In order to evaluate the effect of the laser on corrosion properties a specific ageing test in salt spray has been performed. Moreover, superficial morphology analyses have been performed on samples before and after corrosion tests. Possibilities and limitations of laser marking on these alloys have been discussed, in particular from the point of view of the marked surface corrosion resistance preservation.
Pennisi, Cristian P; Zachar, Vladimir; Gurevich, Leonid; Patriciu, Andrei; Struijk, Johannes J
2010-01-01
Polydimethylsiloxane (PDMS) or silicone rubber is a widely used implant material. Approaches to promote tissue integration to PDMS are desirable to avoid clinical problems associated with sliding and friction between tissue and implant. Plasma-etching is a useful way to control cell behavior on PDMS without additional coatings. In this work, different plasma processing conditions were used to modify the surface properties of PDMS substrates. Surface nanotopography and wettability were measured to study their effect on in vitro growth and morphology of fibroblasts. While fluorinated plasma treatments produced nanorough hydrophobic and superhydrophobic surfaces that had negative or little influences on cellular behavior, water vapor/oxygen plasma produced smooth hydrophillic surfaces that enhanced cell growth.
Kaya, Murat; Bitim, Betül; Mujtaba, Muhammad; Koyuncu, Turgay
2015-11-01
This study was conducted to understand the differences in the physicochemical properties of chitin samples isolated from the wings and the other body parts except the wings (OBP) of a butterfly species (Argynnis pandora). The same isolation method was used for obtaining chitin specimens from both types of body parts. The chitin content of the wings (22%) was recorded as being much higher than the OBP (8%). The extracted chitin samples were characterized via FT-IR, TGA, XRD, SEM, and elemental analysis techniques. Results of these characterizations revealed that the chitins from both structures (wings and OBP) were very similar, except for their surface morphologies. SEM results demonstrated one type of surface morphology for the wings and four different surface morphologies for the OBP. Therefore, it can be hypothesized that the surface morphology of the chitin is highly related with the body part. Copyright © 2015 Elsevier B.V. All rights reserved.
Bio-Tribology Properties of Bionic Carp Scale Morphology on Ti6A14V Surface
NASA Astrophysics Data System (ADS)
Wang, W.; Y Wei, X.; Meng, K.; Zhong, L. H.; Wang, Y.; Yu, X. H.
2017-12-01
In order to improve the bio-tribology properties of Ti6A14V surface, the bionic carp scale appearance pattern on Ti6A14V surface was prepared by laser surface texturing technology. The ball-disc reciprocating linear tribological experiment under different lubricants with dry friction was carried out by MRTR multifunction friction and wear testing machine using ZrO2/Ti6A14V as friction pair. The wear scar morphology of the sample surface was observed by SEM. The results show that for dry friction, the friction factor of the bionic carp scale morphology Ti6A14V reduces by 0.23 than those without bionic carp scale morphology, a decline of 45%. Under different lubrication conditions, the friction factors of samples with the bionic carp scale are increased in varying degrees with the increase of size of bionic texturing. The friction factor with same specimen under different lubrication conditions according to the ascending order are 0.5g/dl of sodium hyaluronate +0.5g/dl-γglobulin and 0.5g/dl mixed aqueous solution of sodium hyaluronate solution and artificial saliva. The wear volume also showed a similar variation.
Surface properties of anatase TiO2 nanowire films grown from a fluoride-containing solution.
Berger, Thomas; Anta, Juan A; Morales-Flórez, Víctor
2013-06-03
Controlling the surface chemistry of nucleating seeds during wet-chemical synthesis allows for the preparation of morphologically well-defined nanostructures. Synthesis conditions play a key role in the surface properties, which directly affect the functional properties of the material. Therefore, it is important to establish post-synthesis treatments to facilitate the optimization of surface properties with respect to a specific application, without losing the morphological peculiarity of the nanostructure. We studied the surface properties of highly crystalline and porous anatase TiO2 nanowire (NW) electrodes, grown by chemical-bath deposition in fluoride-containing solutions, using a combined electrochemical and spectroscopic approach. As-deposited films showed low capacity for catechol adsorption and a poor photoelectrocatalytic activity for water oxidation. Mild thermal annealing at 200 °C resulted in a significant improvement of the electrode photoelectrocatalytic activity, whereas the bulk properties of the NWs (crystal structure, band-gap energy) remained unchanged. Enhancement of the functional properties of the material is discussed on the basis of adsorption capacity and electronic properties. The temperature-induced decrease of recombination centers, along with the concomitant increase of adsorption and reaction sites upon thermal annealing are called to be responsible for such improved performance. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakwa-Novak, Miles A.; Holewinski, Adam; Hoyt, Caroline B.
2015-08-08
Polymeric amines such as poly(ethylenimine) (PEI) supported on mesoporous oxides are promising candidate adsorbents for CO 2 capture processes. One important aspect to the design and optimization of these materials is a fundamental understanding of how the properties of the oxide support such as pore structure, particle morphology, and surface properties affect the efficiency of the guest polymer in its interactions with CO 2. Previously, the efficiency of impregnated PEI to adsorb CO 2 was shown to increase upon the addition of Zr as a surface modifier in SBA-15. But, the efficacy of this method to tune the adsorption performancemore » has not been explored in materials of differing textural and morphological nature. These issues are directly addressed via the preparation of an array of SBA-15 support materials with varying textural and morphological properties, as well as varying content of zirconium doped into the material. Zirconium is incorporated into the SBA-15 either during the synthesis of the SBA-15, or postsynthetically via deposition of Zr species onto pure-silica SBA-15. The method of Zr incorporation alters the textural and morphological properties of the parent SBA-15 in different ways. Importantly, the CO 2 capacity of SBA-15 impregnated with PEI increases by a maximum of ~60% with the quantity of doped Zr for a “standard” SBA-15 containing significant microporosity, while no increase in the CO 2 capacity is observed upon Zr incorporation for an SBA-15 with reduced microporosity and a larger pore size, pore volume, and particle size. Finally, adsorbents supported on SBA-15 with controlled particle morphology show only modest increases in CO 2 capacity upon inclusion of Zr to the silica framework. The data demonstrate that the textural and morphological properties of the support have a more significant impact on the ability of PEI to capture CO 2 than the support surface composition.« less
Sakwa-Novak, Miles A; Holewinski, Adam; Hoyt, Caroline B; Yoo, Chun-Jae; Chai, Song-Hai; Dai, Sheng; Jones, Christopher W
2015-09-01
Polymeric amines such as poly(ethylenimine) (PEI) supported on mesoporous oxides are promising candidate adsorbents for CO2 capture processes. An important aspect to the design and optimization of these materials is a fundamental understanding of how the properties of the oxide support such as pore structure, particle morphology, and surface properties affect the efficiency of the guest polymer in its interactions with CO2. Previously, the efficiency of impregnated PEI to adsorb CO2 was shown to increase upon the addition of Zr as a surface modifier in SBA-15. However, the efficacy of this method to tune the adsorption performance has not been explored in materials of differing textural and morphological nature. Here, these issues are directly addressed via the preparation of an array of SBA-15 support materials with varying textural and morphological properties, as well as varying content of zirconium doped into the material. Zirconium is incorporated into the SBA-15 either during the synthesis of the SBA-15, or postsynthetically via deposition of Zr species onto pure-silica SBA-15. The method of Zr incorporation alters the textural and morphological properties of the parent SBA-15 in different ways. Importantly, the CO2 capacity of SBA-15 impregnated with PEI increases by a maximum of ∼60% with the quantity of doped Zr for a "standard" SBA-15 containing significant microporosity, while no increase in the CO2 capacity is observed upon Zr incorporation for an SBA-15 with reduced microporosity and a larger pore size, pore volume, and particle size. Finally, adsorbents supported on SBA-15 with controlled particle morphology show only modest increases in CO2 capacity upon inclusion of Zr to the silica framework. The data demonstrate that the textural and morphological properties of the support have a more significant impact on the ability of PEI to capture CO2 than the support surface composition.
Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K
2006-07-06
Atomic Force Microscopy (AFM) has emerged as a powerful biophysical tool in biotechnology and medicine to investigate the morphological, physical, and mechanical properties of yeasts and other biological systems. However, properties such as, yeasts' response to environmental stresses, metabolic activities of pathogenic yeasts, cell-cell/cell-substrate adhesion, and cell-flocculation have rarely been investigated so far by using biophysical tools. Our recent results obtained by AFM on one strain each of Saccharomyces cerevisiae and Schizosaccharomyces pombe show a clear correlation between the physiology of environmentally stressed yeasts and the changes in their surface morphology. The future directions of the AFM related techniques in relation to yeasts are also discussed.
Surface Termination of the Metal-Organic Framework HKUST-1: A Theoretical Investigation.
Amirjalayer, Saeed; Tafipolsky, Maxim; Schmid, Rochus
2014-09-18
The surface morphology and termination of metal-organic frameworks (MOF) is of critical importance in many applications, but the surface properties of these soft materials are conceptually different from those of other materials like metal or oxide surfaces. Up to now, experimental investigations are scarce and theoretical simulations have focused on the bulk properties. The possible surface structure of the archetypal MOF HKUST-1 is investigated by a first-principles derived force field in combination with DFT calculations of model systems. The computed surface energies correctly predict the [111] surface to be most stable and allow us to obtain an unprecedented atomistic picture of the surface termination. Entropic factors are identified to determine the preferred surface termination and to be the driving force for the MOF growth. On the basis of this, reported strategies like employing "modulators" during the synthesis to tailor the crystal morphology are discussed.
2011-01-01
Large area well-aligned carbon nanotube (CNT) arrays with different morphologies were synthesized by using a chemical vapor deposition. The plasma-induced emission properties of CNT array cathodes with different morphologies were investigated. The ratio of CNT height to CNT-to-CNT distance has considerable effects on their plasma-induced emission properties. As the ratio increases, emission currents of CNT array cathodes decrease due to screening effects. Under the pulse electric field of about 6 V/μm, high-intensity electron beams of 170–180 A/cm2 were emitted from the surface plasma. The production mechanism of the high-intensity electron beams emitted from the CNT arrays was plasma-induced emission. Moreover, the distribution of the electron beams was in situ characterized by the light emission from the surface plasma. PMID:27502662
Liao, Qingliang; Qin, Zi; Zhang, Zheng; Qi, Junjie; Zhang, Yue; Huang, Yunhua; Liu, Liang
2011-12-01
Large area well-aligned carbon nanotube (CNT) arrays with different morphologies were synthesized by using a chemical vapor deposition. The plasma-induced emission properties of CNT array cathodes with different morphologies were investigated. The ratio of CNT height to CNT-to-CNT distance has considerable effects on their plasma-induced emission properties. As the ratio increases, emission currents of CNT array cathodes decrease due to screening effects. Under the pulse electric field of about 6 V/μm, high-intensity electron beams of 170-180 A/cm(2) were emitted from the surface plasma. The production mechanism of the high-intensity electron beams emitted from the CNT arrays was plasma-induced emission. Moreover, the distribution of the electron beams was in situ characterized by the light emission from the surface plasma.
Surface modification of Ni–Ti alloys for stent application after magnetoelectropolishing
Musaramthota, Vishal; Munroe, Norman; Datye, Amit; Dua, Rupak; Haider, Waseem; McGoron, Anthony; Rokicki, Ryszard
2015-01-01
The constant demand for new implant materials and the multidisciplinary design approaches for stent applications have expanded vastly over the past decade. The biocompatibility of these implant materials is a function of their surface characteristics such as morphology, surface chemistry, roughness, surface charge and wettability. These surface characteristics can directly influence the material's corrosion resistance and biological processes such as endothelialization. Surface morphology affects the thermodynamic stability of passivating oxides, which renders corrosion resistance to passivating alloys. Magnetoelectropolishing (MEP) is known to alter the morphology and composition of surface films, which assist in improving corrosion resistance of Nitinol alloys. This work aims at analyzing the surface characteristics of MEP Nitinol alloys by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the alloys was determined by contact angle measurements and the mechanical properties were assessed by Nanoindentation. Improved mechanical properties were observed with the addition of alloying elements. Cyclic potentiodynamic polarization tests were performed to determine the corrosion susceptibility. Further, the alloys were tested for their cytotoxicity and cellular growth with endothelial cells. Improved corrosion resistance and cellular viability were observed with MEP surface treated alloys. PMID:25746243
Surface morphological properties of Ag-Al2O3 nanocermet layers using dip-coating technique
NASA Astrophysics Data System (ADS)
Muhammad, Nor Adhila; Suhaimi, Siti Fatimah; Zubir, Zuhana Ahmad; Daud, Sahhidan
2017-12-01
Ag-Al2O3 nanocermet layer was deposited on Cu coated glass substrate using dip-coating technique. The aim of this study was to observe the surface morphology properties of Ag-Al2O3 nanocermet layers after annealing process at 350°C in H2. The surface morphology of Ag-Al2O3 nanocermet will be characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-Ray Diffractometer (XRD), respectively. The results show that nearly isolated Ag particles having a large and small size were present in the Al2O3 dielectric matrix after annealing process. The face centered cubic crystalline structure of Ag nanoparticles inclusion in the amorphous alumina dielectric matrix was confirmed using XRD pattern and supported by EDX spectra analysis.
Australian Multiexperimental Assessment of SIR-B (AMAS)
NASA Technical Reports Server (NTRS)
Richards, J. A.; Forster, B. C.; Milne, A. K.; Taylor, G. R.; Trinder, J. C.
1984-01-01
The utility of SIR-B data for analysis of surface properties and subsurface morphology in three arid regions of Australia is investigated. This study area is located in western New South Wales. It contains extensive aeolian and alluvially derived depositional plains and is the site of the University's Arid Zone Research Station; it is well-mapped and surveyed. Radar backscatter is mapped and evaluated against known terrain conditions. Relative components of surface and subsurface return are determined with a view to identifying structural properties of surface and subsurface morphology. The capability of microwave remote sensing in locating likely groundwater sources in the Bancannia Basin, near Fowler's Gap is assessed.
Sui, Mao; Li, Ming-Yu; Kunwar, Sundar; Pandey, Puran; Zhang, Quanzhen; Lee, Jihoon
2017-01-01
Metallic nanostructures (NSs) have been widely adapted in various applications and their physical, chemical, optical and catalytic properties are strongly dependent on their surface morphologies. In this work, the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire (0001) is demonstrated by the control of annealing temperature and dwelling duration with the distinct thickness of Pt films. The formation of Pt NSs is led by the surface diffusion, agglomeration and surface and interface energy minimization of Pt thin films, which relies on the growth parameters such as system temperature, film thickness and annealing duration. The Pt layer of 10 nm shows the formation of overlaying NPs below 650°C and isolated Pt nanoparticles above 700°C based on the enhanced surface diffusion and Volmer-Weber growth model whereas larger wiggly nanostructures are formed with 20 nm thick Pt layers based on the coalescence growth model. The morphologies of Pt nanostructures demonstrate a sharp distinction depending on the growth parameters applied. By the control of dwelling duration, the gradual transition from dense Pt nanoparticles to networks-like and large clusters is observed as correlated to the Rayleigh instability and Ostwald ripening. The various Pt NSs show a significant distinction in the reflectance spectra depending on the morphology evolution: i.e. the enhancement in UV-visible and NIR regions and the related optical properties are discussed in conjunction with the Pt NSs morphology and the surface coverage.
Morphology of size-selected Ptn clusters on CeO2(111)
NASA Astrophysics Data System (ADS)
Shahed, Syed Mohammad Fakruddin; Beniya, Atsushi; Hirata, Hirohito; Watanabe, Yoshihide
2018-03-01
Supported Pt catalysts and ceria are well known for their application in automotive exhaust catalysts. Size-selected Pt clusters supported on a CeO2(111) surface exhibit distinct physical and chemical properties. We investigated the morphology of the size-selected Ptn (n = 5-13) clusters on a CeO2(111) surface using scanning tunneling microscopy at room temperature. Ptn clusters prefer a two-dimensional morphology for n = 5 and a three-dimensional (3D) morphology for n ≥ 6. We further observed the preference for a 3D tri-layer structure when n ≥ 10. For each cluster size, we quantitatively estimated the relative fraction of the clusters for each type of morphology. Size-dependent morphology of the Ptn clusters on the CeO2(111) surface was attributed to the Pt-Pt interaction in the cluster and the Pt-O interaction between the cluster and CeO2(111) surface. The results obtained herein provide a clear understanding of the size-dependent morphology of the Ptn clusters on a CeO2(111) surface.
Morphology of size-selected Ptn clusters on CeO2(111).
Shahed, Syed Mohammad Fakruddin; Beniya, Atsushi; Hirata, Hirohito; Watanabe, Yoshihide
2018-03-21
Supported Pt catalysts and ceria are well known for their application in automotive exhaust catalysts. Size-selected Pt clusters supported on a CeO 2 (111) surface exhibit distinct physical and chemical properties. We investigated the morphology of the size-selected Pt n (n = 5-13) clusters on a CeO 2 (111) surface using scanning tunneling microscopy at room temperature. Pt n clusters prefer a two-dimensional morphology for n = 5 and a three-dimensional (3D) morphology for n ≥ 6. We further observed the preference for a 3D tri-layer structure when n ≥ 10. For each cluster size, we quantitatively estimated the relative fraction of the clusters for each type of morphology. Size-dependent morphology of the Pt n clusters on the CeO 2 (111) surface was attributed to the Pt-Pt interaction in the cluster and the Pt-O interaction between the cluster and CeO 2 (111) surface. The results obtained herein provide a clear understanding of the size-dependent morphology of the Pt n clusters on a CeO 2 (111) surface.
Fractal characterization and wettability of ion treated silicon surfaces
NASA Astrophysics Data System (ADS)
Yadav, R. P.; Kumar, Tanuj; Baranwal, V.; Vandana, Kumar, Manvendra; Priya, P. K.; Pandey, S. N.; Mittal, A. K.
2017-02-01
Fractal characterization of surface morphology can be useful as a tool for tailoring the wetting properties of solid surfaces. In this work, rippled surfaces of Si (100) are grown using 200 keV Ar+ ion beam irradiation at different ion doses. Relationship between fractal and wetting properties of these surfaces are explored. The height-height correlation function extracted from atomic force microscopic images, demonstrates an increase in roughness exponent with an increase in ion doses. A steep variation in contact angle values is found for low fractal dimensions. Roughness exponent and fractal dimensions are found correlated with the static water contact angle measurement. It is observed that after a crossover of the roughness exponent, the surface morphology has a rippled structure. Larger values of interface width indicate the larger ripples on the surface. The contact angle of water drops on such surfaces is observed to be lowest. Autocorrelation function is used for the measurement of ripple wavelength.
Morphological Properties of Siloxane-Hydrogel Contact Lens Surfaces.
Stach, Sebastian; Ţălu, Ştefan; Trabattoni, Silvia; Tavazzi, Silvia; Głuchaczka, Alicja; Siek, Patrycja; Zając, Joanna; Giovanzana, Stefano
2017-04-01
The aim of this study was to quantitatively characterize the micromorphology of contact lens (CL) surfaces using atomic force microscopy (AFM) and multifractal analysis. AFM and multifractal analysis were used to characterize the topography of new and worn siloxane-hydrogel CLs made of Filcon V (I FDA group). CL surface roughness was studied by AFM in intermittent-contact mode, in air, on square areas of 25 and 100 μm 2 , by using a Nanoscope V MultiMode (Bruker). Detailed surface characterization of the surface topography was obtained using statistical parameters of 3-D (three-dimensional) surface roughness, in accordance with ISO 25178-2: 2012. Before wear, the surface was found to be characterized by out-of-plane and sharp structures, whilst after a wear of 8 h, two typical morphologies were observed. One morphology (sharp type) has a similar aspect as the unworn CLs and the other morphology (smooth type) is characterized by troughs and bumpy structures. The analysis of the AFM images revealed a multifractal geometry. The generalized dimension D q and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of CL surface geometry at nanometer scale. Surface statistical parameters deduced by multifractal analysis can be used to assess the CL micromorphology and can be used by manufacturers in developing CLs with improved surface characteristics. These parameters can also be used in understanding the tribological interactions of the back surface of the CL with the corneal surface and the front surface of the CL with the under-surface of the eyelid (friction, wear, and micro-elastohydrodynamic lubrication at a nanometer scale).
Valencia, Germán Ayala; Luciano, Carla Giovana; Lourenço, Rodrigo Vinicius; do Amaral Sobral, Paulo José
2018-02-01
The aim of this research was to study the effects of laponite concentrations on some properties of nano-biocomposite films based on cassava starch, focusing mainly the relation between the properties of the surface microstructure and roughness, water contact angle and gloss. Nano-biocomposite films were produced by casting. We analyzed gloss, color, opacity, water contact angle, crystallinity by X-ray diffraction, and microstructure by scanning electron microscopy and atomic force microscopy. Texture parameters (energy, entropy and fractal dimension) were extracted from micrographs. We observed a great impact of laponite in the morphology of nano-biocomposite films. Texture parameters correlated with surface heterogeneity and roughness. Finally, surface roughness affected the surface hydrophilicity of nano-biocomposite films. Laponite platelets were exfoliated and/or intercalated with amylose and amylopectin chains. This research reports new information on the effects of laponite concentrations on the morphological, optical and wetting properties of nano-biocomposite films aiming future industrial applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Tribological properties of sputtered MoS sub 2 films in relation to film morphology
NASA Technical Reports Server (NTRS)
Spalvins, T.
1980-01-01
Thin sputter deposited MoS2 films in the 2000 to 6000 A thickness range have shown excellent lubricating properties, when sputtering parameters and substrate conditions are properly selected and precisely controlled. The lubricating properties of sputtered MoS2 films are strongly influenced by their crystalline-amorphous structure, morphology and composition. The coefficient of friction can range from 0.04 which is effective lubrication to 0.4 which reflects an absence of lubricating properties. Visual screening and slight wiping of the as-sputtered MoS2 film can identify the integrity of the film. An acceptable film displays a black-sooty surface appearance whereas an unacceptable film has a highly reflective, gray surface and the film is hard and brittle.
Kioseoglou, J; Kalesaki, E; Lymperakis, L; Karakostas, Th; Komninou, Ph
2013-01-30
First-principles calculations relating to the atomic structure and electronic properties of {101[overline]3} GaN surfaces reveal significant differentiations between the two polarity orientations. The (101[overline]3) surface exhibits a remarkable morphological stability, stabilizing a metallic structure (Ga adlayer) over the entire range of the Ga chemical potential. In contrast, the semiconducting, cleaved surface is favoured on (101[overline]3[overline]) under extremely and moderately N-rich conditions, a Ga bilayer is stabilized under corresponding Ga-rich conditions and various transitions between metallic reconstructions take place in intermediate growth stoichiometries. Efficient growth schemes for smooth, two-dimensional GaN layers and the isolation of {101[overline]3} material from parasitic orientations are identified.
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1983-01-01
Surface profilometry and scanning electron microscopy were utilized to study changes in the surface of polymers when eroded. The X-ray photoelectron spectroscopy (XPS) and depth profile analysis indicate the corrosion of metal and ceramic surfaces and reveal the diffusion of certain species into the surface to produce a change in mechanical properties. Ion implantation, nitriding and plating and their effects on the surface are characterized. Auger spectroscopy analysis identified morphological properties of coatings applied to surfaces by sputter deposition.
Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming
2015-01-01
Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity. PMID:26333629
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming
2015-09-01
Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity.
Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming
2015-09-03
Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity.
Role of Exposed Surfaces on Zinc Oxide Nanostructures in the Catalytic Ethanol Transformation.
Morales, María V; Asedegbega-Nieto, Esther; Iglesias-Juez, Ana; Rodríguez-Ramos, Inmaculada; Guerrero-Ruiz, Antonio
2015-07-08
For a series of nanometric ZnO materials, the relationship between their morphological and surface functionalities and their catalytic properties in the selective decomposition of ethanol to yield acetaldehyde was explored. Six ZnO solids were prepared by a microemulsion-precipitation method and the thermal decomposition of different precursors and compared with a commercial sample. All these materials were characterized intensively by XRD and SEM to obtain their morphological specificities. Additionally, surface area determinations and IR spectroscopy were used to detect differences in the surface properties. The density of acid surface sites was determined quantitatively using an isopropanol dehydration test. Based on these characterization studies and on the results of the catalytic tests, it has been established that ZnO basal surfaces seem to be responsible for the production of ethylene as a minor product as well as for secondary reactions that yield acetyl acetate. Furthermore, one specific type of exposed hydroxyl groups appears to govern the surface catalytic properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakwa-Novak, Miles A.; Holewinski, Adam; Hoyt, Caroline B.
Polymeric amines such as poly(ethylenimine) (PEI) supported on mesoporous oxides are promising candidate adsorbents for CO2 capture processes. An important aspect to the design and optimization of these materials is a fundamental understanding of how the properties of the oxide support such as pore structure, particle morphology, and surface properties affect the efficiency of the guest polymer in its interactions with CO2. Previously, the efficiency of impregnated PEI to adsorb CO2 was shown to increase upon the addition of Zr as a surface modifier in SBA-15. However, the efficacy of this method to tune the adsorption performance has not beenmore » explored in materials of differing textural and morphological nature. Here, these issues are directly addressed via the preparation of an array of SBA-15 support materials with varying textural and morphological properties, as well as varying content of zirconium doped into the material. Zirconium is incorporated into the SBA-15 either during the synthesis of the SBA-15, or postsynthetically via deposition of Zr species onto pure-silica SBA-15. The method of Zr incorporation alters the textural and morphological properties of the parent SBA-15 in different ways. Importantly, the CO2 capacity of SBA-15 impregnated with PEI increases by a maximum of ~60% with the quantity of doped Zr for a “standard” SBA-15 containing significant microporosity, while no increase in the CO2 capacity is observed upon Zr incorporation for an SBA-15 with reduced microporosity and a larger pore size, pore volume, and particle size. Finally, adsorbents supported on SBA-15 with controlled particle morphology show only modest increases in CO2 capacity upon inclusion of Zr to the silica framework. The data demonstrate that the textural and morphological properties of the support have a more significant impact on the ability of PEI to capture CO2 than the support surface composition.« less
Ruíz-Gómez, M A; Figueroa-Torres, M Z; Alonso-Lemus, I L; Vega-Becerra, O E; González-López, J R; Zaldívar-Cadena, A A
2018-04-05
An electroless deposition process was used to synthesize with a controlled morphology, polycrystalline ZnO on glass substrates as antimicrobial coatings. The influence of deposition temperature (T dep ) on the physicochemical and antimicrobial properties of the ZnO films was analyzed. The results indicated that a change in deposition temperature greatly affected the morphology and the degree of crystallinity of the films. Scanning electron microscope images show that the film surface is porous at a deposition temperature of 40 and 50 °C, whereas hexagonal-plate shaped morphology predominated at 60 °C and finally at 70 and 80 °C the films consisted of rod-like particles. The films showed good transparency in the visible region. All ZnO films presented notable antimicrobial activity against the gram-negative bacteria Escherichia coli (E. coli) and the gram-positive Staphylococcus aureus (S. aureus). It was found that the antimicrobial efficiency is strongly dependent on morphology and structural properties. The best antimicrobial performance was recorded for the films consisting of rod-like morphology with a high degree of crystallinity. The procedure used in this investigation is strongly recommended for the development of functional surfaces. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jałochowski, M.; Kwapiński, T.; Łukasik, P.; Nita, P.; Kopciuszyński, M.
2016-07-01
Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed.
Banerjee, Arghya Narayan; Anitha, V C; Joo, Sang W
2017-10-16
Ti substrate surface is modified into two-dimensional (2D) TiO 2 nanoplatelet or one-dimensional (1D) nanorod/nanofiber (or a mixture of both) structure in a controlled manner via a simple KOH-based hydrothermal technique. Depending on the KOH concentration, different types of TiO 2 nanostructures (2D platelets, 1D nanorods/nanofibers and a 2D+1D mixed sample) are fabricated directly onto the Ti substrate surface. The novelty of this technique is the in-situ modification of the self-source Ti surface into titania nanostructures, and its direct use as the electrochemical microelectrode without any modifications. This leads to considerable improvement in the interfacial properties between metallic Ti and semiconducting TiO 2 . Since interfacial states/defects have profound effect on charge transport properties of electronic/electrochemical devices, therefore this near-defect-free interfacial property of Ti-TiO 2 microelectrode has shown high supercapacitive performances for superior charge-storage devices. Additionally, by hydrothermally tuning the morphology of titania nanostructures, the electrochemical properties of the electrodes are also tuned. A Ti-TiO 2 electrode comprising of a mixture of 2D-platelet+1D-nanorod structure reveals very high specific capacitance values (~7.4 mF.cm -2 ) due to the unique mixed morphology which manifests higher active sites (hence, higher utilization of the active materials) in terms of greater roughness at the 2D-platelet structures and higher surface-to-volume-ratio in the 1D-nanorod structures.
NASA Astrophysics Data System (ADS)
Hussnain, Ali; Singh Rawat, Rajdeep; Ahmad, Riaz; Hussain, Tousif; Umar, Z. A.; Ikhlaq, Uzma; Chen, Zhong; Shen, Lu
2015-02-01
Nano-crystalline tungsten nitride thin films are synthesized on AISI-304 steel at room temperature using Mather-type plasma focus system. The surface properties of the exposed substrate against different deposition shots are examined for crystal structure, surface morphology and mechanical properties using X-ray diffraction (XRD), atomic force microscope, field emission scanning electron microscope and nano-indenter. The XRD results show the growth of WN and WN2 phases and the development of strain/stress in the deposited films by varying the number of deposition shots. Morphology of deposited films shows the significant change in the surface structure with different ion energy doses (number of deposition shots). Due to the effect of different ion energy doses, the strain/stress developed in the deposited film leads to an improvement of hardness of deposited films.
Characterization of the surface properties of MgO using paper spray mass spectrometry.
Zheng, Yajun; Zhang, Xiaoling; Bai, Zongquan; Zhang, Zhiping
2016-08-01
Significant advances have been made in the preparation of different morphologies of magnesium oxide (MgO), but the relationship between MgO morphology and its interactions with therapeutic drugs is rarely studied. Herein, we investigated the interactions between different morphologies of MgO and therapeutic drugs using paper spray mass spectrometry. Different morphologies of MgO including trapezoidal, needle-like, flower-like and nest-like structures were prepared through a facile precipitation method. The as-obtained MgO particles were then coated onto the surface of filter paper via vacuum filtration strategy. The coated papers with different morphologies of MgO were used as the substrates for paper spray mass spectrometry to explore the interactions between different MgO and therapeutic drugs. Through investigating the interactions between different morphologies of MgO coated papers and therapeutic drugs, it demonstrated that, in contrast to the trapezoidal, needle-like and nest-like MgO coated papers, different drugs in dried blood spots (DBS) were more favourably eluted off from the paper coated with flower-like MgO due to its weaker surface basicity. Also, the signal intensities of different drugs during paper spray were highly dependent on their elution behaviours. Paper spray mass spectrometry (MS) provides an avenue to elaborate the surface properties of MgO with different structures. The surface basicity of MgO played a crucial role in determining the elution behaviours of therapeutic drugs in DBS, and a more favourable elution behaviour tended to result in a higher MS signal. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Ahmed, Syed Faisal; Srivastava, Sanjay; Agarwal, Alka Bani
2018-04-01
Metal matrix composite offers outstanding properties for better performance of disc brakes. In the present study, the composite of AlTiCr master alloy was prepared by stir die casting method. The developed material was reinforced with (0-10 wt%) silicon carbide (SiC) and boron carbide (B4C). The effects of SiC reinforcement from 0 to 10 wt% on mechanical, microstructure and surface morphological properties of Al MMC was investigated and compared with B4C reinforcement. Physical properties like density and micro Vickers hardness number show an increasing trend with an increase in the percentage of SiC and B4C reinforcement. Mechanical properties viz. UTS, yield strength and percentage of elongation are improved with increasing the fraction of reinforcement. The surface morphology and phase were identified from scanning electron microscopy (SEM) and X-ray diffraction analysis and the oxidized product formed during the casting was investigated by Fourier transformation infrared spectroscopy. This confirms the presence of crystallization of corundum (α-Al2O3) in small traces as one of the alumina phases, within casting sample. Micro-structural characterization by SEM depicted that the particles tend to be more agglomerated more and more with the percentage of the reinforcement. The AFM results reveal that the surface roughness value shows a decreasing trend with SiC reinforcement while roughness increases with increase the percentage of B4C.
Di Luca, Andrea; de Wijn, Joost R; van Blitterswijk, Clemens A; Camarero-Espinosa, Sandra; Moroni, Lorenzo
2017-08-01
The functionalization of biomaterials substrates used for cell culture is gearing towards an increasing control over cell activity. Although a number of biomaterials have been successfully modified by different strategies to display tailored physical and chemical surface properties, it is still challenging to step from 2D substrates to 3D scaffolds with instructive surface properties for cell culture and tissue regeneration. In this study, additive manufacturing and thermally induced phase separation are combined to create 3D scaffolds with tunable surface morphology from polymer gels. Surface features vary depending on the gel concentration, the exchanging temperature, and the nonsolvent used. When preosteoblasts (MC-3T3 cells) are cultured on these scaffolds, a significant increase in alkaline phosphatase activity is measured for submicron surface topography, suggesting a potential role on early cell differentiation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of nanoparticle shape on the morphology and properties of porous CdSe assemblies (aerogels).
Yu, Hongtao; Brock, Stephanie L
2008-08-01
We demonstrate the effect of differently shaped CdSe nanoscale building blocks (dots, rods, branched nanoparticles, and hyperbranched nanoparticles) on the morphologies, surface characteristics, and optical properties of resultant porous CdSe nanostructured aerogels. Monolithic CdSe aerogels were produced by controlled oxidative removal of surface thiolate ligands from differently shaped CdSe nanoparticles to yield a wet gel, followed by CO(2) supercritical drying. The X-ray diffraction data show that the resultant CdSe aerogels maintain the crystalline phase of the building blocks without significant grain growth. However, the transmission electron microscopy images indicate that the morphology of CdSe aerogels changes from a colloid-type morphology to a polymer-type morphology when the building block changes from dot to rod or the branched nanoparticle. The morphology of the CdSe aerogel assembled from hyperbranched nanoparticles appears to be intermediate between the colloid-type and the polymer-type. Nitrogen physisorption measurements suggest that the surface areas and porosity are a direct function of the shape of the primary building blocks, with aerogels formed from rods or branched particles exhibiting the greatest surface areas (>200 m(2)/g) and those prepared from hyperbranched nanoparticles exhibiting the least (<100 m(2)/g). Band gap measurements and photoluminescence studies show that the as-prepared CdSe aerogels retain to a large extent the intrinsic quantum confinement of the differently shaped building blocks, despite being connected into a 3D network.
NASA Astrophysics Data System (ADS)
Liu, Qinhe; Xu, Xianhui; Xia, Weixing; Che, Renchao; Chen, Chen; Cao, Qi; He, Jingang
2015-01-01
To design and fabricate rational surface architecture of individual particles is one of the key factors that affect their magnetic properties and microwave absorption capability, which is still a great challenge. Herein, a series of Co20Ni80 hierarchical structures with different surface morphologies, including flower-, urchin-, ball-, and chain-like morphologies, were obtained using structure-directing templates via a facile one-step solvothermal treatment. The microwave reflection loss (RL) of urchin-like Co20Ni80 hierarchical structures reaches as high as -33.5 dB at 3 GHz, with almost twice the RL intensity of the ball- and chain-like structures, and the absorption bandwidth (<-10 dB) is about 5.5 GHz for the flower-like morphology, indicating that the surface nanospikes and nanoflakes on the Co20Ni80 microsphere surfaces have great influences on their magnetic microwave absorption properties. Electron holography analysis reveals that the surface nanospikes and nanoflakes could generate a high density of stray magnetic flux lines and contribute a large saturation magnetization (105.62 emu g-1 for urchin-like and 96.41 emu g-1 for flower-like morphology), leading the urchin-like and flower-like Co20Ni80 to possess stronger microwave RL compared with the ball-like and chain-like Co20Ni80 alloys. The eddy-current absorption mechanism μ''(μ')-2(f)-1 is dominant in the frequency region above 8 GHz, implying that eddy-current loss is a vital factor for microwave RL in the high frequency range. It can be supposed from our findings that different surface morphologies of magnetic hierarchical structures might become an effective path to achieve high-performance microwave absorption for electromagnetic shielding and stealth camouflage applications.To design and fabricate rational surface architecture of individual particles is one of the key factors that affect their magnetic properties and microwave absorption capability, which is still a great challenge. Herein, a series of Co20Ni80 hierarchical structures with different surface morphologies, including flower-, urchin-, ball-, and chain-like morphologies, were obtained using structure-directing templates via a facile one-step solvothermal treatment. The microwave reflection loss (RL) of urchin-like Co20Ni80 hierarchical structures reaches as high as -33.5 dB at 3 GHz, with almost twice the RL intensity of the ball- and chain-like structures, and the absorption bandwidth (<-10 dB) is about 5.5 GHz for the flower-like morphology, indicating that the surface nanospikes and nanoflakes on the Co20Ni80 microsphere surfaces have great influences on their magnetic microwave absorption properties. Electron holography analysis reveals that the surface nanospikes and nanoflakes could generate a high density of stray magnetic flux lines and contribute a large saturation magnetization (105.62 emu g-1 for urchin-like and 96.41 emu g-1 for flower-like morphology), leading the urchin-like and flower-like Co20Ni80 to possess stronger microwave RL compared with the ball-like and chain-like Co20Ni80 alloys. The eddy-current absorption mechanism μ''(μ')-2(f)-1 is dominant in the frequency region above 8 GHz, implying that eddy-current loss is a vital factor for microwave RL in the high frequency range. It can be supposed from our findings that different surface morphologies of magnetic hierarchical structures might become an effective path to achieve high-performance microwave absorption for electromagnetic shielding and stealth camouflage applications. Electronic supplementary information (ESI) available: EDS analysis data, SEM images, electron holography schematic diagram, electron holography and magnetic hysteresis loops. See DOI: 10.1039/c4nr05547k
Fatigue crack growth and fracture behavior of bainitic rail steels.
DOT National Transportation Integrated Search
2011-08-01
"The microstructuremechanical properties relationships, fracture toughness, fatigue crack growth and fracture surface morphology of J6 bainitic, manganese, and pearlitic rail steels were studied. Microstructuremechanical properties correlation ...
Fatigue crack growth and fracture behavior of bainitic rail steels.
DOT National Transportation Integrated Search
2011-09-01
"The microstructuremechanical properties relationships, fracture toughness, fatigue crack growth and fracture surface morphology of J6 bainitic, manganese, and pearlitic rail steels were studied. Microstructuremechanical properties correlation ...
NASA Astrophysics Data System (ADS)
Liu, Yan; Li, Xinlin; Jin, Jingfu; Liu, Jiaan; Yan, Yuying; Han, Zhiwu; Ren, Luquan
2017-04-01
Ice accumulation is a thorny problem which may inflict serious damage even disasters in many areas, such as aircraft, power line maintenance, offshore oil platform and locators of ships. Recent researches have shed light on some promising bio-inspired anti-icing strategies to solve this problem. Inspired by typical plant surfaces with super-hydrophobic character such as lotus leaves and rose petals, structured superhydrophobic surface are prepared to discuss the anti-icing property. 7075 Al alloy, an extensively used materials in aircrafts and marine vessels, is employed as the substrates. As-prepared surfaces are acquired by laser processing after being modified by stearic acid for 1 h at room temperature. The surface morphology, chemical composition and wettability are characterized by means of SEM, XPS, Fourier transform infrared (FTIR) spectroscopy and contact angle measurements. The morphologies of structured as-prepared samples include round hump, square protuberance and mountain-range-like structure, and that the as-prepared structured surfaces shows an excellent superhydrophobic property with a WCA as high as 166 ± 2°. Furthermore, the anti-icing property of as-prepared surfaces was tested by a self-established apparatus, and the crystallization process of a cooling water on the sample was recorded. More importantly, we introduced a model to analyze heat transfer process between the droplet and the structured surfaces. This study offers an insight into understanding the heat transfer process of the superhydrophobic surface, so as to further research about its unique property against ice accumulation.
Surface changes of biopolymers PHB and PLLA induced by Ar+ plasma treatment and wet etching
NASA Astrophysics Data System (ADS)
Slepičková Kasálková, N.; Slepička, P.; Sajdl, P.; Švorčík, V.
2014-08-01
Polymers, especially group of biopolymers find potential application in a wide range of disciplines due to their biodegradability. In biomedical applications these materials can be used as a scaffold or matrix. In this work, the influence of the Ar+ plasma treatment and subsequent wet etching (acetone/water) on the surface properties of polymers were studied. Two biopolymers - polyhydroxybutyrate with 8% polyhydroxyvalerate (PHB) and poly-L-lactic acid (PLLA) were used in these experiments. Modified surface layers were analyzed by different methods. Surface wettability was characterized by determination of water contact angle. Changes in elemental composition of modified surfaces were performed by X-ray Photoelectron Spectroscopy (XPS). Surface morphology and roughness was examined using Atomic Force Microscopy (AFM). Gravimetry method was used to study the mass loss. It was found that the modification from both with plasma and wet etching leads to dramatic changes of surface properties (surface chemistry, morphology and roughness). Rate of changes of these features strongly depends on the modification parameters.
NASA Astrophysics Data System (ADS)
Ye, Yongda; Wang, Haibo; Tang, Guoyi; Song, Guolin
2018-05-01
The effect of electropulsing-assisted ultrasonic nanocrystalline surface modification (EP-UNSM) on surface mechanical properties and microstructure of Ti-6Al-4V alloy is investigated. Compared to conventional ultrasonic nanocrystalline surface modification (UNSM), EP-UNSM can effectively facilitate surface roughness and morphology, leading to excellent surface roughness (reduced from Ra 0.918 to Ra 0.028 μm by UNSM and Ra 0.019 μm by EP-UNSM) and smoother morphology with less cracks and defects. Surface friction coefficients are enhanced, resulting in lower and smoother friction coefficients. In addition, the surface-strengthened layer and ultra-refined grains are significantly enhanced with more severe plastic deformation and a greater surface hardness (a maximum hardness value of 407 HV and an effective depth of 550 μm, in comparison with the maximum hardness value of 364 HV and effective depth of 300 μm obtained by conventional UNSM). Remarkable enhancement of surface mechanical properties can be attributed to the refined gradient microstructure and the enhanced severe plastic deformation layer induced by coupling the effects of UNSM and electropulsing. The accelerated dislocation mobility and atom diffusion caused by the thermal and athermal effects of electropulsing treatment may be the primary intrinsic reasons for these improvements.
Structural properties of TiO2 nanomaterials
NASA Astrophysics Data System (ADS)
Kusior, Anna; Banas, Joanna; Trenczek-Zajac, Anita; Zubrzycka, Paulina; Micek-Ilnicka, Anna; Radecka, Marta
2018-04-01
The surface of solids is characterized by active, energy-rich sites that determine physicochemical interaction with gaseous and liquid media and possible applications in photocatalysis. The behavior of materials in such processes is related to their form and amount of various species, especially water and forms of oxygen adsorbed on the surface. The preparation of materials with controlled morphology, which includes modifications of the size, geometry, and composition, is currently an important way of optimizing properties, as many of them depend on not only the size and phase composition, but also on shape. Hydroxylated centers on the surface, which can be treated as trapping sites, are particularly significant. Water adsorbed on the surface bridging hydroxyl groups can distinctly modulate the properties of the surface of titania. The saturation of the surface with hydroxyl groups may improve the photocatalytic properties. TiO2 nanomaterials were obtained via different methods. SEM and TEM analysis were performed to study the morphology. The analysis of XRD and Raman data revealed a phase composition of obtained materials. To examine the surface properties, FTIR absorption spectra of TiO2 nanomaterials were recorded. The photocatalytic activity of titanium dioxide nanoparticles was investigated through the decomposition of methylene blue. It was demonstrated that each surface modification affects the amount of adsorbed hydroxyl groups. The different contributions of the two species to the ν(H2O) FTIR bands for different nanostructures result from the preparation conditions. It was noted that pre-adsorbed water (the surface-bridging hydroxyl) might significantly modulate the surface properties of the material. The increase in hydroxyl group density on the titanium dioxide surface enhances the effectiveness of the photocatalytic processes. It was demonstrated that flower-like titania obtained via hydrothermal synthesis exhibits the weakest catalytic activity, in contrast to the typical spherical TiO2.
NASA Astrophysics Data System (ADS)
Garcia-Leis, Adianez; Torreggiani, Armida; Garcia-Ramos, Jose Vicente; Sanchez-Cortes, Santiago
2015-08-01
Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars. The size, shape, and composition of Ag as well as their optical properties were studied by extinction spectroscopy, hyperspectral dark field microscopy, transmission and scanning electron microscopy (TEM and SEM), and energy dispersive X-ray spectroscopy (EDX). Finally, the surface-enhanced Raman scattering (SERS) activity of these HNS was investigated by using thioflavin T, a biomarker of the β-amyloid fibril formation, responsible for Alzheimer's disease. Lucigenin, a molecule displaying different SERS activities on Au and Ag, was also used to explore the presence of these metals on the NP surface. Thus, a relationship between the morphology, plasmon resonance and SERS activity of these new NPs was made.Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars. The size, shape, and composition of Ag as well as their optical properties were studied by extinction spectroscopy, hyperspectral dark field microscopy, transmission and scanning electron microscopy (TEM and SEM), and energy dispersive X-ray spectroscopy (EDX). Finally, the surface-enhanced Raman scattering (SERS) activity of these HNS was investigated by using thioflavin T, a biomarker of the β-amyloid fibril formation, responsible for Alzheimer's disease. Lucigenin, a molecule displaying different SERS activities on Au and Ag, was also used to explore the presence of these metals on the NP surface. Thus, a relationship between the morphology, plasmon resonance and SERS activity of these new NPs was made. Electronic supplementary information (ESI) available: The SERS spectra of ThT on A-E samples are provided at two different excitations: 532 and 785 nm (Fig. S1). See DOI: 10.1039/c5nr02819a
Effect of corona discharge on cadmium sulphide and lead sulphide films
NASA Astrophysics Data System (ADS)
Koul Chaku, Anemone; Singh, Pramod K.; Bhattacharya, Bhaskar
2018-03-01
This paper describes the effect of corona discharge on cadmium sulphide (CdS) and lead sulphide (PbS) films prepared using the chemical route. The property of films before and after exposure to corona has been described in detail. The electronic properties of the CdS and PbS films have been studied by current-voltage (I-V), capacitance-voltage (C-V) measurements. The structural properties and surface morphology were studied by using X-ray diffraction and scanning electron microscopy before and after exposing to Corona discharge. The films displayed the change in surface morphology after exposure to the corona discharge. It has been found that the films showed an increase in resistivity after exposure. This change in property has been attributed to modification in surface states. Time-dependent recovery indicated that room temperature annealing is sufficient to regain the normal resistivity of the films. The experiment was carried with the aim of studying the effect of the interaction of corona discharge on the semiconductor films and its subsequent effects.
NASA Astrophysics Data System (ADS)
Mahmud, M. A.; Chin, L. Y.; Khusaimi, Z.; Zainal, Z.
2018-05-01
A great attention has focused on Cu doped titania nanotubes (Cu/TiNT) as a versatile advance material since it can be employed in various promising technological applications. The current study reported on the influence of various deposition times on the surface morphology and photoelectrochemical properties of Cu/TiNT via electrodeposition technique. Cu loaded on the TiNT surface was detected with prolonged deposition time. For photoelectrochemical (PEC) measurement, the highest responsive photocurrent density was obtained at 20 minutes with 54.3 µA/cm2. Too long duration (40 mins) resulted in poor performance of Cu/TiNT as only 22.6 µA/cm2 of photocurrent being generated.
Park, Ok-Kyung; Tiwary, Chandra Sekhar; Yang, Yang; Bhowmick, Sanjit; Vinod, Soumya; Zhang, Qingbo; Colvin, Vicki L; Asif, S A Syed; Vajtai, Robert; Penev, Evgeni S; Yakobson, Boris I; Ajayan, Pulickel M
2017-06-01
One can utilize the folding of paper to build fascinating 3D origami architectures with extraordinary mechanical properties and surface area. Inspired by the same, the morphology of 2D graphene can be tuned by addition of magnetite (Fe 3 O 4 ) nanoparticles in the presence of a magnetic field. The innovative 3D architecture with enhanced mechanical properties also shows a high surface area (∼2500 m 2 g -1 ) which is utilized for oil absorption. Detailed microscopy and spectroscopy reveal rolling of graphene oxide (GO) sheets due to the magnetic field driven action of magnetite particles, which is further supported by molecular dynamics (MD) simulations. The macroscopic and local deformation resulting from in situ mechanical loading inside a scanning electron microscope reveals a change in the mechanical response due to a change internal morphology, which is further supported by MD simulation.
NASA Astrophysics Data System (ADS)
Hrostea, L.; Girtan, M.; Mallet, R.; Leontie, L.
2018-06-01
This work is focused on the study of some physical properties of poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly(e-hexylthiophene-2,5-diyl): Methanolfullerene Phenyl-C61-Butyric-Accid-Methyl-Ester (PCBM) blend thin films. Knowing the polymer advantages, such as ease of processing, high thermal stability, strong interaction with light, its properties have captured the attention regarding the changes that can occur in a polymer:fullerene blend in term of them. Polymer and polymer:fullerene blend (1:0.1, 1:0.2, 1:0.4 and 1:0.8 ratios) were deposited by spin coating on glass and SnO2:F (FTO) coated glass. The optical properties were emphasized using spectrophotometry (300 – 2200 nm wavelength range) and spectroscopic ellipsometry models, to obtain the refractive index, extinction coefficient and the transmission (found higher than 80%). According to X-ray diffraction analysis, as-obtained films are amorphous. Investigation of the surface morphology of thin-film samples using Atomic Force Microscopy revealed a crystallite-like surface morphology with crystallite size in the nanometer range.
NASA Astrophysics Data System (ADS)
Liang, B. L.; Wang, Zh M.; Mazur, Yu I.; Strelchuck, V. V.; Holmes, K.; Lee, J. H.; Salamo, G. J.
2006-06-01
We systematically investigated the correlation between morphological and optical properties of InGaAs self-assembled quantum dots (QDs) grown by solid-source molecular beam epitaxy on GaAs (n 11)B (n = 9, 8, 7, 5, 3, 2) substrates. Remarkably, all InGaAs QDs on GaAs(n 11)B under investigation show optical properties superior to those for ones on GaAs(100) as regards the photoluminescence (PL) linewidth and intensity. The morphology for growth of InGaAs QDs on GaAs (n 11)B, where n = 9, 8, 7, 5, is observed to have a rounded shape with a higher degree of lateral ordering than that on GaAs(100). The optical property and the lateral ordering are best for QDs grown on a (511)B substrate surface, giving a strong correlation between lateral ordering and PL optical quality. Our results demonstrate the potential for high quality InGaAs QDs on GaAs(n 11)B for optoelectronic applications.
Morphology modulating the wettability of a diamond film.
Tian, Shibing; Sun, Weijie; Hu, Zhaosheng; Quan, Baogang; Xia, Xiaoxiang; Li, Yunlong; Han, Dong; Li, Junjie; Gu, Changzhi
2014-10-28
Control of the wetting property of diamond surface has been a challenge because of its maximal hardness and good chemical inertness. In this work, the micro/nanoarray structures etched into diamond film surfaces by a maskless plasma method are shown to fix a surface's wettability characteristics, and this means that the change in morphology is able to modulate the wettability of a diamond film from weakly hydrophilic to either superhydrophilic or superhydrophobic. It can be seen that the etched diamond surface with a mushroom-shaped array is superhydrophobic following the Cassie mode, whereas the etched surface with nanocone arrays is superhydrophilic in accordance with the hemiwicking mechnism. In addition, the difference in cone densities of superhydrophilic nanocone surfaces has a significant effect on water spreading, which is mainly derived from different driving forces. This low-cost and convenient means of altering the wetting properties of diamond surfaces can be further applied to underlying wetting phenomena and expand the applications of diamond in various fields.
NASA Astrophysics Data System (ADS)
Gorodzha, S. N.; Surmeneva, M. A.; Prymak, O.; Wittmar, A.; Ulbricht, M.; Epple, M.; Teresov, A.; Koval, N.; Surmenev, R. A.
2015-11-01
The influence of surface properties of radio-frequency (RF) magnetron deposited hydroxyapatite (HA) and Si-containing HA coatings on wettability was studied. The composition and morphology of the coatings fabricated on titanium (Ti) were characterized using atomic force microscopy (AFM) and X-ray diffraction (XRD). The surface wettability was studied using contact angle analysis. Different geometric parameters of acid-etched (AE) and pulse electron beam (PEB)-treated Ti substrates and silicate content in the HA films resulted in the different morphology of the coatings at micro- and nano- length scales. Water contact angles for the HA coated Ti samples were evaluated as a combined effect of micro roughness of the substrate and nano-roughness of the HA films resulting in higher water contact angles compared with acid-etched (AE) or pulse electron beam (PEB) treated Ti substrates.
NASA Astrophysics Data System (ADS)
Sahin, B.; Aydin, R.
2018-07-01
Nanostructured CdO films have been successfully synthesized with different ratios of surfactant triethanolamine (TEA) under SILAR condition. The influence of addition of TEA on the physical properties of CdO nanoparticles was studied. The surface morphology of the films was studied by metallurgical microscope and SEM analysis. Surface topography of the film was studied by AFM. The structural properties of the samples were studied by X-ray diffraction (XRD). The XRD studies confirm that the deposited CdO films has cubic structure (111) preferred orientation with well-crystallinity and purity. The optical bandgap energy was estimated based on the UV-vis spectroscopies which were obtained in the range of 2.16 eV-2.46 eV. Our study is encouraging to get enhanced surface topography by surfactant TEA.
NASA Astrophysics Data System (ADS)
Şologan, Maria; Gentilini, Cristina; Bidoggia, Silvia; Boccalon, Mariangela; Pace, Alice; Pengo, Paolo; Pasquato, Lucia
2018-06-01
Harnessing the reciprocal phobicity of hydrogenated and fluorinated thiolates proved to be a valuable strategy in preparing gold nanoparticles displaying mixed monolayers with a well-defined and pre-determined morphology. Our studies display that the organisation of the fluorinated ligands in phase-separated domains takes place even when these represent a small fraction of the ligands grafted on the gold surface. Using simple model ligands and by combining 19F NMR or ESR spectroscopies, and multiscale molecular simulations, we could demonstrate how the monolayer morphology responds in a predictable manner to structural differences between the thiolates. This enables a straightforward preparation of gold nanoparticles with monolayers displaying stripe-like, Janus, patchy, and random morphologies. Additionally, solubility properties may be tuned as function of the nature of the ligands and of the monolayer morphology obtaining gold nanoparticles soluble in organic solvents or in aqueous solutions. Most importantly, this rich diversity can be achieved not by resorting to ad hoc developed fabrication techniques, but rather relying on the spontaneous self-sorting of the ligands upon assembly on the nanoparticle surface. Besides enabling control over the monolayer morphology, fluorinated ligands endow the nanoparticles with several properties that can be exploited in the development of novel materials with applications, for instance in drug delivery and diagnostic imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuan, Lee Te, E-mail: gd130079@siswa.uthm.edu.my; Abdullah, Hasan Zuhudi, E-mail: hasan@uthm.edu.my; Idris, Maizlinda Izwana, E-mail: izwana@uthm.edu.my
Anodic oxidation is an electrochemical method for the production of ceramic films on a metallic substrate. It had been widely used to deposit the ceramic coatings on the metals surface. This method has been widely used in surface modification of biomaterials especially for dental implants. In this study, the surface morphology, crystallinity and optical properties of titanium foil was modified by anodising in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA). The experiments were carried out at high voltage (350 V), different anodising time (5 and 10 minutes) and current density (10-70 mA.cm{sup −2}) at room temperature. Anodisedmore » titanium was characterised by using field emission scanning electron microscopy (FESEM), X-ray diffractometer (XRD), and UV-Vis spectrometry. The result of the experiment showed that surface morphology, crystallinity and optical properties depended strongly on the current density and anodising time. More porous surface and large amount of anatase and rutile was produced at higher current density and longer anodising time. Apart from that, it is also revealed that the energy band gap of anodised titanium increases as the increase in current density due to the presence of anatase and rutile TiO{sub 2}.« less
NASA Astrophysics Data System (ADS)
Chuan, Lee Te; Abdullah, Hasan Zuhudi; Idris, Maizlinda Izwana
2015-07-01
Anodic oxidation is an electrochemical method for the production of ceramic films on a metallic substrate. It had been widely used to deposit the ceramic coatings on the metals surface. This method has been widely used in surface modification of biomaterials especially for dental implants. In this study, the surface morphology, crystallinity and optical properties of titanium foil was modified by anodising in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA). The experiments were carried out at high voltage (350 V), different anodising time (5 and 10 minutes) and current density (10-70 mA.cm-2) at room temperature. Anodised titanium was characterised by using field emission scanning electron microscopy (FESEM), X-ray diffractometer (XRD), and UV-Vis spectrometry. The result of the experiment showed that surface morphology, crystallinity and optical properties depended strongly on the current density and anodising time. More porous surface and large amount of anatase and rutile was produced at higher current density and longer anodising time. Apart from that, it is also revealed that the energy band gap of anodised titanium increases as the increase in current density due to the presence of anatase and rutile TiO2.
NASA Astrophysics Data System (ADS)
Podestà, Alessandro; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo
2015-12-01
Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO2) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it; Borghi, Francesca; Indrieri, Marco
Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO{sub 2}) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevantmore » interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Hsyi-En, E-mail: sean@mail.stust.edu.tw; Wen, Chia-Hui; Hsu, Ching-Ming
2016-01-15
Chlorine doped SnO{sub 2} thin films were prepared using atomic layer deposition at temperatures between 300 and 450 °C using SnCl{sub 4} and H{sub 2}O as the reactants. Composition, structure, surface morphology, and electrical properties of the as-deposited films were examined. Results showed that the as-deposited SnO{sub 2} films all exhibited rutile structure with [O]/[Sn] ratios between 1.35 and 1.40. The electrical conductivity was found independent on [O]/[Sn] ratio but dependent on chlorine doping concentration, grain size, and surface morphology. The 300 °C-deposited film performed a higher electrical conductivity of 315 S/cm due to its higher chlorine doping level, larger grain size, andmore » smoother film surface. The existence of Sn{sup 2+} oxidation state was demonstrated to minimize the effects of chlorine on raising the electrical conductivity of films.« less
NASA Astrophysics Data System (ADS)
Addonizio, M. L.; Fusco, L.; Antonaia, A.; Cominale, F.; Usatii, I.
2015-12-01
Aluminium induced texture (AIT) method has been used for obtaining highly textured glass substrate suitable for silicon based thin film solar cell technology. Wet etch step parameters of AIT process have been varied and effect of different etchants and different etching times on morphological and optical properties has been analyzed. The resulting morphology features (shape, size distribution, inclination angle) have been optimized in order to obtain the best scattering properties. ZnO:Ga (GZO) films have been deposited by sputtering technique on AIT-processed glass. Two different ZnO surface morphologies have been obtained, strongly depending on the underlying glass substrate morphology induced by different etching times. Very rough and porous texture (σrms ∼ 150 nm) was obtained on glass etched 2 min showing cauliflower-like structure, whereas a softer texture (σrms ∼ 78 nm) was obtained on glass etched 7 min giving wider and smoother U-shaped craters. The effect of different glass textures on optical confinement has been tested in amorphous silicon based p-i-n devices. Devices fabricated on GZO/high textured glass showed a quantum efficiency enhancement due to both an effective light trapping phenomenon and an effective anti-reflective optical behaviour. Short etching time produce smaller cavities (<1 μm) with deep U-shape characterized by high roughness, high inclination angle and low autocorrelation length. This surface morphology promoted a large light scattering phenomenon, as evidenced by haze value and by angular resolved scattering (ARS) behaviour, into a large range of diffraction angles, giving high probability of effective light trapping inside a PV device.
NASA Astrophysics Data System (ADS)
Déau, Estelle; Flandes, Alberto; Spilker, Linda J.; Petazzoni, Jérôme
2013-11-01
Typical variations in the opposition effect morphology of laboratory samples at optical wavelengths are investigated to probe the role of the textural properties of the surface (roughness, porosity and grain size). A previously published dataset of 34 laboratory phase curves is re-analyzed and fit with several morphological models. The retrieved morphological parameters that characterize the opposition surge, amplitude, width and slope (A, HWHM and S respectively) are correlated to the single scattering albedo, the roughness, the porosity and the grain size of the samples. To test the universality of the laboratory samples’ trends, we use previously published phase curves of planetary surfaces, including the Moon, satellites and rings of the giant planets. The morphological parameters of the surge (A and HWHM) for planetary surfaces are found to have a non-monotonic variation with the single scattering albedo, similar to that observed in asteroids (Belskaya, I.N., Shevchenko, V.G. [2000]. Icarus 147, 94-105), which is unexplained so far. The morphological parameters of the surge (A and HWHM) for laboratory samples seem to exhibit the same non-monotonic variation with single scattering albedo. While the non-monotonic variation with albedo was already observed by Nelson et al. (Nelson, R.M., Hapke, B.W., Smythe, W.D., Hale, A.S., Piatek, J.L. [2004]. Planetary regolith microstructure: An unexpected opposition effect result. In: Mackwell, S., Stansbery, E. (Eds.), Proc. Lunar Sci. Conf. 35, p. 1089), we report here the same variation for the angular width.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grujić-Brojčin, M., E-mail: myramyra@ipb.ac.rs; Armaković, S.; Tomić, N.
The influence of La-doping in the range of 0.5–6.0 mol% on structural and morphological properties of TiO{sub 2} nanopowders synthesized by sol–gel routine has been investigated by XRPD, AFM, EDS and BET measurements, as well as Raman spectroscopy. The XRPD and Raman measurements have revealed the anatase phase as dominant in all nanopowders, with crystallite size decreasing from ∼ 15 nm in pure TiO{sub 2} to ∼ 12 nm in La-doped samples. The BET data suggest that all samples are fully mesoporous, with mean pore diameters in the range of ∼ 6–8 nm. The specific surface area and the complexitymore » of pore structure are greater in doped samples than in pure TiO{sub 2} sample. The spectroscopic ellipsometry has apparently shown that the band gap has been gradually increased with the increase of La content. The STM and STS techniques have been used successfully to evaluate the surface morphology and electronic properties of La-doped nanopowders. All investigated properties have been related to photocatalytic activity, tested in degradation of a metoprolol tartrate salt (0.05 mM), and induced by UV-radiation. All doped samples showed increased photocatalytic activity compared to pure TiO{sub 2}, among which the 0.65 mol% La-doped sample appeared to be the most efficient. - Highlights: • Effects of La-doping on structural, morphological and electronic properties of TiO{sub 2} nanopowders. • Surface morphology and electronic properties of La-doped nanopowders evaluated by STM/STS. • Spectroscopic ellipsometry shown gradual increase of bandgap with the increase of La content. • Photocatalytic activity of samples was tested in degradation of MET under UV light.« less
NASA Astrophysics Data System (ADS)
Wang, Yu; Sun, Qingyang; Xiao, Jianliang
2018-02-01
Highly organized hierarchical surface morphologies possess various intriguing properties that could find important potential applications. In this paper, we demonstrate a facile approach to simultaneously form multiscale hierarchical surface morphologies through sequential wrinkling. This method combines surface wrinkling induced by thermal expansion and mechanical strain on a three-layer structure composed of an aluminum film, a hard Polydimethylsiloxane (PDMS) film, and a soft PDMS substrate. Deposition of the aluminum film on hard PDMS induces biaxial wrinkling due to thermal expansion mismatch, and recovering the prestrain in the soft PDMS substrate leads to wrinkling of the hard PDMS film. In total, three orders of wrinkling patterns form in this process, with wavelength and amplitude spanning 3 orders of magnitude in length scale. By increasing the prestrain in the soft PDMS substrate, a hierarchical wrinkling-folding structure was also obtained. This approach can be easily extended to other thin films for fabrication of multiscale hierarchical surface morphologies with potential applications in different areas.
Optical, thermal and morphological study of ZnS doped PVA polymer nano composites
NASA Astrophysics Data System (ADS)
Guruswamy, B.; Ravindrachary, V.; Shruthi, C.; Sagar, Rohan N.; Hegde, Shreedatta
2018-05-01
The effect of ZnS nano particle doping on optical, thermal properties and morphological study of the PVA polymer has been investigated using FTIR, UV-Visible and TGA, FESEM techniques. Nano sized ZnS particles were synthesized by a simple wet chemical route. Pure and ZnS/PVA nano composites were prepared using solution casting technique. The FTIR study confirms that the ZnS nano particles interacts with the OH group of PVA polymer and forms the complex. The formation of these complexes affects the optical and thermal properties of the composite. The changes in optical properties were studied using UV-Vis absorption method. The variation in thermal property was analysed using TGA results. The modified surface morphology analysis was carried out using FESEM.
Thanawan, S; Radabutra, S; Thamasirianunt, P; Amornsakchai, T; Suchiva, K
2009-01-01
Atomic force microscopy (AFM) was used to study the morphology and surface properties of NR/NBR blend. Blends at 1/3, 1/1 and 3/1 weight ratios were prepared in benzene and formed film by casting. AFM phase images of these blends in tapping mode displayed islands in the sea morphology or matrix-dispersed structures. For blend 1/3, NR formed dispersed phase while in blends 1/1 and 3/1 phase inversion was observed. NR showed higher phase shift angle in AFM phase imaging for all blends. This circumstance was governed by adhesion energy hysteresis between the device tip and the rubber surface rather than surface stiffness of the materials, as proved by force distance measurements in the AFM contact mode.
Polymer Nanocomposites: Insights from Theory and Molecular Simulations
NASA Astrophysics Data System (ADS)
Pani, Rakhee
Advantages of polymer nanocomposites have attracted great industrial attention due to their multifunctionality and innovative technological properties. Addition of small amount of nanoparticle (nanospheres, nanotubes, nanorods, nanoplatelets, or sheets) to polymer matrix cause dramatic improvement in structural and functional properties, which is difficult to attain from those of individual components. The interaction between polymer and nanoparticle create bulk materials dominated by solid state physics at the nanoscale. Furthermore, morphology of nanocomposites depends on structural arrangements of nanoparticles. Thus, for achievement of optimized functionality like electrical, optical, mechanical and thermal properties control over the dispersion of the nanoparticle is essential. However, properties of polymer nanocomposites depend on morphology control and nature of interfacial interactions. In order to control the morphology it is necessary to understand how the processing conditions, shape and size of nanoparticle influence the structure of composite. Molecular simulations can help us to predict the parameters that control the structural changes and we could design polymer nanocomposite entailing their end-use. In this work, we addressed the following research questions: (1) the dependence of nanoparticle ligand corona structure on solvent quality and (2) the role of interfacial energy and interactions on the dispersion of molecules and nanoparticles. Specifically, this research assessed the effect of solvent interactions on the structure of nanoparticles on the example of redox core encapsulating dendrimer and ligand functionalized gold nanoparticles, role of chemical interaction on solubility of glucose in ionic liquids, diffusion of fullerene nanoparticles in polymer matrix and influence of solubility parameters on the compatibility of gold nanoparticles with diblock copolymers. Computational methods allow quantifying the structure and flexibility of the polymer chains, how energetics and surface tension change with chemical composition of the polymer/dendrimer blocks, influence of nanoparticle on structural properties of polymer and factors which may contribute to the phase separation of the polymer from nanoparticle. Interfacial characteristics are not only determined by the size-induced properties, but also the surface chemistry of the particles. Presence of solvent and the resultant interactions with the solvent are known to influence the morphology and prevent or induce aggregation of nanoparticles in polymers. We found that surface chemistry can induce change in the structure of dendrimers encapsulating a redox active core and change the solubility of the nanoparticles. The interactions between nanoparticles and polymers can also influence the morphology. We performed investigation on the role of orientation of fullerene derivatives and surface energy of polymer surface which may induce the aggregation of the fullerene nanoparticles. Furthermore, we used quantitative measurements like cluster analysis to understand the most probable orientation of the fullerene derivative with respect to the polymer chains and the diffusion of the fullerene nanoparticle, which is related to the efficiency of solar cells, can change on presence of regiorandom and regioregular polymer chains. Furthermore, we have also used different solvents based on their Hildebrand solubility parameters to investigate factors governing the morphology of polymer nanocomposite via solvent interactions. We showed that change in solvent interactions affect the compatibility, aggregation/dispersion of the gold nanoparticles, which will directly affect the morphology of polymer matrix and structural aspects which can impact their functionality. Overall, our research indicated that solvent interaction play a role in controlling the morphology of polymer nanocomposite and solubility parameter can help us to predict the resulting morphology.
Zhao, Ning; Zhang, Xiaoyan; Zhang, Xiaoli; Xu, Jian
2007-05-14
A simple method is described for controlling the surface chemical composition and topography of the diblock copolymer poly(styrene)-b-poly(dimethylsiloxane)(PS-b-PDMS) by casting the copolymer solutions from solvents with different selectivities. The surface morphology and chemical composition were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively, and the wetting behavior was studied by water contact angle (CA) and sliding angle (SA) and by CA hysteresis. Chemical composition and morphology of the surface depend on solvent properties, humidity of the air, solution concentration, and block lengths. If the copolymer is cast from a common solvent, the resultant surface is hydrophobic, with a flat morphology, and dominated by PDMS on the air side. From a PDMS-selective solvent, the surface topography depends on the morphology of the micelles. Starlike micelles give rise to a featureless surface nearly completely covered by PDMS, while crew-cut-like micelles lead to a rough surface with a hierarchical structure that consists partly of PDMS. From a PS-selective solvent, however, surface segregation of PDMS was restricted, and the surface morphology can be controlled by vapor-induced phase separation. On the basis of the tunable surface roughness and PDMS concentration on the air side, water repellency of the copolymer surface could be tailored from hydrophobic to superhydrophobic. In addition, reversible switching behavior between hydrophobic and superhydrophobic can be achieved by exposing the surface to solvents with different selectivities.
Jeong, Sunho; Song, Hae Chun; Lee, Won Woo; Lee, Sun Sook; Choi, Youngmin; Son, Wonil; Kim, Eui Duk; Paik, Choon Hoon; Oh, Seok Heon; Ryu, Beyong-Hwan
2011-03-15
With the aim of inkjet printing highly conductive and well-defined Cu features on plastic substrates, aqueous based Cu ink is prepared for the first time using water-soluble Cu nanoparticles with a very thin surface oxide layer. Owing to the specific properties, high surface tension and low boiling point, of water, the aqueous based Cu ink endows a variety of advantages over conventional Cu inks based on organic solvents in printing narrow conductive patterns without irregular morphologies. It is demonstrated how the design of aqueous based ink affects the basic properties of printed conductive features such as surface morphology, microstructure, conductivity, and line width. The long-term stability of aqueous based Cu ink against oxidation is analyzed through an X-ray photoelectron spectroscopy (XPS) based investigation on the evolution of the surface oxide layer in the aqueous based ink.
Cochis, A; Azzimonti, B; Della Valle, C; De Giglio, E; Bloise, N; Visai, L; Cometa, S; Rimondini, L; Chiesa, R
2016-02-01
Implant-related infection of biomaterials is one of the main causes of arthroplasty and osteosynthesis failure. Bacteria, such as the rapidly-emerging Multi Drug Resistant (MDR) pathogen Acinetobacter Baumannii, initiate the infection by adhering to biomaterials and forming a biofilm. Since the implant surface plays a crucial role in early bacterial adhesion phases, titanium was electrochemically modified by an Anodic Spark Deposition (ASD) treatment, developed previously and thought to provide osseo-integrative properties. In this study, the treatment was modified to insert gallium or silver onto the titanium surface, to provide antibacterial properties. The material was characterized morphologically, chemically, and mechanically; biological properties were investigated by direct cytocompatibility assay, Alkaline Phosphatase (ALP) activity, Scanning Electron Microscopy (SEM), and Immunofluorescent (IF) analysis; antibacterial activity was determined by counting Colony Forming Units, and viability assay. The various ASD-treated surfaces showed similar morphology, micrometric pore size, and uniform pore distribution. Of the treatments studied, gallium-doped specimens showed the best ALP synthesis and antibacterial properties. This study demonstrates the possibility of successfully doping the surface of titanium with gallium or silver, using the ASD technique; this approach can provide antibacterial properties and maintain high osseo-integrative potential. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Young-Woong; Reddy, M. Siva Pratap; Kim, Bo-Myung; Park, Chinho
2018-07-01
An ITO-Ag islands complex as a new transparent conducting electrode (TCE) structure (on the 5 nm-thick p-InGaN/90 nm-thick p-GaN) for achieving high-performance and more reliable GaN-based LEDs were fabricated. A normal LED with a conventional ITO TCE was also compared. The surface morphological, structural, electrical and optical properties of fabricated GaN-based light-emitting diodes using a complex electrode of submicron-scaled Ag islands and ITO thin films are explored by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), current-voltage (I-V) and output power-current (L-I) techniques. Surface morphology investigations revealed Ag islands formed uniformly on the p-InGaN/p-GaN surface during rapid thermal annealing at 400 °C for 1 min in N2 ambient. The ohmic properties and overall device-performance of the suggested contact and device structures were superior to those in the conventional ITO contact and normal ITO LED structures. Based on the results of XRD and XPS measurements, the formation of the intermetallic gallide phases (AgGa) is responsible for better performance characteristics of the ITO-Ag islands device. The significant improvements are described in terms of the conducting bridge influence, highly effective micro-mirror effect, and wider photon window via the roughened structure.
Experimental and theoretical study to explain the morphology of CaMoO4 crystals
NASA Astrophysics Data System (ADS)
Oliveira, F. K. F.; Oliveira, M. C.; Gracia, L.; Tranquilin, R. L.; Paskocimas, C. A.; Motta, F. V.; Longo, E.; Andrés, J.; Bomio, M. R. D.
2018-03-01
CaMoO4 crystals were prepared by a controlled co-precipitation method and processed in a domestic microwave-assisted hydrothermal system with two different surfactants (ethyl 4-dimethylaminobenzoate and 1,2,4,5-benzenetetracarboxylic dianhydride). The corresponding structures were characterized by X-ray diffraction and Rietveld refinement techniques, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, and photoluminescence measurements. Field emission scanning electron microscopy was used to investigate the morphology of the as-synthesized aggregates. The structure, the surface stability of the (001), (112), (100), (110), (101), and (111) surfaces of CaMoO4, and their morphological transformations were investigated through systematic first-principles calculations within the density functional theory method at the B3LYP level. Analysis of the surface structures showed that the electronic properties were associated with the presence of undercoordinated [CaOx] (x = 5 and 6) and [MoOy] (y = 4 and 3) clusters. The relative surfaces energies were tuned to predict a complete map of the morphologies available through a Wulff construction approach. The results reveal that the experimental and theoretical morphologies obtained coincide when the surface energies of the (001) and (101) surfaces increase, while the surface energy of the (100) facet decreases simultaneously. The results provide a comprehensive catalog of the morphologies most likely to be present under realistic conditions, and will serve as a starting point for future studies on the surface chemistry of CaMoO4 crystals.
Mixed carboranethiol self-assembled monolayers on gold surfaces
NASA Astrophysics Data System (ADS)
Yavuz, Adem; Sohrabnia, Nima; Yilmaz, Ayşen; Danışman, M. Fatih
2017-08-01
Carboranethiol self-assembled monolayers on metal surfaces have been shown to be very convenient systems for surface engineering. Here we have studied pure and mixed self-assembled monolayers (SAMs) of three different carboranethiol (CT) isomers on gold surfaces. The isomers were chosen with dipole moments pointing parallel to (m-1-carboranethiol, M1), out of (m-9-carboranethiol, M9) and into (o-1-carboranethiol, O1) the surface plane, in order to investigate the effect of dipole moment orientation on the film properties. In addition, influence of the substrate surface morphology on the film properties was also studied by using flame annealed (FA) and template stripped (TS) gold surfaces. Contact angle measurements indicate that in M1/M9 and M1/O1 mixed SAMs, M1 is the dominant species on the surface even for low M1 ratio in the growth solution. Whereas for O1/M9 mixed SAMs no clear evidence could be observed indicating dominance of one of the species over the other one. Though contact angle values were lower and hysteresis values were higher for SAMs grown on TS gold surfaces, the trends in the behavior of the contact angles with changing mixing ratio were identical for SAMs grown on both substrates. Atomic force microscopy images of the SAMs on TS gold surfaces indicate that the films have similar morphological properties regardless of mixing ratio.
The Role of Surface Chemistry in Adhesion and Wetting of Gecko Toe Pads
Badge, Ila; Stark, Alyssa Y.; Paoloni, Eva L.; Niewiarowski, Peter H.; Dhinojwala, Ali
2014-01-01
An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry adhesion but also for increased efficiency in self-cleaning of water and adhesion under wet conditions. Here, we used a plasma-based vapor deposition process to coat the hairy patterns on gecko toe pad sheds with polar and non-polar coatings without significantly perturbing the setal morphology. By a comparison of wetting across treatments, we show that the intrinsic surface of gecko setae has a water contact angle between 70–90°. As expected, under wet conditions, adhesion on a hydrophilic surface (glass) was lower than that on a hydrophobic surface (alkyl-silane monolayer on glass). Surprisingly under wet and dry conditions the adhesion was comparable on the hydrophobic surface, independent of the surface chemistry of the setal hairs. This work highlights the need to utilize morphology and surface chemistry in developing successful synthetic adhesives with desirable adhesion and self-cleaning properties. PMID:25323067
The Role of Surface Chemistry in Adhesion and Wetting of Gecko Toe Pads
NASA Astrophysics Data System (ADS)
Badge, Ila; Stark, Alyssa Y.; Paoloni, Eva L.; Niewiarowski, Peter H.; Dhinojwala, Ali
2014-10-01
An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry adhesion but also for increased efficiency in self-cleaning of water and adhesion under wet conditions. Here, we used a plasma-based vapor deposition process to coat the hairy patterns on gecko toe pad sheds with polar and non-polar coatings without significantly perturbing the setal morphology. By a comparison of wetting across treatments, we show that the intrinsic surface of gecko setae has a water contact angle between 70-90°. As expected, under wet conditions, adhesion on a hydrophilic surface (glass) was lower than that on a hydrophobic surface (alkyl-silane monolayer on glass). Surprisingly under wet and dry conditions the adhesion was comparable on the hydrophobic surface, independent of the surface chemistry of the setal hairs. This work highlights the need to utilize morphology and surface chemistry in developing successful synthetic adhesives with desirable adhesion and self-cleaning properties.
A facile strategy to design zeolite L crystals with tunable morphology and surface architecture.
Lupulescu, Alexandra I; Kumar, Manjesh; Rimer, Jeffrey D
2013-05-01
Tailoring the anisotropic growth rates of materials to achieve desired structural outcomes is a pervasive challenge in synthetic crystallization. Here we discuss a method to selectively control the growth of zeolite crystals, which are used extensively in a wide range of industrial applications. This facile method cooperatively tunes crystal properties, such as morphology and surface architecture, through the use of inexpensive, commercially available chemicals with specificity for binding to crystallographic surfaces and mediating anisotropic growth. We examined over 30 molecules as potential zeolite growth modifiers (ZGMs) of zeolite L (LTL type) crystallization. ZGM efficacy was quantified through a combination of macroscopic (bulk) and microscopic (surface) investigations that identified modifiers capable of dramatically altering the cylindrical morphology of LTL crystals. We demonstrate an ability to tailor properties critical to zeolite performance, such as external porous surface area, crystal shape, and pore length, which can enhance sorbate accessibility to LTL pores, tune the supramolecular organization of guest-host composites, and minimize the diffusion path length, respectively. We report that a synergistic combination of ZGMs and the judicious adjustment of synthesis parameters produce LTL crystals with unique surface features, and a range of length-to-diameter aspect ratios spanning 3 orders of magnitude. A systematic examination of different ZGM structures and molecular compositions (i.e., hydrophobicity and binding moieties) reveal interesting physicochemical properties governing their efficacy and specificity. Results of this study suggest this versatile strategy may prove applicable for a host of framework types to produce unrivaled materials that have eluded more conventional techniques.
Response of Quiescent Cerebral Cortical Astrocytes to Nanofibrillar Scaffold Properties
NASA Astrophysics Data System (ADS)
Ayres, Virginia; Mujdat Tiryaki, Volkan; Xie, Kan; Ahmed, Ijaz; Shreiber, David I.
2013-03-01
We present results of an investigation to examine the hypothesis that the extracellular environment can trigger specific signaling cascades with morphological consequences. Differences in the morphological responses of quiescent cerebral cortical astrocytes cultured on the nanofibrillar matrices versus poly-L-lysine functionalized glass and Aclar, and unfunctionalized Aclar surfaces were demonstrated using atomic force microscopy (AFM) and phalloidin staining of F-actin. The differences and similarities of the morphological responses were consistent with differences and similarities of the surface polarity and surface roughness of the four surfaces investigated in this work, characterized using contact angle and AFM measurements. The three-dimensional capability of AFM was also used to identify differences in cell spreading. An initial quantitative immunolabeling study further identified significant differences in the activation of the Rho GTPases: Cdc42, Rac1, and RhoA, which are upstream regulators of the observed morphological responses: filopodia, lamellipodia, and stress fiber formation. The results support the hypothesis that the extracellular environment can trigger preferential activation of members of the Rho GTPase family with demonstrable morphological consequences for cerebral cortical astrocytes. The support of NSF PHY-095776 is acknowledged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ubaidillah, E-mail: ubaidillah@uns.ac.id; Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur; Raharjo, Wijang W.
The mechanical and morphological properties of the unsaturated polyester resins (UPRs)-agave cantala roxb based composite are investigated in this paper. The cantala fiber woven in 3D angle interlock was utilized as the composite reinforcement. Surface grafting of the cantala fiber through chemical treatment was performed by introducing silane coupling agent to improving the compatibility with the polymer matrix. The fabrication of the composite specimens was conducted using vacuum bagging technique. The effect of additional coupling agent to the morphological appearance of surface fracture was observed using scanning electron microscopy. Meanwhile, the influence of additional silane to the mechanical properties wasmore » examined using tensile, bending and impact test. The photograph of surface fracture on the treated specimens showed the residual matrix left on the fibers in which the phenomenon was not found in the untreated specimens. Based on mechanical tests, the treated specimens were successfully increased their mechanical properties by 55%, 9.67%, and 92.4% for tensile strength, flexural strength, and impact strength, respectively, at 1.5% silane coupling agent.« less
Zhang, Ming; Wang, Ai-Juan; Li, Jun-Ming; Song, Na
2017-10-01
Stearic acid (Sa) was used to modify the surface properties of hydroxyapatite (HAp) in different solvents (water, ethanol or dichloromethane(CH 2 Cl 2 )). Effect of different solvents on the properties of HAp particles (activation ratio, grafting ratio, chemical properties), emulsion properties (emulsion stability, emulsion type, droplet morphology) as well as the cured materials (morphology, average pore size) were studied. FT-IR and XPS results confirmed the interaction occurred between stearic acid and HAp particles. Stable O/W and W/O type Pickering emulsions were prepared using unmodified and Sa modified HAp nanoparticles respectively, which indicated a catastrophic inversion of the Pickering emulsion happened possibly because of the enhanced hydrophobicity of HAp particles after surface modification. Porous materials with different structures and pore sizes were obtained using Pickering emulsion as the template via in situ evaporation solvent method. The results indicated the microstructures of cured samples are different form each other when HAp was surface modified in different solvents. HAp particles fabricated using ethanol as solvent has higher activation ratio and grafting ratio. Pickering emulsion with higher stability and cured porous materials with uniform morphology were obtained compared with samples prepared using water and CH 2 Cl 2 as solvents. In conclusion, surface modification of HAp in different solvents played a very important role for its stabilized Pickering emulsion as well as the microstructure of cured samples. It is better to use ethanol as the solvent for Sa modified HAp particles, which could increase the stability of Pickering emulsion and obtain cured samples with uniform pore size. Copyright © 2017 Elsevier B.V. All rights reserved.
The Effect of Aggressive Corrosion Mediums on the Microstructure and Properties of Mild Steel
NASA Astrophysics Data System (ADS)
Araoyinbo, A. O.; Salleh, M. A. A. Mohd; Rahmat, A.; Azmi, A. I.; Rahim, W. M. F. Wan Abd; Achitei, D. C.; Jin, T. S.
2018-06-01
Mild steel is known to be one of the major construction materials and have been extensively used in most chemical and material industries due to its interesting properties which can be easily altered to suit various application areas. In this research, mild steel is exposed to different aggressive mediums in order to observe the effect of these interactions on its surface morphology and properties. The mild steel used was cut into dimensions of 7 cm length and width of 3 cm. The aggressive mediums used are 100 mls of aqueous solution of hydrochloric acid, sodium hydroxide (40 g/L), and sodium chloride (35 g/L) at room temperature. The characterizations performed are the hardness test with the Rockwell hardness tester, the surface morphology by optical microscope, surface roughness and the weight loss from the immersion test. It was observed that the hardness value and the weight loss for the different cut samples of mild steel immersed in the different aggressive mediums reduces with prolong exposure and severe pitting form of corrosion was present on its surface.
NASA Astrophysics Data System (ADS)
Długokęcka, Marta; Łuczak, Justyna; Polkowska, Żaneta; Zaleska-Medynska, Adriana
2017-05-01
A series of microemulsion (ME) system, constituted by different water to surfactant molar ratios (Wo) and oil to surfactant mass ratios (S), have been applied for Pd-TiO2 preparation. The effect of ME properties on the morphology of Pd nanoparticles formed at TiO2 surface and an effect of Pd size and distribution on the surface and photocatalytic properties of Pd-TiO2 were investigated. Microemulsion systems were characterized by means of viscosity, density, dynamic light scattering as well as surface tension measurements to find a correlation between the conditions of Pd nanoparticles formation, their morphology and photocatalyst features. The photocatalysts were characterized by transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), UV-vis diffuse-reflectance spectroscopy (DRS), BET surface area and elemental analysis. The photocatalytic properties of Pd-modified TiO2 particles were studied in a model reaction of phenol photodegradation under Vis irradiation, as well as active species involved in the photocatalytic reaction were determined. Microemulsion composition was found to be a crucial parameter in determining the features of the TiO2-based photocatalysts covered by metallic nanoparticles. The highest photocatalytic activity under Vis radiation was observed for the Pd-TiO2 sample (average diameter 2.4 nm) obtained using 0.1 mol% Pd in the ME system containing 1.5 wt% of water and 82.8 wt% of cyclohexane with average droplet size of 2.83 ± 0.18 nm. In this regard, synthesis of such metal-semiconductor composites through the microemulsion route should always be preceded by investigation of ME properties in order to the eliminate the inhibitory effect of ME internal structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Patel; K. Artyushkova; P. Atanassov
The object of this work was to identify correlations between performance losses of Pt electrocatalysts on carbon support materials and the chemical and morphological parameters that describe them. Accelerated stress testing, with an upper potential of 1.2 V, was used to monitor changes to cathode properties, including kinetic performance and effective platinum surface area losses. The structure and chemical compositions were studied using X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy coupled with Digital Image Processing. As this is an ongoing study, it is difficult to draw firm conclusions, though a trend between support surface area overall performance loss was foundmore » to exist.« less
Structural and Morphological Properties of Carbon Supports: Effect on Catalyst Degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen
2010-07-01
The object of this work was to identify correlations between performance losses of Pt electrocatalysts on carbon support materials and the chemical and morphological parameters that describe them. Accelerated stress testing, with an upper potential of 1.2 V, was used to monitor changes to cathode properties, including kinetic performance and effective platinum surface area losses. The structure and chemical compositions were studied using X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy coupled with Digital Image Processing. As this is an ongoing study, it is difficult to draw firm conclusions, though a trend between support surface area overall performance loss was foundmore » to exist.« less
Understanding thread properties for red blood cell antigen assays: weak ABO blood typing.
Nilghaz, Azadeh; Zhang, Liyuan; Li, Miaosi; Ballerini, David R; Shen, Wei
2014-12-24
"Thread-based microfluidics" research has so far focused on utilizing and manipulating the wicking properties of threads to form controllable microfluidic channels. In this study we aim to understand the separation properties of threads, which are important to their microfluidic detection applications for blood analysis. Confocal microscopy was utilized to investigate the effect of the microscale surface morphologies of fibers on the thread's separation efficiency of red blood cells. We demonstrated the remarkably different separation properties of threads made using silk and cotton fibers. Thread separation properties dominate the clarity of blood typing assays of the ABO groups and some of their weak subgroups (Ax and A3). The microfluidic thread-based analytical devices (μTADs) designed in this work were used to accurately type different blood samples, including 89 normal ABO and 6 weak A subgroups. By selecting thread with the right surface morphology, we were able to build μTADs capable of providing rapid and accurate typing of the weak blood groups with high clarity.
NASA Astrophysics Data System (ADS)
Sofiah, A. G. N.; Kananathan, J.; Samykano, M.; Ulakanathan, S.; Lah, N. A. C.; Harun, W. S. W.; Sudhakar, K.; Kadirgama, K.; Ngui, W. K.; Siregar, J. P.
2017-10-01
This paper investigates the influence of the electrolytic bath temperature on the morphology and physical properties of nickel (Ni) nanowires electrochemically deposited into the anodic alumina oxide porous membrane (AAO). The synthesis was performed using nickel sulfate hexahydrate (NiSO4.6H2O) and boric acid (H3BO3) as an electrolytic bath for the electrochemical deposition of Ni nanowires. During the experiment, the electrolyte bath temperature varied from 40°C, 80°C, and 120°C. After the electrochemical deposition process, AAO templates cleaned with distilled water preceding to dissolution in sodium hydroxide (NaOH) solution to obtain free-standing Ni nanowires. Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDX) and X-ray Diffraction (XRD) analysis were employed to characterize the morphology and physical properties of the synthesized Ni nanowires. Finding reveals the electrodeposition bath temperature significantly influences the morphology and physical properties of the synthesized Ni nanowires. Rougher surface texture, larger crystal size, and longer Ni nanowires obtained as the deposition bath temperature increased. From the physical properties properties analysis, it can be concluded that deposition bath temperature influence the physical properties of Ni nanowires.
The study of changes in structural properties of Cu films under ionizing radiation
NASA Astrophysics Data System (ADS)
Kaliekperov, M.; Kozlovskiy, A.; Shlimas, D.; Kenzhina, I.; Ivanov, I.; Kozin, S.; Aleksandrenko, V.; Kurakhmedov, A.; Sambaev, E.; Seitbaev, A.; Zdorovets, M.; Kadyrzhanov, K.
2018-05-01
In this paper, we present the results of studies of the irradiation effect with low-energy He+2 ions with an energy of 30 keV (15 keV per charge) on the structural properties of Cu films. Using SEM, EDS, and x-ray diffraction analysis, the surface morphology and structural properties of samples before and after irradiation were studied. As a result of irradiation of initial samples with He+2 ions with a dose of 1·1016 ion cm‑2, a change in the Cu surface morphology of films is observed, and the formation of nanoscale inclusions of hexagonal shape is observed. An increase in the irradiation dose to 1·1017 ion cm‑2 and higher leads to the formation of cracks and amorphous oxide inclusions on the sample surface. It is established that an increase in the irradiation dose leads to a decrease in the degree of crystallinity and a change in the basic crystallographic characteristics. The effect of irradiation on the strength characteristics was estimated.
Correlation of CVD Diamond Electron Emission with Film Properties
NASA Astrophysics Data System (ADS)
Bozeman, S. P.; Baumann, P. K.; Ward, B. L.; Nemanich, R. J.; Dreifus, D. L.
1996-03-01
Electron field emission from metals is affected by surface morphology and the properties of any dielectric coating. Recent results have demonstrated low field electron emission from p-type diamond, and photoemission measurements have identified surface treatments that result in a negative electron affinity (NEA). In this study, the field emission from diamond is correlated with surface treatment, surface roughness, and film properties (doping and defects). Electron emission measurements are reported on diamond films synthesized by plasma CVD. Ultraviolet photoemission spectroscopy indicates that the CVD films exhibit a NEA after exposure to hydrogen plasma. Field emission current-voltage measurements indicate "threshold voltages" ranging from approximately 20 to 100 V/micron.
{112} Polar surfaces of copper(indium,gallium)selenide: Properties and effects on crystal growth
NASA Astrophysics Data System (ADS)
Liao, Dongxiang
Cu(In,Ga)Se2 (GIGS) are promising materials for thin film photovoltaic applications. This work studies the epitaxial growth of CIGS single crystal films on GaAs substrates of various orientations and characterizes the properties of the thin films. A surprising finding is the strong tendency of film surfaces to facet to {112} planes. The work attempted to establish the connections between the film morphology, the surface energies, the surface chemical compositions, and the reconstruction of polar surfaces. Using angle-resolved photoelectron emission spectroscopy, I found that there is a severe Cu depletion at the first 1-2 layer of the free surface of CuInSe2 and the surface is semiconducting. The results strongly support the model of a reconstructed non-stoichiometric polar surface and exclude the previously believed existence of a bulk second phase on the CIS surface. Unique features of the film morphology suggest that the properties and structure of the polar surfaces have great effects on the growth of the crystals, and probably on the incorporation of the large amount of point defects. Measured chemical composition profiles indicate that the Cu depletion observed on free CIGS surface remains at the CIGS/CdS heterojunction interface and Cd is incorporated into the surface of CIGS. It is proposed that this non-stoichiometric composition leads to charge imbalance at the interface and causes the type-inversion of the CIGS surface, which are favorable for the device performance.
Bressan, Eriberto; Gardin, Chiara; Ferroni, Letizia; Soldini, Maria Costanza; Mandelli, Federico; Soldini, Claudio
2017-01-01
Osteogenesis process displays a fundamental role during dental implant osteointegration. In the present work, we studied the influence of Osteon Growth Induction (OGI) surface properties on the angiogenic and osteogenic behaviors of Mesenchymal Stem cells (MSC). MSC derived from dental pulp and HUVEC (Human Umbilical Vein Endothelial Cells) were grown in on OGI titanium surfaces, and cell proliferation and DNA synthesis were evaluated by MTT [3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide] test and DNA quantification. Gene expression has been performed in order to evaluate the presence of mRNA related to endothelial and osteogenesis markers. Moreover, morphological and biochemical analyses of osteogenesis commitments has been performed. On OGI surfaces, MSC and HUVEC are able to proliferate. Gene expression profiler confirms that MSC on OGI surfaces are able to express endothelial and osteogenic markers, and that these expression are higher compared the expression on control surfaces. In conclusion On OGI surfaces proliferation, expression and morphological analyses of angiogenesis-associated markers in MSC are promoted. This process induces an increasing on their osteogenesis commitment. PMID:29149082
Gurlo, Aleksander
2011-01-01
Anisotropy is a basic property of single crystals. Dissimilar facets/surfaces have different geometric and electronic structure that results in dissimilar functional properties. Several case studies unambiguously demonstrated that the gas sensing activity of metal oxides is determined by the nature of surfaces exposed to ambient gas. Accordingly, a control over crystal morphology, i.e. over the angular relationships, size and shape of faces in a crystal, is required for the development of better sensors with increased selectivity and sensitivity in the chemical determination of gases. The first step toward this nanomorphological control of the gas sensing properties is the design and synthesis of well-defined nanocrystals which are uniform in size, shape and surface structure. These materials possess the planes of the symmetrical set {hkl} and must therefore behave identically in chemical reactions and adsorption processes. Because of these characteristics, the form-controlled nanocrystals are ideal candidates for fundamental studies of mechanisms of gas sensing which should involve (i) gas sensing measurements on specific surfaces, (ii) their atomistic/quantum chemical modelling and (ii) spectroscopic information obtained on same surfaces under operation conditions of sensors.
Correlation between Surface Tension and Water Activity in New Particle Formation
NASA Astrophysics Data System (ADS)
Daskalakis, E.; Salameh, A.
2016-12-01
The impact of aerosol properties on cloud dynamics and the radiative balance of the atmosphere relies on the parametrizations of cloud droplet formation. Such parametrization is based on equilibrium thermodynamics proposed by Köhler in 1936. There is considerable debate in the literature on the importance of factors like the surface tension depression or the water activity decrease for the correct parametrization. To gain fundamental insight into New Particle Formation (NPF), or Cloud Condensation Nuclei (CCN) activation one has to study microscopic properties of aqueous droplets, involving surface and bulk dynamics. The surface tension of droplets can be associated with the effects from Organic Matter (OM), whereas the static dielectric constant of water reflects the structure and dynamics of ions within solutions and can present a measure of water activity. In this study we employ Molecular Dynamics Simulations on aquatic droplets that contain surface active OM (acetaldehyde, methylglyoxal) and salts. We give insight into the dynamics of aquatic droplets with radials of 3.6nm at a level of detail that is not accessible experimentally (J. Phys. Chem. C 2016, 120:11508). We propose that as the surface tension of an aquatic droplet is decreased in the presence of surface-active OM, the water activity is affected as well. This is due to the fact that the water dipoles are oriented based on the salt morphology within the droplet. We suggest that the surface tension depression can be accompanied by the water activity change. This can be associated with the possible effects of surface-active species in terms of salt morphology transitions within an aerosol at the NPF and early particle growth time scales. Based on this study, surface-active OM seems important in controlling (a) the salt morphology transitions within a nucleus during NPF and particle growth and (b) a correlation between surface activity and water activity of ionic aquatic droplets. The latter correlation could be a fundamental property to consider when assessing NPF and the Köhler theory.
Retamal, Maria Jose; Corrales, Tomas P; Cisternas, Marcelo A; Moraga, Nicolas H; Diaz, Diego I; Catalan, Rodrigo E; Seifert, Birger; Huber, Patrick; Volkmann, Ulrich G
2016-03-14
Chitosan is a useful and versatile biopolymer with several industrial and biological applications. Whereas its physical and physicochemical bulk properties have been explored quite intensively in the past, there is a lack of studies regarding the morphology and growth mechanisms of thin films of this biopolymer. Of particular interest for applications in bionanotechnology are ultrathin films with thicknesses under 500 Å. Here, we present a study of thin chitosan films prepared in a dry process using physical vapor deposition and in situ ellipsometric monitoring. The prepared films were analyzed with atomic force microscopy in order to correlate surface morphology with evaporation parameters. We find that the surface morphology of our final thin films depends on both the optical thickness, i.e., measured with ellipsometry, and the deposition rate. Our work shows that ultrathin biopolymer films can undergo dewetting during film formation, even in the absence of solvents and thermal annealing.
Effects of the morphology of CIPs on microwave absorption behaviors
NASA Astrophysics Data System (ADS)
Woo, Soobin; Yoo, Chan-Sei; Kim, Hwijun; Lee, Mijung; Quevedo-Lopez, Manuel; Choi, Hyunjoo
2017-11-01
Electromagnetic (EM) wave absorption properties are affected by the thickness and surface area of absorbing materials. In this study, a facile ball-milling process was introduced to effectively reduce the diameter and increase the aspect ratio of carbonyl iron powder (CIP), which is one of the most commercially available EM-absorbing materials. The size, aspect ratio, and consequent surface area of CIP were manipulated by controlling the milling parameters to investigate their effects on EM absorption properties. The results indicated that ball-milled CIPs exhibited better EM wave absorption ability when compared with that of pristine CIPs. However, significant differences in minimum reflection loss values were not observed between CIPs with different morphologies and similar specific surface areas. Hence, both fine and flaky CIPs were considered as beneficial for EM wave absorption.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
George, M. A.; Azoulay, M.; Burger, A.; Biao, Y.; Silberman, E.; Nason, D.
1993-04-01
Palladium is chemically suitable for electric contacts on mercuric iodide detectors for photon and nuclear radiation detection, so the understanding of palladium contacts is important for fundamental and practical scientific purposes. A study has been conducted on the surface morphology of evaporated contacts using atomic force microscopy (AFM) and optical transmission and reflection. Evaporated palladium coatings are typically nonuniform and may deposit selectively on mercuric iodide surface defects. Reflection measurements show that coating thickness and surface treatment affect intensity, position, and shape of a reflected peak characteristic of the mercuric iodide structure. Results indicate that the band gap energy in the surface of the mercuric iodide is lowered by palladium contacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oohama, N.; Okamura, S.; Fukugita, M.
A bulge-disk decomposition is made for 737 spiral and lenticular galaxies drawn from a Sloan Digital Sky Survey galaxy sample for which morphological types are estimated. We carry out the bulge-disk decomposition using the growth curve fitting method. It is found that bulge properties, effective radius, effective surface brightness, and also absolute magnitude, change systematically with the morphological sequence; from early to late types, the size becomes somewhat larger, and surface brightness and luminosity fainter. In contrast, disks are nearly universal, their properties remaining similar among disk galaxies irrespective of detailed morphologies from S0 to Sc. While these tendencies weremore » often discussed in previous studies, the present study confirms them based on a large homogeneous magnitude-limited field galaxy sample with morphological types estimated. The systematic change of bulge-to-total luminosity ratio, B/T, along the morphological sequence is therefore not caused by disks but mostly by bulges. It is also shown that elliptical galaxies and bulges of spiral galaxies are unlikely to be in a single sequence. We infer the stellar mass density (in units of the critical mass density) to be OMEGA = 0.0021 for spheroids, i.e., elliptical galaxies plus bulges of spiral galaxies, and OMEGA = 0.00081 for disks.« less
Morphology, stratigraphy, and surface roughness properties of Venusian lava flow fields
NASA Astrophysics Data System (ADS)
Byrnes, Jeffrey M.; Crown, David A.
2002-10-01
Morphologic characteristics, flow stratigraphy, and radar backscatter properties of five lava flow fields on Venus (Turgmam Fluctus, Zipaltonal Fluctus, Tuli Mons/Uilata Fluctus, Var Mons, and Mylitta Fluctus) were examined to understand flow field emplacement mechanisms and relationships to other surface processes. These analyses indicate that the flow fields studied developed through emplacement of numerous, thin flow units, presumably over extended periods of time. Although the Venusian fields display flow morphologies similar to those observed within terrestrial flow fields, the Venusian flow units are significantly larger and have a larger range of radar backscatter coefficients. Both simple and compound flow emplacement appear to have occurred within the flow fields. A potential correlation between flow rheology and radar brightness is suggested by differences in planform morphology, apparent flow thickness, and apparent sensitivity to topography between bright and dark flows. Distributary flow morphologies may result from tube-fed flows, and postemplacement modification by processes such as flow inflation and crustal foundering is consistent with discrete zones of increased radar brightness within individual flow lobes. Mapping of these flow fields does not indicate any simple evolutionary trend in eruptive/resurfacing style within the flow fields, or any consistent temporal sequence relative to other tectonic and volcanic features.
Human aortic endothelial cell morphology influenced by topography of porous silicon substrates.
Formentín, Pilar; Catalán, Úrsula; Fernández-Castillejo, Sara; Alba, Maria; Baranowska, Malgorzata; Solà, Rosa; Pallarès, Josep; Marsal, Lluís F
2015-10-01
Porous silicon has received much attention because of its optical properties and for its usefulness in cell-based biosensing, drug delivery, and tissue engineering applications. Surface properties of the biomaterial are associated with cell adhesion and with proliferation, migration, and differentiation. The present article analyzes the behavior of human aortic endothelial cells in macro- and nanoporous collagen-modified porous silicon samples. On both substrates, cells are well adhered and numerous. Confocal microscopy and scanning electron microscopy were employed to study the effects of porosity on the morphology of the cells. On macroporous silicon, filopodia is not observed but the cell spreads on the surface, increasing the lamellipodia surface which penetrates the macropore. On nanoporous silicon, multiple filopodia were found to branch out from the cell body. These results demonstrate that the pore size plays a key role in controlling the morphology and growth rate of human aortic endothelial cells, and that these forms of silicon can be used to control cell development in tissue engineering as well as in basic cell biology research. © The Author(s) 2015.
Ahn, Hyo-Won; Ha, Hye-Ryun; Lim, Ho-Nam; Choi, Samjin
2015-11-01
The influence of intraoral exposure procedures on the physical characteristics of thermoplastic vacuum-formed retainers (VFRs) is still unclear. The effects of thermoforming and intraoral use on the molecular, chemical, morphological, and mechanical properties of thermoplastic VFRs were investigated. VFRs with a 0.8-mm-thick thermoplastic PETG sheet acquired from 48 patients were investigated with two aging procedures, including vacuum forming and intraoral exposure, for 2-week and 6-month. Eight evaluating sites for thermoplastic VFRs were assessed with seven analytical techniques. LM, SEM, and AFM microscopic findings showed that the surface characteristics increased with increasing in vivo exposure time (a four-fold increase) and varied depending on the sites evaluated (an occlusal surface). Raman and EDX spectroscopic findings showed that aging procedures led to a significant change in the molecular composition of VFRs, leading to a decrease in the composition rate of carbon (C) and the presence of silicon (Si), phosphorus (P), and calcium (Ca). Compressive strength and tensile tests showed that aging procedures led to a significant increase (P<0.01) in ultimate tensile strength, elastic modulus, the stored energy at a 6-mm deflection (u6 mm), and the compressed load at a 3-mm deflection (σ3 mm). Thermoforming led to a smoother surface and no crystallization of PETG sheets. Intraoral exposure accelerated changes in surface morphology, tensile strength, and elastic modulus of VFRs. This change was site-specific and enhanced with an increase in intraoral exposure time. Therefore, thermoforming and in vivo oral exposure procedures led to the molecular, morphological, and mechanical properties of thermoplastic VFRs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Composite patterning devices for soft lithography
Rogers, John A.; Menard, Etienne
2007-03-27
The present invention provides methods, devices and device components for fabricating patterns on substrate surfaces, particularly patterns comprising structures having microsized and/or nanosized features of selected lengths in one, two or three dimensions. The present invention provides composite patterning devices comprising a plurality of polymer layers each having selected mechanical properties, such as Young's Modulus and flexural rigidity, selected physical dimensions, such as thickness, surface area and relief pattern dimensions, and selected thermal properties, such as coefficients of thermal expansion, to provide high resolution patterning on a variety of substrate surfaces and surface morphologies.
NASA Astrophysics Data System (ADS)
Zhu, Shuangmei; Fan, Chunzhen; Mao, Yanchao; Wang, Junqiao; He, Jinna; Liang, Erjun; Chao, Mingju
2016-02-01
We proposed a facile green synthesis system to synthesize large-scale Ag hemi-mesoparticles monolayer on Cu foil. Ag hemi-mesoparticles have different surface morphologies on their surfaces, including ridge-like, meatball-like, and fluffy-like shapes. In the reaction, silver nitrate was reduced by copper at room temperature in dimethyl sulfoxide via the galvanic displacement reaction. The different surface morphologies of the Ag hemi-mesoparticles were adjusted by changing the reaction time, and the hemi-mesoparticle surface formed fluffy-spherical nanoprotrusions at longer reaction time. At the same time, we explored the growth mechanism of silver hemi-mesoparticles with different surface morphologies. With 4-mercaptobenzoic acid as Raman probe molecules, the fluffy-like silver hemi-mesoparticles monolayer with the best activity of surface enhanced Raman scattering (SERS), the enhancement factor is up to 7.33 × 107 and the detection limit can reach 10-10M. SERS measurements demonstrate that these Ag hemi-mesoparticles can serve as sensitive SERS substrates. At the same time, using finite element method, the distribution of the localized electromagnetic field near the particle surface was simulated to verify the enhanced mechanism. This study helps us to understand the relationship between morphology Ag hemi-mesoparicles and the properties of SERS.
Zhu, Shuangmei; Fan, Chunzhen; Mao, Yanchao; Wang, Junqiao; He, Jinna; Liang, Erjun; Chao, Mingju
2016-02-21
We proposed a facile green synthesis system to synthesize large-scale Ag hemi-mesoparticles monolayer on Cu foil. Ag hemi-mesoparticles have different surface morphologies on their surfaces, including ridge-like, meatball-like, and fluffy-like shapes. In the reaction, silver nitrate was reduced by copper at room temperature in dimethyl sulfoxide via the galvanic displacement reaction. The different surface morphologies of the Ag hemi-mesoparticles were adjusted by changing the reaction time, and the hemi-mesoparticle surface formed fluffy-spherical nanoprotrusions at longer reaction time. At the same time, we explored the growth mechanism of silver hemi-mesoparticles with different surface morphologies. With 4-mercaptobenzoic acid as Raman probe molecules, the fluffy-like silver hemi-mesoparticles monolayer with the best activity of surface enhanced Raman scattering (SERS), the enhancement factor is up to 7.33 × 10(7) and the detection limit can reach 10(-10)M. SERS measurements demonstrate that these Ag hemi-mesoparticles can serve as sensitive SERS substrates. At the same time, using finite element method, the distribution of the localized electromagnetic field near the particle surface was simulated to verify the enhanced mechanism. This study helps us to understand the relationship between morphology Ag hemi-mesoparicles and the properties of SERS.
Nanoscale Roughness and Morphology Affect the IsoElectric Point of Titania Surfaces
Borghi, Francesca; Vyas, Varun; Podestà, Alessandro; Milani, Paolo
2013-01-01
We report on the systematic investigation of the role of surface nanoscale roughness and morphology on the charging behaviour of nanostructured titania (TiO2) surfaces in aqueous solutions. IsoElectric Points (IEPs) of surfaces have been characterized by direct measurement of the electrostatic double layer interactions between titania surfaces and the micrometer-sized spherical silica probe of an atomic force microscope in NaCl aqueous electrolyte. The use of a colloidal probe provides well-defined interaction geometry and allows effectively probing the overall effect of nanoscale morphology. By using supersonic cluster beam deposition to fabricate nanostructured titania films, we achieved a quantitative control over the surface morphological parameters. We performed a systematical exploration of the electrical double layer properties in different interaction regimes characterized by different ratios of characteristic nanometric lengths of the system: the surface rms roughness Rq, the correlation length ξ and the Debye length λD. We observed a remarkable reduction by several pH units of IEP on rough nanostructured surfaces, with respect to flat crystalline rutile TiO2. In order to explain the observed behavior of IEP, we consider the roughness-induced self-overlap of the electrical double layers as a potential source of deviation from the trend expected for flat surfaces. PMID:23874708
NASA Astrophysics Data System (ADS)
Yafarov, R. K.
2017-12-01
Correlation dependences between variations of the structural-phase composition, morphology characteristics, and field-electron-emission (FEE) properties of surface-structured p-type silicon singlecrystalline (100)-oriented wafers have been studied during their stepwise high-dose carbon-ion-beam irradiation. It is established that the stepwise implantation of carbon decreases the FEE threshold and favors an increase in the maximum FEE-current density by more than two orders of magnitude. Physicochemical mechanisms involved in this modification of the properties of near-surface layers of silicon under carbon-ion implantation are considered.
A novel material screening platform for nanoporous gold-based neural electrodes
NASA Astrophysics Data System (ADS)
Chapman, Christopher Abbott Reece
Neural-electrical interfaces have emerged in the past decades as a promising modality to facilitate the understanding of the electropathophysiology of neurological disorders as well as the normal functioning of the central nervous system, and enable the treatment of neurological defects through electrical stimulation or electrically-controlled drug delivery. However, chronically implanted electrodes face a myriad of design challenges, including their coupling to neural tissue (biocompatibility), small form factor requirement, and their electrical properties (maintaining a low electrical impedance). Planar electrode materials such as planar platinum and gold experience a large increase in electrical impedance when electrode dimensions are reduced to increase spatial resolution of neural recordings. A decrease in electrode surface area reduces the total capacitance of the electrode double layer resulting in an increase in electrode impedance. This high impedance can reduce the signal amplitude and increase the thermal noise, resulting in degradation of signal-to-noise ratio. Conventionally, this increase in electrical impedance at small electrode dimensions has been mitigated by coatings with rough morphologies such as platinum black, conducting polymers, and titanium nitride. Porous surfaces have high effective surface area enabling low impedance at small electrode dimensions. However, achieving long-term stability of cellular coupling to the electrode surface has remained difficult. Designing electrodes that can physically couple with neurons successfully and maintain low impedance at small electrode dimensions necessitates consideration of novel electrode coatings, such as carbon nanotubes and gold nanopillars. Another promising material, and focus of this proposal, is thin film nanoporous gold (np-Au). Nanoporous gold is a promising material for addressing these limitations because of its inherently large effective surface area allows for lower impedances at small form factors, and its modifiable surface morphology can be used to control cell-electrode coupling. Additionally, thin film nanoporous gold is fabricated by traditional microfabrication methods, and thus can be directly adopted by the current state-of-the-art neural electrode fabrication processes. All these properties make thin film nanoporous gold a promising candidate for use in neural electrode surfaces. This dissertation seeks to characterize both the morphological and the electrical response of neural cells to thin film nanoporous gold morphologies using an in vitro electrode morphology screening platform. The specific aims for this proposal are to: (i) develop a electrode morphology library that displays varying topographies to study structure-property relationships of thin film nanoporous gold and cellular response, (ii) characterize neural cell response to identified nanoporous gold topographies that reduce adverse tissue response in vitro, and (iii) develop an electrophysiology platform to characterize neural coupling to each identified nanoporous gold topography.
Maldonado, Maricela; Wong, Lauren Y; Echeverria, Cristina; Ico, Gerardo; Low, Karen; Fujimoto, Taylor; Johnson, Jed K; Nam, Jin
2015-05-01
The development of xeno-free, chemically defined stem cell culture systems has been a primary focus in the field of regenerative medicine to enhance the clinical application of pluripotent stem cells (PSCs). In this regard, various electrospun substrates with diverse physiochemical properties were synthesized utilizing various polymer precursors and surface treatments. Human induced pluripotent stem cells (IPSCs) cultured on these substrates were characterized by their gene and protein expression to determine the effects of the substrate physiochemical properties on the cells' self-renewal, i.e., proliferation and the maintenance of pluripotency. The results showed that surface chemistry significantly affected cell colony formation via governing the colony edge propagation. More importantly, when surface chemistry of the substrates was uniformly controlled by collagen conjugation, the stiffness of substrate was inversely related to the sphericity, a degree of three dimensionality in colony morphology. The differences in sphericity subsequently affected spontaneous differentiation of IPSCs during a long-term culture, implicating that the colony morphology is a deciding factor in the lineage commitment of PSCs. Overall, we show that the capability of controlling IPSC colony morphology by electrospun substrates provides a means to modulate IPSC self-renewal. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of surface moisture on dielectric behavior of ultrafine BaTiO3 particulates.
NASA Technical Reports Server (NTRS)
Mountvala, A. J.
1971-01-01
The effects of adsorbed H2O on the dielectric properties of ultrafine BaTiO3 particulates of varying particle size and environmental history were determined. The dielectric behavior depends strongly on surface hydration. No particle size dependence of dielectric constant was found for dehydroxylated surfaces in ultrafine particulate (unsintered) BaTiO3 materials. For equivalent particle sizes, the ac conductivity is sensitive to surface morphology. Reactions with H2O vapor appear to account for the variations in dielectric properties. Surface dehydration was effectively accomplished by washing as-received powders in isopropanol.
Aguirre, Luis E.; de Oliveira, Alexandre; Seč, David; Čopar, Simon; Almeida, Pedro L.; Ravnik, Miha; Godinho, Maria Helena; Žumer, Slobodan
2016-01-01
Probing the surface morphology of microthin fibers such as naturally occurring biofibers is essential for understanding their structural properties, biological function, and mechanical performance. The state-of-the-art methods for studying the surfaces of biofibers are atomic force microscopy imaging and scanning electron microscopy, which well characterize surface geometry of the fibers but provide little information on the local interaction potential of the fibers with the surrounding material. In contrast, complex nematic fluids respond very well to external fields and change their optical properties upon such stimuli. Here we demonstrate that liquid crystal droplets deposited on microthin biofibers—including spider silk and cellulosic fibers—reveal characteristics of the fibers’ surface, performing as simple but sensitive surface sensors. By combining experiments and numerical modeling, different types of fibers are identified through the fiber-to-nematic droplet interactions, including perpendicular and axial or helicoidal planar molecular alignment. Spider silks align nematic molecules parallel to fibers or perpendicular to them, whereas cellulose aligns the molecules unidirectionally or helicoidally along the fibers, indicating notably different surface interactions. The nematic droplets as sensors thus directly reveal chirality of cellulosic fibers. Different fiber entanglements can be identified by depositing droplets exactly at the fiber crossings. More generally, the presented method can be used as a simple but powerful approach for probing the surface properties of small-size bioobjects, opening a route to their precise characterization. PMID:26768844
Aguirre, Luis E; de Oliveira, Alexandre; Seč, David; Čopar, Simon; Almeida, Pedro L; Ravnik, Miha; Godinho, Maria Helena; Žumer, Slobodan
2016-02-02
Probing the surface morphology of microthin fibers such as naturally occurring biofibers is essential for understanding their structural properties, biological function, and mechanical performance. The state-of-the-art methods for studying the surfaces of biofibers are atomic force microscopy imaging and scanning electron microscopy, which well characterize surface geometry of the fibers but provide little information on the local interaction potential of the fibers with the surrounding material. In contrast, complex nematic fluids respond very well to external fields and change their optical properties upon such stimuli. Here we demonstrate that liquid crystal droplets deposited on microthin biofibers--including spider silk and cellulosic fibers--reveal characteristics of the fibers' surface, performing as simple but sensitive surface sensors. By combining experiments and numerical modeling, different types of fibers are identified through the fiber-to-nematic droplet interactions, including perpendicular and axial or helicoidal planar molecular alignment. Spider silks align nematic molecules parallel to fibers or perpendicular to them, whereas cellulose aligns the molecules unidirectionally or helicoidally along the fibers, indicating notably different surface interactions. The nematic droplets as sensors thus directly reveal chirality of cellulosic fibers. Different fiber entanglements can be identified by depositing droplets exactly at the fiber crossings. More generally, the presented method can be used as a simple but powerful approach for probing the surface properties of small-size bioobjects, opening a route to their precise characterization.
Stability analysis of nanoscale surface patterns in stressed solids
NASA Astrophysics Data System (ADS)
Kostyrko, Sergey A.; Shuvalov, Gleb M.
2018-05-01
Here, we use the theory of surface elasticity to extend the morphological instability analysis of stressed solids developed in the works of Asaro, Tiller, Grinfeld, Srolovitz and many others. Within the framework of Gurtin-Murdoch model, the surface phase is assumed to be a negligibly thin layer with the elastic properties which differ from those of the bulk material. We consider the mass transport mechanism driven by the variation of surface and bulk energy along undulated surface of stressed solid. The linearized surface evolution equation is derived in the case of plane strain conditions and describes the amplitude change of surface perturbations with time. A parametric analysis of this equation leads to the definition of critical conditions which depend on undulation wavelength, residual surface stress, applied loading, surface and bulk elastic constants and predict the surface morphological stability.
Microstructure and mechanical properties of sheep horn.
Zhu, Bing; Zhang, Ming; Zhao, Jian
2016-07-01
The sheep horn presents outstanding mechanical properties of impact resistance and energy absorption, which suits the need of the vehicle bumper design, but the mechanism behind this phenomenon is less investigated. The microstructure and mechanical properties of the sheep horn of Small Tailed Han Sheep (Ovis aries) living in northeast China were investigated in this article. The effect of sampling position and orientation of the sheep horn sheath on mechanical properties were researched by tensile and compression tests. Meanwhile, the surface morphology and microstructure of the sheep horn were observed using scanning electron microscopy (SEM). The formation mechanism of the mechanical properties of the sheep horn was investigated by biological coupling analysis. The analytical results indicated that the outstanding mechanical properties of the sheep horn are determined by configuration, structure, surface morphology and material coupling elements. These biological coupling elements make the sheep horn possess super characteristics of crashworthiness and energy absorption through the internal coupling mechanism. We suppose that these findings would make a difference in vehicle bumper design. Microsc. Res. Tech. 79:664-674, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Mandla A. Tshabalala; Peter Kingshott; Mark R. VanLandingham; David Plackett
2003-01-01
Sol-gel surface deposition of a hydrophobic polysiloxane coating on wood was accomplished by using a mixture of a low molecular weight multifunctional alkoxysilane, methyltrimethoxysilane (MTMOS), and a high molecular weight multifunctional alkoxysilane, hexadecyltrimethoxysilane (HDTMOS). Investigation of the surface chemistry and morphology of the wood specimens by...
Fracture surface analysis in composite and titanium bonding
NASA Technical Reports Server (NTRS)
Devilbiss, T. A.; Wightman, J. P.
1985-01-01
To understand the mechanical properties of fiber-reinforced composite materials, it is necessary to understand the mechanical properties of the matrix materials and of the reinforcing fibers. Another factor that can affect the mechanical properties of a composite material is the interaction between the fiber and the matrix. In general, composites with strong fiber matrix bonding will give higher modulus, lower toughness composites. Composites with weak bonding will have a lower modulus and more ductility. The situation becomes a bit more complex when all possibilities are examined. To be considered are the following: the properties of the surface layer on the fiber, the interactive forces between polymer and matrix, the surface roughness and porosity of the fiber, and the morphology of the matrix polymer at the fiber surface. In practice, the surface of the fibers is treated to enhance the mechanical properties of a composite. These treatments include anodization, acid etching, high temperature oxidation, and plasma oxidation, to name a few. The goal is to be able to predict the surface properties of carbon fibers treated in various ways, and then to relate surface properties to fiber matrix bonding.
Biofilm formation on titanium implants counteracted by grafting gallium and silver ions.
Cochis, Andrea; Azzimonti, Barbara; Della Valle, Cinzia; Chiesa, Roberto; Arciola, Carla Renata; Rimondini, Lia
2015-03-01
Biofilm-associated infections remain the leading cause of implant failure. Thanks to its established biocompatibility and biomechanical properties, titanium has become one of the most widely used materials for bone implants. Engineered surface modifications of titanium able to thwart biofilm formation while endowing a safe anchorage to eukaryotic cells are being progressively developed. Here surfaces of disks of commercial grade 2 titanium for bone implant were grafted with gallium and silver ions by anodic spark deposition. Scanning electron microscopy of the surface morphology and energy dispersive X-ray spectroscopy were used for characterization. Gallium-grafted titanium was evaluated in comparison with silver-grafted titanium for both in vivo and in vitro antibiofilm properties and for in vitro compatibility with human primary gingival fibroblasts. Surface-modified materials showed: (i) homogeneous porous morphology, with pores of micrometric size; (ii) absence of cytotoxic effects; (iii) ability to support in vitro the adhesion and spreading of gingival fibroblasts; and (iv) antibiofilm properties. Although both silver and gallium exhibited in vitro strong antibacterial properties, in vivo gallium was significantly more effective than silver in reducing number and viability of biofilm bacteria colonies. Gallium-based treatments represent promising titanium antibiofilm coatings to develop new bone implantable devices for oral, maxillofacial, and orthopedic applications. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Suganya, Arjunan; Shanmugavelayutham, Gurusamy; Serra Rodríguez, Carmen
2016-09-01
The effect of air, argon, oxygen DC glow discharge plasma on the polyvinylchloride (PVC) film synthesized by solution casting technique, were evaluated via changes in physio-chemical properties such as structural, morphological, crystalline, thermal properties. The PVC film was plasma treated as a function of exposure time and different plasma forming gases, while other operating parameters such as power and pressure remained constant at 100 W and 2 Pa respectively. The plasma treated PVC were characterized by static contact angle, ATR-FTIR, XPS, AFM and T-peel analysis. It was found that various gaseous plasma treatments have improved the polar components, surface roughness on the surface of PVC which was confirmed by XPS, AFM, resulting in highly enhanced wettability and adhesion. X-ray diffraction study showed that plasma treatment does not persuade considerable change, even though it vaguely induces the crystallinity. The thermal properties of plasma treated PVC were evaluated by Differential Scanning Calorimetry and it was observed that O2 plasma treatment gives higher glass transition temperature of 87.21 °C compared with the untreated one. The glass transition temperature slightly increased for Oxygen plasma treated material due to the presence of higher concentration of the polar functional groups on the PVC surface due to strong intramolecular bonding.
NASA Astrophysics Data System (ADS)
Dubal, Deepak P.; Gund, Girish S.; Holze, Rudolf; Lokhande, Chandrakant D.
2013-11-01
The hierarchical structures of nanosheets, micro-roses and micro-woolen like CuO nanosheets were directly fabricated on stainless steel via surfactant-free and inexpensive chemical bath deposition (CBD) method. Further, these CuO nanostructures demonstrate excellent surface properties like uniform surface morphology, high surface area and uniform pore size distribution of CuO samples. The electrochemical properties of CuO nanostructures have been investigated by cyclic voltammetry, charge-discharge and electrochemical impedance spectroscopy techniques. The electrochemical studies of the CuO samples show obvious influence of surface properties on the pseudocapacitance performance. The maximum specific capacitances of nanosheets, micro-roses and micro-woolen like CuO nanosheets are found to be 303 Fg-1, 279 Fg-1 and 346 Fg-1, respectively at 5 mV s-1 scan rate. Further, the EIS analysis shows lower ESR value, high power performance, excellent rate as well as frequency response of micro-woolen like CuO sample. The Ragone plot ascertains better power and energy densities of all three CuO nanostructured samples than other electrical energy storage devices. The long-term cycling performance of CuO is examined at different scan rates and the morphology changes of the electrode materials were studied. Present investigation suggests the inexpensive CBD approach for fine-tuning surface properties of oxide materials for energy storage applications.
Cherepanov, Pavel V; Andreeva, Daria V
2017-03-01
High intensity ultrasound (HIUS) is a novel and efficient tool for top-down nanostructuring of multi-phase metal systems. Ultrasound-assisted structuring of the phase in metal alloys relies on two main mechanisms including interfacial red/ox reactions and temperature driven solid state phase transformations which affect surface composition and morphology of metals. Physical and chemical properties of sonication medium strongly affects the structuring pathways as well as morphology and composition of catalysts. HIUS can serve as a simple, fast, and effective approach for the tuning of structure and surface properties of metal particles, opening the new perspectives in design of robust and efficient catalysts. Copyright © 2016 Elsevier B.V. All rights reserved.
Nanostructured Metal Oxides for Stoichiometric Degradation of Chemical Warfare Agents.
Štengl, Václav; Henych, Jiří; Janoš, Pavel; Skoumal, Miroslav
2016-01-01
Metal oxides have very important applications in many areas of chemistry, physics and materials science; their properties are dependent on the method of preparation, the morphology and texture. Nanostructured metal oxides can exhibit unique characteristics unlike those of the bulk form depending on their morphology, with a high density of edges, corners and defect surfaces. In recent years, methods have been developed for the preparation of metal oxide powders with tunable control of the primary particle size as well as of a secondary particle size: the size of agglomerates of crystallites. One of the many ways to take advantage of unique properties of nanostructured oxide materials is stoichiometric degradation of chemical warfare agents (CWAs) and volatile organic compounds (VOC) pollutants on their surfaces.
NASA Astrophysics Data System (ADS)
Wang, Dong; Ning, Jing; Zhang, Jincheng; Guo, Lixin; Hao, Yue
2017-10-01
Here we systemically discussed the influence of dielectric substrates on the surface morphology, electrical and optical performance of transferred graphene. The electrical properties were investigated using a microwave-probing technique without metal-graphene contact. We found that a complex mechanism governed the influence of the surface properties of the dielectric substrates, such as morphology, hydrophilicity, crystallinity, and polarization, on the performance of the graphene. We also found that graphene on r-Al2O3 was more effective for graphene-based devices with a high carrier mobility of ˜5000 cm2 V-1 s-1. This provides a new method to choose the most suitable substrate for fabricating graphene-based devices.
Sandeep, Chitta Sai; Senetakis, Kostas
2018-01-31
In the study we experimentally examine the influence of elastic properties and surface morphology on the inter-particle friction of natural soil grains. The experiments are conducted with a custom-built micromechanical apparatus and the database is enhanced by testing engineered-reference grains. Naturally-occurring geological materials are characterized by a wide spectrum of mechanical properties (e.g., Young's modulus) and surface morphology (e.g., roughness), whereas engineered grains have much more consistent characteristics. Comparing to engineered materials, geological materials are found to display more pronounced initial plastic behavior during compression. Under the low normal load range applied in the study, between 1 and 5 N, we found that the frictional force is linearly correlated with the applied normal load, but we acknowledge that the data are found more scattered for natural soil grains, especially for rough and weathered materials which have inconsistent characteristics. The inter-particle coefficient of friction is found to be inversely correlated with the Young's modulus and the surface roughness. These findings are important in geophysical and petroleum engineering contents, since a number of applications, such as landslides and granular flows, hydraulic fracturing using proppants, and weathering process of cliffs, among others, can be simulated using discrete numerical methods. These methods employ contact mechanics properties at the grain scale and the inter-particle friction is one of these critical components. It is stressed in our study that friction is well correlated with the elastic and morphological characteristics of the grains.
NASA Astrophysics Data System (ADS)
Azizi, Zahra Sadat; Tehranchi, Mohammad Mehdi; Vakili, Seyed Hamed; Pourmahdian, Saeed
2018-05-01
Engineering approach towards combined photonic band gap properties and magnetic/polymer composite particles, attract considerable attention of researchers due to their unique properties. In this research, two different magnetic particles were prepared by nearly monodisperse polystyrene spheres as bead with two concentrations of Fe3O4 nanoparticles to prepare magnetic photonic crystals (MPCs). The crystal surfaces and particles morphology were investigated employing scanning electron microscopy and transmission electron microscopy. The volume fraction of magnetic material embedded into colloidal spheres and their morphology was found to be a key parameter in the optical and magneto-optical properties of transparent MPC.
Properties of the "Orgamax" osteoplastic material made of a demineralized allograft bone
NASA Astrophysics Data System (ADS)
Podorognaya, V. T.; Kirilova, I. A.; Sharkeev, Yu. P.; Uvarkin, P. V.; Zhelezny, P. A.; Zheleznaya, A. P.; Akimova, S. E.; Novoselov, V. P.; Tupikova, L. N.
2016-08-01
We investigated properties of the "Orgamax" osteoplastic material, which was produced from a demineralized bone, in the treatment of extensive caries, in particular chronic pulpitis of the permanent teeth with unformed roots in children. The "Orgamax" osteoplastic material consists of demineralized bone chips, a collagen additive, and antibiotics. The surface morphology of the "Orgamax" osteoplastic material is macroporous, with the maximum pore size of 250 µm, whereas the surface morphology of the major component of "Orgamax", demineralized bone chips, is microporous, with a pore size of 10-20 µm. Material "Orgamax" is used in the treatment of complicated caries, particularly chronic pulpitis of permanent teeth with unformed roots in children. "Orgamax" filling a formed cavity exhibits antimicrobial properties, eliminates inflammation in the dental pulp, and, due to its osteoconductive and osteoinductive properties, undergoes gradual resorption, stimulates regeneration, and provides replacement of the defect with newly formed tissue. The dental pulp viability is completely restored, which ensures the complete formation of tooth roots with root apex closure in the long-term period.
NASA Astrophysics Data System (ADS)
Sagar, Rohan N.; Ravindrachary, V.; Guruswamy, B.; Hegde, Shreedatta; Mahanthesh, B. K.; Kumari, R. Padma
2018-05-01
The effect of TiO2 nanoparticles on morphology and electrical properties of PVA: NaBr composite films were carried out using various techniques. The pure and TiO2 nanoparticle doped PVA: NaBr composite films were prepared using solvent casting method. The FTIR spectral studies shows that the Ti+ ions of TiO2 interacts with hydroxyl group (OH) of PVA via hydrogen bonding and forms the charge transfer complexes (CTC). These interactions are of inter/intra molecular type and affects the surface morphology as well as the electrical properties of composite films. XRD study shows that the crystallinity of the composite increases with doping level. SEM studies shows that the increase in roughness of the surface of the composite films and uniform dispersion of nanofillers in polymer matrix. Electrical properties are analyzed using impedance analyzer and higher conductivity (10-4Scm-1) is achieved for 5 wt % TiO2 doping concentration.
NASA Astrophysics Data System (ADS)
Kravets, L. I.; Elinson, V. M.; Ibragimov, R. G.; Mitu, B.; Dinescu, G.
2018-02-01
The surface and electrochemical properties of polypropylene track-etched membrane treated by plasma of nitrogen, air and oxygen are studied. The effect of the plasma-forming gas composition on the surface morphology is considered. It has been found that the micro-relief of the membrane surface formed under the gas-discharge etching, changes. Moreover, the effect of the non-polymerizing gas plasma leads to formation of oxygen-containing functional groups, mostly carbonyl and carboxyl. It is shown that due to the formation of polar groups on the surface and its higher roughness, the wettability of the plasma-modified membranes improves. In addition, the presence of polar groups on the membrane surface layer modifies its electrochemical properties so that conductivity of plasma-treated membranes increase.
NASA Astrophysics Data System (ADS)
Slezak, Thomas Joseph; Radebaugh, Jani; Christiansen, Eric
2017-10-01
The shapes of craterform morphology on planetary surfaces provides rich information about their origins and evolution. While morphologic information provides rich visual clues to geologic processes and properties, the ability to quantitatively communicate this information is less easily accomplished. This study examines the morphology of craterforms using the quantitative outline-based shape methods of geometric morphometrics, commonly used in biology and paleontology. We examine and compare landforms on planetary surfaces using shape, a property of morphology that is invariant to translation, rotation, and size. We quantify the shapes of paterae on Io, martian calderas, terrestrial basaltic shield calderas, terrestrial ash-flow calderas, and lunar impact craters using elliptic Fourier analysis (EFA) and the Zahn and Roskies (Z-R) shape function, or tangent angle approach to produce multivariate shape descriptors. These shape descriptors are subjected to multivariate statistical analysis including canonical variate analysis (CVA), a multiple-comparison variant of discriminant analysis, to investigate the link between craterform shape and classification. Paterae on Io are most similar in shape to terrestrial ash-flow calderas and the shapes of terrestrial basaltic shield volcanoes are most similar to martian calderas. The shapes of lunar impact craters, including simple, transitional, and complex morphology, are classified with a 100% rate of success in all models. Multiple CVA models effectively predict and classify different craterforms using shape-based identification and demonstrate significant potential for use in the analysis of planetary surfaces.
NASA Astrophysics Data System (ADS)
Arimoto, Keisuke; Nakazawa, Hiroki; Mitsui, Shohei; Utsuyama, Naoto; Yamanaka, Junji; Hara, Kosuke O.; Usami, Noritaka; Nakagawa, Kiyokazu
2017-11-01
A strained Si/relaxed SiGe heterostructure grown on Si(110) substrate is attractive as a platform for high-hole-mobility Si-based electronic devices. To improve the electrical property, a smoother surface is desirable. In this study, we investigated surface morphology and microstructural aspects of strained Si/relaxed SiGe/Si(110) heterostructures grown by solid-source (SS) molecular beam epitaxy (MBE). It was revealed that SSMBE provides a way to grow strained Si/relaxed SiGe heterostructures with smooth surfaces. In addition, it was found that the strain in the SiGe layer of the SSMBE-grown sample is highly anisotropic whereas that of the GSMBE-grown sample is almost biaxially relaxed. Along with the surface morphology, the symmetry in degree of strain relaxation has implications for the electrical property. Results of a calculation shows that anisotropic strain is preferable for device application since it confines holes solely in the strained Si layer where hole mobility is enhanced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasil'evskii, I. S., E-mail: ivasilevskii@mail.ru; Galiev, G. B.; Klimov, E. A.
The influence of the construction of a metamorphic buffer on the surface morphology and electrical properties of InAlAs/InGaAs/InAlAs nanoheterostructures with InAs content in the active layer from 76 to 100% with the use of the GaAs and InP substrates is studied. It is shown that such parameters as the electron mobility and the concentration, as well as the root-mean-square surface roughness, substantially depend on the construction of the metamorphic buffer. It is established experimentally that these parameters largely depend on the maximal local gradient of the lattice constant of the metamorphic buffer in the growth direction of the layers rathermore » than on its average value. It is shown that, with selection of the construction of the metamorphic buffer, it is possible to form nanostructured surfaces with a large-periodic profile.« less
Surface Morphology of Undoped and Doped ZnSe Films
NASA Technical Reports Server (NTRS)
George, T.; Hayes, M.; Chen, H.; Chattopadhyay, K.; Thomas E.; Morgan, S.; Burger, A.
1998-01-01
Rare-earth doped ions in polar II-VI semiconductors have recently played an important role in the optical properties of materials and devices. In this study, undoped ZnSe and erbium doped ZnSe films were grown by radio frequency (RF) magnetron sputtering method. Atomic Force Microscopy (AFM) was used together with optical microscopy and UV-Vis spectroscopy to characterize the films. Doped samples were found to have higher surface roughness and quite different surface morphology compared to that of undoped samples. The grown films generally show a relatively smooth and uniform surface indicating that they are of overall good quality. The impact of plasma etching on ZnSe:Er film examined under AFM is also discussed.
Pyka, Grzegorz; Kerckhofs, Greet; Papantoniou, Ioannis; Speirs, Mathew; Schrooten, Jan; Wevers, Martine
2013-01-01
Additive manufacturing (AM) is a production method that enables the building of porous structures with a controlled geometry. However, there is a limited control over the final surface of the product. Hence, complementary surface engineering strategies are needed. In this work, design of experiments (DoE) was used to customize post AM surface treatment for 3D selective laser melted Ti6Al4V open porous structures for bone tissue engineering. A two-level three-factor full factorial design was employed to assess the individual and interactive effects of the surface treatment duration and the concentration of the chemical etching solution on the final surface roughness and beam thickness of the treated porous structures. It was observed that the concentration of the surface treatment solution was the most important factor influencing roughness reduction. The designed beam thickness decreased the effectiveness of the surface treatment. In this case study, the optimized processing conditions for AM production and the post-AM surface treatment were defined based on the DoE output and were validated experimentally. This allowed the production of customized 3D porous structures with controlled surface roughness and overall morphological properties, which can assist in more controlled evaluation of the effect of surface roughness on various functional properties. PMID:28788357
Pyka, Grzegorz; Kerckhofs, Greet; Papantoniou, Ioannis; Speirs, Mathew; Schrooten, Jan; Wevers, Martine
2013-10-22
Additive manufacturing (AM) is a production method that enables the building of porous structures with a controlled geometry. However, there is a limited control over the final surface of the product. Hence, complementary surface engineering strategies are needed. In this work, design of experiments (DoE) was used to customize post AM surface treatment for 3D selective laser melted Ti6Al4V open porous structures for bone tissue engineering. A two-level three-factor full factorial design was employed to assess the individual and interactive effects of the surface treatment duration and the concentration of the chemical etching solution on the final surface roughness and beam thickness of the treated porous structures. It was observed that the concentration of the surface treatment solution was the most important factor influencing roughness reduction. The designed beam thickness decreased the effectiveness of the surface treatment. In this case study, the optimized processing conditions for AM production and the post-AM surface treatment were defined based on the DoE output and were validated experimentally. This allowed the production of customized 3D porous structures with controlled surface roughness and overall morphological properties, which can assist in more controlled evaluation of the effect of surface roughness on various functional properties.
Vahidreza Safdari; Margaret S. Devall
2011-01-01
For the identification of small to large wood samples and various types of composites that may not provide enough of all surfaces necessary to reveal diagnostic characteristics, such as sawdust, decayed wood fragments, archeological wood, and even large wood samples, morphological and anatomical characteristics of vessels are very useful. In this research,...
NASA Technical Reports Server (NTRS)
Barlow, Nadine G.; Bradley, Tracy L.
1990-01-01
An effort is made to establish the ability of a correlation between crater morphology and latitude, diameter, and terrain, to discriminate among the effects of impact energy, atmosphere, and subsurface volatiles in 3819 larger-than-8 km diameter craters distributed over the Martian surface. It is noted that changes in ejecta and interior morphology correlate with increases in crater diameter, and that while many of the interior structures exhibit distributions interpretable as terrain-dependent, central peak and peak ring interior morphologies exhibit minimal relationships with planetary properties.
Xu, Guiheng; Xu, Dongdong; Zhang, Jianan; Wang, Kaixi; Chen, Zhimin; Chen, Jiafu; Xu, Qun
2013-12-01
In this paper, a facile and efficient method is reported to prepare polyaniline/carbon nanofiber (PANI/CNF) hybrid films by in situ chemical polymerization of aniline. The various morphologies and microstructures of PANI/CNF hybrid films can be controlled by adjusting the concentration of aniline and different acids as the protonation reagent, and the formation mechanism is illustrated in this study. The surface morphologies and chemical structure of the PANI/CNF hybrid films are characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), water contact angle (CA), FT-IR, Raman, and UV-vis spectrophotometers. The different morphology of uniformly coated, twist-tangled, and needle-like PANI built on CNF films are obtained by using HCl, H2SO4, and HClO4 as protonation reagent and the obtained hybrid films are labeled as PANI/CNF-f1, PANI/CNF-f2, and PANI/CNF-f3, respectively. We demonstrated that the different protonation reagent has the determined effect on the surface properties of the obtained hybrid films that can transfer from hydrophilic to hydrophobic. Besides, the various morphologies of PANI play an important role in their electrochemical properties. PANI/CNF-f3 exhibits higher specific capacitance and better stability than that of the PANI/CNF-f1 and PANI/CNF-f2. Considering its unique needle-like structure, this work is a proof of concept that micro-structure and morphology can determine the macro-properties. And this study supplies a facile method to fabricate PANI/CNF hybrid films that can be used as electrode materials in supercapacitors. Copyright © 2013 Elsevier Inc. All rights reserved.
Micro and sub-micron surface structuring of AZ31 by laser re-melting and dimpling
NASA Astrophysics Data System (ADS)
Furlan, Valentina; Demir, Ali Gökhan; Previtali, Barbara
2015-12-01
In this work, the use of ns-pulsed fibre laser for surface structuring of AZ31 Mg alloy is investigated. Surface re-melting was employed to change surface morphology, especially in terms of surface roughness. Dimpling by percussion microdrilling was investigated to control the hole geometry.. With surface remelting mono-directional and homogeneous surfaces were obtained with Fl<500 J/cm2. Above 500 J/cm2 particle generation was observed, which induced sub-micron structure growth with nano-fibrous features. Moreover, surface roughness could be controlled below the initial value and much higher. With dimpling, transformation from gentle to strong ablation was observed at F0=10.3 J/cm2. XRD analysis was employed to link oxide growth to the surface morphology. Tensile tests were carried out to assess the damage on the mechanical properties after surface structuring.
Surface morphology of Al0.3Ga0.7N/Al2O3-high electron mobility transistor structure.
Cörekçi, S; Usanmaz, D; Tekeli, Z; Cakmak, M; Ozçelik, S; Ozbay, E
2008-02-01
We present surface properties of buffer films (AIN and GaN) and Al0.3Gao.zN/Al2O3-High Electron Mobility Transistor (HEMT) structures with/without AIN interlayer grown on High Temperature (HT)-AIN buffer/Al2O3 substrate and Al2O3 substrate. We have found that the GaN surface morphology is step-flow in character and the density of dislocations was about 10(8)-10(9) cm(-2). The AFM measurements also exhibited that the presence of atomic steps with large lateral step dimension and the surface of samples was smooth. The lateral step sizes are in the range of 100-250 nm. The typical rms values of HEMT structures were found as 0.27, 0.30, and 0.70 nm. HT-AIN buffer layer can have a significant impact on the surface morphology of Al0.3Ga0.7N/Al2O3-HEMT structures.
Formation of Nanocones on Highly Oriented Pyrolytic Graphite by Oxygen Plasma
Vesel, Alenka; Eleršič, Kristina; Modic, Martina; Junkar, Ita; Mozetič, Miran
2014-01-01
Improvement in hemocompatibility of highly oriented pyrolytic graphite (HOPG) by formation of nanostructured surface by oxygen plasma treatment is reported. We have showed that by appropriate fine tuning of plasma and discharge parameters we are able to create nanostructured surface which is densely covered with nanocones. The size of the nanocones strongly depended on treatment time. The optimal results in terms of material hemocompatibility were obtained after treatment with oxygen plasma for 15 s, when both the nanotopography and wettability were the most favorable, since marked reduction in adhesion and activation of platelets was observed on this surface. At prolonged treatment times, the rich surface topography was lost and thus also its antithrombogenic properties. Chemical composition of the surface was always more or less the same, regardless of its morphology and height of the nanocones. Namely, on all plasma treated samples, only a few atomic percent of oxygen was found, meaning that plasma caused mostly etching, leading to changes in the surface morphology. This indicates that the main preventing mechanism against platelets adhesion was the right surface morphology. PMID:28788553
Investigations into the Anti-Felting Properties of Sputtered Wool Using Plasma Treatment
NASA Astrophysics Data System (ADS)
M. Borghei, S.; Shahidi, S.; Ghoranneviss, M.; Abdolahi, Z.
2013-01-01
In this research the effects of mordant and plasma sputtering treatments on the crystallinity and morphological properties of wool fabrics were investigated. The felting behavior of the treated samples was also studied. We used madder as a natural dye and copper sulfate as a metal mordant. We also used copper as the electrode material in a DC magnetron plasma sputtering device. The anti-felting properties of the wool samples before and after dying was studied, and it was shown that the shrink resistance and anti-felting behavior of the wool had been significantly improved by the plasma sputtering treatment. In addition, the percentage of crystallinity and the size of the crystals were investigated using an X-ray diffractometer, and a scanning electron microscope was used for morphological analysis. The amount of copper particles on the surface of the mordanted and sputtered fabrics was studied using the energy dispersive X-ray (EDX) method, and the hydrophobic properties of the samples were examined using the water drop test. The results show that with plasma sputtering treatment, the hydrophobic properties of the surface of wool become super hydrophobic.
NASA Astrophysics Data System (ADS)
Ono, Hiroshi; Kawatsuki, Nobuhiro
1995-03-01
The relationship between the saponification rate of poly(vinyl alcohol) (PVA), and the electrooptical properties and morphology of the PVA/liquid crystal (LC) composite films was investigated. Light transmission clazing and the LC droplet size were varied by changing the saponification rate or the blend ratio of two kinds of PVA with different saponification rates because the refractive index and surface tension could be controlled by the saponification rate of PVA. The threshold voltage decreased with increasing saponification rate though the extrapolation length was decreased. It was suggested that the electrooptical properties were strongly dependent on the droplet size.
Preparation, thermal property and morphology analysis of waterborne polyurethane-acrylate
NASA Astrophysics Data System (ADS)
Zhao, Zhenyu; Jing, Zefeng; Qiu, Fengxian; Dai, Yuting; Xu, Jicheng; Yu, Zongping; Yang, Pengfei
2017-01-01
A series of waterborne polyurethane-acrylate (WPUA) dispersions were prepared with isophorone diisocyanate (IPDI), polyether polyol (NJ-210), dimethylol propionic acid (DMPA), hydroxyethyl methyl acrylate (HEMA), different proportions of methyl methacrylate (MMA) and ethyl acrylate (MMA and EA) and initiating agent by the emulsion co-polymerization. The structures, thermal properties and morphology of WPUA films were characterized with FT-IR, DSC, SEM and AFM. Performances of the dispersions and films were studied by means of apparent viscidity, particle size and polydispersity, surface tension and mechanical properties. The obtained WPUA have great potential application such as coatings, leather finishing, adhesives, sealants, plastic coatings and wood finishes.
Various fates of neuronal progenitor cells observed on several different chemical functional groups
NASA Astrophysics Data System (ADS)
Liu, Xi; Wang, Ying; He, Jin; Wang, Xiu-Mei; Cui, Fu-Zhai; Xu, Quan-Yuan
2011-12-01
Neuronal progenitor cells cultured on gold-coated glass surfaces modified by different chemical functional groups, including hydroxyl (-OH), carboxyl (-COOH), amino (-NH2), bromo (-Br), mercapto (-SH), - Phenyl and methyl (-CH3), were studied here to investigate the influence of surface chemistry on the cells' adhesion, morphology, proliferation and functional gene expression. Focal adhesion staining indicated in the initial culture stage cells exhibited morphological changes in response to different chemical functional groups. Cells cultured on -NH2 grafted surface displayed focal adhesion plaque and flattened morphology and had the largest contact area. However, their counter parts on -CH3 grafted surface displayed no focal adhesion and rounded morphology and had the smallest contact area. After 6 days culture, the proliferation trend was as follows: -NH2 > -SH> -COOH> - Phenyl > - Br > -OH> -CH3. To determine the neural functional properties of the cells affected by surface chemistry, the expression of glutamate decarboxylase (GAD67), nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) were characterized. An increase of GAD67 expression was observed on -NH2, -COOH and -SH grafted surfaces, while no increase in NGF and BDNF expression was observed on any chemical surfaces. These results highlight the importance of surface chemistry in the fate determination of neuronal progenitor cells, and suggest that surface chemistry must be considered in the design of biomaterials for neural tissue engineering.
The influence of gamma irradiation on natural dyeing properties of cotton and flax fabrics
NASA Astrophysics Data System (ADS)
Chirila, Laura; Popescu, Alina; Cutrubinis, Mihalis; Stanculescu, Ioana; Moise, Valentin Ioan
2018-04-01
Fabrics made of 100% cotton and 100% flax respectively were exposed at ambient temperature to gamma radiation doses, from 5 to 40 kGy, using a Co-60 research irradiator. After the irradiation treatment the fabrics were subjected to dyeing process with Itodye Nat Pomegranate commercial natural dye. The influence of gamma irradiation treatment on the physical-mechanical properties, dyeing and surface morphology of natural fibres were investigated. Gamma ray treatment of 40 kGy was the most effective in the case of fabrics made from 100% cotton, enhancing the colour strength as evidenced by K/S value. The results obtained from the mechanical properties of fabrics made of 100% flax indicated that the dose of 40 kGy leads to a decrease of tensile strength up of to 41.5%. Infrared spectroscopy was used to monitor chemical and structural changes in cellulosic fibres induced during processing. Crystallinity indices calculated from various bands ratio showed insignificant variations for cotton and small variations in the case of flax. The surface morphology of irradiated cotton fabrics did not show significant changes even at the highest dose of 40 kGy, while the low doses applied on flax fabrics led to an appearance of small changes of surface morphology. The gamma irradiation increased the uptake of natural dyes on natural cellulosic fibres.
Electrospinning of gelatin and SMPU with carbon nanotubes for tissue engineering scaffolds.
Mejia, Monica A; Hoyos, Lina M; Zapata, Jenniffer; Restrepo, Luz M; Moneada, Maria E
2016-08-01
The nanofibres created by electrospinning technique are currently used for a variety of applications in tissue engineering; and Gelatin and Polyurethane Shape-Memory (SMPU) have important results in biomedicine. Similarly, carbon nanotubes combined with other biomaterials change important properties, opening new opportunities for biomedical applications. In this work, we constructed scaffold using electrospinning technique based in bovine-hide gelatin, SMPU and both materials hybrid with carbon nanotube. Morphology and cytotoxicity were evaluated and mechanical properties for two materials were obtained in scaffold building. Morphological, mechanical and citotoxic properties of the electrospun fibers were found to be dependent of alteration in materials concentration, electrospinning conditions and MWCNT concentration. According to morphological, cytotoxic and mechanical analysis, SMPU more MWCNT were the best material, with nanofibers of 451 nm, tensile strength of 1.912 MPa, and a high ratio surface volume.
The physics and chemistry of graphene-on-surfaces.
Zhao, Guoke; Li, Xinming; Huang, Meirong; Zhen, Zhen; Zhong, Yujia; Chen, Qiao; Zhao, Xuanliang; He, Yijia; Hu, Ruirui; Yang, Tingting; Zhang, Rujing; Li, Changli; Kong, Jing; Xu, Jian-Bin; Ruoff, Rodney S; Zhu, Hongwei
2017-07-31
Graphene has demonstrated great potential in next-generation electronics due to its unique two-dimensional structure and properties including a zero-gap band structure, high electron mobility, and high electrical and thermal conductivity. The integration of atom-thick graphene into a device always involves its interaction with a supporting substrate by van der Waals forces and other intermolecular forces or even covalent bonding, and this is critical to its real applications. Graphene films on different surfaces are expected to exhibit significant differences in their properties, which lead to changes in their morphology, electronic structure, surface chemistry/physics, and surface/interface states. Therefore, a thorough understanding of the surface/interface properties is of great importance. In this review, we describe the major "graphene-on-surface" structures and examine the roles of their properties and related phenomena in governing the overall performance for specific applications including optoelectronics, surface catalysis, anti-friction and superlubricity, and coatings and composites. Finally, perspectives on the opportunities and challenges of graphene-on-surface systems are discussed.
Zhang, Xiaoping; Wang, Fang; Keer, Leon M.
2015-01-01
The objective of this study is to investigate the effect of surface treatment on the morphology and thermo-mechanical properties of bamboo fibers. The fibers are subjected to an alkali treatment using 4 wt % sodium hydroxide (NaOH) for 1 h. Mechanical measurements show that the present concentration has an insignificant effect on the fiber tensile strength. In addition, systematic experimental results characterizing the morphological aspects and thermal properties of the bamboo fibers are analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. It is found that an alkali treatment may increase the effective surface area, which is in turn available for superior bonding with the matrix. Fourier transform infrared spectroscopy analysis reveals that the alkali treatment leads to a gradual removal of binding materials, such as hemicellulose and lignin from the bamboo fiber. A comparison of the curve of thermogravimetric analysis and differential scanning calorimetry for the treated and untreated samples is presented to demonstrate that the presence of treatment contributes to a better thermal stability for bamboo fibers. PMID:28793585
Lee, Gyeonghee; Varanasi, Chakrapani V; Liu, Jie
2015-02-21
It is well known that both the structural morphology and chemical doping are important factors that affect the properties of metal hydroxide materials in electrochemical energy storage devices. In this work, an effective method to tailor the morphology and chemical doping of metal hydroxides is developed. It is shown that the morphology and the degree of crystallinity of Ni(OH)2 can be changed by adding glucose in the ethanol-mediated solvothermal synthesis. Ni(OH)2 produced in this manner exhibited an increased specific capacitance, which is partially attributed to its increased surface area. Interestingly, the effect of morphology on cobalt doped-Ni(OH)2 is found to be more effective at low cobalt contents than at high cobalt contents in terms of improving the electrochemical performance. This result reveals the existence of competitive effects between chemical doping and morphology change. These findings will provide important insights to design effective materials for energy storage devices.
Effect of alkali treatment on the physical and surface properties of Indian hemp fibers
NASA Astrophysics Data System (ADS)
Sangappa, Rao, B. Lakshmeesha; Asha, S.; Somashekar, R.
2013-02-01
The Plant fibers are rich in cellulose and they are a cheap, easily renewable source of fibers with the potential for polymer reinforcement. The presence of surface impurities and the large amount of hydroxyl groups make plant fibers less attractive for reinforcement of polymeric materials. Hemp (Cannabis Sativa L.) fibers were subjected to alkalization using 1N sodium hydroxide (NaOH). The structural properties and surface morphology of untreated and chemically modified fibers have been studied using X-ray diffraction (WAXS) and Scanning electron microscopy (SEM) respectively.
NASA Astrophysics Data System (ADS)
Ponchaiya, Pairin; Rattanasakulthong, Watcharee
2017-09-01
Sputtered Co81Pd19 films with thickness of about 60 nm were deposited on various under-layers (Co, Ni, Cr and Al) and on glass substrate. Structural, morphological and magnetic properties of Co81Pd19 films were investigated. All of prepared Co81Pd19 film showed CoPd-FCC phase in (111) direction on CoO-FCC (111), NiO-FCC (200), Cr-BCC (200) and (201) and AlO-FCC (200) phases of Co, Ni, Cr and Al under-layer, respectively. AFM images revealed that the film on Cr under-layers and glass substrate exhibited the maximum roughness with the highest grain size and the minimum roughness with the continuous grain size, respectively. Both parallel and perpendicular maximum coercive field were found in the film on glass under-layer and the film on Co-under-layer film showed the highest saturation magnetization from both in-plane and out-of-plane measurements. These results confirmed that the structural and magnetic properties of sputtered Co81Pd19 films were affected by under-layer surface roughness and morphology by the virtue of particle size and distribution on the under-layer film surface.
Dufrêne, Y F
2001-02-01
The application of atomic force microscopy (AFM) to probe the ultrastructure and physical properties of microbial cell surfaces is reviewed. The unique capabilities of AFM can be summarized as follows: imaging surface topography with (sub)nanometer lateral resolution; examining biological specimens under physiological conditions; measuring local properties and interaction forces. AFM is being used increasingly for: (i) visualizing the surface ultrastructure of microbial cell surface layers, including bacterial S-layers, purple membranes, porin OmpF crystals and fungal rodlet layers; (ii) monitoring conformational changes of individual membrane proteins; (iii) examining the morphology of bacterial biofilms, (iv) revealing the nanoscale structure of living microbial cells, including fungi, yeasts and bacteria, (v) mapping interaction forces at microbial surfaces, such as van der Waals and electrostatic forces, solvation forces, and steric/bridging forces; and (vi) probing the local mechanical properties of cell surface layers and of single cells.
Jang, Woongsik; Ahn, Sunyong; Park, Soyun; Park, Jong Hyeok; Wang, Dong Hwan
2016-12-01
The importance of conductive polymer electrodes with a balance between the morphology and electrical conductivity for flexible organic photovoltaic properties has been demonstrated. Highly transparent PEDOT:PSS anodes with controlled conductivity and surface properties were realized by insertion of dimethyl sulfoxide (DMSO) and a fluorosurfactant (Zonyl) as efficient additives and used for flexible organic photovoltaic cells (OPVs) which are based on a bulk-heterojunction of polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7):[6,6]phenyl-C 71 -butyric acid methyl ester (PC 71 BM). We investigated the correlation between the electrical properties of PEDOT:PSS electrodes and their influences on the surface morphology of the active materials (PTB7:PC 71 BM). When the device was prepared from the PEDOT:PSS layer functioning as an anode of OPV through an optimized ratio of 5 vol% of DMSO and 0.1 wt% of fluorosurfactant, the devices exhibited improved fill factor (FF) due to the enhanced coverage of PEDOT:PSS films. These results correlate with reduced photoluminescence and increased charge extraction as seen through Raman spectroscopy and electrical analysis, respectively. The conductive polymer electrode with the balance between the morphology and electrical conductivity can be a useful replacement for brittle electrodes such as those made of indium tin oxide (ITO) as they are more resistant to cracking and bending conditions, which will contribute to the long-term operation of flexible devices.
Surface morphology correlated with field emission properties of laser irradiated nickel
NASA Astrophysics Data System (ADS)
Jalil, S. A.; Bashir, S.; Akram, M.; Ahmed, Q. S.; Haq, F. U.
2017-08-01
The effect of laser fluence on the surface morphology and field emission properties of nickel (Ni) has been investigated. Circular shaped Ni targets are irradiated with Nd:YAG laser (1064 nm, 10 Hz, 10 ns) at various fluences ranging from 5.2 to 26 J/cm2 in air. For low fluence ranging from 5.2 to 10.4 J/cm2, SEM analysis reveals the growth of unorganized channels, grains, droplets, and ridges. Whereas, at moderate fluence of 15.6 J/cm2, the formation of ridges and cones along with few number of holes are observed. However, at high fluence regime ranging from 20 to 26 J/cm2, a sharp transition in morphology from ridges to holes has been observed. The laser structured Ni targets are also investigated for field emission properties by recording their I-V characteristics and Fowler-Nordheim (F-N) plots. The enhancement in field emission factor (β) and the reduction in turn on field are found to be dependent upon the laser fluence and morphology of the grown structures. For samples treated at low and moderate fluences, the growth of cones, channels and ridges is responsible for enhancement of β factor ranging from 121 to 178. Whereas, for samples treated at high fluence region, the formation of pores and holes is responsible for significant field convergence and consequently resulting in substantial enhancement in β factor to 276.
Modification of surface properties of cellulosic substrates by quaternized silicone emulsions.
Purohit, Parag S; Somasundaran, P
2014-07-15
The present work describes the effect of quaternization of silicones as well as the relevant treatment parameter pH on the frictional, morphological and relaxation properties of fabric substrates. Due to their unique surface properties, silicone polymers are extensively used to modify surface properties of various materials, although the effects of functionalization of silicones and relevant process conditions on modification of substrates are not well understood. Specifically we show a considerable reduction in fabric friction, roughness and waviness upon treatment with quaternized silicones. The treatment at acidic pH results in better deposition of silicone polymers onto the fabric as confirmed through streaming potential measurements which show charge reversal of the fabric. Interestingly, Raman spectroscopy studies show the band of C-O ring stretching mode at ∼1095 cm(-1) shift towards higher wavenumber indicating lowering of stress in fibers upon appropriate silicone treatment. Thus along with the morphological and frictional properties being altered, silicone treatment can lead to a reduction in fabric strain. It is concluded that the electrostatic interactions play an initial role in modification of the fiber substrate followed by multilayer deposition of polymer. This multi-technique approach to study fiber properties upon treatment by combining macro to molecular level methods has helped in understanding of new functional coating materials. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Geng, Yamin; Lu, Canhui; Liang, Mei; Zhang, Wei
2010-12-01
In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of poly (ethylene terephthalate) (PET) nonwoven fabric. The properties of the PET nonwoven fabric including its liquid absorptive capacity (WA), aging behavior, surface chemical composition, morphology of the surface, adhesion strength, surface electrical resistivity and electromagnetic interference (EMI)- shielding effectiveness (SE) were studied. The liquid absorptive capacity (WA) increased due to the incorporation of oxygen-containing and nitrogen-containing functional groups on the surface of PET nonwoven fabric after DBD air-plasma treatment. The surface morphology of the nonwoven fibers became rougher after plasma treatment. Therefore, the surface was more prone to absorb tin sensitizer and palladium catalyst to form an active layer for the deposition of electroless nickel. SEM and X-ray diffraction (XRD) measurements indicated that a uniform coating of nickel was formed on the PET nonwoven fabric. The average EMI-SE of Ni-plating of PET nonwoven fabric maintained a relatively stable value (38.2 dB to 37.3 dB) in a frequency range of 50 MHz to 1500 MHz. It is concluded that DBD is feasible for pretreatment of nonwoven fabric for electroless nickel plating to prepare functional material with good EMI-SE properties.
NASA Astrophysics Data System (ADS)
Mirzayev, Matlab N.; Mehdiyeva, Ravan N.; Garibov, Ramin G.; Ismayilova, Narmin A.; Jabarov, Sakin H.
2018-05-01
In this study, compounds of B6Si were irradiated using a 60Co gamma source that have an energy line of 1.25 MeV at the absorbed dose rates from 14.6 kGy to 194.4 kGy. Surface morphology images of the sample obtained by Scanning Electron Microscope (SEM) show that the crystal structure at a high absorbed doses (D ≥ 145.8kGy) starts to be destroyed. X-ray diffraction studies revealed that with increasing radiation absorption dose, the spectrum intensity of the sample was decreased 1.96 times compared with the initial value. Thermal properties were studied by Differential scanning calorimetry (DSC) method in the temperature range of 30-1000∘C.
Using surfaces, ligands, and dimensionality to obtain desired nanostructure properties
NASA Astrophysics Data System (ADS)
Nagpal, Prashant; Singh, Vivek; Ding, Yuchen
2014-03-01
Nanostructured materials are intensively investigated to obtain material properties different from their bulk counterparts. It has been demonstrated that nanoscaled semiconductor can have interesting size, shape and morphology dependent optoelectronic properties. But the effect of surfaces, ligands and dimensionality (0D quantum dots to 2D nanosheets) has been largely unexplored. Here, we will show how tuning the surface and dimensionality can affect the electronic states of the semiconductor, and how these states can play an important role in their fundamental photophysical properties or thermal transport. Using the specific case for silicon, we will show how ``new'' surface states in small uniform can lead to light absorption/emission without phonon assistance, while hindering the phonon-drag of charge carriers leading to low Seebeck coefficient for thermoelectric applications. These measurements will shed light on designing appropriate surface, size, and dimensionality for desired applications of nanostructured films.
Effect of Er:YAG laser irradiation on bonding property of zirconia ceramics to resin cement.
Lin, Yihua; Song, Xiaomeng; Chen, Yaming; Zhu, Qingping; Zhang, Wei
2013-12-01
This study aimed to investigate whether or not an erbium: yttrium-aluminum-garnet (Er:YAG) laser could improve the bonding property of zirconia ceramics to resin cement. Surface treatments can improve the bonding properties of dental ceramics. However, little is known about the effect of Er:YAG laser irradiated on zirconia ceramics. Specimens of zirconia ceramic pieces were made, and randomly divided into 11 groups according to surface treatments, including one control group (no treatment), one air abrasion group, and nine Er:YAG laser groups. The laser groups were subdivided by applying different energy intensities (100, 200, or 300 mJ) and irradiation times (5, 10, or 15 sec). After surface treatments, ceramic pieces had their surface morphology observed, and their surface roughness was measured. All specimens were bonded to resin cement. Shear bond strength was measured after the bonded specimens were stored in water for 24 h, and additionally aged by thermocycling. Statistical analyses were performed using one way analysis of variance (ANOVA) and Tukey's test for shear bond strength, and Dunnett's t test for surface roughness, with α=0.05. Er:YAG laser irradiation changed the morphological characteristics of zirconia ceramics. Higher energy intensities (200, 300 mJ) could roughen the ceramics, but also caused surface cracks. There were no significant differences in the bond strength between the control group and the laser groups treated with different energy intensities or irradiation times. Air abrasion with alumina particles induced highest surface roughness and shear bond strength. Er:YAG laser irradiation cannot improve the bonding property of zirconia ceramics to resin cement. Enhancing irradiation intensities and extending irradiation time have no benefit on the bond of the ceramics, and might cause material defect.
NASA Astrophysics Data System (ADS)
Blochet, Quentin; Delloro, Francesco; N'Guyen, Franck; Jeulin, Dominique; Borit, François; Jeandin, Michel
2017-04-01
This article is dealing with the effects of surface preparation of the substrate on aluminum cold-sprayed coating bond strength. Different sets of AA2024-T3 specimens have been coated with pure Al 1050 feedstock powder, using a conventional cold spray coating technique. The sets were grit-blasted (GB) before coating. The study focuses on substrate surface topography evolution before coating and coating-substrate interface morphology after coating. To study coating adhesion by LASAT® technique for each set, specimens with and without preceding GB treatment were tested in load-controlled conditions. Then, several techniques were used to evaluate the effects of substrate surface treatment on the final coating mechanical properties. Irregularities induced by the GB treatment modify significantly the interface morphology. Results showed that particle anchoring was improved dramatically by the presence of craters. The substrate surface was characterized by numerous anchors. Numerical simulation results exhibited the increasing deformation of particle onto the grit-blasted surface. In addition, results showed a strong relationship between the coating-substrate bond strength on the deposited material and surface preparation.
Effect of ion irradiation on the surface, structural and mechanical properties of brass
NASA Astrophysics Data System (ADS)
Ahmad, Shahbaz; Bashir, Shazia; Ali, Nisar; Umm-i-Kalsoom; Yousaf, Daniel; Faizan-ul-Haq; Naeem, Athar; Ahmad, Riaz; Khlaeeq-ur-Rahman, M.
2014-04-01
Modifications to the surface, structural and mechanical properties of brass after ion irradiation have been investigated. Brass targets were bombarded by carbon ions of 2 MeV energy from a Pelletron linear accelerator for various fluences ranging from 56 × 1012 to 26 × 1013 ions/cm2. A scanning electron microscope and X-ray diffractometer were utilized to analyze the surface morphology and crystallographic structure respectively. To explore the mechanical properties e.g., yield stress, ultimate tensile strength and microhardness of irradiated brass, an universal tensile testing machine and Vickers microhardness tester were used. Scanning electron microscopy results revealed an irregular and randomly distributed sputter morphology for a lower ion fluence. With increasing ion fluence, the incoherently shaped structures were transformed into dendritic structures. Nano/micro sized craters and voids, along with the appearance of pits, were observed at the maximum ion fluence. From X-ray diffraction results, no new phases were observed to be formed in the brass upon irradiation. However, a change in the peak intensity and higher and lower angle shifting were observed, which represents the generation of ion-induced defects and stresses. Analyses confirmed modifications in the mechanical properties of irradiated brass. The yield stress, ultimate tensile strength and hardness initially decreased and then increased with increasing ion fluence. The changes in the mechanical properties of irradiated brass are well correlated with surface and crystallographic modifications and are attributed to the generation, augmentation, recombination and annihilation of the ion-induced defects.
Bae, Won C; Ruangchaijatuporn, Thumanoon; Chang, Eric Y; Biswas, Reni; Du, Jiang; Statum, Sheronda; Chung, Christine B
2016-04-01
To evaluate pathology of the triangular fibrocartilage complex (TFCC) using high-resolution morphologic magnetic resonance (MR) imaging, and compare with quantitative MR and biomechanical properties. Five cadaveric wrists (22-70 years) were imaged at 3 T using morphologic (proton density weighted spin echo, PD FS, and 3D spoiled gradient echo, 3D SPGR) and quantitative MR sequences to determine T2 and T1rho properties. In eight geographic regions, morphology of TFC disc and laminae were evaluated for pathology and quantitative MR values. Samples were disarticulated and biomechanical indentation testing was performed on the distal surface of the TFC disc. On morphologic PD SE images, TFC disc pathology included degeneration and tears, while that of the laminae included degeneration, degeneration with superimposed tear, mucinous transformation, and globular calcification. Punctate calcifications were highly visible on 3D SPGR images and found only in pathologic regions. Disc pathology occurred more frequently in proximal regions of the disc than distal regions. Quantitative MR values were lowest in normal samples, and generally higher in pathologic regions. Biomechanical testing demonstrated an inverse relationship, with indentation modulus being high in normal regions with low MR values. The laminae studied were mostly pathologic, and additional normal samples are needed to discern quantitative changes. These results show technical feasibility of morphologic MR, quantitative MR, and biomechanical techniques to characterize pathology of the TFCC. Quantitative MRI may be a suitable surrogate marker of soft tissue mechanical properties, and a useful adjunct to conventional morphologic MR techniques.
Effect of alloy addition and growth conditions on the formation of Mg-based bioabsorbable thin films
NASA Astrophysics Data System (ADS)
Pursel, Sean M.; Petrilli, John D.; Horn, Mark W.; Shaw, Barbara A.
2008-08-01
Magnesium is an essential mineral in the human body and has recently been studied as a bioabsorbable material for use in cardiac stents. New areas of application can be found in bone plates, bone screws, and orthopedic implants. Magnesium alone has a corrosion rate much too high for use in such applications and has been alloyed with various elements to improve corrosion resistance. The use of vapor deposition to create Mg alloys for the above applications has not been attempted although certain properties of non-equilibrium alloys, namely corrosion resistance, can be improved. Using vapor deposition the characterization of the growth of magnesium alloy thin films has been done utilizing various alloying elements, substrate temperatures, post-deposition treatments, and substrate positions. The results point towards a growth mode controlled by crystallization of the Mg. Mg Sculptured thin films (STFs) are used to demonstrate these effects and potential solutions while also providing a route to control nanoscale surface morphology to enhance cell growth, cell attachment, and absorption properties. The results of the study are presented in terms of x-ray diffraction data, microscopy analysis of growth evolution, and corrosion testing. This magnesium alloy research utilizes a dual source deposition method that has also provided insight about some of the growth modes of other alloy STFs. Engineering of surface morphology using dip coatings and etching has been used in biomedical materials to enhance certain application specific surface properties. STF technology potentially provides a path to merge the advantages of non-equilibrium alloy formation and engineering nanoscale surface morphology.
NASA Astrophysics Data System (ADS)
Robbins, Stuart James
Impact craters are arguably the primary exogenic planetary process contributing to the surface evolution of solid bodies in the solar system. Craters appear across the entire surface of Mars, and they are vital to understanding its crustal properties as well as surface ages and modification events. They allow inferences into the ancient climate and hydrologic history, and they add a key data point for the understanding of impact physics. Previously available databases of Mars impact craters were created from now antiquated datasets, automated algorithms with biases and inaccuracies, were limited in scope, and/or complete only to multikilometer diameters. This work presents a new global database for Mars that contains 378,540 craters statistically complete for diameters D ≳ 1 km. This detailed database includes location and size, ejecta morphology and morphometry, interior morphology and degradation state, and whether the crater is a secondary impact. This database allowed exploration of global crater type distributions, depth, and morphologies in unprecedented detail that were used to re-examine basic crater scaling laws for the planet. The inclusion of hundreds of thousands of small, approximately kilometer-sized impacts facilitated a detailed study of the properties of nearby fields of secondary craters in relation to their primary crater. It also allowed the discovery of vast distant clusters of secondary craters over 5000 km from their primary crater, Lyot. Finally, significantly smaller craters were used to age-date volcanic calderas on the planet to re-construct the timeline of the last primary eruption events from 20 of the major Martian volcanoes.
Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification
Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.
2016-01-01
Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670
Braun, Ulrike; Lorenz, Edelgard; Weimann, Christiane; Sturm, Heinz; Karimov, Ilham; Ettl, Johannes; Meier, Reinhard; Wohlgemuth, Walter A; Berger, Hermann; Wildgruber, Moritz
2016-12-01
Central venous port devices made of two different polymeric materials, thermoplastic polyurethane (TPU) and silicone rubber (SiR), were compared due their material properties. Both naïve catheters as well as catheters after removal from patients were investigated. In lab experiments the influence of various chemo-therapeutic solutions on material properties was investigated, whereas the samples after removal were compared according to the implanted time in patient. The macroscopic, mechanical performance was assessed with dynamic, specially adapted tests for elasticity. The degradation status of the materials was determined with common tools of polymer characterisation, such as infrared spectroscopy, molecular weight measurements and various methods of thermal analysis. The surface morphology was analysed using scanning electron microscopy. A correlation between material properties and clinical performance was proposed. The surface morphology and chemical composition of the polyurethane catheter materials can potentially result in increased susceptibility of the catheter to bloodstream infections and thrombotic complications. The higher mechanic failure, especially with increasing implantation time of the silicone catheters is related to the lower mechanical performance compared to the polyurethane material as well as loss of barium sulphate filler particles near the surface of the catheter. This results in preformed microscopic notches, which act as predetermined sites of fracture. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hersche, Sepp; Sifakakis, Iosif; Zinelis, Spiros; Eliades, Theodore
2017-02-01
The purpose of the present study was to investigate the elemental composition, the microstructure, and the selected mechanical properties of high gold orthodontic brackets after intraoral aging. Thirty Incognito™ (3M Unitek, Bad Essen, Germany) lingual brackets were studied, 15 brackets as received (control group) and 15 brackets retrieved from different patients after orthodontic treatment. The surface of the wing area was examined by scanning electron microscopy (SEM). Backscattered electron imaging (BEI) was performed, and the elemental composition was determined by X-ray EDS analysis (EDX). After appropriate metallographic preparation, the mechanical properties tested were Martens hardness (HM), indentation modulus (EIT), elastic index (ηIT), and Vickers hardness (HV). These properties were determined employing instrumented indentation testing (IIT) with a Vickers indenter. The results were statistically analyzed by unpaired t-test (α=0.05). There were no statistically significant differences evidenced in surface morphology and elemental content between the control and the experimental group. These two groups of brackets showed no statistically significant difference in surface morphology. Moreover, the mean values of HM, EIT, ηIT, and HV did not reach statistical significance between the groups (p>0.05). Under the limitations of this study, it may be concluded that the surface elemental content and microstructure as well as the evaluated mechanical properties of the Incognito™ lingual brackets remain unaffected by intraoral aging.
Alhalaweh, Amjad; Kaialy, Waseem; Buckton, Graham; Gill, Hardyal; Nokhodchi, Ali; Velaga, Sitaram P
2013-03-01
The purpose of this work was to characterize theophylline (THF) cocrystals prepared by spray drying in terms of the physicochemical properties and inhalation performance when aerosolized from a dry powder inhaler. Cocrystals of theophylline with urea (THF-URE), saccharin (THF-SAC) and nicotinamide (THF-NIC) were prepared by spray drying. Milled THF and THF-SAC cocrystals were also used for comparison. The physical purity, particle size, particle morphology and surface energy of the materials were determined. The in vitro aerosol performance of the spray-dried cocrystals, drug-alone and a drug-carrier aerosol, was assessed. The spray-dried particles had different size distributions, morphologies and surface energies. The milled samples had higher surface energy than those prepared by spray drying. Good agreement was observed between multi-stage liquid impinger and next-generation impactor in terms of assessing spray-dried THF particles. The fine particle fractions of both formulations were similar for THF, but drug-alone formulations outperformed drug-carrier formulations for the THF cocrystals. The aerosolization performance of different THF cocrystals was within the following rank order as obtained from both drug-alone and drug-carrier formulations: THF-NIC>THF-URE>THF-SAC. It was proposed that micromeritic properties dominate over particle surface energy in terms of determining the aerosol performance of THF cocrystals. Spray drying could be a potential technique for preparing cocrystals with modified physical properties.
Tensile properties of ADI material in water and gaseous environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajnovic, Dragan, E-mail: draganr@uns.ac.rs; Balos, Sebastian; Sidjanin, Leposava
2015-03-15
Austempered ductile iron (ADI) is an advanced type of heat treated ductile iron, having comparable mechanical properties as forged steels. However, it was found that in contact with water the mechanical properties of austempered ductile irons decrease, especially their ductility. Despite considerable scientific attention, the cause of this phenomenon remains unclear. Some authors suggested that hydrogen or small atom chemisorption causes the weakening of the surface atomic bonds. To get additional reliable data of that phenomenon, in this paper, two different types of austempered ductile irons were tensile tested in various environments, such as: argon, helium, hydrogen gas and water.more » It was found that only the hydrogen gas and water gave a statistically significant decrease in mechanical properties, i.e. cause embrittlement. Furthermore, the fracture surface analysis revealed that the morphology of the embrittled zone near the specimen surface shares similarities to the fatigue micro-containing striation-like lines, which indicates that the morphology of the brittle zone may be caused by cyclic local-chemisorption, micro-embrittlement and local-fracture. - Highlights: • In contact with water and other liquids the ADI suddenly exhibits embrittlement. • The embrittlement is more pronounced in water than in the gaseous hydrogen. • The hydrogen chemisorption into ADI surface causes the formation of a brittle zone. • The ADI austempered at lower temperatures (300 °C) is more resistant to embrittlement.« less
Pandiyaraj, K N; Kumar, A Arun; Ramkumar, M C; Sachdev, A; Gopinath, P; Cools, Pieter; De Geyter, N; Morent, R; Deshmukh, R R; Hegde, P; Han, C; Nadagouda, M N
2016-05-01
The superior bulk properties (corrosion resistance, high strength to weight ratio, relatively low cost and easy processing) of hydrocarbon based polymers such as polypropylene (PP) have contributed significantly to the development of new biomedical applications such as artificial organs and cell scaffolds. However, low cell affinity is one of the main draw backs for PP due to its poor surface properties. In tissue engineering, physico-chemical surface properties such as hydrophilicity, polar functional groups, surface charge and morphology play a crucial role to enrich the cell proliferation and adhesion. In this present investigation TiOx based biocompatible coatings were developed on the surface of PP films via DC excited glow discharge plasma, using TiCl4/Ar+O2 gas mixture as a precursor. Various TiOx-based coatings are deposited on the surface of PP films as a function of discharge power. The changes in hydrophilicity of the TiOx/PP film surfaces were studied using contact angle analysis and surface energy calculations by Fowke's approximation. X-ray photo-electron spectroscopy (XPS) was used to investigate the surface chemical composition of TiOx/PP films. The surface morphology of the obtained TiOx/PP films was investigated by scanning electron and transmission electron microscopy (SEM &TEM). Moreover, the surface topography of the material was analyzed by atomic force microscopy (AFM). The cytocompatibility of the TiOx/PP films was investigated via in vitro analysis (cell viability, adhesion and cytotoxicity) using NIH3T3 (mouse embryonic fibroblast) cells. Furthermore the antibacterial activities of TiOx/PP films were also evaluated against two distinct bacterial models namely Gram positive Staphylococcus aureus (S.aureus) and Gram negative Escherichia coli DH5α. (E.coli) bacteria. XPS results clearly indicate the successful incorporation of TiOx and oxygen containing polar functional groups on the surface of plasma treated PP films. Moreover the surface of modified PP films exhibited nano structured morphology, as confirmed by SEM, TEM and AFM. The physico-chemical changes have improved the hydrophilicity of the PP films. The in-vitro analysis clearly confirms that the TiOx coated PP films performs as good as the standard tissue culture plates and also are unlikely to impact the bacterial cell viability. Copyright © 2016 Elsevier B.V. All rights reserved.
Development of Biomimetic and Functionally Responsive Surfaces
NASA Astrophysics Data System (ADS)
Anastasiadis, Spiros H.
2010-03-01
Controlling the surface morphology of solids and manufacturing of functional surfaces with special responsive properties has been the subject of intense research. We report a methodology for creating multifunctionally responsive surfaces by irradiating silicon wafers with femtosecond laser pulses and subsequently coating them with different types of functional conformal coatings. Such surfaces exhibit controlled dual-scale roughness at the micro- and the nano-scale, which mimics the hierarchical morphology of water repellent natural surfaces. When a simple alkylsilane coating is utilized, highly water repellent surfaces are produced that quantitatively compare to those of the Lotus leaf. When a polymer brush is ``grafted from" these surfaces based on a pH-sensitive polymer, the surfaces can alter their behavior from super-hydrophilic (after immersion in a low pH buffer) to super-hydrophobic and water-repellent (following immersion to a high pH buffer). We quantify the water repellency of such responsive systems by drop elasticity measurements whereas we demonstrate that the water repellent state of such surface requires appropriate hydrophobicity of the functionalizing polymer. When a photo-responsive azobenzene-type polymer is deposited, a dynamic optical control of the wetting properties is obtained and the surface can be switched from super-hydrophilic (following UV irradiation) to hydrophobic (following green irradiation). In all the above cases we show that the principal effect of roughness is to cause amplification of the response to the different external stimuli.
Yeung, W. K.; Sukhorukova, I. V.; Shtansky, D. V.; Levashov, E. A.; Zhitnyak, I. Y.; Gloushankova, N. A.; Kiryukhantsev-Korneev, P. V.; Petrzhik, M. I.; Matthews, A.
2016-01-01
The enhancement of the biological properties of Ti by surface doping with hydroxyapatite (HA) is of great significance, especially for orthodontic applications. This study addressed the effects of HA particle size in the electrolyte suspension on the characteristics and biological properties of thin titania-based coatings produced on Ti–6Al–4V alloy by plasma electrolytic oxidation (PEO). Detailed morphological investigation of the coatings formed by a single-stage PEO process with two-step control of the electrical parameters was performed using the Minkowski functionals approach. The surface chemistry was studied by glow discharge optical emission spectroscopy and Fourier transform infrared spectroscopy, whereas mechanical properties were evaluated using scratch tests. The biological assessment included in vitro evaluation of the coating bioactivity in simulated body fluid (SBF) as well as studies of spreading, proliferation and osteoblastic differentiation of MC3T3-E1 cells. The results demonstrated that both HA micro- and nanoparticles were successfully incorporated in the coatings but had different effects on their surface morphology and elemental distributions. The micro-particles formed an irregular surface morphology featuring interpenetrated networks of fine pores and coating material, whereas the nanoparticles penetrated deeper into the coating matrix which retained major morphological features of the porous TiO2 coating. All coatings suffered cohesive failure in scratch tests, but no adhesive failure was observed; moreover doping with HA increased the coating scratch resistance. In vitro tests in SBF revealed enhanced bioactivity of both HA-doped PEO coatings; furthermore, the cell proliferation/morphometric tests showed their good biocompatibility. Fluorescence microscopy revealed a well-organised actin cytoskeleton and focal adhesions in MC3T3-E1 cells cultivated on these substrates. The cell alkaline phosphatase activity in the presence of ascorbic acid and β-glycerophosphate was significantly increased, especially in HA nanoparticle-doped coatings. PMID:27019704
Shklyaev, A A; Latyshev, A V
2016-12-01
We study the surface morphology and chemical composition of SiGe layers after their formation under high-temperature annealing at 800-1100 °C of 30-150 nm Ge layers deposited on Si(100) at 400-500 °C. It is found that the annealing leads to the appearance of the SiGe layers of two types, i.e., porous and continuous. The continuous layers have a smoothened surface morphology and a high concentration of threading dislocations. The porous and continuous layers can coexist. Their formation conditions and the ratio between their areas on the surface depend on the thickness of deposited Ge layers, as well as on the temperature and the annealing time. The data obtained suggest that the porous SiGe layers are formed due to melting of the strained Ge layers and their solidification in the conditions of SiGe dewetting on Si. The porous and dislocation-rich SiGe layers may have properties interesting for applications.
NASA Astrophysics Data System (ADS)
Ghogare, Trupti T.; Kartha, Moses J.; Kendre, Subhash D.; Pathan, Habib M.
2018-04-01
Monte-Carlo Ballistic Deposition simulations have done on substrates with different initial roughness. The grown films were observed to be porous. The initial growths of the films with seed like initiations are observed for substrate with high initial roughness. In order to confirm this effect TiO2 films were deposited on different substrates using chemical bath deposition. The surface morphological and optical properties were measured using scanning electron microscopy and a UV-Vis spectrophotometer. Flower like porous structure are obtained on glass substrate and continuous porous morphology is formed on ITO substrate. The morphology of the surfaces was successfully reconstructed and the surface porosity was calculated after digitalising images and reconstructed the surfaces. The TiO2 film formed on ITO is observed to be 10% more porous than on the film formed on glass substrate. Diffusion Limited Aggregation simulations with multiple seeds confirms that the observed flower like structure formed are due to the screening effects of the diffusing ion by already deposited particles.
Growth and modelling of spherical crystalline morphologies of molecular materials
NASA Astrophysics Data System (ADS)
Shalev, O.; Biswas, S.; Yang, Y.; Eddir, T.; Lu, W.; Clarke, R.; Shtein, M.
2014-10-01
Crystalline, yet smooth, sphere-like morphologies of small molecular compounds are desirable in a wide range of applications but are very challenging to obtain using common growth techniques, where either amorphous films or faceted crystallites are the norm. Here we show solvent-free, guard flow-assisted organic vapour jet printing of non-faceted, crystalline microspheroids of archetypal small molecular materials used in organic electronic applications. We demonstrate how process parameters control the size distribution of the spheroids and propose an analytical model and a phase diagram predicting the surface morphology evolution of different molecules based on processing conditions, coupled with the thermophysical and mechanical properties of the molecules. This experimental approach opens a path for exciting applications of small molecular organic compounds in optical coatings, textured surfaces with controlled wettability, pharmaceutical and food substance printing and others, where thick organic films and particles with high surface area are needed.
Surface Characterization of Mechanochemically Modified Exfoliated Halloysite Nanoscrolls.
Zsirka, Balázs; Táborosi, Attila; Szabó, Péter; Szilágyi, Róbert K; Horváth, Erzsébet; Juzsakova, Tatjána; Fertig, Dávid; Kristóf, János
2017-04-11
Surface modifications fundamentally influence the morphology of kaolinite nanostructures as a function of crystallinity and the presence of contaminants. Besides morphology, the catalytic properties of 1:1-type exfoliated aluminosilicates are also influenced by the presence of defect sites that can be generated in a controlled manner by mechanochemical activation. In this work, we investigated exfoliated halloysite nanoparticles with a quasi-homogeneous, scroll-type secondary structure toward developing structural/functional relationships for composition, atomic structure, and morphology. The surface properties of thin-walled nanoscrolls were studied as a function of mechanochemical activation expressed by the duration of dry-grinding. The surface characterizations were carried out using N 2 , NH 3 , and CO 2 adsorption measurements. The effects of grinding on the nanohalloysite structure were followed using thermoanalytical thermogravimetric/derivative thermogravimetric (TG/DTG) and infrared spectroscopic [Fourier transform infrared/attenuated total reflection (FTIR/ATR)] techniques. Grinding results in partial dehydroxylation with similar changes as those observed for heat treatment above 300 °C. Mechanochemical activation shows a decrease in the dehydroxylation mass loss and the DTG peak temperature, a decrease in the specific surface area and the number of mesopores, an increase in the surface acidity, blue shift of surface hydroxide bands, and a decrease in the intensity of FTIR/ATR bands as a function of the grinding time. The experimental observations were used to guide atomic-scale structural and energetic simulations using realistic molecular cluster models for a nanohalloysite particle. A full potential energy surface description was developed for the mechanochemical activation and/or heating toward nanometahalloysite formation that aids the interpretation of experimental results. The calculated differences upon dehydroxylation show a remarkable agreement with the mass loss values from DTG measurements.
Systematic study of inorganic functionalization of ZnO nanorods by Sol-Gel method
NASA Astrophysics Data System (ADS)
Gamarra, J. K.; Solano, C.; Piñeres, I.; Gómez, H.; Mass, J.; Montenegro, D. N.
2017-01-01
A systematic study of the inorganic surface functionalization of ZnO nanostructures by sol-gel method is shown. We have emphasized on the evolution of morphology properties of samples as a function of functionalization parameters. In addition, the effects on thermal stability and some optical properties of samples are discussed.
Morphology of gold and copper ion-plated coatings
NASA Technical Reports Server (NTRS)
Spalvins, T.
1978-01-01
Copper and gold films (0.2 to 2 microns thick) were ion plated onto polished 304-stainless-steel, glass, mica surfaces. These coatings were examined by SEM for defects in their morphological growth. Three types of defects were distinguished: nodular growth, abnormal or runaway growth, and spits. The cause for each type of defect was investigated. Nodular growth is due to inherent substrate microdefects, abnormal or runaway growth is due to external surface inclusions, and spits are due to nonuniform evaporation (ejection of droplets). All these defects induce stresses and produce porosity in the coatings and thus weaken their mechanical properties. During surface rubbing, large nodules are pulled out, leaving vacancies in the coatings.
Different structural morphologies of the two surfaces in some Co-based amorphous ribbons
NASA Astrophysics Data System (ADS)
Bordin, G.; Buttino, G.
1992-12-01
In nearly zero magnetostriction Co-based Metglas amorphous ribbons, the anomalous Hall effect is used to investigate the behaviour of the surfaces (dull or shiny). The electronic transport properties of a double-layer film, where one of the two layers examined is ferromagnetic and amorphous, and the other is a non-magnetic film, are interpreted on the basis of the mean free path method of Bergmann and Fuchs-Sondheimer theory. The results obtained confirm the different structural morphology of the amorphous surfaces (dull or shiny) already observed by means of bending effects on the initial permeability that depends on the way of winding the ribbons in toroidal samples of the same amorphous materials.
Influence of Microstructure on the Electrical Properties of Heteroepitaxial TiN Films
NASA Astrophysics Data System (ADS)
Xiang, Wenfeng; Liu, Yuan; Zhang, Jiaqi
2018-05-01
Heteroepitaxial TiN films were deposited on Si substrates by pulse laser deposition at different substrate temperature. The microstructure and surface morphology of the films were investigated by X-ray diffraction (θ-2θ scan, ω-scan, and ϕ-scan) and atomic force microscopy. The electrical properties of the prepared TiN films were studied using a physical property measurement system. The experimental results showed that the crystallinity and surface morphology of the TiN films were improved gradually with increasing substrate temperature below 700 °C. Specially, single crystal TiN films were prepared when substrate temperature is above 700 °C; However, the quality of TiN films gradually worsened when the substrate temperature was increased further. The electrical properties of the films were directly correlated to their crystalline quality. At the optimal substrate temperature of 700 °C, the TiN films exhibited the lowest resistivity and highest mobility of 25.7 μΩ cm and 36.1 cm2/V s, respectively. In addition, the mechanism concerning the influence of substrate temperature on the microstructure of TiN films is discussed in detail.
Fabrication of TEOS/PDMS/F127 hybrid coating materials for conservation of historic stone sculptures
NASA Astrophysics Data System (ADS)
Liu, Yurong; Liu, Jia
2016-08-01
The present work was aimed to develop a new kind of stone conservation materials (TEOS/PDMS/F127 hybrid coating) by a facile sol-gel method for the protection of decayed sandstones of Chongqing Dazu stone sculptures in China. The hydrophobic property, surface morphology, water vapor permeability, ultraviolet aging resistance and mechanical properties were measured to evaluate the effectiveness of TEOS/PDMS/F127 hybrid coating as a stone conservation material. The results showed that the addition of hydroxyl-terminated polydimethylsiloxane (PDMS-OH) contributed to improve the hydrophobic properties and incorporation of PEO-PPO-PEO (F127) surfactant resulted in the formation of superficial protrusions with micro- and nanoscopic structures and overall alteration of surface morphology and roughness, thus preventing the coating materials from cracking. After treatment with TEOS/PDMS/F127 hybrid coating materials, the ultraviolet aging resistance and mechanical properties of stone were also improved without the obvious effects on the breathability and color of the stone, indicating promising applications of TEOS/PDMS/F127 hybrid coating materials for conservation of historic stone sculptures.
Structural and electronic properties of low-index stoichiometric Cu2ZnSnS4 surfaces
NASA Astrophysics Data System (ADS)
Jia, Zhan-Ju; Wang, Yu-An; Zhao, Zong-Yan; Liu, Qing-Ju
2018-05-01
Over the past few years, quaternary Cu2ZnSnS4 (CZTS) has attracted a great deal of attention as the most promising photovoltaic absorber layer, due to its abundance and non-toxic properties. However, the significant surface structures and properties for photo-catalytic absorption layers have not yet been studied in detail for CZTS. Hence, the surface structure and electronic properties of low-index stoichiometric CZTS surfaces are calculated based on density functional theory. The relaxation is much large for the (001), (100), (101) and (112) surfaces. Moreover, more surface states appear at the bottom of conduction band and the top of valence band. The conduction band is mainly composed of S-3p and Sn-5p orbits. The valence band top is mainly composed of S-3p and Cu-3d orbits. The band gap values of five surfaces do not vary greatly. The dangling bond density for the (112) surfaces is minimal, resulting in minimum surface energy. Finally, the equilibrium morphology of CZTS is constructed by the Wulff rule. It is found that the {101} surface is the dominant surface (72.6%). These results will help us to better understand the surface properties of absorption layer that is related to CZTS surface and provide theoretical support for future experimental studies.
Shaping electrocatalysis through tailored nanomaterials
Kang, Yijin; Yang, Peidong; Markovic, Nenad M.; ...
2016-09-21
Electrocatalysis is a subclass of heterogeneous catalysis that is aimed towards increase of the electrochemical reaction rates that are taking place at the surface of electrodes. Real-world electrocatalysts are usually based on precious metals in the form of nanoparticles due to their high surface-to-volume ratio, which enables better utilization of employed materials. Ability to tailor nanostructure of an electrocatalyst is critical in order to tune their electrocatalytic properties. Over the last decade, that has mainly been achieved through implementation of fundamental studies performed on well-defined extended surfaces with distinct single crystalline and polycrystalline structures. Based on these studies, it hasmore » been demonstrated that performance of an electrocatalyst could be significantly changed through the control of size, composition, morphology and architecture of employed nanomaterials. Here, this review outlines the following steps in the process of rational development of an efficient electrocatalyst: 1) electrochemical properties of well-defined surfaces, 2) synthesis and characterization of different classes of electrocatalysts, and 3) correlation between physical properties (size, shape, composition and morphology) and electrochemical behavior (adsorption, electrocatalytic activity and durability) of electrocatalyst. In addition, this is a brief summary of the novel research platforms in the development of functional nano materials for energy conversion and storage applications such as fuel cells electrolyzers and batteries.« less
NASA Astrophysics Data System (ADS)
Mabrouk, Asma; Lorrain, N.; Haji, M. L.; Oueslati, Meherzi
2015-01-01
In this paper, we analyze the photoluminescence spectra (PL) of porous silicon (PS) layer which is elaborated by electrochemical etching and passivated by Fe3+ ions (PSF) via current density, electro-deposition and temperature measurements. We observe unusual surface morphology of PSF surface and anomalous emission behavior. The PSF surface shows regular distribution of cracks, leaving isolated regions or ;platelets; of nearly uniform thickness. These cracks become more pronounced for high current densities. The temperature dependence of the PL peak energy (EPL) presents anomalous behaviors, i.e., the PL peak energy shows a successive red/blue/redshift (S-shaped behavior) with increasing temperature that we attribute to the existence of strong potential fluctuations induced by the electrochemical etching of PS layers. A competition process between localized and delocalized excitons is used to discuss these PL properties. In this case, the potential confinement plays a key role on the enhancement of PL intensity in PSF. To explain the temperature dependence of the PL intensity, we have proposed a recombination model based on the tunneling and dissociation of excitons.
Fe doped TiO2 nanofibers on the surface of graphene sheets for photovoltaics applications
NASA Astrophysics Data System (ADS)
Farhangi, Nasrin; Medina-Gonzalez, Yaocihuatl; Charpentier, Paul A.
2011-08-01
Highly ordered, visible light driven TiO2 nanowire arrays doped with Fe photocatalysts were grown on the surface of functionalized graphene sheets (FGSs) using a sol-gel method with titanium isopropoxide (TIP) monomer, acetic acid (HAc) as the polycondensation agent and iron chloride in the green solvent, supercritical carbon dioxide (scCO2). The morphology of the synthesized materials was studied by SEM and TEM, which showed uniform formation of Fe doped TiO2 nanofibers on the surface of graphene sheets, which acted as a template for nanowire growth through surface -COOH functionalities. Increasing Fe content in the nanowires did not change the morphology significantly. Optical properties of the synthesized composites were examined by UV spectroscopy which showed a significant reduction in band gap with increasing Fe content, i.e. 2.25 eV at 0.6% Fe. The enhancement of the optical properties of synthesized materials was confirmed by photocurrent measurement. The optimum sample containing 0.6% Fe doped TiO2 on the graphene sheets increased the power conversation efficiency by 6-fold in comparison to TiO2 alone.
NASA Astrophysics Data System (ADS)
Larimer, J. E.; Yanites, B.
2017-12-01
River morphology reflects the interaction between the driving forces of erosion and the resisting properties of bedrock that limit erosion. Changes in energy dissipation at the riverbed are indicated by differences in channel geometry. To erode at the same rate, stronger rocks require more energy, and thus, an adjustment in river slope or width is necessary to accomplish this work. Therefore, morphological changes should reflect differences in the rock strength properties most relevant to the dominant erosion process. We investigate this hypothesis by comparing river morphology and rock-strength properties of reaches subject to different processes. Streams in Prescott National Forest, AZ expose bedrock through a variety of lithologies, which provides a natural testing ground. Measurements include channel geometry, surface P-wave velocity, fracture spacing, and bedload grain size distribution of 150 individual reaches, as well as 260 tensile and compressive-strength tests and P-wave velocity of cores up to depths of 20 cm. Based on observations, we infer that fluvial erosion processes in this region generally fall into three domains: (1) grain by grain abrasion, (2) progressive failure by damage accumulation due to bedload impacts or `macro-abrasion', and (3) `plucking' of jointed rocks. We focus analyses on the accumulation of damage from sub-critical stresses that weakens the surface of the bedrock, potentially leading to macroscopic fractures, fatigue, and rock failure. This plays a dual role facilitating the ease with which abrasion removes material and increasing the rate of production of pluck-able particles. We estimate the `damage potential' of saltating bedload using water discharge time-series, sediment transport models and grain size distribution. To determine the resistance to damage accumulation among different rocks, we measure the evolution of damage in core samples under uniaxial loading using strain energy and inherent flaw theory. Preliminary results suggest that tensile strength is a good predictor of channel morphology in abrasion dominated reaches, morphology is better predicted through a damage perspective in macro-abrasion dominated reaches, and reduction in P-wave velocity near the surface correlates with damage susceptibility.
Electrochromic properties of polyaniline-coated fiber webs for tissue engineering applications.
Beregoi, Mihaela; Busuioc, Cristina; Evanghelidis, Alexandru; Matei, Elena; Iordache, Florin; Radu, Mihaela; Dinischiotu, Anca; Enculescu, Ionut
2016-08-30
By combining the electrospinning method advantages (high surface-to-volume ratio, controlled morphology, varied composition and flexibility for the resulting structures) with the electrical activity of polyaniline, a new core-shell-type material with potential applications in the field of artificial muscles was synthesized. Thus, a poly(methylmethacrylate) solution was electrospun in optimized conditions to obtain randomly oriented polymer fiber webs. Further, a gold layer was sputtered on their surface in order to make them conductive and improve the mechanical properties. The metalized fiber webs were then covered with a PANI layer by in situ electrochemical polymerization starting from aniline and using sulphuric acid as oxidizing agent. By applying a small voltage on PANI-coated fiber webs in the presence of an electrolyte, the oxidation state of PANI changes, which is followed by the device color modification. The morphological, electrical and biological properties of the resulting multilayered material were also investigated. Copyright © 2015 Elsevier B.V. All rights reserved.
Chlanda, Adrian; Kijeńska, Ewa; Rinoldi, Chiara; Tarnowski, Michał; Wierzchoń, Tadeusz; Swieszkowski, Wojciech
2018-04-01
Electrospun nanofibrous scaffolds are willingly used in tissue engineering applications due to their tunable mechanical, chemical and physical properties. Additionally, their complex openworked architecture is similar to the native extracellular matrix of living tissue. After implantation such scaffolds should provide sufficient mechanical support for cells. Moreover, it is of crucial importance to ensure sterility and hydrophilicity of the scaffold. For this purpose, a low temperature surface plasma treatment can be applied. In this paper, we report physico-mechanical evaluation of stiffness and adhesive properties of electrospun mats after their exposition to low temperature plasma. Complex morphological and mechanical studies performed with an atomic force microscope were followed by scanning electron microscope imaging and a wettability assessment. The results suggest that plasma treatment can be a useful method for the modification of the surface of polymeric scaffolds in a desirable manner. Plasma treatment improves wettability of the polymeric mats without changing their morphology. Copyright © 2018 Elsevier Ltd. All rights reserved.
Study of lattice strain and optical properties of nanocrystalline SnO2
NASA Astrophysics Data System (ADS)
Ahmad, Naseem; Khan, Shakeel; Bhargava, Richa; Ansari, Mohd Mohsin Nizam
2018-05-01
Nanocrystalline SnO2 has been synthesized by co-precipitation method by using two solvents (water and ethylene glycol). The structure and surface morphology were investigated using XRD and scanning electron microscope (SEM). The optical properties were studied using diffused reflectance spectroscopy (DRS). From the XRD analysis, the prepared materials are found to be pure crystalline with tetragonal rutile structure. The lattice strain and crystallite size, were calculated using Williamson-Hall method, are found to be 0.00413 & 16.3 nm in water assisted SnO2 and 0.00495 & 35.6 nm for EG assisted SnO2. Study of surface morphology of the samples was carried out using SEM. It has been seen that the solvents which are used in synthesis can also alter the optical properties of the materials. The optical band gap of the water based SnO2 and EG based SnO2 are found to be 3.92eV and 3.86eV respectively.
NASA Astrophysics Data System (ADS)
Zhang, Y. J.; Liu, Z. T.; Zang, D. Y.; Che, X. S.; Feng, L. P.; Bai, X. X.
2013-12-01
We have successfully prepared Cu-Al-O thin films on silicon (100) and quartz substrates by radio frequency (RF) magnetron sputtering method. The as-deposited Cu-Al-O film is amorphous in nature and post-annealing treatment in argon ambience results in crystallization of the films and the formation of CuAlO2. The annealing temperature plays an important role in the surface morphology, phase constitution and preferred growth orientation of CuAlO2 phase, thus affecting the properties of the film. The film annealed at 900 °C is mainly composed of CuAlO2 phase and shows smooth surface morphology with well-defined grain boundaries, thus exhibiting the optimum optical-electrical properties with electrical resistivity being 79.7 Ω·cm at room temperature and optical transmittance being 80% in visible region. The direct optical band gaps of the films are found in the range of 3.3-3.8 eV depending on the annealing temperature.
Synthesis and characterization of ZnO nanostructures using palm olein as biotemplate
2013-01-01
Background A green approach to synthesize nanomaterials using biotemplates has been subjected to intense research due to several advantages. Palm olein as a biotemplate offers the benefits of eco-friendliness, low-cost and scale-up for large scale production. Therefore, the effect of palm olein on morphology and surface properties of ZnO nanostructures were investigated. Results The results indicate that palm olein as a biotemplate can be used to modify the shape and size of ZnO particles synthesized by hydrothermal method. Different morphology including flake-, flower- and three dimensional star-like structures were obtained. FTIR study indicated the reaction between carboxyl group of palm olein and zinc species had taken place. Specific surface area enhanced while no considerable change were observed in optical properties. Conclusion Phase-pure ZnO particles were successfully synthesized using palm olein as soft biotemplating agent by hydrothermal method. The physico-chemical properties of the resulting ZnO particles can be tuned using the ratio of palm olein to Zn cation. PMID:23601826
Simulation and Implementation of a Morphology-Tuned Gold Nano-Islands Integrated Plasmonic Sensor
Ozhikandathil, Jayan; Packirisamy, Muthukumaran
2014-01-01
This work presents simulation, analysis and implementation of morphology tuning of gold nano-island structures deposited by a novel convective assembly technique. The gold nano-islands were simulated using 3D Finite-Difference Time-Domain (FDTD) techniques to investigate the effect of morphological changes and adsorption of protein layers on the localized surface plasmon resonance (LSPR) properties. Gold nano-island structures were deposited on glass substrates by a novel and low-cost convective assembly process. The structure formed by an uncontrolled deposition method resulted in a nano-cluster morphology, which was annealed at various temperatures to tune the optical absorbance properties by transforming the nano-clusters to a nano-island morphology by modifying the structural shape and interparticle separation distances. The dependence of the size and the interparticle separation distance of the nano-islands on the LSPR properties were analyzed in the simulation. The effect of adsorption of protein layer on the nano-island structures was simulated and a relation between the thickness and the refractive index of the protein layer on the LSPR peak was presented. Further, the sensitivity of the gold nano-island integrated sensor against refractive index was computed and compared with the experimental results. PMID:24932868
Multiscale Morphology of Nanoporous Copper Made from Intermetallic Phases
Egle, Tobias; Barroo, Cédric; Janvelyan, Nare; ...
2017-07-11
Many application-relevant properties of nanoporous metals critically depend on their multiscale architecture. For example, the intrinsically high step-edge density of curved surfaces at the nanoscale provides highly reactive sites for catalysis, whereas the macroscale pore and grain morphology determines the macroscopic properties, such as mass transport, electrical conductivity, or mechanical properties. Here, in this work, we systematically study the effects of alloy composition and dealloying conditions on the multiscale morphology of nanoporous copper (np-Cu) made from various commercial Zn–Cu precursor alloys. Using a combination of X-ray diffraction, electron backscatter diffraction, and focused ion beam cross-sectional analysis, our results reveal thatmore » the macroscopic grain structure of the starting alloy surprisingly survives the dealloying process, despite a change in crystal structure from body-centered cubic (Zn–Cu starting alloy) to face-centered cubic (Cu). The nanoscale structure can be controlled by the acid used for dealloying with HCl leading to a larger and more faceted ligament morphology compared to that of H 3PO 4. Finally, anhydrous ethanol dehydrogenation was used as a probe reaction to test the effect of the nanoscale ligament morphology on the apparent activation energy of the reaction.« less
Multiscale Morphology of Nanoporous Copper Made from Intermetallic Phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egle, Tobias; Barroo, Cédric; Janvelyan, Nare
Many application-relevant properties of nanoporous metals critically depend on their multiscale architecture. For example, the intrinsically high step-edge density of curved surfaces at the nanoscale provides highly reactive sites for catalysis, whereas the macroscale pore and grain morphology determines the macroscopic properties, such as mass transport, electrical conductivity, or mechanical properties. Here, in this work, we systematically study the effects of alloy composition and dealloying conditions on the multiscale morphology of nanoporous copper (np-Cu) made from various commercial Zn–Cu precursor alloys. Using a combination of X-ray diffraction, electron backscatter diffraction, and focused ion beam cross-sectional analysis, our results reveal thatmore » the macroscopic grain structure of the starting alloy surprisingly survives the dealloying process, despite a change in crystal structure from body-centered cubic (Zn–Cu starting alloy) to face-centered cubic (Cu). The nanoscale structure can be controlled by the acid used for dealloying with HCl leading to a larger and more faceted ligament morphology compared to that of H 3PO 4. Finally, anhydrous ethanol dehydrogenation was used as a probe reaction to test the effect of the nanoscale ligament morphology on the apparent activation energy of the reaction.« less
NASA Astrophysics Data System (ADS)
Zheng, Guikai; Lu, Ming; Rui, Xiaoping
2017-03-01
Waterborne polyurethanes (WPU) modified with polyether functional polydimethylsiloxane (PDMS) were synthesized by pre-polymerization method using isophorone diisocyanate (IPDI) and 1,4-butanediol (BDO) as hard segments and polybutylene adipate glycol (PBA) and polyether functional PDMS as soft segments. The effect of polyether functional PDMS on phase separation, thermal properties, surface properties including surface composition, morphology and wettability were investigated by FTIR, contact angle measurements, ARXPS, SEM-EDS, AFM, TG and DSC. The results showed that the compatibility between urethane hard segment and PDMS modified with polyether was good, and there was no distinct phase separation in both bulk and surface of WPU films. The degradation temperature and low temperature flexibility increased with increasing amounts of polyether functional PDMS. The enrichment of polyether functional PDMS with low surface energy on the surface imparted excellent hydrophobicity to WPU films.
Effect of solvents on the optical and morphological properties of MEH-PPV: PC70BM nanocomposites
NASA Astrophysics Data System (ADS)
Mhamdi, Asya; Ltaief, Adnen; Bouazizi, Abdelaziz
2017-10-01
Focused on phase separation and morphologies of polymer poly [2-methoxy-5-(2'-ethyl) hexoxy-1,4-phenylenevinylene] (MEH-PPV) and [6,6]-phenylC71-butyric acid methyl ester (PC70BM) nanocomposite, we studied the effect of organic solvent on the optical and morphological properties of these blends. The MEH-PPV: PC70BM films was prepared using three different solvent; Tetrahydrofuran (THF), Chlorobenzene (CB) and Toluene. On the other hand, the effect of 1-8 octanedithiol additives is also studied with the same different solvents. These blend films are characterized by photoluminescence spectroscopy, UV-Vis absorption spectroscopy and atomic force microscopy (AFM). The photoluminescence results show that the THF solvent provide the better charge transfer. In a morphological view point, the phase segregation was clearly appearing by the addition of the additive on the surface of the blend films.
2012-01-01
Summary The combination of electrodeposition and polymeric templates created by heavy-ion irradiation followed by chemical track etching provides a large variety of poly- and single-crystalline nanowires of controlled size, geometry, composition, and surface morphology. Recent results obtained by our group on the fabrication, characterization and size-dependent properties of nanowires synthesized by this technique are reviewed, including investigations on electrical resistivity, surface plasmon resonances, and thermal instability. PMID:23365800
Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors.
Bain, Lauren E; Collazo, Ramon; Hsu, Shu-Han; Latham, Nicole Pfiester; Manfra, Michael J; Ivanisevic, Albena
2014-06-01
The chemical stability and electrical properties of gallium nitride make it a promising material for the development of biocompatible electronics, a range of devices including biosensors as well as interfaces for probing and controlling cellular growth and signaling. To improve the interface formed between the probe material and the cell or biosystem, surface topography and chemistry can be applied to modify the ways in which the device interacts with its environment. PC12 cells are cultured on as-grown planar, unidirectionally polished, etched nanoporous and nanowire GaN surfaces with and without a physisorbed peptide sequence that promotes cell adhesion. While cells demonstrate preferential adhesion to roughened surfaces over as-grown flat surfaces, the topography of that roughness also influences the morphology of cellular adhesion and differentiation in neurotypic cells. Addition of the peptide sequence generally contributes further to cellular adhesion and promotes development of stereotypic long, thin neurite outgrowths over alternate morphologies. The dependence of cell behavior on both the topographic morphology and surface chemistry is thus demonstrated, providing further evidence for the importance of surface modification for modulating bio-inorganic interfaces. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Fei
Semiconductor substrates are widely used in many applications. Multiple practical uses involving these materials require the ability to tune their physical and chemical properties to adjust those to a specific application. In recent years, surface and interface reactions have affected dramatically device fabrication and material design. Novel surface functionalization techniques with diverse chemical approaches make the desired physical, thermal, electrical, and mechanical properties attainable. Meanwhile, the modified surface can serve as one of the most important key steps for further assembly process in order to make novel devices and materials. In the following chapters, novel chemical approaches to the functionalization of silicon and zinc oxide substrates will be reviewed and discussed. The specific functionalities including amines, azides, and alkynes on surfaces of different materials will be applied to address subsequent attachment of large molecules and assembly processes. This research is aimed to develop new strategies for manipulating the surface properties of semiconductor materials in a controlled way. The findings of these investigations will be relevant for future applications in molecular and nanoelectronics, sensing, and solar energy conversion. The ultimate goals of the projects are: 1) Preparation of an oxygen-and carbon-free silicon surface based exclusively on Si-N linkages for further modification protocols.. This project involves designing the surface reaction of hydrazine on chlorine-terminated silicon surface, introduction of additional functional group through dehydrohalogenation condensation reaction and direct covalent attachment of C60. 2) Demonstrating alternative method to anchor carbon nanotubes to solid substrates directly through the carbon cage.. This project targets surface modification of silicon and gold substrates with amine-terminated organic monolayers and the covalent attachment of nonfunctionalized and carboxylic acid-functionalized carbon nanotubes. 3) Designing a universal method for the modular functionalization of zinc oxide surface for the chemical protection of material morphology.. This project involves surface modification of zinc oxide nanopowder under vacuum condition with propiolic acid, followed by "click" reaction. A combination of spectroscopy and microscopy techniques was utilized to study the surface functionalization and assembly processes. Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and time of fight secondary ion mass spectroscopy (ToF-SIMS) were employed to elucidate the chemical structure of the modified surface. Atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were combined to obtain the surface morphological information. Density functional theory (DFT) calculations were applied to confirm the experimental results and to suggest plausible reaction mechanisms. Other complementary techniques for these projects also include nuclear magnetic resonance (NMR) spectroscopy to identify the chemical species on the surface and charge-carrier lifetime measurements to evaluate the electronic property of C60-modified silicon surface.
Study of heat-moisture treatment of potato starch granules by chemical surface gelatinization.
Bartz, Josiane; da Rosa Zavareze, Elessandra; Dias, Alvaro Renato Guerra
2017-08-01
Native potato starch was subjected to heat-moisture treatment (HMT) at 12%, 15%, 18%, 21%, and 24% of moisture content at 110 °C for 1 h, and the effects on morphology, structure, and thermal and physicochemical properties were investigated. To reveal the internal structure, 30% and 50% of the granular surface were removed by chemical surface gelatinization in concentrated LiCl solution. At moisture contents of 12% and 15%, HTM reduced the gelatinization temperatures and relative crystallinity of the starches, while at moisture contents of 21% and 24 % both increased. The alterations on morphology, X-ray pattern, physicochemical properties, and increase of amylose content were more intense with the increase of moisture content of HMT. The removal of granular layers showed that the changes promoted by HMT occur throughout the whole granule and were pronounced at the core or peripheral region, depending of the moisture content applied during HMT. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Nishio, Mitsuhiro; Saito, Katsuhiko; Urata, Kensuke; Okamoto, Yasuhiro; Tanaka, Daichi; Araki, Yasuhiro; Abiru, Masakatsu; Mori, Eiichiro; Tanaka, Tooru; Guo, Qixin
2015-03-01
The growth of undoped and phosphorus (P)-doped Zn1-xMgxSeyTe1-y layers on (100) ZnTe substrates by metalorganic vapor phase epitaxy was carried out. The compositions of Mg and Se, surface morphology, roughness and Raman property were characterized as a function of substrate temperature. Not only the compositions of Mg and Se but also the crystal quality of undoped Zn1-xMgxSeyTe1-y layer strongly depended upon the substrate temperature. Furthermore, the growth of Zn1-xMgxSeyTe1-y layer nearly-lattice-matched to ZnTe substrate was achieved independent of the transport rate of trisdimethylaminophosphorus. Undoped Zn1-xMgxSeyTe1-y layer nearly-lattice-matched to ZnTe led to improvement of surface roughness. On the other hand, P doping brought about deterioration of crystalline quality.
Brinkert, Katharina; Richter, Matthias H.; Akay, Ömer; ...
2018-01-01
We demonstrate that shadow nanosphere lithography (SNL) is an auspicious tool to systematically create three-dimensional electrocatalyst nanostructures on the semiconductor photoelectrode through controlling their morphology and optical properties.
Preparation and evaluation of biocomposites as wound dressing material.
Ramnath, V; Sekar, S; Sankar, S; Sankaranarayanan, C; Sastry, T P
2012-12-01
Collagen was isolated from the chrome containing leather waste (CCLW) which is a major solid waste in leather industry. Composite films were made using sago starch (SG), soya protein (SY), and collagen (C) and were cross linked with glutaraldehyde (G).The films prepared were characterized for their physico chemical properties like tensile strength, infrared spectra, thermogravimetric analysis, surface morphology, and water absorption studies. Better mechanical properties and surface morphology were observed for SG-SY-G-C films compared to other films prepared using collagen. The composite films prepared were used as wound dressing material on the experimental wounds of rats and healing pattern was evaluated using planimetric, biochemical, and histopathological studies. These studies have revealed better wound healing capacity of SG-SY-G-C film and utilization of CCLW in the preparation of value added product like wound dressing material.
NASA Astrophysics Data System (ADS)
Karatutlu, Ali; Istengir, Sumeyra; Cosgun, Sedat; Seker, Isa; Unal, Bayram
2017-11-01
In this research paper, light emitting porous silicon (Lep-Si) samples were fabricated by a surfactant-mediated chemical stain etching solution in order to form homogenous luminescent nanostructures at room temperature. As an industrially important solvent, decalin (decahydronaphtalene) was used as a surfactant in the HF/HNO3 solutions in order to control the etching process. Morphological, surface and optical properties of the Lep-Si samples were examined using atomic force microscopy, X-ray photoelectron spectroscopy, photoluminescence (PL) spectroscopy, and laser scanning confocal microscopy (LSCM) techniques. These characterization techniques were correlated with the various etching times including depth dependent luminescence profiles for the first time. We report the optimum conditions for production of the most efficient Lep-Si using decalin (decahydronaphtalene) and possible structural origins of light emission using the depth dependent luminescence measurements.
NASA Technical Reports Server (NTRS)
Avni, R.; Spalvins, T.
1984-01-01
A detailed treatment is presented of the dialog known as plasma surface interactions (PSI) with respect to the coating process and its tribological behavior. Adsorption, morphological changes, defect formation, sputtering, chemical etching, and secondary electron emission are all discussed as promoting and enhancing the surface chemistry, thus influencing the tribological properties of the deposited flux. Phenomenological correlations of rate of deposition, flux composition, microhardness, and wear with the plasma layer variables give an insight to the formation of chemical bonding between the deposited flux and the substrate surface.
Study of modulation property to incident laser by surface micro-defects on KH2PO4 crystal
NASA Astrophysics Data System (ADS)
Chen, Ming-Jun; Cheng, Jian; Li, Ming-Quan; Xiao, Yong
2012-06-01
KH2PO4 crystal is a crucial optical component of inertial confinement fusion. Modulation of an incident laser by surface micro-defects will induce the growth of surface damage, which largely restricts the enhancement of the laser induced damage threshold. The modulation of an incident laser by using different kinds of surface defects are simulated by employing the three-dimensional finite-difference time-domain method. The results indicate that after the modulation of surface defects, the light intensity distribution inside the crystal is badly distorted, with the light intensity enhanced symmetrically. The relations between modulation properties and defect geometries (e.g., width, morphology, and depth of defects) are quite different for different defects. The modulation action is most obvious when the width of surface defects reaches 1.064 μm. For defects with smooth morphology, such as spherical pits, the degree of modulation is the smallest and the light intensity distribution seems relatively uniform. The degree of modulation increases rapidly with the increase of the depth of surface defects and becomes stable when the depth reaches a critical value. The critical depth is 1.064 μm for cuboid pits and radial cracks, while for ellipsoidal pits the value depends on both the width and the length of the defects.
Effect of inductively coupled plasma surface treatment on silica gel and mesoporous MCM-41 particles
NASA Astrophysics Data System (ADS)
J, A. JUAREZ-MORENO; U, CHACON-ARGAEZ; J, BARRON-ZAMBRANO; C, CARRERA-FIGUEIRAS; P, QUINTANA-OWEN; W, TALAVERA-PECH; Y, PEREZ-PADILLA; A, AVILA-ORTEGA
2018-06-01
Silica gel and MCM-41 synthesized mesoporous materials were treated with either oxygen (O2), hexamethyldisiloxane (HMDSO) and organic vapors like ethanol (EtOH), and acrylonitrile (AN) inductive plasma. The radiofrequency power for the modification was fixed to 120 W and 30 min, assuring a high degree of organic ionization energy in the plasma. The surface properties were studied by infrared spectroscopy (FTIR), scanning electron microscopy, x-ray photoelectron spectroscopy and dynamic light scattering technique was used for characterizing size distributions. When the silica and MCM-41 particles were modified by AN and HMDSO plasma gases, the surface morphology of the particles was changed, presenting another color, size or shape. In contrast, the treatments of oxygen and EtOH did not affect the surface morphology of both particles, but increased the oxygen content at the surface bigger than the AN and HMDSO plasma treatments. In this study, we investigated the influence of different plasma treatments on changes in morphology and the chemical composition of the modified particles which render them a possible new adsorbent for utilization in sorptive extraction techniques for polar compounds.
Bio-inspired scale-like surface textures and their tribological properties.
Greiner, Christian; Schäfer, Michael
2015-06-30
Friction, wear and the associated energy dissipation are major challenges in all systems containing moving parts. Examples range from nanoelectromechanical systems over hip prosthesis to off-shore wind turbines. Bionic approaches have proven to be very successful in many engineering problems, while investigating the potential of a bio-inspired approach in creating morphological surface textures is a relatively new field of research. Here, we developed laser-created textures inspired by the scales found on the skin of snakes and certain lizards. We show that this bio-inspired surface morphology reduced dry sliding friction forces by more than 40%. In lubricated contacts the same morphology increased friction by a factor of three. Two different kinds of morphologies, one with completely overlapping scales and one with the scales arranged in individual rows, were chosen. In lubricated as well as unlubricated contacts, the surface texture with the scales in rows showed lower friction forces than the completely overlapping ones. We anticipate that these results could have significant impact in all dry sliding contacts, ranging from nanoelectromechanical and micro-positioning systems up to large-scale tribological contacts which cannot be lubricated, e.g. because they are employed in a vacuum environment.
Berahmani, Sanaz; Janssen, Dennis; van Kessel, Sal; Wolfson, David; de Waal Malefijt, Maarten; Buma, Pieter; Verdonschot, Nico
2015-02-01
Initial fixation of press-fit implants depends on interference fit, surface morphology, and bone material properties. To understand the biomechanical effect of each factor and their interactions, the pull-out strength of seven types of CoCrMo tapered implants, with four different interference fits, three different surface morphologies (low, medium and high roughness), and at two time points (0 and 30 min) were tested in trabecular bone with varying density. The effect of interference fit on pull-out strength depended on the surface morphology and time. In contrast with our expectations, samples with a higher roughness had a lower pull-out strength. We found a similar magnitude of bone damage for the different surface morphologies, but the type of damage was different, with bone compaction versus bone abrasion for low and high frictional surfaces, respectively. This explains a reduced sensitivity of fixation strength to bone mineral density in the latter group. In addition, a reduction in fixation strength after a waiting period only occurred for the low frictional specimens. Our study demonstrates that it is essential to evaluate the interplay between different factors and emphasizes the importance of testing in natural bone in order to optimize the initial stability of press-fit implants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ghanem, Nawras; Kiesel, Bärbel; Kallies, René; Harms, Hauke; Chatzinotas, Antonis; Wick, Lukas Y
2016-12-06
Although several studies examined the transport of viruses in terrestrial systems only few studies exist on the use of marine phages (i.e., nonterrestrial viruses infecting marine host bacteria) as sensitively detectable microbial tracers for subsurface colloid transport and water flow. Here, we systematically quantified and compared for the first time the effects of size, morphology and physicochemical surface properties of six marine phages and two coliphages (MS2, T4) on transport in sand-filled percolated columns. Phage-sand interactions were described by colloidal filtration theory and the extended Derjaguin-Landau-Verwey-Overbeek approach (XDLVO), respectively. The phages belonged to different families and comprised four phages never used in transport studies (i.e., PSA-HM1, PSA-HP1, PSA-HS2, and H3/49). Phage transport was influenced by size, morphology and hydrophobicity in an approximate order of size > hydrophobicity ≥ morphology. Two phages PSA-HP1, PSA-HS2 (Podoviridae and Siphoviridae) exhibited similar mass recovery as commonly used coliphage MS2 and were 7-fold better transported than known marine phage vB_PSPS-H40/1. Differing properties of the marine phages may be used to trace transport of indigenous viruses, natural colloids or anthropogenic nanomaterials and, hence, contribute to better risk analysis. Our results underpin the potential role of marine phages as microbial tracer for transport of colloidal particles and water flow.
Krull, Rainer; Wucherpfennig, Thomas; Esfandabadi, Manely Eslahpazir; Walisko, Robert; Melzer, Guido; Hempel, Dietmar C; Kampen, Ingo; Kwade, Arno; Wittmann, Christoph
2013-01-20
Filamentous fungi have been widely applied in industrial biotechnology for many decades. In submerged culture processes, they typically exhibit a complex morphological life cycle that is related to production performance--a link that is of high interest for process optimization. The fungal forms can vary from dense spherical pellets to viscous mycelia. The resulting morphology has been shown to be influenced strongly by process parameters, including power input through stirring and aeration, mass transfer characteristics, pH value, osmolality and the presence of solid micro-particles. The surface properties of fungal spores and hyphae also play a role. Due to their high industrial relevance, the past years have seen a substantial development of tools and techniques to characterize the growth of fungi and obtain quantitative estimates on their morphological properties. Based on the novel insights available from such studies, more recent studies have been aimed at the precise control of morphology, i.e., morphology engineering, to produce superior bio-processes with filamentous fungi. Copyright © 2012 Elsevier B.V. All rights reserved.
Mechanical and chemical effects of ion-texturing biomedical polymers
NASA Technical Reports Server (NTRS)
Weigand, A. J.; Cenkus, M. A.
1979-01-01
To determine whether sputter etching may provide substantial polymer surface texturing with insignificant changes in chemical and mechanical properties, an 8 cm beam diameter, electron bombardment, argon ion source was used to sputter etch (ion-texture process) nine biomedical polymers. The materials included silicone rubber, 32% carbon impregnated polyolefin, polyoxymethylene, polytetrafluoroethylene, ultrahigh molecular weight (UHMW) polyethylene, UHMW polyethylene with carbon fibers (10%), and several polyurethanes (bioelectric, segmented, and cross linked). Ion textured microtensile specimens of each material except UHMW polyethylene and UHMW polyethylene with 10% carbon fibers were used to determine the effect of ion texturing on tensile properties. Scanning electron microscopy was used to determine surface morphology changes, and electron spectroscopy for chemical analysis was used to analyze the near surface chemical changes that result from ion texturing. Ion energies of 500 eV with beam current densities ranging from 0.08 to 0.19 mA/sq cm were used to ion texture the various materials. Standard microtensile specimens of seven polymers were exposed to a saline environment for 24 hours prior to and during the tensile testing. The surface chemical changes resulting from sputter etching are minimal in spite of the often significant changes in the surface morphology.
Etnier, Shelley A; Villani, Philip J
2007-07-01
Lily pads (Nymphaea odorata) exhibit heterophylly where a single plant may have leaves that are submerged, floating, or above (aerial) the surface of the water. Lily pads are placed in a unique situation because each leaf form is exposed to a distinctly different set of mechanical demands. While surface petioles may be loaded in tension under conditions of wind or waves, aerial petioles are loaded in compression because they must support the weight of the lamina. Using standard techniques, we compared the mechanical and morphological properties of both surface and aerial leaf petioles. Structural stiffness (EI) and the second moment of area (I) were higher in aerial petioles, although we detected no differences in other mechanical values (elastic modulus [E], extension ratio, and breaking strength). Morphologically, aerial petioles had a thicker rind, with increased collenchyma tissue and sclereid cell frequency. Aerial petioles also had a larger cross-sectional area and were more elliptical. Thus, subtle changes in the distribution of materials, rather than differences in their makeup, differentiate petiole forms. We suggest that the growth of aerial petioles may be an adaptive response to shading, allowing aerial leaves to rise above a crowded water surface.
NASA Astrophysics Data System (ADS)
Yang, Lijun; Ding, Ye; Cheng, Bai; He, Jiangtao; Wang, Genwang; Wang, Yang
2018-03-01
This work puts forward femtosecond laser modification of micro-textured surface on bearing steel GCr15 in order to reduce frictional wear and enhance load capacity during its application. Multi pulses femtosecond laser ablation experiments are established for the confirmation of laser spot radius as well as single pulse threshold fluence and pulse incubation coefficient of bulk material. Analytical models are set up in combination with hydrodynamics lubrication theory. Corresponding simulations are carried out on to explore influences of surface and cross sectional morphology of textures on hydrodynamics lubrication effect based on Navier-Stokes (N-S) equation. Technological experiments focus on the impacts of femtosecond laser machining variables, like scanning times, scanning velocity, pulse frequency and scanning gap on morphology of grooves as well as realization of optimized textures proposed by simulations, mechanisms of which are analyzed from multiple perspectives. Results of unidirectional rotating friction tests suggest that spherical texture with depth-to-width ratio of 0.2 can significantly improve tribological properties at low loading and velocity condition comparing with un-textured and other textured surfaces, which also verifies the accuracy of simulations and feasibility of femtosecond laser in modification of micro-textured surface.
Plasma assisted surface treatments of biomaterials.
Minati, L; Migliaresi, C; Lunelli, L; Viero, G; Dalla Serra, M; Speranza, G
2017-10-01
The biocompatibility of an implant depends upon the material it is composed of, in addition to the prosthetic device's morphology, mechanical and surface properties. Properties as porosity and pore size should allow, when required, cells penetration and proliferation. Stiffness and strength, that depend on the bulk characteristics of the material, should match the mechanical requirements of the prosthetic applications. Surface properties should allow integration in the surrounding tissues by activating proper communication pathways with the surrounding cells. Bulk and surface properties are not interconnected, and for instance a bone prosthesis could possess the necessary stiffness and strength for the application omitting out prerequisite surface properties essential for the osteointegration. In this case, surface treatment is mandatory and can be accomplished using various techniques such as applying coatings to the prosthesis, ion beams, chemical grafting or modification, low temperature plasma, or a combination of the aforementioned. Low temperature plasma-based techniques have gained increasing consensus for the surface modification of biomaterials for being effective and competitive compared to other ways to introduce surface functionalities. In this paper we review plasma processing techniques and describe potentialities and applications of plasma to tailor the interface of biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.
Au-nanoparticles grafted on plasma treated PE
NASA Astrophysics Data System (ADS)
Švorčík, V.; Chaloupka, A.; Řezanka, P.; Slepička, P.; Kolská, Z.; Kasálková, N.; Hubáček, T.; Siegel, J.
2010-03-01
Polyethylene (PE) surface was treated with Ar plasma. Activated surface was grafted from methanol solution of 1,2-ethanedithiol. Then the sample was immersed into freshly prepared colloid solution of Au-nanoparticles. Finally Au layer was sputtered on the samples. Properties of the modified PE were studied using various methods: AFM, EPR, RBS and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain (AFM) and creation of free radicals by EPR. After grafting with dithiol, the concentration of free radicals declines. The presence of Au and S in the surface layer after the coating with Au-nanoparticles was proved by RBS. Plasma treatment changes PE surface morphology and increases surface roughness, too. Another significant change in surface morphology and roughness was observed after deposition of Au-nanoparticles. Nanoindentation measurements show that the grafting with Au-nanoparticles increases adhesion of subsequently sputtered Au layer.
Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2
NASA Astrophysics Data System (ADS)
Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas; Fadil, Ahmed; Syväjärvi, Mikael; Petersen, Paul Michael; Ou, Haiyan
2016-07-01
Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface for TiO2 deposition, a three-step cleaning procedure was introduced after RIE etching. The morphology of anatase TiO2 indicates that the nano-textured substrate has a much higher surface nucleated grain density than a flat substrate at the beginning of the deposition process. The corresponding reflectance increases with TiO2 thickness due to increased surface diffuse reflection. The passivation effect of ALD TiO2 thin film on the nano-textured fluorescent 6H-SiC sample was also investigated and a PL intensity improvement of 8.05% was obtained due to the surface passivation.
Deng, Guoliang; Feng, Guoying; Zhou, Shouhuan
2017-04-03
Substrate temperature is an important parameter for controlling the properties of femtosecond laser induced surface structures besides traditional ways. The morphology on silicon surface at different temperatures are studied experimentally. Compared to those formed at 300 K, smoother ripples, micro-grooves and nano/micro-holes are formed at 700 K. A two temperature model and FDTD method are used to discuss the temperature dependence of surface structures. The results show that the increased light absorption at elevated temperature leads to the reduction of surface roughness. The type-g feature in the FDTD-η map at 700 K, which corresponds to the energy deposition modulation parallel to the laser polarization with a periodicity bigger than the wavelength, is the origin of the formation of grooves. This work can benefit both surface structures based applications and the study of femtosecond laser-matter interactions.
Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals.
Feng, Xiong Han; Zhai, Li Mei; Tan, Wen Feng; Liu, Fan; He, Ji Zheng
2007-05-01
Several Mn oxide minerals commonly occurring in soils were synthesized by modified or optimized methods. The morphologies, structures, compositions and surface properties of the synthesized Mn oxide minerals were characterized. Adsorption and redox reactions of heavy metals on these minerals in relation to the mineral structures and surface properties were also investigated. The synthesized birnessite, todorokite, cryptomelane, and hausmannite were single-phased minerals and had the typical morphologies from analyses of XRD and TEM/ED. The PZCs of the synthesized birnessite, todorokite and cryptomelane were 1.75, 3.50 and 2.10, respectively. The magnitude order of their surface variable negative charge was: birnessite> or =cryptomelane>todorokite. The hausmannite had a much higher PZC than others with the least surface variable negative charge. Birnessite exhibited the largest adsorption capacity on heavy metals Pb(2+), Cu(2+), Co(2+), Cd(2+) and Zn(2+), while hausmannite the smallest one. Birnessite, cryptomelane and todorokite showed the greatest adsorption capacity on Pb(2+) among the tested heavy metals. Hydration tendency (pK(1)) of the heavy metals and the surface variable charge of the Mn minerals had significant impacts on the adsorption. The ability in Cr(III) oxidation and concomitant release of Mn(2+) varied greatly depending on the structure, composition, surface properties and crystallinity of the minerals. The maximum amounts of Cr(III) oxidized by the Mn oxide minerals in order were (mmol/kg): birnessite (1330.0)>cryptomelane (422.6)>todorokite (59.7)>hausmannite (36.6).
NASA Astrophysics Data System (ADS)
Jiang, Ruming; Liu, Meiying; Huang, Hongye; Huang, Long; Huang, Qiang; Wen, Yuanqing; Cao, Qian-yong; Tian, Jianwen; Zhang, Xiaoyong; Wei, Yen
2018-03-01
Hydroxyapatite (HAp), as an important biomaterial for the regeneration and reconstruction of bone tissue, has attracted more and more attention of researchers and scientists due to its unique structure and compositions. However, the preparation of fluorescent HAp with controllable morphology has achieved only limited success. In this work, we reported a novel strategy to construct the water dispersible fluorescent HAp nanorods via the combination of ligand exchange and metal-free atom transfer radical polymerization (ATRP). The Br-containing fluorescent HAp nanorods with controllable size and morphology were first prepared through hydrothermal treatment. A multifunctional organic molecule (named as PTH-Br) with aggregation-induced emission feature was immobilized on the surface of hydrophobic HAp nanorods through ligand exchange reaction. The PTH-Br could be used as the initiator and catalyst for surface-initiated metal-free ATRP using poly(ethylene glycol) methacrylate as monomer to obtain hydrophilic fluorescent HAp polymer nanoparticles. This strategy successfully endowed HAp nanorods excellent fluorescence properties and favorable water dispersibility but well preserved their regular morphology. Biological assays demonstrated that the HAp-PTH-poly(PEGMA) nanoparticles exhibited good biocompatibility and efficient cell uptake performance. Taken together, we have developed a rather facile strategy based on the surface ligand exchange reaction and metal-free photoATRP to fabricate fluorescent HAp with controllable size and morphology, high water dispersibility and biological properties. These HAp-PTH-poly(PEGMA) nanoparticles should be novel and promising candidates for biomedical applications.
SnO2 Nanostructures: Effect of Processing Parameters on Their Structural and Functional Properties
NASA Astrophysics Data System (ADS)
Dontsova, Tetiana A.; Nagirnyak, Svitlana V.; Zhorov, Vladyslav V.; Yasiievych, Yuriy V.
2017-05-01
Zero- and 1D (one-dimensional) tin (IV) oxide nanostructures have been synthesized by thermal evaporation method, and a comparison of their morphology, crystal structure, sorption properties, specific surface area, as well as electrical characteristics has been performed. Synthesized SnO2 nanomaterials were studied by X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), N2 sorption/desorption technique, IR spectroscopy and, in addition, their current-voltage characteristics have also been measured. The single crystalline structures were obtained both in case of 0D (zero-dimensional) SnO2 powders and in case of 0D nanofibers, as confirmed by electron diffraction of TEM. It was found that SnO2 synthesis parameters significantly affect materials' properties by contributing to the difference in morphology, texture formation, changes in IR spectra of 1D structure as compared to 0D powders, increases in the specific surface area of nanofibers, and the alteration of current-voltage characteristics 0D and 1D SnO2 nanostructures. It was established that gas sensors utilizing of 1D nanofibers significantly outperform those based on 0D powders by providing higher specific surface area and ohmic I-V characteristics.
Ciuffini, Andrea Francesco; Barella, Silvia; Peral Martínez, Luis Borja; Mapelli, Carlo; Fernández Pariente, Inés
2018-06-19
Shot peening is a surface process commonly used in the aeronautic and automotive industries to improve fatigue resistance. Shot peening is proven to be beneficial in the fatigue behavior of components, but rarely has its influence on wear and pitting corrosion resistance been evaluated. In this work, shot peening was performed on AISI F55-UNS S32760 super-duplex stainless steel samples previously submitted to various thermal treatments, to obtain different initial microstructures and properties. Samples have been characterized in terms of microstructure morphology, local chemical composition, microhardness of each constituent phase, and energy dissipation modes. The enhanced properties provided by shot peening has been evaluated through residual stress depth profiles and Full Width at Half Maximum (FWHM) using X-ray diffraction (XRD), surface hardness, surface roughness, and corrosion resistance through salt spray fog tests. The 1400 °C solution thermal treatment was identified as the optimum initial condition, which maximizes the advantages of the shot peening treatment, even pitting corrosion resistance. These results are related to the uniformity of austenite and ferrite in terms of microstructure morphology, micromechanical properties, and alloying elements distribution.
Controlling Growth Orientation of Phthalocyanine Films by Electrical Fields
NASA Technical Reports Server (NTRS)
Zhu, S.; Banks, C. E.; Frazier, D. O.; Ila, D.; Muntele, I.; Penn, B. G.; Sharma, A.; Rose, M. Franklin (Technical Monitor)
2001-01-01
Organic Phthalocyanine films have many applications ranging from data storage to various non-linear optical devices whose quality is affected by the growth orientation of Phthalocyanine films. Due to the structural and electrical properties of Phthalocyanine molecules, the film growth orientation depends strongly on the substrate surface states. In this presentation, an electrical field up to 4000 V/cm is introduced during film growth. The Phthalocyanine films are synthesized on quartz substrates using thermal evaporation. An intermediate layer is deposited on some substrates for introducing the electrical field. Scanning electron microscopy, x-ray diffraction, and Fourier transform infrared spectroscopy are used for measuring surface morphology, film structure, and optical properties, respectively. The comparison of Phthalocyanine films grown with and without the electrical field reveals different morphology, film density, and growth orientation, which eventually change optical properties of these films. These results suggest that the growth method in the electrical field can be used to synthesized Phthalocyanine films with a preferred crystal orientation as well as propose an interaction mechanism between the substrate surface and the depositing molecules. The details of growth conditions and of the growth model of how the Phthalocyanine molecules grow in the electrical field will be discussed.
Bae, Won C.; Ruangchaijatuporn, Thumanoon; Chang, Eric Y; Biswas, Reni; Du, Jiang; Statum, Sheronda
2016-01-01
Objective To evaluate pathology of the triangular fibrocartilage complex (TFCC) using high resolution morphologic magnetic resonance (MR) imaging, and compare with quantitative MR and biomechanical properties. Materials and Methods Five cadaveric wrists (22 to 70 yrs) were imaged at 3T using morphologic (proton density weighted spin echo, PD FS, and 3D spoiled gradient echo, 3D SPGR) and quantitative MR sequences to determine T2 and T1rho properties. In eight geographic regions, morphology of TFC disc and laminae were evaluated for pathology and quantitative MR values. Samples were disarticulated and biomechanical indentation testing was performed on the distal surface of the TFC disc. Results On morphologic PD SE images, TFC disc pathology included degeneration and tears, while that of the laminae included degeneration, degeneration with superimposed tear, mucinous transformation, and globular calcification. Punctate calcifications were highly visible on 3D SPGR images and found only in pathologic regions. Disc pathology occurred more frequently in proximal regions of the disc than distal regions. Quantitative MR values were lowest in normal samples, and generally higher in pathologic regions. Biomechanical testing demonstrated an inverse relationship, with indentation modulus being high in normal regions with low MR values. The laminae studied were mostly pathologic, and additional normal samples are needed to discern quantitative changes. Conclusion These results show technical feasibility of morphologic MR, quantitative MR, and biomechanical techniques to characterize pathology of the TFCC. Quantitative MRI may be a suitable surrogate marker of soft tissue mechanical properties, and a useful adjunct to conventional morphologic MR techniques. PMID:26691643
Belvedere, Claudio; Siegler, Sorin; Ensini, Andrea; Toy, Jason; Caravaggi, Paolo; Namani, Ramya; Giannini, Giulia; Durante, Stefano; Leardini, Alberto
2017-02-28
The mechanical characteristics of the ankle such as its kinematics and load transfer properties are influenced by the geometry of the articulating surfaces. A recent, image-based study found that these surfaces can be approximated by a saddle-shaped, skewed, truncated cone with its apex oriented laterally. The goal of this study was to establish a reliable experimental technique to study the relationship between the geometry of the articular surfaces of the ankle and its mobility and stability characteristics and to use this technique to determine if morphological approximations of the ankle surfaces based on recent discoveries, produce close to normal behavior. The study was performed on ten cadavers. For each specimen, a process based on medical imaging, modeling and 3D printing was used to produce two subject specific artificial implantable sets of the ankle surfaces. One set was a replica of the natural surfaces. The second approximated the ankle surfaces as an original saddle-shaped truncated cone with apex oriented laterally. Testing under cyclic loading conditions was then performed on each specimen following a previously established technique to determine its mobility and stability characteristics under three different conditions: natural surfaces; artificial surfaces replicating the natural surface morphology; and artificial approximation based on the saddle-shaped truncated cone concept. A repeated measure analysis of variance was then used to compare between the three conditions. The results show that (1): the artificial surfaces replicating natural morphology produce close to natural mobility and stability behavior thus establishing the reliability of the technique; and (2): the approximated surfaces based on saddle-shaped truncated cone concept produce mobility and stability behavior close to the ankle with natural surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wu, Hongchao; Rogalski, Mark; Kessler, Michael R
2013-10-09
The ability to tailor the coefficient of thermal expansion (CTE) of a polymer is essential for mitigating thermal residual stress and reducing microcracks caused by CTE mismatch of different components in electronic applications. This work studies the effect of morphology and thermal expansivity of zirconium tungstate nanoparticles on the rheological, thermo-mechanical, dynamic-mechanical, and dielectric properties of ZrW2O8/epoxy nanocomposites. Three types of ZrW2O8 nanoparticles were synthesized under different hydrothermal conditions and their distinct properties were characterized, including morphology, particle size, aspect ratio, surface area, and CTE. Nanoparticles with a smaller particle size and larger surface area led to a more significant reduction in gel-time and glass transition temperature of the epoxy nanocomposites, while a higher initial viscosity and significant shear thinning behavior was found in prepolymer suspensions containing ZrW2O8 with larger particle sizes and aspect ratios. The thermo- and dynamic-mechanical properties of epoxy-based nanocomposites improved with increasing loadings of the three types of ZrW2O8 nanoparticles. In addition, the introduced ZrW2O8 nanoparticles did not negatively affect the dielectric constant or the breakdown strength of the epoxy resin, suggesting potential applications of ZrW2O8/epoxy nanocomposites in the microelectronic insulation industry.
NASA Astrophysics Data System (ADS)
Zhu, Mingdong; Song, Falun; Li, Fei; Jin, Xiao; Wang, Xiaofeng; Wang, Langping
2017-09-01
The insulating property of the alumina ceramic in vacuum under high voltage is mainly limited by its surface properties. Plasma immersion ion implantation (PIII) is an effective method to modify the surface chemical and physical properties of the alumina ceramic. In order to improve the surface flashover voltage of the alumina ceramic in vacuum, titanium ions with an energy of about 20 keV were implanted into the surface of the alumina ceramic using the PIII method. The surface properties of the as-implanted samples, such as the chemical states of the titanium, morphology and surface resistivity, were characterized by X-ray photoelectron spectroscopy, scanning electron microscope and electrometer, respectively. The surface flashover voltages of the as-implanted alumina samples were measured by a vacuum surface flashover experimental system. The XPS spectra revealed that a compound of Ti, TiO2 and Al2O3 was formed in the inner surface of the alumina sample. The electrometer results showed that the surface resistivity of the implanted alumina decreased with increased implantation time. In addition, after the titanium ion implantation, the maximum hold-off voltage of alumina was increased to 38.4 kV, which was 21.5% higher than that of the unimplanted alumina ceramic.
NASA Astrophysics Data System (ADS)
Mubarak, A.; Akhter, Parvez; Hamzah, Esah; Mohd Toff, Mohd Radzi Hj.; Qazi, Ishtiaq A.
Titanium nitride (TiN) widely used as hard coating material, was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The study concentrated on cathodic arc physical vapor deposition (CAPVD), a technique used for the deposition of hard coatings for tooling applications, and which has many advantages. The main drawback of this technique, however, is the formation of macrodroplets (MDs) during deposition, resulting in films with rougher morphology. Various standard characterization techniques and equipment, such as electron microscopy, atomic force microscopy, hardness testing machine, scratch tester, and pin-on-disc machine, were used to analyze and quantify the following properties and parameters: surface morphology, thickness, hardness, adhesion, and coefficient of friction (COF) of the deposited coatings. Surface morphology revealed that the MDs produced during the etching stage, protruded through the TiN film, resulting in film with deteriorated surface features. Both coating thickness and indentation loads influenced the hardness of the deposited coatings. The coatings deposited on HSS exhibit better adhesion compared to those on D2 tool steel. Standard deviation indicates that the coating deposited with thickness around 6.7 μm showed the most stable trend of COF versus sliding distance.
Marine phages as excellent tracers for reactive colloidal transport in porous media
NASA Astrophysics Data System (ADS)
Ghanem, Nawras; Chatzinotas, Antonis; Harms, Hauke; Wick, Lukas Y.
2016-04-01
Question: Here we evaluate marine phages as specific markers of hydrological flow and reactive transport of colloidal particles in the Earth's critical zone (CZ). Marine phages and their bacterial hosts are naturally absent in the CZ, and can be detected with extremely high sensitivity. In the framework of the DFG Collaborative Research Center AquaDiva, we asked the following questions: (1) Are marine phages useful specific markers of hydrological flow and reactive transport in porous media? and (2) Which phage properties are relevant drivers for the transport of marine phages in porous media? Methods: Seven marine phages from different families (as well two commonly used terrestrial phages) were selected based on their morphology, size and physico-chemical surface properties (surface charge and hydrophobicity). Phage properties were assessed by electron microscopy, dynamic light scattering and water contact angle analysis (CA). Sand-filled laboratory percolation columns were used to study transport. The breakthrough curves of the phages were analyzed using the clean bed filtration theory and the XDLVO theory of colloid stability, respectively. Phages were quantified by a modified high- throughput plaque assay and a culture-independent particle counting method approach. Results: Our data show that most marine tested phages exhibited highly variable transport rates and deposition efficiency, yet generally high colloidal stability and viability. We find that size, morphology and hydrophobicity are key factors shaping the transport efficiency of phages. Differing deposition efficiencies of the phages were also supported by calculated XDLVO interaction energy profile. Conclusion: Marine phages have a high potential for the use as sensitive tracers in terrestrial habitats with their surface properties playing a crucial role for their transport. Marine phages however, exhibit differences in their deposition efficiency depending on their morphology, hydrophobicity and availability.
Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T C Mike
2015-12-04
This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young's modulus >1400 MPa) and low water swelling (λ < 15) even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO₂• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications.
Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T.C. Mike
2015-01-01
This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young’s modulus >1400 MPa) and low water swelling (λ < 15) even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO2• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications. PMID:26690232
NASA Astrophysics Data System (ADS)
Rajab, Fatema H.; Whitehead, David; Liu, Zhu; Li, Lin
2017-12-01
Laser surface texturing or micro/nano surface structuring in the air has been extensively studied. However, until now, there are very few studies on the characteristics of laser-textured surfaces in water, and there was no reported work on picosecond laser surface micro/nano-structuring in water. In this work, the surface properties of picosecond laser surface texturing in water and air were analysed and compared. 316L stainless steel substrates were textured using a picosecond laser. The surface morphology and the chemical composition were characterised using Philips XL30 FEG-SEM, EDX and confocal laser microscopy. The wettability of the textured surfaces was determined using a contact angle analyser FTA 188. Results showed that a variety of hierarchical micro/nano surface patterns could be controlled by a suitable adjustment of laser parameters. Not only surface morphology but also remarkable differences in wettability, optical reflectivity and surface oxygen content were observed for different types of surface textures produced by laser surface texture in water and air. The possible mechanisms of the changes in the behaviour of laser-textured surfaces are discussed.
NASA Astrophysics Data System (ADS)
Dutcher, Cari; Metcalf, Andrew
2015-03-01
Secondary organic aerosol particles are nearly ubiquitous in the atmosphere and yet there remain large uncertainties in their formation processes and ambient properties. These particles are complex microenvironments, which can contain multiple interfaces due to internal aqueous-organic phase partitioning and to the external liquid-vapor surface. Interfacial properties affect the ambient aerosol morphology, or internal structure of the particle, which in turn can affect the way a particle interacts with an environment of condensable clusters and organic vapors. To improve our ability to accurately predict ambient aerosol morphology, we must improve our knowledge of aerosol interfaces and their interactions with the ambient environment. Unfortunately, many techniques employed to measure interfacial properties do so in bulk solutions or in the presence of a ternary (e.g. solid) phase. In this talk, a novel method using biphasic microscale flows will be introduced for generating, trapping, and perturbing complex interfaces at atmospherically relevant conditions. These microfluidic experiments utilize high-speed imaging to monitor interfacial phenomena at the microscale and are performed with phase contrast and fluorescence microscopy on a temperature-controlled inverted microscope stage. From these experiments, interfacial thermodynamic properties such as surface or interfacial tension, rheological properties such as interfacial moduli, and kinetic properties such as mass transfer coefficients can be measured or inferred.
NASA Astrophysics Data System (ADS)
Munagala, Venkata Naga Vamsi; Akinyi, Valary; Vo, Phuong; Chromik, Richard R.
2018-06-01
The powder microstructure and morphology has significant influence on the cold sprayability of Ti6Al4V coatings. Here, we compare the cold sprayability and properties of coatings obtained from Ti6Al4V powders of spherical morphology (SM) manufactured using plasma gas atomization and irregular morphology (IM) manufactured using the Armstrong process. Coatings deposited using IM powders had negligible porosity and better properties compared to coatings deposited using SM powders due to higher particle impact velocities, porous surface morphology and more deformable microstructure. To evaluate the cohesive strength, multi-scale indentation was performed and hardness loss parameter was calculated. Coatings deposited using SM powders exhibited poor cohesive strength compared to coatings deposited using IM powders. Images of the residual indents showed de-bonding and sliding of adjacent splats in the coatings deposited using SM powders irrespective of the load. Coatings deposited using IM powders showed no evidence of de-bonding at low loads. At high loads, splat de-bonding was observed resulting in hardness loss despite negligible porosity. Thus, while the powders from Armstrong process lead to a significant improvement in sprayability and coating properties, further optimization of powder and cold spray process will be required as well as consideration of post-annealing treatments to obtain acceptable cohesive strength.
USDA-ARS?s Scientific Manuscript database
Bast fibers grow in the bark layer of many plants, and have been used for textiles and cordage for over 6000 years. Bast fibers of kenaf (Hibiscus cannabinus L.) are retted by three methods and a comparative assessment of available reactive groups on the fiber surface and mechanical properties are ...
Roller compaction: Effect of morphology and amorphous content of lactose powder on product quality.
Omar, Chalak S; Dhenge, Ranjit M; Osborne, James D; Althaus, Tim O; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D
2015-12-30
The effect of morphology and amorphous content, of three types of lactose, on the properties of ribbon produced using roller compaction was investigated. The three types of lactose powders were; anhydrous SuperTab21AN, α-lactose monohydrate 200 M, and spray dried lactose SuperTab11SD. The morphology of the primary particles was identified using scanning electron microscopy (SEM) and the powder amorphous content was quantified using NIR technique. SEM images showed that 21AN and SD are agglomerated type of lactose whereas the 200 M is a non-agglomerated type. During ribbon production, an online thermal imaging technique was used to monitor the surface temperature of the ribbon. It was found that the morphology and the amorphous content of lactose powders have significant effects on the roller compaction behaviour and on ribbon properties. The agglomerated types of lactose produced ribbon with higher surface temperature and tensile strength, larger fragment size, lower porosity and lesser fines percentages than the non-agglomerated type of lactose. The lactose powder with the highest amorphous content showed to result in a better binding ability between the primary particles. This type of lactose produced ribbons with the highest temperature and tensile strength, and the lowest porosity and amount of fines in the product. It also produced ribbon with more smooth surfaces in comparison to the other two types of lactose. It was noticed that there is a relationship between the surface temperature of the ribbon during production and the tensile strength of the ribbon; the higher the temperature of the ribbon during production the higher the tensile strength of the ribbon. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, Shou-Xin; Chen, Xi; Zhang, Xian-Quan
2008-05-01
Commercial activated carbon was treated by HNO3 oxidation and then subsequently heat treated under N2 atmosphere. Effect of surface chemical properties and pore structure on the adsorption performance of nitrobenzene was investigated. N2/77K adsorption isotherm and scanning electron microscopy (SEM) were used to characterize the pore structure and surface morphology of carbon. Boehm titration, Fourier transform infrared spectroscopy (FTIR), the point of zero charge (pH(PZC)) measurement and elemental analysis were used to characterize the surface properties. The results reveal that HNO3 oxidation can modify the surface chemical properties, increase the number of acidic surface oxygen-containing groups and has trivial effect on the pore structure of carbon. Further heat treatment can cause the decomposition of surface oxygen-containing groups, and increase the external surface area and the number of mesopores. Adsorption capacity of nitrobenzene on AC(NO-T), AC(raw) and AC(NO) was 1011.31, 483.09 and 321.54 mg x g(-1), respectively. Larger external surface area and the number of meso-pores, together with the less acid surface oxygen-containing groups were the main reason for the larger adsorption capacity AC(NO-T).
NASA Astrophysics Data System (ADS)
Surya, I.; Hayeemasae, N.
2018-03-01
The effects of alkanolamide (ALK) addition on crosslink density, mechanical and morphological properties of unfilled polychloroprene rubber (CR) compounds were investigated. The ALK was prepared from Refined Bleached Deodorized Palm Stearin (RBDPS) and diethanolamine and -together with magnesium and zinc oxides-incorporated into the unfilled CR compounds. The ALK loadings were 0.5, 1.0, 1.5 and 2.0 phr. It was found that ALK enhanced crosslink density, tensile modulus, tensile strength and hardness especially up to a 1.5 phr loading. Scanning Electron Microscopy (SEM) proved that the 1.5 phr of ALK exhibited the greatest matrix tearing line and surface roughness, due to the highest degree of crosslink density and mechanical properties.
Haussener, Sophia; Steinfeld, Aldo
2012-01-01
High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium. PMID:28817039
NASA Astrophysics Data System (ADS)
Saito, M.; Iwabuchi, H.; Yang, P.; Tang, G.; King, M. D.; Sekiguchi, M.
2016-12-01
Cirrus clouds cover about 25% of the globe. Knowledge about the optical and microphysical properties of these clouds [particularly, optical thickness (COT) and effective radius (CER)] is essential to radiative forcing assessment. Previous studies of those properties using satellite remote sensing techniques based on observations by passive and active sensors gave inconsistent retrievals. In particular, COTs from the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) using the unconstrained method are affected by variable particle morphology, especially the fraction of horizontally oriented plate particles (HPLT), because the method assumes the lidar ratio to be constant, which should have different values for different ice particle shapes. More realistic ice particle morphology improves estimates of the optical and microphysical properties. In this study, we develop an optimal estimation-based algorithm to infer cirrus COT and CER in addition to morphological parameters (e.g., Fraction of HPLT) using the observations made by CALIOP and the Infrared Imaging Radiometer (IIR) on the CALIPSO platform. The assumed ice particle model is a mixture of a few habits with variable HPLT. Ice particle single-scattering properties are computed using state-of-the-art light-scattering computational capabilities. Rigorous estimation of uncertainties associated with surface properties, atmospheric gases and cloud heterogeneity is performed. The results based on the present method show that COTs are quite consistent with the MODIS and CALIOP counterparts, and CERs essentially agree with the IIR operational retrievals. The lidar ratio is calculated from the bulk optical properties based on the inferred parameters. The presentation will focus on latitudinal variations of particle morphology and the lidar ratio on a global scale.
NASA Astrophysics Data System (ADS)
Xu, Chang; Liu, Huicong; Liang, Weitao; Zhu, Liqun; Li, Weiping; Chen, Haining
2018-03-01
Gradient wetting surfaces are getting increasing attention due to their wide application in multiple fields such as droplet movement and biosorption. However, the fabrication processes of full gradient wetting surfaces are still complex and costly. In present work, a facile and low-cost chemical immersion method was used to create a full gradient wetting surface. By controlling the displacement time in Ni2+ solution, the prepared surfaces perform hydrophilic to superhydrophilic. After being modified by stearic acid, the gradient hydrophilic surfaces convert into hydrophobic. The surface morphology, composition, and wetting behaviors of the as-prepared surfaces were systematically studied and discussed. The gradient wetting property could be attributed to the change in microroughness and surface energy. In addition, these surfaces also exhibited excellent self-cleaning and wax prevention properties. Furthermore, high stability and corrosion resistance were also found for these surfaces, which further highlight their promising practical applications in many fields.
High throughput secondary electron imaging of organic residues on a graphene surface
NASA Astrophysics Data System (ADS)
Zhou, Yangbo; O'Connell, Robert; Maguire, Pierce; Zhang, Hongzhou
2014-11-01
Surface organic residues inhibit the extraordinary electronic properties of graphene, hindering the development of graphene electronics. However, fundamental understanding of the residue morphology is still absent due to a lack of high-throughput and high-resolution surface characterization methods. Here, we demonstrate that secondary electron (SE) imaging in the scanning electron microscope (SEM) and helium ion microscope (HIM) can provide sub-nanometer information of a graphene surface and reveal the morphology of surface contaminants. Nanoscale polymethyl methacrylate (PMMA) residues are visible in the SE imaging, but their contrast, i.e. the apparent lateral dimension, varies with the imaging conditions. We have demonstrated a quantitative approach to readily obtain the physical size of the surface features regardless of the contrast variation. The fidelity of SE imaging is ultimately determined by the probe size of the primary beam. HIM is thus evaluated to be a superior SE imaging technique in terms of surface sensitivity and image fidelity. A highly efficient method to reveal the residues on a graphene surface has therefore been established.
NASA Astrophysics Data System (ADS)
Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H.
2014-05-01
The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface -COOH groups (determined with UV-vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulutsuz, A. G., E-mail: asligunaya@gmail.com; Demircioglu, P., E-mail: pinar.demircioglu@adu.edu.tr; Bogrekci, I., E-mail: ismail.bogrekci@adu.edu.tr
Foreign substances and organic tissue interaction placed into the jaw in order to eliminate tooth loss involves a highly complex process. Many biological reactions take place as well as the biomechanical forces that influence this formation. Osseointegration denotes to the direct structural and functional association between the living bone and the load-bearing artificial implant's surface. Taking into consideration of the requirements in the manufacturing processes of the implants, surface characterizations with high precise measurement techniques are investigated and thus long-term success of dental implant is emphasized on the importance of these processes in this study. In this research, the detailedmore » surface characterization was performed to identify the dependence of the manufacturing techniques on the surface properties by using the image processing methods and using the scanning electron microscope (SEM) for morphological properties in 3D and Taylor Hobson stylus profilometer for roughness properties in 2D. Three implant surfaces fabricated by different manufacturing techniques were inspected, and a machined surface was included into the study as a reference specimen. The results indicated that different surface treatments were strongly influenced surface morphology. Thus 2D and 3D precise inspection techniques were highlighted on the importance for surface characterization. Different image analyses techniques such as Dark-light technique were used to verify the surface measurement results. The computational phase was performed using image processing toolbox in Matlab with precise evaluation of the roughness for the implant surfaces. The relationship between the number of black and white pixels and surface roughness is presented. FFT image processing and analyses results explicitly imply that the technique is useful in the determination of surface roughness. The results showed that the number of black pixels in the image increases with increase in surface roughness.« less
NASA Astrophysics Data System (ADS)
Kuzminova, Anna; Vandrovcová, Marta; Shelemin, Artem; Kylián, Ondřej; Choukourov, Andrei; Hanuš, Jan; Bačáková, Lucie; Slavínská, Danka; Biederman, Hynek
2015-12-01
In this contribution an effect of dielectric barrier discharge (DBD) sustained in air at atmospheric pressure on surface properties of poly(ethylene terephthalate) (PET) foils is studied. It is found that exposure of PET to DBD plasma leads to rapid changes of surface chemical composition, wettability, surface morphology as well as mechanical properties of PET surface. In addition, based on biological tests that were performed using two cell types (Saos-2 human osteoblast-like cells and HUVEC human umbilical vein endothelial cells), it may be concluded that DBD plasma treatment positively influences cell growth on PET. This effect was found to be connected predominantly with increased surface energy and oxygen content of the surface of treated PET foils.
Zhu, Xiaodong; Liu, Yu; Li, Zhao; Wang, Weicong
2018-03-05
In this paper, thermochromic microcapsules were synthesized in situ polymerization with urea formaldehyde as shell material and thermochromic compounds as core material. The effects of emulsifying agent and conditions on surface morphology and particle size of microcapsules were studied. It was found that the size and surface morphology of microcapsules were strongly depending on stirring rate and the ratio of core to shell. The stable and small size spherical microcapsules with excellent transparency can be obtained at an emulsifying agent to core to shell ratio as 1:5:7.5 under mechanical stirring at 12 krpm for 15 min. Finally, the thermochromic property was discussed by loading microcapsules in wood and wood coatings. Results indicate that microcapsules can realize the thermochromic property while incorporated with wood and coatings, and could have high potential in smart material fabrication.
Deposition and characterization of ZnSe nanocrystalline thin films
NASA Astrophysics Data System (ADS)
Temel, Sinan; Gökmen, F. Özge; Yaman, Elif; Nebi, Murat
2018-02-01
ZnSe nanocrystalline thin films were deposited at different deposition times by using the Chemical Bath Deposition (CBD) technique. Effects of deposition time on structural, morphological and optical properties of the obtained thin films were characterized. X-ray diffraction (XRD) analysis was used to study the structural properties of ZnSe nanocrystalline thin films. It was found that ZnSe thin films have a cubic structure with a preferentially orientation of (111). The calculated average grain size value was about 28-30 nm. The surface morphology of these films was studied by the Field Emission Scanning Electron Microscope (FESEM). The surfaces of the thin films were occurred from small stacks and nano-sized particles. The band gap values of the ZnSe nanocrystalline thin films were determined by UV-Visible absorption spectrum and the band gap values were found to be between 2.65-2.86 eV.
Binder-induced surface structure evolution effects on Li-ion battery performance
NASA Astrophysics Data System (ADS)
Rezvani, S. J.; Pasqualini, M.; Witkowska, A.; Gunnella, R.; Birrozzi, A.; Minicucci, M.; Rajantie, H.; Copley, M.; Nobili, F.; Di Cicco, A.
2018-03-01
A comparative investigation on binder induced chemical and morphological evolution of Li4Ti5O12 electrodes was performed via X-ray photoemission spectroscopy, scanning electron microscopy, and electrochemical measurements. Composite electrodes were obtained using three different binders (PAA, PVdF, and CMC) with 80:10:10 ratio of active material:carbon:binder. The electrochemical performances of the electrodes, were found to be intimately correlated with the evolution of the microstructure of the electrodes, probed by XPS and SEM analysis. Our analysis shows that the surface chemistry, thickness of the passivation layers and the morphology of the electrodes are strongly dependent on the type of binders that significantly influence the electrochemical properties of the electrodes. These results point to a key role played by binders in optimization of the battery performance and improve our understanding of the previously observed and unexplained electrochemical properties of these electrodes.
NASA Astrophysics Data System (ADS)
Mishra, S. B.; Langwenya, S. P.; Mamba, B. B.; Balakrishnan, M.
South African coal and coal fly ash were selected as the raw materials to be used for study of their morphology and physicochemical properties and their respective activated carbons for adsorption applications. Coal and fly ash were individually steam activated at a temperature range of 550-1000 °C for 1 h in a muffle furnace using cylindrical stainless steel containers. Scanning electron micrographs revealed a change in surface morphology with more mineral matter available on the surface of the coal particles due to increased devolatilization. However, in the case of fly ash, the macerals coalesced to form agglomerates and the presence of unburnt carbon constituted pores of diameter between 50 and 100 nm. The BET surface area of coal improved significantly from 5.31 to 52.12 m 2/g whereas in case of fly ash the surface area of the raw sample which was originally 0.59 m 2/g and upon activation increased only up to 2.04 m 2/g. The chemical composition of the fly ash confirmed that silica was the major component which was approximately 60% by weight fraction. The impact of this study was to highlight the importance of using raw materials such as coal and a waste product, in the form of coal ash, in order to produce affordable activated carbon that can be used in drinking water treatment. This would therefore ensure that the quality of water supplied to communities for drinking is not contaminated especially by toxic organic compounds.
Simple chemical synthesis of novel ZnO nanostructures: Role of counter ions
NASA Astrophysics Data System (ADS)
Pudukudy, Manoj; Yaakob, Zahira
2014-04-01
This article reports the synthesis, characterisation and photocatalytic activity of novel ZnO nanostructures prepared via the thermal decomposition of hydrozincite. Hydrozincites were obtained by the conventional precipitation route using different zinc salts such as acetate, nitrate, chloride and sulphate. The effect of counter ions (CH3COO-, Cl-, NO3-, and SO42-) on the structural, textural, morphological and optical properties was investigated. Various characterisations depicted the active role of counter ions in the properties of ZnO. Hexagonal wurtzite structure of ZnO with fine crystalline size was obvious from the XRD results, irrespective of the counter ions. Electron microscopic images indicated the role of counter ions in the surface and internal morphology of ZnO nanomaterials. Special coral like agglomerated morphology of elongated particles with high porosity was observed for the ZnO prepared from acetate precursor. Spherical, elongated and irregular shaped bigger lumps of ZnO nanoparticles with various novel morphologies were resulted for the sulphate, nitrate and chloride precursors respectively. Highly ordered porous micro disc like morphology was noted for the ZnO samples prepared from the sulphate and nitrate salts. Photoluminescence spectra showed the characteristic blue and green emission bands, depicting the presence of large crystal defects and high oxygen vacancies in the samples. Photocatalytic activity of the as-prepared ZnO catalysts was examined by the degradation of methylene blue under UV light irradiation. Degradation results indicated their substantial activity with respect to the counter ions. ZnO prepared from the acetate precursor showed highest photoactivity due to its high surface area, special morphology and high oxygen vacancies.
Process parameter and surface morphology of pineapple leaf electrospun nanofibers (PALF)
NASA Astrophysics Data System (ADS)
Surip, S. N.; Aziz, F. M. A.; Bonnia, N. N.; Sekak, K. A.; Zakaria, M. N.
2017-09-01
In recent times, nanofibers have attracted the attention of researchers due to their pronounced micro and nano structural characteristics that enable the development of advanced materials that have sophisticated applications. The production of nanofibers by the electrospinning process is influenced both by the electrostatic forces and the viscoelastic behavior of the polymer. Process parameters, like solution feed rate, applied voltage, nozzle-collector distance, and spinning environment, and material properties, like solution concentration, viscosity, surface tension, conductivity, and solvent vapor pressure, influence the structure and properties of electrospun nanofibers. Significant work has been done to characterize the properties of PALF nanofibers as a function of process and material parameters.
Özen, Soner; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan
2016-01-01
The aim of this research is to investigate the optical and morphological properties of the InGaN thin films deposited onto amorphous glass substrates in two separate experiments with two different voltages applied between the electrodes, i.e. 500 and 600 V by means of the thermionic vacuum arc technique. This technique is original for thin film deposition and it enables thin film production in a very short period of time. The optical and morphological properties of the films were investigated by using field emission scanning electron microscope, atomic force microscope, spectroscopic ellipsometer, reflectometer, spectrophotometer, and optical tensiometer. Optical properties were also supported by empirical relations. The deposition rates were calculated as 3 and 3.3 nm/sec for 500 and 600 V, respectively. The increase in the voltage also increased the refractive index, grain size, root mean square roughness and surface free energy. According to the results of the wetting experiments, InGaN samples were low-wettable, also known as hydrophobic. © Wiley Periodicals, Inc.
Polymeric Thin Films for Organic Electronics: Properties and Adaptive Structures
Cataldo, Sebastiano; Pignataro, Bruno
2013-01-01
This review deals with the correlation between morphology, structure and performance of organic electronic devices including thin film transistors and solar cells. In particular, we report on solution processed devices going into the role of the 3D supramolecular organization in determining their electronic properties. A selection of case studies from recent literature are reviewed, relying on solution methods for organic thin-film deposition which allow fine control of the supramolecular aggregation of polymers confined at surfaces in nanoscopic layers. A special focus is given to issues exploiting morphological structures stemming from the intrinsic polymeric dynamic adaptation under non-equilibrium conditions. PMID:28809362
Sound absorption study of raw and expanded particulate vermiculites
NASA Astrophysics Data System (ADS)
Vašina, Martin; Plachá, Daniela; Mikeska, Marcel; Hružík, Lumír; Martynková, Gražyna Simha
2016-12-01
Expanded and raw vermiculite minerals were studied for their ability to absorb sound. Phase and structural characterization of the investigated vermiculites was found similar for both types, while morphology and surface properties vary. Sound waves reflect in wedge-like structure and get minimized, and later are absorbed totally. We found that thanks to porous character of expanded vermiculite the principle of absorption of sound into layered vermiculite morphology is analogous to principle of sound minimization in "anechoic chambers." It was found in this study that the best sound damping properties of the investigated vermiculites were in general obtained at higher powder bed heights and higher excitation frequencies.
NASA Astrophysics Data System (ADS)
Kunwar, Sundar; Pandey, Puran; Sui, Mao; Zhang, Quanzhen; Li, Ming-Yu; Lee, Jihoon
2017-06-01
By the controlled fabrication of Pt nanostructures, various surface morphology dependent electronic, catalytic and optical properties can be exploited for a wide range of applications. In this paper, the evolution of Pt nanostructures on GaN (0 0 0 1) by the solid-state dewetting of Pt thin films is investigated. Controlling the annealing temperature, time and film thickness allows us to fabricate distinct size, density and configurations of Pt nanostructures. For 10 nm Pt thickness, tiny voids and Pt hillocks up to 550 °C, extensive void expansion and Pt nanostructure evolution between 600 °C-750 °C and finally Pt nanostructures assisted nanoholes penetration on GaN surface above 800 °C are demonstrated. Furthermore, comparatively elongated Pt nanostructures and NHs are resulted with 20 nm Pt thickness and voids growth and connected Pt nanostructure are formed by annealing duration control. The transformation of Pt films to nanostructures is governed by the surface diffusion, Rayleigh instability, Volmer-Weber growth and energy minimization mechanism whereas NHs penetration is commenced by the decomposition of GaN, Pt-Ga alloying and nitrogen desorption at high temperature. In addition, the optical characteristic of Pt nanostructures on GaN (0 0 0 1) by reflectance, photoluminescence (PL) and Raman spectroscopy demonstrate the surface morphology dependent spectral response.
NASA Astrophysics Data System (ADS)
Kunwar, Sundar; Pandey, Puran; Sui, Mao; Bastola, Sushil; Lee, Jihoon
2018-03-01
Bimetallic alloy nanoparticles (NPs) are attractive materials for various applications with their morphology and elemental composition dependent optical, electronic, magnetic and catalytic properties. This work demonstrates the evolution of AuxPd1-x alloy nanostructures by the solid-state dewetting of sequentially deposited bilayers of Au and Pd on sapphire (0001). Various shape, size and configuration of AuxPd1‑x alloy NPs are fabricated by the systematic control of annealing temperature, deposition thickness, composition as well as stacking sequence. The evolution of alloy nanostructures is attributed to the surface diffusion, interface diffusion between bilayers, surface and interface energy minimization, Volmer-Weber growth model and equilibrium configuration. Depending upon the temperature, the surface morphologies evolve with the formation of pits, grains and voids and gradually develop into isolated semi-spherical alloy NPs by the expansion of voids and agglomeration of Au and Pd adatoms. On the other hand, small isolated to enlarged elongated and over-grown layer-like alloy nanostructures are fabricated due to the coalescence, partial diffusion and inter-diffusion with the increased bilayer thickness. In addition, the composition and stacking sequence of bilayers remarkably affect the final geometry of AuxPd1‑x nanostructures due to the variation in the dewetting process. The optical analysis based on the UV–vis-NIR reflectance spectra reveals the surface morphology dependent plasmonic resonance, scattering, reflection and absorption properties of AuxPd1‑x alloy nanostructures.
NASA Astrophysics Data System (ADS)
Junyan, Liang; Pingdi, Xu; Jingxian, Bao; Ling, He; Nan, Zhu
2018-03-01
The self-assembly behavior of fluorinated unit end-functionalized poly(methyl methacrylate) (PDFHM-ef-PMMA) in solution and its influence on the surface microstructure, elemental composition and omniphobic property of cast film was investigated in this work. Specifically, three mixed solutions of tetrahydrofuran (THF)/methanol (MeOH), THF/H2O and THF/H2O/MeOH in various compositions were employed separately as the selective solvents. In THF/MeOH solution, the aggregate morphologies of PDFHM-ef-PMMA changed gradually from core-shell spheres to worm, and then to elliptical vesicles as MeOH content increased. In THF/H2O solution, spherical and bowl-shaped aggregates with significantly larger sizes than those in THF/MeOH solution were favored despite lower H2O content. The further addition of MeOH to THF/H2O mixture could reduce the size of aggregate but hardly change original aggregate morphology. During the film formation process, those self-assembled aggregates in THF/MeOH solution fused with one another to form a smooth surface. When such surface was fully covered by fluorinated segments, the outstanding hexadecane and water slide-off properties and ink-resistant property required for antifouling application were demonstrated. Instead, the aggregates formed in THF/H2O/MeOH mixture were subjected to secondary aggregation of PDFHM-ef-PMMA chains during solvent evaporation, leading to the formation of a particulate film with poor adhesion towards glass plate and hexadecane-repellent property.
Plasma treatment of polypropylene fabric for improved dyeability with soluble textile dyestuff
NASA Astrophysics Data System (ADS)
Yaman, Necla; Özdoğan, Esen; Seventekin, Necdet; Ayhan, Hakan
2009-05-01
The impact of plasma treatment parameters on the surface morphology, physical-chemical, and dyeing properties of polypropylene (PP) using anionic and cationic dyestuffs were investigated in this study. Argon plasma treatment was used to activate PP fabric surfaces. Activated surfaces were grafted different compounds: 6-aminohexanoic acid (6-AHA), acrylic acid (AA), ethylendiamine (EDA), acryl amide (AAMID) and hexamethyldisiloxane (HMDS). Compounds were applied after the plasma treatment and the acid and basic dyeing result that was then observed, were quite encouraging in certain conditions. The possible formed oxidizing groups were emphasized by FTIR and ATR and the surface morphology of plasma treated PP fibers was also investigated with scanning electron microscopy (SEM). PP fabric could be dyed with acid and basic dyestuffs after only plasma treatment and plasma induced grafting, and fastnesses of the dyed samples were satisfactory.
Spectral evidence for a carbonaceous chondrite surface composition on Deimos
NASA Technical Reports Server (NTRS)
Pang, K. D.; Rhoads, J. W.; Lane, A. L.; Ajello, J. M.
1980-01-01
The surface compositions of Phobos and Deimos as determined by their UV-visible reflectance are compared in order to evaluate the hypothesis that the different surface morphologies of the two satellites are due to different mechanical properties. The UV-visible reflectance spectrum of Deimos is compiled from Mariner 9 UV spectrometry and Canopus star tracker photometry and ground-based colorimetry and polarimetry; the geometric albedo of Deimos is determined from Mariner 9 Canopus star tracker data. The reflectance spectra of Deimos and Phobos are found to be similar in a first approximation, exhibiting low, flat reflectivities in the visible and dropping off sharply in the UV, compatible with a probable carbonaceous chondrite nature for Deimos as well as Phobos and suggesting that their different surface morphologies are most likely due to different orbital histories.
Effects of pH values of hydrogen peroxide bleaching agents on enamel surface properties.
Xu, B; Li, Q; Wang, Y
2011-01-01
This study investigated the influence of pH values of bleaching agents on the properties of the enamel surface. Sixty freshly extracted premolars were embedded in epoxy resin and mesiodistally sectioned through the buccal aspect into two parts. The sectioned slabs were distributed among six groups (n=10) and treated using different solutions. Group HCl was treated with HCl solution (pH=3.0) and served as a positive control. Group DW, stored in distilled water (pH=7.0), served as a negative control. Four treatment groups were treated using 30% hydrogen peroxide solutions with different pH values: group HP3 (pH=3.0), group HP5 (pH=5.0), group HP7 (pH=7.0), and group HP8 (pH=8.0). The buccal slabs were subjected to spectrophotometric evaluations. Scanning electron microscopy investigation and Micro-Raman spectroscopy were used to evaluate enamel surface morphological and chemical composition alterations. pH value has a significant influence on the color changes after bleaching (p<0.001). Tukey's multiple comparisons revealed that the order of color changes was HP8, HP7>HP5, HP3>HCl>DW. No obvious morphological alterations were detected on the enamel surface in groups DW, HP7, and HP8. The enamel surface of groups HCl and HP3 showed significant alterations with an erosion appearance. No obvious chemical composition changes were detected with respect to Micro-Raman analysis. Within the limitations of this study, it was concluded that no obvious morphological or chemical composition alterations of enamel surface were detected in the neutral or alkaline bleaching solutions. Bleaching solutions with lower pH values could result in more significant erosion of enamel, which represented a slight whitening effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Wei; Liu, Hongtao, E-mail: liuht100@126.com; Sun, Qinghe
A facile and quick fabrication method was proposed to prepare superhydrophobic surfaces on iron substrate by chemical immersion and subsequent stearic acid modification. The association between wettability and surface morphology was studied through altering the copper ion concentration and immersion time. Surface tension instrument, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and electrochemical workstation were used to characterize the wettability, physical morphology, chemical composition, and corrosion resistance ability of the prepared film. Results showed that both the rough micro/nanostructures and low surface energy material play critical roles in surface wettability. The superhydrophobic film achieved a better anticorrosion property comparedmore » to barrier iron by analysis of open circuit potential, potentiodynamic polarization curves, and Nyquist plots. In addition, the superhydrophobic surface showed excellent performance of acid and alkali resistance, anti-icing, and self-cleaning through a series of environmental tests. This study provides a valid method for quick-preparation of the stable superhydrophobic surfaces, which has a promising application in steel buildings and facilities.« less
Electrodeposited Ni nanowires-track etched P.E.T. composites as selective solar absorbers
NASA Astrophysics Data System (ADS)
Lukhwa, R.; Sone, B.; Kotsedi, L.; Madjoe, R.; Maaza, M.
2018-05-01
This contribution reports on the structural, optical and morphological properties of nanostructured flexible solar-thermal selective absorber composites for low temperature applications. The candidate material in the system is consisting of electrodeposited nickel nano-cylinders embedded in track-etched polyethylene terephthalate (PET) host membrane of pore sizes ranging between 0.3-0.8µm supported by conductive nickel thin film of about 0.5µm. PET were irradiated with 11MeV/u high charged xenon (Xe) ions at normal incidence. The tubular and metallic structure of the nickel nano-cylinders within the insulator polymeric host forms a typical ceramic-metal nano-composite "Cermet". The produced material was characterized by the following techniques: X-ray diffraction (XRD) for structural characterization to determine preferred crystallographic structure, and grain size of the materials; Scanning electron microscopy (SEM) to determine surface morphology, particle size, and visual imaging of distribution of structures on the surface of the substrate; Atomic force microscopy (AFM) to characterize surface roughness, surface morphology, and film thickness, and UV-Vis-NIR spectrophotometer to measure the reflectance, then to determine solar absorption
NASA Astrophysics Data System (ADS)
Okafor, Patricia A.
This research is focused on enhancing electrochemical properties/energy storage capabilities of graphene-polyimide composites. The composite's dense morphology/structure limits ionic penetration owing to high bulk resistances resulting in poor electrochemical performance. Modification of the composite's morphology by incorporation of facile pores during curing increases total available surface area to electrolyte species. Presence of pores increases adsorption sites for double layer formation and increases overall capacitance. In this work, aromatic polyimide precursors were reacted in the presence of nano-graphene fillers to synthesize graphene-polyimide composite films. The resulting composite was very stiff and dense with a high glass transition temperature (Tg) of 400 °C and storage modulus of 7.20 GPa. Selective decomposition of a thermally labile poly(acrylic ester) resin introduced into the composite during synthesis creates pores of varying size and shapes which increases available surface area of embedded stacked graphene sheets available for ion adsorption and double layer formation. Proper control over pore size and specific surface area of pores was required to ensure good performance in terms of both power delivery rate and energy storage capacity. Dynamic mechanical studies on modified composite showed very good mechanical property while shifts in imide peaks to lower wave numbers in Raman and Fourier transform spectroscopy (FTIR) confirms presence of chemical interaction between graphene filler and polymer matrix confirming uniform dispersion of fillers in the material. Thermogravimetric analysis (TGA) shows thermal stability for the composite systems at temperatures above 700°C. To further optimize material's energy storage capabilities, a hybrid composite was formed by depositing relatively cheap nickel oxide onto the modified porous composite system by a two-step process. A remarkable improvement in electrochemical properties up to an order of magnitude was observed. Electrochemical performance of the hybrid system showed strong dependence on deposition current density, deposition time and substrate pore morphology. Increased NiO particle size (aggregates) was observed with increased deposition time and current density which had a significant impact on charge transfer resistance and specific capacitance. Several correlations were made between composite's morphology and obtained properties. The material's morphology showed direct correlation with double layer capacitance, charge capacity, bulk resistance and sheet conductivity measured using cyclic voltammetry (CV), cyclic charge discharge (CCD), electrochemical impedance spectroscopy (EIS) and four probe measurements respectively. It was observed that smaller well distributed pores showed enhanced properties compared to larger pores. Material's overall performance shows a linear dependence on porosity. The overall electrochemical and electrical behavior of the system is directly linked to the composite's morphology and structure as will be demonstrated in this thesis work.
Biocompatibility of modified ultra-high-molecular-weight polyethylene
NASA Astrophysics Data System (ADS)
Novotná, Z.; Lacmanová, V.; Rimpelová, S.; Juřik, P.; Polívková, M.; Å vorčik, V.
2016-09-01
Ultra-high-molecular-weight polyethylene (UHMWPE, PE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore this material is being used in human orthopedic implants such as total joint replacements. Surface modification of this material relates to changes of its surface hydrophilicity, energy, microstructure, roughness, and morphology, all influencing its biological response. In our recent work, PE was treated by an Ar+ plasma discharge and then grafted with biologically active polyethylene glycol in order to enhance adhesion and proliferation of mouse fibroblast (L929). The surface properties of pristine PE and its grafted counterparts were studied by goniometry (surface wettability). Furthermore, Atomic Force Microscopy was used to determine the surface morphology and roughness. The biological response of the L929 cell lines seeded on untreated and plasma treated PE matrices was quantified in terms of the cell adhesion, density, and metabolic activity. Plasma treatment leads to the ablation of the polymer surface layers. Plasma treatment and subsequent poly(ethylene glycol) grafting lead to dramatic changes in the polymer surface morphology and roughness. Biological tests, performed in vitro, show increased adhesion and proliferation of cells on modified polymers. Grafting with poly(ethylene glycol) increases cell proliferation compared to plasma treatment.
Gascoyne, Peter R. C.; Shim, Sangjo; Noshari, Jamileh; Becker, Frederick F.; Stemke-Hale, Katherine
2013-01-01
Although dielectrophoresis (DEP) has great potential for addressing clinical cell isolation problems based on cell dielectric differences, a biological basis for predicting the DEP behavior of cells has been lacking. Here, the dielectric properties of the NCI-60 panel of tumor cell types have been measured by dielectrophoretic (DEP) field-flow fractionation, correlated with the exterior morphologies of the cells during growth, and compared with the dielectric and morphological characteristics of the subpopulations of peripheral blood. In agreement with earlier findings, cell total capacitance varied with both cell size and plasma membrane folding and the dielectric properties of the NCI-60 cell types in suspension reflected the plasma membrane area and volume of the cells at their growth sites. Therefore, the behavior of cells in DEP-based manipulations is largely determined by their exterior morphological characteristics prior to release into suspension. As a consequence, DEP is able to discriminate between cells of similar size having different morphological origins, offering a significant advantage over size-based filtering for isolating circulating tumor cells, for example. The findings provide a framework for anticipating cell dielectric behavior on the basis of structure-function relationships and suggest that DEP should be widely applicable as a surface marker-independent method for sorting cells. PMID:23172680
NASA Astrophysics Data System (ADS)
Ogugua, Simon N.; Swart, Hendrik C.; Ntwaeaborwa, Odireleng M.
2018-04-01
The influence of post-deposition annealing on the structure, particle morphology and photoluminescence properties of dysprosium (Dy3+) doped La0.5Gd1.5SiO5 thin films grown on Si(111) substrates at different substrate temperatures using pulsed laser deposition (PLD) technique were studied. The X-ray diffractometer results showed an improved crystallinity after post-annealing. The topography and morphology of the post-annealed films were studied using atomic force microscopy and field emission scanning electron microscopy respectively. The elemental composition in the surface region of the films were analyzed using energy dispersive X-ray spectroscopy. The photoluminescence studies showed an improved luminescent after post-annealing. The cathodoluminescence properties of the films are also reported. The CIE colour coordinates calculated from the photoluminescence and cathodoluminescence data suggest that the films can have potential application in white light emitting diode (LED) and field emission display (FED) applications.
Dependence of the surface roughness of MAPLE-deposited films on the solvent parameters
NASA Astrophysics Data System (ADS)
Caricato, A. P.; Leggieri, G.; Martino, M.; Vantaggiato, A.; Valerini, D.; Cretì, A.; Lomascolo, M.; Manera, M. G.; Rella, R.; Anni, M.
2010-12-01
Matrix-assisted pulsed laser evaporation (MAPLE) was used to deposit layers of poly(9,9-dioctylfluorene) (PFO) to study the relation between the solvent properties (laser light absorption, boiling temperature and solubility parameters) and the morphology of the deposited films. To this end, the polymer was diluted (0.5 wt%) in tetrahydrofuran—THF, toluene and toluene/hexane mixtures. The thickness of the films was equal to 70±20 nm. The morphology and uniformity of the films was investigated by Atomic Force Microscopy and by the photoluminescence emission properties of the polymer films, respectively. It is shown that, although the solubility parameters of the solvents are important in controlling the film roughness and morphology, the optical absorption properties and boiling temperature play a very important role, too. In fact, for matrices characterized by the same total solubility parameter, lower roughness values are obtained for films prepared using solvents with lower penetration depth of the laser radiation and higher boiling temperatures.
Han, Dan; Ma, Shufang; Jia, Zhigang; Liu, Peizhi; Jia, Wei; Shang, Lin; Zhai, Guangmei; Xu, Bingshe
2018-04-10
InGaN/GaN micro-square array light-emitting diode (LED) chips (micro-chips) have been prepared via the focused ion beam (FIB) etching technique, which can not only reduce ohmic contact degradation but also control the aspect ratio precisely in three-dimensional (3D) structure LED (3D-LED) device fabrication. The effects of FIB beam current and micro-square array depth on morphologies and optical and electrical properties of the micro-chips have been studied. Our results show that sidewall surface morphology and optical and electrical properties of the micro-chips degrade with increased beam current. After potassium hydroxide etching with different times, an optimal current-voltage and luminescence performance can be obtained. Combining the results of cathodoluminescence mappings and light output-current characteristics, the light extraction efficiency of the micro-chips is reduced as FIB etch depth increases. The mechanisms of micro-square depth on light extraction have been revealed by 3D finite difference time domain.
Sutar, Papri; Maji, Tapas Kumar
2016-11-18
We design a flexible, amphiphilic LMWG consisting of donor and acceptor π-chromophores which self-assembles into a hydrogel and an organogel with different nano-morphologies. Different mechanisms of self-assembly evolve charge transfer (CT) emission in the hydrogel and LMWG-based emission in the organogel. Moreover, the hydrogel-nanostructure with surface exposed amide groups is explored for catalyzing Knoevenagel condensation reaction.
NASA Astrophysics Data System (ADS)
Chan, Yuet Ching; Yu, Jerry; Ho, Derek
2018-06-01
Nanointerfaces have attracted intensive research effort for advanced electronics due to their unique and tunable semiconducting properties made possible by metal-contacted oxide structures at the nanoscale. Although much work has been on the adjustment of fabrication parameters to achieve high-quality interfaces, little work has experimentally obtained the various correlations between material parameters and Schottky barrier electronic properties to accurately probe the underlying phenomenon. In this work, we investigate the control of Pt-ZnO nanograin interfaces properties by thermal annealing. Specifically, we quantitatively analyze the correlation between material parameters (such as surface morphology, crystallographic structure, and stoichiometry) and Schottky diode parameters (Schottky barrier height, ideality factor, and contact resistance). Results revealed strong dependencies of Schottky barrier characteristics on oxygen vacancies, surface roughness, grain density, d-spacing, and crystallite size. I-V-T data shows that annealing at 600 °C produces a nanograin based interface with the most rectifying diode characteristics. These dependencies, which have not been previously reported holistically, highlight the close relationship between material properties and Schottky barrier characteristics, and are instrumental for the performance optimization of nanostructured metal-semiconductor interfaces in advanced electronic devices.
Liao, Xueming; Gao, Zhinong; Xia, Yan; Niu, Fei; Zhai, Wenzhong
2017-04-04
A series of carboxylate gemini surfactants (CGS, C n -Φ-C n , n = 12, 14, 16, 18) with diphenyl ketone as a spacer group were prepared using a simple and feasible synthetic method. These CGS exhibited an excellent surface activity with extremely low critical micelle concentration (CMC) value (approximately 10 -5 mol/L), good performance in reducing surface tension (nearly 30 mN/m), and the ability of molecular self-assembly into different aggregate morphologies via adjusting the concentrations, which is attributed to the introduction of diphenyl ketone and carboxylic acid ammonium salt in the molecular structure. Moreover, the surface activity and self-assembly ability of CGS were further optimized by tuning the length of the tail chain. These excellent properties imply that CGS can be a soft template to prepare nanomaterials, especially in morphology-controllable synthesis. By adjusting the concentration of one of CGS (C 12 -Φ-C 12 ), nano-La 2 O 3 particles with diverse morphologies were obtained, including spherical shape, bead-chain shape, rod shape, velvet-antler shape, cedar shape, and bowknot shape. This work offers a vital insight into the rational design of template agents for the development of morphology-controllable nanomaterials.
Fancello, Eduardo Alberto
2017-01-01
Two groups of PLGA specimens with different geometries (notched and unnotched) were injection molded under two melting temperatures and flow rates. The mechanical properties, morphology at the fracture surface, and residual stresses were evaluated for both processing conditions. The morphology of the fractured surfaces for both specimens showed brittle and smooth fracture features for the majority of the specimens. Fracture images of the notched specimens suggest that the surface failure mechanisms are different from the core failure. Polarized light techniques indicated birefringence in all specimens, especially those molded with lower temperature, which suggests residual stress due to rapid solidification. DSC analysis confirmed the existence of residual stress in all PLGA specimens. The specimens molded using the lower injection temperature and the low flow rate presented lower loss tangent values according to the DMA and higher residual stress as shown by DSC, and the photoelastic analysis showed extensive birefringence. PMID:28848605
Wang, Jinqiu; Hao, Haohao; Liu, Runsheng; Ma, Qiaoli; Xu, Juan; Chen, Feng; Cheng, Yunjiang; Deng, Xiuxin
2014-06-15
Surface wax of mature Satsuma mandarin (Citrus unshiu) and 'Newhall' navel orange (Citrus sinensis) was analysed by crystal morphology, chemical composition, and gene expression levels. The epicuticular and total waxes of both citrus cultivars were mostly composed of aldehydes, alkanes, fatty acids and primary alcohols. The epicuticular wax accounted for 80% of the total wax in the Newhall fruits and was higher than that in the Satsuma fruits. Scanning electron microscopy showed that larger and more wax platelets were deposited on the surface of Newhall fruits than on the Satsuma fruits. Moreover, the expression levels of genes involved in the wax formation were consistent with the biochemical and crystal morphological analyses. These diversities of fruit wax between the two cultivars may contribute to the differences of fruit postharvest storage properties, which can provide important information for the production of synthetic wax for citrus fruits. Copyright © 2013 Elsevier Ltd. All rights reserved.
Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; Xiao, Kai; Ma, Ying-Zhong
2017-07-20
A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. Here, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH 3 NH 3 PbI 3-x Cl x ) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmission microscopies. Comprehensive image analysis revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. These results show that PL probes effectively the species near or at the film surface.
Charles W. McMillin
1969-01-01
Burst and tear strengths of handsheets made from 48 pulps disk-refined from chips of varying chemical composition decreased with incressing extractive content after the independent effects of fiber morphology were specified. This result was attributed to lessened bond strength caused by reduced surface tension forces and blocking of reactive sites on the fiber surfaces...
NASA Astrophysics Data System (ADS)
Muslimin, Masliana; Jumali, Mohammad Hafizuddin; Tee, Tan Sin; Beng, Lee Hock; Hui, Tan Chun; Chin, Yap Chi
2018-04-01
The aim of this work is to investigate the effect of Zr doping on TiO2 nanostructure. TiO2 nanorods thin films with different Zr-doping concentrations (6 × 10-3 M, 13 × 10-3 M and 25 × 10-3 M) were successfully prepared using a simple hydrothermal method. The structural and morphological properties of the samples were evaluated using XRD and FESEM respectively. The XRD results revealed that the TiO2 in all samples stabilized as rutile phase. The FESEM micrographs confirmed that TiO2 exist as square like nanorods with blunt tips. Although the crystallographic nature remains unchanged, the introduction of Zr has altered the surface density, structure and morphology of TiO2 which subsequently will have significant effect on its properties.
Advanced light-scattering materials: Double-textured ZnO:B films grown by LP-MOCVD
NASA Astrophysics Data System (ADS)
Addonizio, M. L.; Spadoni, A.; Antonaia, A.
2013-12-01
Double-textured ZnO:B layers with enhanced optical scattering in both short and long wavelength regions have been successfully fabricated using MOCVD technique through a three step process. Growth of double-textured structures has been induced by wet etching on polycrystalline ZnO surface. Our double-layer structure consists of a first ZnO:B layer wet etched and subsequently used as substrate for a second ZnO:B layer deposition. Polycrystalline ZnO:B layers were etched by utilizing diluted solutions of fluoridic acid (HF), chloridric acid (HCl) and phosphoric acid (H3PO4) and their effect on surface morphology modification was systematically investigated. The morphology of the second deposited ZnO layer strongly depended on the surface properties of the etched ZnO first layer. Growth of cauliflower-like texture was induced by protrusions presence on the HCl etched surface. Optimized double-layer structure shows a cauliflower-like double texture with higher RMS roughness and increased spectral haze values in both short and long wavelength regions, compared to conventional pyramidal-like single texture. Furthermore, this highly scattering structure preserves excellent optical and electrical properties.
NASA Astrophysics Data System (ADS)
Vyas, Sumit; Tiwary, Rohit; Shubham, Kumar; Chakrabarti, P.
2015-04-01
The effect of target (Ti metal target and TiO2 target) on Titanium Dioxide (TiO2) thin films grown on ITO coated glass substrate by RF magnetron sputtering has been investigated. A comparative study of both the films was done in respect of crystalline structure, surface morphology and optical properties by using X-ray diffractometer (XRD), Atomic Force Microscopy (AFM) studies and ellipsometric measurements. The XRD results confirmed the crystalline structure and indicated that the deposited films have the intensities of anatase phase. The surface morphology and roughness values indicated that the film using Ti metal target has a smoother surface and densely packed with grains as compared to films obtained using TiO2 target. A high transmission in the visible region, and direct band gap of 3.67 eV and 3.75 eV for films derived by using Ti metal and TiO2 target respectively and indirect bandgap of 3.39 eV for the films derived from both the targets (Ti metal and TiO2 target) were observed by the ellipsometric measurements.
NASA Astrophysics Data System (ADS)
Abdalla, Ahmed M.; Majdi, Tahereh; Ghosh, Suvojit; Puri, Ishwar K.
2016-12-01
To utilize their superior properties, multiwall carbon nanotubes (MWNTs) must be manipulated and aligned end-to-end. We describe a nondestructive method to magnetize MWNTs and provide a means to remotely manipulate them through the electroless deposition of magnetic nickel nanoparticles on their surfaces. The noncovalent bonds between Ni nanoparticles and MWNTs produce a Ni-MWNT hybrid material (NiCH) that is electrically conductive and has an enhanced magnetic susceptibility and elastic modulus. Our experiments show that MWNTs can be plated with Ni for Ni:MWNT weight ratios of γ = 1, 7, 14 and 30, to control the material properties. The phase, atom-level, and morphological information from x-ray diffraction, energy dispersive x-ray spectroscopy, scanning electron microscopy, transmission electron microscopy, dark field STEM, and atomic force microscopy clarify the plating process and reveal the mechanical properties of the synthesized material. Ni metalizes at the surface of the Pd catalyst, forming a continuous wavy layer that encapsulates the MWNT surfaces. Subsequently, Ni acts as an autocatalyst, allowing the plating to continue even after the original Pd catalyst has been completely covered. Raising γ increases the coating layer thickness from 10 to 150 nm, which influences the NiCH magnetic properties and tunes its elastic modulus from 12.5 to 58.7 GPa. The NiCH was used to fabricate Ni-MWNT macrostructures and tune their morphologies by changing the direction of an applied magnetic field. Leveraging the hydrophilic Ni-MWNT outer surface, a water-based conductive ink was created and used to print a conductive path that had an electrical resistivity of 5.9 Ω m, illustrating the potential of this material for printing electronic circuits.
NASA Astrophysics Data System (ADS)
Zhao, Ningning; He, Cuicui; Liu, Jianbing; Gong, Hujun; An, Ting; Xu, Huixiang; Zhao, Fengqi; Hu, Rongzu; Ma, Haixia; Zhang, Jinzhong
2014-11-01
Three Fe2O3 particle samples with the same crystal structure but different morphologies were prepared by the hydrothermal method and then combined with Al nanoparticles to produce Al/Fe2O3 thermites using ultrasonic mixing. The properties of Fe2O3 and Al/Fe2O3 were studied using a combination of experimental techniques including scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The influences of the three Al/Fe2O3 thermites on the combustion properties of the AP/HTPB (ammonium perchlorate/hydroxyl-terminated polybutadiene) composite propellant were investigated in comparison to those of Fe2O3. The results show that the Al/Fe2O3 thermites are better than Fe2O3 in enhancing the combustion performance of AP/HTPB. Furthermore, the surface area, which depends on size and mophology, of Fe2O3 particles was found to play a vital role in improving the burning rate of the thermites-containing propellant formulation, with the smallest particles with the largest surface-to-volume (S/V) ratio performing the best. The enhanced catalytic property of the granular-shape Fe2O3 and the corresponding thermite is attributed to the large specific surface area of Fe2O3. The different thermal behaviors of these three superthemites were supposed to be attributed to the surface site of Fe2O3 particles. This work provides a better understanding on the catalytic properties of thermites that are important for combustion applications.
Surface properties of ancient cratered terrain in the northern hemisphere of Mars
NASA Technical Reports Server (NTRS)
Zimbelman, J. R.; Greeley, R.
1982-01-01
Viking high resolution IR data is used in an examination of the hilly and cratered material of Scott and Carr (1978), supposed to be the oldest extensively exposed surface on Mars. Measured nighttime temperatures at 11 and 20 microns indicate inertia blocks, surrounded by lower thermal inertia soil. Geologic features crossed by the Viking data generally show no difference from the regional properties. Imaging data from within and around the Arabia low thermal inertia region indicate that subdued surface morphology is not always associated with low thermal inertias. The mantling of ancient northern hemisphere cratered terrain by fine grained material does not allow thermal measurements to be directly related to rock unit properties, but less mantling may be present in southern hemisphere locations of this material.
NASA Astrophysics Data System (ADS)
Li, Yan-Jing; Li, Shu-Long; Gong, Pei; Li, Ya-Lin; Fang, Xiao-Yong; Jia, Ya-Hui; Cao, Mao-Sheng
2018-06-01
In recent years, we investigated the structure and photoelectric properties of Silicon carbide nanowires (SiCNWs) with different morphologies and sizes by using the first-principle in density functional theory, and found a phenomenon that is opposite to quantum size effect, namely, the band gap of nanowires increases with the increase of the diameter. To reveal the nature of this phenomenon, we further carry out the passivation of SiCNWs. The results show that the hydrogenated SiCNWs are direct band gap semiconductors, and the band gap decreases with the diameter increasing, which indicates the dangling bonds of the SiCNWs suppress its quantum size effect. The optical properties of SiCNWs with different diameters before and after hydrogenated are compared, we found that these surface dangling bonds lead to spectral shift which is different with quantum size effect of SiCNWs. These results have potential scientific value to deepen the understanding of the photoelectric properties of SiCNWs and to promote the development of optoelectronic devices.
Biomass Morphology Subjected to Different Chemical Treatment
NASA Astrophysics Data System (ADS)
Sutan, Norsuzailina Mohamed; Masjida Mazlan, Siti; Taib, Siti Noor Linda; Lee, Delsye Teo Ching; Hassan, Alsidqi; Kudnie Sahari, Siti; Mohamad Said, Khairul Anwar; Rahman Sobuz, Habibur
2018-03-01
A growing interest of sugarcane bagasse fibre composite has been observed in recent years due to its attractiveness properties such as low specific weight, renewable source and producible with low investment at low cost. However, these materials have a low interfacial adhesion between fibre and matrix which lead to reduction in certain mechanical properties of the composite. To overcome this problem, studies show that certain chemical treatments on the surface of the fibres are some alternatives that significantly increase the adhesion reinforcement/matrix, in some cases improving its mechanical properties. The objective of this study was to evaluate the effect of different type of chemical treatment which are alkali and acid treatment on sugarcane bagasse fibre surface morphology. Seeking to improve the adhesion fibre matrix, the fibre has been treated with 5% of NaOH and 5% of HCL solution with added of bagasse fibre used in the range of 0% to 3% of cement weight respectively. Through SEM investigation, it is confirmed that chemical treatment helps to remove hemicelluloses from raw bagasse fiber as well as improved fibre matrix adhesion.
NASA Astrophysics Data System (ADS)
Ali, Ahmad Hadi; Abu Bakar, Ahmad Shuhaimi; Hassan, Zainuriah
2014-10-01
ITO-based transparent conductive electrodes (TCE) with Ag/Ni thin metal under-layer were deposited on Si and glass substrates by thermal evaporator and RF magnetron sputtering system. Ceramic ITO with purity of 99.99% and In2O3:SnO2 weight ratio of 90:10 was used as a target at room temperature. Post-deposition annealing was performed on the TCE at moderate temperature of 500 °C, 600 °C and 700 °C under N2 ambient. It was observed that the structural properties, optical transmittance, electrical characteristics and surface morphology were improved significantly after the post-annealing process. Post-annealed ITO/Ag/Ni at 600 °C shows the best quality of TCE with figure-of-merit (FOM) of 1.5 × 10-2 Ω-1 and high optical transmittance of 83% at 470 nm as well as very low electrical resistivity of 4.3 × 10-5 Ω-cm. The crystalline quality and surface morphological plays an important role in determining the quality of the TCE multilayer thin films properties.
Abdolmohammadi, Sanaz; Siyamak, Samira; Ibrahim, Nor Azowa; Yunus, Wan Md Zin Wan; Rahman, Mohamad Zaki Ab; Azizi, Susan; Fatehi, Asma
2012-01-01
This study investigates the effects of calcium carbonate (CaCO3) nanoparticles on the mechanical and thermal properties and surface morphology of polycaprolactone (PCL)/chitosan nanocomposites. The nanocomposites of PCL/chitosan/CaCO3 were prepared using a melt blending technique. Transmission electron microscopy (TEM) results indicate the average size of nanoparticles to be approximately 62 nm. Tensile measurement results show an increase in the tensile modulus with CaCO3 nanoparticle loading. Tensile strength and elongation at break show gradual improvement with the addition of up to 1 wt% of nano-sized CaCO3. Decreasing performance of these properties is observed for loading of more than 1 wt% of nano-sized CaCO3. The thermal stability was best enhanced at 1 wt% of CaCO3 nanoparticle loading. The fractured surface morphology of the PCL/chitosan blend becomes more stretched and homogeneous in PCL/chitosan/CaCO3 nanocomposite. TEM micrograph displays good dispersion of CaCO3 at lower nanoparticle loading within the matrix. PMID:22605993
Morphology Tuning of Strontium Tungstate Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, S.; George, T.; George, K. C.
2007-08-22
Strontium tungstate nanocrystals in two different morphologies are successfully synthesized by controlled precipitation in aqueous and in poly vinyl alcohol (PVA) medium. Structural characterizations are carried out by XRD and SEM. The average particle size calculated for the SrWO4 prepared in the two different solvents ranges 20-24 nm. The SEM pictures show that the surface morphologies of the SrWO4 nanoparticles in aqueous medium resemble mushroom and the SrWO4 nanoparticles in PVA medium resemble cauliflower. Investigations on the room temperature luminescent properties of the strontium tungstate nanoparticles prepared in aqueous and PVA medium shows strong emissions around 425 nm.
NASA Astrophysics Data System (ADS)
Zaier, Mohamed; Vidal, Loic; Hajjar-Garreau, Samar; Bubendorff, Jean-Luc; Balan, Lavinia
2017-03-01
This paper reports on a simple and environmentally friendly photochemical process capable of generating nano-layers (8-22 nm) of silver nanostructures directly onto glass surfaces. This approach opens the way to large-scale functionalized surfaces with plasmonic properties through a single light-induced processing. Thus, Ag nanostructures top-coated were obtained through photo-reduction, at room temperature, of a photosensitive formulation containing a metal precursor, free from extra toxic stabilizers or reducing agents. The reactive formulation was confined between two glass slides and exposed to a continuous near-UV source. In this way, stable silver nano-layers can be generated directly on the substrate with a very good control of the morphology of as-synthesized nanostructures that allows tailoring the optical properties of the coated layers. The position and width of the corresponding surface plasmon resonance bands can be adjusted over a broad spectral window. By extension, this low-cost and easy-to-apply process can also be used to coat ultra thin layers of metal nanostructures on a variety of substrates. The possibility of controlling of nanostructures shape should achieve valuable developments in many fields, as diverse as plasmonics, surface enhanced Raman scattering, nano-electronic circuitry, or medical devices.
NASA Astrophysics Data System (ADS)
Ahmad Kamal, Shafarina Azlinda; Ritikos, Richard; Abdul Rahman, Saadah
2015-02-01
Tuning the wettability of various coating materials by simply controlling the deposition parameters is essential for various specific applications. In this work, carbon nitride (CNx) films were deposited on silicon (1 1 1) substrates using radio-frequency plasma enhanced chemical vapour deposition employing parallel plate electrode configuration. Effects of varying the electrode distance (DE) on the films' structure and bonding properties were investigated using Field emission scanning electron microscopy, Atomic force microscopy, Fourier transform infrared and X-ray photoemission spectroscopy. The wettability of the films was analyzed using water contact angle measurements. At high DE, the CNx films' surface was smooth and uniform. This changed into fibrous nanostructures when DE was decreased. Surface roughness of the films increased with this morphological transformation. Nitrogen incorporation increased with decrease in DE which manifested the increase in both relative intensities of Cdbnd N to Cdbnd C and Nsbnd H to Osbnd H bonds. sp2-C to sp3-C ratio increased as DE decreased due to greater deformation of sp2 bonded carbon at lower DE. The films' characteristics changed from hydrophilic to super-hydrophobic with the decrease in DE. Roughness ratio, surface porosity and surface energy calculated from contact angle measurements were strongly dependent on the morphology, surface roughness and bonding properties of the films.
NASA Astrophysics Data System (ADS)
Lin, Yang-Hsien; Huang, Shin-Shyang; Wu, Shang-Ju; Sung, Kung-Bin
2017-11-01
Complete blood count is the most common test to detect anemia, but it is unable to obtain the abnormal shape of erythrocytes, which highly correlates with the hematologic function. Tomographic diffractive microscopy (TDM) is an emerging technique capable of quantifying three-dimensional (3-D) refractive index (RI) distributions of erythrocytes without labeling. TDM was used to characterize optical and morphological properties of 172 erythrocytes from healthy volunteers and 419 erythrocytes from thalassemic patients. To efficiently extract and analyze the properties of erythrocytes, we developed an adaptive region-growing method for automatically delineating erythrocytes from 3-D RI maps. The thalassemic erythrocytes not only contained lower hemoglobin content but also showed doughnut shape and significantly lower volume, surface area, effective radius, and average thickness. A multi-indices prediction model achieved perfect accuracy of diagnosing thalassemia using four features, including the optical volume, surface-area-to-volume ratio, sphericity index, and surface area. The results demonstrate the ability of TDM to provide quantitative, hematologic measurements and to assess morphological features of erythrocytes to distinguish healthy and thalassemic erythrocytes.
Surface modification of calcium hydroxyapatite by grafting of etidronic acid
NASA Astrophysics Data System (ADS)
Othmani, Masseoud; Aissa, Abdallah; Bac, Christophe Goze; Rachdi, Férid; Debbabi, Mongi
2013-06-01
The surface of prepared calcium hydroxyapatite CaHAp has been modified by grafting the etidronic acid (ETD). For that purpose, CaHAp powders have been suspended in an aqueous etidronate solution with different concentrations. The obtained composites CaHAp-(ETD) were characterized by TEM and AFM techniques to determinate morphological properties and were also characterized by XRD, IR, NMR and chemical and thermal analysis to determinate their physico-chemical properties and essentially the nature of the interaction between the inorganic support and the grafted organic ETD. After reaction with ETD, XRD powder analysis shows that the apatitic structure remains unchanged with slight affectation of its crystallinity. The presence of etidronate fragment bounded to hydroxyapatite was confirmed by IR and solid-state NMR spectroscopy. TEM and AFM techniques indicate that the presence of etidronate changes the morphology of the particles. Basing on the obtained results, a reactional mechanism was proposed to explain the formation of covalent Casbnd Osbnd Porg bonds on the hydroxyapatite surface between the superficial hydroxyl groups (tbnd Casbnd OH) of the apatite and phosphonate group (Psbnd OH) of etidronate.
NASA Astrophysics Data System (ADS)
Sheng, Chan Kok; Amin, Khairul Anuar Mat; Kee, Kwa Bee; Hassan, Mohd Faiz; Ali, E. Ghapur E.
2018-05-01
In this study, effect of wood flour content on the color, surface chemistry, mechanical properties and surface morphology of wood-plastic composite (WPC) on different mixture ratios of recycled high density polyethylene (rHDPE) and wood flour were investigated in detail. The presence of wood flour in the composite indicates a significant total color change and a decrease of lightness. Functional groups of wood flour in WPC can be seen clearer from the Fourier transform infrared (FTIR) spectra as the wood flour content increases. The mechanical tensile testing shows that the tensile strength of Young's modulus is improved, whereas the strain and elongation at break were reduced by the addition of wood flour. The gap between the wood flour microvoid fibre and rHDPE matrix becomes closer when the wood flour content is increased as observed by scanning electron microscope (SEM) image. This finding implies a significant improvement on the interaction of interfacial adhesion between the rHDPE matrix and wood flour filler in the present WPC.
Liu, Xiaoling; Grant, David M; Parsons, Andrew J; Harper, Lee T; Rudd, Chris D; Ahmed, Ifty
2013-01-01
Bioresorbable phosphate glass fibre reinforced polyester composites have been investigated as replacement for some traditional metallic orthopaedic implants, such as bone fracture fixation plates. However, composites tested revealed loss of the interfacial integrity after immersion within aqueous media which resulted in rapid loss of mechanical properties. Physical modification of fibres to change fibre surface morphology has been shown to be an effective method to improve fibre and matrix adhesion in composites. In this study, biodegradable magnesium which would gradually degrade to Mg(2+) in the human body was deposited via magnetron sputtering onto bioresorbable phosphate glass fibres to obtain roughened fibre surfaces. Fibre surface morphology after coating was observed using scanning electron microscope (SEM). The roughness profile and crystalline texture of the coatings were determined via atomic force microscope (AFM) and X-ray diffraction (XRD) analysis, respectively. The roughness of the coatings was seen to increase from 40 ± 1 nm to 80 ± 1 nm. The mechanical properties (tensile strength and modulus) of fibre with coatings decreased with increased magnesium coating thickness.
Liu, Xiaoling; Grant, David M.; Parsons, Andrew J.; Harper, Lee T.; Rudd, Chris D.; Ahmed, Ifty
2013-01-01
Bioresorbable phosphate glass fibre reinforced polyester composites have been investigated as replacement for some traditional metallic orthopaedic implants, such as bone fracture fixation plates. However, composites tested revealed loss of the interfacial integrity after immersion within aqueous media which resulted in rapid loss of mechanical properties. Physical modification of fibres to change fibre surface morphology has been shown to be an effective method to improve fibre and matrix adhesion in composites. In this study, biodegradable magnesium which would gradually degrade to Mg2+ in the human body was deposited via magnetron sputtering onto bioresorbable phosphate glass fibres to obtain roughened fibre surfaces. Fibre surface morphology after coating was observed using scanning electron microscope (SEM). The roughness profile and crystalline texture of the coatings were determined via atomic force microscope (AFM) and X-ray diffraction (XRD) analysis, respectively. The roughness of the coatings was seen to increase from 40 ± 1 nm to 80 ± 1 nm. The mechanical properties (tensile strength and modulus) of fibre with coatings decreased with increased magnesium coating thickness. PMID:24066297
Fabrication and characterization of the noble metal nanostructures on the GaAs surface
NASA Astrophysics Data System (ADS)
Gladskikh, Polina V.; Gladskikh, Igor A.; Toropov, Nikita A.; Vartanyan, Tigran A.
2016-04-01
Self-assembled silver, gold, and copper nanostructures on the monocrystalline GaAs (100) wafer surface were obtained via physical vapor deposition and characterized by optical reflection spectroscopy, scanning electron microscopy, and current-voltage curve measurements. Reflection spectra of the samples with Ag equivalent thicknesses of 2, 5, 7.5, and 10 nm demonstrated wide plasmonic bands in the visible range of spectra. Thermal annealing of the nanostructures led to narrowing of the plasmonic bands of Au and Ag nanostructures caused by major transformations of the film morphology. While the as prepared films predominantly had a small scale labyrinth structure, after annealing well-separated nanoislands are formed on the gallium arsenide surface. A clear correlation between films morphology and their optical and electrical properties is elucidated. Annealing of the GaAs substrate with Ag nanostructures at 100 °C under control of the resistivity allowed us to obtain and fix the structure at the percolation threshold. It is established that the samples at the percolation threshold possess the properties of resistance switching and hysteresis.
Modification of polycarbonate surface in oxidizing plasma
NASA Astrophysics Data System (ADS)
Ovtsyn, A. A.; Smirnov, S. A.; Shikova, T. G.; Kholodkov, I. V.
2017-11-01
The properties of the surface of the film polycarbonate Lexan 8010 were experimentally studied after treatment in a DC discharge plasma in oxygen and air at pressures of 50-300 Pa and a discharge current of 80 mA. The contact angles of wetting and surface energies are measured. The topography of the surface was investigated by atomic force microscopy. The chemical composition of the surface was determined from the FT-IR spectroscopy data in the variant of total internal reflection, as well as X-ray photoelectron spectroscopy. Treatment in the oxidizing plasma leads to a change in morphology (average roughness increases), an increase in the surface energy, and the concentration of oxygen-containing groups (hydroxyl groups, carbonyl groups in ketones or aldehydes and in oxyketones) on the surface of the polymer. Possible reasons for the difference in surface properties of polymer under the action of oxygen and air plasma on it are discussed.
Optimization of a biomimetic poly-(lactic acid) ligament scaffold
NASA Astrophysics Data System (ADS)
Uehlin, Andrew F.
The anterior cruciate ligament (ACL) is the most commonly injured ligament of the knee, often requiring orthopedic reconstruction using autograft or allograph tissue, both with significant disadvantages. As a result, tissue engineering an ACL replacement graft has been heavily investigated. The present study attempts to replicate the morphology and mechanical properties of the ACL using a nanomatrix composite of highly-aligned poly(lactic acid) (PLA) fibers with various surface and biochemical modifications. Additionally, this study attempts to recreate the natural mineralization gradient found at the ACL enthesis onto the scaffold, capable of inducing a favorable cellular response in vitro. Unidirectional electrospinning was used to create nanofibers of PLA, followed by an induced degradation of the nanofibers via 0.25M NaOH hydrolysis. The effects of the unidirectional electrospinning as well as the effects of NaOH hydrolysis on fiber alignment, fiber diameter, surface morphology, crystallinity, in vitro swelling, immobilization of fibrin, and mechanical properties were investigated, resulting in a modified morphology correlating to the microstructure of native ligament tissue with similar mechanical properties. Furthering the development of the PLA nanomatrix composite, a bioinkjet printer was used to immobilize nanoparticulate hydroxyapatite (HANP) on the surface of the scaffold. A series of 300pL droplets of HANP bioink were printed over a gradient pattern mimetic of (and spatially corresponding to) the mineralization gradient found over the microanatomy at the ACL enthesis. Proliferation and differentiation response of human mesenchymal stem cells (hMSCs) in vitro was assessed on a variety of conditions and combinations of the PLA nanofiber scaffold surface modifications (inclusive and exclusive of HANP, fibrin, and various time dependent NaOH treatments). It was found that a combinatory effect of the HANP gradient with fibrin on 20 minute NaOH treated PLA nanofibers enhanced the osteogenic differentiation of hMSCs, with an observable morphological change spatially corresponding to the compositional changes of the printed HANP gradient. Using the bioactive scaffold designed in this study as a template and expanding on the methods utilized, future studies can incorporate specific growth factors and other organic/inorganic biomolecules to further develop the engineered PLA nanomatrix into a functional ligament-replacement graft.
Reinforcement of dynamically vulcanized EPDM/PP elastomers using organoclay fillers
Tsai, Yuhsin; Wu, Jyh-Horng; Wu, Yao-Tsu; Li, Chia-Hao; Leu, Ming-Tsong
2008-01-01
Dynamically vulcanized EPDM/PP (ethylene-propylene-diene/polypropylene) elastomers reinforced with various amounts of organoclay were prepared using octylphenol-formaldehyde resin and stannous chloride dehydrate as vulcanizing agents. The effects of organoclay on vulcanization characteristics, rheological behavior, morphology, thermal stability and thermomechanical properties were studied. Experimental results showed that organoclay affected neither the vulcanization process nor the degree of vulcanization chemically. X-ray analysis revealed that these organoclay-filled thermoplastic vulcanizates (TPVs) were intercalated. With respect to the mechanical properties, organoclay increased both the strength and degree of elongation of TPVs. The morphological observation of fractured surfaces suggested that organoclay acted as a nucleating agent in TPVs, improving their mechanical properties. However, adding organoclay reduced the thermal stability of TPVs by decomposing the swelling agents in the organoclay. PMID:27878033
Reinforcement of dynamically vulcanized EPDM/PP elastomers using organoclay fillers.
Tsai, Yuhsin; Wu, Jyh-Horng; Wu, Yao-Tsu; Li, Chia-Hao; Leu, Ming-Tsong
2008-12-01
Dynamically vulcanized EPDM/PP (ethylene-propylene-diene/polypropylene) elastomers reinforced with various amounts of organoclay were prepared using octylphenol-formaldehyde resin and stannous chloride dehydrate as vulcanizing agents. The effects of organoclay on vulcanization characteristics, rheological behavior, morphology, thermal stability and thermomechanical properties were studied. Experimental results showed that organoclay affected neither the vulcanization process nor the degree of vulcanization chemically. X-ray analysis revealed that these organoclay-filled thermoplastic vulcanizates (TPVs) were intercalated. With respect to the mechanical properties, organoclay increased both the strength and degree of elongation of TPVs. The morphological observation of fractured surfaces suggested that organoclay acted as a nucleating agent in TPVs, improving their mechanical properties. However, adding organoclay reduced the thermal stability of TPVs by decomposing the swelling agents in the organoclay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, David M.; Imre, Dan; T. Martin, Scot
Chemical transformations and aging of secondary organic aerosol (SOA) particles can alter their physical and chemical properties, including particle morphology. Ammonia, one of the common atmospheric reactive constituents, can react with SOA particles, changing their properties and behavior. At low relative humidity NH3 uptake by α-pinene SOA particles appears to be limited to the particle surface, which suggests that the reacted particles might not be homogeneous and have complex morphology. Here, we present a study aimed at detailed characterization of the effect of ammonia on the composition, density, morphology, shape, and evaporation kinetics of α-pinene SOA particles. We find thatmore » a small amount of NH3 diffuses and reacts throughout the particles bulk, while most of the ammoniated products result from the reaction of NH3 with carboxylic acids on the particle surface, leading to a slight increase in particle size. We show that the reaction products form a solid semi-volatile coating that is a few nanometers thick. This solid coating prevents coagulating particles from coalescing for over two days. However, when the gas phase is diluted this semi-volatile coating evaporates in minutes, which is ensued by rapid coalescence. The ammoniated products in the particle bulk affect particles evaporation kinetics, more so for the smaller particles that contain higher fraction of ammoniated products.« less
Biocompatibility of GaSb thin films grown by RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Nishimoto, Naoki; Fujihara, Junko; Yoshino, Katsumi
2017-07-01
GaSb may be suitable for biological applications, such as cellular sensors and bio-medical instrumentation because of its low toxicity compared with As (III) compounds and its band gap energy. Therefore, the biocompatibility and the film properties under physiological conditions were investigated for GaSb thin films with or without a surface coating. GaSb thin films were grown on quartz substrates by RF magnetron sputtering, and then coated with (3-mercaptopropyl) trimethoxysilane (MPT). The electrical properties, surface morphology, and crystal structure of the GaSb thin film were unaffected by the MPT coating. The cell viability assay suggested that MPT-coated GaSb thin films are biocompatible. Bare GaSb was particularly unstable in pH9 buffer. Ga elution was prevented by the MPT coating, although the Ga concentration in the pH 9 buffer was higher than that in the other solutions. The surface morphology and crystal structure were not changed by exposure to the solutions, except for the pH 9 buffer, and the thin film properties of MPT-coated GaSb exposed to distilled water and H2O2 in saline were maintained. These results indicate that MPT-coated GaSb thin films are biocompatible and could be used for temporary biomedical devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, Ravi; Kaur, Davinder, E-mail: dkaurfph@iitr.ac.in
2016-05-06
In this study, the influence of film thickness on the structural, surface morphology and mechanical properties of Aluminum chromium nitride (AlCrN) thin films has been successfully investigated. The AlCrN thin films were deposited on silicon (100) substrate using dc magnetron reactive co-sputtering at substrate temperature 400° C. The structural, surface morphology and mechanical properties were studied using X-ray diffraction, field-emission scanning electron microscopy and nanoindentation techniques respectively. The thickness of these thin films was controlled by varying the deposition time therefore increase in deposition time led to increase in film thickness. X-ray diffraction pattern of AlCrN thin films with differentmore » deposition time shows the presence of (100) and (200) orientations. The crystallite size varies in the range from 12.5 nm to 36.3 nm with the film thickness due to surface energy minimization with the higher film thickness. The hardness pattern of these AlCrN thin films follows Hall-Petch relation. The highest hardness 23.08 Gpa and young modulus 215.31 Gpa were achieved at lowest grain size of 12.5 nm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broitman, Esteban, E-mail: esbro@ifm.liu.se; Flores-Ruiz, Francisco J.; Di Giulio, Massimo
2016-03-15
In this work, the authors compare the morphological, structural, nanomechanical, and microtribological properties of Pb films deposited by thermal evaporation (TE) and pulsed laser deposition (PLD) techniques onto Si (111) substrates. Films were investigated by scanning electron microscopy, surface probe microscopy, and x-ray diffraction in θ-2θ geometry to determine their morphology, root-mean-square (RMS) roughness, and microstructure, respectively. TE films showed a percolated morphology with densely packed fibrous grains while PLD films had a granular morphology with a columnar and tightly packed structure in accordance with the zone growth model of Thornton. Moreover, PLD films presented a more polycrystalline structure withmore » respect to TE films, with RMS roughness of 14 and 10 nm, respectively. Hardness and elastic modulus vary from 2.1 to 0.8 GPa and from 14 to 10 GPa for PLD and TE films, respectively. A reciprocal friction test has shown that PLD films have lower friction coefficient and wear rate than TE films. Our study has demonstrated for first time that, at the microscale, Pb films do not show the same simple lubricious properties measured at the macroscale.« less
Madera-Santana, T J; Freile-Pelegrín, Y; Azamar-Barrios, J A
2014-08-01
The effects of the addition of glycerol (GLY) on the physicochemical and morphological properties of poly(vinyl alcohol) (PVA)-agar films were reported. PVA-agar films were prepared by solution cast method, and the addition of GLY in PVA-agar films altered the optical properties, resulting in a decrease in opacity values and in the color difference (ΔE) of the films. Structural characterization using Fourier transformation infrared (FTIR) spectroscopy and X-ray diffraction (XRD) indicated that the presence of GLY altered the intensity of the bands (from 1200 to 800cm(-1)) and crystallinity. The characterization of the thermal properties indicated that an increase in the agar content produces a decrease in the melting temperature and augments the heat of fusion. Similar tendencies were observed in plasticized films, but at different magnification. The formulation that demonstrated the lowest mechanical properties contained 25wt.% agar, whereas the formulation that contained 75wt.% agar demonstrated a significant improvement. The water vapor transmission rate (WVTR) and surface morphology analysis demonstrated that the structure of PVA-agar films is reorganized upon GLY addition. The physicochemical properties of PVA-agar films using GLY as a plasticizer provide information for the application of this formulation as packaging material for specific food applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Remhof, Arndt; Borgschulte, Andreas
2008-12-01
The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis.
Sukuroglu, Ebru Emine; Sukuroglu, Suleyman; Akar, Kubra; Totik, Yasar; Efeoglu, Ihsan; Arslan, Ersin
2017-08-01
NiTi alloys exhibit good properties, such as shape memory behavior, high corrosion resistant, having the closest elasticity modulus of a human bone and superior biocompatibility properties. However, the surface problems that arise during the use of this alloy limit the usage in the industry and health sector. In recent years, micro-arc oxidation method is used to improve the surface properties and increase the usage of these alloys. In this study, the TiO 2 coatings were deposited on the NiTi substrates. The surface topography, morphology, crystallographic structure, and thickness of the coatings were determined using scanning electron microscopy and X-ray diffraction. The corrosion properties were investigated using potentiostat test unit in two different media such as NaCl solution and simulated body fluid. The results show that the coated samples have higher corrosion resistance than uncoated samples in the two different media.
Preparation of Artificial Skin that Mimics Human Skin Surface and Mechanical Properties.
Shimizu, Rana; Nonomura, Yoshimune
2018-01-01
We have developed an artificial skin that mimics the morphological and mechanical properties of human skin. The artificial skin comprises a polyurethane block possessing a microscopically rough surface. We evaluated the tactile sensations when skin-care cream was applied to the artificial skin. Many subjects perceived smooth, moist, and soft feels during the application process. Cluster analysis showed that these characteristic tactile feels are similar to those when skin-care cream is applied to real human skin. Contact angle analysis showed that an oil droplet spread smoothly on the artificial skin surface, which occurred because there were many grooves several hundred micrometers in width on the skin surface. In addition, when the skin-care cream was applied, the change in frictional force during the dynamic friction process increased. These wetting and frictional properties are important factors controlling the similarity of artificial skin to real human skin.
NASA Astrophysics Data System (ADS)
Wang, Xushan; Wang, Zihong; Wang, Zhe; Cao, Yu; Meng, Jianqiang
2017-10-01
Antifouling PVDF membranes were prepared by grafting hyperbranched polyols on the membrane surface via a three-step modification method. The membrane was first prepared by alkaline treatment to introduce alkenyl groups, then chemically immobilizing hyperbranched poly(ethyleneimine) (HPEI) on membrane surface through Michael reaction followed by ring opening reaction of the glycidol with amine groups. Chemical compositions, surface morphology and physicochemical properties of the original and modified membranes were characterized via attenuated total refection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), water contact angle (WCA) and zeta potential measurements. The antifouling property of the modified membrane was assessed by the static bovine serum albumin (BSA) and lysozyme (LZM) adsorption as well as cross-flow filtration of BSA aqueous solution. The results explicate that surface modification using hyperbranched polymers can alter membrane chemistry and morphology significantly. In contrast to the original PVDF membrane, the modified membrane shows superhydrophilic property and relatively high capability to resist nonspecific protein adsorption. Three HPEIs were used for modification and the obtained PVDFA-g-PG60,000 membrane has a static BSA protein adsorption of 45 μg/cm2 and shows the highest protein resistance. However, the PVDF-g-PG membrane is positively charged due to the unreacted amine groups. As a result, the PVDF-g-PG membranes also show high flux decline during the filtration of BSA aqueous solution due to the electrostatic interaction. In spite of that, the PVDF-g-PG membranes still maintain high flux recovery ratio and good washing properties.
Efficacy of cold light bleaching using different bleaching times and their effects on human enamel.
Wang, Wei; Zhu, Yuhe; Li, Jiajia; Liao, Susan; Ai, Hongjun
2013-01-01
This study investigated the efficacy of cold light bleaching using different bleaching times and the effects thereof on tooth enamel. Before and after bleaching, stained tooth specimens were subjected to visual and instrumental colorimetric assessments using Vita Shade Guide and spectrophotometric shade matching. Enamel surface alterations were examined using scanning electron microscopy (SEM) to analyze surface morphology, surface microhardness (SMH) measurement to determine changes in mechanical properties, and X-ray diffraction (XRD) to characterize post-bleaching enamel composition. Cold light bleaching successfully improved tooth color, with optimal efficacy when bleaching time was beyond 10 min. Significant differences in surface morphology were observed among the different bleaching times, but no significant differences were observed for enamel composition and surface microhardness among the different bleaching times. Results of this study revealed an association between the bleaching time of cold light bleaching and its whitening efficacy. Together with the results on enamel surface changes, this study provided positive evidence to support cold light bleaching as an in-office bleaching treatment.
Chu, Chenyu; Deng, Jia; Man, Yi; Qu, Yili
2017-09-01
Collagen is the main component of extracellular matrix (ECM) with desirable biological activities and low antigenicity. Collagen materials have been widely utilized in guided bone regeneration (GBR) surgery due to its abilities to maintain space for hard tissue growth. However, pure collagen lacks optimal mechanical properties. In our previous study, epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes, with better biological activities and enhanced mechanical properties, may promote osteoblast proliferation, but their effect on osteoblast differentiation is not very significant. Nanohydroxyapatite (nano-HA) is the main component of mineral bone, which possesses exceptional bioactivity properties including good biocompatibility, high osteoconductivity and osteoinductivity, non-immunogenicity and non-inflammatory behavior. Herein, by analyzing the physical and chemical properties as well as the effects on promoting bone regeneration, we have attempted to present a novel EGCG-modified collagen membrane with nano-HA coating, and have found evidence that the novel collagen membrane may promote bone regeneration with a better surface morphology, without destroying collagen backbone. To evaluate the surface morphologies, chemical and mechanical properties of pure collagen membranes, epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes, nano-HA coated collagen membranes, nano-HA coated EGCG-collagen membranes, (ii) to evaluate the bone regeneration promoted by theses membranes. In the present study, collagen membranes were divided into 4 groups: (1) untreated collagen membranes (2) EGCG cross-linked collagen membranes (3) nano-HA modified collagen membranes (4) nano-HA modified EGCG-collagen membranes. Scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to evaluate surface morphologies and chemical properties, respectively. Mechanical properties were determined by differential scanning calorimeter (DSC) and elastic modulus (EM) measurements. Then in 12 rats, 4 types of membranes were randomly applied to cover the rat calvarial defects. The animals were sacrificed at 8weeks. Histologic analyses were performed using Hematoxylin-eosin (H&E) staining and Masson's Trichrome stains. For statistical analysis, analysis of variance (ANOVA) followed by Tukey's multiple comparison tests was applied. HA nanoparticles were fairly well distributed nanoparticles among the collagen fibers on the nano-HA-modified EGCG-collagen membranes, with smoother surface. Moreover, collagen membranes with modifications all maintained their collagen backbone and the mechanical properties were enhanced by EGCG and nano-HA treatments. In addition, EGCG cross-linked collagen membranes with nano-HA coatings promoted bone regeneration. Nano-HA modified EGCG-collagen membranes can be utilized as a barrier membrane to enhance the bone regeneration in GBR surgeries. Copyright © 2017 Elsevier B.V. All rights reserved.
Dynamics of yield-stress droplets: Morphology of impact craters
NASA Astrophysics Data System (ADS)
Neufeld, Jerome; Sohr, David; Ferrari, Leo; Dalziel, Stuart
2017-11-01
Yield strength can play an important role for the dynamics of droplets impacting on surfaces, whether at the industrial or planetary scale, and can capture a zoo of impact crater morphologies, from simple parabolic craters, to more complex forms with forms with, for example, multiple rings, central peaks. Here we show that the morphology of planetary impact craters can be reproduced in the laboratory using carbopol, a transparent yield-stress fluid, as both impactor and bulk fluid. Using high-speed video photography, we characterise the universal, transient initial excavation stage of impact and show the dependence of the subsequent relaxation to final crater morphology on impactor size, impact speed and yield stress. To further interrogate our laboratory impacts, we dye our impactor to map its final distribution and use particle tracking to determine the flow fields during impact and the maximal extent of the yield surface. We characterise the flow-fields induced during impact, and the maximal extent of the yield surface, by tracking particles within the bulk fluid and map the distribution of impactor and bulk by tracing the final distribution of dyed impactor. The results of laboratory impact droplets are used to infer the properties of planetary impactors, and aid in inter.
NASA Astrophysics Data System (ADS)
Gonderman, S.; Tripathi, J. K.; Sizyuk, T.; Hassanein, A.
2017-08-01
Tungsten (W) has been selected as the divertor material in ITER based on its promising thermal and mechanical properties. Despite these advantages, continued investigation has revealed W to undergo extreme surface morphology evolution in response to relevant fusion operating conditions. These complications spur the need for further exploration of W and other innovative plasma facing components (PFCs) for future fusion devices. Recent literature has shown that alloying of W with other refractory metals, such as tantalum (Ta), results in the enhancement of key PFC properties including, but not limited to, ductility, hydrogen isotope retention, and helium ion (He+) radiation tolerance. In the present study, pure W and W-Ta alloys are exposed to simultaneous and sequential low energy, He+ and deuterium (D+) ion beam irradiations at high (1223 K) and low (523 K) temperatures. The goal of this study is to cultivate a complete understanding of the synergistic effects induced by dual and sequential ion irradiation on W and W-Ta alloy surface morphology evolution. For the dual ion beam experiments, W and W-Ta samples were subjected to four different He+: D+ ion ratios (100% He+, 60% D+ + 40% He+, 90% D+ + 10% He+ and 100% D+) having a total constant He+ fluence of 6 × 1024 ion m-2. The W and W-Ta samples both exhibit the expected damaged surfaces under the 100% He+ irradiation, but as the ratio of D+/He+ ions increases there is a clear suppression of the surface morphology at high temperatures. This observation is supported by the sequential experiments, which show a similar suppression of surface morphology when W and W-Ta samples are first exposed to low energy He+ irradiation and then exposed to subsequent low energy D+ irradiation at high temperatures. Interestingly, this morphology suppression is not observed at low temperatures, implying there is a D-W interaction mechanism which is dependent on temperature that is driving the suppression of the microstructure evolution in both the pure W and W-Ta alloys. Minor irradiation tolerance enhancement in the performance of the W-Ta samples is also observed.
Zhou, Xiaorun; Lu, Taiping; Zhu, Yadan; Zhao, Guangzhou; Dong, Hailiang; Jia, Zhigang; Yang, Yongzhen; Chen, Yongkang; Xu, Bingshe
2017-12-01
Surface morphology evolution mechanisms of InGaN/GaN multiple quantum wells (MQWs) during GaN barrier growth with different hydrogen (H 2 ) percentages have been systematically studied. Ga surface-diffusion rate, stress relaxation, and H 2 etching effect are found to be the main affecting factors of the surface evolution. As the percentage of H 2 increases from 0 to 6.25%, Ga surface-diffusion rate and the etch effect are gradually enhanced, which is beneficial to obtaining a smooth surface with low pits density. As the H 2 proportion further increases, stress relaxation and H 2 over- etching effect begin to be the dominant factors, which degrade surface quality. Furthermore, the effects of surface evolution on the interface and optical properties of InGaN/GaN MQWs are also profoundly discussed. The comprehensive study on the surface evolution mechanisms herein provides both technical and theoretical support for the fabrication of high-quality InGaN/GaN heterostructures.
NASA Astrophysics Data System (ADS)
Hermens, U.; Kirner, S. V.; Emonts, C.; Comanns, P.; Skoulas, E.; Mimidis, A.; Mescheder, H.; Winands, K.; Krüger, J.; Stratakis, E.; Bonse, J.
2017-10-01
Inorganic materials, such as steel, were functionalized by ultrashort laser pulse irradiation (fs- to ps-range) to modify the surface's wetting behavior. The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. A systematic experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, spikes, etc.). Analyses of the surface using optical as well as scanning electron microscopy revealed morphologies providing the optimum similarity to the natural skin of lizards. For mimicking skin structures of moisture-harvesting lizards towards an optimization of the surface wetting behavior, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally disclosed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting properties.
Spatially selective modification of PLLA surface: From hydrophobic to hydrophilic or to repellent
NASA Astrophysics Data System (ADS)
Bastekova, Kristina; Guselnikova, Olga; Postnikov, Pavel; Elashnikov, Roman; Kunes, Martin; Kolska, Zdenka; Švorčík, Vaclav; Lyutakov, Oleksiy
2017-03-01
A universal approach to controlled surface modification of polylactic acid (PLLA) films using diazonium chemistry was proposed. The multistep procedure includes surface activation of PLLA by argon plasma treatment and chemical activation of arenediazonium tosylates by NaBH4. The surface of PLLA film was grafted with different functional organic groups (OFGs), changing the PLLA surface properties (wettability, morphology, zeta potential, chemical composition, and mechanical response). Three approaches of OFG grafting were examined: (i) plasma treatment following by PLLA immersion into diazonium salt aqueous solution; (ii) grafting of PLLA surface through the reaction with chemically created aryl radicals; (iii) mutual combination of both methods The best results were achieved in the last case, where the previous plasma treatment was combined with further reaction of PLLA surface with generated aryl radicals. Using this method PLLA surface was successfully grafted with amino, carboxyl, aliphatic and fluorinated OFGs. Further investigation of surface properties from potential biological and medical points of view was performed using zeta potential, biodegradation and biofouling tests. It was shown that proposed technique allows preparation of biorepellent or bioabsorptive surfaces, tuning of PLLA biodegradation rate and nanomechanical properties, as well as the introduction of inverse properties (such as hydrophilic and hydrophobic) on both sides of PLLA films.
NASA Astrophysics Data System (ADS)
Alhaji Yabagi, Jibrin; Isah Kimpa, Mohammed; Nmayaya Muhammad, Muhammad; Rashid, Saiful Bin; Zaidi, Embong; Arif Agam, Mohd
2018-01-01
Irradiation of polymers causes structural, chemical and the optical properties changes. Polystyrene nanosphere was drop coated to substrates and the gamma irradiation was carried out in a Cesium-137 (Cs-137) source chamber at different time (1-5 hours) with constant dose of 30 kGy. Fourier transformation infrared spectroscopy (FTIR) and Raman spectroscopy were employed to characterize the chemical properties of irradiated polystyrene while Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used to study the surface morphological changes of the samples. The optical energy band gaps of the thin films were investigated and studied using transmittance and absorbance measurements. The results obtained revealed that as irradiation time increases the optical properties changes and polystyrene gradually undergoes crystal to carbonaceous from its amorphous state. The average particles diameter and roughness of the samples decreases with increasing irradiation time.
Synthesis and electrochemical properties of polyaniline nanofibers by interfacial polymerization.
Manuel, James; Ahn, Jou-Hyeon; Kim, Dul-Sun; Ahn, Hyo-Jun; Kim, Ki-Won; Kim, Jae-Kwang; Jacobsson, Per
2012-04-01
Polyaniline nanofibers were prepared by interfacial polymerization with different organic solvents such as chloroform and carbon tetrachloride. Field emission scanning electron microscopy and transmission electron microscopy were used to study the morphological properties of polyaniline nanofibers. Chemical characterization was carried out using Fourier transform infrared spectroscopy, UV-Vis spectroscopy, and X-ray diffraction spectroscopy and surface area was measured using BET isotherm. Polyaniline nanofibers doped with lithium hexafluorophosphate were prepared and their electrochemical properties were evaluated.
Atomic force microscopy study on topography of films produced by ion-based techniques
NASA Astrophysics Data System (ADS)
Wang, X.; Liu, X. H.; Zou, S. C.; Martin, P. J.; Bendavid, A.
1996-09-01
The evolution of surface morphologies of films prepared by ion-based deposition techniques has been investigated by atomic force microscopy. Two deposition processes, filtered arc deposition (FAD) and ion-beam-assisted deposition, where low-energy (<100 eV) ion irradiation and high-energy (several tens of keV) ion-beam bombardment concurrent with film growth were involved, respectively, have been employed to prepare TiN and Al films. Comparative studies on the effect of energetic ions on the development of topography have been performed between the low-ion-energy regime and high-ion-energy regime. In addition, the relationship between topography and mechanical properties of thin films has been revealed, by involving thin films prepared by thermal evaporation deposition (TED), where almost all depositing particles are neutral. In the images of the TED TiN and Al films, a large number of porous and deep boundaries between columnar grains was observed, suggesting a very rough and loose surface. In contrast, the FAD films exhibited much denser surface morphologies, although still columnar. The root-mean-square roughness of the FAD films was less than 1 Å. Hardness test and optical parameter measurement indicated that the FAD films were much harder and, in the case of optical films, much more transparent than the TED films, which was considered to arise from the denser surface morphologies rather than crystallization of the films. The high density and super smoothness of the FAD films, and the resultant mechanical and optical properties superior to those of the TED films, were attributed to the enhancement of surface migration of the deposited adatoms in the FAD process, which could provide intensive low-energy ion irradiation during film growth. As for topography modification by high-energy ion-beam bombardment concurrent with film growth, in addition to the increase of surface diffusion due to elastic collision and thermal spikes, physical sputtering must be considered while explaining the development of the film topography. Both surface migration enhancement and sputtering played important roles in the case of high-energy heavy-ion-beam bombardment, under which condition surface morphology characterized by dense columns with larger dimension and deep clean boundaries was formed. However, under high-energy light-ion-beam bombardment, the sputtering was dominant, and the variation of sputtering coefficient with position on the surface of growing film led to the formation of cones.
NASA Astrophysics Data System (ADS)
Kang, Can; Liu, Haixia; Zhang, Tao; Li, Qing
2017-12-01
To illuminate primary factors influencing the morphology of the surface impinged by submerged waterjet, experiments were performed at high jet pressures from 200 to 320 MPa. The cavitation phenomenon involved in the submerged waterjet was emphasized. Copper specimens were used as the targets enduring the impingement of high-pressure waterjets. The microhardness of the specimen was measured. Surface morphology was observed using an optical profiling microscope. Pressure fluctuations near the jet stream were acquired with miniature pressure transducers. The results show that microhardness increases with jet pressure and impingement time, and the hardening effect is restricted within a thin layer underneath the target surface. A synthetic effect is testified with the plastic deformation and cavities on the specimen surfaces. Characteristics of different cavitation erosion stages are illustrated by surface morphology. At the same jet pressure, the smallest standoff distance is not corresponding to the highest mass removal rate. Instead, there is an optimal standoff distance. With the increase of jet pressure, overall mass removal rate rises as well. Low-frequency components are predominant in the pressure spectra and the dual-peak pattern is typical. As the streamwise distance from the nozzle is enlarged, pressure amplitudes associated with cavitation bubble collapse are improved.
NASA Astrophysics Data System (ADS)
Liao, Yunn-shiuan; Chen, Ying-Tung; Chao, Choung-Lii; Liu, Yih-Ming
2005-01-01
Owing to the high bonding energy, most of the glasses are removed by photo-thermal rather than photo-chemical effect when they are ablated by the 193 or 248nm excimer lasers. Typically, the machined surface is covered by re-deposited debris and the sub-surface, sometimes surface as well, is scattered with micro-cracks introduced by thermal stress generated during the process. This study aimed to investigate the nature and extent of the surface morphology and sub-surface damaged (SSD) layer induced by the laser ablation. The effects of laser parameters such as fluence, shot number and repetition rate on the morphology and SSD were discussed. An ArF excimer laser (193 nm) was used in the present study to machine glasses such as soda-lime, Zerodur and BK-7. It is found that the melt ejection and debris deposition tend to pile up higher and become denser in structure under a higher energy density, repetition rate and shot number. There are thermal stress induced lateral cracks when the debris covered top layer is etched away. Higher fluence and repetition rate tend to generate more lateral and median cracks which propagate into the substrate. The changes of mechanical properties of the SSD layer were also investigated.
Young, T H; Lin, D T; Chen, L Y
2000-06-15
This study evaluated the effects of crystalline polyamide (Nylon-66), poly(ethylene-co-vinyl alcohol) (PEVA), and poly(vinylidene fluoride) (PVDF) polymers with nonporous and porous morphologies on the ability of monocytes to adhere and subsequently activate to produce IL-1beta, IL-6, and tumor necrosis factor alpha. The results indicated monocyte adhesion and activation on a material might differ to a great extent, depending on the surface morphology and wettability. As the polymer wettability increases, the ability of monocytes to adhere increases but the ability to produce cytokines decreases. Similarly, these polymers, when prepared with porous surfaces, enhance monocyte adhesion but suppress monocyte release of cytokines. Therefore, the hydrophobic PVDF with a nonporous surface stimulates the most activity in adherent monocytes but shows the greatest inhibition of monocyte adhesion when compared with all of the other membranes. In contrast, the hydrophilic Nylon-66, which has a porous surface, is a relatively better substrate for this work. Therefore, monocyte behavior on a biomaterial may be influenced by a specific surface property. Based on this result, we propose that monocyte adhesion is regulated by a different mechanism than monocyte activation. Consequently, the generation of cytokines by monocytes is not proportional to the number of cells adherent to the surface. Copyright 2000 John Wiley & Sons, Inc.
Investigation of phase transition properties of ZrO2 thin films
NASA Astrophysics Data System (ADS)
Kumar, Davinder; Singh, Avtar; Kaur, Manpreet; Rana, Vikrant Singh; Kaur, Raminder
2018-05-01
This paper presents the synthesis of transparent thin films of zirconium oxide (ZrO2) deposited on glass substrates by sol-gel dip coating technique. Synthesized films were characterized for different annealing time and withdrawal speed. Change in crystallographic properties of thin films was investigated by using X-ray diffraction. Surface morphology of transparent thin films was estimated by using scanning electron microscope.
Surface Modification of Carbon Fiber Polymer Composites after Laser Structuring
NASA Astrophysics Data System (ADS)
Sabau, Adrian S.; Chen, Jian; Jones, Jonaaron F.; Hackett, Alexandra; Jellison, Gerald D.; Daniel, Claus; Warren, David; Rehkopf, Jackie D.
The increasing use of Carbon Fiber-reinforced Polymer matrix Composites (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin on the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg — T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90° plaques. The effect of laser fluence, scanning speed, and wavelength was investigated on the removal rate of the resin without an excessive damage of the fibers. In addition, resin ablation due to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on surface morphology.
Effect of surface roughness of trench sidewalls on electrical properties in 4H-SiC trench MOSFETs
NASA Astrophysics Data System (ADS)
Kutsuki, Katsuhiro; Murakami, Yuki; Watanabe, Yukihiko; Onishi, Toru; Yamamoto, Kensaku; Fujiwara, Hirokazu; Ito, Takahiro
2018-04-01
The effects of the surface roughness of trench sidewalls on electrical properties have been investigated in 4H-SiC trench MOSFETs. The surface roughness of trench sidewalls was well controlled and evaluated by atomic force microscopy. The effective channel mobility at each measurement temperature was analyzed on the basis of the mobility model including optical phonon scattering. The results revealed that surface roughness scattering had a small contribution to channel mobility, and at the arithmetic average roughness in the range of 0.4-1.4 nm, there was no correlation between the experimental surface roughness and the surface roughness scattering mobility. On the other hand, the characteristics of the gate leakage current and constant current stress time-dependent dielectric breakdown tests demonstrated that surface morphology had great impact on the long-term reliability of gate oxides.
Experimental study on surface properties of the PMMA used in high power spark gaps
NASA Astrophysics Data System (ADS)
Han, Ruoyu; Wu, Jiawei; Ding, Weidong; Liu, Yunfei; Gou, Yang
2017-10-01
This paper studies the surface properties of the Polymethylmethacrylate (PMMA) insulator samples used in high power spark gaps. Experiments on surface morphology, surface profile, surface chemical composition and surface leakage current were performed. Metal particles ejected in tangent direction of discharge spots were researched on the sample surface. Three kinds of distinct bands were found on the surface after 1500 shots: colorless and transparent sinking band, black band, and grey powdered coating band. The thickness of the coating band was tens of microns and the maximum radial erosion rate was about 10 μm/C. Surface content analysis indicated that the powdered coating was a mixture of decomposed insulator material and electrode material oxides. In addition, leakage current significantly depended on water content in the chamber and presented an U-shape curve distribution along the insulator surface, in keeping with the amount of powdered coating due to shock waves. Possible reasons of the surface property changes were discussed. Electroconductive oxides of low valence states of Cu and W produced by the reactions between electrode materials and arc plasmas were considered to be the cause of dielectric performance degradation.
NASA Astrophysics Data System (ADS)
Devasia, Sebin; Anila, E. I.
2018-04-01
Here we report the growth and characterization of chemically grown aluminium doped zinc oxide nanorods on seed layers. The seed layers were prepared by chemical spray pyrolysis which acted as the growth centers. The growth duration of nanorods were varied from 3h to 12h in steps of 3h. Further, investigations on their structural, morphological, electrical and optical properties. The SEM images confirmed the hexagonal shaped nanorod arrays grown on the seed layers. Later, the x-ray diffraction measurements revealed the pure zinc oxide phase of the samples. Photoluminescence and photoconductivity studies were carried out to analyze the potential of its optoelectronic properties.
Self-organizing layers from complex molecular anions
Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.; ...
2018-05-14
The formation of traditional ionic materials occurs principally via joint accumulation of both anions and cations. Here in this paper, we describe a previously unreported phenomenon by which macroscopic liquid-like thin layers with tunable self-organization properties form through accumulation of stable complex ions of one polarity on surfaces. Using a series of highly stable molecular anions we demonstrate a strong influence of the internal charge distribution of the molecular ions, which is usually shielded by counterions, on the properties of the layers. Detailed characterization reveals that the intrinsically unstable layers of anions on surfaces are stabilized by simultaneous accumulation ofmore » neutral molecules from the background environment. Different phases, self-organization mechanisms and optical properties are observed depending on the molecular properties of the deposited anions, the underlying surface and the coadsorbed neutral molecules. This demonstrates rational control of the macroscopic properties (morphology and size of the formed structures) of the newly discovered anion-based layers.« less
Self-organizing layers from complex molecular anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.
The formation of traditional ionic materials occurs principally via joint accumulation of both anions and cations. Here in this paper, we describe a previously unreported phenomenon by which macroscopic liquid-like thin layers with tunable self-organization properties form through accumulation of stable complex ions of one polarity on surfaces. Using a series of highly stable molecular anions we demonstrate a strong influence of the internal charge distribution of the molecular ions, which is usually shielded by counterions, on the properties of the layers. Detailed characterization reveals that the intrinsically unstable layers of anions on surfaces are stabilized by simultaneous accumulation ofmore » neutral molecules from the background environment. Different phases, self-organization mechanisms and optical properties are observed depending on the molecular properties of the deposited anions, the underlying surface and the coadsorbed neutral molecules. This demonstrates rational control of the macroscopic properties (morphology and size of the formed structures) of the newly discovered anion-based layers.« less
Morphology of growth of Bi2Sr2CaCu2O8 single crystals
NASA Astrophysics Data System (ADS)
Indenbom, M. V.; van der Beek, C. J.; Berseth, V.; Wolf, Th.; Berger, H.; Benoit, W.
1996-12-01
A good correlation of twins on the basal surface of flux-grown Bi2Sr2CaCu2Ox (BSCCO) single crystals with surface. growth steps is observed, the b-axis being perpendicular to the steps and, thus, parallel to the growth direction. It is found that mono-twin BSCCO single crystals produced by the travelling solvent floating zone method also grow preferentially along b, i.e. nearly perpendicularly to the boule axis, contrary to the common belief. This new understanding of the morphology of growth explains the nature of major defects in these crystals, which considerably change their measured superconducting properties, in a different way.
Kudasova, E O; Vlasova, L F; Semenov, D E; Lushnikova, E L
2017-03-01
Morphological analysis of the subcutaneous fat was performed in rats after subcutaneous implantation of basic dental plastic materials with different hydrophobic and hydrophilic properties. It was shown that subcutaneous implantation of dental plastics with mostly hydrophobic surface and low biocompatibility induced destructive and inflammatory processes of various intensities, sometimes with allergic component; morphological signs of processes persisted for 6 weeks. Modification of basic plastics using glow-discharge plasma and enhancement of their hydrophilicity and biocompatibility significantly reduced the intensity of destructive and inflammatory processes and ensured more rapid (in 2 weeks) repair of the destroyed tissues with the formation of fibrous capsule around the implant.
Effect of synthesis conditions on the nanopowder properties of Ce{sub 0.9}Zr{sub 0.1}O{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimicz, M.G.; Fabregas, I.O.; Lamas, D.G.
Graphical abstract: . The synthesis of nanocrystalline Ce{sub 0.9}Zr{sub 0.1}O{sub 2} powders via the gel-combustion method, using different fuels, and following either stoichiometric or non-stoichiometric pH-controlled routes is investigated. Research highlights: {yields} All samples exhibited the fluorite-type crystal structure, nanometric average crystallite size and negligible carbon content. {yields} Synthesis conditions strongly affect the average crystallite size, the degree of agglomeration, the specific surface area and the pore volume. {yields} Our results indicate that, by controlling the synthesis conditions it is possible to obtain solids with custom-made morphological properties. -- Abstract: In this work, the synthesis of nanocrystalline Ce{sub 0.9}Zr{sub 0.1}O{submore » 2} powders via the gel-combustion method, using different fuels, and following either stoichiometric or non-stoichiometric pH-controlled routes is investigated. The objective is to evaluate the effect of synthesis conditions on the textural and morphological properties, and the crystal structure of the synthesized materials. The solids were characterized by nitrogen physisorption, Scanning Electron Microscopy (SEM), X-ray powder diffraction (XPD), and Carbon-Hydrogen-Nitrogen Elemental Analysis (CHN). All the powders exhibited nanometric crystallite size, fluorite-type structure and negligible carbon content. Synthesis conditions strongly affect the average crystallite size, the degree of agglomeration, the specific surface area and the pore volume. Our results indicate that, by controlling the synthesis conditions it is possible to obtain solids with custom-made morphological properties.« less
de Souza, Gustavo Fernandes; Arrais, Ana Beatriz; Aragão, Cícero Flávio Soares; Ferreira, Isana Alvares; Borges, Boniek Castillo Dutra
2018-01-01
To evaluate if physical and mechanical properties of self-curing calcium hydroxide cements were affected by contact with polyacrylic and phosphoric acids. Resin-containing (Life (LF)) and resin-free (Hydro C (HyC)) materials were subjected to polyacrylic acid conditioning and rinsing (POL); phosphoric acid conditioning and rinsing (PHO); rinsing only; and no treatment ( n = 10). Water sorption/solubility, release of hydroxyl ions (pH), roughness (Ra), and impact resistance were evaluated. Additional samples ( n = 1) were prepared for scanning electron microscopy (SEM) analysis of the surface morphology. Data were analyzed by two-way ANOVA and Tukey post hoc test ( P < 0.05). Water sorption was significantly higher for LF when in contact with PHO and lower for POL ( P < 0.05). The mean solubility was higher with POL for both cements ( P < 0.05). PHO increased the mean surface roughness for HyC ( P < 0.01); a significant decrease was noted for LF after contact with both acids ( P < 0.01). PHO promoted lower release of hydroxyl ions on both cements ( P < 0.05). For LF, rinsing, PHO, and POL presented similar morphology, differing from the control group. For HyC, PHO and POL presented similar morphology, differing from the control group. PHO had a negative effect on the physical properties of the cements tested, except for the solubility test. POL affected roughness and solubility of HyC cement. Clinical procedures that require polyacrylic and phosphoric acid conditioning must be done carefully on self-curing calcium hydroxide cements in order to avoid negative impact on their properties.
NASA Astrophysics Data System (ADS)
Karpuraranjith, M.; Thambidurai, S.
Biotemplate-based zinc oxide nanocomposite was effectively prepared via simple chemical precipitation route. The functional groups of amino (-NH2), hydroxyl (-OH) and O-Zn-O were confirmed and characterized by FTIR spectroscopy. The structural and morphological properties were confirmed by XRD, UV-Vis DRS, HR-SEM and TEM analyses. The elemental composition of carbon, nitrogen, zinc and oxygen was confirmed by energy-dispersive X-ray analysis (EDAX) and Brunauer-Emmett-Teller high surface area of materials was estimated to be 52.49m2/g, respectively. Thermogravimetric analysis (TGA) shows that biotemplate on zinc oxide nanocomposite has higher thermal stability than chitosan matrix. The results demonstrate that biotemplate on zinc oxide matrix causes immobilization effect among the two components. Therefore, chitosan-ZnO nanocomposite has a microcrystalline morphological structure and also good thermal stability, so it can be a promising material for sensors, medical, tissue engineering and wastewater treatment applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com; Mamat, M. H., E-mail: mhmamat@salam.uitm.edu.my; Rusop, M., E-mail: rusop@salam.uitm.my
2016-07-06
Effects of different morphological structures of ZnO to the performance of the device in the humidity sensing have been studied. Two different kinds of nanostructures were obtained which are nanords and nanoflakes. From the surface morphology image, the ZnO nanoflakes has lower diameter size of 100 nm compared to ZnO nanorods of 250 nm. The ZnO nanoflakes are not aligned and has low porous structure compared to ZnO nanorods. The humidity sensor performance of ZnO nanorods has superior performance compared to ZnO nanoflakes. The sensitivity of the ZnO nanorods sensor is 3.20 which are almost two times higher than themore » ZnO nanoflakes of 1.65. The structural properties of the samples have been characterized using field emission scanning electron microscopy (FESEM) electrical properties has been characterized using current voltage (I-V) measurement.« less
NASA Astrophysics Data System (ADS)
Hu, X.; Maiti, R.; Liu, X.; Gerhardt, L. C.; Lee, Z. S.; Byers, R.; Franklin, S. E.; Lewis, R.; Matcher, S. J.; Carré, M. J.
2016-03-01
Bio-mechanical properties of the human skin deformed by external forces at difference skin/material interfaces attract much attention in medical research. For instance, such properties are important design factors when one designs a healthcare device, i.e., the device might be applied directly at skin/device interfaces. In this paper, we investigated the bio-mechanical properties, i.e., surface strain, morphological changes of the skin layers, etc., of the human finger-pad and forearm skin as a function of applied pressure by utilizing two non-invasive techniques, i.e., optical coherence tomography (OCT) and digital image correlation (DIC). Skin deformation results of the human finger-pad and forearm skin were obtained while pressed against a transparent optical glass plate under the action of 0.5-24 N force and stretching naturally from 90° flexion to 180° full extension respectively. The obtained OCT images showed the deformation results beneath the skin surface, however, DIC images gave overall information of strain at the surface.
NASA Astrophysics Data System (ADS)
Rossi, Gabriella; Castellano, Piera; Incarnato, Loredana
2016-10-01
A method was developed for generating transparent and hydrophobic nanolayers chemisorbed onto flexible substrates of ethylene tetrafluoroethylene-silicon oxide (ETFE-SiOx). In particular, the effect of the deposition time and of the precursor molecule on the nanocoating process was analyzed with the aim of pursuing an optimization of the above method in an industrial application perspective. It was found that precursor molecule of triethoxysilane allowed to obtain better hydrophobic properties on the SiOx surface in shorter times compared to trichlorosilane, reaching the 92 % of final contact angle (CA) value of 106° after only 1 h of deposition. The optical properties and surface morphology were also assessed in function of time, revealing that an initial transparency reduction is followed by a subsequent transmittance increase during the self assembly of fluoroalkylsilanes on the SiOx surface, coherently with the surface roughness analysis data. Encouraging results were also obtained in terms of oleophobic properties improvement of the nanocoated surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rusnan, Fara Naila; Mohamad, Khairul Anuar; Seria, Dzul Fahmi Mohd Husin
3,16-bis triisopropylsilylethynyl (Pentacene) (TIPS-Pentacene) compactable interface property is important in order to have a good arrangement of molecular structure. Comparison for TIPS-Pentacene deposited between two different surface layers conducted. 0.1wt% TIPS-Pentacene diluted in chloroform were deposited onto poly(methylmeaclyrate) (PMMA) layered transparent substrates using slide coating method. X-ray diffraction (XRD) used to determine crystallinity of thin films. Series of (00l) diffraction peaks obtained with sharp first peaks (001) for TIPS-Pentacene deposited onto PMMA layer at 5.35° and separation of 16.3 Å. Morphology and surface roughness were carried out using scanning electron microscope (SEM) and surface profilemeter LS500, respectively.TIPS-Pentacene deposited onto PMMAmore » layer formed needled-like-shape grains with 10.26 nm surface roughness. These properties were related as thin film formed and its surface roughness plays important role towards good mobility devices.« less
Texturing of UHMWPE surface via NIL for low friction and wear properties
NASA Astrophysics Data System (ADS)
Suryadi Kustandi, Tanu; Choo, Jian Huei; Low, Hong Yee; Sinha, Sujeet K.
2010-01-01
Wear is a major obstacle limiting the useful life of implanted ultra-high molecular weight polyethylene (UHMWPE) components in total joint arthroplasty. It has been a continuous effort in the implant industry to reduce the frictional wear problem of UHMWPE by improving the structure, morphology and mechanical properties of the polymer. In this paper, a new paradigm that utilizes nanoimprint lithography (NIL) in producing textures on the surface of UHMWPE is proposed to efficiently improve the tribological properties of the polymer. Friction and wear experiments were conducted on patterned and controlled (non-patterned) UHMWPE surfaces using a commercial tribometer, mounted with a silicon nitride ball, under a dry-sliding condition with normal loads ranging from 60 to 200 mN. It has been shown that the patterned UHMWPE surface showed a reduction in the coefficient of friction between 8% and 35% as compared with the controlled (non-patterned) surface, depending on the magnitude of the normal load. Reciprocating wear experiments also showed that the presence of surface textures on the polymer resulted in lower wear depth and width, with minimal material transfer to the sliding surface.
NASA Astrophysics Data System (ADS)
Shi, Chen; Wang, Jing; Chen, Ping; Feng, Jiayue; Cui, Jinyuan; Yang, Faze
2017-12-01
Domestic Aramid Fiber III (DAF III) was modified by oxygen plasma treatment. The fiber surface characteristics was observed by Scanning Electron Microscopy. The results showed that oxygen plasma treatment changed surface morphologies. The effects of oxygen plasma treatment on DAF III reinforced bismaleimides (BMI) composite bending and interfacial properties were investigated, respectively. The ILSS value increased from 49.3 MPa to 56.0 MPa (by 13.5%) after oxygen plasma treatment. The bending strength changed a little. Furthermore, the composite rupture mode changed from interfacial rupture to fiber or resin bulk rupture.
Hybrid Solar Cells: Materials, Interfaces, and Devices
NASA Astrophysics Data System (ADS)
Mariani, Giacomo; Wang, Yue; Kaner, Richard B.; Huffaker, Diana L.
Photovoltaic technologies could play a pivotal role in tackling future fossil fuel energy shortages, while significantly reducing our carbon dioxide footprint. Crystalline silicon is pervasively used in single junction solar cells, taking up 80 % of the photovoltaic market. Semiconductor-based inorganic solar cells deliver relatively high conversion efficiencies at the price of high material and manufacturing costs. A great amount of research has been conducted to develop low-cost photovoltaic solutions by incorporating organic materials. Organic semiconductors are conjugated hydrocarbon-based materials that are advantageous because of their low material and processing costs and a nearly unlimited supply. Their mechanical flexibility and tunable electronic properties are among other attractions that their inorganic counterparts lack. Recently, collaborations in nanotechnology research have combined inorganic with organic semiconductors in a "hybrid" effort to provide high conversion efficiencies at low cost. Successful integration of these two classes of materials requires a profound understanding of the material properties and an exquisite control of the morphology, surface properties, ligands, and passivation techniques to ensure an optimal charge carrier generation across the hybrid device. In this chapter, we provide background information of this novel, emerging field, detailing the various approaches for obtaining inorganic nanostructures and organic polymers, introducing a multitude of methods for combining the two components to achieve the desired morphologies, and emphasizing the importance of surface manipulation. We highlight several studies that have fueled new directions for hybrid solar cell research, including approaches for maximizing efficiencies by controlling the morphologies of the inorganic component, and in situ molecular engineering via electrochemical polymerization of a polymer directly onto the inorganic nanowire surfaces. In the end, we provide some possible future directions for advancing the field, with a focus on flexible, lightweight, semitransparent, and low-cost photovoltaics.
Facile growth of barium oxide nanorods: structural and optical properties.
Ahmad, Naushad; Wahab, Rizwan; Alam, Manawwer
2014-07-01
This paper reports a large-scale synthesis of barium oxide nanorods (BaO-NRs) by simple solution method at a very low-temperature of - 60 degrees C. The as-grown BaO-NRs were characterized in terms of their morphological, structural, compositional, optical and thermal properties. The morphological characterizations of as-synthesized nanorods were done by scanning electron microscopy (SEM) which confirmed that the synthesized products are rod shaped and grown in high density. The nanorods exhibits smooth and clean surfaces throughout their lengths. The crystalline property of the material was analyzed with X-ray diffraction pattern (XRD). The compositional and thermal properties of synthesized nanorods were observed via Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis which confirmed that the synthesized nanorods are pure BaO and showed good thermal stability. The nanorods exhibited good optical properties as was confirmed from the room-temperature UV-vis spectroscopy. Finally, a plausible mechanism for the formation of BaO-NRs is also discussed in this paper.
Yang, Wenguang; Yu, Haibo; Li, Gongxin; Wang, Yuechao; Liu, Lianqing
2016-12-01
Poly(ethylene glycol) diacrylate (PEGDA) is a common hydrogel that has been actively investigated for various tissue engineering applications owing to its biocompatibility and excellent mechanical properties. However, the native PEGDA films are known for their bio-inertness which can hinder cell adhesion, thereby limiting their applications in tissue engineering and biomedicine. Recently, nano composite technology has become a particularly hot topic, and has led to the development of new methods for delivering desired properties to nanomaterials. In this study, we added polystyrene nano-spheres (PS) into a PEGDA solution to synthesize a nano-composite film and evaluated its characteristics. The experimental results showed that addition of the nanospheres to the PEGDA film not only resulted in modification of the mechanical properties and surface morphology but further improved the adhesion of cells on the film. The tensile modulus showed clear dependence on the addition of PS, which enhanced the mechanical properties of the PEGDA-PS film. We attribute the high stiffness of the hybrid hydrogel to the formation of additional cross-links between polymeric chains and the nano-sphere surface in the network. The effect of PS on cell adhesion and proliferation was evaluated in L929 mouse fibroblast cells that were seeded on the surface of various PEGDA-PS films. Cells density increased with a larger PS concentration, and the cells displayed a spreading morphology on the hybrid films, which promoted cell proliferation. Impressively, cellular stiffness could also be modulated simply by tuning the concentration of nano-spheres. Our results indicate that the addition of PS can effectively tailor the physical and biological properties of PEGDA as well as the mechanical properties of cells, with benefits for biomedical and biotechnological applications.
Mollahosseini, Arash; Rahimpour, Ahmad
2013-01-01
A new, thin film, biofouling resistant, nanofiltration (NF) membrane was fabricated with two key characteristics, viz. a low rate of silver (Ag) release and long-lasting antibacterial properties. In the new approach, nanoparticles were embedded completely in a polymeric thin-film layer. A comparison was made between the new thin-film composite (TFC), NF membrane and thin-film nanocomposite (TFN), and antibacterial NF membranes. Both types of NF membrane were fabricated by interfacial polymerization on a polysulphone sublayer using m-phenylenediamine and trimesoyl chloride as an amine monomer and an acid chloride monomer, respectively. Energy dispersive X-ray (EDX) microanalysis demonstrated the presence of Ag nanoparticles. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to study the cross-sectional and surface morphological properties of the NF membranes. Permeability and salt rejection were tested using a dead-end filtration cell. Ag leaching from the membranes was measured using inductively coupled mass spectrometry (ICP-MS). Morphological studies showed that the TFC NF membranes had better thin-film formation (a more compact structure and a smoother surface) than TFN NF membranes. Performance experiments on TFC NF membranes revealed that permeability was good, without sacrificing salt rejection. The antibacterial properties of the fabricated membranes were tested using the disk diffusion method and viable plate counts. The antibiofouling properties of the membranes were examined by measuring the quantity of bacterial cells released from the biofilm formed (as a function of the amount of biofilm present). A more sensitive surface was observed compared to that of a typical antibacterial NF membrane. The Ag leaching rates were low, which will likely result in long-lasting antibacterial and biofouling resistant properties.
2004-06-22
Released 22 June 2004 This pair of images shows part of Arsia Mons. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -19.6, Longitude 241.9 East (118.1 West). 100 meter/pixel resolution. http://photojournal.jpl.nasa.gov/catalog/PIA06399
Crater Ejecta by Day and Night
2004-06-24
Released 24 June 2004 This pair of images shows a crater and its ejecta. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -9, Longitude 164.2 East (195.8 West). 100 meter/pixel resolution. http://photojournal.jpl.nasa.gov/catalog/PIA06445
NASA Astrophysics Data System (ADS)
Özen, İlhan; Şimşek, Süleyman; Okyay, Gamze
2015-03-01
In this study, a diatomite sample, which is a natural inorganic mineral with inherently high water and oil absorption capacity, was subjected to grinding before surface modification. Afterwards, the diatomite surface was modified via facile methods using a fluorocarbon (FC) chemical and stearic acid (SA) in addition to the sol-gel fluorosilanization (FS) process. The water and oil wettability, and oil absorbency properties of the unmodified and modified diatomites were investigated in addition to diatomite characterizations such as chemical content, surface area, particle size distribution, morphology, and modification efficiency. It was revealed that the wettability was changed completely depending on the surface modification agent and the media used, while the oil absorbency property surprisingly did not change. On the other hand, the oil absorbency was worsened by the grinding process, whereas the wettability was not affected.
LDEF-space environmental effects on materials: Composites and silicone coatings
NASA Technical Reports Server (NTRS)
Petrie, Brian C.
1992-01-01
The effects of long term low Earth orbit environments on thermal control coatings and organic matrix/fiber reinforced composites are discussed. Two diverse categories are reported here: silicone coatings and composites. For composites physical and structural properties were analyzed; results are reported on mass/dimensional loss, microcracking, short beam shear, coefficient of thermal expansion (CTE), and flexural properties. The changes in thermal control properties, mass, and surface chemistry and morphology are reported and analyzed for the silicone coatings.
LDEF-space environmental effects on materials: Composites and silicone coatings
NASA Technical Reports Server (NTRS)
Petrie, Brian C.
1991-01-01
The objective of the Lockheed experiment is to evaluate the effects of long term low Earth orbit environments on thermal control coatings and organic matrix/fiber reinforced composites. Two diverse categories are reported: silicone coatings and composites. For composites physical and structural properties were analyzed; results are reported on mass/dimensional loss, microcracking, short beam shear, CTE, and flexural properties. The changes in thermal control properties, mass, and surface chemistry and morphology are reported and analyzed for the silicon coatings.
Properties of PMR Polyimide composites made with improved high strength graphite fibers
NASA Technical Reports Server (NTRS)
Vannucci, R. D.
1980-01-01
High strength, intermediate modulus graphite fibers were obtained from various commercial suppliers, and were used to fabricate PMR-15 and PMR-2 polyimide composites. The effects of the improved high strength graphite fibers on composite properties after exposure in air at 600 F were investigated. Two of the improved fibers were found to have an adverse effect on the long term performance of PMR composites. The influence of various factors such as fiber physical properties, surface morphology and chemical composition were also examined.
Zarkesh, Ibrahim; Ghanian, Mohammad Hossein; Azami, Mahmoud; Bagheri, Fatemeh; Baharvand, Hossein; Mohammadi, Javad; Eslaminejad, Mohamadreza Baghaban
2017-09-01
Biphasic calcium phosphate (BCP) microspheres are of great interest due to their high stability and osteoinductive properties at specific compositions. However, the need for optimal performance at a unique composition limits their flexibility for tuning drug release by modulation of bulk properties and presents the question of engineering surface topography as an alternative. It is necessary to have a facile method to control surface topography at a defined bulk composition. Here, we have produced BCP microspheres with different surface topographies that have the capability to be used as tunable drug release systems. We synthesized calcium deficient hydroxyapatite (CDHA) microparticles by precipitating calcium and phosphate ions onto ethylenediaminetetraacetic acid (EDTA) templates. The morphology and surface topography of CDHA microparticles were controlled using process parameters, which governed nucleation and growth. These parameters included template concentration, heat rate, and stirring speed. Under low heat rate and static conditions, we could obtain spherical microparticles with long and short nanosheets on their surfaces at low and high EDTA concentrations, respectively. These nanostructured microspheres were subsequently crystallized by thermal treatment to produce EDTA-free BCP microspheres with intact morphology. These biocompatible BCP microspheres were highly effective in loading and prolonged release of both small molecule [dexamethasone (Dex)] and protein [bovine serum albumin (BSA)] models. This strategy has enabled us to control the surface topography of BCP microspheres at defined compositions and holds tremendous promise for drug delivery and tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumeeva, T. Yu.; Prorokova, N. P.
2018-02-01
The surface properties of ultradisperse polytetrafluoroethylene coatings on polyethylene terephthalate materials modified in a supercritical carbon dioxide medium with co-solvent additions (aliphatic alcohols) were analyzed. An atomic force microscopy study revealed the peculiarities of the morphology of the hydrophobic coatings formed in the presence of co-solvents. The contribution of the co-solvents to the formation of the surface layer with a low surface energy was evaluated from the surface energy components of the modified polyester material. The stability of the coatings against dry friction was analyzed.
Mathelié-Guinlet, Marion; Grauby-Heywang, Christine; Martin, Axel; Février, Hugo; Moroté, Fabien; Vilquin, Alexandre; Béven, Laure; Delville, Marie-Hélène; Cohen-Bouhacina, Touria
2018-05-29
Despite great innovative and technological promises, nanoparticles (NPs) can ultimately exert an antibacterial activity by affecting the cell envelope integrity. This envelope, by conferring the cell its rigidity and protection, is intimately related to the mechanical behavior of the bacterial surface. Depending on their size, surface chemistry, shape, NPs can induce damages to the cell morphology and structure among others, and are therefore expected to alter the overall mechanical properties of bacteria. Although Atomic Force Microscopy (AFM) stands as a powerful tool to study biological systems, with high resolution and in near physiological environment, it has rarely been applied to investigate at the same time both morphological and mechanical degradations of bacteria upon NPs treatment. Consequently, this study aims at quantifying the impact of the silica NPs (SiO 2 -NPs) on the mechanical properties of E. coli cells after their exposure, and relating it to their toxic activity under a critical diameter. Cell elasticity was calculated by fitting the force curves with the Hertz model, and was correlated with the morphological study. SiO 2 -NPs of 100 nm diameter did not trigger any significant change in the Young modulus of E. coli, in agreement with the bacterial intact morphology and membrane structure. On the opposite, the 4 nm diameter SiO 2 -NPs did induce a significant decrease in E. coli Young modulus, mainly associated with the disorganization of lipopolysaccharides in the outer membrane and the permeation of the underlying peptidoglycan layer. The subsequent toxic behavior of these NPs is finally confirmed by the presence of membrane residues, due to cell lysis, exhibiting typical adhesion features. Copyright © 2018 Elsevier Inc. All rights reserved.
Evaluating polymeric biomaterial–environment interfaces by Langmuir monolayer techniques
Schöne, Anne-Christin; Roch, Toralf; Schulz, Burkhard
2017-01-01
Polymeric biomaterials are of specific relevance in medical and pharmaceutical applications due to their wide range of tailorable properties and functionalities. The knowledge about interactions of biomaterials with their biological environment is of crucial importance for developing highly sophisticated medical devices. To achieve optimal in vivo performance, a description at the molecular level is required to gain better understanding about the surface of synthetic materials for tailoring their properties. This is still challenging and requires the comprehensive characterization of morphological structures, polymer chain arrangements and degradation behaviour. The review discusses selected aspects for evaluating polymeric biomaterial–environment interfaces by Langmuir monolayer methods as powerful techniques for studying interfacial properties, such as morphological and degradation processes. The combination of spectroscopic, microscopic and scattering methods with the Langmuir techniques adapted to polymers can substantially improve the understanding of their in vivo behaviour. PMID:28468918
NASA Astrophysics Data System (ADS)
Siva Prasad, M.; Ashfaq, M.; Kishore Babu, N.; Sreekanth, A.; Sivaprasad, K.; Muthupandi, V.
2017-05-01
In this work, the morphology, phase composition, and corrosion properties of microarc oxidized (MAO) gas tungsten arc (GTA) weldments of AZ31 alloy were investigated. Autogenous gas tungsten arc welds were made as full penetration bead-on-plate welding under the alternating-current mode. A uniform oxide layer was developed on the surface of the specimens with MAO treatment in silicate-based alkaline electrolytes for different oxidation times. The corrosion behavior of the samples was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy. The oxide film improved the corrosion resistance substantially compared to the uncoated specimens. The sample coated for 10 min exhibited better corrosion properties. The corrosion resistance of the coatings was concluded to strongly depend on the morphology, whereas the phase composition and thickness were concluded to only slightly affect the corrosion resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Ningning; He, Cuicui; Liu, Jianbing
2014-11-15
Three Fe{sub 2}O{sub 3} particle samples with the same crystal structure but different morphologies were prepared by the hydrothermal method and then combined with Al nanoparticles to produce Al/Fe{sub 2}O{sub 3} thermites using ultrasonic mixing. The properties of Fe{sub 2}O{sub 3} and Al/Fe{sub 2}O{sub 3} were studied using a combination of experimental techniques including scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The influences of the three Al/Fe{sub 2}O{sub 3} thermites on the combustion properties of the AP/HTPB (ammonium perchlorate/hydroxyl-terminated polybutadiene) composite propellant were investigated in comparisonmore » to those of Fe{sub 2}O{sub 3}. The results show that the Al/Fe{sub 2}O{sub 3} thermites are better than Fe{sub 2}O{sub 3} in enhancing the combustion performance of AP/HTPB. Furthermore, the surface area, which depends on size and mophology, of Fe{sub 2}O{sub 3} particles was found to play a vital role in improving the burning rate of the thermites-containing propellant formulation, with the smallest particles with the largest surface-to-volume (S/V) ratio performing the best. The enhanced catalytic property of the granular-shape Fe{sub 2}O{sub 3} and the corresponding thermite is attributed to the large specific surface area of Fe{sub 2}O{sub 3}. The different thermal behaviors of these three superthemites were supposed to be attributed to the surface site of Fe{sub 2}O{sub 3} particles. This work provides a better understanding on the catalytic properties of thermites that are important for combustion applications. - Graphical abstract: Effects of Fe{sub 2}O{sub 3} and Al/Fe{sub 2}O{sub 3} have been compared for the first time by analyzing combustion properties of formulations containing them, suggesting their potential application in AP/HTPB composite propellant systems. - Highlights: • Three Fe{sub 2}O{sub 3} particles with different morphologies (polyhedral, oval and granular) were prepared by the hydrothermal method. • Thermal behaviors of thermites Al/Fe{sub 2}O{sub 3} are studied upon DSC data. • Effects of Fe{sub 2}O{sub 3} and Al/Fe{sub 2}O{sub 3} on the combustion properties of the AP/HTPB composite propellant are first investigated.« less
NASA Astrophysics Data System (ADS)
Aktary, Mirwais
The protection of mechanical equipment from wear is of significant economic interest. It has been estimated that up to half of a percent of the gross domestic product of industrialized countries goes to replacing mechanical components that have lost compliance due to wear. Antiwear additives are key ingredients in lubrication oils that assist in protecting components from wear during high loads. These agents form sacrificial films on metal parts that limit the adhesion between the contacting surfaces and reduce the wear rate considerably. One of the most common classes of compounds employed as an antiwear agent is zinc dialkyldithiophosphates (ZDDP). This work will explore the formation, structure, and mechanical properties of ZDDP derived antiwear films on the nanoscale. These studies are important because the macroscopic performance of antiwear coatings is dictated by their nanoscale surface properties. As a first study, scanning force microscopy (SFM) is employed to track the formation of films formed from the thermooxidative decomposition of ZDDP on gold substrates. The SFM analysis is correlated with infrared spectroscopy to relate surface structure to chemical composition. The morphology and mechanical strength of ZDDP tribofilms formed at the interface of sliding stainless steel contacts is also investigated. The tribofilms evolve morphologically with contact time and are characterized by distinct segregated islands at low times that transforms to a full film at longer times. The nanomechanical properties of the tribofilms are evaluated by nanoindentation analysis. It is found that the films are mechanically softer than the underlying steel substrate. SFM and nanoindentation analyses reveal that calcium sulphonate detergents promote the formation of ZDDP tribofilms and impart to them greater mechanical stability. By contrast succinimide dispersants reduce the capacity of ZDDP to form effective antiwear films. The first application of SFM and nanoindentation to the study of automotive engine components obtained directly from vehicles is demonstrated. The wear zone on a rocker arm bridge from a diesel engine is shown to contain a tribofilm at the periphery of contact where the contact load is less. SFM images also reveal wear damage at the center of the wear zone where the contact load is expected to be higher.
Mönckedieck, M; Kamplade, J; Fakner, P; Urbanetz, N A; Walzel, P; Steckel, H; Scherließ, R
2017-05-30
Nowadays, dry powder inhalation as applied in the therapy of pulmonary diseases is known as a very effective route of drug delivery to the lungs. Here, the system of coarse carrier and fine drug particles attached to the carrier surface has successfully been applied to overcome the cohesiveness of small drug particles. Particle properties of both carrier and drug are known to affect drug dispersion as has widely been discussed for lactose monohydrate and various drugs. This study utilises particle-engineered mannitol as an alternative carrier to discover the effect of mannitol carrier particle properties like particle shape, surface roughness, flowability or particle size on aerodynamic performance during inhalation. Spray drying as a technique to accurately control those properties was chosen for the generation of carrier sizes between 50 and 80 μm and different morphologies and therefore various carrier flowabilities. A set of these carriers has then been blended with different spray dried and jet-milled qualities of salbutamol sulphate as model drug to examine the influence of carrier particle properties on aerodynamic behaviour and at the same time to cover the effect of drug particle properties on particle-particle interactions. This experimental setup allowed a general view on how drug and carrier properties affect the Fine Particle Fraction (FPF) as indicator for inhalation performance and gave the first study to distinguish between mannitol carrier particle shape and surface roughness. Further it was possible to relate carrier particle size and shape to drug accumulation and detachment mechanisms during inhalation as size and shape had the main influence on drug detachment. The addition of jet-milled mannitol fines provided an initial insight into the improving effect of ternary powder blends as has been intensively studied for lactose monohydrate but not for mannitol yet. Copyright © 2017 Elsevier B.V. All rights reserved.
Laser-induced surface modification of biopolymers – micro/nanostructuring and functionalization
NASA Astrophysics Data System (ADS)
Stankova, N. E.; Atanasov, P. A.; Nedyalkov, N. N.; Tatchev, Dr; Kolev, K. N.; Valova, E. I.; Armyanov, St. A.; Grochowska, K.; Śliwiński, G.; Fukata, N.; Hirsch, D.; Rauschenbach, B.
2018-03-01
The medical-grade polydimethylsiloxane (PDMS) elastomer is a widely used biomaterial in medicine for preparation of high-tech devices because of its remarkable properties. In this paper, we present experimental results on surface modification of PDMS elastomer by using ultraviolet, visible, and near-infrared ns-laser system and investigation of the chemical composition and the morphological structure inside the treated area in dependence on the processing parameters – wavelength, laser fluence and number of pulses. Remarkable chemical transformations and changes of the morphological structure were observed, resulting in the formation of a highly catalytically active surface, which was successfully functionalized via electroless Ni and Pt deposition by a sensitizing-activation free process. The results obtained are very promising in view of applying the methods of laser-induced micro- and nano-structuring and activation of biopolymers’ surface and further electroless metal plating to the preparation of, e.g., multielectrode arrays (MEAs) devices in neural and muscular surface interfacing implantable systems.
FAS grafted superhydrophobic ceramic membrane
NASA Astrophysics Data System (ADS)
Lu, Jun; Yu, Yun; Zhou, Jianer; Song, Lixin; Hu, Xingfang; Larbot, Andre
2009-08-01
The hydrophobic properties of γ-Al 2O 3 membrane have been obtained by grafting fluoroalkylsilane (FAS) on the surface of the membrane. The following grafting parameters were studied: the eroding time of the original membrane, the grafting time, the concentration of FAS solution and the multiplicity of grafting. Hydrophobicity of the membranes was characterized by contact angle (CA) measurement. The thermogravimetric analysis (TGA) was used to investigate the weight loss process (25-800 °C) of the fluoroalkylsilane grafted on Al 2O 3 powders under different grafting conditions. The morphologies of the membranes modified under different parameters were examined by field emission scanning electron microscopy (FE-SEM) and the surface roughness (Ra) was measured using white light interferometers. A needle-like structure was observed on the membrane surface after modification, which causes the change of Ra. On the results above, we speculated a model to describe the reaction between FAS and γ-Al 2O 3 membrane surface as well as the formed surface morphology.
Benavent-Gil, Yaiza; Rosell, Cristina M
2017-10-01
Porous starches might offer an attractive alternative as bio-adsorbents of a variety of compounds. However, morphology and physicochemical properties of starches must be understood before exploring their applications. Objective was to study the action of different amylolytic enzymes for producing porous starches. Wheat, rice, potato and cassava starches were treated with Amyloglucosidase (AMG), α-amylase (AM) and cyclodextrin-glycosyltransferase (CGTase). Morphological characteristics, chemical composition, adsorptive capacity and pasting/thermal properties were assessed. Scanning Electron Microscopy (SEM) showed porous structures with diverse pore size distribution, which was dependent on the enzyme type and starch source, but no differences were observed in the total granule surface occupied by pores. The adsorptive capacity analysis revealed that modified starches had high water absorptive capacity and showed different oil adsorptive capacity depending on the enzyme type. Amylose content analysis revealed different hydrolysis pattern of the amylases, suggesting that AMG mainly affected crystalline region meanwhile AM and CGTase attacked amorphous area. A heatmap illustrated the diverse pasting properties of the different porous starches, which also showed significant different thermal properties, with different behavior between cereal and tuber starches. Therefore, it is possible to modulate the properties of starches through the use of different enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preda, Silviu, E-mail: predas01@yahoo.co.uk; Rutar, Melita; Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana
2015-11-15
Highlights: • The microwave-assisted hydrothermal route was used for titanate nanotubes synthesis. • Conversion to single-phase nanotube morphology completes after 8 h reaction time. • The nanotube morphology is stable up to 600 °C, as determined by in-situ XRD and SEM. • Sodium ions migrate to the surface due to thermal motion and structure condensation. - Abstract: Sodium titanate nanotubes (NaTiNTs) were synthesized by microwave-assisted hydrothermal treatment of commercial TiO{sub 2}, at constant temperature (135 °C) and different irradiation times (15 min, 1, 4, 8 and 16 h). The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electronmore » microscopy, differential scanning calorimetry and specific surface area measurements. The irradiation time turned out to be the key parameter for morphological control of the material. Nanotubes were observed already after 15 min of microwave irradiation. The analyses of the products irradiated for 8 and 16 h confirm the complete transformation of the starting TiO{sub 2} powder to NaTiNTs. The nanotubes are open ended with multi-wall structures, with the average outer diameter of 8 nm and specific surface area up to 210 m{sup 2}/g. The morphology, surface area and crystal structure of the sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method were similar to those obtained by conventional hydrothermal method.« less
Optical properties study of silicone polymer PDMS substrate surfaces modified by plasma treatment
NASA Astrophysics Data System (ADS)
Zahid, A.; Dai, B.; Hong, R.; Zhang, D.
2017-10-01
In this study, PDMS (polydimethylsiloxane) substrates with a half-plain, half-rough surface were prepared on a plain and rough fused silica glass substrate using a molding technique. The molded PDMS surface morphology was changed into a half-smooth and half-rough surface after peeling. The modified PDMS surfaces’ optical properties were inspected with and without treatment. The treatment is exposed by oxygen plasma (15 W) for 3 min in a vacuum, down to a pressure of six torr, using a vacuum pump. An atomic force microscope (AMF) and interferometer (white light) indicated that the plasma O2 treatment increased the formation of the plain surface and decreased the formation of the rough surface. The optical properties via a spectrophotometer (lambda) show the resonance from 300 nm to 1200 nm on the rough surface, which is considered to be a faithful reproduction for transmittance and reflectance. The Raman spectra and FDTD simulation results are in excellent agreement; not to be confused with metal local surface plasmon resonances (LSPRs). The Raman spectra peaks and hotspot are the results of the PDMS Si-O backbone. The PDMS substrate presented the diversity of the optical properties, which makes the substrate complementary to various optical applications.
Homoepitaxial growth of β-Ga{sub 2}O{sub 3} thin films by low pressure chemical vapor deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafique, Subrina; Han, Lu; Zhao, Hongping, E-mail: hongping.zhao@case.edu
2016-05-02
This paper presents the homoepitaxial growth of phase pure (010) β-Ga{sub 2}O{sub 3} thin films on (010) β-Ga{sub 2}O{sub 3} substrate by low pressure chemical vapor deposition. The effects of growth temperature on the surface morphology and crystal quality of the thin films were systematically investigated. The thin films were synthesized using high purity metallic gallium (Ga) and oxygen (O{sub 2}) as precursors for gallium and oxygen, respectively. The surface morphology and structural properties of the thin films were characterized by atomic force microscopy, X-ray diffraction, and high resolution transmission electron microscopy. Material characterization indicates the growth temperature played anmore » important role in controlling both surface morphology and crystal quality of the β-Ga{sub 2}O{sub 3} thin films. The smallest root-mean-square surface roughness of ∼7 nm was for thin films grown at a temperature of 950 °C, whereas the highest growth rate (∼1.3 μm/h) with a fixed oxygen flow rate was obtained for the epitaxial layers grown at 850 °C.« less
NASA Astrophysics Data System (ADS)
Shariati, Mohsen; Darjani, Mojtaba
2016-02-01
The continuous laterally aligned growth of In2O3 nanocrystal networks extended with nanowire and pyramid connections under annealing influence has been reported. These nanostructures have been grown on Si substrate by using oxygen-assisted annealing process through PVD growth technique. The formation of In2O3 nanocrystals has been achieved by the successive growth of critical self-nucleated condensation in three orientations. The preferred direction was the route between two pyramids especially in the smallest surface energy. The effects of substrate temperature in annealing process on the morphological properties of the as-grown nanostructures were investigated. The annealing technique showed that by controlling the surface energy, the morphology of structures was changed from unregulated array to defined nanostructures; especially nanowires 50 nm in width. The obtained nanostructures also were investigated by the (transmission electron microscopy) TEM, Raman spectrum and the (X-ray diffraction) XRD patterns. They indicated that the self-assembled In2O3 nanocrystal networks have been fabricated by the vapor-solid (VS) growth mechanism. The growth mechanism process was prompted to attribute the relationship among the kinetics parameters, surface diffusion and morphology of nanostructures.
Fluid Mechanical Properties of Silkworm Fibroin Solutions
NASA Astrophysics Data System (ADS)
Matsumoto, Akira
2005-11-01
The aqueous solution behavior of silk fibroin is of interest due to the assembly and processing of this protein related to the spinning of protein fibers that exhibit remarkable mechanical properties. To gain insight into the origins of this functional feature, it is desired to determine how the protein behaves under a range of solution conditions. Pure fibroin at different concentrations in water was studied for surface tension, as a measure of surfactancy. In addition, shear induced changes on these solutions in terms of structure and morphology was also determined. Fibroin solutions exhibited shear rate-sensitive viscosity changes and precipitated at a critical shear rate where a dramatic increase of 75-150% of the initial value was observed along with a decrease in viscosity. In surface tension measurements, critical micelle concentrations were in the range of 3-4% w/v. The influence of additional factors, such as sericin protein, divalent and monovalent cations, and pH on the solution behavior in relation to structural and morphological features will also be described.
NASA Astrophysics Data System (ADS)
Yang, Shuanglei; Wu, Zhaohui; Huang, LanPing; Zhou, Banghong; Lei, Mei; Sun, Lingling; Tian, Qingyong; Pan, Jun; Wu, Wei; Zhang, Hongbo
2014-08-01
Understanding the correlation between physicochemical properties and morphology of nanostructures is a prerequisite for widespread applications of nanomaterials in environmental application areas. Herein, we illustrated that the uniform-sized SnO2@C hollow nanoparticles were large-scale synthesized by a facile hydrothermal method. The size of the core-shell hollow nanoparticles was about 56 nm, and the shell was composed of a solid carbon layer with a thickness of 2 ~ 3 nm. The resulting products were characterized in terms of morphology, composition, and surface property by various analytical techniques. Moreover, the SnO2@C hollow nanoparticles are shown to be effective adsorbents for removing four different dyes from aqueous solutions, which is superior to the pure hollow SnO2 nanoparticles and commercial SnO2. The enhanced mechanism has also been discussed, which can be attributed to the high specific surface areas after carbon coating.
NASA Astrophysics Data System (ADS)
Barry, Ousmane I.; Tanaka, Atsushi; Nagamatsu, Kentaro; Bae, Si-Young; Lekhal, Kaddour; Matsushita, Junya; Deki, Manato; Nitta, Shugo; Honda, Yoshio; Amano, Hiroshi
2017-06-01
We have investigated the effect of V/III ratio on the surface morphology, impurity concentration and electrical properties of m-plane (10 1 bar 0) Gallium Nitride (GaN) homoepitaxial layers. Four-sided pyramidal hillocks are observed on the nominally on-axis m-plane GaN films. Hillocks sizes relatively increase by increasing the V/III ratio. All facets of pyramidal hillocks exhibit well-defined step-terrace features. Secondary ion mass spectrometry depth profiles reveal that carbon impurities decrease by increasing the V/III ratio while the lowest oxygen content is found at an optimized V/III ratio of 900. Vertical Schottky barrier diodes fabricated on the m-GaN samples were characterized. Low leakage current densities of the order of 10-10 A/cm2 at -5 V are obtained at the optimum V/III ratio. Oxygen impurities and screw-component dislocations around hillocks are found to have more detrimental impact on the leakage current mechanism.
Zhang, Changlin; Oliaee, Shirin Norooz; Hwang, Sang Youp; Kong, Xiangkai; Peng, Zhenmeng
2016-01-13
Mass production of shape-controlled platinum group metal (PGM) and alloy nanoparticles is of high importance for their many fascinating properties in catalysis, electronics, and photonics. Despite of successful demonstrations at milligram scale using wet chemistry syntheses in many fundamental studies, there is still a big gap between the current methods and their real applications due to the complex synthetic procedures, scale-up difficulty, and surface contamination problem of the made particles. Here we report a generic wet impregnation method for facile, surfactant-free, and scalable preparation of nanoparticles of PGMs and their alloys on different substrate materials with controlled particle morphology and clean surface, which bridges the outstanding properties of these nanoparticles to practical important applications. The underlying particle growth and shape formation mechanisms were investigated using a combination of ex situ and in situ characterizations and were attributed to their different interactions with the applied gas molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Kan; Jesse, Stephen; Wang, Shanfeng
2012-01-01
The thermal properties, morphological development, crystallization behavior, and miscibility of semicrystalline PCL and its 25, 50, and 75 wt% blends with amorphous PPF in spin-coated thin films crystallized at various crystallization temperatures (T{sub c}) from 25 to 52 C are investigated. The surface roughness of PPF/PCL ({phi}{sub PCL} = 75%) films increases with increasing T{sub c} and consequently the adsorption of serum proteins is also increased. No significant variance is found in surface hydrophilicity or in mouse MC3T3-E1 cell attachment, spreading, and proliferation on PPF/PCL ({phi}{sub PCL} = 75%) films crystallized isothermally at 25, 37, and 45 C, because ofmore » low ridge height, nonuniformity in structures, and PPF surface segregation« less
Surfaces wettability and morphology modulation in a fluorene derivative self-assembly system
NASA Astrophysics Data System (ADS)
Cao, Xinhua; Gao, Aiping; Zhao, Na; Yuan, Fangyuan; Liu, Chenxi; Li, Ruru
2016-04-01
A new organogelator based on fluorene derivative (gelator 1) was designed and synthesized. Organogels could be obtained via the self-assembly of the derivative in acetone, toluene, ethyl acetate, hexane, DMSO and petroleum ether. The self-assembly process was thoroughly characterized using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV-vis, FT-IR and the contact angle. Surfaces with different morphologies and wetting properties were formed via the self-assembly of gelator 1 in the six different solvents. Interestingly, a superhydrophobic surface with a contact angle of 150° was obtained from organogel 1 in DMSO and exhibited the lotus-effect. The sliding angle necessary for a water droplet to move on the glass was only 15°. Hydrogen bonding and van der Waals forces were attributed as the main driving forces for gel formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian S; Chen, Jian; Jones, Jonaaron F.
The increasing use of Carbon Fiber Polymer Composite (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin in the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg - T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90o plaques. The effect of laser fluence, scanning speed, and wavelength was investigated to remove resin without an excessive damage of the fibers. In addition, resin ablation duemore » to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on the surface morphology.« less
Qiao, Guang-yan; Zhang, Li-xia; Wang, Jue; Shen, Qing-ping; Su, Jian-sheng
2014-08-01
To investigate the effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental alloys after electrochemical corrosion. The surface morphology and surface structure of nickel-chromium dental alloys were examined by stereomicroscope and scanning electron microscopy before and after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. The surface element component and chemical states of nickel-chromium dental alloys were analyzed by X-ray photoelectron spectrograph after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. More serious corrosion happened on the surface of nickel-chromium alloy in 1.0 g/L EGCG artificial saliva than in 0 g/L EGCG. The diameters of corrosion pits were smaller, and the dendrite structure of the alloy surface was not affected in 0 g/L EGCG. While the diameters of corrosion pits were larger, the dendritic interval of the alloy surface began to merge, and the dendrite structure was fuzzy in 1.0 g/L EGCG. In addition, the O, Ni, Cr, Be, C and Mo elements were detected on the surface of nickel-chromium alloys after sputtered for 120 s in 0 g/L EGCG and 1.0 g/L EGCG artificial saliva after electrochemical corrosion, and the surface oxides were mainly NiO and Cr(2)O(3). Compared with 0 g/L EGCG artificial saliva, the content of O, NiO and Cr(2)O(3) were lower in 1.0 g/L EGCG. The results of surface morphology and the corrosion products both show that the corrosion resistance of nickel-chromium alloys become worse and the oxide content of corrosion products on the surface reduce in 1.0 g/L EGCG artificial saliva.
Structural, morphological and optical properties of pulsed laser deposited ZnSe/ZnSeO3 thin films
NASA Astrophysics Data System (ADS)
Hassan, Syed Ali; Bashir, Shazia; Zehra, Khushboo; Salman Ahmed, Qazi
2018-04-01
The effect of varying laser pulses on structural, morphological and optical behavior of Pulsed Laser Deposited (PLD) ZnSe/ZnSeO3 thin films has been investigated. The films were grown by employing Excimer laser (100 mJ, 248 nm, 18 ns, 30 Hz) at various number of laser pulses i.e. 3000, 4000, 5000 and 6000 with elevated substrate temperature of 300 °C. One film was grown at Room Temperature (RT) by employing 3000 number of laser pulses. In order to investigate the structural analysis of deposited films, XRD analysis was performed. It was observed that the room temperature is not favorable for the growth of crystalline film. However, elevated substrate temperature to 300°C, two phases with preferred orientation of ZnSeO3 (2 1 2) and ZnSe (3 3 1) were identified. AFM and SEM analysis were performed to explore the surface morphology of grown films. Morphological analysis also confirmed the non-uniform film growth at room temperature. At elevated substrate temperature (300 °C), the growth of dendritic rods and cubical crystalline structures are observed for lower number of laser pulses i.e. 3000 and 4000 respectively. With increased number of pulses i.e. 5000 and 6000, the films surface morphology becomes smooth which is confirmed by measurement of surface RMS roughness. Number of grains, skewness, kurtosis and other parameters have been evaluated by statistical analysis. In order to investigate the thickness, and optical properties of deposited films, ellipsometery and UV–Vis spectroscopy techniques were employed. The estimated band gap energy is 2.67 eV for the film grown at RT, whereas band gap values varies from 2.80 eV to 3.01 eV for the films grown at 300 °C with increasing number of laser pulses.
Comparing the ice nucleation efficiencies of ice nucleating substrates to natural mineral dusts
NASA Astrophysics Data System (ADS)
Steinke, Isabelle; Funk, Roger; Höhler, Kristina; Haarig, Moritz; Hoffmann, Nadine; Hoose, Corinna; Kiselev, Alexei; Möhler, Ottmar; Leisner, Thomas
2014-05-01
Mineral dust particles in the atmosphere may act as efficient ice nuclei over a wide range of temperature and relative humidity conditions. The ice nucleation capability of dust particles mostly depends on the particle surface area and the associated physico-chemical surface properties. It has been observed that the surface-related ice nucleation efficiency of different dust particles and mineral species can vary by several orders of magnitude. However, the relation between aerosol surface properties and observed ice nucleation efficiency is still not completely understood due to the large variability of chemical compositions and morphological features. In order to gain a better understanding of small scale freezing processes, we investigated the freezing of several hundreds of small droplets (V=0.4 nl) deposited on materials with reasonably well defined surfaces such as crystalline silicon wafers, graphite and freshly cleaved mica sheets under atmospherically relevant conditions. These substrates are intended to serve as simple model structures compared to the surface of natural aerosol particles. To learn more about the impact of particle morphology on ice nucleation processes, we also investigated micro-structured silicon wafers with prescribed trenches. The ice nucleation efficiencies deduced from these experiments are expressed as ice nucleation active surface site density values. With this approach, the freezing properties of the above-described substrates could be compared to those of natural mineral dusts such as agricultural soil dusts, volcanic ash and fossil diatoms, which have been investigated in AIDA cloud chamber experiments. All tested ice nucleating substrates were consistently less efficient at nucleating ice than the natural mineral dusts. Crystalline silicon only had a negligible influence on the freezing of small droplets, leading to freezing near the homogeneous freezing temperature threshold. Applying surface structures to silicon led to a shift towards heterogeneous freezing. However, the measured ice nucleation active surface site densities were still smaller than those of mineral dusts.
Formation of nanostructured silicon surfaces by stain etching
2014-01-01
In this work, we report the fabrication of ordered silicon structures by chemical etching of silicon in vanadium oxide (V2O5)/hydrofluoric acid (HF) solution. The effects of the different etching parameters including the solution concentration, temperature, and the presence of metal catalyst film deposition (Pd) on the morphologies and reflective properties of the etched Si surfaces were studied. Scanning electron microscopy (SEM) was carried out to explore the morphologies of the etched surfaces with and without the presence of catalyst. In this case, the attack on the surfaces with a palladium deposit begins by creating uniform circular pores on silicon in which we distinguish the formation of pyramidal structures of silicon. Fourier transform infrared spectroscopy (FTIR) demonstrates that the surfaces are H-terminated. A UV-Vis-NIR spectrophotometer was used to study the reflectance of the structures obtained. A reflectance of 2.21% from the etched Si surfaces in the wavelength range of 400 to 1,000 nm was obtained after 120 min of etching while it is of 4.33% from the Pd/Si surfaces etched for 15 min. PMID:25435830
NASA Astrophysics Data System (ADS)
Reddy, P. R. Sekhar; Janardhanam, V.; Jyothi, I.; Harsha, Cirandur Sri; Reddy, V. Rajagopal; Lee, Sung-Nam; Won, Jonghan; Choi, Chel-Jong
2018-02-01
Effects of the thickness of copper phthalocyanine (CuPc) film (2, 5, 10, 15, 20, 30 and 40 nm) on the surface morphology, optical and electrical properties of Au/CuPc/n-Si heterojunction have been investigated. The optical band gap of CuPc film was increased with increase in the thickness of the CuPc film. The electrical properties of the Au/n-Si Schottky junction and Au/CuPc/n-Si heterojunctions were characterized by current-voltage ( I-V) and capacitance-voltage ( C-V) measurements. The barrier height, ideality factor and series resistance were estimated based on the I-V, Cheung's and Norde's methods. The barrier heights increased with increasing CuPc interlayer thickness up to 15 nm and remained constant for thickness above 20 nm, associated with the incapability of the generated carriers to reach the interface. The discrepancy in the barrier heights obtained from I-V and C-V measurements indicates the presence of barrier inhomogeneity at the interface as evidenced by higher ideality factor values. It can be concluded that the electrical properties of Au/n-Si Schottky junction can be significantly altered with the variation of CuPc thickness as interlayer.
Role of Co-Vapors in Vapor Deposition Polymerization
Lee, Ji Eun; Lee, Younghee; Ahn, Ki-Jin; Huh, Jinyoung; Shim, Hyeon Woo; Sampath, Gayathri; Im, Won Bin; Huh, Yang–Il; Yoon, Hyeonseok
2015-01-01
Polypyrrole (PPy)/cellulose (PPCL) composite papers were fabricated by vapor phase polymerization. Importantly, the vapor-phase deposition of PPy onto cellulose was assisted by employing different co-vapors namely methanol, ethanol, benzene, water, toluene and hexane, in addition to pyrrole. The resulting PPCL papers possessed high mechanical flexibility, large surface-to-volume ratio, and good redox properties. Their main properties were highly influenced by the nature of the co-vaporized solvent. The morphology and oxidation level of deposited PPy were tuned by employing co-vapors during the polymerization, which in turn led to change in the electrochemical properties of the PPCL papers. When methanol and ethanol were used as co-vapors, the conductivities of PPCL papers were found to have improved five times, which was likely due to the enhanced orientation of PPy chain by the polar co-vapors with high dipole moment. The specific capacitance of PPCL papers obtained using benzene, toluene, water and hexane co-vapors was higher than those of the others, which is attributed to the enlarged effective surface area of the electrode material. The results indicate that the judicious choice and combination of co-vapors in vapor-deposition polymerization (VDP) offers the possibility of tuning the morphological, electrical, and electrochemical properties of deposited conducting polymers. PMID:25673422
Dandeniyage, Loshini S; Adhikari, Raju; Bown, Mark; Shanks, Robert; Adhikari, Benu; Easton, Christopher D; Gengenbach, Thomas R; Cookson, David; Gunatillake, Pathiraja A
2018-03-04
A series of siloxane poly(urethane-urea) (SiPUU) were developed by incorporating a macrodiol linked with a diisocyanate to enhance mixing of hard and soft segments (SS). The effect of this modification on morphology, surface properties, surface elemental composition, and creep resistance was investigated. The linked macrodiol was prepared by reacting α,ω-bis(6-hydroxyethoxypropyl) poly(dimethylsiloxane)(PDMS) or poly(hexamethylene oxide) (PHMO) with either 4,4'-methylenediphenyl diisocyanate (MDI), hexamethylene diisocyanate (HDI), or isophorone diisocyanate (IPDI). SiPUU with PHMO-MDI-PHMO and PHMO-IPDI-PHMO linked macrodiols showed enhanced creep resistance and recovery when compared with a commercial biostable polyurethane, Elast-Eon™ 2A. Small and wide-angle X-ray scattering data were consistent with significant increase of hydrogen bonding between hard and SS with linked-macrodiols, which improved SiPUU's tensile stress and tear strengths. These SiPUU were hydrophobic with contact angle higher than 101° and they had low water uptake (0.7%·w/w of dry mass). They also had much higher siloxane concentration on the surface compared to that in the bulk. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.
Magnesium ferrite nanoparticles: a rapid gas sensor for alcohol
NASA Astrophysics Data System (ADS)
Godbole, Rhushikesh; Rao, Pratibha; Bhagwat, Sunita
2017-02-01
Highly porous spinel MgFe2O4 nanoparticles with a high specific surface area have been successfully synthesized by a sintering free auto-combustion technique and characterized for their structural and surface morphological properties using XRD, BET, TEM and SEM techniques. Their sensing properties to alcohol vapors viz. ethanol and methanol were investigated. The site occupation of metal ions was investigated by VSM. The as-synthesized sample shows the formation of sponge-like porous material which is necessary for gas adsorption. The gas sensing characteristics were obtained by measuring the gas response as a function of operating temperature, concentration of the gas, and the response-recovery time. The response of magnesium ferrite to ethanol and methanol vapors was compared and it was revealed that magnesium ferrite is more sensitive and selective to ethanol vapor. The sensor operates at a substantially low vapor concentration of about 1 ppm of alcohol vapors, exhibits fantastic response reproducibility, long term reliability and a very fast response and recovery property. Thus the present study explored the possibility of making rapidly responding alcohol vapor sensor based on magnesium ferrite. The sensing mechanism has been discussed in co-relation with magnetic and morphological properties. The role of occupancy of Mg2+ ions in magnesium ferrite on its gas sensing properties has also been studied and is found to influence the response of magnesium ferrite ethanol sensor.
NASA Astrophysics Data System (ADS)
Saito, Masanori; Iwabuchi, Hironobu; Yang, Ping; Tang, Guanglin; King, Michael D.; Sekiguchi, Miho
2017-04-01
Ice particle morphology and microphysical properties of cirrus clouds are essential for assessing radiative forcing associated with these clouds. We develop an optimal estimation-based algorithm to infer cirrus cloud optical thickness (COT), cloud effective radius (CER), plate fraction including quasi-horizontally oriented plates (HOPs), and the degree of surface roughness from the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Infrared Imaging Radiometer (IIR) on the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) platform. A simple but realistic ice particle model is used, and the relevant bulk optical properties are computed using state-of-the-art light-scattering computational capabilities. Rigorous estimation of uncertainties related to surface properties, atmospheric gases, and cloud heterogeneity is performed. The results based on the present method show that COTs are quite consistent with other satellite products and CERs essentially agree with the other counterparts. A 1 month global analysis for April 2007, in which CALIPSO off-nadir angle is 0.3°, shows that the HOP has significant temperature-dependence and is critical to the lidar ratio when cloud temperature is warmer than -40°C. The lidar ratio is calculated from the bulk optical properties based on the inferred parameters, showing robust temperature dependence. The median lidar ratio of cirrus clouds is 27-31 sr over the globe.
Surface self-organization in multilayer film coatings
NASA Astrophysics Data System (ADS)
Shuvalov, Gleb M.; Kostyrko, Sergey A.
2017-12-01
It is a recognized fact that during film deposition and subsequent thermal processing the film surface evolves into an undulating profile. Surface roughness affects many important aspects in the engineering application of thin film materials such as wetting, heat transfer, mechanical, electromagnetic and optical properties. To accurately control the morphological surface modifications at the micro- and nanoscale and improve manufacturing techniques, we design a mathematical model of the surface self-organization process in multilayer film materials. In this paper, we consider a solid film coating with an arbitrary number of layers under plane strain conditions. The film surface has a small initial perturbation described by a periodic function. It is assumed that the evolution of the surface relief is governed by surface and volume diffusion. Based on Gibbs thermodynamics and linear theory of elasticity, we present a procedure for constructing a governing equation that gives the amplitude change of the surface perturbation with time. A parametric study of the evolution equation leads to the definition of a critical undulation wavelength that stabilizes the surface. As a numerical result, the influence of geometrical and physical parameters on the morphological stability of an isotropic two-layered film coating is analyzed.
The Barrier Properties of PET Coated DLC Film Deposited by Microwave Surface-Wave PECVD
NASA Astrophysics Data System (ADS)
Yin, Lianhua; Chen, Qiang
2017-12-01
In this paper we report the investigation of diamond-like carbon (DLC) deposited by microwave surface-wave plasma enhanced chemical vapor deposition (PECVD) on the polyethylene terephthalate (PET) web for the purpose of the barrier property improvement. In order to characterize the properties of DLC coatings, we used several substrates, silicon wafer, glass, and PET web and KBr tablet. The deposition rate was obtained by surface profiler based on the DLC deposited on glass substrates; Fourier transform infrared spectroscope (FTIR) was carried out on KBr tablets to investigate chemical composition and bonding structure; the morphology of the DLC coating was analyzed by atomic force microscope (AFM) on Si substrates. For the barrier properties of PET webs, we measured the oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) after coated with DLC films. We addressed the film barrier property related to process parameters, such as microwave power and pulse parameter in this work. The results show that the DLC coatings can greatly improve the barrier properties of PET webs.
Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; ...
2017-07-04
A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. In this paper, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH 3NH 3PbI 3–xCl x) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmissionmore » microscopies. Comprehensive image analysis revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. Finally, these results show that PL probes effectively the species near or at the film surface.« less
NASA Astrophysics Data System (ADS)
Vlahos, Vasilios; Morgan, Dane; Booske, John H.; Shiffler, Don
2008-11-01
CsI coated C fibers [1] are promising field emission cathodes for HPM applications. Ab initio computational modeling has shown that atomically-thin CsI coatings reduce the work function of C substrates by a surface dipole mechanism [2]. Characterization measurements of the composition and morphology of the CsI-coated C fibers are underway for determining the properties and characteristics of the following important regions of the fiber: (i) the surface on the tip of the fiber where the majority of electron emission is believed to occur, (ii) the surface covering the body of the fiber and its role on the emission properties of the system, and (iii) the interior volume of the fiber and its effects on the CsI surface re-supply process and rate. The results will be interpreted in terms of surface electronic properties and theoretical electron emission models. [1]D. Shiffler, et al., Phys. Plasmas 11 (2004) 1680. [2]V.Vlahos et al., Appl. Phys. Lett. 91 (2007) 144102.
Surface modification of polyethylene/graphene composite using corona discharge
NASA Astrophysics Data System (ADS)
Popelka, Anton; Noorunnisa Khanam, P.; AlMaadeed, Mariam Ali
2018-03-01
Polyethylene/graphene composites are suitable for electromagnetic interference shielding applications and are often fabricated as sandwich structures. However, the hydrophobic character of these composites can lead to delamination. Corona treatment was used to enhance the surface hydrophilicity of composites prepared from linear low-density polyethylene (LLDPE) and graphene nanoplatelets (GNPs) with different content (2, 4, 6, and 8 wt.%). This enhancement of wettability also led to good adhesion properties. The presence of GNPs in LLDPE had a positive effect on the surface properties after corona treatment. The surface free energy of the LLDPE/GNP composites increased by almost 64.6% for 2 wt.% of GNPs in the LLDPE/GNP composite, while the surface free energy of neat LLDPE increased by only 38.1%. The best improvement in adhesion properties after corona treatment was observed for 2 wt.% of GNPs in the LLDPE/GNP composite, while peel resistance increased by 137.9%. Various analytical techniques and methods proved that the changes in the surface morphology and chemical composition of the LLDPE/GNP composite after this treatment resulted in an improvement of adhesion.
BULGES OF NEARBY GALAXIES WITH SPITZER: SCALING RELATIONS IN PSEUDOBULGES AND CLASSICAL BULGES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, David B.; Drory, Niv, E-mail: dbfisher@astro.as.utexas.ed
2010-06-20
We investigate scaling relations of bulges using bulge-disk decompositions at 3.6 {mu}m and present bulge classifications for 173 E-Sd galaxies within 20 Mpc. Pseudobulges and classical bulges are identified using Sersic index, Hubble Space Telescope morphology, and star formation activity (traced by 8 {mu}m emission). In the near-IR pseudobulges have n{sub b} < 2 and classical bulges have n{sub b} >2, as found in the optical. Sersic index and morphology are essentially equivalent properties for bulge classification purposes. We confirm, using a much more robust sample, that the Sersic index of pseudobulges is uncorrelated with other bulge structural properties, unlikemore » for classical bulges and elliptical galaxies. Also, the half-light radius of pseudobulges is not correlated with any other bulge property. We also find a new correlation between surface brightness and pseudobulge luminosity; pseudobulges become more luminous as they become more dense. Classical bulges follow the well-known scaling relations between surface brightness, luminosity, and half-light radius that are established by elliptical galaxies. We show that those pseudobulges (as indicated by Sersic index and nuclear morphology) that have low specific star formation rates are very similar to models of galaxies in which both a pseudobulge and classical bulge exist. Therefore, pseudobulge identification that relies only on structural indicators is incomplete. Our results, especially those on scaling relations, imply that pseudobulges are very different types of objects than elliptical galaxies.« less
NASA Astrophysics Data System (ADS)
Taer, E.; Kurniasih, B.; Sari, F. P.; Zulkifli, Taslim, R.; Sugianto, Purnama, A.; Apriwandi, Susanti, Y.
2018-02-01
The particle size analysis for supercapacitor carbon electrodes from rubber wood sawdust (SGKK) has been done successfully. The electrode particle size was reviewed against the properties such as density, degree of crystallinity, surface morphology and specific capacitance. The variations in particle size were made by different treatment on the grinding and sieving process. The sample particle size was distinguished as 53-100 µm for 20 h (SA), 38-53 µm for 20 h (SB) and < 38 µm with variations of grinding time for 40 h (SC) and 80 h (SD) respectively. All of the samples were activated by 0.4 M KOH solution. Carbon electrodes were carbonized at temperature of 600oC in N2 gas environment and then followed by CO2 gas activation at a temperature of 900oC for 2 h. The densities for each variation in the particle size were 1.034 g cm-3, 0.849 g cm-3, 0.892 g cm-3 and 0.982 g cm-3 respectively. The morphological study identified the distance between the particles more closely at 38-53 µm (SB) particle size. The electrochemical properties of supercapacitor cells have been investigated using electrochemical methods such as impedance spectroscopy and charge-discharge at constant current using Solatron 1280 tools. Electrochemical properties testing results have shown SB samples with a particle size of 38-53 µm produce supercapacitor cells with optimum capacitive performance.
Role of roughness parameters on the tribology of randomly nano-textured silicon surface.
Gualtieri, E; Pugno, N; Rota, A; Spagni, A; Lepore, E; Valeri, S
2011-10-01
This experimental work is oriented to give a contribution to the knowledge of the relationship among surface roughness parameters and tribological properties of lubricated surfaces; it is well known that these surface properties are strictly related, but a complete comprehension of such correlations is still far to be reached. For this purpose, a mechanical polishing procedure was optimized in order to induce different, but well controlled, morphologies on Si(100) surfaces. The use of different abrasive papers and slurries enabled the formation of a wide spectrum of topographical irregularities (from the submicro- to the nano-scale) and a broad range of surface profiles. An AFM-based morphological and topographical campaign was carried out to characterize each silicon rough surface through a set of parameters. Samples were subsequently water lubricated and tribologically characterized through ball-on-disk tribometer measurements. Indeed, the wettability of each surface was investigated by measuring the water droplet contact angle, that revealed a hydrophilic character for all the surfaces, even if no clear correlation with roughness emerged. Nevertheless, this observation brings input to the purpose, as it allows to exclude that the differences in surface profile affect lubrication. So it is possible to link the dynamic friction coefficient of rough Si samples exclusively to the opportune set of surface roughness parameters that can exhaustively describe both height amplitude variations (Ra, Rdq) and profile periodicity (Rsk, Rku, Ic) that influence asperity-asperity interactions and hydrodynamic lift in different ways. For this main reason they cannot be treated separately, but with dependent approach through which it was possible to explain even counter intuitive results: the unexpected decreasing of friction coefficient with increasing Ra is justifiable by a more consistent increasing of kurtosis Rku.
NASA Astrophysics Data System (ADS)
Psarski, Maciej; Marczak, Jacek; Celichowski, Grzegorz; Sobieraj, Grzegorz B.; Gumowski, Konrad; Zhou, Feng; Liu, Weimin
2012-10-01
Nature inspires the design of synthetic materials with superhydrophobic properties, which can be used for applications ranging from self-cleaning surfaces to microfluidic devices. Their water repellent properties are due to hierarchical (micrometer- and nanometre-scale) surface morphological structures, either made of hydrophobic substances or hydrophobized by appropriate surface treatment. In this work, the efficiency of two surface treatment procedures, with a hydrophobic fluoropolymer, synthesized and deposited from 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS) is investigated. The procedures involved reactions from the gas and liquid phases of the PFOTS/hexane solutions. The hierarchical structure is created in an epoxy nanocomposite surface, by filling the resin with alumina nanoparticles and micron-sized glass beads and subsequent sandblasting with corundum microparticles. The chemical structure of the deposited fluoropolymer was examined using XPS spectroscopy. The topography of the modified surfaces was characterized using scanning electron microscopy (SEM), and atomic force microscopy (AFM). The hydrophobic properties of the modified surfaces were investigated by water contact and sliding angles measurements. The surfaces exhibited water contact angles of above 150° for both modification procedures, however only the gas phase modification provided the non-sticking behaviour of water droplets (sliding angle of 3°). The discrepancy is attributed to extra surface roughness provided by the latter procedure.
NASA Astrophysics Data System (ADS)
Soliman, Ahmed I. A.; Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki
2017-09-01
Vacuum ultraviolet light irradiation in dry air generates active oxygen species, which have powerful oxidation abilities. These active oxygen species (O) can oxidize the alkyl moieties of polymers, and generate new oxygenated groups such as OH, CHO and COOH groups. Reducing the oxygen content in the exposure environment decreases the rate of oxidation processes. In this study, we examined the influences of the 172 nm VUV irradiation in a high vacuum (HV, < 10-3 Pa) environment on the chemical constituents, surface properties and morphological structure of well-defined VUV/(O)-modified hexadecyl (HD-) self-assembled monolayer (SAM) prepared on hydrogen-terminated silicon (H-Si) substrate. After VUV light irradiation in a HV environment (HV-VUV), the chemical constituents and surface properties were changed in two distinct stages. At short irradiation time (the first stage), the Csbnd O and COO groups decreased rapidly, while the Cdbnd O groups slightly changed. The dissociation of nonderivatizable groups (such as ether (Csbnd Osbnd C) and ester (Csbnd COOsbnd C) groups) compensated the dissociated OH, CHO, Csbnd COsbnd C and COOH groups. With further irradiation (the second stage), the quantities of the oxygenated groups slightly decreased. The carbon skeleton (Csbnd C) of SAM was scarcely dissociated during the HV-VUV treatment. These chemical changes affected the surface properties, such as wettability and morphology.
NASA Astrophysics Data System (ADS)
Ahmadipour, Mohsen; Ain, Mohd Fadzil; Ahmad, Zainal Arifin
2016-11-01
In this study, calcium copper titanate (CCTO) thin films were deposited on ITO substrates successfully by radio frequency (RF) magnetron sputtering method in argon atmosphere. The CCTO thin films present a polycrystalline, uniform and porous structure. The surface morphology, optical and humidity sensing properties of the synthesized CCTO thin films have been studied by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), UV-vis spectrophotometer and current-voltage (I-V) analysis. XRD and AFM confirmed that the intensity of peaks and pore size of CCTO thin films were enhanced by increasing the thin films. Tauc plot method was adopted to estimate the optical band gaps. The surface structure and energy band gaps of the deposited films were affected by film thickness. Energy band gap of the layers were 3.76 eV, 3.68 eV and 3.5 eV for 200 nm, 400 nm, and 600 nm CCTO thin films layer, respectively. The humidity sensing properties were measured by using direct current (DC) analysis method. The response times were 12 s, 22 s, and 35 s while the recovery times were 500 s, 600 s, and 650 s for 200 nm, 400 nm, and 600 nm CCTO thin films, respectively at humidity range of 30-90% relative humidity (RH).
The roles of buffer layer thickness on the properties of the ZnO epitaxial films
NASA Astrophysics Data System (ADS)
Tang, Kun; Huang, Shimin; Gu, Shulin; Zhu, Shunming; Ye, Jiandong; Xu, Zhonghua; Zheng, Youdou
2016-12-01
In this article, the authors have investigated the optimization of the buffer thickness for obtaining high-quality ZnO epi-films on sapphire substrates. The growth mechanism of the buffers with different thickness has been clearly revealed, including the initial nucleation and vertical growth, the subsequent lateral growth with small grain coalescence, and the final vertical growth along the existing larger grains. Overall, the quality of the buffer improves with increasing thickness except the deformed surface morphology. However, by a full-scale evaluation of the properties for the epi-layers, the quality of the epi-film is briefly determined by the surface morphology of the buffer, rather than the structural, optical, or electrical properties of it. The best quality epi-layer has been grown on the buffer with a smooth surface and well-coalescent grains. Meanwhile, due to the huge lattice mismatch between sapphire and ZnO, dislocations are inevitably formed during the growth of buffers. More importantly, as the film grows thicker, the dislocations may attracting other smaller dislocations and defects to reduce the total line energy and thus result in the formation of V-shape defects, which are connected with the bottom of the threading dislocations in the buffers. The V-defects appear as deep and large hexagonal pits from top view and they may act as electron traps which would affect the free carrier concentration of the epi-layers.
Synergistic effect of indium and gallium co-doping on the properties of RF sputtered ZnO thin films
NASA Astrophysics Data System (ADS)
Shaheera, M.; Girija, K. G.; Kaur, Manmeet; Geetha, V.; Debnath, A. K.; Karri, Malvika; Thota, Manoj Kumar; Vatsa, R. K.; Muthe, K. P.; Gadkari, S. C.
2018-04-01
ZnO thin films were synthesized using RF magnetron sputtering, with simultaneous incorporation of Indium (In) and Gallium (Ga). The structural, optical, chemical composition and surface morphology of the pure and co-doped (IGZO) thin films were characterized by X-Ray diffraction (XRD), UV-visible spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Raman spectroscopy. XRD revealed that these films were oriented along c-axis with hexagonal wurtzite structure. The (002) diffraction peak in the co-doped sample was observed at 33.76° with a slight shift towards lower 2θ values as compared to pure ZnO. The surface morphology of the two thin films was observed to differ. For pure ZnO films, round grains were observed and for IGZO thin films round as well as rod type grains were observed. All thin films synthesized show excellent optical properties with more than 90% transmission in the visible region and band gap of the films is observed to decrease with co-doping. The co doping of In and Ga is therefore expected to provide a broad range optical and physical properties of ZnO thin films for a variety of optoelectronic applications.
Morphology dependent field emission characteristics of ZnS/silicon nanoporous pillar array
NASA Astrophysics Data System (ADS)
Wang, Ling Li; Zhao, Cheng Zhou; Kang, Li Ping; Liu, De Wei; Zhao, Hui Chun; Hao, Shan Peng; Zhang, Yuan Kai; Chen, Zhen Ping; Li, Xin Jian
2016-10-01
Through depositing zinc sulphide (ZnS) nanoparticals on silicon nanoporous pillar array (Si-NPA) and crater-shaped silicon nanoporous pillar array (c-Si-NPA) by chemical bath deposition (CBD) method, ZnS/Si-NPA and c-ZnS/Si-NPA were prepared and the field emission (FE) properties of them were investigated. The turn-on electric fields of were 3.8 V/mm for ZnS/Si-NPA and 5.0 V/mm for c-ZnS/Si-NPA, respectively. The lower turn-on electric fields of ZnS/Si-NPA than that of c-ZnS/Si-NPA were attributed to the different electric distribution of the field emitters causing by the different surface morphology of the two samples, which was further demonstrated via the simulated results by finite element modeling. The FN curves for the ZnS/Si-NPA showed two-slope behavior. All the results indicate that the morphology play an important role in the FE properties and designing an appropriate top morphology for the emitter is a very efficient way to improve the FE performance.
Sainio, S.; Nordlund, D.; Gandhiraman, R.; ...
2016-09-15
Understanding the chemical nature of the surface of carbon nanofibers (CNF) is critical in assessing their fundamental properties and tailoring them for the right application. To gain such knowledge, we present here a detailed X-ray adsorption spectroscopy (XAS) study accompanied by high resolution transmission electron microscopy (TEM) micrographs of two morphologically different CNF pairs (tetrahedral amorphous carbon (ta-C) grown “open structured” fibers and traditional bamboo-like “closed structured” fibers), where the surface chemical properties and structural features of the fibers are investigated in depth and the effects of nitric acid treatment on the fibers are revealed. The morphology of the fibermore » and/or the original seed- and adhesion layers markedly affect the response of the fibers to the acid treatment. Results also show that the nitric acid treatment increases the observed sp 2 intensity and modifies the two types of fibers to become more-alike both structurally and with respect to their oxygen functionalities. Furthermore, the XAS and HRTEM results confirm that a short nitric acid treatment does not remove the Ni catalyst particle but, instead, oxidizes their surfaces, especially in the case of ta-C grown fibers.« less
NASA Astrophysics Data System (ADS)
Jia, Zhengmei; Huang, Jing; Gong, Yongfeng; Jin, Peipeng; Suo, Xinkun; Li, Hua
2017-02-01
High-density polyethylene (HDPE)-copper (Cu) composite coatings were prepared through depositing HDPE-Cu core-shell particles by flame spraying. The HDPE-Cu composite coatings and the HDPE coatings were aged in xenon lamp ageing testing chamber. The variations of chemical compositions and surface morphology of the coatings before and after the ageing testing were analyzed using infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and ultraviolet-visible spectrophotometer. Results show that there is no chemical composition variation in the HDPE-Cu coatings. Cracks were found on the surfaces of the HDPE coatings, while the HDPE-Cu coating shows almost intact surface morphology. These results suggest that the HDPE-Cu coatings present better anti-ageing performances than the HDPE coatings. Further assessment of the function of Cu shells on the anti-ageing property reveals that Cu shells not only enhanced the absorption of the coatings to ultraviolet, but also increased their reflectivity to visible light. Additionally, the Cu shells enhanced the decomposition temperature and thermal stability of HDPE in the composite coatings. These results give bright insight into potential anti-ageing applications of the polymer-based structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sainio, S.; Nordlund, D.; Gandhiraman, R.
Understanding the chemical nature of the surface of carbon nanofibers (CNF) is critical in assessing their fundamental properties and tailoring them for the right application. To gain such knowledge, we present here a detailed X-ray adsorption spectroscopy (XAS) study accompanied by high resolution transmission electron microscopy (TEM) micrographs of two morphologically different CNF pairs (tetrahedral amorphous carbon (ta-C) grown “open structured” fibers and traditional bamboo-like “closed structured” fibers), where the surface chemical properties and structural features of the fibers are investigated in depth and the effects of nitric acid treatment on the fibers are revealed. The morphology of the fibermore » and/or the original seed- and adhesion layers markedly affect the response of the fibers to the acid treatment. Results also show that the nitric acid treatment increases the observed sp 2 intensity and modifies the two types of fibers to become more-alike both structurally and with respect to their oxygen functionalities. Furthermore, the XAS and HRTEM results confirm that a short nitric acid treatment does not remove the Ni catalyst particle but, instead, oxidizes their surfaces, especially in the case of ta-C grown fibers.« less
Effects of heat/citric acid reprocessing on high-flux polysulfone dialyzers.
Cornelius, Rena M; McClung, W Glenn; Richardson, Robert M A; Estridge, Charles; Plaskos, Nicholas; Yip, Christopher M; Brash, John L
2002-01-01
The surface features, morphology, and tensile properties of fibers obtained from pristine, reprocessed, and reused Fresenius Polysulfone High-Flux (Hemoflow F80A) hemodialyzers have been studied. Scanning electron microscopy of the dialyzer fibers revealed a dense skin layer on the inner surface of the membrane and a relatively thick porous layer on the outer surface. Transmission electron microscopy and atomic force microscopy showed an alteration in membrane morphology due to reprocessing and reuse, or to a deposition of blood-borne material on the membrane that is not removed with reprocessing. Fluorescent microscopy images also showed that a fluorescent material not removed by heat/citric acid reprocessing builds up with continued use of the dialyzers. The tensile properties of the dialyzer fibers were not affected by the heat/citric acid reprocessing procedure. The protein layers formed on pristine and reused hemodialyzer membranes during clinical use were also studied using sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotting. A considerable amount of protein was found on the blood side of single and multiple use dialyzers. Proteins adsorbed on the dialysate side of the membrane were predominantly in the molecular weight region below 30 kDa. Little protein was detected on the membranes of reprocessed hemodialyzers.
Graphite carbon nitride/boron-doped graphene hybrid for efficient hydrogen generation reaction.
Yang, Liang; Wang, Xin; Wang, Juan; Cui, Guomin; Liu, Daoping
2018-08-24
Metal-free carbon materials, with tuned surface chemical and electronic properties, hold great potential for the hydrogen evolution reaction (HER). We designed and synthesized a CN/BG hybrid electrocatalytic system with a porous and active graphite carbon nitride (CN) layer on boron-doped graphene (BG). A porous CN layer on graphene could provide exposed defects and edges that act as active sites for proton adsorption and reduction. The composition, structure, surface electronics, and chemical properties of this CN/BG hybrid system were tuned to obtain excellent HER activity and stability. Detailed surface chemical, morphological, and structural analyses demonstrated the synergetic effect arising from the electronic interaction between CN and BG, which contributed to the enhanced electrocatalytic performances.
Surface-enhanced Raman scattering from silver nanostructures with different morphologies
NASA Astrophysics Data System (ADS)
Zhang, W. C.; Wu, X. L.; Kan, C. X.; Pan, F. M.; Chen, H. T.; Zhu, J.; Chu, Paul K.
2010-07-01
Scanning electron microscopy and X-ray diffraction reveal that four different types of crystalline silver nanostructures including nanoparticles, nanowires, nanocubes, and bipyramids are synthesized by a solvothermal method by reducing silver nitrate with ethylene glycol using poly(vinylpyrrolidone) as an adsorption agent and adding different quantities of sodium chloride to the solution. These nanostructures which exhibit different surface plasma resonance properties in the ultraviolet-visible region are shown to be good surface-enhanced Raman scattering (SERS) substrates using rhodamine 6G molecules. Our results demonstrate that the silver nanocubes, bipyramids with sharp corners and edges, and aggregated silver nanoparticles possess better SERS properties than the silver nanowires, indicating that they can serve as high-sensitivity substrates in SERS-based measurements.
Nardo, Tiziana; Chiono, Valeria; Ciardelli, Gianluca; Tabrizian, Maryam
2016-02-01
Inert polytetrafluoroethylene (PTFE) membranes for periodontal regeneration suffer from weak osteoconductive properties. In this work, a strategy for hydroxyapatite (HAp) coating on PTFE films through an adhesive layer of self-polymerized 3,4-dihydroxy-DL-phenylalanine (polyDOPA) was developed to improve surface properties. Physico-chemical and morphological analysis demonstrated the deposition of polyDOPA and HAp, with an increase in surface roughness and wettability. A discontinuous coating was present after 14 days in PBS and MC3T3-E1 cells proliferation and adhesion were improved. Results confirmed the potential application of polyDOPA/HAp-coated films for periodontal disease treatments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Subatomic-scale force vector mapping above a Ge(001) dimer using bimodal atomic force microscopy
NASA Astrophysics Data System (ADS)
Naitoh, Yoshitaka; Turanský, Robert; Brndiar, Ján; Li, Yan Jun; Štich, Ivan; Sugawara, Yasuhiro
2017-07-01
Probing physical quantities on the nanoscale that have directionality, such as magnetic moments, electric dipoles, or the force response of a surface, is essential for characterizing functionalized materials for nanotechnological device applications. Currently, such physical quantities are usually experimentally obtained as scalars. To investigate the physical properties of a surface on the nanoscale in depth, these properties must be measured as vectors. Here we demonstrate a three-force-component detection method, based on multi-frequency atomic force microscopy on the subatomic scale and apply it to a Ge(001)-c(4 × 2) surface. We probed the surface-normal and surface-parallel force components above the surface and their direction-dependent anisotropy and expressed them as a three-dimensional force vector distribution. Access to the atomic-scale force distribution on the surface will enable better understanding of nanoscale surface morphologies, chemical composition and reactions, probing nanostructures via atomic or molecular manipulation, and provide insights into the behaviour of nano-machines on substrates.
Fabrication of hydrophobic compressed oil palm trunk surface by sol-gel process
NASA Astrophysics Data System (ADS)
Muzakir, Syafiqah; Salim, Nurjannah; Huda Abu Bakar, Nurul; Roslan, Rasidi; Sin, Lim Wan; Hashim, Rokiah
2018-04-01
Improvement of the robustness of hydrophobic surfaces is crucial to achieving commercial applications of these surfaces in such various areas as self-cleaning, water repellency and corrosion resistance. Compressed oil palm trunk (OPT) panel is one of potential product which can be used as panelling and indoor furniture application. By adding hydrophobic properties to compressed oil palm trunk panel might increase the application of compressed oil palm trunk especially for outdoor application. In this study, fabrication is using the sol-gel technique. Sol-gel was prepared by adding ethanol with Hexadecyl Trimethyl Ammonium Bromide (CTAB) solution with Tetraethyl Orthosilicate (TEOS) with surface modification of chlorotrimethylsilane (CTMS). The surface with hydrophobic coating was undergone surface analysis with contact angle machine with the aid of software SCA 20 and the determined of the morphology of surface with scanning electron microscope (SEM). The produced compressed oil palm trunk surfaces exhibited promising hydrophobic properties with a contact angle of 104° and the relatively better mechanical robustness.
In-situ Polymerization of Polyaniline/Polypyrrole Copolymer using Different Techniques
NASA Astrophysics Data System (ADS)
Hammad, A. S.; Noby, H.; Elkady, M. F.; El-Shazly, A. H.
2018-01-01
The morphology and surface area of the poly(aniline-co-pyrrole) copolymer (PANPY) are important properties which improve the efficiency of the copolymer in various applications. In this investigation, different techniques were employed to produce PANPY in different morphologies. Aniline and pyrrole were used as monomers, and ammonium peroxydisulfate (APS) was used as an oxidizer with uniform molar ratio. Rapid mixing, drop-wise mixing, and supercritical carbon dioxide (ScCO2) polymerization techniques were appointed. The chemical structure, crystallinity, porosity, and morphology of the composite were distinguished by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET) analysis, and transmission electron microscopy (TEM) respectively. The characterization tests indicated that the polyaniline/polypyrrole copolymer was successfully prepared with different morphologies. Based on the obtained TEM, hollow nanospheres were formed using rapid mixing technique with acetic acid that have a diameter of 75 nm and thickness 26 nm approximately. Also, according to the XRD, the produced structures have a semi- crystalline structure. The synthesized copolymer with ScCO2-assisted polymerization technique showed improved surface area (38.1 m2/g) with HCl as dopant.
Damanik, Febriyani F R; Rothuizen, Tonia C; van Blitterswijk, Clemens; Rotmans, Joris I; Moroni, Lorenzo
2014-09-19
Despite various studies to minimize host reaction following a biomaterial implantation, an appealing strategy in regenerative medicine is to actively use such an immune response to trigger and control tissue regeneration. We have developed an in vitro model to modulate the host response by tuning biomaterials' surface properties through surface modifications techniques as a new strategy for tissue regeneration applications. Results showed tunable surface topography, roughness, wettability, and chemistry by varying treatment type and exposure, allowing for the first time to correlate the effect of these surface properties on cell attachment, morphology, strength and proliferation, as well as proinflammatory (IL-1β, IL-6) and antiinflammatory cytokines (TGF-β1, IL-10) secreted in medium, and protein expression of collagen and elastin. Surface microstructuring, derived from chloroform partial etching, increased surface roughness and oxygen content. This resulted in enhanced cell adhesion, strength and proliferation as well as a balance of soluble factors for optimum collagen and elastin synthesis for tissue regeneration. By linking surface parameters to cell activity, we could determine the fate of the regenerated tissue to create successful soft tissue-engineered replacement.
NASA Astrophysics Data System (ADS)
Damanik, Febriyani F. R.; Rothuizen, Tonia C.; van Blitterswijk, Clemens; Rotmans, Joris I.; Moroni, Lorenzo
2014-09-01
Despite various studies to minimize host reaction following a biomaterial implantation, an appealing strategy in regenerative medicine is to actively use such an immune response to trigger and control tissue regeneration. We have developed an in vitro model to modulate the host response by tuning biomaterials' surface properties through surface modifications techniques as a new strategy for tissue regeneration applications. Results showed tunable surface topography, roughness, wettability, and chemistry by varying treatment type and exposure, allowing for the first time to correlate the effect of these surface properties on cell attachment, morphology, strength and proliferation, as well as proinflammatory (IL-1β, IL-6) and antiflammatory cytokines (TGF-β1, IL-10) secreted in medium, and protein expression of collagen and elastin. Surface microstructuring, derived from chloroform partial etching, increased surface roughness and oxygen content. This resulted in enhanced cell adhesion, strength and proliferation as well as a balance of soluble factors for optimum collagen and elastin synthesis for tissue regeneration. By linking surface parameters to cell activity, we could determine the fate of the regenerated tissue to create successful soft tissue-engineered replacement.
Ozaltin, Kadir; Lehocký, Marián; Humpolíček, Petr; Pelková, Jana; Sáha, Petr
2016-01-01
Beside biomaterials’ bulk properties, their surface properties are equally important to control interfacial biocompatibility. However, due to the inadequate interaction with tissue, they may cause foreign body reaction. Moreover, surface induced thrombosis can occur when biomaterials are used for blood containing applications. Surface modification of the biomaterials can bring enhanced surface properties in biomedical applications. Sulfated polysaccharide coatings can be used to avoid surface induced thrombosis which may cause vascular occlusion (blocking the blood flow by blood clot), which results in serious health problems. Naturally occurring heparin is one of the sulfated polysaccharides most commonly used as an anticoagulant, but its long term usage causes hemorrhage. Marine sourced sulfated polysaccharide fucoidan is an alternative anticoagulant without the hemorrhage drawback. Heparin and fucoidan immobilization onto a low density polyethylene surface after functionalization by plasma has been studied. Surface energy was demonstrated by water contact angle test and chemical characterizations were carried out by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Surface morphology was monitored by scanning electron microscope and atomic force microscope. Finally, their anticoagulation activity was examined for prothrombin time (PT), activated partial thromboplastin time (aPTT), and thrombin time (TT). PMID:27294915
Complex-Morphology Metal-Based Nanostructures: Fabrication, Characterization, and Applications
Gentile, Antonella; Ruffino, Francesco; Grimaldi, Maria Grazia
2016-01-01
Due to their peculiar qualities, metal-based nanostructures have been extensively used in applications such as catalysis, electronics, photography, and information storage, among others. New applications for metals in areas such as photonics, sensing, imaging, and medicine are also being developed. Significantly, most of these applications require the use of metals in the form of nanostructures with specific controlled properties. The properties of nanoscale metals are determined by a set of physical parameters that include size, shape, composition, and structure. In recent years, many research fields have focused on the synthesis of nanoscale-sized metallic materials with complex shape and composition in order to optimize the optical and electrical response of devices containing metallic nanostructures. The present paper aims to overview the most recent results—in terms of fabrication methodologies, characterization of the physico-chemical properties and applications—of complex-morphology metal-based nanostructures. The paper strongly focuses on the correlation between the complex morphology and the structures’ properties, showing how the morphological complexity (and its nanoscale control) can often give access to a wide range of innovative properties exploitable for innovative functional device production. We begin with an overview of the basic concepts on the correlation between structural and optical parameters of nanoscale metallic materials with complex shape and composition, and the possible solutions offered by nanotechnology in a large range of applications (catalysis, electronics, photonics, sensing). The aim is to assess the state of the art, and then show the innovative contributions that can be proposed in this research field. We subsequently report on innovative, versatile and low-cost synthesis techniques, suitable for providing a good control on the size, surface density, composition and geometry of the metallic nanostructures. The main purpose of this study is the fabrication of functional nanoscale-sized materials, whose properties can be tailored (in a wide range) simply by controlling the structural characteristics. The modulation of the structural parameters is required to tune the plasmonic properties of the nanostructures for applications such as biosensors, opto-electronic or photovoltaic devices and surface-enhanced Raman scattering (SERS) substrates. The structural characterization of the obtained nanoscale materials is employed in order to define how the synthesis parameters affect the structural characteristics of the resulting metallic nanostructures. Then, macroscopic measurements are used to probe their electrical and optical properties. Phenomenological growth models are drafted to explain the processes involved in the growth and evolution of such composite systems. After the synthesis and characterization of the metallic nanostructures, we study the effects of the incorporation of the complex morphologies on the optical and electrical responses of each specific device. PMID:28335236
Versatile buffer layer architectures based on Ge1-xSnx alloys
NASA Astrophysics Data System (ADS)
Roucka, R.; Tolle, J.; Cook, C.; Chizmeshya, A. V. G.; Kouvetakis, J.; D'Costa, V.; Menendez, J.; Chen, Zhihao D.; Zollner, S.
2005-05-01
We describe methodologies for integration of compound semiconductors with Si via buffer layers and templates based on the GeSn system. These layers exhibit atomically flat surface morphologies, low defect densities, tunable thermal expansion coefficients, and unique ductile properties, which enable them to readily absorb differential stresses produced by mismatched overlayers. They also provide a continuous selection of lattice parameters higher than that of Ge, which allows lattice matching with technologically useful III-V compounds. Using this approach we have demonstrated growth of GaAs, GeSiSn, and pure Ge layers at low temperatures on Si(100). These materials display extremely high-quality structural, morphological, and optical properties opening the possibility of versatile integration schemes directly on silicon.
Enhancement of magnetostrictive properties of Galfenol thin films
NASA Astrophysics Data System (ADS)
Nivedita, Lalitha Raveendran; Manivel, Palanisamy; Pandian, Ramanathaswamy; Murugesan, S.; Morley, Nicola Ann; Asokan, K.; Rajendra Kumar, Ramasamy Thangavelu
2018-04-01
The present study investigates the role of substrate temperatures on the structural, morphological, magnetic and magnetostrictive properties of DC sputtered FeGa thin films grown on Si substrates. These films were deposited at various substrate temperatures between 50 and 350 °C. The structural characterization of the films revealed columnar growth and the transformation of surface morphology from prismatic to spherical at high substrate temperatures. Both L12 and B2 phases of FeGa existed in the films, with the L12 phase dominating. The in-plane and out-of-plane vibration sample magnetometry measurements showed the evolution of magnetic anisotropy in these films. It was revealed from the magnetostriction measurements that the films deposited at 250 °C exhibited the maximum value of 59 ppm.
NASA Astrophysics Data System (ADS)
Boukhenoufa, N.; Mahamdi, R.; Rechem, D.
2016-11-01
In this work, sol—gel dip-coating technique was used to elaborate ZnO pure and ZnO/Al films. The impact of Al-doped concentration on the structural, optical, surface morphological and electrical properties of the elaborated samples was investigated. It was found that better electrical and optical performances have been obtained for an Al concentration equal to 5%, where the ZnO thin films exhibit a resistivity value equal to 1.64104 Ω·cm. Moreover, highest transparency has been recorded for the same Al concentration value. The obtained results from this investigation make the developed thin film structure a potential candidate for high optoelectronic performance applications.
Synthesis and characterization of Graphene oxide/Zinc oxide nanorods sandwich structure
NASA Astrophysics Data System (ADS)
Boukhoubza, I.; Khenfouch, M.; Achehboune, M.; Mouthudi, B.; Zorkani, I.; Jorio, A.
2018-03-01
Graphene-ZnO nanostructures composite materials have been used as very efficient candidates for various optoelectronic applications. Nowadays, the composite structure formation of ZnO nanostructures with graphene or graphene oxide is a novel, cost effective and efficient approach to control the morphology, surface defect states, band gap of ZnO nanocrystals. In this paper, we have prepared ZnO nanorods between two layers graphene oxide (GO/ZnO NRs/GO) via a simple hydrothermal method. Their morphology, structural and optical properties have been investigated. The obtained results of our composites GO/ZnO NRs/GO presented here showing an enhancement in the structural and optical properties. Thus may hold great promise to the development of the optoelectronic devices.
NASA Astrophysics Data System (ADS)
Zhang, Huafu; Wu, Zhiming; Niu, Ruihua; Wu, Xuefei; he, Qiong; Jiang, Yadong
2015-03-01
Silicon-doped and un-doped vanadium dioxide (VO2) films were synthesized on high-purity single-crystal silicon substrates by means of reactive direct current magnetron sputtering followed by thermal annealing. The structure, morphology and metal-insulator transition properties of silicon-doped VO2 films at terahertz range were measured and compared to those of un-doped VO2 films. X-ray diffraction and scanning electron microscopy indicated that doping the films with silicon significantly affects the preferred crystallographic orientation and surface morphologies (grain size, pores and characteristics of grain boundaries). The temperature dependence of terahertz transmission shows that the transition temperature, hysteresis width and transition sharpness greatly depend on the silicon contents while the transition amplitude was relatively insensitive to the silicon contents. Interestingly, the VO2 film doped with a silicon content of 4.6 at.% shows excellent terahertz switching characteristics, namely a small hysteresis width of 4.5 °C, a giant transmission modulation ratio of about 82% and a relatively low transition temperature of 56.1 °C upon heating. This work experimentally indicates that silicon doping can effectively control not only the surface morphology but also the metal-insulator transition characteristics of VO2 films at terahertz range.
NASA Astrophysics Data System (ADS)
Mohanapriya, S.; Renuka devi, R.; Raj, V.
2018-02-01
Mesoporous Nickel has been prepared by electrodeposition using non-ionic surfactant based liquid crystalline template under optimized processing conditions. Physico-chemical properties of mesoporous nickel is systematically characterized through XRD, SEM and AFM analyses. Comparison of electrocatalytic activity of mesoporous nickel with smooth nickel was interrogated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) analyses. Distinctly enhanced electrocatalytic activity with improved surface poisoning resistance related to mesoporous nickel electrode towards methanol oxidation stems from unique mesoporous morphology. This mesoporous morphology with high surface to volume ratio is highly beneficial to promote active catalytic centers to offer readily accessible Pt catalytic sites for MOR, through facilitating mass and electron transports.
NASA Astrophysics Data System (ADS)
Suthar, Lokesh; Bhadala, Falguni; Roy, M.; Jha, V. K.
2018-05-01
The electrical transport behaviour of polycrystalline Calcium doped Yttrium orthoferrite (Y1-xCaxFeO3, where x = 0.03 and 0.05) have been synthesized by high temperature Solid state reaction route. The I-V characteristics have been measured which revels that Y1-xCaxFeO3 (where x = 0.03 and 0.05), behaves like semiconductor and its conductivity increases with increase in doping concentration. The thermal analysis experiment shows no phase change with the minor weight loss which reflects the high temperature thermal stability of the materials. The surface morphology was analyzed using the AFM. The results are discussed in detail.
NASA Astrophysics Data System (ADS)
Atyaoui, Malek; Atyaoui, Atef; Khalifa, Marwen; Elyagoubi, Jalel; Dimassi, Wissem; Ezzaouia, Hatem
2016-04-01
This work presents the surface Plasmon effect of Palladium nanoparticles (Pd NPs) on the photovoltaic properties of silicon solar cells. Pd NPs were deposited on the p-type silicon base of the n+/p junction using a chemical deposition method in an aqueous solution containing Palladium (II) Nitrate (PdNO3)2 and Ammonium Hydroxide (NH4OH) followed by a thermal treatment at 500 °C under nitrogen atmosphere. Chemical composition and surface morphology of the treated silicon base were examined by energy dispersive X-ray (EDX) spectroscopy, scanning electronic microscopy (SEM) and Atomic Force Microscopy (AFM). The effect of the deposited Pd NPs on the electrical properties was evaluated by the internal quantum efficiency (IQE) and current-voltage (I-V) measurements. The results indicate that the formation of the Pd NPs is accompanied by an enhanced light absorption and improved photovoltaic parameters.
Biocompatibility study of plasma-coated nitinol (NiTi alloy) stents.
Wang, G; Shen, Y; Cao, Y; Yu, Q; Guidoin, R
2007-12-01
The authors aimed to assess the surface modification effects of plasma coatings on biocompatibility of nitinol intravascular stent in terms of anticoagulation, haemocytolysis rate, hydrophilicity, cytotoxicity and so on. In order to improve their surface adhesive properties to endothelial cells, NiTi alloy intravascular stents were treated and coated using a low-temperature plasma deposition technique. It was found that plasma coating changed the surface morphology of the stents to a micron-level surface roughness in the range of 1-5 microm. In comparison with the untreated control, the plasma-treated NiTi alloy intravascular stents showed increased surface hydrophilicity and enhanced anticoagulation property. Testing results on plasma-coated NiTi stents indicated that they complied with the standard of national biologic safety evaluation of medical apparatus and instrument (GB/T16886-1997, People's Republic of China) in terms of haemocytolysis rate, cytotoxicity and pyretogen.
Park, Yong Seob; Kang, Ki-Noh; Kim, Young-Baek; Hwang, Sung Hwan; Lee, Jaehyeong
2018-09-01
Cr metal electrode was suggested as the working electrode material to fabricate DSSCs without the TCO, and thin films were fabricated by an unbalanced magnetron sputtering system. The surface morphologies show uniform and smooth surfaces regardless of various film thicknesses, and the small crystallites of various sizes were showed with the vertical direction on the surface of Cr thin films with the increase of film thickness. And also, the root mean square (RMS) surface roughness value of Cr thin films increased, and the sheet resistance is decreased with the increase of film thickness. The maximum cell efficiency of the TCO-less DSSC was observed when a Cr working electrode with a thickness of 80 nm was applied to the TCO-less DSSC. Consequently, these results are related to the result of the optimization of conduction characteristics, transmission properties and surface properties of Cr thin films.
NASA Astrophysics Data System (ADS)
Cross, Sarah E.; Kreth, Jens; Zhu, Lin; Qi, Fengxia; Pelling, Andrew E.; Shi, Wenyuan; Gimzewski, James K.
2006-02-01
Atomic force microscopy (AFM) has garnered much interest in recent years for its ability to probe the structure, function and cellular nanomechanics inherent to specific biological cells. In particular, we have used AFM to probe the important structure-function relationships of the bacterium Streptococcus mutans. S. mutans is the primary aetiological agent in human dental caries (tooth decay), and is of medical importance due to the virulence properties of these cells in biofilm initiation and formation, leading to increased tolerance to antibiotics. We have used AFM to characterize the unique surface structures of distinct mutants of S. mutans. These mutations are located in specific genes that encode surface proteins, thus using AFM we have resolved characteristic surface features for mutant strains compared to the wild type. Ultimately, our characterization of surface morphology has shown distinct differences in the local properties displayed by various S. mutans strains on the nanoscale, which is imperative for understanding the collective properties of these cells in biofilm formation.
Bio-functionalization of biomedical metals.
Xiao, M; Chen, Y M; Biao, M N; Zhang, X D; Yang, B C
2017-01-01
Bio-functionalization means to endow biomaterials with bio-functions so as to make the materials or devices more suitable for biomedical applications. Traditionally, because of the excellent mechanical properties, the biomedical metals have been widely used in clinic. However, the utilized functions are basically supporting or fixation especially for the implantable devices. Nowadays, some new functions, including bioactivity, anti-tumor, anti-microbial, and so on, are introduced to biomedical metals. To realize those bio-functions on the metallic biomedical materials, surface modification is the most commonly used method. Surface modification, including physical and chemical methods, is an effective way to alter the surface morphology and composition of biomaterials. It can endow the biomedical metals with new surface properties while still retain the good mechanical properties of the bulk material. Having analyzed the ways of realizing the bio-functionalization, this article briefly summarized the bio-functionalization concepts of six hot spots in this field. They are bioactivity, bony tissue inducing, anti-microbial, anti-tumor, anticoagulation, and drug loading functions. Copyright © 2016. Published by Elsevier B.V.
Wang, Peng; Zhang, Jin-Chao; Zhang, Xiao-Zhou; Liu, Zhi-Qin; Chen, Que-Ting; Sun, Jing; Chen, Zhi-Qing
2009-09-01
To test the Piezoelectric property of novel biological piezoelectric ceramic HALNK and its effect on the proliferation and differentiation of rat osteoblast cells. The biological piezoelectric ceramic HALNK1/9 and HALNK5/5 were prepared by mixing Hydroxyapatite (HA) with lithium sodium potassium niobate (LNK) piezoelectric ceramic at a ratio of 1/9 and 5/5 (wt/wt), respectively. After poling treatment, the piezoelectric constants were measured. The osteoblast cells were then seeded on the surfaces of HALNK. The proliferation and differentiation activities of the osteoblast cells were evaluated by MTT assays, ALP activities and scanning electron microscopy examinations. Cells grown on the surfaces of HALNK showed normal morphology, and had better proliferation and differentiation activities than the control. The growth of osteoblastic cells on the surface of HALNK1/9 was significantly better than others. The surface of HALNK 1/9 possesses better piezoelectric property and osteogenesis potential than HALNK5/5.
NASA Astrophysics Data System (ADS)
Xiong, Jiawei; Sarkar, D. K.; Chen, X.-Grant
2017-06-01
Superhydrophobic cobalt stearate thin films with excellent anti-corrosion properties were successfully fabricated on aluminum substrates via electrodeposition process. The water-repellent properties were attributed to the honeycomb-like micro-nano structure as well as low surface energy of cobalt stearate. The correlation between the surface morphology, composition as well as wetting properties and the molar ratio of inorganic cobalt salt (Co(NO3)2) and organic stearic acid (SA) abbreviated as Co/SA, in the electrolyte were studied carefully. The optimum superhydrophobic surface obtained on the electrodeposited cathodic aluminum substrate, in the mixed ethanolic solution with Co/SA molar ratio of 0.2, was found to have a maximum contact angle of 161°. The polarization resistance of superhydrophobic aluminum substrates was calculated as high as 1591 kΩ cm2, which is determined to be two orders of magnitude larger than that of the as-received aluminum substrate as 27 kΩ cm2. Electrochemical impedance spectroscopy (EIS) was also employed to evaluate the corrosion resistance properties of these samples. Furthermore, electrical equivalent circuits (EEC) have been suggested in order to better understand the corrosion phenomena on these surfaces based on the corresponding EIS data.
A Chromium-Free Coating System for DoD Applications
2008-05-01
Cu -Mg and Al - Cu -Fe-Mn intermetallics, lead to good mechanical properties of the alloy by strengthening the Al matrix [2]. Aluminum and its alloys ...pretreatment; target performances were resistance in the B-117 salt spray test of the primer only of 2000 hours for Al alloys , 1000 hours for HDG...silanes. The films deposited on Al substrate and silicon wafer have similar bulk properties and top surface morphology. We conclude that
NASA Astrophysics Data System (ADS)
Sriramulu, Deepa; Reed, Ella Louise; Annamalai, Meenakshi; Venkatesan, Thirumalai Venky; Valiyaveettil, Suresh
2016-11-01
Multifunctional coatings offer many advantages towards protecting various surfaces. Here we apply aggregation induced segregation of perylene diimide (PDI) to control the surface morphology and properties of silica nanoparticles. Differentially functionalized PDI was incorporated on the surface of silica nanoparticles through Si-O-Si bonds. The absorption and emission spectra of the resultant functionalised nanoparticles showed monomeric or excimeric peaks based on the amounts of perylene molecules present on the surface of silica nanoparticles. Contact angle measurements on thin films prepared from nanoparticles showed that unfunctionalised nanoparticles were superhydrophilic with a contact angle (CA) of 0°, whereas perylene functionalised silica particles were hydrophobic (CA > 130°) and nanoparticles functionalised with PDI and trimethoxy(octadecyl)silane (TMODS) in an equimolar ratio were superhydrophobic with static CA > 150° and sliding angle (SA) < 10°. In addition, the near infrared (NIR) reflectance properties of PDI incorporated silica nanoparticles can be used to protect various heat sensitive substrates. The concept developed in this paper offers a unique combination of super hydrophobicity, interesting optical properties and NIR reflectance in nanosilica, which could be used for interesting applications such as surface coatings with self-cleaning and NIR reflection properties.
Laser induced surface structuring of Cu for enhancement of field emission properties
NASA Astrophysics Data System (ADS)
Akram, Mahreen; Bashir, Shazia; Jalil, Sohail Abdul; Shahid Rafique, Muhammad; Hayat, Asma; Mahmood, Khaliq
2018-02-01
The effect of Nd:YAG (1064 nm, 10 ns, 10 Hz) laser induced surface structuring of copper (Cu) for enhancement of field emission (FE) properties has been investigated. X-ray diffraction analysis was employed to investigate the surface structural and compositional modifications. The surface structuring was explored by scanning electron microscope investigation. FE properties were studied under UHV conditions in a parallel plate configuration of planar un-irradiated Cu anode and laser irradiated Cu cathode. The Fowler-Nordheim plots were drawn to confirm the dominance of FE behavior of the measured I-V characteristics. The obtained values of turn-on field ‘E o’, field enhancement factor ‘β’ and maximum current density ‘J max’ come out to be to be in the range of 5.5-8.5 V μm-1, 1380-2730 and 147-375 μA cm-2 respectively for the Cu samples irradiated at laser irradiance ranging from 13 to 50 GW cm-2. The observed enhancement in the FE properties has been correlated with the growth of various surface structures such as ridged protrusions, cones and pores/tiny holes. The porous morphology is found to be responsible for a significant enhancement in the FE parameters.
Longoni, Gianluca; Pena Cabrera, Rosita Lissette; Polizzi, Stefano; D'Arienzo, Massimiliano; Mari, Claudio Maria; Cui, Yi; Ruffo, Riccardo
2017-02-08
Rechargeable sodium-ion batteries are becoming a viable alternative to lithium-based technology in energy storage strategies, due to the wide abundance of sodium raw material. In the past decade, this has generated a boom of research interest in such systems. Notwithstanding the large number of research papers concerning sodium-ion battery electrodes, the development of a low-cost, well-performing anode material remains the largest obstacle to overcome. Although the well-known anatase, one of the allotropic forms of natural TiO 2 , was recently proposed for such applications, the material generally suffers from reduced cyclability and limited power, due to kinetic drawbacks and to its poor charge transport properties. A systematic approach in the morphological tuning of the anatase nanocrystals is needed, to optimize its structural features toward the electrochemical properties and to promote the material interaction with the conductive network and the electrolyte. Aiming to face with these issues, we were able to obtain a fine tuning of the nanoparticle morphology and to expose the most favorable nanocrystal facets to the electrolyte and to the conductive wrapping agent (graphene), thus overcoming the intrinsic limits of anatase transport properties. The result is a TiO 2 -based composite electrode able to deliver an outstandingly stability over cycles (150 mA h g -1 for more than 600 cycles in the 1.5-0.1 V potential range) never achieved with such a low content of carbonaceous substrate (5%). Moreover, it has been demonstrated for the first time than these outstanding performances are not simply related to the overall surface area of the different morphologies but have to be directly related to the peculiar surface characteristics of the crystals.
Shi, Limin; Feng, Yushi; Sun, Changquan Calvin
2011-05-18
The influence of massing during high shear wet granulation (HSWG) process on granule properties and performance was investigated using microcrystalline cellulose (MCC). Massing time varied from 0 to 40 min while other factors were fixed. Granule physical properties, including morphology, size, porosity, and specific surface area (SSA), were characterized. Changes in powder properties were profound in the first 10 min of massing but negligible beyond 10 min. With 10 min of massing, granule tabletability decreased by 75% while flowability increased by 75%. The significantly deteriorated tabletability and improved flowability resulted from dramatic changes in granule morphology, porosity, and SSA. The results confirm that massing time is a key process parameter in HSWG, and it must be carefully evaluated and controlled during process development, scale up, and manufacturing. Copyright © 2011 Elsevier B.V. All rights reserved.
Lamberti, Andrea; Perrucci, Francesco; Caprioli, Matteo; Serrapede, Mara; Fontana, Marco; Bianco, Stefano; Ferrero, Sergio; Tresso, Elena
2017-04-28
In certain polymers the graphenization of carbon atoms can be obtained by laser writing owing to the easy absorption of long-wavelength radiation, which generates photo-thermal effects. On a polyimide surface this process allows the formation of a nanostructured and porous carbon network known as laser-induced graphene (LIG). Herein we report on the effect of the process parameters on the morphology and physical properties of LIG nanostructures. We show that the scan speed and the frequency of the incident radiation affect the gas evolution, inducing different structure rearrangements, an interesting nitrogen self-doping phenomenon and consequently different conduction properties. The materials were characterized by infrared and Raman spectroscopy, XPS elemental analysis, electron microscopy and electrical/electrochemical measurements. In particular the samples were tested as interdigitated electrodes into electrochemical supercapacitors and the optimized LIG arrangement was tested in parallel and series supercapacitor configurations to allow power exploitation.
Calcium phosphate ceramics in drug delivery
NASA Astrophysics Data System (ADS)
Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit
2011-04-01
Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.
In-situ observation of switchable nanoscale topography for y-shaped binary brushes in fluids.
Lin, Yen-Hsi; Teng, Jing; Zubarev, Eugene R; Shulha, Hennady; Tsukruk, Vladimir V
2005-03-01
Direct, in-fluid observation of the surface morphology and nanomechanical properties of the mixed brushes composed of Y-shaped binary molecules PS-PAA revealed nanoscale network-like surface topography formed by coexisting stretched soluble PAA arms and collapsed insoluble PS chains in water. Placement of Y-shaped brushes in different fluids resulted in dramatic reorganization ranging from soft repellent layer covered by swollen PS arms in toluene to an adhesive, mixed layer composed of coexisting swollen PAA and collapsed PS arms in water. These binary layers with the overall nanoscale thickness can serve as adaptive nanocoatings with stimuli-responsive properties.
Surface modification of cellulose using silane coupling agent.
Thakur, Manju Kumari; Gupta, Raju Kumar; Thakur, Vijay Kumar
2014-10-13
Recently there has been a growing interest in substituting traditional synthetic polymers with natural polymers for different applications. However, natural polymers such as cellulose suffer from few drawbacks. To become viable potential alternatives of synthetic polymers, cellulosic polymers must have comparable physico-chemical properties to that of synthetic polymers. So in the present work, cellulose polymer has been modified by a series of mercerization and silane functionalization to optimize the reaction conditions. Structural, thermal and morphological characterization of the cellulose has been done using FTIR, TGA and SEM, techniques. Surface modified cellulose polymers were further subjected to evaluation of their properties like swelling and chemical resistance behavior. Published by Elsevier Ltd.
Morphology and Optical Properties of Black-Carbon Particles Relevant to Engine Emissions
NASA Astrophysics Data System (ADS)
Michelsen, H. A.; Bambha, R.; Dansson, M. A.; Schrader, P. E.
2013-12-01
Black-carbon particles are believed to have a large influence on climate through direct radiative forcing, reduction of surface albedo of snow and ice in the cryosphere, and interaction with clouds. The optical properties and morphology of atmospheric particles containing black carbon are uncertain, and characterization of black carbon resulting from engines emissions is needed. Refractory black-carbon particles found in the atmosphere are often coated with unburned fuel, sulfuric acid, water, ash, and other combustion by-products and atmospheric constituents. Coatings can alter the optical and physical properties of the particles and therefore change their optical properties and cloud interactions. Details of particle morphology and coating state can also have important effects on the interpretation of optical diagnostics. A more complete understanding of how coatings affect extinction, absorption, and incandescence measurements is needed before these techniques can be applied reliably to a wide range of particles. We have investigated the effects of coatings on the optical and physical properties of combustion-generated black-carbon particles using a range of standard particle diagnostics, extinction, and time-resolved laser-induced incandescence (LII) measurements. Particles were generated in a co-flow diffusion flame, extracted, cooled, and coated with oleic acid. The diffusion flame produces highly dendritic soot aggregates with similar properties to those produced in diesel engines, diffusion flames, and most natural combustion processes. A thermodenuder was used to remove the coating. A scanning mobility particle sizer (SMPS) was used to monitor aggregate sizes; a centrifugal particle mass analyzer (CPMA) was used to measure coating mass fractions, and transmission electron microscopy (TEM) was used to characterize particle morphologies. The results demonstrate important differences in optical measurements between coated and uncoated particles.
Morphological Control of Co3O4 and Its Photocatalytic Properties
Cobaltosic oxide (Co3O4), a p-type semiconductor, belongs to the normal spinel crystal structure based on a cubic close packing array of oxide ions. The size, surface, geometry, and crystal phase of catalysts are important parameters for controlling their chemical, optical, and ...
Processing, Properties and Morphology of Optical Limiting Silk Membranes
2007-07-11
films of regenerated B. Mori silk doped with GFP Cocoons were degummed to remove the glue-like sericin proteins. Degumming was accomplished by boiling...just before spinning and rinsed with deionized water. The membrane was removed from the gland and the sericin was washed from the surface of the
Nanocomposite film prepared by depositing xylan on cellulose nanowhiskers matrix
Qining Sun; Anurag Mandalika; Thomas Elder; Sandeep S. Nair; Xianzhi Meng; Fang Huang; Art J. Ragauskas
2014-01-01
Novel bionanocomposite films have been prepared by depositing xylan onto cellulose nanowhiskers through a pH adjustment. Analysis of strength properties, water vapour transmission, transparency, surface morphology and thermal decomposition showed the enhancement of film performance. This provides a new green route to the utilization of biomass for sustainable...
Pandey, Puran; Kunwar, Sundar; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Lee, Jihoon
2018-05-01
As a promising candidate for the improved performance, silver nanoparticles (Ag NPs) have been successfully adapted in various applications such as photovoltaics, light emitting diodes (LEDs), sensors and catalysis by taking the advantage of their controllable plasmonic properties. In this paper, the control on the morphologies and optical properties of Ag NPs on c-plane sapphire (0001) is demonstrated by the systematic control of annealing temperature (between 200 and 950 °C) with 20 and 6 nm thick Ag films through the solid state dewetting. With the relatively thicker film of 20 nm, various configuration and size of Ag NPs are fabricated such as irregular, round dome-shaped and tiny Ag NPs depending on the annealing temperature. In a shrill contrast, the 6 nm Ag set exhibits a sharp distinction with the formation of densely packed small NPs and ultra-highly dense tiny Ag NPs due to the higher dewetting rate. While, the surface diffusion assumes the main driving force in the evolution process of Ag NP morphologies up to 550 °C, the sublimation of Ag atoms has played a significant role on top on the surface diffusion between 600 and 950 °C. The reflectance spectra of Ag NPs exhibit the quadrupolar resonance and dipolar resonance peaks, and the evolution of peaks, shift and average reflectance were discussed based on the Ag NPs size and surface coverage. In particular, the dipolar resonance peak in the reflectance spectra red shifts from ~475 to ~570 nm due to the size increment of Ag NPs (38.31 to 74.68 nm). The wide surface coverage of Ag NPs exhibits the highest average reflectance (~27%) and the lowest Raman intensity.
Spin morphologies and heat dissipation in spherical assemblies of magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Anand, Manish; Carrey, Julian; Banerjee, Varsha
2016-09-01
Aggregates of magnetic nanoparticles (MNPs) exhibit unusual properties due to the interplay of small system size and long-range dipole-dipole interactions. Using the micromagnetic simulation software oommf, we study the spin morphologies and heat dissipation in micron-size spherical assemblies of MNPs. In particular, we examine the sensitivity of these properties to the dipolar strength, manipulated by the interparticle separation. As oommf is not designed for such a study, we have incorporated a novel scaling protocol for this purpose. We believe that it is essential for all studies where volume fractions are varied. Our main results are as follows: (i) Dense assemblies exhibit strong dipolar effects which yield local magnetic order in the core but not on the surface, where moments are randomly oriented. (ii) The probability distribution of ground-state energy exhibits a long high-energy tail for surface spins in contrast to small tails for the core spins. Consequently, there is a wide variation in the energy of surface spins but not the core spins. (iii) There is strong correlation between ground-state energy and heating properties on application of an oscillating magnetic field h (t ) =hocos2 π f t : the particles in the core heat uniformly, while those on the surface exhibit a wide range from cold to intensely hot. (iv) Specific choices of ho and f yield characteristic spatial heat distributions, e.g., hot surface and cold core, or vice versa. (iv) For all values of ho and f that we consider, heating was maximum at a specific volume fraction. These results are especially relevant in the context of contemporary applications such as hyperthermia and chemotherapy, and also for novel materials such as smart polymer beads and superspin glasses.
Property Morphology Correlations of Organic Semiconductor Nanowires
NASA Astrophysics Data System (ADS)
McFarland, Frederick Marshall
Chemically doped and non-doped P3HT nanoaggregates are studied to establish a comprehensive understanding of the interplay between their morphology and various optoelectronic properties. One-dimensional nanoaggregates of P3HT are chosen as the model systems here due to their high surface/volume ratio and suitability for microscopic investigations. Atomic force microscopy (AFM) and kelvin probe force microscopy (KPFM) are used to correlate property/morphology characteristics of non-doped P3HT nanowhiskers. Topographical measurements indicate that individually folded P3HT motifs stack via interfacial interactions to form nanowhiskers in solution. Further aging leads to multi-layered nanowhiskers with greater stability and less instances of ?-? sliding of interfacial edge-on oriented motifs. KPFM measurements show higher surface potentials on portions of nanowhiskers containing local defects and stacking faults due to overlapping, and nanowhiskers that are at least triple-layered. Simultaneous UV-Vis and AFM characterizations compare the aggregation rates and morphologies of doped and non-doped P3HT nanowhiskers. Allowing fully solubilized P3HT to age without doping may produce high aspect ratio nanowhiskers containing disordered segments protruding out from the edges of the nanowhiskers. These protruding segments could also serve as "tie-molecules" between adjacent nanowhiskers. Doping fully solubilized P3HT will lead to substantially higher rates of P3HT aggregation. Doped nanowhiskers also display different morphologies. They pack tighter, are smoother, and are thicker and higher versus non-doped nanowhiskers, indicating a different aggregation mechanism. Stopped flow-kinetics was employed to investigate the reactivity of two distinctively different morphological forms of P3HT towards dopants. Fully solubilized P3HT undergoes a slow doping mechanism whereas pre-aggregated P3HT undergoes a fast doping mechanism. Pseudo-single reactant rate fittings indicate that both mechanisms appear to be 1st order in P3HT, whereby pre-aggregated P3HT mixtures will produce more doped products per P3HT monomer unit than fully solubilized P3HT. This study highlights the impact of conjugated polymer's morphology on their doping efficiency. Density functional theory was used to investigate the charge transfer (CT) states between oligothiophene and F4-TCNQ. CT of several unreported complexes that feature two oligomers stacked in a sandwich or layered configuration is investigated. Our preliminary results suggest that these new complexes can generate substantially more charge per F4-TCNQ than previously reported.
Evaluation of SiO{sub 2}@CoFe{sub 2}O{sub 4} nano-hollow spheres through THz pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakshit, Rupali, E-mail: rupali12@bose.res.in; Pal, Monalisa; Chaudhuri, Arka
2016-05-06
We have synthesized cobalt ferrite (CFO) nanoparticles (NPs) of diameter 100 nm and nano-hollow spheres (NHSs) of diameter 100, 160, 250, and 350 nm by a facile one step template free solvothermal technique and carried out SiO{sub 2} coating on their surface following Stöber method. The phase and morphology of the nanostructures were confirmed by X-ray diffraction and transmission electron microscope. The magnetic measurements were carried out by vibrating sample magnetometer in order to study the influence of SiO{sub 2} coating on the magnetic properties of bare CFO nanostructures. Furthermore, we have applied THz time domain spectroscopy to investigate the THz absorptionmore » property of these nanostructures in the frequency range 1.0–2.5 THz. Detailed morphology and size dependent THz absorption study unfolds that the absorption property of these nanostructures sensitively carries the unique signature of its dielectric property.« less
Impact of Interfacial Roughness on the Sorption Properties of Nanocast Polymers
Sridhar, Manasa; Gunugunuri, Krishna R.; Hu, Naiping; ...
2016-03-16
Nanocasting is an emerging method to prepare organic polymers with regular, nanometer pores using inorganic templates. This report assesses the impact of imperfect template replication on the sorption properties of such polymer castings. Existing X-ray diffraction data show that substantial diffuse scattering exists in the small-angle region even though TEM images show near perfect lattices of uniform pores. To assess the origin of the diffuse scattering, the morphology of the phenol - formaldehyde foams (PFF) was investigated by small-angle X-ray scattering (SAXS). The observed diffuse scattering is attributed to interfacial roughness due to fractal structures. Such roughness has a profoundmore » impact on the sorption properties. Conventional pore- filling models, for example, overestimate protein sorption capacity. A mathematical framework is presented to calculate sorption properties based on observed morphological parameters. The formalism uses the surface fractal dimension determined by SAXS in conjunction with nitrogen adsorption isotherms to predict lysozyme sorption. The results are consistent with measured lysozyme loading.« less
Coercivity and Exchange Bias Study of Polycrystalline Hollow Nanoparticles
NASA Astrophysics Data System (ADS)
Bah, Mohamed Alpha
Magnetic nanoparticles (NPs) have the potential to be useful in a variety of applications such as biomedical instruments, catalysis, sensing, recording information, etc. These nanoparticles exhibit remarkably different properties compared to their bulk counter parts. Synthesis of magnetic NPs with the right morphology, phase, size and surface functionality, as well as their usage for specific applications are challenging in terms of efficiency and safety. Morphology wise, there have been numerous reports on magnetic nanoparticles where morphologies such as core/shell, hollow, solid, etc., have been explored. It has been shown that morphology affects the magnetic response. Achieving the right crystal structure with required morphology and the magnetic behavior of the nanoparticle phases determines the magnetic response of the structure. For example, in the case of core/shell NPs various ferromagnetic (FM), ferrimagnetic (FiM), and antiferromagnetic (AFM) core and shell combinations have been reported. In these cases, interesting and strikingly different features, such as unusually high spin glass transition temperature, large exchange bias, finite size effects, magnetic proximity effects, unusual trend of blocking temperature as function of average crystal size, etc., have been reported. More specifically, the morphology of core/shell nanoparticles provides added degrees of freedom compared to conventional solid magnetic nanoparticles, including variations in the size, phase and material of the core and shell of the particle, etc. which helps enhance their magnetic properties. Similar to traditional core/shell nanoparticles, inverted core/shell having a FiM or FM order above the Curie temperature (TC) of the shell has been reported where the Neel temperature (TN) is comparable with the bulk value and there is nonmonotonic dependence of the coercive field (HC) and exchange bias (HEB) on the core diameter. In addition to the core/shell morphology, nanoparticles with hollow morphology are also of interest to the scientific community. For such cases, surface spin glass transition enhancements have been reported due to the presence of the additional inner surface. CoFe2O4, NiFe 2O4 and gamma-Fe2O3 hollow nanoparticles exhibit strikingly contrasting magnetic behavior compared to bulk and conventional solid particles; similar behavior was also observed in core/shell nanoparticles. Structurally, hollow polycrystalline nanoparticles are composed of multiple crystallographic domains. This random orientation of the crystallographic domains also causes randomization of the local anisotropy axes. Hence the overall effect of this morphology on the magnetic properties is exhibited through the high coercivity, relatively high temperature magnetic irreversibility, lack of magnetic saturation, high blocking temperature, etc. Over the years, extensive work on core/shell nanoparticles have been carried out to understand their exchange bias phenomenon and the effect on coercivity. Recently, focus has been given to hollow polycrystalline nanoparticles for the reason mentioned above. This thesis investigates the root cause for the above-mentioned effects on the coercivity and exchange bias. Since hollow nanoparticles with polycrystalline structure have shown to exhibit different and improved magnetic behavior compared to bulk and other conventional solid particles, they will be the focus of our investigation. First, extensive field and temperature dependent magnetic study on polycrystalline hollow nickel ferrite (NiFe2O4) have revealed the effect of the presence of inner surface in a single oxide nanoparticle. Second, the effect of having multiple oxides with different magnetic properties (i.e. FM and AFM) in a single nanoparticle, while maintaining a hollow morphology was investigated by studying polycrystalline hollow gamma-Mn2O3 and MnO nanoparticles. Studies on various conventional solid manganese oxide nanoparticles have already been reported. Therefore, focus was only made on the fabrication and magnetic study of hollow polycrystalline manganese oxide, with a comparison of the results to those from solid nanoparticles already available in literature. A conclusion was drawn to the importance of the coupling of different magnetic phases (i.e. FM and AFM, FiM and AFM, or SG and AFM), in contrast to just having one single oxide in the hollow nanoparticles. Finally, the importance of this coupling as compared to the increase of surface-to-volume ratio was evaluated in CoO/Co3O4/CoFe2O4 polycrystalline hollow nanoparticles by varying the AFM phase (CoO/Co 3O4) in the nanoparticles and observing how the magnetic properties varied. This system helped address the effect of the coupling between different magnetic phases, super-exchange interaction, and proximity effect.
Effect of laser irradiation on surface hardness and structural parameters of 7178 aluminium alloy
NASA Astrophysics Data System (ADS)
Maryam, Siddra; Bashir, Farooq
2018-04-01
Aluminium 7178 samples were prepared and irradiated with Nd:YAG laser. The surfaces of exposed samples were investigated using optical microscopy, which revealed that the surface morphology of the samples is changed drastically as a function of laser shots. It is revealed from the micrographs that the laser heat effected area increases with the increase in the number of the laser pulses. Furthermore morphological and mechanical properties were studied using XRD and Vickers hardness testing. XRD study shows an increasing trend in Grain size with the increasing number of laser shots. And the hardness of the samples as a function of the laser shots shows that the hardness first increases and then it decreases gradually. It was observed that the grain size has no pronouncing effect on the hardness. Hardness profile has a decreasing trend with the increase in linear distance from the boundary of the laser heat affected area.
Imaging and Laser Spectroscopy Investigation of Insect Wings
NASA Astrophysics Data System (ADS)
Shiver, Tegan; Lawhead, Carlos; Anderson, Josiah; Cooper, Nathan; Ujj, Laszlo; Pall Life Sciences Collaboration
2014-03-01
Measuring the surface morphology and chemical composition of insect wings is important to understand the extreme mechanical properties and the biophysical functionalities of the wings. We have measured the image of the membrane of the cicada (genus Tibicen) wing with the help of Scanning Electron Microscopy (SEM). The results confirm the existing periodic structure of the wing measured previously. The SEM imaging can be used to measure the surface morphology of any insect species wings. The physical surface structure of the cicada wing is an example of a new class of biomaterials that can kill bacteria on contact. In order to identify the chemical composition of the wing, we have measured the vibrational spectra of the wing's membrane (Raman and CARS). The measured spectra are consistent with the original assumption that the wing membrane is composed of protein, wax, and chitin. The results of these studies can be used to make artificial materials in the future.
Porosity and thickness effect of porous silicon layer on photoluminescence spectra
NASA Astrophysics Data System (ADS)
Husairi, F. S.; Eswar, K. A.; Guliling, Muliyadi; Khusaimi, Z.; Rusop, M.; Abdullah, S.
2018-05-01
The porous silicon nanostructures was prepared by electrochemical etching of p-type silicon wafer. Porous silicon prepared by using different current density and fix etching time with assistance of halogen lamp. The physical structure of porous silicon measured by the parameters used which know as experimental factor. In this work, we select one of those factors to correlate which optical properties of porous silicon. We investigated the surface morphology by using Surface Profiler (SP) and photoluminescence using Photoluminescence (PL) spectrometer. Different physical characteristics of porous silicon produced when current density varied. Surface profiler used to measure the thickness of porous and the porosity calculated using mass different of silicon. Photoluminescence characteristics of porous silicon depend on their morphology because the size and distribution of pore its self will effect to their exciton energy level. At J=30 mA/cm2 the shorter wavelength produced and it followed the trend of porosity with current density applied.
NASA Astrophysics Data System (ADS)
Zhang, Baosen; Dong, Qiangsheng; Ba, Zhixin; Wang, Zhangzhong; Shi, Hancheng; Xue, Yanting
2018-01-01
Plasma nitriding was conducted as post-treatment for surface texture on pure titanium to obtain a continuous nitriding layer. Supersonic fine particles bombarding (SFPB) was carried out to prepare surface texture. The surface morphologies and chemical composition were analyzed using scanning electron microscope and energy disperse spectroscopy. The microstructures of modified layers were characterized by transmission electron microscope. The tribological properties of surface-textured and duplex-treated pure titanium under oil lubrication condition were systematically investigated in the ball-on-plate reciprocating mode. The effects of applied load and sliding velocity on the tribological behavior were analyzed. The results show that after duplex treatments, the grains size in modified layer becomes slightly larger, and hardness is obviously improved. Wear resistance of duplex-treated pure titanium is significantly improved referenced to untreated and surface-textured pure titanium, which is 3.22 times as much as untreated pure titanium and 2.15 times of that for surface-textured pure titanium, respectively.
Surface enhancement of cold work tool steels by friction stir processing with a pinless tool
NASA Astrophysics Data System (ADS)
Costa, M. I.; Verdera, D.; Vieira, M. T.; Rodrigues, D. M.
2014-03-01
The microstructure and mechanical properties of enhanced tool steel (AISI D2) surfaces produced using a friction stir welding (FSW) related procedure, called friction stir processing (FSP), are analysed in this work. The surface of the tool steel samples was processed using a WC-Co pinless tool and varying processing conditions. Microstructural analysis revealed that meanwhile the original substrate structure consisted of a heterogeneous distribution of coarse carbides in a ferritic matrix, the transformed surfaces consisted of very small carbides, homogenously distributed in a ferrite- bainite- martensite matrix. The morphology of the surfaces, as well as its mechanical properties, evaluated by hardness and tensile testing, were found to vary with increasing tool rotation speed. Surface hardness was drastically increased, relative to the initial hardness of bulk steel. This was attributed to ferrite and carbide refinement, as well as to martensite formation during solid state processing. At the highest rotation rates, tool sliding during processing deeply compromised the characteristics of the processed surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung, Shang-Chao, E-mail: schung99@gmail.com; Chen, Yu-Jyun
2016-07-15
Highlights: • Graphene nanoribbons (GNBs) slanted on aggregate TiO{sub 2} nanotube (A-TNTs) as field-emitters. • Turn-on electric field and field enhancement factor β are dependent on the substrate morphology. • Various quantities of GNRs are deposited on top of A-TNTs (GNRs/A-TNTs) with different morphologies. • With an increase of GNBs compositions, the specimens' turn-on electric field is reduced to 2.8 V/μm. • The field enhancement factor increased rapidly to about 1964 with the addition of GNRs. - Abstract: Graphene nanoribbons (GNRs) slanted on aggregate TiO{sub 2} nanotube arrays (A-TNTs) with various compositions as field-emitters are reported. The morphology, crystalline structure,more » and composition of the as-obtained specimens were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Raman spectrometry. The dependence of the turn-on electric field and the field enhancement factor β on substrate morphology was studied. An increase of GNRs reduces the specimens’ turn-on electric field to 2.8 V/μm and the field enhancement factor increased rapidly to about 1964 with the addition of GNRs. Results show a strong dependence of the field emission on GNR composition aligned with the gradient on the top of the A-TNT substrate. Enhanced FE properties of the modified TNTs can be mainly attributed to their improved electrical properties and rougher surface morphology.« less
Application of two dimensional periodic molecular dynamics to interfaces.
NASA Astrophysics Data System (ADS)
Gay, David H.; Slater, Ben; Catlow, C. Richard A.
1997-08-01
We have applied two-dimensional molecular dynamics to the surface of a crystalline aspartame and the interface between the crystal face and a solvent (water). This has allowed us to look at the dynamic processes at the surface. Understanding the surface structure and properties are important to controlling the crystal morphology. The thermodynamic ensemble was constant Number, surface Area and Temperature (NAT). The calculations have been carried out using a 2D Ewald summation and 2D periodic boundary conditions for the short range potentials. The equations of motion integration has been carried out using the standard velocity Verlet algorithm.
Plastron properties of a superhydrophobic surface
NASA Astrophysics Data System (ADS)
Shirtcliffe, Neil J.; McHale, Glen; Newton, Michael I.; Perry, Carole C.; Pyatt, F. Brian
2006-09-01
Most insects and spiders drown when submerged during flooding or tidal inundation, but some are able to survive and others can remain submerged indefinitely without harm. Many achieve this by natural adaptations to their surface morphology to trap films of air, creating plastrons which fix the water-vapor interface and provide an incompressible oxygen-carbon dioxide exchange surface. Here the authors demonstrate how the surface of an extremely water-repellent foam mimics this mechanism of underwater respiration and allows direct extraction of oxygen from aerated water. The biomimetic principle demonstrated can be applied to a wide variety of man-made superhydrophobic materials.
NASA Astrophysics Data System (ADS)
Ranjith Kumar, G.; Sowmya Joshi, K.; Rajyalakshmi, G.; Kalainathan, S.; Prabhakaran, S.
2018-02-01
Present competitive world is looking for Components with high strength and fatigue resistance finding their applications in aerospace, turbine parts and especially bio-medical devices with high bio-compatibility. Advanced surface engineering techniques are required to produce parts of higher complexities and desirable surface qualities. Laser peening stood first in a row of all various surface treatments of metallic component. This paper discusses about the mechanical properties like hardness and roughness then the surface morphology and the corrosion behaviour of the laser peened titanium samples with and without coating.
Biocompatibility enhancement of rare earth magnesium alloy by laser surface processing
NASA Astrophysics Data System (ADS)
Nie, Shilin; Wang, Yuqing; Liu, Haifeng; Guan, Yingchun
2018-01-01
Although magnesium and magnesium alloys are considered biocompatible and biodegradable, insufficient biocompatibility in body fluid environment is still the major drawback of magnesium alloys for their successful applications as biodegradable orthopaedic implants. In this work, magnesium alloy surface with both enhanced corrosion resistance and better cell adhesion property was directly fabricated by laser surface processing. Laser surface melting was used to improve corrosion resistance of Mg-6Gd-0.6Ca alloy. After laser surface melting, laser surface texturing was utilized on melted surface for better cell adhesion property. The corrosion resistance of laser-treated and as-received samples were evaluated using electrochemical technique. The effect of laser surface treatment on phase and microstructure evolution was evaluated using scanning electron microscopy, optical microscopy and X-ray diffraction. This work investigated the effect of laser treatment on cell distribution across the surface of magnesium alloy substrates. Osteoblast was cultured on the laser-treated surface and as-received surface. Cell morphology was observed with a scanning electron microscopy, and cell viability was evaluated by optical density measurement.
NASA Astrophysics Data System (ADS)
Zhang, J.; Chen, Z.; Cheng, C.; Wang, Y. X.
2017-10-01
A phase field crystal (PFC) model is employed to study morphology evolution of nanoheteroepitaxy and misfit dislocation generation when applied with enhanced supercooling, lattice mismatch and substrate vicinal angle conditions. Misfit strain that rises due to lattice mismatch causes rough surfaces or misfit dislocations, deteriorates film properties, hence, efforts taken to reveal their microscopic mechanism are significant for film quality improvement. Uniform islands, instead of misfit dislocations, are developed in subcritical thickness film, serving as a way of strain relief by surface mechanism. Misfit dislocations generate when strain relief by surface mechanism is deficient in higher supercooling, multilayers of misfit dislocations dominate, but the number of layers reduces gradually when the supercooling is further enhanced. Rough surfaces like islands or cuspate pits are developed which is ascribed to lattice mismatch, multilayers of misfit dislocations generate to further enhance lattice mismatch. Layers of misfit dislocations generate at a thickening position at enhanced substrate vicinal angle, this further enhancing the angle leading to sporadic generation of misfit dislocations.
NASA Astrophysics Data System (ADS)
Bramowicz, Miroslaw; Braic, Laurentiu; Azem, Funda Ak; Kulesza, Slawomir; Birlik, Isil; Vladescu, Alina
2016-08-01
This aim of this work is to establish a relationship between the surface morphology and mechanical properties of hydroxyapatite coatings prepared using RF magnetron sputtering at temperatures in the range from 400 to 800 °C. The topography of the samples was scanned using atomic force microscopy, and the obtained 3D maps were analyzed using fractal methods to derive the spatial characteristics of the surfaces. X-ray photoelectron spectroscopy revealed the strong influence of the deposition temperature on the Ca/P ratio in the growing films. The coatings deposited at 600-800 °C exhibited a Ca/P ratio between 1.63 and 1.69, close to the stoichiometric hydroxyapatite (Ca/P = 1.67), which is crucial for proper osseointegration. Fourier-transform infrared spectroscopy showed that the intensity of phosphate absorption bands increased with increasing substrate temperature. Each sample exhibited well defined and sharp hydroxyapatite band at 566 cm-1, although more pronounced for the coatings deposited above 500 °C. Both the hardness and elastic modulus of the coated samples decrease with increasing deposition temperature. The surface morphology strongly depends on the deposition temperature. The sample deposited at 400 °C exhibits circular cavities dug in an otherwise flat surface. At higher deposition temperatures, these cavities increase in size and start to overlap each other so that at 500 °C the surface is composed of closely packed peaks and ridges. At that point, the characteristics of the surface turns from the dominance of cavities to grains of similar size, and develops in a similar manner at higher temperatures.
Choi, Hyunmin; Park, Kyu-Hyung; Lee, Ah-Reum; Mun, Chin Hee; Shin, Yong Dae; Park, Yong-Beom; Park, Young-Bum
2017-07-01
The aim of this study is to investigate the behaviour of iPSc derived from dental stem cells in terms of initial adhesion, differentiation potential on differently surface-treated titanium disc. iPSc derived from human gingival fibroblasts (hGFs) were established using 4-reprogramming factors transduction with Sendai virus. The hGF-iPSc established in this study exhibited the morphology and growth properties similar to human embryonic stem (ES) cells and expressed pluripotency makers. Alkaline Phosphatase (AP) staining, Embryoid Body (EB) formation and in vitro differentiation and karyotyping further confirmed pluripotency of hGF-iPSc. Then, hGF-iPSc were cultured on machined- and Sandblasted and acid etched (SLA)-treated titanium discs with osteogenic induction medium and their morphological as well as quantitative changes according to different surface types were investigated using Alizrin Red S staining, Scanning electron microscopy (SEM), Flow cytometry and RT-PCR. Time-dependent and surface-dependent morphological changes as well as quantitative change in osteogenic differentiation of hGF-iPSc were identified and osteogenic gene expression of hGF-iPSc cultured on SLA-treated titanium disc found to be greater than machined titanium disc, suggesting the fate of hGF-iPSc may be determined by the characteristics of surface to which hGF-iPSc first adhere. iPSc derived from dental stem cell can be one of the most promising and practical cell sources for personalized regenerative dentistry and their morphological change as well as quantitative change in osteogenic differentiation according to different surface types may be further utilized for future clinical application incorporated with dental implant.
Yoshimura, Tomokazu; Bong, Miri; Matsuoka, Keisuke; Honda, Chikako; Endo, Kazutoyo
2009-11-01
Three anionic homologues of a novel partially fluorinated carboxylate-type anionic gemini surfactant, N,N'-di(3-perfluoroalkyl-2-hydroxypropyl)-N,N'-diacetic acid ethylenediamine (2C(n)(F) edda, where n represents the number of carbon atoms in the fluorocarbon chain (4, 6, and 8)) were synthesized. In these present gemini surfactants, the relatively small carboxylic acid moieties form hydrophilic head groups. The surface properties or structures of the aggregates of these surfactants are strongly influenced by the nonflexible fluorocarbons and small head groups; this is because these surfactants have a closely packed molecular structure. The equilibrium surface tension properties of these surfactants were measured at 298.2K for various fluorocarbon chain lengths. The plot of the logarithm of the critical micelle concentration (cmc) against the fluorocarbon chain lengths for 2C(n)(F) edda (n=4, 6, and 8) showed a minimum for n=6. Furthermore, the lowest surface tension of 2C(6)(F) edda at the cmc was 16.4mNm(-1). Such unique behavior has not been observed even in the other fluorinated surfactants. Changes in the shapes and sizes of these surfactant aggregate with concentration were investigated by dynamic light scattering and transmission electron microscopy (TEM). The TEM micrographs showed that in an aqueous alkali solution, 2C(n)(F) edda mainly formed aggregates with stringlike (n=4), cagelike (n=6), and distorted bilayer structures (n=8). The morphological changes in the aggregates were affected by the molecular structure composed of nonflexible fluorocarbon chains and flexible hydrocarbon chains.
NASA Astrophysics Data System (ADS)
Hu, Huan; Siu, Vince S.; Gifford, Stacey M.; Kim, Sungcheol; Lu, Minhua; Meyer, Pablo; Stolovitzky, Gustavo A.
2017-12-01
The recently discovered bactericidal properties of nanostructures on wings of insects such as cicadas and dragonflies have inspired the development of similar nanostructured surfaces for antibacterial applications. Since most antibacterial applications require nanostructures covering a considerable amount of area, a practical fabrication method needs to be cost-effective and scalable. However, most reported nanofabrication methods require either expensive equipment or a high temperature process, limiting cost efficiency and scalability. Here, we report a simple, fast, low-cost, and scalable antibacterial surface nanofabrication methodology. Our method is based on metal-assisted chemical etching that only requires etching a single crystal silicon substrate in a mixture of silver nitrate and hydrofluoric acid for several minutes. We experimentally studied the effects of etching time on the morphology of the silicon nanospikes and the bactericidal properties of the resulting surface. We discovered that 6 minutes of etching results in a surface containing silicon nanospikes with optimal geometry. The bactericidal properties of the silicon nanospikes were supported by bacterial plating results, fluorescence images, and scanning electron microscopy images.
Dissipative-particle-dynamics model of biofilm growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Meakin, Paul; Tartakovsky, Alexandre M.
2011-06-13
A dissipative particle dynamics (DPD) model for the quantitative simulation of biofilm growth controlled by substrate (nutrient) consumption, advective and diffusive substrate transport, and hydrodynamic interactions with fluid flow (including fragmentation and reattachment) is described. The model was used to simulate biomass growth, decay, and spreading. It predicts how the biofilm morphology depends on flow conditions, biofilm growth kinetics, the rheomechanical properties of the biofilm and adhesion to solid surfaces. The morphology of the model biofilm depends strongly on its rigidity and the magnitude of the body force that drives the fluid over the biofilm.
Surface oxidation and thermoelectric properties of indium-doped tin telluride nanowires.
Li, Zhen; Xu, Enzhi; Losovyj, Yaroslav; Li, Nan; Chen, Aiping; Swartzentruber, Brian; Sinitsyn, Nikolai; Yoo, Jinkyoung; Jia, Quanxi; Zhang, Shixiong
2017-09-14
The recent discovery of excellent thermoelectric properties and topological surface states in SnTe-based compounds has attracted extensive attention in various research areas. Indium doped SnTe is of particular interest because, depending on the doping level, it can either generate resonant states in the bulk valence band leading to enhanced thermoelectric properties, or induce superconductivity that coexists with topological states. Here we report on the vapor deposition of In-doped SnTe nanowires and the study of their surface oxidation and thermoelectric properties. The nanowire growth is assisted by Au catalysts, and their morphologies vary as a function of substrate position and temperature. Transmission electron microscopy characterization reveals the formation of an amorphous surface in single crystalline nanowires. X-ray photoelectron spectroscopy studies suggest that the nanowire surface is composed of In 2 O 3 , SnO 2 , Te and TeO 2 which can be readily removed by argon ion sputtering. Exposure of the cleaned nanowires to atmosphere leads to rapid oxidation of the surface within only one minute. Characterization of electrical conductivity σ, thermopower S, and thermal conductivity κ was performed on the same In-doped nanowire which shows suppressed σ and κ but enhanced S yielding an improved thermoelectric figure of merit ZT compared to the undoped SnTe.
NASA Astrophysics Data System (ADS)
Dridi, H.; Haji, L.; Moadhen, A.
2017-04-01
We report in this paper a novel method to elaborate rough Surface Enhanced Raman Scattering (SERS) substrate. A single layer of porous silicon was formed on the silicon backside surface. Morphological characteristics of the porous silicon layer before and after gold deposition were influenced by the rough character (gold size). The reflectance measurements showed a dependence of the gold nano-grains size on the surface nature, through the Localized Surface Plasmon (LSP) band properties. SERS signal of Rhodamine 6G used as a model analyte, adsorbed on the rough porous silicon layer revealed a marked enhancement of its vibrational modes intensities.
High-quality fiber fabrication in buffered hydrofluoric acid solution with ultrasonic agitation.
Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Wang, Yongzhong; Chen, Rong
2013-03-01
An etching method for preparing high-quality fiber-optic sensors using a buffered etchant with ultrasonic agitation is proposed. The effects of etching conditions on the etch rate and surface morphology of the etched fibers are investigated. The effect of surface roughness is discussed on the fibers' optical properties. Linear etching behavior and a smooth fiber surface can be repeatedly obtained by adjusting the ultrasonic power and etchant pH. The fibers' spectral quality is improved as the ratio of the pit depth to size decreases, and the fibers with smooth surfaces are more sensitive to a bacterial suspension than those with rough surfaces.
NASA Astrophysics Data System (ADS)
Gindt, Brandon
This dissertation outlines a novel path towards improved understanding and function of proton exchange membranes (PEMs) for redox flow batteries, a large-scale battery storage device. This research uses synthetic methods and nanotechnology through two different approaches to prepare tailored polymer membranes: 1) Ion exchange membranes with enhanced chemical structures to promote membrane morphology on the nano-scale were prepared. Specifically, functional polysulfones (PSUs) were synthesized from different pre-sulfonated monomers. These PSUs have controlled placement and content of unique sulfonic acid moieties. PEMs were fabricated and characterized. The new PEMs showed desirable physical properties and performance in a vanadium redox flow battery (VRFB) cell. 2) Nanoporous PSU membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA-PSU-PLA triblock copolymer membranes. The controlled morphology and pore size of the resulting nanoporous membranes were evaluated by different microscopy and scattering techniques to understand structure-property relationships. Further, the resulting nanopore surface was chemically modified with sulfonic acid moieties. Membranes were analyzed and evaluated as separators for a VRFB. The chemically modified nanoporous PEMs exhibited unique behavior with respect to their ion conductivity when exposed to solutions of increasing acid concentration. In addition, the hierarchical micro-nanoporous membranes developed further showed promising structure and properties.
Scalable transfer of vertical graphene nanosheets for flexible supercapacitor applications
NASA Astrophysics Data System (ADS)
Sahoo, Gopinath; Ghosh, Subrata; Polaki, S. R.; Mathews, Tom; Kamruddin, M.
2017-10-01
Vertical graphene nanosheets (VGN) are the material of choice for application in next-generation electronic devices. The growing demand for VGN-based flexible devices for the electronics industry brings in restriction on VGN growth temperature. The difficulty associated with the direct growth of VGN on flexible substrates can be overcome by adopting an effective strategy of transferring the well-grown VGN onto arbitrary flexible substrates through a soft chemistry route. In the present study, we report an inexpensive and scalable technique for the polymer-free transfer of VGN onto arbitrary substrates without disrupting its morphology, structure, and properties. After transfer, the morphology, chemical structure, and electrical properties are analyzed by scanning electron microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and four-probe resistive methods, respectively. The wetting properties are studied from the water contact angle measurements. The observed results indicate the retention of morphology, surface chemistry, structure, and electronic properties. Furthermore, the storage capacity of the transferred VGN-based binder-free and current collector-free flexible symmetric supercapacitor device is studied. A very low sheet resistance of 670 Ω/□ and excellent supercapacitance of 158 μF cm-2 with 86% retention after 10 000 cycles show the prospect of the damage-free VGN transfer approach for the fabrication of flexible nanoelectronic devices.
NASA Astrophysics Data System (ADS)
Gagliardi, S.; Rondino, F.; D'Erme, C.; Persia, F.; Menchini, F.; Santarelli, M. L.; Paulke, B.-R.; Enayati, A. L.; Falconieri, M.
2017-08-01
Addiction of ceramic nanoparticles to acrylic polymers provides a simple and effective means to produce paints with important properties, such as mechanical resistance and tailored wettability, even though for optimal performances, an engineered nanoparticle distribution would be desirable. In this paper we report on the realization and on the morphological and functional characterization of nanocomposites where the nanophase is distributed on the surface of acrylic polymer films, in order to enhance the expression of surface-related properties. To this aim, commercial titanium oxide and silicon oxide nanopowders were dispersed in water and the suspensions were air-sprayed on polymeric films prepared by paint brushing, thus producing a nanostructured ceramic surface coating. Control of the pH of suspensions and acrylic acid functionalization of the surface of titania were used together with high power ultrasonic treatments in order to control dimension of the aggregates in the sprayed suspensions. Optical microscopy, mechanical profilometry, and atomic force microscopy were used to characterize the nanocomposite surface morphology and correlate it to the coating functional properties, evaluated through mechanical abrasion tests and contact angle measurements; also, colorimetry on coated stones was performed in order to test the impact of the coatings on the aesthetical appearance and their photostability under UV irradiation. Results show that the nanostructured ceramic layer slightly improves the resistance of coatings to mechanical abrasion in case of polymer films prepared from latexes. The nanocomposite surface layer does not affect the wettability of the polymer, which remained slightly hydrophilic; this behavior is likely due to inadequate distribution of the nanophase. On the other hand UV-induced superhydrophilicity was observed when the concentration of surface titania nanoparticles is about 0.6 mg/cm2. Colorimetric analysis on historical and Carrara marbles before and after coating evidenced the good transparency of the nanocomposites. Accelerated aging tests permitted to demonstrate that, on the historical marbles, the presence of the nanoparticles has a protective action against UV-induced damage of the underlying polymer film, preventing photodegradation.
Self-healing gold mirrors and filters at liquid-liquid interfaces
NASA Astrophysics Data System (ADS)
Smirnov, Evgeny; Peljo, Pekka; Scanlon, Micheál D.; Gumy, Frederic; Girault, Hubert H.
2016-03-01
The optical and morphological properties of lustrous metal self-healing liquid-like nanofilms were systematically studied for different applications (e.g., optical mirrors or filters). These nanofilms were formed by a one-step self-assembly methodology of gold nanoparticles (AuNPs) at immiscible water-oil interfaces, previously reported by our group. We investigated a host of experimental variables and herein report their influence on the optical properties of nanofilms: AuNP mean diameter, interfacial AuNP surface coverage, nature of the organic solvent, and nature of the lipophilic organic molecule that caps the AuNPs in the interfacial nanofilm. To probe the interfacial gold nanofilms we used in situ (UV-vis-NIR spectroscopy and optical microscopy) as well as ex situ (SEM and TEM of interfacial gold nanofilms transferred to silicon substrates) techniques. The interfacial AuNP surface coverage strongly influenced the morphology of the interfacial nanofilms, and in turn their maximum reflectance and absorbance. We observed three distinct morphological regimes; (i) smooth 2D monolayers of ``floating islands'' of AuNPs at low surface coverages, (ii) a mixed 2D/3D regime with the beginnings of 3D nanostructures consisting of small piles of adsorbed AuNPs even under sub-full-monolayer conditions and, finally, (iii) a 3D regime characterised by the 2D full-monolayer being covered in significant piles of adsorbed AuNPs. A maximal value of reflectance reached 58% in comparison with a solid gold mirror, when 38 nm mean diameter AuNPs were used at a water-nitrobenzene interface. Meanwhile, interfacial gold nanofilms prepared with 12 nm mean diameter AuNPs exhibited the highest extinction intensities at ca. 690 nm and absorbance around 90% of the incident light, making them an attractive candidate for filtering applications. Furthermore, the interparticle spacing, and resulting interparticle plasmon coupling derived optical properties, varied significantly on replacing tetrathiafulvalene with neocuproine as the AuNP capping ligand in the nanofilm. These interfacial nanofilms formed with neocuproine and 38 nm mean diameter AuNPs, at monolayer surface coverages and above, were black due to aggregation and broadband absorbance.The optical and morphological properties of lustrous metal self-healing liquid-like nanofilms were systematically studied for different applications (e.g., optical mirrors or filters). These nanofilms were formed by a one-step self-assembly methodology of gold nanoparticles (AuNPs) at immiscible water-oil interfaces, previously reported by our group. We investigated a host of experimental variables and herein report their influence on the optical properties of nanofilms: AuNP mean diameter, interfacial AuNP surface coverage, nature of the organic solvent, and nature of the lipophilic organic molecule that caps the AuNPs in the interfacial nanofilm. To probe the interfacial gold nanofilms we used in situ (UV-vis-NIR spectroscopy and optical microscopy) as well as ex situ (SEM and TEM of interfacial gold nanofilms transferred to silicon substrates) techniques. The interfacial AuNP surface coverage strongly influenced the morphology of the interfacial nanofilms, and in turn their maximum reflectance and absorbance. We observed three distinct morphological regimes; (i) smooth 2D monolayers of ``floating islands'' of AuNPs at low surface coverages, (ii) a mixed 2D/3D regime with the beginnings of 3D nanostructures consisting of small piles of adsorbed AuNPs even under sub-full-monolayer conditions and, finally, (iii) a 3D regime characterised by the 2D full-monolayer being covered in significant piles of adsorbed AuNPs. A maximal value of reflectance reached 58% in comparison with a solid gold mirror, when 38 nm mean diameter AuNPs were used at a water-nitrobenzene interface. Meanwhile, interfacial gold nanofilms prepared with 12 nm mean diameter AuNPs exhibited the highest extinction intensities at ca. 690 nm and absorbance around 90% of the incident light, making them an attractive candidate for filtering applications. Furthermore, the interparticle spacing, and resulting interparticle plasmon coupling derived optical properties, varied significantly on replacing tetrathiafulvalene with neocuproine as the AuNP capping ligand in the nanofilm. These interfacial nanofilms formed with neocuproine and 38 nm mean diameter AuNPs, at monolayer surface coverages and above, were black due to aggregation and broadband absorbance. Electronic supplementary information (ESI) available: Interfacial tension measurements for various water-organic solvent systems, step-by-step optical microscopy and SEM characterization of the obtained film, optical photographs of all tested solvents and molecules, and influence of the interfacial tension on optical responses of AuNPs assemblies. See DOI: 10.1039/c6nr00371k
DOE Office of Scientific and Technical Information (OSTI.GOV)
S Kim; M Jang; H Yang
2011-12-31
Organic field-effect transistors (OFETs) are fabricated by depositing a thin film of semiconductor on the functionalized surface of a SiO{sub 2} dielectric. The chemical and morphological structures of the interface between the semiconductor and the functionalized dielectric are critical for OFET performance. We have characterized the effect of the affinity between semiconductor and functionalized dielectric on the properties of the semiconductor-dielectric interface. The crystalline microstructure/nanostructure of the pentacene semiconductor layers, grown on a dielectric substrate that had been functionalized with either poly(4-vinyl pyridine) or polystyrene (to control hydrophobicity), and grown under a series of substrate temperatures and deposition rates, weremore » characterized by X-ray diffraction, photoemission spectroscopy, and atomic force microscopy. By comparing the morphological features of the semiconductor thin films with the device characteristics (field-effect mobility, threshold voltage, and hysteresis) of the OFET devices, the effect of affinity-driven properties on charge modulation, charge trapping, and charge carrier transport could be described.« less
Tailoring the morphology of electrodeposited ZnO and its photoluminescence properties
NASA Astrophysics Data System (ADS)
Cui, H.; Mollar, M.; Marí, B.
2011-01-01
High density ZnO columnar films with well-aligned and well-perpendicular to the surface of film were electrodeposited on ITO substrates by using an electrolyte consisting of a mix of water and organic solvent namely dimethylsulfoxide (DMSO). The effect of mixing ratio of water and DMSO on the growth of film has been examined critically. SEM images have shown that well-oriented ZnO quasi-nano columns were formed perpendicular to the substrate. At the same time we found there are three kinds of competitions for growth of ZnO crystalmorphology i.e. column, rod and needle like. The needle like morphology has high density with well-aligned structure. The reasons for the growth of films of different morphology and their photoluminescence (PL) properties have been presented and discussed. It has been found that the three-dimensional (3D) ordered ZnO structure exhibits high intensity PL band which may shift their position and intensity with the varying conditions of depositions.
NASA Astrophysics Data System (ADS)
Undre, Pallavi G.; Birajdar, Shankar D.; Kathare, R. V.; Jadhav, K. M.
2018-05-01
In this work pure and Ni-doped ZnO nanoparticles have been prepared by sol-gel method. Influence of nickel doping on structural, morphological and magnetic properties of prepared nanoparticles was investigated by X-ray diffraction technique (XRD), Scanning electron microscopy (SEM) and Pulse field magnetic hysteresis loop. X-ray diffraction pattern shows the formation of a single phase with hexagonal wurtzite structure of both pure and Ni-doped ZnO nanoparticles. The lattice parameters `an' and `c' of Ni-doped ZnO is slightly less than that of pure ZnO nanoparticles. The crystalline size of prepared nanoparticles is found to be in 29 and 31 nm range. SEM technique used to examine the surface morphology of samples, SEM image confirms the nanocrystalline nature of present samples. From the pulse field hysteresis loop technique pure and Ni-doped ZnO nanoparticles show diamagnetic and ferromagnetic behavior at room temperature respectively.
NASA Astrophysics Data System (ADS)
Majeed, Abdul; Khan, Muhammad Azhar; ur Raheem, Faseeh; Ahmad, Iftikhar; Akhtar, Majid Niaz; Warsi, Muhammad Farooq
2016-12-01
The influence of rare-earth metals (La, Nd, Gd, Tb, Dy) on morphology, Raman, electrical and dielectric properties of Ba2NiCoRExFe28-xO46 ferrites were studied. The scanning electron microscopy (SEM) exhibited the platelet like structure of these hexagonal ferrites. The surface morphology indicated the formation of ferrite grains in the nano-regime scale. The bands obtained at lower wave number may be attributed to the metal-oxygen vibration at octahedral site which confirm the development of hexagonal phase of these ferrites. The resonance peaks were observed in dielectric constant, dielectric loss factor and quality factor versus frequency graphs. These dielectric parameters indicate that these ferrites nano-materials are potential candidates in the high frequency applications. The enhancement in DC electric resistivity from 2.48×108 to 1.20×109 Ω cm indicates that the prepared materials are beneficial for decreasing the eddy current losses at high frequencies and for the fabrication of multilayer chip inductor (MLCI) devices.
NASA Astrophysics Data System (ADS)
Logu, T.; Soundarrajan, P.; Sankarasubramanian, K.; Sethuraman, K.
2018-04-01
In this work, a high crystalline and mesoporous nanostructured cadmium sulfide (CdS) thin film was successfully grown on the FTO substrates using facile Electrospray Aerosol Deposition (ESAD) technique. The structural, optical, morphological and electrical properties of CdS thin film have been systematically examined. CdS thin film exhibits the hexagonal wurtzite crystal structure with polycrystalline nature. The optical band gap energy of the prepared film was estimated from the Tauc plot and is 2.43 eV. The SEM and AFM images show that the well-interconnected CdS nanoparticles gives mesoporous like morphology. The fine aerosol generated from the ESAD process induces the alteration in the surface morphological structure of deposited CdS film that consequences in enhanced electrical and photo-physical properties. The photoconductivity of the sample has been studied which demonstrates significant photo current. The present study predicts that mesoporous nanostructured CdS thin film would be given a special interest for optoelectronic applications.
Theory of Phase Separation and Polarization for Pure Ionic Liquids.
Gavish, Nir; Yochelis, Arik
2016-04-07
Room temperature ionic liquids are attractive to numerous applications and particularly, to renewable energy devices. As solvent free electrolytes, they demonstrate a paramount connection between the material morphology and Coulombic interactions: the electrode/RTIL interface is believed to be a product of both polarization and spatiotemporal bulk properties. Yet, theoretical studies have dealt almost exclusively with independent models of morphology and electrokinetics. Introduction of a distinct Cahn-Hilliard-Poisson type mean-field framework for pure molten salts (i.e., in the absence of any neutral component), allows a systematic coupling between morphological evolution and the electrokinetic phenomena, such as transient currents. Specifically, linear analysis shows that spatially periodic patterns form via a finite wavenumber instability and numerical simulations demonstrate that while labyrinthine type patterns develop in the bulk, lamellar structures are favored near charged surfaces. The results demonstrate a qualitative phenomenology that is observed empirically and thus, provide a physically consistent methodology to incorporate phase separation properties into an electrochemical framework.
Material properties of viral nanocages explored by atomic force microscopy.
van Rosmalen, Mariska G M; Roos, Wouter H; Wuite, Gijs J L
2015-01-01
Single-particle nanoindentation by atomic force microscopy (AFM) is an emergent technique to characterize the material properties of nano-sized proteinaceous systems. AFM uses a very small tip attached to a cantilever to scan the surface of the substrate. As a result of the sensitive feedback loop of AFM, the force applied by the tip on the substrate during scanning can be controlled and monitored. By accurately controlling this scanning force, topographical maps of fragile substrates can be acquired to study the morphology of the substrate. In addition, mechanical properties of the substrate like stiffness and breaking point can be determined by using the force spectroscopy capability of AFM. Here we discuss basics of AFM operation and how this technique is used to determine the structure and mechanical properties of protein nanocages, in particular viral particles. Knowledge of morphology as well as mechanical properties is essential for understanding viral life cycles, including genome packaging, capsid maturation, and uncoating, but also contributes to the development of diagnostics, vaccines, imaging modalities, and targeted therapeutic devices based on viruslike particles.
Behavior of grafted polymers on nanofillers and their influence on polymer nanocomposite properties
NASA Astrophysics Data System (ADS)
Dukes, Douglas Michael
Polymer nanocomposites continue to receive wide-spread acclaim for their potential to improve composite materials beyond conventional macroscale fillers. The improvement lies both in the altered properties of the particle itself and in the interaction region surrounding the filler. As the surface area of the filler increases, a greater volume fraction of this interphase region is present in the composite. However, simply minimizing the particle size to maximize surface area introduces additional problems; the larger specific surface area promotes aggregation to reduce the surface energy. Since the composite's properties are largely tied to the morphology, aggregation prevents control over the dispersion state of the filler, and thus the properties. Therefore, disaggregation and morphology control are vital to achieving designable nanocomposites. To accomplish both tasks, this thesis focuses on the behavior of grafted polymer coatings on nanoparticles and their in uence on the macroscopic properties. Grafted chains play an integral role in both morphology control and reinforcement. To investigate the behavior of polymer brushes on nanoparticles, polystyrene was grafted on 15 nm silica particles at varying graft densities and molecular weights. Dynamic light scattering studies in dilute solution were performed to obtain the brush height as a function of both graft density and molecular weight. Three distinct regimes of behavior exist, the "mushroom", the semi-dilute polymer brush (SDPB), and the concentrated polymer brush (CPB) regimes. In the CPB regime, which is an extraordinary configuration of highly-stretched chains on densely grafted surfaces, the brush height h was found to scale as h ∝ N4/5, where N is the degree of polymerization. This result is contrary to the observed scaling of the CPB in flat interface systems, where h ∝ N1. To explore the behavior of grafted chains in the melt, molecular dynamics simulations were performed on grafted nanoparticles grafted with varying amounts of polymer chains at different curvatures. Particles as small as 15 monomers in size were found to already be in the large particle limit, a result that has many implications regarding the dispersibility of grafted fillers in composites. At low graft densities, melt chains were found to form entanglements with the brush all the way to the particle surface, implying the particle is not effectively screened by the grafted chains. The mechanical properties of these grafted silica composites were studied as a function of matrix polymer fraction. As more matrix polymer is introduced, the dominant contribution to the behavior shifts from the grafted chains to the matrix chains. This elucidates the role of grafted chains on the mechanical properties of grafted nanoparticle composites. As the graft density is increased, the wettability of grafted chains was shown to decrease, causing fewer entanglements between grafted chains and matrix chains, resulting in poorer reinforcement. Interesting behavior was observed at low graft densities; a pronounced shape memory effect occurred at high particle concentrations. It is proposed that the grafted chains entangle with adjacent grafted chains, forming a three-dimensional network of entangled brushes attached to silica cores. This structure effectively forms "cross-links" as in elastomeric systems, giving an entropic restorative force to stretched chains. Thus, above Tg, when chains have a higher degree of mobility, the composites can be stretched to over 800%. When cooled to below Tg, they retain the deformed geometry. Upon reheating above Tg, the composite is restored to its original dimensions. This work has identified means of improving theoretical models to better guide future experiments and lead to predictability in polymer composite design. Grafted chains have the demonstrated ability to control the morphology and reinforcement in polymer composites. The behavior of grafted chains were shown to demonstrate drastically different properties from their bulk polymer counterparts.
Growth behavior and growth rate dependency in LEDs performance for Mg-doped a-plane GaN
NASA Astrophysics Data System (ADS)
Song, Keun-Man; Kim, Jong-Min; Lee, Dong-Hun; Shin, Chan-Soo; Ko, Chul-Gi; Kong, Bo-Hyun; Cho, Hyung-Koun; Yoon, Dae-Ho
2011-07-01
We investigated the influence of growth rate of Mg-doped a-plane GaN on the surface morphological and electrical properties, and the characteristics of InGaN-based nonpolar LEDs. Mg-doped a-plane GaN layers were grown on r-plane sapphire substrate by metalorganic chemical vapor deposition (MOCVD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cathode luminescence (CL) analysis exhibited that the surface morphology changed from stripe features with large triangular pits to rough and rugged surface with small asymmetric V-shape pits, as the growth rate increased. The Mg incorporation into a-plane GaN layers increased with increasing growth rate of Mg-doped a-plane GaN, while the activation efficiency of Mg dopants decreased in a-plane GaN. Additionally, it was found that operation voltage at 20 mA decreased in characteristics of LEDs, as the growth rate of Mg-doped a-plane GaN decreased. Meanwhile, the EL intensity of LEDs with p-GaN layers grown at higher growth rate was improved compared to that of LEDs with p-GaN layers grown at lower growth rate. Such an increase of EL intensity is attributed to the rougher surface morphology with increasing growth rate of Mg-doped a-plane GaN.
NASA Astrophysics Data System (ADS)
Raza, Mohammad Shahid; Hussain, Manowar; Kumar, Vikash; Das, Alok Kumar
2017-01-01
The growing need for high wear-resistant surface with enhanced physical properties has led to extensive researches in the field of surface engineering. Laser cladding emerged to be a promising method to achieve these objectives in a cost-effective way. The present paper studies the viability of cladding of tungsten disulfide (WS2) powder by using 400 W continuous-wave fiber laser. WS2 was used as a coating material, which was decomposed at higher temperature and underwent several chemical reactions. By this process, in situ formation of metal matrix composites and hard face coating on the substrate surface were attained. The characterization of laser cladded surface was done to study its morphological, microstructural, mechanical and tribological properties. It was observed that cladding of WS2 powder on 304 SS resulted in the formation of Cr-W-C-Fe metal matrix composite having improved mechanical and tribological properties. The value of microhardness of the coated surface was found to increase three to four times in comparison with the parent material surface. Wear test results indicated a decrease in wear by 1/9th (maximum) as compared to the parent 304 SS surface. The volume fractions of tungsten particles on the cladded surface were also investigated through EDS analysis.
Sezen, Meltem; Bakan, Feray
2015-12-01
Irradiation damage, caused by the use of beams in electron and ion microscopes, leads to undesired physical/chemical material property changes or uncontrollable modification of structures. Particularly, soft matter such as polymers or biological materials is highly susceptible and very much prone to react on electron/ion beam irradiation. Nevertheless, it is possible to turn degradation-dependent physical/chemical changes from negative to positive use when materials are intentionally exposed to beams. Especially, controllable surface modification allows tuning of surface properties for targeted purposes and thus provides the use of ultimate materials and their systems at the micro/nanoscale for creating functional surfaces. In this work, XeF2 and I2 gases were used in the focused ion beam scanning electron microscope instrument in combination with gallium ion etching of high-density polyethylene surfaces with different beam currents and accordingly different gas exposure times resulting at the same ion dose to optimize and develop new polymer surface properties and to create functional polymer surfaces. Alterations in the surface morphologies and surface chemistry due to gas-assisted etching-based nanostructuring with various processing parameters were tracked using high-resolution SEM imaging, complementary energy-dispersive spectroscopic analyses, and atomic force microscopic investigations.