Sample records for surface morphology development

  1. Morphology and mechanism of the very large dunes in the tidal reach of the Yangtze River, China

    NASA Astrophysics Data System (ADS)

    Shuwei, Zheng; Heqin, Cheng; Shuaihu, Wu; Shengyu, Shi; Wei, Xu; Quanping, Zhou; Yuehua, Jiang

    2017-05-01

    High-resolution multibeam data was used to interpret the surface morphology of very large dunes (VLDs) in the tidal reach of the Yangtze River, China. These VLDs can be divided into three categories according to their surface morphological characteristics. (1) VLDs-I: those with a smooth surface and cross-section; (2) VLDs-II: those accompanied by secondary dunes; (3) VLDs-III: those accompanied by secondary dunes and numerous elliptical pits. Parameters and spatial distribution of VLDs, and bed surface sediment were analyzed in the laboratory. Overall, channel morphology is an important factor affecting the development of VLDs, and channels with narrow and straight and certain water surface slope are facilitating the development of VLDs by constraining stream power. Meanwhile, distribution density of VLDs depicts a decreasing trend from Chizhou towards the estuary, are probably influenced by channel morphology and width. Associated pits in VLDs-III change the 3D dune morphology by distributing in secondary dunes as beads. The Three Gorges Dam project (TGP) leads to the bed surface sediment activity frequently and leads to the riverbed surface sediment coarsens, which promotes the further development of dunes. Moreover, other human activities, such as river regulation project, sand mining and Deep Water Channel Regulation Project have changed the regional river boundary conditions and hydrodynamic conditions are influential on the development of VLDs.

  2. Bi-stage time evolution of nano-morphology on inductively coupled plasma etched fused silica surface caused by surface morphological transformation

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaolong; Zhang, Lijuan; Bai, Yang; Liu, Ying; Liu, Zhengkun; Qiu, Keqiang; Liao, Wei; Zhang, Chuanchao; Yang, Ke; Chen, Jing; Jiang, Yilan; Yuan, Xiaodong

    2017-07-01

    In this work, we experimentally investigate the surface nano-roughness during the inductively coupled plasma etching of fused silica, and discover a novel bi-stage time evolution of surface nano-morphology. At the beginning, the rms roughness, correlation length and nano-mound dimensions increase linearly and rapidly with etching time. At the second stage, the roughening process slows down dramatically. The switch of evolution stage synchronizes with the morphological change from dual-scale roughness comprising long wavelength underlying surface and superimposed nano-mounds to one scale of nano-mounds. A theoretical model based on surface morphological change is proposed. The key idea is that at the beginning, etched surface is dual-scale, and both larger deposition rate of etch inhibitors and better plasma etching resistance at the surface peaks than surface valleys contribute to the roughness development. After surface morphology transforming into one-scale, the difference of plasma resistance between surface peaks and valleys vanishes, thus the roughening process slows down.

  3. An Improved Representation of Regional Boundaries on Parcellated Morphological Surfaces

    PubMed Central

    Hao, Xuejun; Xu, Dongrong; Bansal, Ravi; Liu, Jun; Peterson, Bradley S.

    2010-01-01

    Establishing the correspondences of brain anatomy with function is important for understanding neuroimaging data. Regional delineations on morphological surfaces define anatomical landmarks and help to visualize and interpret both functional data and morphological measures mapped onto the cortical surface. We present an efficient algorithm that accurately delineates the morphological surface of the cerebral cortex in real time during generation of the surface using information from parcellated 3D data. With this accurate region delineation, we then develop methods for boundary-preserved simplification and smoothing, as well as procedures for the automated correction of small, misclassified regions to improve the quality of the delineated surface. We demonstrate that our delineation algorithm, together with a new method for double-snapshot visualization of cortical regions, can be used to establish a clear correspondence between brain anatomy and mapped quantities, such as morphological measures, across groups of subjects. PMID:21144708

  4. Critical Role of Surface Energy in Guiding Crystallization of Solution-Coated Conjugated Polymer Thin Films

    DOE PAGES

    Zhang, Fengjiao; Mohammadi, Erfan; Luo, Xuyi; ...

    2017-10-02

    It is well-known that substrate surface properties have a profound impact on morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution coated semiconducting polymers, as the substratedirected thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We performmore » in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing a donor-accepter (D-A) conjugated polymer. Here, we find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate lead to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step towards establishing design rules and understanding the critical role of substrates in determining morphology of solution coated thin films.« less

  5. Critical Role of Surface Energy in Guiding Crystallization of Solution-Coated Conjugated Polymer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengjiao; Mohammadi, Erfan; Luo, Xuyi

    It is well-known that substrate surface properties have a profound impact on morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution coated semiconducting polymers, as the substratedirected thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We performmore » in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing a donor-accepter (D-A) conjugated polymer. Here, we find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate lead to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step towards establishing design rules and understanding the critical role of substrates in determining morphology of solution coated thin films.« less

  6. Modeling the characteristic etch morphologies along specific crystallographic orientations by anisotropic chemical etching

    NASA Astrophysics Data System (ADS)

    Li, Kun-Dar; Miao, Jin-Ru

    2018-02-01

    To improve the advanced manufacturing technology for functional materials, a sophisticated control of chemical etching process is highly demanded, especially in the fields of environment and energy related applications. In this study, a phase-field-based model is utilized to investigate the etch morphologies influenced by the crystallographic characters during anisotropic chemical etching. Three types of etching modes are inspected theoretically, including the isotropic, <100> and <111> preferred oriented etchings. Owing to the specific etching behavior along the crystallographic directions, different characteristic surface structures are presented in the simulations, such as the pimple-like, pyramidal hillock and ridge-like morphologies. In addition, the processing parameters affecting the surface morphological formation and evolution are also examined systematically. According to the numerical results, the growth mechanism of surface morphology in a chemical etching is revealed distinctly. While the etching dynamics plays a dominant role on the surface formation, the characteristic surface morphologies corresponding to the preferred etching direction become more apparent. As the atomic diffusion turned into a determinative factor, a smoothened surface would appear, even under the anisotropic etching conditions. These simulation results provide fundamental information to enhance the development and application of anisotropic chemical etching techniques.

  7. Molecular basis of crystal morphology-dependent adhesion behavior of mefenamic acid during tableting.

    PubMed

    Waknis, Vrushali; Chu, Elza; Schlam, Roxana; Sidorenko, Alexander; Badawy, Sherif; Yin, Shawn; Narang, Ajit S

    2014-01-01

    The molecular basis of crystal surface adhesion leading to sticking was investigated by exploring the correlation of crystal adhesion to oxidized iron coated atomic force microscope (AFM) tips and bulk powder sticking behavior during tableting of two morphologically different crystals of a model drug, mefenamic acid (MA), to differences in their surface functional group orientation and energy. MA was recrystallized into two morphologies (plates and needles) of the same crystalline form. Crystal adhesion to oxidized iron coated AFM tips and bulk powder sticking to tablet punches was assessed using a direct compression formulation. Surface functional group orientation and energies on crystal faces were modeled using Accelrys Material Studio software. Needle-shaped morphology showed higher sticking tendency than plates despite similar particle size. This correlated with higher crystal surface adhesion of needle-shaped morphology to oxidized iron coated AFM probe tips, and greater surface energy and exposure of polar functional groups. Higher surface exposure of polar functional groups correlates with higher tendency to stick to metal surfaces and AFM tips, indicating involvement of specific polar interactions in the adhesion behavior. In addition, an AFM method is identified to prospectively assess the risk of sticking during the early stages of drug development.

  8. Raman-atomic force microscopy of the ommatidial surfaces of Dipteran compound eyes.

    PubMed

    Anderson, Mark S; Gaimari, Stephen D

    2003-06-01

    The ommatidial lens surfaces of the compound eyes in several species of files (Insecta: Diptera) and a related order (Mecoptera) were analyzed using a recently developed Raman-atomic force microscope. We demonstrate in this work that the atomic force microscope (AFM) is a potentially useful instrument for gathering phylogenetic data and that the newly developed Raman-AFM may extend this application by revealing nanometer-scale surface chemistry. This is the first demonstration of apertureless near-field Raman spectroscopy on an intact biological surface. For Chrysopilus testaceipes Bigot (Rhagionidae), this reveals unique cerebral cortex-like surface ridges with periodic variation in height and surface chemistry. Most other Brachyceran flies, and the "Nematoceran" Sylvicola fenestralis (Scopoli) (Anisopodidae), displayed the same morphology, while other taxa displayed various other characteristics, such as a nodule-like (Tipula (Triplicitipula) sp. (Tipulidae)) or coalescing nodule-like (Tabanus punctifer Osten Sacken (Tabanidae)) morphology, a smooth morphology with distinct pits and grooves (Dilophus orbatus (Say) (Bibionidae)), or an entirely smooth surface (Bittacus chlorostigma MacLachlan (Mecoptera: Bittacidae)). The variation in submicrometer structure and surface chemistry provides a new information source of potential phylogenetic importance, suggesting the Raman-atomic force microscope could provide a new tool useful to systematic and evolutionary inquiry.

  9. Raman-atomic force microscopy of the ommatidial surfaces of Dipteran compound eyes

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.; Gaimari, Stephen D.

    2003-01-01

    The ommatidial lens surfaces of the compound eyes in several species of files (Insecta: Diptera) and a related order (Mecoptera) were analyzed using a recently developed Raman-atomic force microscope. We demonstrate in this work that the atomic force microscope (AFM) is a potentially useful instrument for gathering phylogenetic data and that the newly developed Raman-AFM may extend this application by revealing nanometer-scale surface chemistry. This is the first demonstration of apertureless near-field Raman spectroscopy on an intact biological surface. For Chrysopilus testaceipes Bigot (Rhagionidae), this reveals unique cerebral cortex-like surface ridges with periodic variation in height and surface chemistry. Most other Brachyceran flies, and the "Nematoceran" Sylvicola fenestralis (Scopoli) (Anisopodidae), displayed the same morphology, while other taxa displayed various other characteristics, such as a nodule-like (Tipula (Triplicitipula) sp. (Tipulidae)) or coalescing nodule-like (Tabanus punctifer Osten Sacken (Tabanidae)) morphology, a smooth morphology with distinct pits and grooves (Dilophus orbatus (Say) (Bibionidae)), or an entirely smooth surface (Bittacus chlorostigma MacLachlan (Mecoptera: Bittacidae)). The variation in submicrometer structure and surface chemistry provides a new information source of potential phylogenetic importance, suggesting the Raman-atomic force microscope could provide a new tool useful to systematic and evolutionary inquiry.

  10. Effects of helium ion implantation on the surface morphology of tungsten at high temperature for the first wall armor and divertor plates of fusion reactors

    NASA Astrophysics Data System (ADS)

    Zenobia, Samuel J.

    Three devices at the University of Wisconsin-Madison Inertial Electrostatic Confinement (UW IEC) laboratory were used to implant W and W alloys with helium ions at high temperatures. These devices were HOMER, HELIOS, and the Materials Irradiation Experiment (MITE-E). The research presented in this thesis will focus on the experiments carried out utilizing the MITE-E. Early UW work in HOMER and HELIOS on silicon carbide, carbon velvet, W-coated carbon velvet, fine-grain W, nano-grain W, W needles, and single- and polycrystalline W showed that these materials were not resistant to He+ implantation above ˜800 °C. Unalloyed W developed a "coral-like" surface morphology after He+ implantation, but appeared to be the most robust material investigated. The MITE-E used an ion gun technology to implant tungsten with 30 keV He+. Tungsten specimens were implanted at 900 °C to total average fluences of 6x1016 -- 6x1018 He +/cm2. Other specimens were implanted to a total average fluence of 5x1018 He+/cm2 at temperatures between 500 and 900 °C. Micrographs of the implanted W specimens revealed the development of three distinct surface morphologies. These morphologies are classified as "blistering", "pitting", and "orientated ridges". Preferential sputtering of the W by the energetic He+ appears to be responsible for pitting and orientated ridges which developed at high fluences (1019 He+/cm2) in the MITE-E. While the orientated ridges were the dominant morphology on the W surface above 700 °C, the pitting was prevalent below 700 °C. The blister morphology was observed at all of the examined temperatures at fluences ≥5x1017 He+/cm2 but disappeared above fluences of 1019 He+/cm 2. The "coral-like" surface morphology on W inherent to He + implantation experiments in HOMER and HELIOS developed from a combination of sources: multiangular ion incidence, ion energy spread (softening), and electron field emission from nano-scale surface features induced by He + implantation. The HOMER and HELIOS devices were found to be better suited for simulation of magnetic fusion environments with off-normal particle incidences, and the MITE-E was found to be more suited for simulating the normal particle incidence of inertial fusion environments.

  11. Morphological features of the neonatal brain support development of subsequent cognitive, language, and motor abilities.

    PubMed

    Spann, Marisa N; Bansal, Ravi; Rosen, Tove S; Peterson, Bradley S

    2014-09-01

    Knowledge of the role of brain maturation in the development of cognitive abilities derives primarily from studies of school-age children to adults. Little is known about the morphological features of the neonatal brain that support the subsequent development of abilities in early childhood, when maturation of the brain and these abilities are the most dynamic. The goal of our study was to determine whether brain morphology during the neonatal period supports early cognitive development through 2 years of age. We correlated morphological features of the cerebral surface assessed using deformation-based measures (surface distances) of high-resolution MRI scans for 33 healthy neonates, scanned between the first to sixth week of postmenstrual life, with subsequent measures of their motor, language, and cognitive abilities at ages 6, 12, 18, and 24 months. We found that morphological features of the cerebral surface of the frontal, mesial prefrontal, temporal, and occipital regions correlated with subsequent motor scores, posterior parietal regions correlated with subsequent language scores, and temporal and occipital regions correlated with subsequent cognitive scores. Measures of the anterior and middle portions of the cingulate gyrus correlated with scores across all three domains of ability. Most of the significant findings were inverse correlations located bilaterally in the brain. The inverse correlations may suggest either that a more protracted morphological maturation or smaller local volumes of neonatal brain tissue supports better performance on measures of subsequent motor, language, and cognitive abilities throughout the first 2 years of postnatal life. The correlations of morphological measures of the cingulate with measures of performance across all domains of ability suggest that the cingulate supports a broad range of skills in infancy and early childhood, similar to its functions in older children and adults. Copyright © 2014 Wiley Periodicals, Inc.

  12. The Role of Surface Chemistry in Adhesion and Wetting of Gecko Toe Pads

    PubMed Central

    Badge, Ila; Stark, Alyssa Y.; Paoloni, Eva L.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2014-01-01

    An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry adhesion but also for increased efficiency in self-cleaning of water and adhesion under wet conditions. Here, we used a plasma-based vapor deposition process to coat the hairy patterns on gecko toe pad sheds with polar and non-polar coatings without significantly perturbing the setal morphology. By a comparison of wetting across treatments, we show that the intrinsic surface of gecko setae has a water contact angle between 70–90°. As expected, under wet conditions, adhesion on a hydrophilic surface (glass) was lower than that on a hydrophobic surface (alkyl-silane monolayer on glass). Surprisingly under wet and dry conditions the adhesion was comparable on the hydrophobic surface, independent of the surface chemistry of the setal hairs. This work highlights the need to utilize morphology and surface chemistry in developing successful synthetic adhesives with desirable adhesion and self-cleaning properties. PMID:25323067

  13. The Role of Surface Chemistry in Adhesion and Wetting of Gecko Toe Pads

    NASA Astrophysics Data System (ADS)

    Badge, Ila; Stark, Alyssa Y.; Paoloni, Eva L.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2014-10-01

    An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry adhesion but also for increased efficiency in self-cleaning of water and adhesion under wet conditions. Here, we used a plasma-based vapor deposition process to coat the hairy patterns on gecko toe pad sheds with polar and non-polar coatings without significantly perturbing the setal morphology. By a comparison of wetting across treatments, we show that the intrinsic surface of gecko setae has a water contact angle between 70-90°. As expected, under wet conditions, adhesion on a hydrophilic surface (glass) was lower than that on a hydrophobic surface (alkyl-silane monolayer on glass). Surprisingly under wet and dry conditions the adhesion was comparable on the hydrophobic surface, independent of the surface chemistry of the setal hairs. This work highlights the need to utilize morphology and surface chemistry in developing successful synthetic adhesives with desirable adhesion and self-cleaning properties.

  14. Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors.

    PubMed

    Bain, Lauren E; Collazo, Ramon; Hsu, Shu-Han; Latham, Nicole Pfiester; Manfra, Michael J; Ivanisevic, Albena

    2014-06-01

    The chemical stability and electrical properties of gallium nitride make it a promising material for the development of biocompatible electronics, a range of devices including biosensors as well as interfaces for probing and controlling cellular growth and signaling. To improve the interface formed between the probe material and the cell or biosystem, surface topography and chemistry can be applied to modify the ways in which the device interacts with its environment. PC12 cells are cultured on as-grown planar, unidirectionally polished, etched nanoporous and nanowire GaN surfaces with and without a physisorbed peptide sequence that promotes cell adhesion. While cells demonstrate preferential adhesion to roughened surfaces over as-grown flat surfaces, the topography of that roughness also influences the morphology of cellular adhesion and differentiation in neurotypic cells. Addition of the peptide sequence generally contributes further to cellular adhesion and promotes development of stereotypic long, thin neurite outgrowths over alternate morphologies. The dependence of cell behavior on both the topographic morphology and surface chemistry is thus demonstrated, providing further evidence for the importance of surface modification for modulating bio-inorganic interfaces. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Texturing Carbon-carbon Composite Radiator Surfaces Utilizing Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Raack, Taylor

    2004-01-01

    Future space nuclear power systems will require radiator technology to dissipate excess heat created by a nuclear reactor. Large radiator fins with circulating coolant are in development for this purpose and an investigation of how to make them most efficient is underway. Maximizing the surface area while minimizing the mass of such radiator fins is critical for obtaining the highest efficiency in dissipating heat. Processes to develop surface roughness are under investigation to maximize the effective surface area of a radiator fin. Surface roughness is created through several methods including oxidation and texturing. The effects of atomic oxygen impingement on carbon-carbon surfaces are currently being investigated for texturing a radiator surface. Early studies of atomic oxygen impingement in low Earth orbit indicate significant texturing due to ram atomic oxygen. The surface morphology of the affected surfaces shows many microscopic cones and valleys which have been experimentally shown to increase radiation emittance. Further study of this morphology proceeded in the Long Duration Exposure Facility (LDEF). Atomic oxygen experiments on the LDEF successfully duplicated the results obtained from materials in spaceflight by subjecting samples to 4.5 eV atomic oxygen from a fixed ram angle. These experiments replicated the conical valley morphology that was seen on samples subjected to low Earth orbit.

  16. Tongue and taste organ development in the ontogeny of direct-developing salamander Plethodon cinereus (Lissamphibia: Plethodontidae).

    PubMed

    Budzik, Karolina A; Żuwała, Krystyna; Kerney, Ryan

    2016-07-01

    The latest research on direct developing caecilian and anuran species indicate presence of only one generation of taste organs during their ontogeny. This is distinct from indirect developing batrachians studied thus far, which possess taste buds in larvae and anatomically distinct taste discs in metamorphs. This study is a description of the tongue and taste organ morphology and development in direct developing salamander Plethodon cinereus (Plethodontidae) using histology and electron microscopy techniques. The results reveal two distinct stages tongue morphology (primary and secondary), similar to metamorphic urodeles, although only one stage of taste organ morphology. Taste disc sensory zones emerge on the surface of the oropharyngeal epithelium by the end of embryonic development, which coincides with maturation of the soft tongue. Taste organs occur in the epithelium of the tongue pad (where they are situated on the dermal papillae), the palate and the inner surface of the mandible and the maxilla. Plethodon cinereus embryos only possess taste disc type taste organs. Similar to the direct developing anuran Eleutherodactylus coqui (Eleutherodactylidae), these salamanders do not recapitulate larval taste bud morphology as an embryo. The lack of taste bud formation is probably a broadly distributed feature characteristic to direct developing batrachians. J. Morphol. 277:906-915, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Analysis of high-throughput screening reveals the effect of surface topographies on cellular morphology.

    PubMed

    Hulsman, Marc; Hulshof, Frits; Unadkat, Hemant; Papenburg, Bernke J; Stamatialis, Dimitrios F; Truckenmüller, Roman; van Blitterswijk, Clemens; de Boer, Jan; Reinders, Marcel J T

    2015-03-01

    Surface topographies of materials considerably impact cellular behavior as they have been shown to affect cell growth, provide cell guidance, and even induce cell differentiation. Consequently, for successful application in tissue engineering, the contact interface of biomaterials needs to be optimized to induce the required cell behavior. However, a rational design of biomaterial surfaces is severely hampered because knowledge is lacking on the underlying biological mechanisms. Therefore, we previously developed a high-throughput screening device (TopoChip) that measures cell responses to large libraries of parameterized topographical material surfaces. Here, we introduce a computational analysis of high-throughput materiome data to capture the relationship between the surface topographies of materials and cellular morphology. We apply robust statistical techniques to find surface topographies that best promote a certain specified cellular response. By augmenting surface screening with data-driven modeling, we determine which properties of the surface topographies influence the morphological properties of the cells. With this information, we build models that predict the cellular response to surface topographies that have not yet been measured. We analyze cellular morphology on 2176 surfaces, and find that the surface topography significantly affects various cellular properties, including the roundness and size of the nucleus, as well as the perimeter and orientation of the cells. Our learned models capture and accurately predict these relationships and reveal a spectrum of topographies that induce various levels of cellular morphologies. Taken together, this novel approach of high-throughput screening of materials and subsequent analysis opens up possibilities for a rational design of biomaterial surfaces. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Gold nanoparticles protected by mixed hydrogenated/fluorinated monolayers: controlling and exploring the surface features

    NASA Astrophysics Data System (ADS)

    Şologan, Maria; Gentilini, Cristina; Bidoggia, Silvia; Boccalon, Mariangela; Pace, Alice; Pengo, Paolo; Pasquato, Lucia

    2018-06-01

    Harnessing the reciprocal phobicity of hydrogenated and fluorinated thiolates proved to be a valuable strategy in preparing gold nanoparticles displaying mixed monolayers with a well-defined and pre-determined morphology. Our studies display that the organisation of the fluorinated ligands in phase-separated domains takes place even when these represent a small fraction of the ligands grafted on the gold surface. Using simple model ligands and by combining 19F NMR or ESR spectroscopies, and multiscale molecular simulations, we could demonstrate how the monolayer morphology responds in a predictable manner to structural differences between the thiolates. This enables a straightforward preparation of gold nanoparticles with monolayers displaying stripe-like, Janus, patchy, and random morphologies. Additionally, solubility properties may be tuned as function of the nature of the ligands and of the monolayer morphology obtaining gold nanoparticles soluble in organic solvents or in aqueous solutions. Most importantly, this rich diversity can be achieved not by resorting to ad hoc developed fabrication techniques, but rather relying on the spontaneous self-sorting of the ligands upon assembly on the nanoparticle surface. Besides enabling control over the monolayer morphology, fluorinated ligands endow the nanoparticles with several properties that can be exploited in the development of novel materials with applications, for instance in drug delivery and diagnostic imaging.

  19. Theory of multiple quantum dot formation in strained-layer heteroepitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu

    2016-07-11

    We develop a theory for the experimentally observed formation of multiple quantum dots (QDs) in strained-layer heteroepitaxy based on surface morphological stability analysis of a coherently strained epitaxial thin film on a crystalline substrate. Using a fully nonlinear model of surface morphological evolution that accounts for a wetting potential contribution to the epitaxial film's free energy as well as surface diffusional anisotropy, we demonstrate the formation of multiple QD patterns in self-consistent dynamical simulations of the evolution of the epitaxial film surface perturbed from its planar state. The simulation predictions are supported by weakly nonlinear analysis of the epitaxial filmmore » surface morphological stability. We find that, in addition to the Stranski-Krastanow instability, long-wavelength perturbations from the planar film surface morphology can trigger a nonlinear instability, resulting in the splitting of a single QD into multiple QDs of smaller sizes, and predict the critical wavelength of the film surface perturbation for the onset of the nonlinear tip-splitting instability. The theory provides a fundamental interpretation for the observations of “QD pairs” or “double QDs” and other multiple QDs reported in experimental studies of epitaxial growth of semiconductor strained layers and sets the stage for precise engineering of tunable-size nanoscale surface features in strained-layer heteroepitaxy by exploiting film surface nonlinear, pattern forming phenomena.« less

  20. Influence of multi-wavelength laser irradiation of enamel and dentin surfaces at 0.355, 2.94, and 9.4 μm on surface morphology, permeability, and acid resistance.

    PubMed

    Chang, Nai-Yuan N; Jew, Jamison M; Simon, Jacob C; Chen, Kenneth H; Lee, Robert C; Fried, William A; Cho, Jinny; Darling, Cynthia L; Fried, Daniel

    2017-12-01

    Ultraviolet (UV) and infrared (IR) lasers can be used to specifically target protein, water, and mineral, respectively, in dental hard tissues to produce varying changes in surface morphology, permeability, reflectivity, and acid resistance. The purpose of this study was to explore the influence of laser irradiation and topical fluoride application on the surface morphology, permeability, reflectivity, and acid resistance of enamel and dentin to shed light on the mechanism of interaction and develop more effective treatments. Twelve bovine enamel surfaces and twelve bovine dentin surfaces were irradiated with various combinations of lasers operating at 0.355 (Freq.-tripled Nd:YAG (UV) laser), 2.94 (Er:YAG laser), and 9.4 μm (CO 2 laser), and surfaces were exposed to an acidulated phosphate fluoride gel and an acid challenge. Changes in the surface morphology, acid resistance, and permeability were measured using digital microscopy, polarized light microscopy, near-IR reflectance, fluorescence, polarization sensitive-optical coherence tomography (PS-OCT), and surface dehydration rate measurements. Different laser treatments dramatically influenced the surface morphology and permeability of both enamel and dentin. CO 2 laser irradiation melted tooth surfaces. Er:YAG and UV lasers, while not melting tooth surfaces, showed markedly different surface roughness. Er:YAG irradiation led to significantly rougher enamel and dentin surfaces and led to higher permeability. There were significant differences in acid resistance among the various treatment groups. Surface dehydration measurements showed significant changes in permeability after laser treatments, application of fluoride and after exposure to demineralization. CO 2 laser irradiation was most effective in inhibiting demineralization on enamel while topical fluoride was most effective for dentin surfaces. Lasers Surg. Med. 49:913-927, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Morphomechanics of bacterial biofilms undergoing anisotropic differential growth

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Li, Bo; Huang, Xiao; Ni, Yong; Feng, Xi-Qiao

    2016-10-01

    Growing bacterial biofilms exhibit a number of surface morphologies, e.g., concentric wrinkles, radial ridges, and labyrinthine networks, depending on their physiological status and nutrient access. We explore the mechanisms underlying the emergence of these greatly different morphologies. Ginzburg-Landau kinetic method and Fourier spectral method are integrated to simulate the morphological evolution of bacterial biofilms. It is shown that the morphological instability of biofilms is triggered by the stresses induced by anisotropic and heterogeneous bacterial expansion, and involves the competition between membrane energy and bending energy. Local interfacial delamination further enriches the morphologies of biofilms. Phase diagrams are established to reveal how the anisotropy and spatial heterogeneity of growth modulate the surface patterns. The mechanics of three-dimensional microbial morphogenesis may also underpin self-organization in other development systems and provide a potential strategy for engineering microscopic structures from bacterial aggregates.

  2. Stability analysis of nanoscale surface patterns in stressed solids

    NASA Astrophysics Data System (ADS)

    Kostyrko, Sergey A.; Shuvalov, Gleb M.

    2018-05-01

    Here, we use the theory of surface elasticity to extend the morphological instability analysis of stressed solids developed in the works of Asaro, Tiller, Grinfeld, Srolovitz and many others. Within the framework of Gurtin-Murdoch model, the surface phase is assumed to be a negligibly thin layer with the elastic properties which differ from those of the bulk material. We consider the mass transport mechanism driven by the variation of surface and bulk energy along undulated surface of stressed solid. The linearized surface evolution equation is derived in the case of plane strain conditions and describes the amplitude change of surface perturbations with time. A parametric analysis of this equation leads to the definition of critical conditions which depend on undulation wavelength, residual surface stress, applied loading, surface and bulk elastic constants and predict the surface morphological stability.

  3. The Influence of Crustal Thickness and Slope on the Surface Morphology of Active Lava Flows: an Experimental Approach

    NASA Astrophysics Data System (ADS)

    Applegarth, L. J.; James, M. R.; van Wyk de Vries, B.; Pinkerton, H.

    2007-12-01

    Many of the surface features that develop on `a`a and blocky lava flows relate to internal dynamics during flow emplacement, but it can be difficult to infer the precise relationships between morphology and dynamics from observations of flows either during or after their emplacement. Experiments using PEG have greatly improved our understanding of the behaviour of lavas with relatively thin crusts. Here we describe an alternative approach (similar to that of Lescinsky and Merle (2005), GSA Special Paper 396, p.136) in which the crust plays a significant role in flow development. Our experiments investigated the effect of crustal thickness and slope on the morphological development of channelised distal flows. The materials used were high viscosity (104 Pa s) silicone gel to simulate the still-fluid lava, and a mix of sand and plaster to represent the cohesive brittle crust and the confining levees. Experiments were conducted on an inclined board with a reservoir constructed at one end. Silicone was released from the reservoir through a sliding gate, where it encountered a seed flow consisting of a silicone sheet topped with a crust of known depth and constrained by levees. The models therefore represented the influx of fresh lava into a channel. Sequential digital images taken over the course of each experiment allowed marker points on the flow surface to be tracked, and these data were used to construct surface velocity maps. Several experiments were recorded using stereo imagery, allowing changes in the surface relief to be monitored. The insights from these quantitative techniques, combined with morphological observations, are used to illustrate the effect of the crust on the flow dynamics, and to show the response of the brittle crust to the movement of the viscous flow interior. An overview of the experimental techniques and results will be presented, together with an assessment of how the observed model morphologies can be related to features observed in the field.

  4. Morphological Properties of Siloxane-Hydrogel Contact Lens Surfaces.

    PubMed

    Stach, Sebastian; Ţălu, Ştefan; Trabattoni, Silvia; Tavazzi, Silvia; Głuchaczka, Alicja; Siek, Patrycja; Zając, Joanna; Giovanzana, Stefano

    2017-04-01

    The aim of this study was to quantitatively characterize the micromorphology of contact lens (CL) surfaces using atomic force microscopy (AFM) and multifractal analysis. AFM and multifractal analysis were used to characterize the topography of new and worn siloxane-hydrogel CLs made of Filcon V (I FDA group). CL surface roughness was studied by AFM in intermittent-contact mode, in air, on square areas of 25 and 100 μm 2 , by using a Nanoscope V MultiMode (Bruker). Detailed surface characterization of the surface topography was obtained using statistical parameters of 3-D (three-dimensional) surface roughness, in accordance with ISO 25178-2: 2012. Before wear, the surface was found to be characterized by out-of-plane and sharp structures, whilst after a wear of 8 h, two typical morphologies were observed. One morphology (sharp type) has a similar aspect as the unworn CLs and the other morphology (smooth type) is characterized by troughs and bumpy structures. The analysis of the AFM images revealed a multifractal geometry. The generalized dimension D q and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of CL surface geometry at nanometer scale. Surface statistical parameters deduced by multifractal analysis can be used to assess the CL micromorphology and can be used by manufacturers in developing CLs with improved surface characteristics. These parameters can also be used in understanding the tribological interactions of the back surface of the CL with the corneal surface and the front surface of the CL with the under-surface of the eyelid (friction, wear, and micro-elastohydrodynamic lubrication at a nanometer scale).

  5. Some aspects of lithological and exogenic control of sandstone morphology, the Świętokrzyskie (Holy Cross) Mts. case study, Poland

    NASA Astrophysics Data System (ADS)

    Urban, Jan; Górnik, Marek

    2017-10-01

    Various morphologies of cliffs built of different quartzose rocks in the Świętokrzyskie (Holy Cross) Mts. (upland region, central Poland) - from Cambrian quartzites and Devonian quartzitic sandstones to Triassic and Jurassic porous sandstones - were described in order to examine the constraints of their lithological and spatial occurrence. The quantitative study of the occurrence of these morphologies on cliffs makes it possible to distinguish two principal groups of morphologies: angular relief produced by rock splitting (crumbling), typical of quartzites indurated in silica and of open porosity less than 1.5%, and morphologies developed due to granular disintegration and exfoliation of sandstones of open porosity higher than 1.5%. Among the relief types of this second group, morphology reflecting sedimentary and diagenetic structures as well as smooth surfaces are the most common and are referred to sandstones of a wide range of porosity, whereas honeycombs and surfaces suffering fast granular decay and scaling are characteristic of rocks of specific porosity (respectively: 5-8% and 3.5-8%). The occurrence of honeycombs on rock surfaces is also conditioned by exogenic factors: sun, wind and rain, since this morphology tends to occur on cliffs with aspects ranging from south-east, through south, to west-north-west.

  6. Cortical morphology development in patients with 22q11.2 deletion syndrome at ultra-high risk of psychosis.

    PubMed

    Padula, Maria Carmela; Schaer, Marie; Armando, Marco; Sandini, Corrado; Zöller, Daniela; Scariati, Elisa; Schneider, Maude; Eliez, Stephan

    2018-01-17

    Patients with 22q11.2 deletion syndrome (22q11DS) present a high risk of developing psychosis. While clinical and cognitive predictors for the conversion towards a full-blown psychotic disorder are well defined and largely used in practice, neural biomarkers do not yet exist. However, a number of investigations indicated an association between abnormalities in cortical morphology and higher symptoms severities in patients with 22q11DS. Nevertheless, few studies included homogeneous groups of patients differing in their psychotic symptoms profile. In this study, we included 22 patients meeting the criteria for an ultra-high-risk (UHR) psychotic state and 22 age-, gender- and IQ-matched non-UHR patients. Measures of cortical morphology, including cortical thickness, volume, surface area and gyrification, were compared between the two groups using mass-univariate and multivariate comparisons. Furthermore, the development of these measures was tested in the two groups using a mixed-model approach. Our results showed differences in cortical volume and surface area in UHR patients compared with non-UHR. In particular, we found a positive association between surface area and the rate of change of global functioning, suggesting that higher surface area is predictive of improved functioning with age. We also observed accelerated cortical thinning during adolescence in UHR patients with 22q11DS. These results, although preliminary, suggest that alterations in cortical volume and surface area as well as altered development of cortical thickness may be associated to a greater probability to develop psychosis in 22q11DS.

  7. Effects of polymer surface energy on morphology and properties of silver nanowire fabricated via nanoimprint and E-beam evaporation

    NASA Astrophysics Data System (ADS)

    Zhao, Zhi-Jun; Hwang, Soon Hyoung; Jeon, Sohee; Jung, Joo-Yun; Lee, Jihye; Choi, Dae-Geun; Choi, Jun-Hyuk; Park, Sang-Hu; Jeong, Jun-Ho

    2017-10-01

    In this paper, we demonstrate that use of different nanoimprint resins as a polymer pattern has a significant effect on the morphology of silver (Ag) nanowires deposited via an E-beam evaporator. RM-311 and Ormo-stamp resins are chosen as a polymer pattern to form a line with dimensions of width (100 nm) × space (100 nm) × height (120 nm) by using nanoimprint lithography (NIL). Their contact angles are then measured to evaluate their surface energies. In order to compare the properties of the Ag nanowires deposited on the various polymer patterns with different surface energies, hydrophobic surface treatment of the polymer pattern surface is implemented using self-assembled monolayers. In addition, gold and aluminum nanowires are fabricated for comparison with the Ag nanowires, with the differences in the nanowire morphologies being determined by the different atomic properties. The monocrystalline and polycrystalline structures of the various Ag nanowire formations are observed using transmission electron microscopy. In addition, the melting temperatures and optical properties of four kinds of Ag nanowire morphologies deposited on various polymer patterns are evaluated using a hot plate and an ultraviolet-visible (UV-vis) spectrometer, respectively. The results indicate that the morphology of the Ag nanowire determines the melting temperature and the transmission. We believe that these findings will greatly aid the development of NIL, along with physical evaporation and chemical deposition techniques, and will be widely employed in optics, biology, and surface wettability applications.

  8. Natural and human-induced sinkholes in gypsum terrain and associated environmental problems in NE Spain

    NASA Astrophysics Data System (ADS)

    Benito, G.; Del Campo, P. Pérez; Gutiérrez-Elorza, M.; Sancho, C.

    1995-04-01

    The central Ebro Basin comprises thick evaporite materials whose high solubility produces typically karstic landforms. The sinkhole morphology developed in the overlying alluvium has been studied using gravimetry and ground-penetrating radar (GPR) on stream terraces, as well as analyzing the evolution of sinkhole morphologies observed in aerial photographs taken in 1928, 1957, and 1985. The sinkhole morphologies give some idea of possible subsurface processes as well as an indication of the final mechanisms involve in sinkhole development. On stream terraces and cover pediments the most commonly encountered dolines are bowl-shaped in their morphology with both diffuse and scarped edges. In contrast, dolines developed in the gypsiferous silt infilled valleys have a funnel and well-shaped morphology. The diffuse-edged bowl-shaped dolines are developed through the progressive subsidence of the alluvial cover, due to washing down of alluvial particles through small voids and cracks into deeper subsurface caves, resulting in a decrease alluvial density. Future compaction of the alluvial cover will produce surface subsidences. This type of dolines are associated with negative gravity anomalies. In contrast, the scarped-edge dolines are formed by the sudden collapse of a cavity roof. The cavities and cracks formed in the gypsum karst may migrate to the surface through the alluvial deposits by piping, and they may subsequently collapse. In this instance, the cavities can be detected by both gravity and GPR anomalies where the voids are not deeper than 4 5 m from the surface. These processes forming sinkholes can be enhanced by man-induced changes in the groundwater hydrologic regime by both inflows, due to irrigation, ditch losses, or pipe leakages, and by outflows from pumping activities.

  9. Carabelli's trait revisited: an examination of mesiolingual features at the enamel-dentine junction and enamel surface of Pan and Homo sapiens upper molars.

    PubMed

    Ortiz, Alejandra; Skinner, Matthew M; Bailey, Shara E; Hublin, Jean-Jacques

    2012-10-01

    Carabelli's trait is a morphological feature that frequently occurs on the mesiolingual aspect of Homo sapiens upper molars. Similar structures also referred to as Carabelli's trait have been reported in apes and fossil hominins. However, the morphological development and homology of these mesiolingual structures among hominoids are poorly understood. In this study, we employ micro-computed tomography to image the enamel-dentine junction (EDJ) and outer enamel surface (OES) of Pan (n = 48) and H. sapiens (n = 52) upper molars. We investigate the developmental origin of mesiolingual features in these taxa and establish the relative contribution of the EDJ and enamel cap to feature expression. Results demonstrate that mesiolingual features of H. sapiens molars develop at the EDJ and are similarly expressed at the OES. Morphological variation at both surfaces in this taxon can satisfactorily be assessed using standards for Carabelli's trait developed by the Arizona State University Dental Anthropology System (ASUDAS). Relative to H. sapiens, Pan has an even greater degree of correspondence in feature expression between the EDJ and OES. Morphological manifestations in Pan molars are not necessarily limited to the protocone and are best characterized by a lingual cingulum that cannot be captured by the ASUDAS. Cusp-like structures, similar to those seen in marked Carabelli's trait expressions in H. sapiens, were not found in Pan. This study provides a foundation for further analyses on the evolutionary history of mesiolingual dental traits within the hominoid lineage. It also highlights the wealth of morphological data that can be obtained at the EDJ for understanding tooth development and for characterizing tooth crown variation in worn fossil teeth. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Water striders adjust leg movement speed to optimize takeoff velocity for their morphology.

    PubMed

    Yang, Eunjin; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G; Kim, Ho-Young

    2016-12-07

    Water striders are water-walking insects that can jump upwards from the water surface. Quick jumps allow striders to avoid sudden dangers such as predators' attacks, and therefore their jumping is expected to be shaped by natural selection for optimal performance. Related species with different morphological constraints could require different jumping mechanics to successfully avoid predation. Here we show that jumping striders tune their leg rotation speed to reach the maximum jumping speed that water surface allows. We find that the leg stroke speeds of water strider species with different leg morphologies correspond to mathematically calculated morphology-specific optima that maximize vertical takeoff velocity by fully exploiting the capillary force of water. These results improve the understanding of correlated evolution between morphology and leg movements in small jumping insects, and provide a theoretical basis to develop biomimetic technology in semi-aquatic environments.

  11. Water striders adjust leg movement speed to optimize takeoff velocity for their morphology

    NASA Astrophysics Data System (ADS)

    Yang, Eunjin; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G.; Kim, Ho-Young

    2016-12-01

    Water striders are water-walking insects that can jump upwards from the water surface. Quick jumps allow striders to avoid sudden dangers such as predators' attacks, and therefore their jumping is expected to be shaped by natural selection for optimal performance. Related species with different morphological constraints could require different jumping mechanics to successfully avoid predation. Here we show that jumping striders tune their leg rotation speed to reach the maximum jumping speed that water surface allows. We find that the leg stroke speeds of water strider species with different leg morphologies correspond to mathematically calculated morphology-specific optima that maximize vertical takeoff velocity by fully exploiting the capillary force of water. These results improve the understanding of correlated evolution between morphology and leg movements in small jumping insects, and provide a theoretical basis to develop biomimetic technology in semi-aquatic environments.

  12. Plateau-Rayleigh Crystal Growth of Nanowire Heterostructures: Strain-Modified Surface Chemistry and Morphological Control in One, Two, and Three Dimensions.

    PubMed

    Day, Robert W; Mankin, Max N; Lieber, Charles M

    2016-04-13

    One-dimensional (1D) structures offer unique opportunities for materials synthesis since crystal phases and morphologies that are difficult or impossible to achieve in macroscopic crystals can be synthesized as 1D nanowires (NWs). Recently, we demonstrated one such phenomenon unique to growth on a 1D substrate, termed Plateau-Rayleigh (P-R) crystal growth, where periodic shells develop along a NW core to form diameter-modulated NW homostructures with tunable morphologies. Here we report a novel extension of the P-R crystal growth concept with the synthesis of heterostructures in which Ge (Si) is deposited on Si (Ge) 1D cores to generate complex NW morphologies in 1, 2, or 3D. Depositing Ge on 50 nm Si cores with a constant GeH4 pressure yields a single set of periodic shells, while sequential variation of GeH4 pressure can yield multimodulated 1D NWs with two distinct sets of shell periodicities. P-R crystal growth on 30 nm cores also produces 2D loop structures, where Ge (Si) shells lie primarily on the outside (inside) of a highly curved Si (Ge) core. Systematic investigation of shell morphology as a function of growth time indicates that Ge shells grow in length along positive curvature Si cores faster than along straight Si cores by an order of magnitude. Short Ge deposition times reveal that shells develop on opposite sides of 50 and 100 nm Si cores to form straight 1D morphologies but that shells develop on the same side of 20 nm cores to produce 2D loop and 3D spring structures. These results suggest that strain mediates the formation of 2 and 3D morphologies by altering the NW's surface chemistry and that surface diffusion of heteroatoms on flexible freestanding 1D substrates can facilitate this strain-mediated mechanism.

  13. Molecular-Scale Structural Controls on Nanoscale Growth Processes: Step-Specific Regulation of Biomineral Morphology

    NASA Astrophysics Data System (ADS)

    Dove, P. M.; Davis, K. J.; De Yoreo, J. J.; Orme, C. A.

    2001-12-01

    Deciphering the complex strategies by which organisms produce nanocrystalline materials with exquisite morphologies is central to understanding biomineralizing systems. One control on the morphology of biogenic nanoparticles is the specific interactions of their surfaces with the organic functional groups provided by the organism and the various inorganic species present in the ambient environment. It is now possible to directly probe the microscopic structural controls on crystal morphology by making quantitative measurements of the dynamic processes occurring at the mineral-water interface. These observations can provide crucial information concerning the actual mechanisms of growth that is otherwise unobtainable through macroscopic techniques. Here we use in situ molecular-scale observations of step dynamics and growth hillock morphology to directly resolve roles of principal impurities in regulating calcite surface morphologies. We show that the interactions of certain inorganic as well as organic impurities with the calcite surface are dependent upon the molecular-scale structures of step-edges. These interactions can assume a primary role in directing crystal morphology. In calcite growth experiments containing magnesium, we show that growth hillock structures become modified owing to the preferential inhibition of step motion along directions approximately parallel to the [010]. Compositional analyses have shown that Mg incorporates at different levels into the two types of nonequivalent steps, which meet at the hillock corner parallel to [010]. A simple calculation of the strain caused by this difference indicates that we should expect a significant retardation at this corner, in agreement with the observed development of [010] steps. If the low-energy step-risers produced by these [010] steps is perpendicular to the c-axis as seems likely from crystallographic considerations, this effect provides a plausible mechanism for the elongated calcite crystal habits found in natural environments that contain magnesium. In a separate study, step-specific interactions are also found between chiral aspartate molecules and the calcite surface. The L and D- aspartate enantiomers exhibit structure preferences for the different types of step-risers on the calcite surface. These site-specific interactions result in the transfer of asymmetry from the organic molecule to the crystal surface through the formation of chiral growth hillocks and surface morphologies. These studies yield direct experimental insight into the molecular-scale structural controls on nanocrystal morphology in biomineralizing systems.

  14. Developing 3D morphologies for simulating building energy demand in urban microclimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    New, Joshua Ryan; Omitaomu, Olufemi A.; Allen, Melissa R.

    In order to simulate the effect of interactions between urban morphology and microclimate on demand for heating and cooling in buildings, we utilize source elevation data to create 3D building geometries at the neighborhood and city scale. Additionally, we use urban morphology concepts to design virtual morphologies for simulation scenarios in an undeveloped land parcel. Using these morphologies, we compute building-energy parameters such as the density for each surface and the frontal area index for each of the buildings to be able to effectively model the microclimate for the urban area.

  15. Subsurface Grain Morphology Reconstruction by Differential Aperture X-ray Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenlohr, Philip; Shanthraj, Pratheek; Vande Kieft, Brendan R.

    A multistep, non-destructive grain morphology reconstruction methodology that is applicable to near-surface volumes is developed and tested on synthetic grain structures. This approach probes the subsurface crystal orientation using differential aperture x-ray microscopy on a sparse grid across the microstructure volume of interest. Resulting orientation data are clustered according to proximity in physical and orientation space and used as seed points for an initial Voronoi tessellation to (crudely) approximate the grain morphology. Curvature-driven grain boundary relaxation, simulated by means of the Voronoi implicit interface method, progressively improves the reconstruction accuracy. The similarity between bulk and readily accessible surface reconstruction errormore » provides an objective termination criterion for boundary relaxation.« less

  16. Urban Heat Island in the city of Bari (Italy) ant its relationship with morphological features

    NASA Astrophysics Data System (ADS)

    Ceppi, C.; Balena, P.; Loconte, P.; Mancini, F.

    2012-04-01

    The investigation of an Urban Heat Island (UHI) and its relationship with the wide range of factors able to explain its behavior is a very difficult task: the main trouble is represented by the spatial variability of the urban temperature due to the extreme heterogeneousness of the urban coverage and morphological features. In literature it is known that the local surface temperatures are influenced by the changing characteristics in urban surface and modification of land surface processes affecting the surface energy balance and the shape of boundary layer. The whole processes could lead to distinct urban climates. This work is mainly focused on the mechanisms which are actually connecting the urban morphology with the surface temperature as derived by satellite data provided from the ASTER sensor. Urban morphology could be described by several factors depending on the selected scale of analysis. At the macroscale the UHI is more related to the land-use, environmental context and boundary conditions. At the microscale the surface characteristics, urban density, ratio between green and built areas and, construction and built typology are more involved in addition to the composite indicators such as the Sky View factor and the elevation of the built texture. The case study of the city of Bari is faced. It is a medium sized city in the southern Italy, characterized by the presence of a pervasive waterfront and presence of "lame", a natural erosive furrows shallow that are typical of the Apulia country side. Such ephemeral streams convey the stormwater from the plateau of the hilly Murgia areas to the sea. Moreover, the urban complexity of the city exacerbates the spatial variability of the phenomenon. The first step aim at the investigating of the relationship between the thermal behavior and the above mentioned factors by the construction of a set of homogeneous morphological units. The classification is built both in the urban and rural zone. The second step focuses on the development of a spatial statistical analysis based on qualitative and quantitative indicators able to link the classes of urban morphology with the satellite-based surface temperature. The relationships highlighted by such a spatial analysis can be used to model the urban climate and, consequently, develop a new kind of planning more addressed towards the mitigation of the UHI phenomenon.

  17. Nanoscale Morphology Evolution Under Ion Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, Michael J.

    We showed that the half-century-old paradigm of morphological instability under irradiation due to the curvature-dependence of the sputter yield, can account neither for the phase diagram nor the amplification or decay rates that we measure in the simplest possible experimental system -- an elemental semiconductor with an amorphous surface under noble-gas ion irradiation; We showed that a model of pattern formation based on the impact-induced redistribution of atoms that do not get sputtered away explains our experimental observations; We developed a first-principles, parameter-free approach for predicting morphology evolution, starting with molecular dynamics simulations of single ion impacts, lasting picoseconds, andmore » upscaling through a rigorous crater-function formalism to develop a partial differential equation that predicts morphology evolution on time scales more than twelve orders of magnitude longer than can be covered by the molecular dynamics; We performed the first quantitative comparison of the contributions to morphological instability from sputter removal and from impact-induced redistribution of atoms that are removed, and showed that the former is negligible compared to the latter; We established a new paradigm for impact-induced morphology evolution based on crater functions that incorporate both redistribution and sputter effects; and We developed a model of nanopore closure by irradiation-induced stress and irradiationenhanced fluidity, for the near-surface irradiation regime in which nuclear stopping predominates, and showed that it explains many aspects of pore closure kinetics that we measure experimentally.« less

  18. Morphological abnormalities in prefrontal surface area and thalamic volume in attention deficit/hyperactivity disorder.

    PubMed

    Batty, Martin J; Palaniyappan, Lena; Scerif, Gaia; Groom, Madeleine J; Liddle, Elizabeth B; Liddle, Peter F; Hollis, Chris

    2015-08-30

    Although previous morphological studies have demonstrated abnormalities in prefrontal cortical thickness in children with attention deficit/hyperactivity disorder (ADHD), studies investigating cortical surface area are lacking. As the development of cortical surface is closely linked to the establishment of thalam-ocortical connections, any abnormalities in the structure of the thalamus are likely to relate to altered cortical surface area. Using a clinically well-defined sample of children with ADHD (n = 25, 1 female) and typically developing controls (n = 24, 1 female), we studied surface area across the cortex to determine whether children with ADHD had reduced thalamic volume that related to prefrontal cortical surface area. Relative to controls, children with ADHD had a significant reduction in thalamic volume and dorsolateral prefrontal cortical area in both hemispheres. Furthermore, children with ADHD with smaller thalamic volumes were found to have greater reductions in surface area, a pattern not evident in the control children. Our results are further evidence of reduced lateral prefrontal cortical area in ADHD. Moreover, for the first time, we have also shown a direct association between thalamic anatomy and frontal anatomy in ADHD, suggesting the pathophysiological process that alters surface area maturation is likely to be linked to the development of the thalamus. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Bio-inspired scale-like surface textures and their tribological properties.

    PubMed

    Greiner, Christian; Schäfer, Michael

    2015-06-30

    Friction, wear and the associated energy dissipation are major challenges in all systems containing moving parts. Examples range from nanoelectromechanical systems over hip prosthesis to off-shore wind turbines. Bionic approaches have proven to be very successful in many engineering problems, while investigating the potential of a bio-inspired approach in creating morphological surface textures is a relatively new field of research. Here, we developed laser-created textures inspired by the scales found on the skin of snakes and certain lizards. We show that this bio-inspired surface morphology reduced dry sliding friction forces by more than 40%. In lubricated contacts the same morphology increased friction by a factor of three. Two different kinds of morphologies, one with completely overlapping scales and one with the scales arranged in individual rows, were chosen. In lubricated as well as unlubricated contacts, the surface texture with the scales in rows showed lower friction forces than the completely overlapping ones. We anticipate that these results could have significant impact in all dry sliding contacts, ranging from nanoelectromechanical and micro-positioning systems up to large-scale tribological contacts which cannot be lubricated, e.g. because they are employed in a vacuum environment.

  20. On the influence of substrate morphology and surface area on phytofauna

    USGS Publications Warehouse

    Becerra-Munoz, S.; Schramm, H.L.

    2007-01-01

    The independent effects and interactions between substrate morphology and substrate surface area on invertebrate density or biomass colonizing artificial plant beds were assessed in a clear-water and a turbid playa lake in Castro County, Texas, USA. Total invertebrate density and biomass were consistently greater on filiform substrates than on laminar substrates with equivalent substrate surface areas. The relationship among treatments (substrates with different morphologies and surface areas) and response (invertebrate density or biomass) was assessed with equally spaced surface areas. Few statistically significant interactions between substrate morphology and surface area were detected, indicating that these factors were mostly independent from each other in their effect on colonizing invertebrates. Although infrequently, when substrate morphology and surface area were not independent, the effects of equally spaced changes in substrate surface area on the rate of change of phytofauna density or biomass per unit of substrate surface area were dependent upon substrate morphology. The absence of three-way interactions indicated that effects of substrate morphology and substrate area on phytofauna density or biomass were independent of environmental conditions outside and inside exclosures. ?? 2006 Springer Science+Business Media B.V.

  1. Evidence from tooth surface morphology for a posterior maxillary origin of the proteroglyph gang

    USGS Publications Warehouse

    Jackson, K.; Fritts, T.H.

    1995-01-01

    Although the front-fanged venom delivery system of the Elapidae is believed to be derived from an aglyphous or opisthoglyphous colubroid ancestor, opinion is divided as to the end of the maxilla on which the proteroglyph fang originated. This study was undertaken to determine whether the evolutionary precursor of the proteroglyph fang was (a) a grooved posterior fang which migrated anteriorly, or (b) an enlarged anterior tooth which secondarily developed a groove for the conduction of venom. The surface morphology of the maxillary teeth of colubrid genera was examined using scanning electron microscopy. Ridges present on the lingual and labial surfaces of anterior maxillary teeth and on the anterior and posterior surfaces of posterior maxillary teeth were identified as morphological markers of potential value in distinguishing the anterior and posterior maxillary teeth of colubrid snakes, and in determining the origin of the proteroglyph fang. Patterns of ridges on the surfaces of elapid fangs examined were found to be consistent with the hypothesis that the evolutionary precursor of the proteroglyph fang was an opisthoglyph fang which migrated anteriorly.

  2. Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Kevin N.; Kazyak, Eric; Chadwick, Alexander F.

    Enabling ultra-high energy density rechargeable Li batteries would have widespread impact on society. But, the critical challenges of Li metal anodes (most notably cycle life and safety) remain unsolved. This is attributed to the evolution of Li metal morphology during cycling, which leads to dendrite growth and surface pitting. Herein, we present a comprehensive understanding of the voltage variations observed during Li metal cycling, which is directly correlated to morphology evolution through the use of operando video microscopy. A custom-designed visualization cell was developed to enable operando synchronized observation of Li metal electrode morphology and electrochemical behavior during cycling. Amore » mechanistic understanding of the complex behavior of these electrodes is gained through correlation with continuum-scale modeling, which provides insight into the dominant surface kinetics. Our work provides a detailed explanation of (1) when dendrite nucleation occurs, (2) how those dendrites evolve as a function of time, (3) when surface pitting occurs during Li electrodissolution, (4) kinetic parameters that dictate overpotential as the electrode morphology evolves, and (5) how this understanding can be applied to evaluate electrode performance in a variety of electrolytes. Our results provide detailed insight into the interplay between morphology and the dominant electrochemical processes occurring on the Li electrode surface through an improved understanding of changes in cell voltage, which represents a powerful new platform for analysis.« less

  3. Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy

    DOE PAGES

    Wood, Kevin N.; Kazyak, Eric; Chadwick, Alexander F.; ...

    2015-10-14

    Enabling ultra-high energy density rechargeable Li batteries would have widespread impact on society. But, the critical challenges of Li metal anodes (most notably cycle life and safety) remain unsolved. This is attributed to the evolution of Li metal morphology during cycling, which leads to dendrite growth and surface pitting. Herein, we present a comprehensive understanding of the voltage variations observed during Li metal cycling, which is directly correlated to morphology evolution through the use of operando video microscopy. A custom-designed visualization cell was developed to enable operando synchronized observation of Li metal electrode morphology and electrochemical behavior during cycling. Amore » mechanistic understanding of the complex behavior of these electrodes is gained through correlation with continuum-scale modeling, which provides insight into the dominant surface kinetics. Our work provides a detailed explanation of (1) when dendrite nucleation occurs, (2) how those dendrites evolve as a function of time, (3) when surface pitting occurs during Li electrodissolution, (4) kinetic parameters that dictate overpotential as the electrode morphology evolves, and (5) how this understanding can be applied to evaluate electrode performance in a variety of electrolytes. Our results provide detailed insight into the interplay between morphology and the dominant electrochemical processes occurring on the Li electrode surface through an improved understanding of changes in cell voltage, which represents a powerful new platform for analysis.« less

  4. Electrodeposition of Rhodium Nanowires Arrays and Their Morphology-Dependent Hydrogen Evolution Activity

    PubMed Central

    Zhang, Liqiu; Liu, Lichun; Wang, Hongdan; Shen, Hongxia; Cheng, Qiong; Yan, Chao; Park, Sungho

    2017-01-01

    This work reports on the electrodeposition of rhodium (Rh) nanowires with a controlled surface morphology synthesized using an anodic aluminum oxide (AAO) template. Vertically aligned Rh nanowires with a smooth and coarse morphology were successfully deposited by adjusting the electrode potential and the concentration of precursor ions and by involving a complexing reagent in the electrolyte solution. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses were used to follow the morphological evolution of Rh nanowires. As a heterogeneous electrocatalyst for hydrogen evolution reactions (HER), the coarse Rh nanowire array exhibited an enhanced catalytic performance respect to smooth ones due to the larger surface area to mass ratio and the higher density of catalytically active defects, as evidenced by voltammetric measurements and TEM. Results suggest that the morphology of metallic nanomaterials could be readily engineered by electrodeposition. The controlled electrodeposition offers great potential for the development of an effective synthesis tool for heterogeneous catalysts with a superior performance for wide applications. PMID:28467375

  5. A study of structural and mechanical properties of nano-crystalline tungsten nitride film synthesis by plasma focus

    NASA Astrophysics Data System (ADS)

    Hussnain, Ali; Singh Rawat, Rajdeep; Ahmad, Riaz; Hussain, Tousif; Umar, Z. A.; Ikhlaq, Uzma; Chen, Zhong; Shen, Lu

    2015-02-01

    Nano-crystalline tungsten nitride thin films are synthesized on AISI-304 steel at room temperature using Mather-type plasma focus system. The surface properties of the exposed substrate against different deposition shots are examined for crystal structure, surface morphology and mechanical properties using X-ray diffraction (XRD), atomic force microscope, field emission scanning electron microscope and nano-indenter. The XRD results show the growth of WN and WN2 phases and the development of strain/stress in the deposited films by varying the number of deposition shots. Morphology of deposited films shows the significant change in the surface structure with different ion energy doses (number of deposition shots). Due to the effect of different ion energy doses, the strain/stress developed in the deposited film leads to an improvement of hardness of deposited films.

  6. Morphologic and seismic evidence of rapid submergence offshore Cide-Sinop in the southern Black Sea shelf

    NASA Astrophysics Data System (ADS)

    Ocakoğlu, Neslihan; İşcan, Yeliz; Kılıç, Fatmagül; Özel, Oğuz

    2018-06-01

    Multi-beam bathymetric and multi-channel seismic reflection data obtained offshore Cide-Sinop have revealed important records on the latest transgression of the Black Sea for the first time. A relatively large shelf plain within the narrow southern continental shelf characterized by a flat seafloor morphology at -100 water depth followed by a steep continental slope leading to -500 m depth. This area is widely covered by submerged morphological features such as dunes, lagoons, possible aeolianites, an eroded anticline and small channels that developed by aeolian and fluvial processes. These morphological features sit upon an erosional surface that truncates the top of all seismic units and constitutes the seafloor over the whole shelf. The recent prograded delta deposits around the shelf break are also truncated by the similar erosional surface. These results indicate that offshore Cide-Sinop was once a terrestrial landscape that was then submerged. The interpreted paleoshoreline varies from -100 to -120 m. This variation can be explained by not only sea level changes but also the active faults observed on the seismic section. The effective protection of morphological features on the seafloor is the evidence of abrupt submergence rather than gradual. In addition, the absence of coastal onlaps suggests that these morphological features should have developed at low sea level before the latest sea level rise in the Black Sea.

  7. Classification of grass pollen through the quantitative analysis of surface ornamentation and texture.

    PubMed

    Mander, Luke; Li, Mao; Mio, Washington; Fowlkes, Charless C; Punyasena, Surangi W

    2013-11-07

    Taxonomic identification of pollen and spores uses inherently qualitative descriptions of morphology. Consequently, identifications are restricted to categories that can be reliably classified by multiple analysts, resulting in the coarse taxonomic resolution of the pollen and spore record. Grass pollen represents an archetypal example; it is not routinely identified below family level. To address this issue, we developed quantitative morphometric methods to characterize surface ornamentation and classify grass pollen grains. This produces a means of quantifying morphological features that are traditionally described qualitatively. We used scanning electron microscopy to image 240 specimens of pollen from 12 species within the grass family (Poaceae). We classified these species by developing algorithmic features that quantify the size and density of sculptural elements on the pollen surface, and measure the complexity of the ornamentation they form. These features yielded a classification accuracy of 77.5%. In comparison, a texture descriptor based on modelling the statistical distribution of brightness values in image patches yielded a classification accuracy of 85.8%, and seven human subjects achieved accuracies between 68.33 and 81.67%. The algorithmic features we developed directly relate to biologically meaningful features of grass pollen morphology, and could facilitate direct interpretation of unsupervised classification results from fossil material.

  8. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    NASA Astrophysics Data System (ADS)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H.

    2014-05-01

    The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface -COOH groups (determined with UV-vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.

  9. Controlling Film Morphology in Conjugated Polymer

    PubMed Central

    Park, Lee Y.; Munro, Andrea M.; Ginger, David S.

    2009-01-01

    We study the effects of patterned surface chemistry on the microscale and nanoscale morphology of solution-processed donor/acceptor polymer-blend films. Focusing on combinations of interest in polymer solar cells, we demonstrate that patterned surface chemistry can be used to tailor the film morphology of blends of semiconducting polymers such as poly-[2-(3,7-dimethyloctyloxy)-5-methoxy-p-phenylenevinylene] (MDMO-PPV), poly-3-hexylthiophene (P3HT), poly[(9,9-dioctylflorenyl-2,7-diyl)-co-benzothiadiazole)] (F8BT), and poly(9,9-dioctylfluorene-co-bis-N,N’-(4-butylphenyl)-bis-N,N’-phenyl-1,4-phenylendiamine) (PFB) with the fullerene derivative, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). We present a method for generating patterned, fullerene-terminated monolayers on gold surfaces, and use microcontact printing and Dip-Pen Nanolithography (DPN) to pattern alkanethiols with both micro- and nanoscale features. After patterning with fullerenes and other functional groups, we backfill the rest of the surface with a variety of thiols to prepare substrates with periodic variations in surface chemistry. Spin coating polymer:PCBM films onto these substrates, followed by thermal annealing under nitrogen, leads to the formation of structured polymer films. We characterize these films with Atomic Force Microscopy (AFM), Raman spectroscopy, and fluorescence microscopy. The surface patterns are effective in guiding phase separation in all of the polymer:PCBM systems investigated, and lead to a rich variety of film morphologies that are inaccessible with unpatterned substrates. We demonstrate our ability to guide pattern formation in films thick enough of be of interest for actual device applications (up to 200 nm in thickness) using feature sizes as small as 100 nm. Finally, we show that the surface chemistry can lead to variations in film morphology on length scales significantly smaller than those used in generating the original surface patterns. The variety of behaviors observed and the wide range of control over polymer morphology achieved at a variety of different length scales have important implications for the development of bulk heterojunction solar cells. PMID:18983150

  10. Automatic identification of fault surfaces through Object Based Image Analysis of a Digital Elevation Model in the submarine area of the North Aegean Basin

    NASA Astrophysics Data System (ADS)

    Argyropoulou, Evangelia

    2015-04-01

    The current study was focused on the seafloor morphology of the North Aegean Basin in Greece, through Object Based Image Analysis (OBIA) using a Digital Elevation Model. The goal was the automatic extraction of morphologic and morphotectonic features, resulting into fault surface extraction. An Object Based Image Analysis approach was developed based on the bathymetric data and the extracted features, based on morphological criteria, were compared with the corresponding landforms derived through tectonic analysis. A digital elevation model of 150 meters spatial resolution was used. At first, slope, profile curvature, and percentile were extracted from this bathymetry grid. The OBIA approach was developed within the eCognition environment. Four segmentation levels were created having as a target "level 4". At level 4, the final classes of geomorphological features were classified: discontinuities, fault-like features and fault surfaces. On previous levels, additional landforms were also classified, such as continental platform and continental slope. The results of the developed approach were evaluated by two methods. At first, classification stability measures were computed within eCognition. Then, qualitative and quantitative comparison of the results took place with a reference tectonic map which has been created manually based on the analysis of seismic profiles. The results of this comparison were satisfactory, a fact which determines the correctness of the developed OBIA approach.

  11. Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs

    PubMed Central

    Sekkal, W.; Zaoui, A.

    2013-01-01

    Under earth surface conditions, in ocean and natural water, calcium carbonate is ubiquitous, forming anhydrous and hydrous minerals. These hydrous phases are of considerable interest for their role as precursors to stable carbonate minerals. Atomistic simulation techniques have been employed here to perform a comprehensive and quantitative study of the structural and energetic stability of dry and hydrous surfaces of calcium carbonate polymorphs using two recently developed forcefields. Results show that the dry forms are prone to ductility; while hydrous phases are found to be brittle. The (001) surface of monohydrocalcite appears to be the most stable (0.99 J/m2) whereas for the ikaite phase, the (001) surface is the most stable. The corresponding value is 0.2 J/m2, i.e. even lower than the surface energy of the Beautiful computed morphology pictures are obtained with Xiao's model and are very similar to the observed SEM images. PMID:23545842

  12. Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs.

    PubMed

    Sekkal, W; Zaoui, A

    2013-01-01

    Under earth surface conditions, in ocean and natural water, calcium carbonate is ubiquitous, forming anhydrous and hydrous minerals. These hydrous phases are of considerable interest for their role as precursors to stable carbonate minerals. Atomistic simulation techniques have been employed here to perform a comprehensive and quantitative study of the structural and energetic stability of dry and hydrous surfaces of calcium carbonate polymorphs using two recently developed forcefields. Results show that the dry forms are prone to ductility; while hydrous phases are found to be brittle. The (001) surface of monohydrocalcite appears to be the most stable (0.99 J/m(2)) whereas for the ikaite phase, the (001) surface is the most stable. The corresponding value is 0.2 J/m(2), i.e. even lower than the surface energy of the Beautiful computed morphology pictures are obtained with Xiao's model and are very similar to the observed SEM images.

  13. Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs

    NASA Astrophysics Data System (ADS)

    Sekkal, W.; Zaoui, A.

    2013-04-01

    Under earth surface conditions, in ocean and natural water, calcium carbonate is ubiquitous, forming anhydrous and hydrous minerals. These hydrous phases are of considerable interest for their role as precursors to stable carbonate minerals. Atomistic simulation techniques have been employed here to perform a comprehensive and quantitative study of the structural and energetic stability of dry and hydrous surfaces of calcium carbonate polymorphs using two recently developed forcefields. Results show that the dry forms are prone to ductility; while hydrous phases are found to be brittle. The (001) surface of monohydrocalcite appears to be the most stable (0.99 J/m2) whereas for the ikaite phase, the (001) surface is the most stable. The corresponding value is 0.2 J/m2, i.e. even lower than the surface energy of the Beautiful computed morphology pictures are obtained with Xiao's model and are very similar to the observed SEM images.

  14. The effects of tungsten's pre-irradiation surface condition on helium-irradiated morphology

    DOE PAGES

    Garrison, Lauren M.; Kulcinski, Gerald L.

    2015-07-17

    Erosion is a concern associated with the use of tungsten as a plasma-facing component in fusion reactors. To compare the damage progression, polycrystalline tungsten (PCW) and (110) single crystal tungsten (SCW) samples were prepared with (1) a mechanical polish (MP) with roughness values in the range of 0.018–0.020 μm and (2) an MP and electropolish (MPEP) resulting in roughness values of 0.010–0.020 μm for PCW and 0.003–0.005 μm for SCW samples. Samples were irradiated with 30 keV He + at 1173 K to fluences between 3 × 10 21 and 6 × 10 22 He/m 2. The morphologies that developedmore » after low-fluence bombardment were different for each type of sample—MP SCW, MPEP SCW, MP PCW, and MPEP PCW. At the highest fluence, the SCW MPEP sample lost significantly more mass and developed a different morphology than the MP SCW sample. The PCW samples developed a similar morphology and had similar mass loss at the highest fluence. Surface preparation can have a significant effect on post-irradiation morphology that should be considered for the design of future fusion reactors such as ITER and DEMO.« less

  15. Construction of hydrophobic wood surfaces by room temperature deposition of rutile (TiO2) nanostructures

    Treesearch

    Rongbo Zheng; Mandla A. Tshabalala; Qingyu Li; Hongyan Wang

    2015-01-01

    A convenient room temperature approach was developed for growing rutile TiO2 hierarchical structures on the wood surface by direct hydrolysis and crystallization of TiCl3 in saturated NaCl aqueous solution.The morphology and the crystal structure of TiO2 coated on the wood surface were characterized...

  16. A phase field crystal model simulation of morphology evolution and misfit dislocation generation in nanoheteroepitaxy

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Chen, Z.; Cheng, C.; Wang, Y. X.

    2017-10-01

    A phase field crystal (PFC) model is employed to study morphology evolution of nanoheteroepitaxy and misfit dislocation generation when applied with enhanced supercooling, lattice mismatch and substrate vicinal angle conditions. Misfit strain that rises due to lattice mismatch causes rough surfaces or misfit dislocations, deteriorates film properties, hence, efforts taken to reveal their microscopic mechanism are significant for film quality improvement. Uniform islands, instead of misfit dislocations, are developed in subcritical thickness film, serving as a way of strain relief by surface mechanism. Misfit dislocations generate when strain relief by surface mechanism is deficient in higher supercooling, multilayers of misfit dislocations dominate, but the number of layers reduces gradually when the supercooling is further enhanced. Rough surfaces like islands or cuspate pits are developed which is ascribed to lattice mismatch, multilayers of misfit dislocations generate to further enhance lattice mismatch. Layers of misfit dislocations generate at a thickening position at enhanced substrate vicinal angle, this further enhancing the angle leading to sporadic generation of misfit dislocations.

  17. Facile chemical approach to ZnO submicrometer particles with controllable morphologies.

    PubMed

    Bardhan, Rizia; Wang, Hui; Tam, Felicia; Halas, Naomi J

    2007-05-22

    We have developed a simple wet-chemistry approach to fabricating ZnO submicrometer particles with unique morphologies including rings, bowls, hemispheres, and disks. The size and morphology of the particles can be conveniently tailored by varying the concentrations of the zinc precursor. The reaction temperature, pH, and concentration of ammonia are also found to play critical roles in directing the formation of these particle morphologies. These submicrometer particles exhibit strong white-light emission upon UV excitation as a result of the presence of surface defect states resulting from the fabrication method and synthesis conditions.

  18. Historical GIS Data and Changes in Urban Morphological Parameters for the Analysis of Urban Heat Islands in Hong Kong

    NASA Astrophysics Data System (ADS)

    Peng, F.; Wong, M. S.; Nichol, J. E.; Chan, P. W.

    2016-06-01

    Rapid urban development between the 1960 and 2010 decades have changed the urban landscape and pattern in the Kowloon Peninsula of Hong Kong. This paper aims to study the changes of urban morphological parameters between the 1985 and 2010 and explore their influences on the urban heat island (UHI) effect. This study applied a mono-window algorithm to retrieve the land surface temperature (LST) using Landsat Thematic Mapper (TM) images from 1987 to 2009. In order to estimate the effects of local urban morphological parameters to LST, the global surface temperature anomaly was analysed. Historical 3D building model was developed based on aerial photogrammetry technique using aerial photographs from 1964 to 2010, in which the urban digital surface models (DSMs) including elevations of infrastructures and buildings have been generated. Then, urban morphological parameters (i.e. frontal area index (FAI), sky view factor (SVF)), vegetation fractional cover (VFC), global solar radiation (GSR), Normalized Difference Built-Up Index (NDBI), wind speed were derived. Finally, a linear regression method in Waikato Environment for Knowledge Analysis (WEKA) was used to build prediction model for revealing LST spatial patterns. Results show that the final apparent surface temperature have uncertainties less than 1 degree Celsius. The comparison between the simulated and actual spatial pattern of LST in 2009 showed that the correlation coefficient is 0.65, mean absolute error (MAE) is 1.24 degree Celsius, and root mean square error (RMSE) is 1.51 degree Celsius of 22,429 pixels.

  19. Quaternary geomorphology and modern coastal development in response to an inherent geologic framework: An example from Charleston, South Carolina

    USGS Publications Warehouse

    Harris, M.S.; Gayes, P.T.; Kindinger, J.L.; Flocks, J.G.; Krantz, D.E.; Donovan, P.

    2005-01-01

    Coastal landscapes evolve over wide-ranging spatial and temporal scales in response to physical and biological pro-cesses that interact with a wide range of variables. To develop better predictive models for these dynamic areas, we must understand the influence of these variables on coastal morphologies and ultimately how they influence coastal processes. This study defines the influence of geologic framework variability on a classic mixed-energy coastline, and establishes four categorical scales of spatial and temporal influence on the coastal system. The near-surface, geologic framework was delineated using high-resolution seismic profiles, shallow vibracores, detailed geomorphic maps, historical shorelines, aerial photographs, and existing studies, and compared to the long- and short-term development of two coastal compartments near Charleston, South Carolina. Although it is clear that the imprint of a mixed-energy tidal and wave signal (basin-scale) dictates formation of drumstick barriers and that immediate responses to wave climate are dramatic, island size, position, and longer-term dynamics are influenced by a series of inherent, complex near-surface stratigraphic geometries. Major near-surface Tertiary geometries influence inlet placement and drainage development (island-scale) through multiple interglacial cycles and overall channel morphology (local-scale). During the modern marine transgression, the halo of ebb-tidal deltas greatly influence inlet region dynamics, while truncated beach ridges and exposed, differentially erodable Cenozoic deposits in the active system influence historical shoreline dynamics and active shoreface morphologies (blockscale). This study concludes that the mixed-energy imprint of wave and tide theories dominates general coastal morphology, but that underlying stratigraphic influences on the coast provide site-specific, long-standing imprints on coastal evolution.

  20. Rational Design and Synthesis of Carboxylate Gemini Surfactants with an Excellent Aggregate Behavior for Nano-La2O3 Morphology-Controllable Preparation.

    PubMed

    Liao, Xueming; Gao, Zhinong; Xia, Yan; Niu, Fei; Zhai, Wenzhong

    2017-04-04

    A series of carboxylate gemini surfactants (CGS, C n -Φ-C n , n = 12, 14, 16, 18) with diphenyl ketone as a spacer group were prepared using a simple and feasible synthetic method. These CGS exhibited an excellent surface activity with extremely low critical micelle concentration (CMC) value (approximately 10 -5 mol/L), good performance in reducing surface tension (nearly 30 mN/m), and the ability of molecular self-assembly into different aggregate morphologies via adjusting the concentrations, which is attributed to the introduction of diphenyl ketone and carboxylic acid ammonium salt in the molecular structure. Moreover, the surface activity and self-assembly ability of CGS were further optimized by tuning the length of the tail chain. These excellent properties imply that CGS can be a soft template to prepare nanomaterials, especially in morphology-controllable synthesis. By adjusting the concentration of one of CGS (C 12 -Φ-C 12 ), nano-La 2 O 3 particles with diverse morphologies were obtained, including spherical shape, bead-chain shape, rod shape, velvet-antler shape, cedar shape, and bowknot shape. This work offers a vital insight into the rational design of template agents for the development of morphology-controllable nanomaterials.

  1. Seed-Mediated Growth of Gold Nanocrystals: Changes to the Crystallinity or Morphology as Induced by the Treatment of Seeds with a Sulfur Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yiqun; Luo, Ming; Tao, Jing

    We report our observation of changes to the crystallinity or morphology during seed-mediated growth of Au nanocrystals. When single-crystal Au seeds with a spherical or rod-like shape were treated with a chemical species such as S₂O₃²⁻ ions, twin defects were developed during the growth process to generate multiply twinned nanostructures. X-ray photoelectron spectroscopy analysis indicated that the S₂O₃²⁻ ions were chemisorbed on the surfaces of the seeds during the treatment. The chemisorbed S₂O₃²⁻ ions somehow influenced the crystallization of Au atoms added onto the surface during a growth process, leading to the formation of twin defects. In contrast to themore » spherical and rod-like Au seeds, the single-crystal structure was retained to generate a concave morphology when single-crystal Au seeds with a cubic or octahedral shape were used for a similar treatment and then seed-mediated growth. The different outcomes are likely related to the difference in spatial distribution of S₂O₃²⁻ ions chemisorbed on the surface of a seed. This approach based on surface modification is potentially extendable to other noble metals for engineering the crystallinity and morphology of nanocrystals formed via seed-mediated growth.« less

  2. Seed-Mediated Growth of Gold Nanocrystals: Changes to the Crystallinity or Morphology as Induced by the Treatment of Seeds with a Sulfur Species

    DOE PAGES

    Zheng, Yiqun; Luo, Ming; Tao, Jing; ...

    2014-12-11

    We report our observation of changes to the crystallinity or morphology during seed-mediated growth of Au nanocrystals. When single-crystal Au seeds with a spherical or rod-like shape were treated with a chemical species such as S₂O₃²⁻ ions, twin defects were developed during the growth process to generate multiply twinned nanostructures. X-ray photoelectron spectroscopy analysis indicated that the S₂O₃²⁻ ions were chemisorbed on the surfaces of the seeds during the treatment. The chemisorbed S₂O₃²⁻ ions somehow influenced the crystallization of Au atoms added onto the surface during a growth process, leading to the formation of twin defects. In contrast to themore » spherical and rod-like Au seeds, the single-crystal structure was retained to generate a concave morphology when single-crystal Au seeds with a cubic or octahedral shape were used for a similar treatment and then seed-mediated growth. The different outcomes are likely related to the difference in spatial distribution of S₂O₃²⁻ ions chemisorbed on the surface of a seed. This approach based on surface modification is potentially extendable to other noble metals for engineering the crystallinity and morphology of nanocrystals formed via seed-mediated growth.« less

  3. Synchrotron studies of top-down grown silicon nanowires

    NASA Astrophysics Data System (ADS)

    Turishchev, S. Yu.; Parinova, E. V.; Nesterov, D. N.; Koyuda, D. A.; Sivakov, V.; Schleusener, A.; Terekhov, V. A.

    2018-06-01

    Morphology of the top-down grown silicon nanowires obtained by metal-assisted wet-chemical approach on silicon substrates with different resistance were studied by scanning electron microscopy. Obtained arrays of compact grown Si nanowires were a subject for the high resolution electronic structures studies by X-ray absorption near edge structure technique performed with the usage of high intensity synchrotron radiation of the SRC storage ring of the University of Wisconsin-Madison. The different oxidation rates were found by investigation of silicon atoms local surrounding specificity of the highly developed surface and near surface layer that is not exceeded 70 nm. Flexibility of the wires arrays surface morphology and its composition is demonstrated allowing smoothly form necessary surface oxidation rate and using Si nanowires as a useful matrixes for a wide range of further functionalization.

  4. High throughput secondary electron imaging of organic residues on a graphene surface

    NASA Astrophysics Data System (ADS)

    Zhou, Yangbo; O'Connell, Robert; Maguire, Pierce; Zhang, Hongzhou

    2014-11-01

    Surface organic residues inhibit the extraordinary electronic properties of graphene, hindering the development of graphene electronics. However, fundamental understanding of the residue morphology is still absent due to a lack of high-throughput and high-resolution surface characterization methods. Here, we demonstrate that secondary electron (SE) imaging in the scanning electron microscope (SEM) and helium ion microscope (HIM) can provide sub-nanometer information of a graphene surface and reveal the morphology of surface contaminants. Nanoscale polymethyl methacrylate (PMMA) residues are visible in the SE imaging, but their contrast, i.e. the apparent lateral dimension, varies with the imaging conditions. We have demonstrated a quantitative approach to readily obtain the physical size of the surface features regardless of the contrast variation. The fidelity of SE imaging is ultimately determined by the probe size of the primary beam. HIM is thus evaluated to be a superior SE imaging technique in terms of surface sensitivity and image fidelity. A highly efficient method to reveal the residues on a graphene surface has therefore been established.

  5. Surface Characterization of Mechanochemically Modified Exfoliated Halloysite Nanoscrolls.

    PubMed

    Zsirka, Balázs; Táborosi, Attila; Szabó, Péter; Szilágyi, Róbert K; Horváth, Erzsébet; Juzsakova, Tatjána; Fertig, Dávid; Kristóf, János

    2017-04-11

    Surface modifications fundamentally influence the morphology of kaolinite nanostructures as a function of crystallinity and the presence of contaminants. Besides morphology, the catalytic properties of 1:1-type exfoliated aluminosilicates are also influenced by the presence of defect sites that can be generated in a controlled manner by mechanochemical activation. In this work, we investigated exfoliated halloysite nanoparticles with a quasi-homogeneous, scroll-type secondary structure toward developing structural/functional relationships for composition, atomic structure, and morphology. The surface properties of thin-walled nanoscrolls were studied as a function of mechanochemical activation expressed by the duration of dry-grinding. The surface characterizations were carried out using N 2 , NH 3 , and CO 2 adsorption measurements. The effects of grinding on the nanohalloysite structure were followed using thermoanalytical thermogravimetric/derivative thermogravimetric (TG/DTG) and infrared spectroscopic [Fourier transform infrared/attenuated total reflection (FTIR/ATR)] techniques. Grinding results in partial dehydroxylation with similar changes as those observed for heat treatment above 300 °C. Mechanochemical activation shows a decrease in the dehydroxylation mass loss and the DTG peak temperature, a decrease in the specific surface area and the number of mesopores, an increase in the surface acidity, blue shift of surface hydroxide bands, and a decrease in the intensity of FTIR/ATR bands as a function of the grinding time. The experimental observations were used to guide atomic-scale structural and energetic simulations using realistic molecular cluster models for a nanohalloysite particle. A full potential energy surface description was developed for the mechanochemical activation and/or heating toward nanometahalloysite formation that aids the interpretation of experimental results. The calculated differences upon dehydroxylation show a remarkable agreement with the mass loss values from DTG measurements.

  6. A novel material screening platform for nanoporous gold-based neural electrodes

    NASA Astrophysics Data System (ADS)

    Chapman, Christopher Abbott Reece

    Neural-electrical interfaces have emerged in the past decades as a promising modality to facilitate the understanding of the electropathophysiology of neurological disorders as well as the normal functioning of the central nervous system, and enable the treatment of neurological defects through electrical stimulation or electrically-controlled drug delivery. However, chronically implanted electrodes face a myriad of design challenges, including their coupling to neural tissue (biocompatibility), small form factor requirement, and their electrical properties (maintaining a low electrical impedance). Planar electrode materials such as planar platinum and gold experience a large increase in electrical impedance when electrode dimensions are reduced to increase spatial resolution of neural recordings. A decrease in electrode surface area reduces the total capacitance of the electrode double layer resulting in an increase in electrode impedance. This high impedance can reduce the signal amplitude and increase the thermal noise, resulting in degradation of signal-to-noise ratio. Conventionally, this increase in electrical impedance at small electrode dimensions has been mitigated by coatings with rough morphologies such as platinum black, conducting polymers, and titanium nitride. Porous surfaces have high effective surface area enabling low impedance at small electrode dimensions. However, achieving long-term stability of cellular coupling to the electrode surface has remained difficult. Designing electrodes that can physically couple with neurons successfully and maintain low impedance at small electrode dimensions necessitates consideration of novel electrode coatings, such as carbon nanotubes and gold nanopillars. Another promising material, and focus of this proposal, is thin film nanoporous gold (np-Au). Nanoporous gold is a promising material for addressing these limitations because of its inherently large effective surface area allows for lower impedances at small form factors, and its modifiable surface morphology can be used to control cell-electrode coupling. Additionally, thin film nanoporous gold is fabricated by traditional microfabrication methods, and thus can be directly adopted by the current state-of-the-art neural electrode fabrication processes. All these properties make thin film nanoporous gold a promising candidate for use in neural electrode surfaces. This dissertation seeks to characterize both the morphological and the electrical response of neural cells to thin film nanoporous gold morphologies using an in vitro electrode morphology screening platform. The specific aims for this proposal are to: (i) develop a electrode morphology library that displays varying topographies to study structure-property relationships of thin film nanoporous gold and cellular response, (ii) characterize neural cell response to identified nanoporous gold topographies that reduce adverse tissue response in vitro, and (iii) develop an electrophysiology platform to characterize neural coupling to each identified nanoporous gold topography.

  7. Surface morphology diagram for cylinder-forming block copolymer thin films.

    PubMed

    Zhang, Xiaohua; Berry, Brian C; Yager, Kevin G; Kim, Sangcheol; Jones, Ronald L; Satija, Sushil; Pickel, Deanna L; Douglas, Jack F; Karim, Alamgir

    2008-11-25

    We investigate the effect of the ordering temperature (T) and film thickness (h(f)) on the surface morphology of flow-coated block copolymer (BCP) films of asymmetric poly(styrene-block-methyl methacrylate). Morphology transitions observed on the ordered film surface by atomic force microscopy (AFM) are associated with a perpendicular to a parallel cylinder BCP microphase orientation transition with respect to the substrate with increasing h(f). "Hybrid" surface patterns for intermediate h(f) between these limiting morphologies are correspondingly interpreted by a coexistence of these two BCP microphase orientations so that two "transitional" h(f) exist for each T. This explanation of our surface patterns is supported by both neutron reflectivity and rotational SANS measurements. The transitional h(f) values as a function of T define upper and lower surface morphology transition lines, h(fu) (T) and h(fl) (T), respectively, and a surface morphology diagram that should be useful in materials fabrication. Surprisingly, the BCP film surface morphology depends on the method of film formation (flow-coated versus spun-cast films) so that nonequilibrium effects are evidently operative. This morphological variability is attributed primarily to the trapping of residual solvent (toluene) within the film (quantified by neutron reflectivity) due to film vitrification while drying. This effect has significant implications for controlling film structure in nanomanufacturing applications based on BCP templates.

  8. Effect of heavy oil on the development of the nervous system of floating and sinking teleost eggs.

    PubMed

    Irie, Kouta; Kawaguchi, Masahumi; Mizuno, Kaori; Song, Jun-Young; Nakayama, Kei; Kitamura, Shin-Ichi; Murakami, Yasunori

    2011-01-01

    Heavy oil (HO) on the sea surface penetrates into fish eggs and prevents the normal morphogenesis. To identify the toxicological effects of HO in the context of the egg types, we performed exposure experiments using floating eggs and sinking eggs. In the course of development, HO-exposed embryos of floating eggs showed abnormal morphology, whereas early larva of the sinking eggs had almost normal morphology. However, the developing peripheral nervous system of sinking eggs showed abnormal projections. These findings suggest that HO exposed fishes have problems in the developing neurons, although they have no morphological malformations. Through these observations, we conclude that HO is strongly toxic to floating eggs in the morphogenesis, and also affect the neuron development in both floating and sinking eggs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Development of an expert system for fractography of environmentally assisted cracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minoshima, Kohji; Komai, Kenjiro; Yamasaki, Norimasa

    1997-12-31

    An expert system that diagnoses the causes of failure of environmentally assisted cracking (EAC) based upon fractography has been developed. The system uses the OPS83 programming language, expressing rules in the manner of production rules, and is composed of three independent subsystems, which respectively deal with EACs of high-strength or high-tensile-strength steel, aluminum alloy, and stainless steel in dry and humidified air, water, and aqueous solutions containing Cl, Br, or I ions. The concerned EAC issues cover stress corrosion cracking (SCC), hydrogen embrittlement, cyclic SCC, dynamic SCC, and corrosion fatigue as well as fatigue and overload fracture. The knowledge basemore » covers the rules relating to not only environments, materials, and loading conditions, but also macroscopic and microscopic fracture surface morphology. In order to deal with vague expressions of fracture surface morphology, fuzzy set theory is used in the system, and the description of rules about vague fracture surface appearance is thereby possible. Applying the developed expert system to case histories, accurate diagnoses were made. The authors discuss the related diagnosis results and usefulness of the developed system.« less

  10. Surface modification to prevent oxide scale spallation

    DOEpatents

    Stephens, Elizabeth V; Sun, Xin; Liu, Wenning; Stevenson, Jeffry W; Surdoval, Wayne; Khaleel, Mohammad A

    2013-07-16

    A surface modification to prevent oxide scale spallation is disclosed. The surface modification includes a ferritic stainless steel substrate having a modified surface. A cross-section of the modified surface exhibits a periodic morphology. The periodic morphology does not exceed a critical buckling length, which is equivalent to the length of a wave attribute observed in the cross section periodic morphology. The modified surface can be created using at least one of the following processes: shot peening, surface blasting and surface grinding. A coating can be applied to the modified surface.

  11. Spectromicroscopy measurements of surface morphology and band structure of exfoliated graphene

    NASA Astrophysics Data System (ADS)

    Knox, Kevin; Locatelli, Andrea; Cvetko, Dean; Mentes, Tevfik; Nino, Miguel; Wang, Shancai; Yilmaz, Mehmet; Kim, Philip; Osgood, Richard; Morgante, Alberto

    2011-03-01

    Monolayer-thick crystals, such as graphene, are an area of intense interest in condensed matter research. ~However, crystal deformations in these 2D systems are known to adversely affect conductivity and increase local chemical reactivity. Additionally, surface roughness in graphene complicates band-mapping and limits resolution in techniques such as angle resolved photoemission spectroscopy (ARPES), the theory of which was developed for atomically flat surfaces. Thus, an understanding of the surface morphology of graphene is essential to making high quality devices and important for interpreting ARPES results. In this talk, we will describe a non-invasive approach to examining the corrugation in exfoliated graphene using a combination of low energy electron microscopy (LEEM) and micro-spot low energy electron diffraction (LEED). We will also describe how such knowledge of surface roughness can be used in the analysis of ARPES data to improve resolution and extract useful information about the band-structure.

  12. The surface stability and morphology of tobermorite 11 Å from first principles

    NASA Astrophysics Data System (ADS)

    Mutisya, Sylvia M.; Miranda, Caetano R.

    2018-06-01

    Tobermorite minerals are important in many industrial processes typically occurring in hydrous environment. Their functionality is therefore governed in various aspects by their morphology and surface stability/reactivity. Here, we present the results of the surface energies and morphology of normal tobermorite 11 Å in a water vapor environment investigated by employing first principles atomistic thermodynamic calculations. For the low index tobermorite surfaces studied, the calculated surface energies fall within a narrow range (0.41-0.97 J/m2) with the (0 0 4) surface being the most stable. The equilibrium morphology is a thin pseudohexagonal plate elongated along the b axis. The hydrated surfaces are more stable at high water vapor chemical potentials with the stability enhanced as the water partial pressures are varied from ambient to supercritical hydrothermal conditions. Increasing the water vapor chemical potential gives rise to a smaller size of the tobermorite crystal, with the equilibrium morphology remaining unaltered.

  13. The relationship between substrate morphology and biological performances of nano-silver-loaded dopamine coatings on titanium surfaces

    PubMed Central

    Zhang, Weibo; Wang, Shuang; Ge, Shaohua; Ji, Ping

    2018-01-01

    Biomedical device-associated infection (BAI) and lack of osseointegration are the main causes of implant failure. Therefore, it is imperative for implants not only to depress microbial activity and biofilm colonization but also to prompt osteoblast functions and osseointegration. As part of the coating development for implants, the interest of in vitro studies on the interaction between implant substrate morphology and the coating's biological performances is growing. In this study, by harnessing the adhesion and reactivity of bioinspired polydopamine, nano-silver was successfully anchored onto micro/nanoporous as well as smooth titanium surfaces to analyse the effect of substrate morphology on biological performances of the coatings. Compared with the smooth surface, a small size of nano-silver and high silver content was found on the micro/nanoporous surface. More mineralization happened on the coating on the micro/nanoporous structure than on the smooth surface, which led to a more rapid decrease of silver release from the micro/nanoporous surface. Antimicrobial tests indicated that both surfaces with resulting coating inhibit microbial colonization on them and growth around them, indicating that the coating eliminates the shortcoming of the porous structure which render the implant extremely susceptible to BAI. Besides, the multiple osteoblast responses of nano-silver-loaded dopamine coatings on both surfaces, i.e. attachment, proliferation and differentiation, have deteriorated, however the mineralized surfaces of these coatings stimulated osteoblast proliferation and differentiation, especially for the micro/nanoporous surface. Therefore, nano-silver-loaded dopamine coatings on micro/nanoporous substratum may not only reduce the risk of infection but also facilitate mineralization during the early post-operative period and then promote osseointegration owing to the good osteoblast-biocompatibility of the mineralized surface. These results clearly highlight the influence of the substrate morphology on the biological performances of implant coating. PMID:29765680

  14. Adsorbate-driven morphological changes on Cu(111) nano-pits

    DOE PAGES

    Mudiyanselage, K.; Xu, F.; Hoffmann, F. M.; ...

    2014-12-09

    Adsorbate-driven morphological changes of pitted-Cu(111) surfaces have been investigated following the adsorption and desorption of CO and H. The morphology of the pitted-Cu(111) surfaces, prepared by Ar + sputtering, exposed a few atomic layers deep nested hexagonal pits of diameters from 8 to 38 nm with steep step bundles. The roughness of pitted-Cu(111) surfaces can be healed by heating to 450-500 K in vacuum. Adsorption of CO on the pitted-Cu(111) surface leads to two infrared peaks at 2089-2090 and 2101-2105 cm -1 for CO adsorbed on under-coordinated sites in addition to the peak at 2071 cm -1 for CO adsorbedmore » on atop sites of the close-packed Cu(111) surface. CO adsorbed on under-coordinated sites is thermally more stable than that of atop Cu(111) sites. Annealing of the CO-covered surface from 100 to 300 K leads to minor changes of the surface morphology. In contrast, annealing of a H covered surface to 300 K creates a smooth Cu(111) surface as deduced from infrared data of adsorbed CO and scanning tunnelling microscopy (STM) imaging. The observation of significant adsorbate-driven morphological changes with H is attributed to its stronger modification of the Cu(111) surface by the formation of a sub-surface hydride with a hexagonal structure, which relaxes into the healed Cu(111) surface upon hydrogen desorption. These morphological changes occur ~150 K below the temperature required for healing of the pitted-Cu(111) surface by annealing in vacuum. In contrast, the adsorption of CO, which only interacts with the top-most Cu layer and desorbs by 160 K, does not significantly change the morphology of the pitted-Cu(111) surface.« less

  15. Thin-walled nanoscrolls by multi-step intercalation from tubular halloysite-10 Å and its rearrangement upon peroxide treatment

    NASA Astrophysics Data System (ADS)

    Zsirka, Balázs; Horváth, Erzsébet; Szabó, Péter; Juzsakova, Tatjána; Szilágyi, Róbert K.; Fertig, Dávid; Makó, Éva; Varga, Tamás; Kónya, Zoltán; Kukovecz, Ákos; Kristóf, János

    2017-03-01

    Surface modification of the halloysite-10 Å mineral with tubular morphology can be achieved by slightly modified procedures developed for the delamination of kaolinite minerals. The resulting delaminated halloysite nanoparticles have unexpected surface/morphological properties that display, new potentials in catalyst development. In this work, a four-step intercalation/delamination procedure is described for the preparation of thin-walled nanoscrolls from the multi-layered hydrated halloysite mineral that consists of (1) intercalation of halloysite with potassium acetate, (2) replacement intercalation with ethylene glycol, (3) replacement intercalation with hexylamine, and (4) delamination with toluene. The intercalation steps were followed by X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption, thermogravimetry, and infrared spectroscopy. Delamination eliminated the crystalline order and the crystallite size along the 'c'-axis, increased the specific surface area, greatly decreased the thickness of the mineral tubes to a monolayer, and shifted the pore diameter toward the micropore region. Unexpectedly, the removal of residual organics from intercalation steps adsorbed at the nanoscroll surface with a peroxide treatment resulted in partial recovery of crystallinity and increase of crystallite size along the 'c'-crystal direction. The d(001) value showed a diffuse pattern at 7.4-7.7 Å due to the rearrangement of the thin-walled nanoscrolls toward the initial tubular morphology of the dehydrated halloysite-7 Å mineral.

  16. Differential Effects of Tissue Culture Coating Substrates on Prostate Cancer Cell Adherence, Morphology and Behavior

    PubMed Central

    Liberio, Michelle S.; Sadowski, Martin C.; Soekmadji, Carolina; Davis, Rohan A.; Nelson, Colleen C.

    2014-01-01

    Weak cell-surface adhesion of cell lines to tissue culture surfaces is a common problem and presents technical limitations to the design of experiments. To overcome this problem, various surface coating protocols have been developed. However, a comparative and precise real-time measurement of their impact on cell behavior has not been conducted. The prostate cancer cell line LNCaP, derived from a patient lymph node metastasis, is a commonly used model system in prostate cancer research. However, the cells’ characteristically weak attachment to the surface of tissue culture vessels and cover slips has impeded their manipulation and analysis and use in high throughput screening. To improve the adherence of LNCaP cells to the culture surface, we compared different coating reagents (poly-l-lysine, poly-l-ornithine, collagen type IV, fibronectin, and laminin) and culturing conditions and analyzed their impact on cell proliferation, adhesion, morphology, mobility and gene expression using real-time technologies. The results showed that fibronectin, poly-l-lysine and poly-l-ornithine improved LNCaP cells adherence and provoked cell morphology alterations, such as increase of nuclear and cellular area. These coating reagents also induced a higher expression of F-actin and reduced cell mobility. In contrast, laminin and collagen type IV did not improve adherence but promoted cell aggregation and affected cell morphology. Cells cultured in the presence of laminin displayed higher mobility than control cells. All the coating conditions significantly affected cell viability; however, they did not affect the expression of androgen receptor-regulated genes. Our comparative findings provide important insight for the selection of the ideal coating reagent and culture conditions for the cancer cell lines with respect to their effect on proliferation rate, attachment, morphology, migration, transcriptional response and cellular cytoskeleton arrangement. PMID:25375165

  17. A Statistical Analysis of Brain Morphology Using Wild Bootstrapping

    PubMed Central

    Ibrahim, Joseph G.; Tang, Niansheng; Rowe, Daniel B.; Hao, Xuejun; Bansal, Ravi; Peterson, Bradley S.

    2008-01-01

    Methods for the analysis of brain morphology, including voxel-based morphology and surface-based morphometries, have been used to detect associations between brain structure and covariates of interest, such as diagnosis, severity of disease, age, IQ, and genotype. The statistical analysis of morphometric measures usually involves two statistical procedures: 1) invoking a statistical model at each voxel (or point) on the surface of the brain or brain subregion, followed by mapping test statistics (e.g., t test) or their associated p values at each of those voxels; 2) correction for the multiple statistical tests conducted across all voxels on the surface of the brain region under investigation. We propose the use of new statistical methods for each of these procedures. We first use a heteroscedastic linear model to test the associations between the morphological measures at each voxel on the surface of the specified subregion (e.g., cortical or subcortical surfaces) and the covariates of interest. Moreover, we develop a robust test procedure that is based on a resampling method, called wild bootstrapping. This procedure assesses the statistical significance of the associations between a measure of given brain structure and the covariates of interest. The value of this robust test procedure lies in its computationally simplicity and in its applicability to a wide range of imaging data, including data from both anatomical and functional magnetic resonance imaging (fMRI). Simulation studies demonstrate that this robust test procedure can accurately control the family-wise error rate. We demonstrate the application of this robust test procedure to the detection of statistically significant differences in the morphology of the hippocampus over time across gender groups in a large sample of healthy subjects. PMID:17649909

  18. Evolution of the lithium morphology from cycling of thin film solid state batteries

    DOE PAGES

    Dudney, Nancy J.

    2017-03-11

    Thin film batteries with a Lipon electrolyte and Li metal anode can be cycled thousands of times. During this time there is a gradual redistribution of the lithium at the top surface; the morphology that develops depends on a number of factors but is largely driven by dewetting. In this work, this redistribution is characterized as functions of the cycle number, duty cycle, cathode composition, and protective coating over the lithium. Observations of wrinkled and pitted surfaces are discussed considering the effects of defects and diffusion in the lithium and influences of film stresses and surface energy. In conclusion, similarmore » processes may impact solid state lithium batteries with higher energy per active area.« less

  19. Evolution of the lithium morphology from cycling of thin film solid state batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudney, Nancy J.

    Thin film batteries with a Lipon electrolyte and Li metal anode can be cycled thousands of times. During this time there is a gradual redistribution of the lithium at the top surface; the morphology that develops depends on a number of factors but is largely driven by dewetting. In this work, this redistribution is characterized as functions of the cycle number, duty cycle, cathode composition, and protective coating over the lithium. Observations of wrinkled and pitted surfaces are discussed considering the effects of defects and diffusion in the lithium and influences of film stresses and surface energy. In conclusion, similarmore » processes may impact solid state lithium batteries with higher energy per active area.« less

  20. Surface Modifications during a Catalytic Reaction: A Combined APT and FIB/SEM Analysis of Surface Segregation

    DOE PAGES

    Barroo, Cedric; Janvelyan, Nare; Zugic, Branko; ...

    2016-07-25

    To improve the understanding of catalytic processes, the surface structure and composition of the active materials need to be determined before and after reaction. Morphological changes may occur under reaction conditions and can dramatically influence the reactivity and/or selectivity of a catalyst. Goldbased catalysts with different architectures are currently being developed for selective oxidation reactions at low temperatures. Specifically, nanoporous Au (npAu) with a composition of Au 97-Ag 3 is obtained by dealloying a Ag 70-Au 30 bulk alloy. Recent studies highlight the efficiency of npAu catalysts for methanol oxidation using ozone to activate the catalysts before methanol oxidation. Inmore » this paper, we studied the morphological and compositional changes occurring at the surface of Au-based catalysts in certain conditions.« less

  1. Structure-to-property relationships in fuel cell catalyst supports: Correlation of surface chemistry and morphology with oxidation resistance of carbon blacks

    NASA Astrophysics Data System (ADS)

    Artyushkova, Kateryna; Pylypenko, Svitlana; Dowlapalli, Madhu; Atanassov, Plamen

    2012-09-01

    Linking durability of carbon blacks, expressed as their oxidation resistance, used in PEMFCs as catalyst supports, with their chemistry and morphology is an important task towards designing carbon blacks with desired properties. Structure-to-property relationship between surface chemistry determined by X-ray photoelectron spectroscopy (XPS), morphological structure determined by digital image processing of scanning electron microscopy (SEM) images, physical properties, and electrochemical corrosion behavior determined in an air-breathing gas-diffusion electrode is studied for several un-altered and several modified carbon blacks. We are showing that surface chemistry, graphitic content and certain physical characteristics such as Brunauer-Emmett-Teller (BET) surface area and pore volume, determined by nitrogen adsorptions are not sufficient to explain high corrosion instability of types of carbon blacks. Inclusion of morphological characteristics, such as roughness, texture and shape parameters provide for more inclusive description and therefore more complete structure-to-property correlations of corrosion behavior of carbon blacks. This paper presents the first direct statistically-derived structure-to-property relationship, developed by multivariate analysis (MVA) that links chemical and physical structural properties of the carbon blacks to their critical properties as supports for PEMFC catalysts. We have found that balance between electrocatalytic activity and high resistance towards oxidation and corrosion is achieved by balance between amount of graphitic content and surface oxide coverage, smaller overall roughness and, finally, larger amount of big elongated and loose, and, hypothetically, more hydrophobic pores.

  2. Effect of polyamide 6 on the morphology and electrical conductivity of carbon black-filled polypropylene composites

    NASA Astrophysics Data System (ADS)

    Zhang, Xuewei; Liu, Jiang; Wang, Yi; Wu, Wei

    2017-12-01

    Carbon black (CB)-filled polypropylene (PP) with surface resistivity between 106 and 109 Ω sq-1 is the ideal antistatic plastic material in the electronics and electric industry. However, a large amount of CB may have an adverse effect on the mechanical properties and processing performance of the material, thus an improved ternary system is developed. Blends of CB-filled PP and polyamide 6 (PA6) have been prepared by melt blending in order to obtain electrically conductive polymer composites with a low electrical percolation threshold based on the concept of double percolation. The morphological developments of these composites were studied by scanning electron microscopy. The results showed that CB particles were selectively dispersed in PA6 phases due to the good interaction and interfacial adhesion between CB and PA6. At the same CB loadings, the surface resistivity of PP/PA6/CB composite was smaller than that of PP/CB composite system, which indicated the better conductivity in the former composite. The increasing amount of PA6 in the composites changed the morphology from a typical sea-island morphology to a co-continuous morphology. What is more, with 8 wt% of CB and PP/PA6 phase ratio of 70/30 in which the PP and PA6 phases formed a co-continuous structure, the electrical conductivity of the composite peaked at 2.01 × 105 Ω sq-1.

  3. Aeolian Rat Tails (ARTs): A New Morphological Indicator of Abrasion Direction

    NASA Astrophysics Data System (ADS)

    Favaro, E. A.; Hugenholtz, C.; Barchyn, T.

    2016-12-01

    Aeolian rat tails (ARTs) are a previously undocumented aeolian abrasion feature observed on ignimbrite surfaces in the Puna Plateau of Northwest Argentina and bare morphological similarity to small-scale features on Mars. We describe the terrestrial features and present an evolutionary sequence from inception to demise. ARTs are regionally-ubiquitous and characterized by a windward abrasion-resistant lithic clast and a downwind-tapering tail. The size of ARTs is controlled by the diameter of the windward lithic clast, observed on the sub-decimeter to meter scale. Their distribution throughout the Campo de Piedra Pómez, and adjacent regions is determined by the ignimbrite clast content. ARTs develop under a uni-modal abrasion direction when lithic clasts are eroded out of the ignimbrite matrix, protrude from the surface, and shelter material directly behind the clast. As the surrounding material is eroded away, a downwind-tapered tail develops. Continued erosion of the adjacent surface leads to the undercutting of clasts, liberating them from the feature where, if small enough, the clasts can be transported downwind, leading to the destruction of the tail and ultimately the feature. This evolutionary sequence accounts not only for the morphology of the feature, but also the presence of loose clasts on the ignimbrite surface, which plays a role in the development of other enigmatic landforms in the area, such as periodic bedrock ridges, yardangs, and megaripples. The significance of the identification of ARTs is due to the necessity of uni-modal abrasion direction for their development, thereby making their orientation a diagnostic indicator of long-term aeolian abrasion direction. ARTs are likely analogs of features identified by MSL Curiosity Rover on Mars, possibly providing information on past and present wind regimes.

  4. The effect of Pb addition on the morphology of CdSe quantum dot

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Cho, Young-Sang; Chung, Kookchae; Choi, Chul-Jin

    2010-08-01

    CdSe quantum dots had been synthesized with a hot injection method. It was shown that the addition of Pb ions in the initial precursor solution changed the morphology of CdSe nanocrystals from slightly prolate ellipsoid to branched rod. Photoluminescence (PL) of the branched nanocrystals showed rapid depression of emission intensity due to the morphological development to the branched nanocrystal induced by Pb addition. Low temperature PL spectrum indicated that the surface recombination of charge carrier resulted in the large depression of emission from the branched nanocrystal.

  5. Groundwater sapping channels: Summary of effects of experiments with varied stratigraphy

    NASA Technical Reports Server (NTRS)

    Kochel, R. Craig; Simmons, David W.

    1987-01-01

    Experiments in the recirculating flume sapping box have modeled valley formation by groundwater sapping processes in a number of settings. The effects of the following parameters on sapping channel morphology were examined: surface slope; stratigraphic variations in permeability cohesion and dip; and structure of joints and dikes. These kinds of modeling experiments are particularly good for: testing concepts; developing a suite of distinctive morphologies and morphometries indicative of sapping; helping to relate process to morphology; and providing data necessary to assess the relative importance of runoff, sapping, and mass wasting processes on channel development. The observations from the flume systems can be used to help interpret features observed in terrestrial and Martian settings where sapping processes are thought to have played an important role in the development of valley networks.

  6. [Corrosion resistant properties of different anodized microtopographies on titanium surfaces].

    PubMed

    Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian

    2015-12-01

    To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.

  7. Automatic Brain Portion Segmentation From Magnetic Resonance Images of Head Scans Using Gray Scale Transformation and Morphological Operations.

    PubMed

    Somasundaram, Karuppanagounder; Ezhilarasan, Kamalanathan

    2015-01-01

    To develop an automatic skull stripping method for magnetic resonance imaging (MRI) of human head scans. The proposed method is based on gray scale transformation and morphological operations. The proposed method has been tested with 20 volumes of normal T1-weighted images taken from Internet Brain Segmentation Repository. Experimental results show that the proposed method gives better results than the popular skull stripping methods Brain Extraction Tool and Brain Surface Extractor. The average value of Jaccard and Dice coefficients are 0.93 and 0.962 respectively. In this article, we have proposed a novel skull stripping method using intensity transformation and morphological operations. This is a low computational complexity method but gives competitive or better results than that of the popular skull stripping methods Brain Surface Extractor and Brain Extraction Tool.

  8. Synthesis and Characterization of Bionanoparticle-Silica Composites and Mesoporous Silica with Large Pores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Z.; Yang, L.; Kabisatpathy, S.

    2009-03-24

    A sol-gel process has been developed to incorporate bionanoparticles, such as turnip yellow mosaic virus, cowpea mosaic virus, tobacco mosaic virus, and ferritin into silica, while maintaining the integrity and morphology of the particles. The structures of the resulting materials were characterized by transmission electron microscopy, small angle X-ray scattering, and N{sub 2} adsorption-desorption analysis. The results show that the shape and surface morphology of the bionanoparticles are largely preserved after being embedded into silica. After removal of the bionanoparticles by calcination, mesoporous silica with monodisperse pores, having the shape and surface morphology of the bionanoparticles replicated inside the silica,more » was produced,. This study is expected to lead to both functional composite materials and mesoporous silica with structurally well-defined large pores.« less

  9. Morphology of size-selected Ptn clusters on CeO2(111)

    NASA Astrophysics Data System (ADS)

    Shahed, Syed Mohammad Fakruddin; Beniya, Atsushi; Hirata, Hirohito; Watanabe, Yoshihide

    2018-03-01

    Supported Pt catalysts and ceria are well known for their application in automotive exhaust catalysts. Size-selected Pt clusters supported on a CeO2(111) surface exhibit distinct physical and chemical properties. We investigated the morphology of the size-selected Ptn (n = 5-13) clusters on a CeO2(111) surface using scanning tunneling microscopy at room temperature. Ptn clusters prefer a two-dimensional morphology for n = 5 and a three-dimensional (3D) morphology for n ≥ 6. We further observed the preference for a 3D tri-layer structure when n ≥ 10. For each cluster size, we quantitatively estimated the relative fraction of the clusters for each type of morphology. Size-dependent morphology of the Ptn clusters on the CeO2(111) surface was attributed to the Pt-Pt interaction in the cluster and the Pt-O interaction between the cluster and CeO2(111) surface. The results obtained herein provide a clear understanding of the size-dependent morphology of the Ptn clusters on a CeO2(111) surface.

  10. Morphology of size-selected Ptn clusters on CeO2(111).

    PubMed

    Shahed, Syed Mohammad Fakruddin; Beniya, Atsushi; Hirata, Hirohito; Watanabe, Yoshihide

    2018-03-21

    Supported Pt catalysts and ceria are well known for their application in automotive exhaust catalysts. Size-selected Pt clusters supported on a CeO 2 (111) surface exhibit distinct physical and chemical properties. We investigated the morphology of the size-selected Pt n (n = 5-13) clusters on a CeO 2 (111) surface using scanning tunneling microscopy at room temperature. Pt n clusters prefer a two-dimensional morphology for n = 5 and a three-dimensional (3D) morphology for n ≥ 6. We further observed the preference for a 3D tri-layer structure when n ≥ 10. For each cluster size, we quantitatively estimated the relative fraction of the clusters for each type of morphology. Size-dependent morphology of the Pt n clusters on the CeO 2 (111) surface was attributed to the Pt-Pt interaction in the cluster and the Pt-O interaction between the cluster and CeO 2 (111) surface. The results obtained herein provide a clear understanding of the size-dependent morphology of the Pt n clusters on a CeO 2 (111) surface.

  11. Influence of mechanical and chemical surface treatments on the formation of bone-like structure in cpTi for endosseous dental implants

    NASA Astrophysics Data System (ADS)

    Parsikia, Farhang; Amini, Pupak; Asgari, Sirous

    2012-10-01

    Commercially pure titanium samples were exposed to grit blasting and acid-alkali treatments to obtain a variety of surface compositions and morphologies. Contact roughness test and microstructural studies were employed to study the surface topography of the samples. The nature and chemical composition of surface phases were evaluated using X-ray diffraction and microanalysis techniques. Selected samples first exposed to in vitro environment were then tested to determine the surface morphology and surface microstructure. Based on the data presented in this work, it is suggested that grit blasting process utilized prior to chemical treatment stage, yields a high quality surface morphology. Such a surface morphology is expected to have superior tribological characteristics after osseointegration. Also, it appeared that the reverse sequence of processing resulted in a better biocompatibility of the product manifested by negligible amount of residual alumina on the sample surface.

  12. Sensor-based monitoring and inspection of surface morphology in ultraprecision manufacturing processes

    NASA Astrophysics Data System (ADS)

    Rao, Prahalad Krishna

    This research proposes approaches for monitoring and inspection of surface morphology with respect to two ultraprecision/nanomanufacturing processes, namely, ultraprecision machining (UPM) and chemical mechanical planarization (CMP). The methods illustrated in this dissertation are motivated from the compelling need for in situ process monitoring in nanomanufacturing and invoke concepts from diverse scientific backgrounds, such as artificial neural networks, Bayesian learning, and algebraic graph theory. From an engineering perspective, this work has the following contributions: 1. A combined neural network and Bayesian learning approach for early detection of UPM process anomalies by integrating data from multiple heterogeneous in situ sensors (force, vibration, and acoustic emission) is developed. The approach captures process drifts in UPM of aluminum 6061 discs within 15 milliseconds of their inception and is therefore valuable for minimizing yield losses. 2. CMP process dynamics are mathematically represented using a deterministic multi-scale hierarchical nonlinear differential equation model. This process-machine inter-action (PMI) model is evocative of the various physio-mechanical aspects in CMP and closely emulates experimentally acquired vibration signal patterns, including complex nonlinear dynamics manifest in the process. By combining the PMI model predictions with features gathered from wirelessly acquired CMP vibration signal patterns, CMP process anomalies, such as pad wear, and drifts in polishing were identified in their nascent stage with high fidelity (R2 ~ 75%). 3. An algebraic graph theoretic approach for quantifying nano-surface morphology from optical micrograph images is developed. The approach enables a parsimonious representation of the topological relationships between heterogeneous nano-surface fea-tures, which are enshrined in graph theoretic entities, namely, the similarity, degree, and Laplacian matrices. Topological invariant measures (e.g., Fiedler number, Kirchoff index) extracted from these matrices are shown to be sensitive to evolving nano-surface morphology. For instance, we observed that prominent nanoscale morphological changes on CMP processed Cu wafers, although discernible visually, could not be tractably quantified using statistical metrology parameters, such as arithmetic average roughness (Sa), root mean square roughness (Sq), etc. In contrast, CMP induced nanoscale surface variations were captured on invoking graph theoretic topological invariants. Consequently, the graph theoretic approach can enable timely, non-contact, and in situ metrology of semiconductor wafers by obviating the need for reticent profile mapping techniques (e.g., AFM, SEM, etc.), and thereby prevent the propagation of yield losses over long production runs.

  13. Morphological evolution in a strained-heteroepitaxial solid droplet on a rigid substrate: Dynamical simulations

    NASA Astrophysics Data System (ADS)

    Ogurtani, Tarik Omer; Celik, Aytac; Oren, Ersin Emre

    2010-09-01

    A systematic study based on the self-consistent dynamical simulations is presented for the spontaneous evolution of an isolated thin solid droplet (bump) on a rigid substrate, which is driven by the surface drift diffusion induced by the capillary and mismatch stresses. In this study, we mainly focused on the development kinetics of the "Stranski-Krastanow" island type morphology, initiated by the nucleation route rather than the surface roughening scheme. The physicomathematical model, which bases on the irreversible thermodynamics treatment of surfaces and interfaces with singularities [T. O. Ogurtani, J. Chem. Phys. 124, 144706 (2006)], furnishes us to have autocontrol on the otherwise free-motion of the triple junction contour line between the substrate and the droplet without presuming any equilibrium dihedral contract (wetting) angles at the edges. During the development of the bell-shaped Stranski-Krastanow island through the mass accumulation at the central region of the droplet via surface drift diffusion with and/or without growth, the formation of an extremely thin wetting layer is observed. This wetting layer has a thickness of a fraction of a nanometer and covers not only the initial computation domain but also its further extension beyond the original boundaries. We also observed the formation of the multiple islands separated by shallow wetting layers above a certain threshold level of the mismatch strain and/or the size (i.e., volume) of the droplets. This threshold level depends on the initial physicochemical data and the aspect ratio (i.e., shape) of the original droplets. During the course of the simulations, we continuously tracked both the morphology (i.e., the peak height, the extension of the wetting layer beyond the domain boundaries, and the triple junction contact angle) and energetic (the global Helmholtz free energy changes associated with the total strain and surface energy variations) in the system. We observed that the morphology related quantities are reaching certain saturation limits or plateaus, when the growth mode is turned-off. On the other hand, the global Helmholtz free energy showed a steady decrease in time even though the total surface free energy of the droplet reaches a stationary value as expected a priori. Based on these observations and according to the accepted irreversible thermodynamic terminology as coined by celebrated Prigogine, we state that the Stranski-Krastanow type island morphologies are genuine stationary nonequilibrium states.

  14. Nanostructured Silica-Titania Hybrid using Dendritic Fibrous Nanosilica as a Photocatalyst.

    PubMed

    Bayal, Nisha; Singh, Rustam; Polshettiwar, Vivek

    2017-05-22

    A new method has been developed to fabricate active TiO 2 photocatalysts by tuning the morphology of the catalyst support. A sustainable solution-phase TiO 2 deposition on dendritic fibrous nanosilica (DFNS) protocol is developed, which is better than the complex and expensive atomic layer deposition technique. In general, catalytic activity decreases with an increased TiO 2 loading on conventional mesoporous silica because of the loss of the surface area caused by the blocking of pores. Notably, in the case of the dendritic fibrous nanosilica KCC-1 as a support, because of its open fibrous morphology, even at the highest TiO 2 loading, a relatively large amount of surface area remained intact. This improved the accessibility of active sites, which increased the catalytic performance of the KCC-1/TiO 2 photocatalyst. KCC-1-supported TiO 2 is a superior photocatalyst in terms of H 2 generation (26.4 mmol gTiO2 -1  h -1 ) under UV light. This study may provide a new direction for photocatalyst development through the morphology control of the support. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Atomic force microscopy study on topography of films produced by ion-based techniques

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, X. H.; Zou, S. C.; Martin, P. J.; Bendavid, A.

    1996-09-01

    The evolution of surface morphologies of films prepared by ion-based deposition techniques has been investigated by atomic force microscopy. Two deposition processes, filtered arc deposition (FAD) and ion-beam-assisted deposition, where low-energy (<100 eV) ion irradiation and high-energy (several tens of keV) ion-beam bombardment concurrent with film growth were involved, respectively, have been employed to prepare TiN and Al films. Comparative studies on the effect of energetic ions on the development of topography have been performed between the low-ion-energy regime and high-ion-energy regime. In addition, the relationship between topography and mechanical properties of thin films has been revealed, by involving thin films prepared by thermal evaporation deposition (TED), where almost all depositing particles are neutral. In the images of the TED TiN and Al films, a large number of porous and deep boundaries between columnar grains was observed, suggesting a very rough and loose surface. In contrast, the FAD films exhibited much denser surface morphologies, although still columnar. The root-mean-square roughness of the FAD films was less than 1 Å. Hardness test and optical parameter measurement indicated that the FAD films were much harder and, in the case of optical films, much more transparent than the TED films, which was considered to arise from the denser surface morphologies rather than crystallization of the films. The high density and super smoothness of the FAD films, and the resultant mechanical and optical properties superior to those of the TED films, were attributed to the enhancement of surface migration of the deposited adatoms in the FAD process, which could provide intensive low-energy ion irradiation during film growth. As for topography modification by high-energy ion-beam bombardment concurrent with film growth, in addition to the increase of surface diffusion due to elastic collision and thermal spikes, physical sputtering must be considered while explaining the development of the film topography. Both surface migration enhancement and sputtering played important roles in the case of high-energy heavy-ion-beam bombardment, under which condition surface morphology characterized by dense columns with larger dimension and deep clean boundaries was formed. However, under high-energy light-ion-beam bombardment, the sputtering was dominant, and the variation of sputtering coefficient with position on the surface of growing film led to the formation of cones.

  16. Electrochemical Deposition of Nanostructured Conducting Polymer Coatings on Neural Prosthetic Devices

    NASA Astrophysics Data System (ADS)

    Yang, Junyan; Martin, David

    2003-03-01

    Micromachined neural prosthetic devices facilitate the functional stimulation of and recording from the central nervous system (CNS). These devices have been fabricated to consist of silicon shanks that have gold or iridium sites along their surface. Our goal is to improve the biocompatibility and long-term performance of the neural prosthetic probes when they are implanted chronically in the brain. In our most recent efforts we have established that electrochemical polymerization can be used to deposit fuzzy coatings of conducting polymers specifically on the electrode sites. For neural prosthetic devices that are intended for long term implantation, we need to develop surfaces that provide intimate contact and promote efficient signal transport at the interface of the microelectrode array and brain tissue. We have developed methods to rapidly and reliably fabricate nanostructured conducting polymer coatings on the electrode probes using templated and surfactant-mediated techniques. Conducting polymer nanomushrooms and nanohairs of polypyrrole (PPy) were electrochemically polymerized onto the functional sites of neural probes by using either nanoporous block copolymers thin films, "track-etched" polycarbonate films or anodic aluminium oxide membranes as templates. Nanofibers of conducting polymers have also been successfully obtained by polymerizations in the presence of surfactants. The influence of current density, monomer concentration, surfactant concentration, and deposition charge on the thickness and morphology of the nanostructured conducting polymer coatings has been studied by optical, scanned probe, scanning electron and transmission electron microscopy. As compared with the normal nodular morphology of polypyrrole, the nanostructured morphologies grown from the neural electrode result in fuzzy coatings with extremely high surface area. The electrical properties of the polymer coatings were studied by Impedance Spectroscopy (IS) and Cyclic Voltammetry (CV). The significant drop in impedance in magnitude and phase angle is consistent with an increase of the surface area due to the roughened surface morphology.

  17. Electron mobility enhancement in metalorganic-vapor-phase-epitaxy-grown InAlN high-electron-mobility transistors by control of surface morphology of spacer layer

    NASA Astrophysics Data System (ADS)

    Yamada, Atsushi; Ishiguro, Tetsuro; Kotani, Junji; Nakamura, Norikazu

    2018-01-01

    We demonstrated low-sheet-resistance metalorganic-vapor-phase-epitaxy-grown InAlN high-electron-mobility transistors using AlGaN spacers with excellent surface morphology. We systematically investigated the effects of AlGaN spacer growth conditions on surface morphology and electron mobility. We found that the surface morphology of InAlN barriers depends on that of AlGaN spacers. Ga desorption from AlGaN spacers was suppressed by increasing the trimethylaluminum (TMA) supply rate, resulting in the small surface roughnesses of InAlN barriers and AlGaN spacers. Moreover, we found that an increase in the NH3 supply rate also improved the surface morphologies of InAlN barriers and AlGaN spacers as long as the TMA supply rate was high enough to suppress the degradation of GaN channels. Finally, we realized a low sheet resistance of 185.5 Ω/sq with a high electron mobility of 1210 cm2 V-1 s-1 by improving the surface morphologies of AlGaN spacers and InAlN barriers.

  18. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies

    PubMed Central

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-01-01

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity. PMID:26333629

  19. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-09-01

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity.

  20. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies.

    PubMed

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-09-03

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity.

  1. Mapping Cortical Morphology in Youth with Velo-Cardio-Facial (22q11.2 Deletion) Syndrome

    PubMed Central

    Kates, Wendy R.; Bansal, Ravi; Fremont, Wanda; Antshel, Kevin M.; Hao, Xuejun; Higgins, Anne Marie; Liu, Jun; Shprintzen, Robert J.; Peterson, Bradley S.

    2010-01-01

    Objective Velo-cardio-facial syndrome (VCFS; 22q11.2 deletion syndrome) represents one of the highest known risk factors for schizophrenia. Insofar as up to thirty percent of individuals with this genetic disorder develop schizophrenia, VCFS constitutes a unique, etiologically homogeneous model for understanding the pathogenesis of schizophrenia. Method Using a longitudinal, case-control design, we acquired anatomic magnetic resonance images to investigate both cross-sectional and longitudinal alterations in surface cortical morphology in a cohort of adolescents with VCFS and age-matched typical controls. All participants were scanned at two time points. Results Relative to controls, youth with VCFS exhibited alterations in inferior frontal, dorsal frontal, occipital, and cerebellar brain regions at both time points. We observed little change over time in surface morphology of either study group. However, within the VCFS group only, worsening psychosocial functioning over time was associated with Time 2 surface contractions in left middle and inferior temporal gyri. Further, prodromal symptoms at Time 2 were associated with surface contractions in left and right orbitofrontal, temporal and cerebellar regions, as well as surface protrusions of supramarginal gyrus. Conclusions These findings advance our understanding of cortical disturbances in VCFS that produce vulnerability for psychosis in this high risk population. PMID:21334567

  2. Active microwave remote sensing research program plan. Recommendations of the Earth Resources Synthetic Aperture Radar Task Force. [application areas: vegetation canopies, surface water, surface morphology, rocks and soils, and man-made structures

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A research program plan developed by the Office of Space and Terrestrial Applications to provide guidelines for a concentrated effort to improve the understanding of the measurement capabilities of active microwave imaging sensors, and to define the role of such sensors in future Earth observations programs is outlined. The focus of the planned activities is on renewable and non-renewable resources. Five general application areas are addressed: (1) vegetation canopies, (2) surface water, (3) surface morphology, (4) rocks and soils, and (5) man-made structures. Research tasks are described which, when accomplished, will clearly establish the measurement capabilities in each area, and provide the theoretical and empirical results needed to specify and justify satellite systems using imaging radar sensors for global observations.

  3. Surface analysis of Fe-Co-Mo electrolytic coatings

    NASA Astrophysics Data System (ADS)

    Yar-Mukhamedova, G. Sh; Sakhnenko, N. D.; Ved', M. V.; Yermolenko, I. Yu; Zyubanova, S. I.

    2017-06-01

    Coatings Fe-Co-Mo with a composition of 47 at.% iron, 28 at.% Cobalt and 25 at.% Molybdenum were deposited from citrate electrolyte using pulse electrolysis mode. Scanning electron and atomic force microscopy have established the surface morphology and topography. It was identified the parts with a globular structure which have an average size of 0.2-0.5μm and singly located sharp grains. Within the same scan area sites with developed surface were detected the topography of which is identical to the crystal structure of cobalt with the crystallites size of 0.2-1.75μm. The parameters Ra and Rq for parts with different morphology as well as average characteristics of coatings demonstrated the low roughness of the surface. It is found that the coercive force of Fe-Co-Mo films is 7-10 Oe, which allow us to classify the Fe-Co-Mo coatings as soft magnetic materials.

  4. Parallel computational and experimental studies of the morphological modification of calcium carbonate by cobalt

    NASA Astrophysics Data System (ADS)

    Braybrook, A. L.; Heywood, B. R.; Jackson, R. A.; Pitt, K.

    2002-08-01

    Crystal growth can be controlled by the incorporation of dopant ions into the lattice and yet the question of how such substituents affect the morphology has not been addressed. This paper describes the forms of calcite (CaCO 3) which arise when the growth assay is doped with cobalt. Distinct and specific morphological changes are observed; the calcite crystals adopt a morphology which is dominated by the {01.1} family of faces. These experimental studies paralleled the development of computational methods for the analysis of crystal habit as a function of dopant concentration. In this case, the predicted defect morphology also argued for the dominance of the (01.1) face in the growth form. The appearance of this face was related to the preferential segregation of the dopant ions to the crystal surface. This study confirms the evolution of a robust computational model for the analysis of calcite growth forms under a range of environmental conditions and presages the use of such tools for the predictive development of crystal morphologies in those applications where chemico-physical functionality is linked closely to a specific crystallographic form.

  5. Effect of Cu Alloying on S Poisoning of Ni Surfaces and Nanoparticle Morphologies Using Ab-Initio Thermodynamics Calculations.

    PubMed

    Kim, Ji-Su; Kim, Byung-Kook; Kim, Yeong-Cheol

    2015-10-01

    We investigated the effect of Cu alloying on S poisoning of Ni surfaces and nanoparticle morphologies using ab-initio thermodynamics calculations. Based on the Cu segregation energy and the S adsorption energy, the surface energy and nanoparticle morphology of pure Ni, pure Cu, and NiCu alloys were evaluated as functions of the chemical potential of S and the surface orientations of (100), (110), and (111). The constructed nanoparticle morphology was varied as a function of chemical potential of S. We find that the Cu added to Ni for NiCu alloys is strongly segregated into the top surface, and increases the S tolerance of the NiCu nanoparticles.

  6. Electroless controllable growth of ZnO films and their morphology-dependent antimicrobial properties.

    PubMed

    Ruíz-Gómez, M A; Figueroa-Torres, M Z; Alonso-Lemus, I L; Vega-Becerra, O E; González-López, J R; Zaldívar-Cadena, A A

    2018-04-05

    An electroless deposition process was used to synthesize with a controlled morphology, polycrystalline ZnO on glass substrates as antimicrobial coatings. The influence of deposition temperature (T dep ) on the physicochemical and antimicrobial properties of the ZnO films was analyzed. The results indicated that a change in deposition temperature greatly affected the morphology and the degree of crystallinity of the films. Scanning electron microscope images show that the film surface is porous at a deposition temperature of 40 and 50 °C, whereas hexagonal-plate shaped morphology predominated at 60 °C and finally at 70 and 80 °C the films consisted of rod-like particles. The films showed good transparency in the visible region. All ZnO films presented notable antimicrobial activity against the gram-negative bacteria Escherichia coli (E. coli) and the gram-positive Staphylococcus aureus (S. aureus). It was found that the antimicrobial efficiency is strongly dependent on morphology and structural properties. The best antimicrobial performance was recorded for the films consisting of rod-like morphology with a high degree of crystallinity. The procedure used in this investigation is strongly recommended for the development of functional surfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Coevolution of bed surface patchiness and channel morphology: 2. Numerical experiments

    USGS Publications Warehouse

    Nelson, Peter A.; McDonald, Richard R.; Nelson, Jonathan M.; Dietrich, William E.

    2015-01-01

    In gravel bed rivers, bed topography and the bed surface grain size distribution evolve simultaneously, but it is not clear how feedbacks between topography and grain sorting affect channel morphology. In this, the second of a pair of papers examining interactions between bed topography and bed surface sorting in gravel bed rivers, we use a two-dimensional morphodynamic model to perform numerical experiments designed to explore the coevolution of both free and forced bars and bed surface patches. Model runs were carried out on a computational grid simulating a 200 m long, 2.75 m wide, straight, rectangular channel, with an initially flat bed at a slope of 0.0137. Over five numerical experiments, we varied (a) whether an obstruction was present, (b) whether the sediment was a gravel mixture or a single size, and (c) whether the bed surface grain size feeds back on the hydraulic roughness field. Experiments with channel obstructions developed a train of alternate bars that became stationary and were connected to the obstruction. Freely migrating alternate bars formed in the experiments without channel obstructions. Simulations incorporating roughness feedbacks between the bed surface and flow field produced flatter, broader, and longer bars than simulations using constant roughness or uniform sediment. Our findings suggest that patches are not simply a by-product of bed topography, but they interact with the evolving bed and influence morphologic evolution.

  8. Evidences of early aqueous Mars: Implications on the origin of branched valleys in the Ius Chasma, Mars

    NASA Astrophysics Data System (ADS)

    Martha, Tapas R.; Jain, Nirmala; Vamshi, Gasiganti T.; Vinod Kumar, K.

    2017-11-01

    This study shows results of morphological and spectroscopic analyses of Ius Chasma and its southern branched valleys using Orbiter datasets such as Mars Reconnaissance Orbiter (MRO)-Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), High Resolution Imaging Science Experiment (MRO-HiRISE) and digital terrain model (HRSC-DTM). Result of the spectral analysis reveals presence of hydrated minerals such as opal, nontronite and vermiculite in the floor and wall rock areas Ius Chasma indicating alteration of parent rock in an water rich environment of early Mars. Topographic gradient and morphological evidences such as V-shaped valleys with theatre shaped stubby channels, dendritic drainage and river piracy indicate that these valleys were initially developed by surface runoff due to episodic floods and further expanded due to groundwater sapping controlled by faults and fractures. Minerals formed by aqueous alteration during valley formation and their intricate association with different morphological domains suggest that surface runoff played a key role in the development of branched valleys south of Ius Chasma on Mars.

  9. Quantitative Morphologic Analysis of Boulder Shape and Surface Texture to Infer Environmental History: A Case Study of Rock Breakdown at the Ephrata Fan, Channeled Scabland, Washington

    NASA Technical Reports Server (NTRS)

    Ehlmann, Bethany L.; Viles, Heather A.; Bourke, Mary C.

    2008-01-01

    Boulder morphology reflects both lithology and climate and is dictated by the combined effects of erosion, transport, and weathering. At present, morphologic information at the boulder scale is underutilized as a recorder of environmental processes, partly because of the lack of a systematic quantitative parameter set for reporting and comparing data sets. We develop such a parameter set, incorporating a range of measures of boulder form and surface texture. We use standard shape metrics measured in the field and fractal and morphometric classification methods borrowed from landscape analysis and applied to laser-scanned molds. The parameter set was pilot tested on three populations of basalt boulders with distinct breakdown histories in the Channeled Scabland, Washington: (1) basalt outcrop talus; (2) flood-transported boulders recently excavated from a quarry; and (3) flood-transported boulders, extensively weathered in situ on the Ephrata Fan surface. Size and shape data were found to distinguish between flood-transported and untransported boulders. Size and edge angles (approximately 120 degrees) of flood-transported boulders suggest removal by preferential fracturing along preexisting columnar joints, and curvature data indicate rounding relative to outcrop boulders. Surface textural data show that boulders which have been exposed at the surface are significantly rougher than those buried by fan sediments. Past signatures diagnostic of flood transport still persist on surface boulders, despite ongoing overprinting by processes in the present breakdown environment through roughening and fracturing in situ. Further use of this quantitative boulder parameter set at other terrestrial and planetary sites will aid in cataloging and understanding morphologic signatures of environmental processes.

  10. Morphology, stratigraphy, and surface roughness properties of Venusian lava flow fields

    NASA Astrophysics Data System (ADS)

    Byrnes, Jeffrey M.; Crown, David A.

    2002-10-01

    Morphologic characteristics, flow stratigraphy, and radar backscatter properties of five lava flow fields on Venus (Turgmam Fluctus, Zipaltonal Fluctus, Tuli Mons/Uilata Fluctus, Var Mons, and Mylitta Fluctus) were examined to understand flow field emplacement mechanisms and relationships to other surface processes. These analyses indicate that the flow fields studied developed through emplacement of numerous, thin flow units, presumably over extended periods of time. Although the Venusian fields display flow morphologies similar to those observed within terrestrial flow fields, the Venusian flow units are significantly larger and have a larger range of radar backscatter coefficients. Both simple and compound flow emplacement appear to have occurred within the flow fields. A potential correlation between flow rheology and radar brightness is suggested by differences in planform morphology, apparent flow thickness, and apparent sensitivity to topography between bright and dark flows. Distributary flow morphologies may result from tube-fed flows, and postemplacement modification by processes such as flow inflation and crustal foundering is consistent with discrete zones of increased radar brightness within individual flow lobes. Mapping of these flow fields does not indicate any simple evolutionary trend in eruptive/resurfacing style within the flow fields, or any consistent temporal sequence relative to other tectonic and volcanic features.

  11. Influence of Chemical Precleaning on the Plasma Treatment Efficiency of Aluminum by RF Plasma Pencil

    NASA Astrophysics Data System (ADS)

    Vadym, Prysiazhnyi; Pavel, Slavicek; Eliska, Mikmekova; Milos, Klima

    2016-04-01

    This paper is aimed to show the influence of initial chemical pretreatment prior to subsequent plasma activation of aluminum surfaces. The results of our study showed that the state of the topmost surface layer (i.e. the surface morphology and chemical groups) of plasma modified aluminum significantly depends on the chemical precleaning. Commonly used chemicals (isopropanol, trichlorethane, solution of NaOH in deionized water) were used as precleaning agents. The plasma treatments were done using a radio frequency driven atmospheric pressure plasma pencil developed at Masaryk University, which operates in Ar, Ar/O2 gas mixtures. The effectiveness of the plasma treatment was estimated by the wettability measurements, showing high wettability improvement already after 0.3 s treatment. The effects of surface cleaning (hydrocarbon removal), surface oxidation and activation (generation of OH groups) were estimated using infrared spectroscopy. The changes in the surface morphology were measured using scanning electron microscopy. Optical emission spectroscopy measurements in the near-to-surface region with temperature calculations showed that plasma itself depends on the sample precleaning procedure.

  12. Electrophoretic deposition of hydroxyapatite-hexagonal boron nitride composite coatings on Ti substrate.

    PubMed

    Göncü, Yapıncak; Geçgin, Merve; Bakan, Feray; Ay, Nuran

    2017-10-01

    In this study, commercial pure titanium samples were coated with nano hydroxyapatite-nano hexagonal boron nitride (nano HA-nano hBN) composite by electrophoretic deposition (EPD). The effect of process parameters (applied voltage, deposition time and solid concentration) on the coating morphology, thickness and the adhesion behavior were studied systematically and crack free nano hBN-nano HA composite coating production was achieved for developing bioactive coatings on titanium substrates for orthopedic applications. For the examination of structural and morphological characteristics of the coating surfaces, various complementary analysis methods were performed. For the structural characterization, XRD and Raman Spectroscopy were used while, Scanning Electron Microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) and Transmission Electron Microscopy (TEM) techniques were carried out for revealing the morphological characterization. The results showed that nano HA-nano hBN were successfully deposited on Ti surface with uniform, crack-free coating by EPD. The amounts of hBN in suspension are considered to have no effect on coating thickness. By adding hBN into HA, the morphology of HA did not change and hBN has no significant effect on porous structure. These nanostructured surfaces are expected to be suitable for proliferation of cells and have high potential for bioactive materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The effects of electrospun substrate-mediated cell colony morphology on the self-renewal of human induced pluripotent stem cells.

    PubMed

    Maldonado, Maricela; Wong, Lauren Y; Echeverria, Cristina; Ico, Gerardo; Low, Karen; Fujimoto, Taylor; Johnson, Jed K; Nam, Jin

    2015-05-01

    The development of xeno-free, chemically defined stem cell culture systems has been a primary focus in the field of regenerative medicine to enhance the clinical application of pluripotent stem cells (PSCs). In this regard, various electrospun substrates with diverse physiochemical properties were synthesized utilizing various polymer precursors and surface treatments. Human induced pluripotent stem cells (IPSCs) cultured on these substrates were characterized by their gene and protein expression to determine the effects of the substrate physiochemical properties on the cells' self-renewal, i.e., proliferation and the maintenance of pluripotency. The results showed that surface chemistry significantly affected cell colony formation via governing the colony edge propagation. More importantly, when surface chemistry of the substrates was uniformly controlled by collagen conjugation, the stiffness of substrate was inversely related to the sphericity, a degree of three dimensionality in colony morphology. The differences in sphericity subsequently affected spontaneous differentiation of IPSCs during a long-term culture, implicating that the colony morphology is a deciding factor in the lineage commitment of PSCs. Overall, we show that the capability of controlling IPSC colony morphology by electrospun substrates provides a means to modulate IPSC self-renewal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Surface morphology of chitin highly related with the isolated body part of butterfly (Argynnis pandora).

    PubMed

    Kaya, Murat; Bitim, Betül; Mujtaba, Muhammad; Koyuncu, Turgay

    2015-11-01

    This study was conducted to understand the differences in the physicochemical properties of chitin samples isolated from the wings and the other body parts except the wings (OBP) of a butterfly species (Argynnis pandora). The same isolation method was used for obtaining chitin specimens from both types of body parts. The chitin content of the wings (22%) was recorded as being much higher than the OBP (8%). The extracted chitin samples were characterized via FT-IR, TGA, XRD, SEM, and elemental analysis techniques. Results of these characterizations revealed that the chitins from both structures (wings and OBP) were very similar, except for their surface morphologies. SEM results demonstrated one type of surface morphology for the wings and four different surface morphologies for the OBP. Therefore, it can be hypothesized that the surface morphology of the chitin is highly related with the body part. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Morphology-Patterned Anisotropic Wetting Surface for Fluid Control and Gas-Liquid Separation in Microfluidics.

    PubMed

    Wang, Shuli; Yu, Nianzuo; Wang, Tieqiang; Ge, Peng; Ye, Shunsheng; Xue, Peihong; Liu, Wendong; Shen, Huaizhong; Zhang, Junhu; Yang, Bai

    2016-05-25

    This article shows morphology-patterned stripes as a new platform for directing flow guidance of the fluid in microfluidic devices. Anisotropic (even unidirectional) spreading behavior due to anisotropic wetting of the underlying surface is observed after integrating morphology-patterned stripes with a Y-shaped microchannel. The anisotropic wetting flow of the fluid is influenced by the applied pressure, dimensions of the patterns, including the period and depth of the structure, and size of the channels. Fluids with different surface tensions show different flowing anisotropy in our microdevice. Moreover, the morphology-patterned surfaces could be used as a microvalve, and gas-water separation in the microchannel was realized using the unidirectional flow of water. Therefore, benefiting from their good performance and simple fabrication process, morphology-patterned surfaces are good candidates to be applied in controlling the fluid behavior in microfluidics.

  16. Laser surface treatment of polyamide and NiTi alloy and the effects on mesenchymal stem cell response

    NASA Astrophysics Data System (ADS)

    Waugh, D. G.; Lawrence, J.; Shukla, P.; Chan, C.; Hussain, I.; Man, H. C.; Smith, G. C.

    2015-07-01

    Mesenchymal stem cells (MSCs) are known to play important roles in development, post-natal growth, repair, and regeneration of mesenchymal tissues. What is more, surface treatments are widely reported to affect the biomimetic nature of materials. This paper will detail, discuss and compare laser surface treatment of polyamide (Polyamide 6,6), using a 60 W CO2 laser, and NiTi alloy, using a 100 W fiber laser, and the effects of these treatments on mesenchymal stem cell response. The surface morphology and composition of the polyamide and NiTi alloy were studied by scanning electron microscopy (SEM) and X-ray photoemission spectroscopy (XPS), respectively. MSC cell morphology cell counting and viability measurements were done by employing a haemocytometer and MTT colorimetric assay. The success of enhanced adhesion and spreading of the MSCs on each of the laser surface treated samples, when compared to as-received samples, is evidenced in this work.

  17. Taylor instability in rhyolite lava flows

    NASA Technical Reports Server (NTRS)

    Baum, B. A.; Krantz, W. B.; Fink, J. H.; Dickinson, R. E.

    1989-01-01

    A refined Taylor instability model is developed to describe the surface morphology of rhyolite lava flows. The effect of the downslope flow of the lava on the structures resulting from the Taylor instability mechanism is considered. Squire's (1933) transformation is developed for this flow in order to extend the results to three-dimensional modes. This permits assessing why ridges thought to arise from the Taylor instability mechanism are preferentially oriented transverse to the direction of lava flow. Measured diapir and ridge spacings for the Little and Big Glass Mountain rhyolite flows in northern California are used in conjunction with the model in order to explore the implications of the Taylor instability for flow emplacement. The model suggests additional lava flow features that can be measured in order to test whether the Taylor instability mechanism has influenced the flows surface morphology.

  18. Effect of polyamide 6 on the morphology and electrical conductivity of carbon black-filled polypropylene composites

    PubMed Central

    Zhang, Xuewei; Liu, Jiang; Wang, Yi

    2017-01-01

    Carbon black (CB)-filled polypropylene (PP) with surface resistivity between 106 and 109 Ω sq−1 is the ideal antistatic plastic material in the electronics and electric industry. However, a large amount of CB may have an adverse effect on the mechanical properties and processing performance of the material, thus an improved ternary system is developed. Blends of CB-filled PP and polyamide 6 (PA6) have been prepared by melt blending in order to obtain electrically conductive polymer composites with a low electrical percolation threshold based on the concept of double percolation. The morphological developments of these composites were studied by scanning electron microscopy. The results showed that CB particles were selectively dispersed in PA6 phases due to the good interaction and interfacial adhesion between CB and PA6. At the same CB loadings, the surface resistivity of PP/PA6/CB composite was smaller than that of PP/CB composite system, which indicated the better conductivity in the former composite. The increasing amount of PA6 in the composites changed the morphology from a typical sea–island morphology to a co-continuous morphology. What is more, with 8 wt% of CB and PP/PA6 phase ratio of 70/30 in which the PP and PA6 phases formed a co-continuous structure, the electrical conductivity of the composite peaked at 2.01 × 105 Ω sq−1. PMID:29308223

  19. Geological History of the Tyre Region of Europa: A Regional Perspective on Europan Surface Features and Ice Thickness

    NASA Technical Reports Server (NTRS)

    Kadel, Steven D.; Chuang, Frank C.; Greeley, Ronald; Moore, Jeffrey M.

    2000-01-01

    Galileo images of the Tyre Macula region of Europa at regional (170 m/pixel) and local (approx. 40 m/pixel) scales allow mapping and understanding of surface processes and landforms. Ridged plains, doublet and complex ridges, shallow pits, domes, "chaos" areas. impact structures, tilted blocks and massifs, and young fracture systems indicate a complex history of surface deformation on Europa. Regional and local morphologies of the Tyre region of Europa suggest that an impactor penetrated through several kilometers of water ice tc a mobile layer below. The surface morphology was initially dominated by formation of ridged plains, followed by development of ridge bands and doublet ridges, with chaos and fracture formation dominating the latter part of the geologic history of the Tyre region. Two distinct types of chaos have been identified which, along with upwarped dome materials, appear to represent a continuum of features (domes-play chaos-knobby chaos) resulting from increasing degree of surface disruption associated with local lithospheric heating and thinning. Local and regional stratigraphic relationships, block heights, and the morphology of the Tyre impact structure suggest the presence of low-viscosity ice or liquid water beneath a thin (severa1 kilometers) surface ice shell at the time of the impact. The very low impact crater density on the surface of Europa suggests that this thin shell has either formed or been thoroughly resurfaced in the very recent past.

  20. Surface morphological evolution of epitaxial CrN(001) layers

    NASA Astrophysics Data System (ADS)

    Frederick, J. R.; Gall, D.

    2005-09-01

    CrN layers, 57 and 230 nm thick, were grown on MgO(001) at Ts=600-800 °C by ultrahigh-vacuum magnetron sputter deposition in pure N2 discharges from an oblique deposition angle α=80°. Layers grown at 600 °C nucleate as single crystals with a cube-on-cube epitaxial relationship with the substrate. However, rough surfaces with cauliflower-type morphologies cause the nucleation of misoriented CrN grains that develop into cone-shaped grains that protrude out of the epitaxial matrix to form triangular faceted surface mounds. The surface morphology of epitaxial CrN(001) grown at 700 °C is characterized by dendritic ridge patterns extending along the orthogonal <110> directions superposed by square-shaped super mounds with <100> edges. The ridge patterns are attributed to a Bales-Zangwill instability while the supermounds form due to atomic shadowing which leads to the formation of epitaxial inverted pyramids that are separated from the surrounding layer by tilted nanovoids. Growth at 800 °C yields complete single crystals with smooth surfaces. The root-mean-square surface roughness for 230-nm-thick layers decreases from 18.8 to 9.3 to 1.1 nm as Ts is raised from 600 to 700 to 800 °C. This steep decrease is due to a transition in the roughening mechanism from atomic shadowing to kinetic roughening. Atomic shadowing is dominant at 600 and 700 °C, where misoriented grains and supermounds, respectively, capture a larger fraction of the oblique deposition flux in comparison to the surrounding epitaxial matrix, resulting in a high roughening rate that is described by a power law with an exponent β>0.5. In contrast, kinetic roughening controls the surface morphology for Ts=800 °C, as well as the epitaxial fraction of the layers grown at 600 and 700 °C, yielding relatively smooth surfaces and β<=0.27.

  1. Human aortic endothelial cell morphology influenced by topography of porous silicon substrates.

    PubMed

    Formentín, Pilar; Catalán, Úrsula; Fernández-Castillejo, Sara; Alba, Maria; Baranowska, Malgorzata; Solà, Rosa; Pallarès, Josep; Marsal, Lluís F

    2015-10-01

    Porous silicon has received much attention because of its optical properties and for its usefulness in cell-based biosensing, drug delivery, and tissue engineering applications. Surface properties of the biomaterial are associated with cell adhesion and with proliferation, migration, and differentiation. The present article analyzes the behavior of human aortic endothelial cells in macro- and nanoporous collagen-modified porous silicon samples. On both substrates, cells are well adhered and numerous. Confocal microscopy and scanning electron microscopy were employed to study the effects of porosity on the morphology of the cells. On macroporous silicon, filopodia is not observed but the cell spreads on the surface, increasing the lamellipodia surface which penetrates the macropore. On nanoporous silicon, multiple filopodia were found to branch out from the cell body. These results demonstrate that the pore size plays a key role in controlling the morphology and growth rate of human aortic endothelial cells, and that these forms of silicon can be used to control cell development in tissue engineering as well as in basic cell biology research. © The Author(s) 2015.

  2. Geodiversity of a large meander bend in the Little Belt strait in the inner Danish waters

    NASA Astrophysics Data System (ADS)

    Brandbyge Ernstsen, Verner; Øbro Hansen, Lars; Becker, Marius; Brivio, Lara; Vang, Torben; Lynnerup Trinhammer, Per; Andresen, Katrine Juul; Seidenkrantz, Marit-Solveig; Boldreel, Lars Ole; Bartholdy, Jesper

    2017-04-01

    The Little Belt strait in the inner Danish waters is characterised by a high biodiversity, and continuous monitoring of flora and fauna and the water quality is undertaken by the authorities. However, the surface sedimentology and geomorphology, i.e. elements of the geodiversity, are less well-constrained. The aim of this study is to investigate the surface sediment and morphology of a large meander bend (with a channel width of 1 km) located between the two bridges crossing the strait (a channel reach of 4 km) in order to assess a potential coupling between geodiversity and biodiversity. More specifically, the objectives are 1) to identify and classify morphological units for creating a geomorphological map, 2) to quantify surface material characteristics for creating a surface material map, and 3) to develop a conceptual model of the substrate and the morphology and morphodynamics in the meander bend between the two bridges in the strait. Preliminary results reveal a diverse morphology in the meander bend; and the annual morphological changes reveal complex sediment transport patterns along and across the bend. Likewise significant sediment sorting trends exist along and across the meander bend. Hence, the preliminary results indicate a high geodiversity in the strait. Acknowledgements The data were collected as part of the MSc course Marine Geoscience, a joint MSc course between the Department of Geosciences and Natural Resource Management at the University of Copenhagen and the Department of Geoscience at Aarhus University. Additional data were included from the research project Control in the Danish Straits 1 (CiDS-1) funded by the Danish Centre for Marine Research (PI Morten Holtegaard). Thanks to the crew on board RV Aurora.

  3. Origin of the Valley Networks On Mars: A Hydrological Perspective

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.

    2000-01-01

    The geomorphology of the Martian valley networks is examined from a hydrological perspective for their compatibility with an origin by rainfall, globally higher heat flow, and localized hydrothermal systems. Comparison of morphology and spatial distribution of valleys on geologic surfaces with terrestrial fluvial valleys suggests that most Martian valleys are probably not indicative of a rainfall origin, nor are they indicative of formation by an early global uniformly higher heat flow. In general, valleys are not uniformly distributed within geologic surface units as are terrestrial fluvial valleys. Valleys tend to form either as isolated systems or in clusters on a geologic surface unit leaving large expanses of the unit virtually untouched by erosion. With the exception of fluvial valleys on some volcanoes, most Martian valleys exhibit a sapping morphology and do not appear to have formed along with those that exhibit a runoff morphology. In contrast, terrestrial sapping valleys form from and along with runoff valleys. The isolated or clustered distribution of valleys suggests localized water sources were important in drainage development. Persistent ground-water outflow driven by localized, but vigorous hydrothermal circulation associated with magmatism, volcanism, impacts, or tectonism is, however, consistent with valley morphology and distribution. Snowfall from sublimating ice-covered lakes or seas may have provided an atmospheric water source for the formation of some valleys in regions where the surface is easily eroded and where localized geothermal/hydrothermal activity is sufficient to melt accumulated snowpacks.

  4. Banded Spherulitic Morphology in Blends of Poly(propylene fumarate) and Poly( -caprolactone) and Interaction with MC3T3-E1 Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kan; Jesse, Stephen; Wang, Shanfeng

    2012-01-01

    The thermal properties, morphological development, crystallization behavior, and miscibility of semicrystalline PCL and its 25, 50, and 75 wt% blends with amorphous PPF in spin-coated thin films crystallized at various crystallization temperatures (T{sub c}) from 25 to 52 C are investigated. The surface roughness of PPF/PCL ({phi}{sub PCL} = 75%) films increases with increasing T{sub c} and consequently the adsorption of serum proteins is also increased. No significant variance is found in surface hydrophilicity or in mouse MC3T3-E1 cell attachment, spreading, and proliferation on PPF/PCL ({phi}{sub PCL} = 75%) films crystallized isothermally at 25, 37, and 45 C, because ofmore » low ridge height, nonuniformity in structures, and PPF surface segregation« less

  5. Simultaneous tuning of chemical composition and topography of copolymer surfaces: micelles as building blocks.

    PubMed

    Zhao, Ning; Zhang, Xiaoyan; Zhang, Xiaoli; Xu, Jian

    2007-05-14

    A simple method is described for controlling the surface chemical composition and topography of the diblock copolymer poly(styrene)-b-poly(dimethylsiloxane)(PS-b-PDMS) by casting the copolymer solutions from solvents with different selectivities. The surface morphology and chemical composition were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively, and the wetting behavior was studied by water contact angle (CA) and sliding angle (SA) and by CA hysteresis. Chemical composition and morphology of the surface depend on solvent properties, humidity of the air, solution concentration, and block lengths. If the copolymer is cast from a common solvent, the resultant surface is hydrophobic, with a flat morphology, and dominated by PDMS on the air side. From a PDMS-selective solvent, the surface topography depends on the morphology of the micelles. Starlike micelles give rise to a featureless surface nearly completely covered by PDMS, while crew-cut-like micelles lead to a rough surface with a hierarchical structure that consists partly of PDMS. From a PS-selective solvent, however, surface segregation of PDMS was restricted, and the surface morphology can be controlled by vapor-induced phase separation. On the basis of the tunable surface roughness and PDMS concentration on the air side, water repellency of the copolymer surface could be tailored from hydrophobic to superhydrophobic. In addition, reversible switching behavior between hydrophobic and superhydrophobic can be achieved by exposing the surface to solvents with different selectivities.

  6. AFM study of the morphologic change of HDPE surface photografted with glycidyl methacrylate.

    PubMed

    Wang, Huiliang; Han, Jianmei

    2009-05-01

    The UV-induced grafting of glycidyl methacrylate (GMA) onto high-density polyethylene (HDPE) and the atomic force microscopy (AFM) study of the morphologic change of the grafted surface are reported. The grafting was carried out in GMA acetone solutions with different monomer concentrations. Grafting was much faster in a solution with a higher monomer concentration. FTIR analyses proved that GMA had been successfully grafted onto HDPE. The morphologies of grafted HDPE surfaces changed with UV irradiation time. The monomer concentration had a significant effect on the morphologies of the grafted HDPE surfaces. The HDPE surface grafted in a solution with a higher monomer concentration was much rougher than that grafted in a solution with a lower monomer concentration. The growth models of the grafted granules or clusters are also proposed.

  7. Assessing embryo development using swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Caujolle, S.; Cernat, R.; Silvestri, G.; Marques, M. J.; Bradu, A.; Feuchter, T.; Robinson, G.; Griffin, D.; Podoleanu, A.

    2018-03-01

    A detailed assessment of embryo development would assist biologists with selecting the most suitable embryos for transfer leading to higher pregnancy rates. Currently, only low resolution microscopy is employed to perform this assessment. Although this method delivers some information on the embryo surface morphology, no specific details are shown related to its inner structure. Using a Master-Slave Swept-Source Optical Coherence Tomography (SS-OCT), images of bovine embryos from day 7 after fertilization were collected from different depths. The dynamic changes inside the embryos were examined, in detail and in real-time from several depths. To prove our ability to characterize the morphology, a single embryo was imaged over 26 hours. The embryo was deprived of its life support environment, leading to its death. Over this period, clear morphological changes were observed.

  8. [Quantitative study of the prothallial morphogenesis in Asplenium species].

    PubMed

    Henriet, M; Auquière, J P; Moens, P

    1976-01-01

    A precedent paper concerned a qualitative analysis of the gametophytic development in nine Asplenium species. By a quantitative study, we specify the parental relationships among these species. The surface of the gametophyte and the number of maginal hairs increase differently for each species. The density of the marginal hairs depends on the considered species. The relation among the morphological gametophytic parameters is constant in a group of determined species. The principal componant analysis is realized for all the parameters measured during the prothallial development. It confirms parental relationships among the diploids and tetraploids species on a morphological point of vue.

  9. Optimizing ultrathin Ag films for high performance oxide-metal-oxide flexible transparent electrodes through surface energy modulation and template-stripping procedures

    PubMed Central

    Yang, Xi; Gao, Pingqi; Yang, Zhenhai; Zhu, Juye; Huang, Feng; Ye, Jichun

    2017-01-01

    Among new flexible transparent conductive electrode (TCE) candidates, ultrathin Ag film (UTAF) is attractive for its extremely low resistance and relatively high transparency. However, the performances of UTAF based TCEs critically depend on the threshold thickness for growth of continuous Ag films and the film morphologies. Here, we demonstrate that these two parameters could be strongly altered through the modulation of substrate surface energy. By minimizing the surface energy difference between the Ag film and substrate, a 9 nm UTAF with a sheet resistance down to 6.9 Ω sq−1 can be obtained using an electron-beam evaporation process. The resultant UTAF is completely continuous and exhibits smoother morphologies and smaller optical absorbances in comparison to the counterpart of granular-type Ag film at the same thickness without surface modulation. Template-stripping procedure is further developed to transfer the UTAFs to flexible polymer matrixes and construct Al2O3/Ag/MoOx (AAM) electrodes with excellent surface morphology as well as optical and electronic characteristics, including a root-mean-square roughness below 0.21 nm, a transparency up to 93.85% at 550 nm and a sheet resistance as low as 7.39 Ω sq−1. These AAM based electrodes also show superiority in mechanical robustness, thermal oxidation stability and shape memory property. PMID:28291229

  10. Optimizing ultrathin Ag films for high performance oxide-metal-oxide flexible transparent electrodes through surface energy modulation and template-stripping procedures

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Gao, Pingqi; Yang, Zhenhai; Zhu, Juye; Huang, Feng; Ye, Jichun

    2017-03-01

    Among new flexible transparent conductive electrode (TCE) candidates, ultrathin Ag film (UTAF) is attractive for its extremely low resistance and relatively high transparency. However, the performances of UTAF based TCEs critically depend on the threshold thickness for growth of continuous Ag films and the film morphologies. Here, we demonstrate that these two parameters could be strongly altered through the modulation of substrate surface energy. By minimizing the surface energy difference between the Ag film and substrate, a 9 nm UTAF with a sheet resistance down to 6.9 Ω sq-1 can be obtained using an electron-beam evaporation process. The resultant UTAF is completely continuous and exhibits smoother morphologies and smaller optical absorbances in comparison to the counterpart of granular-type Ag film at the same thickness without surface modulation. Template-stripping procedure is further developed to transfer the UTAFs to flexible polymer matrixes and construct Al2O3/Ag/MoOx (AAM) electrodes with excellent surface morphology as well as optical and electronic characteristics, including a root-mean-square roughness below 0.21 nm, a transparency up to 93.85% at 550 nm and a sheet resistance as low as 7.39 Ω sq-1. These AAM based electrodes also show superiority in mechanical robustness, thermal oxidation stability and shape memory property.

  11. Light reflected from colored mulches affects aroma and phenol content of sweet basil (Ocimum basilicum L.) leaves.

    PubMed

    Loughrin, J H; Kasperbauer, M J

    2001-03-01

    Basil (Ocimum basilicum L.) is an herb the leaves of which are used to add a distinct aroma and flavor to food. It was hypothesized that the size and chemical composition of sun-grown basil leaves could be influenced by the color of light reflected from the soil surface and by the action of the reflected light through the natural growth regulatory system within the growing plants. Leaf morphology, aroma compounds, and soluble phenolics were compared in basil that had been grown over six colors of polyethylene row covers. Altering the ratios of blue, red, and far-red light reflected to growing plants influenced both leaf morphology and chemistry. Leaves developing over red surfaces had greater area, moisture percentage (succulence), and fresh weight than those developing over black surfaces. Basil grown over yellow and green surfaces produced significantly higher concentrations of aroma compounds than did basil grown over white and blue covers. Leaves grown over yellow and green mulches also contained significantly higher concentrations of phenolics than those grown over the other colors. Clearly, the wavelengths (color) of light reflected to growing basil plants affected leaf size, aroma, and concentrations of soluble phenolics, some of which are antioxidants.

  12. Folding, But Not Surface Area Expansion, Is Associated with Cellular Morphological Maturation in the Fetal Cerebral Cortex

    PubMed Central

    Studholme, Colin; Frias, Antonio E.

    2017-01-01

    Altered macroscopic anatomical characteristics of the cerebral cortex have been identified in individuals affected by various neurodevelopmental disorders. However, the cellular developmental mechanisms that give rise to these abnormalities are not understood. Previously, advances in image reconstruction of diffusion magnetic resonance imaging (MRI) have made possible high-resolution in utero measurements of water diffusion anisotropy in the fetal brain. Here, diffusion anisotropy within the developing fetal cerebral cortex is longitudinally characterized in the rhesus macaque, focusing on gestation day (G85) through G135 of the 165 d term. Additionally, for subsets of animals characterized at G90 and G135, immunohistochemical staining was performed, and 3D structure tensor analyses were used to identify the cellular processes that most closely parallel changes in water diffusion anisotropy with cerebral cortical maturation. Strong correlations were found between maturation of dendritic arbors on the cellular level and the loss of diffusion anisotropy with cortical development. In turn, diffusion anisotropy changes were strongly associated both regionally and temporally with cortical folding. Notably, the regional and temporal dependence of diffusion anisotropy and folding were distinct from the patterns observed for cerebral cortical surface area expansion. These findings strengthen the link proposed in previous studies between cellular-level changes in dendrite morphology and noninvasive diffusion MRI measurements of the developing cerebral cortex and support the possibility that, in gyroencephalic species, structural differentiation within the cortex is coupled to the formation of gyri and sulci. SIGNIFICANCE STATEMENT Abnormal brain morphology has been found in populations with neurodevelopmental disorders. However, the mechanisms linking cellular level and macroscopic maturation are poorly understood, even in normal brains. This study contributes new understanding to this subject using serial in utero MRI measurements of rhesus macaque fetuses, from which macroscopic and cellular information can be derived. We found that morphological differentiation of dendrites was strongly associated both regionally and temporally with folding of the cerebral cortex. Interestingly, parallel associations were not observed with cortical surface area expansion. These findings support the possibility that perturbed morphological differentiation of cells within the cortex may underlie abnormal macroscopic characteristics of individuals affected by neurodevelopmental disorders. PMID:28069920

  13. Using Repeated LIDAR to Characterize Topographic Changes in Riparian Areas and Stream Channel Morphology in Areas Undergoing Urban Development: An Accuracy Assessment Guide for Local Watershed Managers

    EPA Science Inventory

    Urban development and the corresponding increases in impervious surfaces associated with that development have long been known to have adverse impacts upon urban riparian systems, water quality and quantity, groundwater recharge, streamflow, and aquatic ecosystem integrity. The ...

  14. Quantification of Marangoni flows and film morphology during solid film formation by inkjet printing

    NASA Astrophysics Data System (ADS)

    Ishizuka, Hirotaka; Fukai, Jun

    2018-01-01

    We visualized experimentally the internal flow inside inkjet droplets of polystyrene-anisole solution during solid film formation on substrates at room temperature. The effects of contact angle and evaporation rate on the internal flow and film morphology were quantitatively investigated. The transport process during film formation was examined by measuring the relationship between internal flow and film morphology, which provided three remarkable findings. First, self-pinning and the strength of outward flow on the free surface under 2.3 Pa s determined film morphology. The solute distribution, corresponding to rim areas in ring-like films and a convex trough in dot-like films, had already developed at self-pinning. Second, the mass fraction at self-pinning close to the contact line converged to one, regardless of the film morphology. This implies that self-pinning is independent of parameters such as the contact angle and evaporation rate. Third, at room temperature, the solutal Marangoni numbers were 20-30 times larger than the thermal ones. Thus, the outward flow on the free surface caused by the solutal Marangoni effect dominates in droplets before self-pinning. The solutal Marangoni number at self-pinning and thickness variation at the center of the film displayed a good relationship for droplets with different contact angles and evaporation rates. This suggests that film morphology can be technically controlled by solutal Marangoni number at room temperature.

  15. Reactive solid surface morphology variation via ionic diffusion.

    PubMed

    Sun, Zhenchao; Zhou, Qiang; Fan, Liang-Shih

    2012-08-14

    In gas-solid reactions, one of the most important factors that determine the overall reaction rate is the solid morphology, which can be characterized by a combination of smooth, convex and concave structures. Generally, the solid surface structure varies in the course of reactions, which is classically noted as being attributed to one or more of the following three mechanisms: mechanical interaction, molar volume change, and sintering. Here we show that if a gas-solid reaction involves the outward ionic diffusion of a solid-phase reactant then this outward ionic diffusion could eventually smooth the surface with an initial concave and/or convex structure. Specifically, the concave surface is filled via a larger outward diffusing surface pointing to the concave valley, whereas the height of the convex surface decreases via a lower outward diffusion flux in the vertical direction. A quantitative 2-D continuum diffusion model is established to analyze these two morphological variation processes, which shows consistent results with the experiments. This surface morphology variation by solid-phase ionic diffusion serves to provide a fourth mechanism that supplements the traditionally acknowledged solid morphology variation or, in general, porosity variation mechanisms in gas-solid reactions.

  16. Phase-field modeling of void anisotropic growth behavior in irradiated zirconium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, G. M.; Wang, H.; Lin, De-Ye

    2017-06-01

    A three-dimensional (3D) phase field model was developed to study the effects of surface energy and diffusivity anisotropy on void growth behavior in irradiated Zr. The gamma surface energy function, which is used in the phase field model, was developed with the surface energy anisotropy calculated from the molecular dynamics (MD) simulations. It is assumed that vacancies have much larger mobility in c-axis than a- and b- axes while interstitials have much larger mobility in basal plane then that in c-axis. With the model, the equilibrium void morphology and the effect of defect concentrations and defect mobility anisotropy on voidmore » growth behavior were simulated. The simulations demonstrated that 1) The developed phase-field model can correctly reproduce the faceted void morphology predicted by the Wullf construction. 2) With isotropic diffusivity the void prefers to grow on the basal plane. 3) When the vacancy has large mobility along c-axis and interstitial has a large mobility on the basal plane of hexagonal closed packed (hcp) Zr alloys a platelet void grows in c-direction and shrinks on the basal plane, which is in agreement with the experimental observation of void growth behavior in irradiated Zr.« less

  17. Experimental and theoretical study to explain the morphology of CaMoO4 crystals

    NASA Astrophysics Data System (ADS)

    Oliveira, F. K. F.; Oliveira, M. C.; Gracia, L.; Tranquilin, R. L.; Paskocimas, C. A.; Motta, F. V.; Longo, E.; Andrés, J.; Bomio, M. R. D.

    2018-03-01

    CaMoO4 crystals were prepared by a controlled co-precipitation method and processed in a domestic microwave-assisted hydrothermal system with two different surfactants (ethyl 4-dimethylaminobenzoate and 1,2,4,5-benzenetetracarboxylic dianhydride). The corresponding structures were characterized by X-ray diffraction and Rietveld refinement techniques, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, and photoluminescence measurements. Field emission scanning electron microscopy was used to investigate the morphology of the as-synthesized aggregates. The structure, the surface stability of the (001), (112), (100), (110), (101), and (111) surfaces of CaMoO4, and their morphological transformations were investigated through systematic first-principles calculations within the density functional theory method at the B3LYP level. Analysis of the surface structures showed that the electronic properties were associated with the presence of undercoordinated [CaOx] (x = 5 and 6) and [MoOy] (y = 4 and 3) clusters. The relative surfaces energies were tuned to predict a complete map of the morphologies available through a Wulff construction approach. The results reveal that the experimental and theoretical morphologies obtained coincide when the surface energies of the (001) and (101) surfaces increase, while the surface energy of the (100) facet decreases simultaneously. The results provide a comprehensive catalog of the morphologies most likely to be present under realistic conditions, and will serve as a starting point for future studies on the surface chemistry of CaMoO4 crystals.

  18. Graphene as a Coating for Plasma Facing Components

    NASA Astrophysics Data System (ADS)

    Navarro, Marcos; Zamiri, Marziyeh; Kulcinski, Gerald; Lagally, Max; Santarius, John

    2017-10-01

    This research explores the protection by graphene of plasma facing materials bombarded with energetic ions of helium. Few studies have shown that graphene can act as a protective layer against sputtering due to energetic ions. In the presence of such irradiation, plasma facing components (PFC's) tend to develop surface morphologies that lead to the sputtering of wall material, potentially diminishing the lifetime of the PFC's and plasma performance. Since plasmas have broad applications and the quality of transferred and grown graphene is different, we have used a chemical vapor deposition method to grow on other substrates. We have also shown that graphene can reduce changes on surface morphology due to energetic helium. After irradiation, in the case of graphene-covered tungsten, our results show that, compared to the uncovered W, graphene suppresses these morphologies that form on the surface of hot W. Using Raman spectroscopy as a diagnostic, the graphene coating shows little sign of damage after being irradiated, indicating that there is little to no sputtering of carbon impurities from the surface. We have determined that the mass losses in W have been reduced significantly, which may lead to an improved plasma performance and longer PFC lifetimes. Supported by DHS Project 2015-DN-077-ARI095 and the Grainger Foundation.

  19. Effects of hydrogen peroxide on the light reflectance and morphology of bovine enamel.

    PubMed

    Kwon, Y H; Huo, M S; Kim, K H; Kim, S K; Kim, Y J

    2002-05-01

    The purpose of this study was to examine the effects of a bleaching agent (30% hydrogen peroxide) on the surface of bovine enamel using a scanning electron microscope and a UV-VIS-NIR spectrophotometer. Five non-carious bovine incisors were bleached for 0, 1, 2 and 3 days using 30% hydrogen peroxide. The light reflectance spectrum was measured using a spectrophotometer with diffuse reflectance mode. Colour values and colour differences in the teeth were evaluated from the reflectance measurements with the CIE L*a*b* colour coordinate system. Surface alterations in the bleached and unbleached teeth were studied using a scanning electron microscope. The change of reflectance in the teeth was related to the change of colour. Most reflectance change occurred within a 1-day bleaching, and this result was confirmed by a CIE L*a*b* colour coordinate system. The colour differences in the bleached teeth were significant enough to be perceived by the observer's eye. The comparison of bleached to unbleached bovine enamel revealed that the bleached surface showed non-uniform slight morphological alterations, and it developed varying degrees of surface porosity. This study indicates that the bleached bovine teeth showed apparent colour differences as well as slight morphological alterations after bleaching.

  20. Visualization and Quantitative Analysis of Crack-Tip Plastic Zone in Pure Nickel

    NASA Astrophysics Data System (ADS)

    Kelton, Randall; Sola, Jalal Fathi; Meletis, Efstathios I.; Huang, Haiying

    2018-05-01

    Changes in surface morphology have long been thought to be associated with crack propagation in metallic materials. We have studied areal surface texture changes around crack tips in an attempt to understand the correlations between surface texture changes and crack growth behavior. Detailed profiling of the fatigue sample surface was carried out at short fatigue intervals. An image processing algorithm was developed to calculate the surface texture changes. Quantitative analysis of the crack-tip plastic zone, crack-arrested sites near triple points, and large surface texture changes associated with crack release from arrested locations was carried out. The results indicate that surface texture imaging enables visualization of the development of plastic deformation around a crack tip. Quantitative analysis of the surface texture changes reveals the effects of local microstructures on the crack growth behavior.

  1. Toward optimizing dental implant performance: Surface characterization of Ti and TiZr implant materials.

    PubMed

    Murphy, M; Walczak, M S; Thomas, A G; Silikas, N; Berner, S; Lindsay, R

    2017-01-01

    Targeting understanding enhanced osseointegration kinetics, the goal of this study was to characterize the surface morphology and composition of Ti and TiZr dental implant substrates subjected to one of two surface treatments developed by Straumann. These two treatments are typically known as SLA and SLActive, with the latter resulting in more rapid osseointegration. A range of techniques was applied to characterize four different substrate/surface treatment combinations (Ti SLA , Ti SLActive , TiZr SLA , and TiZr SLActive ). Contact angle measurements established their hydrophilic/hydrophobic nature. Surface morphology was probed with scanning electron microscopy. X-ray diffraction, Raman μ-spectroscopy, and X-ray photoelectron spectroscopy were used to elucidate the composition of the near-surface region. Consistent with previous work, surface morphology was found to differ only at the nanoscale, with both SLActive substrates displaying nano-protrusions. Spectroscopic data indicate that all substrates exhibit surface films of titanium oxide displaying near TiO 2 stoichiometry. Raman μ-spectroscopy reveals that amorphous TiO 2 is most likely the only phase present on Ti SL A , whilst rutile-TiO 2 is also evidenced on Ti SLActive , TiZr SLA , and TiZr SLActive . For TiZr alloy substrates, there is no evidence of discrete phases of oxidized Zr. X-ray photoelectron spectra demonstrate that all samples are terminated by adventitious carbon, with it being somewhat thicker (∼1nm) on Ti SL A and TiZr SLA . Given previous in vivo studies, acquired data suggest that both nanoscale protrusions, and a thinner layer of adventitious carbon contribute to the more rapid osseointegration of SLActive dental implants. Composition of the surface oxide layer is apparently less important in determining osseointegration kinetics. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Growth morphology of flux-synthesized La4Ti3O12 particles

    NASA Astrophysics Data System (ADS)

    Hori, Shigeo; Orum, Aslihan; Takatori, Kazumasa; Ikeda, Tomiko; Yoshimura, Masamichi; Tani, Toshihiko

    2017-06-01

    Anisometric-shaped particles were required for preparation of oriented ceramics by the reactive-templated grain growth method. Hexagonal plate-like particles of La4Ti3O12, (111)-type layered perovskite, were prepared by a molten salt synthesis (MSS), and the relationship between the morphology and crystal structure of the particles was analysed. La4Ti3O12 phase was obtained in KCl and NaCl fluxes whereas not obtained in LiCl. The developed plane of the plate-like particles was determined to be the (00l) plane and the side planes of the particle were found to be parallel the {h0l} planes. Surface steps with a height of approx. 0.9 nm were measured on the developed plane. The step height corresponds to the distance between two adjacent interlayers, which indicates the lowest surface energy of the planes along the interlayers.

  3. [Morphologic characteristics of the endometrium in women with endometriosis].

    PubMed

    Skopichev, V G; Savitkiĭ, G A; Gorbushin, S M

    1998-01-01

    It was established that in accordance with certain phases of sexual cycle (menstrual cycle in women and estral cycle in rats) on the background of hormone action at follicular and luteal phase the surface of epitheliocytes acquires specific relief (formation and degradation of microvilli appropriately in first and second halves of the cycle, accordingly). Disturbance of cyclic change of the relief of apical surface of epitheliocytes of the endometrium, persistence of high binding activity of the cationic dye and formation of intercellular clefts were demonstrated in developing endometriosis, which significantly interferes with the reproductive function. This was suggested to be an unfavourable result of cytotoxic effect of autoimmune processes that develop due to implantation of cells of endometrium in abdominal cavity and initiation of cooperative cellular response, which seems to be morphologically demonstrated by significant increase in number of macrophages in tissues of the uterus and in menstrual discharge.

  4. Morphology of transverse aeolian ridges (TARs) on Mars from a large sample: Further evidence of a megaripple origin?

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Barchyn, Thomas E.; Boulding, Adam

    2017-04-01

    Using HiRISE digital terrain models (DTMs), we developed a large morphological dataset to examine the three-dimensional shape, size, and scaling of Martian transverse aeolian ridges (TARs). Considerable debate exists on the characteristic morphology of TARs and the origins of these enigmatic bedforms. Some researchers suggest polygenesis or multiple classes of similar bedforms. Reliably characterizing the morphology of TARs is an essential prerequisite to developing and evaluating process-based models of TAR genesis and unraveling aeolian processes on the surface of Mars. We present measurements of TAR morphology from a large, DTM-derived dataset (n = 2295). We focused on TARs with 'simple' morphologies in order enable more defensible discretization. Histograms and cumulative log-frequency plots of morphometric parameters (length, width, height, elongation ratio, and wavelength) indicate the sample represents a continuum of bedforms from a single population. A typical TAR from our dataset is 88.5 m long (longest planview axis), 17.3 m wide (shortest planview axis), 1.3 m tall, and has a wavelength of 25.8 m. Combined with these data, the bulk of evidence presented to date suggests that interpreting TARs as megaripples is the most viable working hypothesis.

  5. Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces.

    PubMed

    Hasan, Jafar; Webb, Hayden K; Truong, Vi Khanh; Pogodin, Sergey; Baulin, Vladimir A; Watson, Gregory S; Watson, Jolanta A; Crawford, Russell J; Ivanova, Elena P

    2013-10-01

    The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on its physical surface structure. As such, they provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. Their effectiveness against a wide spectrum of bacteria, however, is yet to be established. Here, the bactericidal properties of the wings were tested against several bacterial species, possessing a range of combinations of morphology and cell wall type. The tested species were primarily pathogens, and included Bacillus subtilis, Branhamella catarrhalis, Escherichia coli, Planococcus maritimus, Pseudomonas aeruginosa, Pseudomonas fluorescens, and Staphylococcus aureus. The wings were found to consistently kill Gram-negative cells (i.e., B. catarrhalis, E. coli, P. aeruginosa, and P. fluorescens), while Gram-positive cells (B. subtilis, P. maritimus, and S. aureus) remained resistant. The morphology of the cells did not appear to play any role in determining cell susceptibility. The bactericidal activity of the wing was also found to be quite efficient; 6.1 ± 1.5 × 10(6) P. aeruginosa cells in suspension were inactivated per square centimeter of wing surface after 30-min incubation. These findings demonstrate the potential for the development of selective bactericidal surfaces incorporating cicada wing nanopatterns into the design.

  6. Development of micro-four-point probe in a scanning tunneling microscope for in situ electrical transport measurement.

    PubMed

    Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua; Jia, Jin-Feng

    2015-05-01

    Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO3 surface.

  7. Effects of surface stability on the morphological transformation of metals and metal oxides as investigated by first-principles calculations.

    PubMed

    Andrés, Juan; Gracia, Lourdes; Gouveia, Amanda Fernandes; Ferrer, Mateus Meneghetti; Longo, Elson

    2015-10-09

    Morphology is a key property of materials. Owing to their precise structure and morphology, crystals and nanocrystals provide excellent model systems for joint experimental and theoretical investigations into surface-related properties. Faceted polyhedral crystals and nanocrystals expose well-defined crystallographic planes depending on the synthesis method, which allow for thoughtful investigations into structure-reactivity relationships under practical conditions. This feature article introduces recent work, based on the combined use of experimental findings and first-principles calculations, to provide deeper knowledge of the electronic, structural, and energetic properties controlling the morphology and the transformation mechanisms of different metals and metal oxides: Ag, anatase TiO2, BaZrO3, and α-Ag2WO4. According to the Wulff theorem, the equilibrium shapes of these systems are obtained from the values of their respective surface energies. These investigations are useful to gain further understanding of how to achieve morphological control of complex three-dimensional crystals by tuning the ratio of the surface energy values of the different facets. This strategy allows the prediction of possible morphologies for a crystal and/or nanocrystal by controlling the relative values of surface energies.

  8. Effect of Shot Peening in Different Shot Distance and Shot Angle on Surface Morphology, Surface Roughness and Surface Hardness of 316L Biomaterial

    NASA Astrophysics Data System (ADS)

    Umbu Kondi Maliwemu, Erich; Malau, Viktor; Iswanto, Priyo Tri

    2018-01-01

    Shot peening is a mechanical surface treatment with a beneficial effect to generate compressive residual stress caused by plastic deformation on the surface of material. This plastic deformation can improve the surface characteristics of metallic materials, such as modification of surface morphology, surface roughness, and surface hardness. The objective of this study is to investigate the effect of shot peening in different shot distance and shot angle on surface morphology, surface roughness, and surface hardness of 316L biomaterial. Shot distance was varied at 6, 8, 10, and 12 cm and shot angle at 30, 60, and 90°, working pressure at 7 kg/cm2, shot duration for 20 minutes, and using steel balls S-170 with diameter of 0.6 mm. The results present that the shot distance and shot angle of shot peening give the significant effect to improve the surface morphology, surface roughness, and surface hardness of 316 L biomaterial. Shot peening can increase the surface roughness by the increasing of shot distance and by the decreasing of shot angle. The nearest shot distance (6 cm) and the largest shot angle (90°) give the best results on the grain refinement with the surface roughness of 1.04 μm and surface hardness of 534 kg/mm2.

  9. Effects of macro- versus nanoporous silicon substrates on human aortic endothelial cell behavior

    PubMed Central

    2014-01-01

    Human aortic endothelial cells play a key role in the pathogenesis of atherosclerosis, which is a common, progressive, and multifactorial disease that is the clinical endpoint of an inflammatory process and endothelial dysfunction. Study and development of new therapies against cardiovascular disease must be tested in vitro cell models, prior to be evaluated in vivo. To this aim, new cell culture platforms are developed that allow cells to grow and respond to their environment in a realistic manner. In this work, the cell adhesion and morphology of endothelial cells are investigated on functionalized porous silicon substrates with two different pore size configurations: macroporous and nanoporous silicon. Herein, we modified the surfaces of porous silicon substrates by aminopropyl triethoxysilane, and we studied how different pore geometries induced different cellular response in the cell morphology and adhesion. The cell growth over the surface of porous silicon becomes an attractive field, especially for medical applications. Surface properties of the biomaterial are associated with cell adhesion and as well as, with proliferation, migration and differentiation. PMID:25246859

  10. Polyimide-Based Capacitive Humidity Sensor

    PubMed Central

    Steinmaßl, Matthias; Endres, Hanns-Erik; Drost, Andreas; Eisele, Ignaz; Kutter, Christoph; Müller-Buschbaum, Peter

    2018-01-01

    The development of humidity sensors with simple transduction principles attracts considerable interest by both scientific researchers and industrial companies. Capacitive humidity sensors, based on polyimide sensing material with different thickness and surface morphologies, are prepared. The surface morphology of the sensing layer is varied from flat to rough and then to nanostructure called nanograss by using an oxygen plasma etch process. The relative humidity (RH) sensor selectively responds to the presence of water vapor by a capacitance change. The interaction between polyimide and water molecules is studied by FTIR spectroscopy. The complete characterization of the prepared capacitive humidity sensor performance is realized using a gas mixing setup and an evaluation kit. A linear correlation is found between the measured capacitance and the RH level in the range of 5 to 85%. The morphology of the humidity sensing layer is revealed as an important parameter influencing the sensor performance. It is proved that a nanograss-like structure is the most effective for detecting RH, due to its rapid response and recovery times, which are comparable to or even better than the ones of commercial polymer-based sensors. This work demonstrates the readiness of the developed RH sensor technology for industrialization. PMID:29751632

  11. Emphasizing the role of surface chemistry on hydrophobicity and cell adhesion behavior of polydimethylsiloxane/TiO2 nanocomposite films.

    PubMed

    Yousefi, Seyedeh Zahra; Tabatabaei-Panah, Pardis-Sadat; Seyfi, Javad

    2018-07-01

    Improving the bioinertness of materials is of great importance for developing biomedical devices that contact human tissues. The main goal of this study was to establish correlations among surface morphology, roughness and chemistry with hydrophobicity and cell adhesion in polydimethylsiloxane (PDMS) nanocomposites loaded with titanium dioxide (TiO 2 ) nanoparticles. Firstly, wettability results showed that the nanocomposite loaded with 30 wt.% of TiO 2 exhibited a superhydrophobic behavior; however, the morphology and roughness analysis proved that there was no discernible difference between the surface structures of samples loaded with 20 and 30 wt.% of nanoparticles. Both cell culture and MTT assay experiments showed that, despite the similarity between the surface structures, the sample loaded with 30 wt.% nanoparticles exhibits the greatest reduction in the cell viability (80%) as compared with the pure PDMS film. According to the X-ray photoelectron spectroscopy results, the remarkable reduction in cell viability of the superhydrophobic sample could be majorly attributed to the role of surface chemistry. The obtained results emphasize the importance of adjusting the surface properties especially surface chemistry to gain the optimum cell adhesion behavior. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Gas-phase surface esterification of cellulose microfibrils and whiskers.

    PubMed

    Berlioz, Sophie; Molina-Boisseau, Sonia; Nishiyama, Yoshiharu; Heux, Laurent

    2009-08-10

    A new and highly efficient synthetic method has been developed for the surface esterification of model cellulosic substrates of high crystallinity and accessibility, namely, freeze-dried tunicin whiskers and bacterial cellulose microfibrils dried by the critical point method. The reaction, which is based on the gas-phase action of palmitoyl chloride, was monitored by solid-state CP-MAS (13)C NMR. It was found that the grafting density not only depended on the experimental conditions, but also on the nature and conditioning of the cellulose samples. The structural and morphological modifications of the substrates at various degrees of grafting were revealed by scanning electron microscopy and X-ray diffraction analysis. These characterizations indicated that the esterification proceeded from the surface of the substrate to their crystalline core. Hence, for moderate degree of substitution, the surface was fully grafted whereas the cellulose core remained unmodified and the original fibrous morphology maintained. An almost total esterification could be achieved under certain conditions, leading to highly substituted cellulose esters, presenting characteristic X-ray diffraction patterns.

  13. Quantification of metallic nanoparticle morphology with tilt series imaging by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Dutta, Aniruddha; Yuan, Biao; Clukay, Christopher J.; Grabill, Christopher N.; Heinrich, Helge; Bhattacharya, Aniket; Kuebler, Stephen M.

    2012-02-01

    We report on the quantitative analysis of electrolessly deposited Au and Ag nanoparticles (NPs) on SU8 polymer with the help of High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM) in tilt series. Au NPs act as nucleating agents for the electroless deposition of silver. Au NPs were prepared by attachingAu^3+cations to amine functionalized SU8 polymeric surfaces and then reducing it with aqueous NaBH4. The nanoscale morphology of the deposited NPs on the surface of polymer has been studied from the dark field TEM cross sectional images. Ag NPs were deposited on the cross-linked polymeric surface from a silver citrate solution reduced by hydroquinone. HAADF-STEM enables us to determine the distances between the NPs and their exact locations at and near the surface. The particle distribution, sizes and densities provide us with the data necessary to control the parameters for the development of the electroless deposition technique for emerging nanoscale technologies.

  14. Nano-Crystalline Diamond Films with Pineapple-Like Morphology Grown by the DC Arcjet vapor Deposition Method

    NASA Astrophysics Data System (ADS)

    Li, Bin; Zhang, Qin-Jian; Shi, Yan-Chao; Li, Jia-Jun; Li, Hong; Lu, Fan-Xiu; Chen, Guang-Chao

    2014-08-01

    A nano-crystlline diamond film is grown by the dc arcjet chemical vapor deposition method. The film is characterized by scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction (XRD) and Raman spectra, respectively. The nanocrystalline grains are averagely with 80 nm in the size measured by XRD, and further proven by Raman and HRTEM. The observed novel morphology of the growth surface, pineapple-like morphology, is constructed by cubo-octahedral growth zones with a smooth faceted top surface and coarse side surfaces. The as-grown film possesses (100) dominant surface containing a little amorphous sp2 component, which is far different from the nano-crystalline film with the usual cauliflower-like morphology.

  15. Measurement of the surface morphology of plasma facing components on the EAST tokamak by a laser speckle interferometry approach

    NASA Astrophysics Data System (ADS)

    Hongbei, WANG; Xiaoqian, CUI; Yuanbo, LI; Mengge, ZHAO; Shuhua, LI; Guangnan, LUO; Hongbin, DING

    2018-03-01

    The laser speckle interferometry approach provides the possibility of an in situ optical non-contacted measurement for the surface morphology of plasma facing components (PFCs), and the reconstruction image of the PFC surface morphology is computed by a numerical model based on a phase unwrapping algorithm. A remote speckle interferometry measurement at a distance of three meters for real divertor tiles retired from EAST was carried out in the laboratory to simulate a real detection condition on EAST. The preliminary surface morphology of the divertor tiles was well reproduced by the reconstructed geometric image. The feasibility and reliability of this approach for the real-time measurement of PFCs have been demonstrated.

  16. Maternal deprivation decelerates postnatal morphological lung development of F344 rats.

    PubMed

    Hupa, Katharina Luise; Schmiedl, Andreas; Pabst, Reinhard; Von Hörsten, Stephan; Stephan, Michael

    2014-02-01

    Intensive medical care at premature born infants is often associated with separation of neonates from their mothers. Here, early artificial prolonged separation of rat pups from their dams (Maternal Deprivation, MD) was used to study potential impact on morphological lung maturation. Furthermore, we investigated the influence of an endogenous deficiency of the neuropeptide-cleaving dipeptidyl peptidase IV (DPP4), since the effects of MD are known to be partly mediated via neuropeptidergic effects, hypothesizing that MD will lead to a retardation of postnatal lung development, DPP4-dependendly. We used wild type and CD26/DPP4 deficient rats. For MD, the dam was placed each day into a separate cage for 2 h, while the pups remained in the nest on their own. Morphological lung maturation and cell proliferation at the postnatal days 7, 10, 14, and 21 were determined morphometrically. Maternally deprived wild types showed a retarded postnatal lung development compared with untreated controls in both substrains. During alveolarization, an increased thickness of alveolar septa and a decreased surface of septa about 50% were found. At the end of the morphological lung maturation, the surface of the alveolar septa was decreased at about 25% and the septal thickness remained increased about 20%. The proliferation rate was also decreased about 50% on day 14. However, the MD induced effects were less pronounced in DPP4-deficient rats, due to a significant deceleration already induced by DPP4-deficiency. Thus, MD as a model for postnatal stress experience influences remarkably postnatal development of rats, which is significantly modulated by the DPP4-system. Copyright © 2013 Wiley Periodicals, Inc.

  17. Automated Feature Extraction of Foredune Morphology from Terrestrial Lidar Data

    NASA Astrophysics Data System (ADS)

    Spore, N.; Brodie, K. L.; Swann, C.

    2014-12-01

    Foredune morphology is often described in storm impact prediction models using the elevation of the dune crest and dune toe and compared with maximum runup elevations to categorize the storm impact and predicted responses. However, these parameters do not account for other foredune features that may make them more or less erodible, such as alongshore variations in morphology, vegetation coverage, or compaction. The goal of this work is to identify other descriptive features that can be extracted from terrestrial lidar data that may affect the rate of dune erosion under wave attack. Daily, mobile-terrestrial lidar surveys were conducted during a 6-day nor'easter (Hs = 4 m in 6 m water depth) along 20km of coastline near Duck, North Carolina which encompassed a variety of foredune forms in close proximity to each other. This abstract will focus on the tools developed for the automated extraction of the morphological features from terrestrial lidar data, while the response of the dune will be presented by Brodie and Spore as an accompanying abstract. Raw point cloud data can be dense and is often under-utilized due to time and personnel constraints required for analysis, since many algorithms are not fully automated. In our approach, the point cloud is first projected into a local coordinate system aligned with the coastline, and then bare earth points are interpolated onto a rectilinear 0.5 m grid creating a high resolution digital elevation model. The surface is analyzed by identifying features along each cross-shore transect. Surface curvature is used to identify the position of the dune toe, and then beach and berm morphology is extracted shoreward of the dune toe, and foredune morphology is extracted landward of the dune toe. Changes in, and magnitudes of, cross-shore slope, curvature, and surface roughness are used to describe the foredune face and each cross-shore transect is then classified using its pre-storm morphology for storm-response analysis.

  18. Does lake size matter? Combining morphology and process modeling to examine the contribution of lake classes to population-scale processes

    USGS Publications Warehouse

    Winslow, Luke A.; Read, Jordan S.; Hanson, Paul C.; Stanley, Emily H.

    2014-01-01

    With lake abundances in the thousands to millions, creating an intuitive understanding of the distribution of morphology and processes in lakes is challenging. To improve researchers’ understanding of large-scale lake processes, we developed a parsimonious mathematical model based on the Pareto distribution to describe the distribution of lake morphology (area, perimeter and volume). While debate continues over which mathematical representation best fits any one distribution of lake morphometric characteristics, we recognize the need for a simple, flexible model to advance understanding of how the interaction between morphometry and function dictates scaling across large populations of lakes. These models make clear the relative contribution of lakes to the total amount of lake surface area, volume, and perimeter. They also highlight the critical thresholds at which total perimeter, area and volume would be evenly distributed across lake size-classes have Pareto slopes of 0.63, 1 and 1.12, respectively. These models of morphology can be used in combination with models of process to create overarching “lake population” level models of process. To illustrate this potential, we combine the model of surface area distribution with a model of carbon mass accumulation rate. We found that even if smaller lakes contribute relatively less to total surface area than larger lakes, the increasing carbon accumulation rate with decreasing lake size is strong enough to bias the distribution of carbon mass accumulation towards smaller lakes. This analytical framework provides a relatively simple approach to upscaling morphology and process that is easily generalizable to other ecosystem processes.

  19. Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth

    PubMed Central

    Brower, Landon J; Gentry, Lauren K; Napier, Amanda L

    2017-01-01

    Integration of surface-anchored metal-organic frameworks (surMOFs) within hierarchical architectures is necessary for potential sensing, electronic, optical, or separation applications. It is important to understand the fundamentals of film formation for these surMOFs in order to develop strategies for their incorporation with nanoscale control over lateral and vertical dimensions. This research identified processing parameters to control the film morphology for surMOFs of HKUST-1 fabricated by codeposition and seeded deposition. Time and temperature were investigated to observe film formation, to control film thickness, and to tune morphology. Film thickness was investigated by ellipsometry, while film structure and film roughness were characterized by atomic force microscopy. Films formed via codeposition resulted in nanocrystallites anchored to the gold substrate. A dynamic process at the interface was observed with a low density of large particulates (above 100 nm) initially forming on the substrate; and over time these particulates were slowly replaced by the prevalence of smaller crystallites (ca. 10 nm) covering the substrate at a high density. Elevated temperature was found to expedite the growth process to obtain the full range of surface morphologies with reasonable processing times. Seed crystals formed by the codeposition method were stable and nucleated growth throughout a subsequent layer-by-layer deposition process. These seed crystals templated the final film structure and tailor the features in lateral and vertical directions. Using codeposition and seeded growth, different surface morphologies with controllable nanoscale dimensions can be designed and fabricated for integration of MOF systems directly into device architectures and sensor platforms. PMID:29181287

  20. Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth.

    PubMed

    Brower, Landon J; Gentry, Lauren K; Napier, Amanda L; Anderson, Mary E

    2017-01-01

    Integration of surface-anchored metal-organic frameworks (surMOFs) within hierarchical architectures is necessary for potential sensing, electronic, optical, or separation applications. It is important to understand the fundamentals of film formation for these surMOFs in order to develop strategies for their incorporation with nanoscale control over lateral and vertical dimensions. This research identified processing parameters to control the film morphology for surMOFs of HKUST-1 fabricated by codeposition and seeded deposition. Time and temperature were investigated to observe film formation, to control film thickness, and to tune morphology. Film thickness was investigated by ellipsometry, while film structure and film roughness were characterized by atomic force microscopy. Films formed via codeposition resulted in nanocrystallites anchored to the gold substrate. A dynamic process at the interface was observed with a low density of large particulates (above 100 nm) initially forming on the substrate; and over time these particulates were slowly replaced by the prevalence of smaller crystallites (ca. 10 nm) covering the substrate at a high density. Elevated temperature was found to expedite the growth process to obtain the full range of surface morphologies with reasonable processing times. Seed crystals formed by the codeposition method were stable and nucleated growth throughout a subsequent layer-by-layer deposition process. These seed crystals templated the final film structure and tailor the features in lateral and vertical directions. Using codeposition and seeded growth, different surface morphologies with controllable nanoscale dimensions can be designed and fabricated for integration of MOF systems directly into device architectures and sensor platforms.

  1. The morphogenic features of otoconia during larval development of Cynops pyrrhogaster, the Japanese red-bellied newt

    NASA Technical Reports Server (NTRS)

    Steyger, P. S.; Wiederhold, M. L.; Batten, J.

    1995-01-01

    Otoconia are calcified protein matrices within the gravity-sensing organs of the vertebrate vestibular system. Mammalian otoconia are barrel-shaped with triplanar facets at each end. Reptilian otoconia are commonly prismatic or fusiform in shape. Amphibians have all three otoconial morphologies, barrel-shaped otoconia within the utricle, with prismatic and fusiform otoconia in the saccule. Scanning electron microscopy revealed a sequential appearance of all three otoconial morphologies during larval development of the newt, Cynops pyrrhogaster. The first otoconia appear within a single, developing otolith, and some resemble adult barrel-shaped otoconia. As the larvae hatch, around stages 39-42, the single otolith divides into two anatomically separate regions, the utricle and saccule, and both contain otoconia similar to those seen in the single otolith. Throughout development, these otoconia may have variable morphologies, with serrated surfaces, or circumferential striations with either separated facets or adjacent facets in the triplanar end-regions. Small fusiform otoconia occur later, at stage 51, and only in the saccule. Prismatic otoconia appear later still, at stage 55, and again only in the saccule. Thus, although prismatic otoconia are the most numerous in adult newts, it is the last vestibular otoconial morphology to be expressed.

  2. The Development of Gyrification in Childhood and Adolescence

    ERIC Educational Resources Information Center

    White, Tonya; Su, Shu; Schmidt, Marcus; Kao, Chiu-Yen; Sapiro, Guillermo

    2010-01-01

    Gyrification is the process by which the brain undergoes changes in surface morphology to create sulcal and gyral regions. The period of greatest development of brain gyrification is during the third trimester of pregnancy, a period of time in which the brain undergoes considerable growth. Little is known about changes in gyrification during…

  3. From crater functions to partial differential equations: a new approach to ion bombardment induced nonequilibrium pattern formation.

    PubMed

    Norris, Scott A; Brenner, Michael P; Aziz, Michael J

    2009-06-03

    We develop a methodology for deriving continuum partial differential equations for the evolution of large-scale surface morphology directly from molecular dynamics simulations of the craters formed from individual ion impacts. Our formalism relies on the separation between the length scale of ion impact and the characteristic scale of pattern formation, and expresses the surface evolution in terms of the moments of the crater function. We demonstrate that the formalism reproduces the classical Bradley-Harper results, as well as ballistic atomic drift, under the appropriate simplifying assumptions. Given an actual set of converged molecular dynamics moments and their derivatives with respect to the incidence angle, our approach can be applied directly to predict the presence and absence of surface morphological instabilities. This analysis represents the first work systematically connecting molecular dynamics simulations of ion bombardment to partial differential equations that govern topographic pattern-forming instabilities.

  4. Growth of high-quality AlN epitaxial film by optimizing the Si substrate surface

    NASA Astrophysics Data System (ADS)

    Huang, Liegen; Li, Yuan; Wang, Wenliang; Li, Xiaochan; zheng, Yulin; Wang, Haiyan; Zhang, Zichen; Li, Guoqiang

    2018-03-01

    High-quality AlN epitaxial films have been grown on Si substrates by optimizing the hydrofluoric acid (HF) solution for cleaning of Si substrates. Effect of the Si substrate surface on the surface morphology and structural property of AlN epitaxial films is investigated in detail. It is revealed that as the concentration of HF solution increases from 0 to 2.0%, the surface morphology and the crystalline quality are initially improved and then get worse, and show an optimized value at 1.5%. The as-grown ∼200 nm-thick AlN epitaxial films on Si substrates grown with HF solution of 1.5% reveal the root-mean-square (RMS) surface roughness of 0.49 nm and the full-width at half-maximum for AlN(0002) X-ray rocking curve of 0.35°, indicating the smooth surface morphology and the high crystalline quality. The corresponding mechanism is proposed to interpret the effect of Si substrate surface on surface morphology and structural property of AlN epitaxial films, and provides an effective approach for the perspective fabrication of AlN-based devices.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barroo, Cedric; Janvelyan, Nare; Zugic, Branko

    To improve the understanding of catalytic processes, the surface structure and composition of the active materials need to be determined before and after reaction. Morphological changes may occur under reaction conditions and can dramatically influence the reactivity and/or selectivity of a catalyst. Goldbased catalysts with different architectures are currently being developed for selective oxidation reactions at low temperatures. Specifically, nanoporous Au (npAu) with a composition of Au 97-Ag 3 is obtained by dealloying a Ag 70-Au 30 bulk alloy. Recent studies highlight the efficiency of npAu catalysts for methanol oxidation using ozone to activate the catalysts before methanol oxidation. Inmore » this paper, we studied the morphological and compositional changes occurring at the surface of Au-based catalysts in certain conditions.« less

  6. Electrocatalytic reduction of carbon dioxide on electrodeposited tin-based surfaces

    NASA Astrophysics Data System (ADS)

    Alba, Bianca Christina S.; Camayang, John Carl A.; Mopon, Marlon L.; del Rosario, Julie Anne D.

    2017-08-01

    The electrocatalytic reduction of carbon dioxide to small organic molecular compounds provides a means of generating alternative fuel source while suppressing climate change. Suitable catalysts, however, are necessary to optimize its reaction kinetics towards more valuable products. Consequently, in this study, electrodeposited Sn electrodes have been developed as catalysts for CO2 electroreduction. Deposition potential was varied to produce different Sn catalysts. SEM showed varying morphologies and increasing amount as the applied potential becomes more negative. Cyclic voltammetry and chronoamperometry showed that the activity and stability of the catalysts towards CO2 reduction depend on the morphology and presence of tin oxides. These results provide a better understanding on the performance of electrodeposited Sn-based surfaces as catalysts for CO2 reduction.

  7. Nanostructured Metal Oxides for Stoichiometric Degradation of Chemical Warfare Agents.

    PubMed

    Štengl, Václav; Henych, Jiří; Janoš, Pavel; Skoumal, Miroslav

    2016-01-01

    Metal oxides have very important applications in many areas of chemistry, physics and materials science; their properties are dependent on the method of preparation, the morphology and texture. Nanostructured metal oxides can exhibit unique characteristics unlike those of the bulk form depending on their morphology, with a high density of edges, corners and defect surfaces. In recent years, methods have been developed for the preparation of metal oxide powders with tunable control of the primary particle size as well as of a secondary particle size: the size of agglomerates of crystallites. One of the many ways to take advantage of unique properties of nanostructured oxide materials is stoichiometric degradation of chemical warfare agents (CWAs) and volatile organic compounds (VOC) pollutants on their surfaces.

  8. Utility of fluorescence microscopy in embryonic/fetal topographical analysis.

    PubMed

    Zucker, R M; Elstein, K H; Shuey, D L; Ebron-McCoy, M; Rogers, J M

    1995-06-01

    For topographical analysis of developing embryos, investigators typically rely on scanning electron microscopy (SEM) to provide the surface detail not attainable with light microscopy. SEM is an expensive and time-consuming technique, however, and the preparation procedure may alter morphology and leave the specimen friable. We report that by using a high-resolution compound epifluorescence microscope with inexpensive low-power objectives and the fluorochrome acridine orange, we were able to obtain surface images of fixed or fresh whole rat embryos and fetal palates of considerably greater topographical detail than those obtained using routine light microscopy. Indeed the resulting high-resolution images afford not only superior qualitative documentation of morphological observations, but the capability for detailed morphometry via digitization and computer-assisted image analysis.

  9. Effect of fibre laser marking on surface properties and corrosion resistance of a Fe-Ni-Cr alloy

    NASA Astrophysics Data System (ADS)

    Astarita, Antonello; Mandolfino, Chiara; Lertora, Enrico; Gambaro, Carla; Squillace, Antonino; Scherillo, Fabio

    2017-10-01

    Fiber laser techniques are increasing their use in many applications, including modification of material surface properties. In particular they are often used for materials' marking as a non-contact processing. In spite of this, the impact of the laser beam on the surface causes metallurgical and morphological changes. The developments during the laser-material interaction can also affect other surface properties, especially corrosion properties which are crucial in the case of Iron-Nickel alloys. Effect of laser marking on a Fe-Cr-Ni alloy using a Tm-fibre laser (IPG Photonics TRL1904; maximum power: 50W, wavelength: 1904 nm), is described in this paper. In order to evaluate the effect of the laser on corrosion properties a specific ageing test in salt spray has been performed. Moreover, superficial morphology analyses have been performed on samples before and after corrosion tests. Possibilities and limitations of laser marking on these alloys have been discussed, in particular from the point of view of the marked surface corrosion resistance preservation.

  10. Formation of halloysite from feldspar: Low temperature, artificial weathering versus natural weathering

    USGS Publications Warehouse

    Parham, Walter E.

    1969-01-01

    Weathering products formed on surfaces of both potassium and plagioclase feldspar (An70), which were continuously leached in a Soxhlet extraction apparatus for 140 days with 7.21 of distilled water per day at a temperature of approximately 78°C, are morphologically identical to natural products developed on potassium feldspars weathered under conditions of good drainage in the humid tropics. The new products, which first appear as tiny bumps on the feldspar surface, start to develop mainly at exposed edges but also at apparently random sites on flat cleavage surfaces. As weathering continues, the bumps grow outward from the feldspar surface to form tapered projections, which then develop into wide-based thin films or sheets. The thin sheets of many projections merge laterally to form one continuous flame-shaped sheet. The sheets formed on potassium feldspars may then roll to form tubes that are inclined at a high angle to the feldspar surface. Etch pits of triangular outline on the artificially weathered potassium feldspars serve as sites for development of continuous, non-rolled, hollow tubes. It is inferred from its morphology that this weathering product is halloysite or its primitive form. The product of naturally weathered potassium feldspars is halloysite . 4H2O.The flame-shaped films or sheets formed on artificially weathered plagioclase feldspar do not develop into hollow tubes, but instead give rise to a platy mineral that is most probably boehmite. These plates form within the flame-shaped films, and with continued weathering are released as the film deteriorates. There is no indication from this experiment that platy pseudohexagonal kaolinite forms from any of these minerals under the initial stage of weathering.

  11. Morphology of self assembled monolayers using liquid phase reaction on silica and their effect on the morphology of adsorbed insulin

    NASA Astrophysics Data System (ADS)

    Sharma, Indu; Pattanayek, Sudip K.; Aggarwal, Varsha; Ghosh, Subhasis

    2017-05-01

    The effect of roughness of two different categories of self-assembled monolayers (SAMs) with propyl amine and propyl groups respectively on the morphology of adsorbed insulin is observed. SAMs are obtained by liquid phase reaction of silica with organo silane coupling agents (SCA). The influence of the morphology and physical characteristics of the SAMs on the reaction time and concentration of the modifiers are explored. We have tested three SCA containing propyl amine with varying groups linked to Si present on it. In addition, we have used a silane coupling agent to prepare SAM of methyl head group. The approach of these molecules towards the surface depends on the head group and the groups linked to Si of the SCA. The morphology of the surfaces is analysed using power spectral density distribution (PSD), skewness, ellipsometry thickness and surface energy. Both chemical nature and physical morphology of the adsorbent influence the morphology of the adsorbed insulin. In general, a low number of aggregates of big size are formed on the surfaces obtained from low concentration of SAMs, while a higher number but of smaller size of aggregates are formed over surfaces obtained from 1% concentration of SAMs modifiers. The peak to valley ratio of the aggregates of insulin is strongly influenced by the size of grains of SCA over the adsorbent.

  12. The Morphological Anatomy of the Menisci of the Knee Joint in Human Fetuses

    PubMed Central

    Koyuncu, Esra; Özgüner, Gülnur; Öztürk, Kenan; Bilkay, Cemil; Dursun, Ahmet; Sulak, Osman

    2017-01-01

    Background: Development of the foetal period of the meniscus has been reported in different studies. Aims: Evaluation of lateral and medial meniscus development, typing and the relationship of the tibia during the foetal period. Study Design: Anatomical dissection. Methods: We evaluated 210 knee menisci obtained from 105 human foetuses ranging in age from 9 to 40 weeks’ gestation. Foetuses were divided into four groups, and the intra-articular structure was exposed. We subsequently acquired images (Samsung WB 100 26X Optical Zoom Wide, Beijing, China) of the intra-articular structures with the aid of a millimetric ruler. The images were digitized for morphometric analyses and analysed by using Netcad 5.1 Software (Ak Mühendislik, Ankara, Turkey). Results: The lateral and medial meniscal areas as well as the lateral and the medial articular surface areas of the tibia increased throughout gestation. We found that the medial articular surface areas were larger than the lateral articular surface areas, and the difference was statistically significant. The ratios of the mean lateral and medial meniscal areas to the lateral and medial articular surface areas, respectively, of the tibia decreased gradually from the first trimester to full term. The most common shape of the medial meniscus was crescentic (50%), and that of the lateral meniscus was C-shaped (61%). Conclusion: This study reveals the development of morphological changes and morphometric measurements of the menisci. PMID:28832324

  13. Morphology and digitally aided morphometry of the human paracentral lobule.

    PubMed

    Spasojević, Goran; Malobabic, Slobodan; Pilipović-Spasojević, Olivera; Djukić-Macut, Nataša; Maliković, Aleksandar

    2013-02-01

    The human paracentral lobule, the junction of the precentral and postcentral gyri at the medial hemispheric surface, contains several important functional regions, and its variable morphology requires exact morphological and quantitativedata. In order to obtain precise data we investigated the morphology of the paracentral lobule and quantified its visible (extrasulcal) surface. This surface corresponds to commonly used magnetic resonance imaging scout images. We studied 84 hemispheres of adult persons (42 brains; 26 males and 16 females; 20-65 years) fixed in neutral formalin for at least 4 weeks. The medial hemispheric surface was photographed at standard distance and each digital photo was calibrated. Using the intercommissural line system (commissura anterior-commissura posterior or CA-CP line), we performed standardised measurements of the paracentral lobule. Exact determination of its boundaries and morphological types was followed by digital morphometry of its extrasulcal surface using AutoCAD software. We found two distinct morphological types of the human paracentral lobule: continuous type, which was predominant (95.2%), and rare segmented type (4.8%). In hemispheres with segmented cingulate sulcus we also found the short transitional lobulo-limbic gyrus (13.1%). The mean extrasulcal surface of the left paracentral lobule was significantly larger, both in males (left 6.79 cm2 vs. right 5.76 cm2) and in females (left 6.05 cm2 vs. right 5.16 cm2). However, even larger average surfaces in males were not significantly different than the same in females. Reported morphological and quantitative data will be useful during diagnostics and treatment of pathologies affecting the human paracentral lobule, and in further studies of its cytoarchitectonic and functional parcellations.

  14. Generating Neuron Geometries for Detailed Three-Dimensional Simulations Using AnaMorph.

    PubMed

    Mörschel, Konstantin; Breit, Markus; Queisser, Gillian

    2017-07-01

    Generating realistic and complex computational domains for numerical simulations is often a challenging task. In neuroscientific research, more and more one-dimensional morphology data is becoming publicly available through databases. This data, however, only contains point and diameter information not suitable for detailed three-dimensional simulations. In this paper, we present a novel framework, AnaMorph, that automatically generates water-tight surface meshes from one-dimensional point-diameter files. These surface triangulations can be used to simulate the electrical and biochemical behavior of the underlying cell. In addition to morphology generation, AnaMorph also performs quality control of the semi-automatically reconstructed cells coming from anatomical reconstructions. This toolset allows an extension from the classical dimension-reduced modeling and simulation of cellular processes to a full three-dimensional and morphology-including method, leading to novel structure-function interplay studies in the medical field. The developed numerical methods can further be employed in other areas where complex geometries are an essential component of numerical simulations.

  15. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    NASA Astrophysics Data System (ADS)

    Podestà, Alessandro; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo

    2015-12-01

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO2) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.

  16. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it; Borghi, Francesca; Indrieri, Marco

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO{sub 2}) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevantmore » interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.« less

  17. Tailoring the morphology of raspberry-like carbon black/polystyrene composite microspheres for fabricating superhydrophobic surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Yubin; Li, Qiuying, E-mail: liqy@ecust.edu.cn; Shanghai Key Laboratory Polymeric Materials

    In our previous report, raspberry-like carbon black/polystyrene (CB/PS) composite microsphere was prepared through heterocoagulation process. Based on the previous study, in the present work, the morphology of raspberry-like CB/PS particle is tailored through adjusting the polarity and the concentration ratio of CB/PS colloidal suspension with the purpose to prepare particulate film for the fabrication of superhydrophobic surface. Scanning electron microscope (SEM) confirms the morphology of raspberry-like particle and the coverage of CB. Rough surfaces fabricated by raspberry-like particles with proper morphology are observed by SEM and clear evidence of superhydrophobic surface is shown. The structure of raspberry-like particle is analyzedmore » by atom force microscope. The proposed relationship between the hydrophobicity and the structure of CB aggregates on the surface of PS microsphere is discussed in details.« less

  18. Influence of substrate material and surface finishing on the morphology of the calcium-phosphate coating.

    PubMed

    Leitão, E; Barbosa, M A; de Groot, K

    1997-07-01

    The formation of an apatite-like layer was achieved by immersing Ti-6A1-4V, Ti-Al-2.5Fe, and 316 L stainless-steel substrata in Hank's balanced salt solution (HBSS). The layer was characterized by surface analysis techniques, namely X-ray microanalysis and X-ray diffraction, and the morphology was observed by scanning electron microscopy and atomic force microscopy. The concentrations of Ca and P were monitored as a function of time. The morphology of the precipitate layer seems to be dependent both on the type of metal substrate and its surface finish. Polished Ti-6A1-4V and Ti-Al-2.5Fe surfaces exhibit a plate precipitate morphology, whereas rougher surfaces show scattered crystal-like precipitation. The results suggest that the layer produced by immersion of polished titanium alloys in HBSS is constituted by an amorphous apatite.

  19. Behavior of osteoblast-like cells on calcium-deficient hydroxyapatite ceramics composed of particles with different shapes and sizes.

    PubMed

    Kamitakahara, Masanobu; Uno, Yuika; Ioku, Koji

    2014-01-01

    In designing the biomaterials, it is important to control their surface morphologies, because they affect the interactions between the materials and cells. We previously reported that porous calcium-deficient hydroxyapatite (HA) ceramics composed of rod-like particles had advantages over sintered porous HA ceramics; however, the effects of the surface morphology of calcium-deficient HA ceramics on cell behavior have remained unclear. Using a hydrothermal process, we successfully prepared porous calcium-deficient HA ceramics with different surface morphologies, composed of plate-like particles of 200-300, 500-800 nm, or 2-3 μm in width and rod-like particles of 1 or 3-5 μm in width, respectively. The effects of these surface morphologies on the behavior of osteoblast-like cells were examined. Although the numbers of cells adhered to the ceramic specimens did not differ significantly among the specimens, the proliferation rates of cells on the ceramics decreased with decreasing particle size. Our results reveal that controlling the surface morphology that is governed by particle shape and size is important for designing porous calcium-deficient HA ceramics.

  20. Quantification of texture match of the skin graft: function and morphology of the stratum corneum.

    PubMed

    Inoue, K; Matsumoto, K

    1986-01-01

    In an attempt to analyze the "texture match" of grafted skin, functional and morphological aspects of the stratum corneum were studied using the Skin Surface Hydrometer (IBS Inc.) and the scanning electron microscope. The results showed that hygroscopicity and water holding capacity of the stratum corneum played a crucial role in making the skin surface soft and smooth. Morphologically there were regional differences in the surface pattern and the mean area of corneocytes, suggesting that these differences affect skin texture. It is suggested that the present functional and morphological studies of the stratum corneum can provide a quantitative measure of the "texture match".

  1. Effects of morphology and chemical doping on electrochemical properties of metal hydroxides in pseudocapacitors.

    PubMed

    Lee, Gyeonghee; Varanasi, Chakrapani V; Liu, Jie

    2015-02-21

    It is well known that both the structural morphology and chemical doping are important factors that affect the properties of metal hydroxide materials in electrochemical energy storage devices. In this work, an effective method to tailor the morphology and chemical doping of metal hydroxides is developed. It is shown that the morphology and the degree of crystallinity of Ni(OH)2 can be changed by adding glucose in the ethanol-mediated solvothermal synthesis. Ni(OH)2 produced in this manner exhibited an increased specific capacitance, which is partially attributed to its increased surface area. Interestingly, the effect of morphology on cobalt doped-Ni(OH)2 is found to be more effective at low cobalt contents than at high cobalt contents in terms of improving the electrochemical performance. This result reveals the existence of competitive effects between chemical doping and morphology change. These findings will provide important insights to design effective materials for energy storage devices.

  2. Interfacial Interaction in Anodic Aluminum Oxide Templates Modifies Morphology, Surface Area, and Crystallization of Polyamide-6 Nanofibers.

    PubMed

    Xue, Junhui; Xu, Yizhuang; Jin, Zhaoxia

    2016-03-08

    Here, we demonstrated that, when the precipitation process of polyamide-6 (PA6) solution happens in cylindrical channels of an anodized aluminum oxide membrane (AAO), interface interactions between a solid surface, solvent, non-solvent, and PA6 will influence the obtained polymer nanostructures, resulting in complex morphologies, increased surface area, and crystallization changes. With the enhancing interaction of PA6 and the AAO surface, the morphology of PA6 nanostructures changes from solid nanofibers, mesoporous, to bamboo-like, while at the same time, metastable γ-phase domains increase in these PA6 nanostructures. Brunauer-Emmett-Teller (BET) surface areas of solid, bamboo-like, and mesoporous PA6 nanofibers rise from 16, 20.9, to 25 m(2)/g. This study shows that interfacial interaction in AAO template fabrication can be used in manipulating the morphology and crystallization of one-dimensional polymer nanostructures. It also provides us a simple and novel method to create porous PA6 nanofibers with a large surface area.

  3. Controlling morphology in swelling-induced wrinkled surfaces

    NASA Astrophysics Data System (ADS)

    Breid, Derek Ronald

    Wrinkles represent a pathway towards the spontaneous generation of ordered surface microstructure for applications in numerous fields. Examples of highly complex ordered wrinkle structures abound in Nature, but the ability to harness this potential for advanced material applications remains limited. This work focuses on understanding the relationship between the patterns on a wrinkled surface and the experimental conditions under which they form. Because wrinkles form in response to applied stresses, particular attention is given to the nature of the stresses in a wrinkling surface. The fundamental insight gained was then utilized to account for observed wrinkle formation phenomena within more complex geometric and kinetic settings. In order to carefully control and measure the applied stresses on a wrinkling film, a swelling-based system was developed using poly(dimethylsiloxane) (PDMS), surface-oxidized with a UV-ozone treatment. The swelling of the oxidized surface upon exposure to an ethanol vapor atmosphere was characterized using beam-bending experiments, allowing quantitative measurements of the applied stress. The wrinkle morphologies were characterized as a function of the overstress, defined as the ratio of the applied swelling stress to the critical buckling stress of the material. A transition in the dominant morphology of the wrinkled surfaces from dimple patterns to ridge patterns was observed at an overstress value of ˜2. The pattern dependence of wrinkles on the ratio of the principal stresses was examined by fabricating samples with a gradient prestress. When swollen, these samples exhibited a smooth morphological transition from non-equibiaxial to equibiaxial patterns, with prestrains as low as 2.5% exhibiting non-equibiaxial characteristics. This transition was seen both in samples with low and high overstresses. To explore the impact of these stress states in more complex geometries, wrinkling hemispherical surfaces with radii of curvature ranging from 50--1000 μm were fabricated using the same material system. Upon wrinkling, the hemispheres formed complex hierarchical assemblies reminiscent of naturally occurring structures. The curvature of a surface exhibited a correlation with its critical buckling stress, independent of other factors. This enables the surface curvature to be used as an independent control over the dimple-to-ridge transition which occurs as a function of overstress. As in the flat buckling surfaces, this transition was shown to occur at an overstress value of ˜2. Surface curvature was also shown to improve the observed hexagonal ordering of the dimple arrays, resulting in the formation of regular "golf ball" structures. Geometric effects in finite flat plates were also examined. Using circular masks during the oxidation process, plates with radii ranging from 0.4--8.6 mm were created. Upon wrinkling, a dimple-to-ridge transition was observed with increasing plate size, with the morphological switch occurring at a radius of ˜2 mm. This observed transition was not found to be due to the inherent mechanics of plates of different sizes, but instead to a reduction in the oxide conversion due to shadowing or stagnation caused by the masking process, which lowered the applied overstress. The shape of the finite plate was found to have little impact on the resulting wrinkle morphologies. Kinetic aspects of wrinkling were qualitatively characterized by observing the wrinkling process over the course of swelling. Wrinkling was observed to frontally propagate across the surface, and the ordering of the patterns which developed showed a qualitative correlation with the degree of uniformity in the advancing wrinkle front. Swelling with different solvents was found to lead to the formation of different patterns, based on the swelling kinetics of the UVO-treated PDMS upon exposure to each solvent.

  4. Cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity in milled versus unmilled surface of the femoral head.

    PubMed

    Rhyu, Kee Hyung; Cho, Chang Hoon; Yoon, Kyung Sik; Chun, Young Soo

    2016-12-01

    To evaluate cellular activity in milled versus unmilled surface of the femoral head in 21 patients who underwent robot-assisted total hip arthroplasty(THA). The femoral head of 21 consecutive patients who underwent robot-assisted THA for osteonecrosis was used. 10 cc of trabecular bone from the entire milled surface was obtained using a curette. The same amount of trabecular bone was obtained at least 1 cm away from the milled surface and served as a matched control. Cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity in milled versus unmilled surface were assessed. Cell morphology of the milled or unmilled surface was comparable; cells were smaller in the milled surface. Cell viability was a mean of 40% higher in the milled surface (107.4% vs. 67.2%, p<0.001); cell viability at 5 time points was comparable in each group. Osteocalcin activity of cells was slightly higher in the milled surface (1.43 vs. 1.24 ng/ml, p=0.69). Alkaline phosphatase activity of cells was slightly higher in the unmilled surface (150 105 vs. 141 789 U/L, p=0.078). The milled and unmilled surfaces of the femoral head were comparable in terms of cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity.

  5. Development of Biomimetic and Functionally Responsive Surfaces

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Spiros H.

    2010-03-01

    Controlling the surface morphology of solids and manufacturing of functional surfaces with special responsive properties has been the subject of intense research. We report a methodology for creating multifunctionally responsive surfaces by irradiating silicon wafers with femtosecond laser pulses and subsequently coating them with different types of functional conformal coatings. Such surfaces exhibit controlled dual-scale roughness at the micro- and the nano-scale, which mimics the hierarchical morphology of water repellent natural surfaces. When a simple alkylsilane coating is utilized, highly water repellent surfaces are produced that quantitatively compare to those of the Lotus leaf. When a polymer brush is ``grafted from" these surfaces based on a pH-sensitive polymer, the surfaces can alter their behavior from super-hydrophilic (after immersion in a low pH buffer) to super-hydrophobic and water-repellent (following immersion to a high pH buffer). We quantify the water repellency of such responsive systems by drop elasticity measurements whereas we demonstrate that the water repellent state of such surface requires appropriate hydrophobicity of the functionalizing polymer. When a photo-responsive azobenzene-type polymer is deposited, a dynamic optical control of the wetting properties is obtained and the surface can be switched from super-hydrophilic (following UV irradiation) to hydrophobic (following green irradiation). In all the above cases we show that the principal effect of roughness is to cause amplification of the response to the different external stimuli.

  6. Changes in surface morphology and mineralization level of human enamel following in-office bleaching with 35% hydrogen peroxide and light irradiation.

    PubMed

    Berger, Sandrine Bittencourt; Cavalli, Vanessa; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo

    2010-01-01

    The objective of this study was to evaluate the alterations on surface morphology and mineral loss of human enamel following in-office bleaching with 35% hydrogen peroxide and light irradiation. Dental enamel samples were obtained from human third molars and randomly divided into 10 groups (n = 10). The control group remained untreated. Bleached groups were treated with one of three whitening products. Bleaching was performed in a single session, during which bleaching gel was applied to the enamel surface three times for 10 minutes each time. During treatment, the bleaching agents were either irradiated by a halogen light or an LED/diode laser or were not irradiated at all. Microhardness testing was performed with a Knoop indentor and the surface morphologic observations were carried out by scanning electron microscopy (SEM). Cross-sectional microhardness (CSMH) and polarized light microscopy (PLM) were used to measure the depth of demineralization. The results revealed a significant decrease in surface microhardness values and changes to the enamel morphology after bleaching. CSMH and PLM showed that bleached enamel presented lower volume percentage of mineral up to 40 micrometers from the enamel surface and demineralization areas located in the subsuperficial region of enamel, respectively. It was concluded that 35% hydrogen peroxide can alter the surface morphology and the mineralization level of the dental enamel surface and sub-surface regardless of what type of bleaching light is used.

  7. Origin of collapsed pits and branched valleys surrounding the Ius chasma on Mars

    NASA Astrophysics Data System (ADS)

    Vamshi, G. T.; Martha, T. R.; Vinod Kumar, K.

    2014-11-01

    Chasma is a deep, elongated and steep sided depression on planetary surfaces. Several hypothesis have been proposed regarding the origin of chasma. In this study, we analysed morphological features in north and south of Ius chasma. Collapsed pits and branched valleys alongwith craters are prominent morphological features surrounding Ius Chasma, which forms the western part of the well known Valles Marineris chasma system on Martian surface. Analysis of images from the High Resolution Stereo Camera (HRSC) in ESA's Mars Express (MEX) with a spatial resolution of 10 m shows linear arrangement of pits north of the Ius chasma. These pits were initially developed along existing narrow linear valleys parallel to Valles Merineris and are conical in shape unlike flat floored impact craters found adjacent to them. The width of conical pits ranges 1-10 km and depth ranges 1-2 km. With more subsidence, size of individual pits increased gradually and finally coalesced together to create a large depression forming a prominent linear valley. Arrangement of pits in this particular fashion can be attributed to collapse of the surface due to l arge hollows created in the subsurface because of the withdrawal of either magma or dry ice. Branched valleys which are prominent morphologic features south of the Ius chasma could have been formed due to groundwater sapping mechanism as proposed by previous researchers. Episodic release of groundwater in large quantity to the surface could have resulted in surface runoff creating V-shaped valleys, which were later modified into U-shaped valleys due to mass wasting and lack of continued surface runoff.

  8. Surface morphology and dislocation characteristics near the surface of 4H-SiC wafer using multi-directional scanning transmission electron microscopy.

    PubMed

    Sato, Takahiro; Orai, Yoshihisa; Suzuki, Yuya; Ito, Hiroyuki; Isshiki, Toshiyuki; Fukui, Munetoshi; Nakamura, Kuniyasu; Schamp, C T

    2017-10-01

    To improve the reliability of silicon carbide (SiC) electronic power devices, the characteristics of various kinds of crystal defects should be precisely understood. Of particular importance is understanding the correlation between the surface morphology and the near surface dislocations. In order to analyze the dislocations near the surface of 4H-SiC wafers, a dislocation analysis protocol has been developed. This protocol consists of the following process: (1) inspection of surface defects using low energy scanning electron microscopy (LESEM), (2) identification of small and shallow etch pits using KOH low temperature etching, (3) classification of etch pits using LESEM, (4) specimen preparation of several hundred nanometer thick sample using the in-situ focused ion beam micro-sampling® technique, (5) crystallographic analysis using the selected diffraction mode of the scanning transmission electron microscope (STEM), and (6) determination of the Burgers vector using multi-directional STEM (MD-STEM). The results show a correlation between the triangular terrace shaped surface defects and an hexagonal etch pit arising from threading dislocations, linear shaped surface defects and elliptical shaped etch pits arising from basal plane dislocations. Through the observation of the sample from two orthogonal directions via the MD-STEM technique, a basal plane dislocation is found to dissociate into an extended dislocation bound by two partial dislocations. A protocol developed and presented in this paper enables one to correlate near surface defects of a 4H-SiC wafer with the root cause dislocations giving rise to those surface defects. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. In-depth understanding of the relation between CuAlO₂ particle size and morphology for ozone gas sensor detection at a nanoscale level.

    PubMed

    Thirumalairajan, S; Mastelaro, Valmor R; Escanhoela, Carlos A

    2014-12-10

    A morphology-dependent nanomaterial for energy and environment applications is one of the key challenges for materials science and technology. In this study, we investigate the effect of the particle size of CuAlO2 nanostructures prepared through the facile and hydrothermal process to detect ozone gas. Phase analysis and structural information were obtained using X-ray diffraction and micro-Raman studies. The chemical states of CuAlO2 atomic species were determined by X-ray photoelectron spectroscopy. Electron microscopy images revealed the flower and hexagonal shape constituted of pentagon and oval CuAlO2 nanoparticles with average size ∼40 and 80 nm. The specific surface area was measured and found to be 59.8 and 70.8 m(2) g(-1), respectively. The developed CuAlO2 nanostructures not only possess unique morphology but also influence the ozone gas sensing performance. Among the two structures, CuAlO2, with hexagonal morphology, exhibited superior ozone detection for 200 ppb at 250 °C, with a response and good recovery time of 25 and 39 s compared to the flower morphology (28 and 69 s). These results show that not only does the morphology play an major role but also the particle size, surface area, gas adsorption/desorption, and grain-grain contact, as proposed in the gas sensing mechanism. Finally, we consider CuAlO2 material as a good candidate for environment monitoring applications.

  10. Effect of Surface Morphology and Magnetic Impurities on the Electronic Structure in Cobalt-Doped BaFe 2 As 2 Superconductors

    DOE PAGES

    Zou, Qiang; Wu, Zhiming; Fu, Mingming; ...

    2017-02-03

    Combined scanning tunneling microscopy, spectroscopy, and local barrier height (LBH) studies show that low-temperature-cleaved optimally doped Ba(Fe 1–xCo x) 2As 2 crystals with x = 0.06, with T c = 22 K, have complicated morphologies. Although the cleavage surface and hence the morphologies are variable, the superconducting gap maps show the same gap widths and nanometer size inhomogeneities irrelevant to the morphology. Based on the spectroscopy and LBH maps, the bright patches and dark stripes in the morphologies are identified as Ba- and As-dominated surface terminations, respectively. Magnetic impurities, possibly due to Co or Fe atoms, are believed to createmore » local in-gap state and, in addition, suppress the superconducting coherence peaks. Lastly, this study will clarify the confusion on the cleavage surface terminations of the Fe-based superconductors and its relation with the electronic structures.« less

  11. A dynamic monitoring approach for the surface morphology evolution measurement of plasma facing components by means of speckle interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongbei; Cui, Xiaoqian; Feng, Chunlei; Li, Yuanbo; Zhao, Mengge; Luo, Guangnan; Ding, Hongbin

    2017-11-01

    Plasma Facing Components (PFCs) in a magnetically confined fusion plasma device will be exposed to high heat load and particle fluxes, and it would cause PFCs' surface morphology to change due to material erosion and redeposition from plasma wall interactions. The state of PFCs' surface condition will seriously affect the performance of long-pulse or steady state plasma discharge in a tokamak; it will even constitute an enormous threat to the operation and the safety of fusion plasma devices. The PFCs' surface morphology evolution measurement could provide important information about PFCs' real-time status or damage situation and it would help to a better understanding of the plasma wall interaction process and mechanism. Meanwhile through monitoring the distribution of dust deposition in a tokamak and providing an upper limit on the amount of loose dust, the PFCs' surface morphology measurement could indirectly contribute to keep fusion operational limits and fusion device safety. Aiming at in situ dynamic monitoring PFCs' surface morphology evolution, a laboratory experimental platform DUT-SIEP (Dalian University of Technology-speckle interferometry experimental platform) based on the speckle interferometry technique has been constructed at Dalian University of Technology (DUT) in China. With directional specific designing and focusing on the real detection condition of EAST (Experimental Advanced Superconducting Tokamak), the DUT-SIEP could realize a variable measurement range, widely increased from 0.1 μm to 300 μm, with high spatial resolution (<1 mm) and ultra-high time resolution (<2 s for EAST measuring conditions). Three main components of the DUT-SIEP are all integrated and synchronized by a time schedule control and data acquisition terminal and coupled with a three-dimensional phase unwrapping algorithm, the surface morphology information of target samples can be obtained and reconstructed in real-time. A local surface morphology of the real divertor tiles adopted from EAST has been measured, and the feasibility and reliability of this new experimental platform have been demonstrated.

  12. A mechanical model predicts morphological abnormalities in the developing human brain

    NASA Astrophysics Data System (ADS)

    Budday, Silvia; Raybaud, Charles; Kuhl, Ellen

    2014-07-01

    The developing human brain remains one of the few unsolved mysteries of science. Advancements in developmental biology, neuroscience, and medical imaging have brought us closer than ever to understand brain development in health and disease. However, the precise role of mechanics throughout this process remains underestimated and poorly understood. Here we show that mechanical stretch plays a crucial role in brain development. Using the nonlinear field theories of mechanics supplemented by the theory of finite growth, we model the human brain as a living system with a morphogenetically growing outer surface and a stretch-driven growing inner core. This approach seamlessly integrates the two popular but competing hypotheses for cortical folding: axonal tension and differential growth. We calibrate our model using magnetic resonance images from very preterm neonates. Our model predicts that deviations in cortical growth and thickness induce morphological abnormalities. Using the gyrification index, the ratio between the total and exposed surface area, we demonstrate that these abnormalities agree with the classical pathologies of lissencephaly and polymicrogyria. Understanding the mechanisms of cortical folding in the developing human brain has direct implications in the diagnostics and treatment of neurological disorders, including epilepsy, schizophrenia, and autism.

  13. Morphology and surface properties of high strength siloxane poly(urethane-urea)s developed for heart valve application.

    PubMed

    Dandeniyage, Loshini S; Adhikari, Raju; Bown, Mark; Shanks, Robert; Adhikari, Benu; Easton, Christopher D; Gengenbach, Thomas R; Cookson, David; Gunatillake, Pathiraja A

    2018-03-04

    A series of siloxane poly(urethane-urea) (SiPUU) were developed by incorporating a macrodiol linked with a diisocyanate to enhance mixing of hard and soft segments (SS). The effect of this modification on morphology, surface properties, surface elemental composition, and creep resistance was investigated. The linked macrodiol was prepared by reacting α,ω-bis(6-hydroxyethoxypropyl) poly(dimethylsiloxane)(PDMS) or poly(hexamethylene oxide) (PHMO) with either 4,4'-methylenediphenyl diisocyanate (MDI), hexamethylene diisocyanate (HDI), or isophorone diisocyanate (IPDI). SiPUU with PHMO-MDI-PHMO and PHMO-IPDI-PHMO linked macrodiols showed enhanced creep resistance and recovery when compared with a commercial biostable polyurethane, Elast-Eon™ 2A. Small and wide-angle X-ray scattering data were consistent with significant increase of hydrogen bonding between hard and SS with linked-macrodiols, which improved SiPUU's tensile stress and tear strengths. These SiPUU were hydrophobic with contact angle higher than 101° and they had low water uptake (0.7%·w/w of dry mass). They also had much higher siloxane concentration on the surface compared to that in the bulk. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  14. Shaping electrocatalysis through tailored nanomaterials

    DOE PAGES

    Kang, Yijin; Yang, Peidong; Markovic, Nenad M.; ...

    2016-09-21

    Electrocatalysis is a subclass of heterogeneous catalysis that is aimed towards increase of the electrochemical reaction rates that are taking place at the surface of electrodes. Real-world electrocatalysts are usually based on precious metals in the form of nanoparticles due to their high surface-to-volume ratio, which enables better utilization of employed materials. Ability to tailor nanostructure of an electrocatalyst is critical in order to tune their electrocatalytic properties. Over the last decade, that has mainly been achieved through implementation of fundamental studies performed on well-defined extended surfaces with distinct single crystalline and polycrystalline structures. Based on these studies, it hasmore » been demonstrated that performance of an electrocatalyst could be significantly changed through the control of size, composition, morphology and architecture of employed nanomaterials. Here, this review outlines the following steps in the process of rational development of an efficient electrocatalyst: 1) electrochemical properties of well-defined surfaces, 2) synthesis and characterization of different classes of electrocatalysts, and 3) correlation between physical properties (size, shape, composition and morphology) and electrochemical behavior (adsorption, electrocatalytic activity and durability) of electrocatalyst. In addition, this is a brief summary of the novel research platforms in the development of functional nano materials for energy conversion and storage applications such as fuel cells electrolyzers and batteries.« less

  15. Biofilm formation on titanium implants counteracted by grafting gallium and silver ions.

    PubMed

    Cochis, Andrea; Azzimonti, Barbara; Della Valle, Cinzia; Chiesa, Roberto; Arciola, Carla Renata; Rimondini, Lia

    2015-03-01

    Biofilm-associated infections remain the leading cause of implant failure. Thanks to its established biocompatibility and biomechanical properties, titanium has become one of the most widely used materials for bone implants. Engineered surface modifications of titanium able to thwart biofilm formation while endowing a safe anchorage to eukaryotic cells are being progressively developed. Here surfaces of disks of commercial grade 2 titanium for bone implant were grafted with gallium and silver ions by anodic spark deposition. Scanning electron microscopy of the surface morphology and energy dispersive X-ray spectroscopy were used for characterization. Gallium-grafted titanium was evaluated in comparison with silver-grafted titanium for both in vivo and in vitro antibiofilm properties and for in vitro compatibility with human primary gingival fibroblasts. Surface-modified materials showed: (i) homogeneous porous morphology, with pores of micrometric size; (ii) absence of cytotoxic effects; (iii) ability to support in vitro the adhesion and spreading of gingival fibroblasts; and (iv) antibiofilm properties. Although both silver and gallium exhibited in vitro strong antibacterial properties, in vivo gallium was significantly more effective than silver in reducing number and viability of biofilm bacteria colonies. Gallium-based treatments represent promising titanium antibiofilm coatings to develop new bone implantable devices for oral, maxillofacial, and orthopedic applications. © 2014 Wiley Periodicals, Inc.

  16. NanoTopoChip: High-throughput nanotopographical cell instruction.

    PubMed

    Hulshof, Frits F B; Zhao, Yiping; Vasilevich, Aliaksei; Beijer, Nick R M; de Boer, Meint; Papenburg, Bernke J; van Blitterswijk, Clemens; Stamatialis, Dimitrios; de Boer, Jan

    2017-10-15

    Surface topography is able to influence cell phenotype in numerous ways and offers opportunities to manipulate cells and tissues. In this work, we develop the Nano-TopoChip and study the cell instructive effects of nanoscale topographies. A combination of deep UV projection lithography and conventional lithography was used to fabricate a library of more than 1200 different defined nanotopographies. To illustrate the cell instructive effects of nanotopography, actin-RFP labeled U2OS osteosarcoma cells were cultured and imaged on the Nano-TopoChip. Automated image analysis shows that of many cell morphological parameters, cell spreading, cell orientation and actin morphology are mostly affected by the nanotopographies. Additionally, by using modeling, the changes of cell morphological parameters could by predicted by several feature shape parameters such as lateral size and spacing. This work overcomes the technological challenges of fabricating high quality defined nanoscale features on unprecedented large surface areas of a material relevant for tissue culture such as PS and the screening system is able to infer nanotopography - cell morphological parameter relationships. Our screening platform provides opportunities to identify and study the effect of nanotopography with beneficial properties for the culture of various cell types. The nanotopography of biomaterial surfaces can be modified to influence adhering cells with the aim to improve the performance of medical implants and tissue culture substrates. However, the necessary knowledge of the underlying mechanisms remains incomplete. One reason for this is the limited availability of high-resolution nanotopographies on relevant biomaterials, suitable to conduct systematic biological studies. The present study shows the fabrication of a library of nano-sized surface topographies with high fidelity. The potential of this library, called the 'NanoTopoChip' is shown in a proof of principle HTS study which demonstrates how cells are affected by nanotopographies. The large dataset, acquired by quantitative high-content imaging, allowed us to use predictive modeling to describe how feature dimensions affect cell morphology. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Development of a novel test-setup for identifying the frictional characteristics of carbon fibre reinforced polymer composites at high surface pressure

    NASA Astrophysics Data System (ADS)

    Saxena, Prateek; Schinzel, Marie; Andrich, Manuela; Modler, Niels

    2016-09-01

    Carbon fibre reinforced polymer composites are extensively used in industrial applications. They are light in weight and have excellent load bearing properties. To understand this material's behaviour when carrying loads at high pressure, a tensile-friction test device was developed that can apply a contact surface pressure between composite and counterpart of 50-300 MPa. A tribological investigation of carbon fibre reinforced epoxy composites was carried out, in which the influence of the surface morphology was investigated by using grinding and sandblasting techniques. The friction coefficient of the polymer composite was measured at 100 MPa surface pressure against uncoated and Diamond-Like Carbon coated stainless steel counterparts.

  18. Pinus Monophylla (Single Needled Pinyon Pine) show morphological changes in needle cell size and stomata over the past 100 years of rising CO2 in Western Arid Ecosystems.

    NASA Astrophysics Data System (ADS)

    Van De Water, P. K.

    2016-12-01

    The size, frequency, and morphology of leaf surface stomata is used to reconstruct past levels of atmospheric carbon dioxide over geologic time. This technique relies on measuring cell and cell-clusters to correlate with changes of known carbon dioxide levels in the atmosphere. Unfortunately, not all plants are suitable because the occurrence and placement of stomatal cell-complexes differ significantly between plant families. Monocot and dicot angiosperms exhibit different types of stomata and stomatal complexes that lack order and thus are unsuitable. But, in gymnosperms, the number and distribution of stomata and pavement cells is formalized and can be used to reconstruct past atmospheric carbon dioxide levels. However, characteristic of each plant species must still be considered. For example, conifers are useful but are divided into two-needle to five-needle pines, or have irregular surface morphology (Pseudotsuga sp. and Tsuga sp. needles). This study uses Pinus monophylla an undivided needle morphology, that being a cylinder has no interior surface cells. Pinus monophylla (single needle pinyon) needles were collected along Geiger Grade (Nevada State Highway 341, Reno) in 2005 and 2013 from 1500m to 2195m. Herbarium samples were also collected from 13 historic collections made between 1911 and 1994. The study determined changes with elevation and/or over time using in these populations. Using Pinus monophylla, insured needles represented a single surface with stomata, stomatal complex cells, and co-occurring pavement cell types. Results show decreased stomatal densities (stomata/area), stomatal index (stomata/stomata + epidermal cells) and stable stomata per row (stomata/row) . Epidermal cell density (Epidermal Cells /Area), and Pavement cell density (Pavement cell/area) track stomatal density similarly. Data comparison, using elevation in the 2005 and 2013 collections showed no-significant trends. Individual stomatal complexes show no differences in the size and shape over time or with elevation. Stomata morphology and the stomatal pores appear conservative. However some complex cells show a morphology suggesting they are not fully formed and functional. These characteristics appear often in the modern material suggesting some stomata never fully develop.

  19. The influence of chemical structure on thermal properties and surface morphology of polyurethane materials.

    PubMed

    Brzeska, Joanna; Morawska, Magda; Heimowska, Aleksandra; Sikorska, Wanda; Wałach, Wojciech; Hercog, Anna; Kowalczuk, Marek; Rutkowska, Maria

    2018-01-01

    The surface morphology and thermal properties of polyurethanes can be correlated to their chemical composition. The hydrophilicity, surface morphology, and thermal properties of polyurethanes (differed in soft segments and in linear/cross-linked structure) were investigated. The influence of poly([ R , S ]-3-hydroxybutyrate) presence in soft segments and blending of polyurethane with polylactide on surface topography were also estimated. The linear polyurethanes (partially crystalline) had the granular surface, whereas the surface of cross-linked polyurethanes (almost amorphous) was smooth. Round aggregates of polylactide un-uniformly distributed in matrix of polyurethane were clearly visible. It was concluded that some modification of soft segment (by mixing of poly([ R , S ]-3-hydroxybutyrate) with different polydiols and polytriol) and blending of polyurethanes with small amount of polylactide influence on crystallinity and surface topography of obtained polyurethanes.

  20. Surface-potential undulation of Alq3 thin films prepared on ITO, Au, and n-Si.

    PubMed

    Ozasa, Kazunari; Ito, Hiromi; Maeda, Mizuo; Hara, Masahiko

    2012-01-01

    The surface potential (SP) morphology on thin films of tris(8-hydroxyquinolinato) aluminum (Alq3) was investigated with Kelvin probe force microscopy. Thin Alq3 films of 100 nm were prepared on ITO/glass substrates, Au/mica substrates, and n-Si substrates. Cloud-like morphologies of the SP undulation with 200-400 nm in lateral size were observed for all three types of the substrates. New larger peaks were observed in the cloud-like morphologies when the surfaces were exposed shortly to a light, while the SP average was reduced monotonically. The nonuniform distribution of charged traps and mobility was deduced from the SP undulation morphology and its photoexposure dependences.

  1. Morphological Evolution and Weak Interface Development within CVD-Zirconia Coating Deposited on Hi-Nicalon Fiber

    NASA Technical Reports Server (NTRS)

    Li, Hao; Lee, Jinil; Libera, Matthew R.; Lee, Woo Y.; Kebbede, Anteneh; Lance, Michael J.; Wang, Hongyu; Morscher, Gregory N.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    The phase contents and morphology of a ZrO2 fiber coating deposited at 1050 C on Hi-Nicalon(Tm) by chemical vapor deposition were examined as a function of deposition time from 5 to 120 min. The morphological evolution in the ZrO2 coating was correlated to the development of delamination within the ZrO2 coating. The delamination appears to occur as a result of: (1) continuous formation of tetragonal ZrO2 nuclei on the deposition surface; (2) martensitic transformation of the tetragonal phase to a monoclinic phase upon reaching a critical grain size; and (3) development of significant compressive hoop stresses due to the volume dilation associated with the transformation. Our observations suggest that it will be of critical importance to further understand and eventually control the nucleation and grain growth behavior of CVD ZrO2 and its phase transformation behavior for its potential applications for composites.

  2. Morphological development of the Florida Escarpment: Observations on the generation of time transgressive unconformities in carbonate terrains

    USGS Publications Warehouse

    Paull, C.K.; Twichell, D.C.; Spiess, Fred N.; Curray, Joseph R.

    1991-01-01

    An unconformity of 100 m.yr magnitude continues to form on the western edge of the Florida-Bahama Platform, near 26??N, where distal Mississippi Fan sediments are progressively burying the Florida Escarpment. Multiple perspectives of the developing unconformity's morphology are revealed using available technologies including GLORIA images of the entire platform's edge, Seabeam bathymetric contours, and Deep-Tow's high resolution side-scan data calibrated with bottom photographs. The structure and stratigraphy of the buried escarpment and the associated unconformity are resolved by airgun, sparker, and Deep-Tow's 4 kHz seismic reflection data; we summarize the morphological data on the exposed part of the unconformity and the sedimentary deposits accumulating in the basin above the unconformity. The exposed cliff face is composed of a staircase of bedding-plane terraces which are developed along joint planes. The terraces extend 100-1000 m along the escarpment's face, and the intervening vertical walls are up to 100 m high. The jointed morphology of this Mesozoic limestone cliff apparently reflects erosional exposure of its interior anatomy rather than its accretionary shape. The change in slope between the platform face and the abyssal plain is very abrupt. In places along the contact between the escarpment and fan sediments, reduced chemical-charged brine seeps occur, which locally cause carbonate dissolution and precipitation, sulfide mineralization, and the deposition of a fossiliferous and organic carbon-rich lens associated with chemosynthetic communities. These seep deposits and escarpment-derived megabreccias intercalate with basinal sediments that overlie the unconformity. Because surface seismic reflection data do not produce images of the escarpment's face that closely reflect the exposed escarpment's morphology, they must also be of limited value in characterizing the surface of similar steeply dipping buried escarpments. Thus, the downslope extent of the heavily eroded platform edge is unclear. 

  3. Influence of non-thermal TiCl4/Ar+O2 plasma-assisted TiOx based coatings on the surface of polypropylene (PP) films for the tailoring of surface properties and cytocompatibility.

    PubMed

    Pandiyaraj, K N; Kumar, A Arun; Ramkumar, M C; Sachdev, A; Gopinath, P; Cools, Pieter; De Geyter, N; Morent, R; Deshmukh, R R; Hegde, P; Han, C; Nadagouda, M N

    2016-05-01

    The superior bulk properties (corrosion resistance, high strength to weight ratio, relatively low cost and easy processing) of hydrocarbon based polymers such as polypropylene (PP) have contributed significantly to the development of new biomedical applications such as artificial organs and cell scaffolds. However, low cell affinity is one of the main draw backs for PP due to its poor surface properties. In tissue engineering, physico-chemical surface properties such as hydrophilicity, polar functional groups, surface charge and morphology play a crucial role to enrich the cell proliferation and adhesion. In this present investigation TiOx based biocompatible coatings were developed on the surface of PP films via DC excited glow discharge plasma, using TiCl4/Ar+O2 gas mixture as a precursor. Various TiOx-based coatings are deposited on the surface of PP films as a function of discharge power. The changes in hydrophilicity of the TiOx/PP film surfaces were studied using contact angle analysis and surface energy calculations by Fowke's approximation. X-ray photo-electron spectroscopy (XPS) was used to investigate the surface chemical composition of TiOx/PP films. The surface morphology of the obtained TiOx/PP films was investigated by scanning electron and transmission electron microscopy (SEM &TEM). Moreover, the surface topography of the material was analyzed by atomic force microscopy (AFM). The cytocompatibility of the TiOx/PP films was investigated via in vitro analysis (cell viability, adhesion and cytotoxicity) using NIH3T3 (mouse embryonic fibroblast) cells. Furthermore the antibacterial activities of TiOx/PP films were also evaluated against two distinct bacterial models namely Gram positive Staphylococcus aureus (S.aureus) and Gram negative Escherichia coli DH5α. (E.coli) bacteria. XPS results clearly indicate the successful incorporation of TiOx and oxygen containing polar functional groups on the surface of plasma treated PP films. Moreover the surface of modified PP films exhibited nano structured morphology, as confirmed by SEM, TEM and AFM. The physico-chemical changes have improved the hydrophilicity of the PP films. The in-vitro analysis clearly confirms that the TiOx coated PP films performs as good as the standard tissue culture plates and also are unlikely to impact the bacterial cell viability. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Extracting hurricane eye morphology from spaceborne SAR images using morphological analysis

    NASA Astrophysics Data System (ADS)

    Lee, Isabella K.; Shamsoddini, Ali; Li, Xiaofeng; Trinder, John C.; Li, Zeyu

    2016-07-01

    Hurricanes are among the most destructive global natural disasters. Thus recognizing and extracting their morphology is important for understanding their dynamics. Conventional optical sensors, due to cloud cover associated with hurricanes, cannot reveal the intense air-sea interaction occurring at the sea surface. In contrast, the unique capabilities of spaceborne synthetic aperture radar (SAR) data for cloud penetration, and its backscattering signal characteristics enable the extraction of the sea surface roughness. Therefore, SAR images enable the measurement of the size and shape of hurricane eyes, which reveal their evolution and strength. In this study, using six SAR hurricane images, we have developed a mathematical morphology method for automatically extracting the hurricane eyes from C-band SAR data. Skeleton pruning based on discrete skeleton evolution (DSE) was used to ensure global and local preservation of the hurricane eye shape. This distance weighted algorithm applied in a hierarchical structure for extraction of the edges of the hurricane eyes, can effectively avoid segmentation errors by reducing redundant skeletons attributed to speckle noise along the edges of the hurricane eye. As a consequence, the skeleton pruning has been accomplished without deficiencies in the key hurricane eye skeletons. A morphology-based analyses of the subsequent reconstructions of the hurricane eyes shows a high degree of agreement with the hurricane eye areas derived from reference data based on NOAA manual work.

  5. A novel self-catalyzed photoATRP strategy for preparation of fluorescent hydroxyapatite nanoparticles and their biological imaging

    NASA Astrophysics Data System (ADS)

    Jiang, Ruming; Liu, Meiying; Huang, Hongye; Huang, Long; Huang, Qiang; Wen, Yuanqing; Cao, Qian-yong; Tian, Jianwen; Zhang, Xiaoyong; Wei, Yen

    2018-03-01

    Hydroxyapatite (HAp), as an important biomaterial for the regeneration and reconstruction of bone tissue, has attracted more and more attention of researchers and scientists due to its unique structure and compositions. However, the preparation of fluorescent HAp with controllable morphology has achieved only limited success. In this work, we reported a novel strategy to construct the water dispersible fluorescent HAp nanorods via the combination of ligand exchange and metal-free atom transfer radical polymerization (ATRP). The Br-containing fluorescent HAp nanorods with controllable size and morphology were first prepared through hydrothermal treatment. A multifunctional organic molecule (named as PTH-Br) with aggregation-induced emission feature was immobilized on the surface of hydrophobic HAp nanorods through ligand exchange reaction. The PTH-Br could be used as the initiator and catalyst for surface-initiated metal-free ATRP using poly(ethylene glycol) methacrylate as monomer to obtain hydrophilic fluorescent HAp polymer nanoparticles. This strategy successfully endowed HAp nanorods excellent fluorescence properties and favorable water dispersibility but well preserved their regular morphology. Biological assays demonstrated that the HAp-PTH-poly(PEGMA) nanoparticles exhibited good biocompatibility and efficient cell uptake performance. Taken together, we have developed a rather facile strategy based on the surface ligand exchange reaction and metal-free photoATRP to fabricate fluorescent HAp with controllable size and morphology, high water dispersibility and biological properties. These HAp-PTH-poly(PEGMA) nanoparticles should be novel and promising candidates for biomedical applications.

  6. Coevolution of bed surface patchiness and channel morphology: 1. Mechanisms of forced patch formation

    USGS Publications Warehouse

    Nelson, Peter A.; McDonald, Richard R.; Nelson, Jonathan M.; Dietrich, William E.

    2015-01-01

    Riverbeds frequently display a spatial structure where the sediment mixture composing the channel bed has been sorted into discrete patches of similar grain size. Even though patches are a fundamental feature in gravel bed rivers, we have little understanding of how patches form, evolve, and interact. Here we present a two-dimensional morphodynamic model that is used to examine in greater detail the mechanisms responsible for the development of forced bed surface patches and the coevolution of bed morphology and bed surface patchiness. The model computes the depth-averaged channel hydrodynamics, mixed-grain-size sediment transport, and bed evolution by coupling the river morphodynamic model Flow and Sediment Transport with Morphological Evolution of Channels (FaSTMECH) with a transport relation for gravel mixtures and the mixed-grain-size Exner equation using the active layer assumption. To test the model, we use it to simulate a flume experiment in which the bed developed a sequence of alternate bars and temporally and spatially persistent forced patches with a general pattern of coarse bar tops and fine pools. Cross-stream sediment flux causes sediment to be exported off of bars and imported into pools at a rate that balances downstream gradients in the streamwise sediment transport rate, allowing quasi-steady bar-pool topography to persist. The relative importance of lateral gravitational forces on the cross-stream component of sediment transport is a primary control on the amplitude of the bars. Because boundary shear stress declines as flow shoals over the bars, the lateral sediment transport is increasingly size selective and leads to the development of coarse bar tops and fine pools.

  7. Microscopic morphology evolution during ion beam smoothing of Zerodur® surfaces.

    PubMed

    Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin

    2014-01-13

    Ion sputtering of Zerodur material often results in the formation of nanoscale microstructures on the surfaces, which seriously influences optical surface quality. In this paper, we describe the microscopic morphology evolution during ion sputtering of Zerodur surfaces through experimental researches and theoretical analysis, which shows that preferential sputtering together with curvature-dependent sputtering overcomes ion-induced smoothing mechanisms leading to granular nanopatterns formation in morphology and the coarsening of the surface. Consequently, we propose a new method for ion beam smoothing (IBS) of Zerodur optics assisted by deterministic ion beam material adding (IBA) technology. With this method, Zerodur optics with surface roughness down to 0.15 nm root mean square (RMS) level is obtained through the experimental investigation, which demonstrates the feasibility of our proposed method.

  8. Front Instabilities and Invasiveness of Simulated Avascular Tumors

    PubMed Central

    Popławski, Nikodem J.; Agero, Ubirajara; Gens, J. Scott; Swat, Maciej; Glazier, James A.; Anderson, Alexander R. A.

    2009-01-01

    We study the interface morphology of a 2D simulation of an avascular tumor composed of identical cells growing in an homogeneous healthy tissue matrix (TM), in order to understand the origin of the morphological changes often observed during real tumor growth. We use the GlazierGraner-Hogeweg model, which treats tumor cells as extended, deformable objects, to study the effects of two parameters: a dimensionless diffusion-limitation parameter defined as the ratio of the tumor consumption rate to the substrate transport rate, and the tumor-TM surface tension. We model TM as a nondiffusing field, neglecting the TM pressure and haptotactic repulsion acting on a real growing tumor; thus our model is appropriate for studying tumors with highly motile cells, e.g., gliomas. We show that the diffusion-limitation parameter determines whether the growing tumor develops a smooth (noninvasive) or fingered (invasive) interface, and that the sensitivity of tumor morphology to tumor-TM surface tension increases with the size of the dimensionless diffusion-limitation parameter. For large diffusion-limitation parameters we find a transition (missed in previous work) between dendritic structures, produced when tumor-TM surface tension is high, and seaweed-like structures, produced when tumor-TM surface tension is low. This observation leads to a direct analogy between the mathematics and dynamics of tumors and those observed in nonbiological directional solidification. Our results are also consistent with biological observation that hypoxia promotes invasive growth of tumor cells by inducing higher levels of receptors for scatter factors that weaken cell-cell adhesion and increase cell motility. These findings suggest that tumor morphology may have value in predicting the efficiency of antiangiogenic therapy in individual patients. PMID:19234746

  9. A function-driven characterization of printed conductors on PV cells

    NASA Astrophysics Data System (ADS)

    Bellotti, Roberto; Furin, Valentina; Maras, Claire; Bartolo Picotto, Gian; Ribotta, Luigi

    2018-06-01

    Nowadays the development in photovoltaic (PV) cells manufacturing requires increasingly sophisticated technologies, and in order to avoid efficiency losses in PV cell, printing techniques of the front contacts have to be well controlled. To this purpose, printed linear conductors (PLCs) on a PV standard cell are characterized by morphology- and resistance-based measurements, creating a well-calibrated test structure towards the development of an application-oriented material measure. It can be noticed that morphology and texture parameters determined by stylus and optical profilers are well in agreement, and the resistance calculated from the reconstructed cross-section area matches quite well the measured resistance of fingers. Uncertainties of about 14% to 17% are estimated for local measurements of morphology-based and measured resistance of finger segments up to 5 mm length. Fingers characterized by somewhat larger roughness/waviness values (, , ) show some local irregularities, which may degrade the electrical contact of the PV front surface.

  10. The effects of deposition parameters on surface morphology and crystallographic orientation of electroless Ni-B coatings

    NASA Astrophysics Data System (ADS)

    Bulbul, Ferhat

    2011-02-01

    Electroless Ni-B coatings were deposited on AISI 304 stainless steels by electroless deposition method, which was performed for nine different test conditions at various levels of temperature, concentration of NaBH4, concentration of NiCl2, and time, using the Taguchi L9(34) experimental method. The effects of deposition parameters on the crystallographic orientation of electroless Ni-B coatings were investigated using SEM and XRD equipment. SEM analysis revealed that the Ni-B coatings developed six types (pea-like, maize-like, primary nodular, blackberry-like or grapes-like, broccoli-like, and cauliflower-like) of morphological structures depending on the deposition parameters. XRD results also showed that these structures exhibited different levels of amorphous character. The concentration of NaBH4 had the most dominant effect on the morphological and crystallographic development of electroless Ni-B coatings.

  11. Superhydrophobic aluminum alloy surfaces by a novel one-step process.

    PubMed

    Saleema, N; Sarkar, D K; Paynter, R W; Chen, X-G

    2010-09-01

    A simple one-step process has been developed to render aluminum alloy surfaces superhydrophobic by immersing the aluminum alloy substrates in a solution containing NaOH and fluoroalkyl-silane (FAS-17) molecules. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements have been performed to characterize the morphological features, chemical composition and superhydrophobicity of the surfaces. The resulting surfaces provided a water contact angle as high as ∼162° and a contact angle hysteresis as low as ∼4°. The study indicates that it is possible to fabricate superhydrophobic aluminum surfaces easily and effectively without involving the traditional two-step processes.

  12. Analysis of the Surface of Deposited Copper After Electroerosion Treatment

    NASA Astrophysics Data System (ADS)

    Ablyaz, T. R.; Simonov, M. Yu.; Shlykov, E. S.

    2018-03-01

    An electron microscope analysis of the surface of deposited copper is performed after a profiling-piercing electroerosion treatment. The deposited copper is treated with steel, duralumin, and copper electrode tools at different pulse energies. The treatment with the duralumin electrode produces on the treated surface a web-like structure and cubic-morphology polyhedral dimples about 10 μm in size. The main components of the surface treated with the steel electrode are developed polyhedral dimples with a size of 10 - 50 μm. After the treatment with the copper electrode the main components of the treated surface are large polyhedral dimples about 30 - 80 μm in size.

  13. Wrinkling pattern evolution of cylindrical biological tissues with differential growth.

    PubMed

    Jia, Fei; Li, Bo; Cao, Yan-Ping; Xie, Wei-Hua; Feng, Xi-Qiao

    2015-01-01

    Three-dimensional surface wrinkling of soft cylindrical tissues induced by differential growth is explored. Differential volumetric growth can cause their morphological stability, leading to the formation of hexagonal and labyrinth wrinkles. During postbuckling, multiple bifurcations and morphological transitions may occur as a consequence of continuous growth in the surface layer. The physical mechanisms underpinning the morphological evolution are examined from the viewpoint of energy. Surface curvature is found to play a regulatory role in the pattern evolution. This study may not only help understand the morphogenesis of soft biological tissues, but also inspire novel routes for creating desired surface patterns of soft materials.

  14. Correlation between surface morphology and electrical properties of VO2 films grown by direct thermal oxidation method

    NASA Astrophysics Data System (ADS)

    Yoon, Joonseok; Park, Changwoo; Park, Sungkyun; Mun, Bongjin Simon; Ju, Honglyoul

    2015-10-01

    We investigate surface morphology and electrical properties of VO2 films fabricated by direct thermal oxidation method. The VO2 film prepared with oxidation temperature at 580 °C exhibits excellent qualities of VO2 characteristics, e.g. a metal-insulator transition (MIT) near 67 °C, a resistivity ratio of ∼2.3 × 104, and a bandgap of 0.7 eV. The analysis of surface morphology with electrical resistivity of VO2 films reveals that the transport properties of VO2 films are closely related to the grain size and surface roughness that vary with oxidation annealing temperatures.

  15. System-morphological approach: Another look at morphology research and geomorphological mapping

    NASA Astrophysics Data System (ADS)

    Lastochkin, Alexander N.; Zhirov, Andrey I.; Boltramovich, Sergei F.

    2018-02-01

    A large number of studies require a clear and unambiguous morphological basis. For over thirty years, Russian scientists have been applying a system-morphological approach for the Arctic and Antarctic research, ocean floor investigation, for various infrastructure construction projects (oil and gas, sports, etc.), in landscape and environmental studies. This article is a review aimed to introduce this methodological approach to the international scientific community. The details of the methods and techniques can be found in a series of earlier papers published in the Russian language in 1987-2016. The proposed system-morphological approach includes: 1) partitioning of the Earth surface, i.e. precise identification of linear, point, and areal elements of topography considered as a two-dimensional surface without any geological substance; 2) further identification of larger formations: geomorphological systems and regions; 3) analysis of structural relations and symmetry of topography; and 4) various dynamic (litho- and glaciodynamic, tectonic, etc.) interpretations of the observed morphology. This method can be used to study the morphology of the surface topography as well as less accessible interfaces such as submarine and subglacial ones.

  16. 2D Process-based Microbialite Growth Model

    NASA Astrophysics Data System (ADS)

    Airo, A.; Smith, A.

    2007-12-01

    A 2D process-based microbialite growth model (MGM) has been developed that integrates the coupled effects of the microbialite growth and sediment distribution within a two-dimensional cross-section of a subaqueous bedrock profile. Sediment transport is realized through particle erosion and deposition that are a function of local wave energy which is computed on the basis of linear wave theory. Surface-normal microbialite growth is directly correlated to light intensity, which is computed for every point of the microbialite surface by using a Henyey- Greenstein-type relation for scattering and the Beer's Law for absorption in the water column. Shadowing effects by surrounding obstacles and/or overlying sediment are also considered. Sediment particles can be incorporated into the microbialite framework if growth occurs in the presence of sediment. The resulting meter-size microbialite constructs develop morphologies that correspond well to natural microbialites. Furthermore, changes of environmental factors such as light intensity, wave energy, and bedrock profile result in morphological variations of the microbialites that would be expected on the basis of the current understanding of microbialite growth and development.

  17. Solid-State Synthesized Nanostructured Au Dendritic Aggregates Towards Surface-Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gentile, A.; Ruffino, F.; D'Andrea, C.; Gucciardi, P. G.; Reitano, R.; Grimaldi, M. G.

    2016-06-01

    Micrometric Au structures, presenting a dendritic nano-structure, have been fabricated on a Si-based substrate. The fabrication method involves the deposition of a thin Au film on the substrate and a high-temperature annealing (1100°C) using fast heating and cooling ramps. The thermal process produces the growth, from the substrate, of Si micro-pillars whose top surfaces, covered by a crystalline Au layer, present a nanodendritic morphology. In addition to the micro-pillars, the sample surface presents a complex structural and chemical composition including Si3N4 regions due to the silicon-nitrogen intermixing during the heating stage. By studying the kinetic processes at the Au-Si interface during the thermal treatment, we describe the stages involved in the micro-pillars growth, in the dendritic morphology development, and in the Au atoms entrapment at the top of the dendritic surfaces. Finally, we present the analyses of the optical and surface enhanced Raman scattering properties of the Au dendritic aggregates. We show, in particular, that: (1) the Au dendrites aggregates act as effective scattering elements for the electromagnetic radiation in the infrared spectral region; and (2) the higher surface area due to the branched dendritic structure is responsible for the improvement in the sensitivity of the surface enhanced Raman scattering activity.

  18. Sedimentology and preservation of aeolian sediments on steep terrains: Incipient sand ramps on the Atacama coast (northern Chile)

    NASA Astrophysics Data System (ADS)

    Ventra, Dario; Rodríguez-López, Juan Pedro; de Boer, Poppe L.

    2017-05-01

    The origin of topographically controlled aeolian landforms in high-relief settings is difficult to synthesize under general models, given the dependence of such accumulations on local morphology. Quaternary sand ramps have been linked to palaeoclimate, regional geomorphology and wind patterns; however, controls on the early development and preservation of such landforms are poorly known. This study describes the morphology and sedimentology of complex sedimentary aprons along steep coastal slopes in the Atacama Desert (Chile). Direct slope accessibility and continuous stratigraphic exposures enable comparisons between active processes and stratigraphic signatures. Stratigraphic facies distribution and its links with patterns of aeolian deposition show that the preservation of wind-laid sediments depends on the morphology and processes of specific slope sectors. The spatial organization of runoff depends on bedrock configuration and directly controls the permanence or erosion of aeolian sediment. The occurrence of either water or mass flows depends on the role of aeolian fines in the rheology of flash floods. In turn, the establishment of a rugged surface topography controlled by patterns of mass-flow deposition creates local accommodation for aeolian fines, sustaining the initial aggradation of a colluvial-aeolian system. By contrast, slopes subject to runoff develop a thin, extensive aeolian mantle whose featureless surface is subject mostly to sediment bypass down- and across-slope; the corresponding stratigraphic record comprises almost exclusively thin debris-flow and sheetflood deposits. Slope morphology and processes are fundamental in promoting or inhibiting aeolian aggradation in mountain settings. Long-term sand-ramp construction depends on climate and regional topography, but the initial development is probably controlled by local geomorphic factors. The observed interactions between wind and topography in the study area may also represent a process analogue for the interpretation of similar geomorphic features on Mars.

  19. Developmental palaeobiology of trilobite eyes and its evolutionary significance

    NASA Astrophysics Data System (ADS)

    Thomas, A. T.

    2005-06-01

    Understanding of the calcified composite eyes of trilobites, the oldest preserved visual system, has advanced greatly in recent decades. Three types of trilobite eye occur, the more derived abathochroal and schizochroal types having evolved neotenically from holochroal eyes. Comparative morphology and phylogenetic considerations suggest that all three eye-types were underlain by common developmental systems. So far, understanding of these systems has been based entirely on morphological data from fossils, particularly the way the visual surface grew and the patterning of lens emplacement. Lenses characteristically form a hexagonal array comprising horizontal rows and, conspicuously in schizochroal eyes, dorso-ventral files. Because individual trilobites sometimes have eyes with different numbers of files, file number must reflect the operation of a developmental programme rather than being under immediate genetic control. An empirical developmental model has been devised to describe trilobite eye development, with separate rules dealing with the initiation of lens emplacement, growth and differentiation of the visual surface, and the termination of lens emplacement. Rarely, trilobites may have visual surfaces of normal size, but which lack lenses. This confirms that visual surface growth must have been regulated separately from lens emplacement, and is a feature that cannot be accounted for by the existing developmental model. Such a developmental separation is one of a number of similarities shared with Drosophila, the modern arthropod in which eye development is best understood. Many aspects of eye development are conserved in the Euarthropoda, and in bilaterian metazoans in general. A revised model for trilobite eye development is proposed using extant phylogenetic bracketing, interpreting morphological data from the fossils in the context of the hierarchy of developmental controls now becoming known from living animals. This new model suggests that overall eye shape and size did not require differential growth of the generative zone, as previously thought, and that no separate instruction was needed to specify the termination of lens emplacement. Instead, these features were regulated directly, by controlling the proliferation of cells making up the nascent visual surface. A process documented from Drosophila, which involves the selective inhibition of cells in front of a wave-like front of differentiation, and that is regulated by widely conserved genes, can be used to explain how the trilobite visual surface became differentiated. The model implies also that changes in hormonally regulated developmental pathways known from recent arthropods may have been responsible for the development of abathochroal and schizochroal eyes, and for heterochronic secondary eye reduction and blindness in trilobites.

  20. A monolayer of hierarchical silver hemi-mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Shuangmei; Fan, Chunzhen; Mao, Yanchao; Wang, Junqiao; He, Jinna; Liang, Erjun; Chao, Mingju

    2016-02-01

    We proposed a facile green synthesis system to synthesize large-scale Ag hemi-mesoparticles monolayer on Cu foil. Ag hemi-mesoparticles have different surface morphologies on their surfaces, including ridge-like, meatball-like, and fluffy-like shapes. In the reaction, silver nitrate was reduced by copper at room temperature in dimethyl sulfoxide via the galvanic displacement reaction. The different surface morphologies of the Ag hemi-mesoparticles were adjusted by changing the reaction time, and the hemi-mesoparticle surface formed fluffy-spherical nanoprotrusions at longer reaction time. At the same time, we explored the growth mechanism of silver hemi-mesoparticles with different surface morphologies. With 4-mercaptobenzoic acid as Raman probe molecules, the fluffy-like silver hemi-mesoparticles monolayer with the best activity of surface enhanced Raman scattering (SERS), the enhancement factor is up to 7.33 × 107 and the detection limit can reach 10-10M. SERS measurements demonstrate that these Ag hemi-mesoparticles can serve as sensitive SERS substrates. At the same time, using finite element method, the distribution of the localized electromagnetic field near the particle surface was simulated to verify the enhanced mechanism. This study helps us to understand the relationship between morphology Ag hemi-mesoparicles and the properties of SERS.

  1. A monolayer of hierarchical silver hemi-mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy.

    PubMed

    Zhu, Shuangmei; Fan, Chunzhen; Mao, Yanchao; Wang, Junqiao; He, Jinna; Liang, Erjun; Chao, Mingju

    2016-02-21

    We proposed a facile green synthesis system to synthesize large-scale Ag hemi-mesoparticles monolayer on Cu foil. Ag hemi-mesoparticles have different surface morphologies on their surfaces, including ridge-like, meatball-like, and fluffy-like shapes. In the reaction, silver nitrate was reduced by copper at room temperature in dimethyl sulfoxide via the galvanic displacement reaction. The different surface morphologies of the Ag hemi-mesoparticles were adjusted by changing the reaction time, and the hemi-mesoparticle surface formed fluffy-spherical nanoprotrusions at longer reaction time. At the same time, we explored the growth mechanism of silver hemi-mesoparticles with different surface morphologies. With 4-mercaptobenzoic acid as Raman probe molecules, the fluffy-like silver hemi-mesoparticles monolayer with the best activity of surface enhanced Raman scattering (SERS), the enhancement factor is up to 7.33 × 10(7) and the detection limit can reach 10(-10)M. SERS measurements demonstrate that these Ag hemi-mesoparticles can serve as sensitive SERS substrates. At the same time, using finite element method, the distribution of the localized electromagnetic field near the particle surface was simulated to verify the enhanced mechanism. This study helps us to understand the relationship between morphology Ag hemi-mesoparicles and the properties of SERS.

  2. Mimicking bug-like surface structures and their fluid transport produced by ultrashort laser pulse irradiation of steel

    NASA Astrophysics Data System (ADS)

    Kirner, S. V.; Hermens, U.; Mimidis, A.; Skoulas, E.; Florian, C.; Hischen, F.; Plamadeala, C.; Baumgartner, W.; Winands, K.; Mescheder, H.; Krüger, J.; Solis, J.; Siegel, J.; Stratakis, E.; Bonse, J.

    2017-12-01

    Ultrashort laser pulses with durations in the fs-to-ps range were used for large area surface processing of steel aimed at mimicking the morphology and extraordinary wetting behaviour of bark bugs (Aradidae) found in nature. The processing was performed by scanning the laser beam over the surface of polished flat sample surfaces. A systematic variation of the laser processing parameters (peak fluence and effective number of pulses per spot diameter) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, i.e., LIPSS, grooves, spikes, etc.). Moreover, different laser processing strategies, varying laser wavelength, pulse duration, angle of incidence, irradiation atmosphere, and repetition rates, allowed to achieve a range of morphologies that resemble specific structures found on bark bugs. For identifying the ideal combination of parameters for mimicking bug-like structures, the surfaces were inspected by scanning electron microscopy. In particular, tilted micrometre-sized spikes are the best match for the structure found on bark bugs. Complementary to the morphology study, the wetting behaviour of the surface structures for water and oil was examined in terms of philic/phobic nature and fluid transport. These results point out a route towards reproducing complex surface structures inspired by nature and their functional response in technologically relevant materials.

  3. Nanoscale Roughness and Morphology Affect the IsoElectric Point of Titania Surfaces

    PubMed Central

    Borghi, Francesca; Vyas, Varun; Podestà, Alessandro; Milani, Paolo

    2013-01-01

    We report on the systematic investigation of the role of surface nanoscale roughness and morphology on the charging behaviour of nanostructured titania (TiO2) surfaces in aqueous solutions. IsoElectric Points (IEPs) of surfaces have been characterized by direct measurement of the electrostatic double layer interactions between titania surfaces and the micrometer-sized spherical silica probe of an atomic force microscope in NaCl aqueous electrolyte. The use of a colloidal probe provides well-defined interaction geometry and allows effectively probing the overall effect of nanoscale morphology. By using supersonic cluster beam deposition to fabricate nanostructured titania films, we achieved a quantitative control over the surface morphological parameters. We performed a systematical exploration of the electrical double layer properties in different interaction regimes characterized by different ratios of characteristic nanometric lengths of the system: the surface rms roughness Rq, the correlation length ξ and the Debye length λD. We observed a remarkable reduction by several pH units of IEP on rough nanostructured surfaces, with respect to flat crystalline rutile TiO2. In order to explain the observed behavior of IEP, we consider the roughness-induced self-overlap of the electrical double layers as a potential source of deviation from the trend expected for flat surfaces. PMID:23874708

  4. Morphology Analysis and Optimization: Crucial Factor Determining the Performance of Perovskite Solar Cells.

    PubMed

    Zeng, Wenjin; Liu, Xingming; Guo, Xiangru; Niu, Qiaoli; Yi, Jianpeng; Xia, Ruidong; Min, Yong

    2017-03-24

    This review presents an overall discussion on the morphology analysis and optimization for perovskite (PVSK) solar cells. Surface morphology and energy alignment have been proven to play a dominant role in determining the device performance. The effect of the key parameters such as solution condition and preparation atmosphere on the crystallization of PVSK, the characterization of surface morphology and interface distribution in the perovskite layer is discussed in detail. Furthermore, the analysis of interface energy level alignment by using X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy is presented to reveals the correlation between morphology and charge generation and collection within the perovskite layer, and its influence on the device performance. The techniques including architecture modification, solvent annealing, etc. were reviewed as an efficient approach to improve the morphology of PVSK. It is expected that further progress will be achieved with more efforts devoted to the insight of the mechanism of surface engineering in the field of PVSK solar cells.

  5. Strain relaxation induced surface morphology of heterogeneous GaInNAs layers grown on GaAs substrate

    NASA Astrophysics Data System (ADS)

    Gelczuk, Ł.; Jóźwiak, G.; Moczała, M.; Dłużewski, P.; Dąbrowska-Szata, M.; Gotszalk, T. P.

    2017-07-01

    The partially-relaxed heterogeneous GaInNAs layers grown on GaAs substrate by atmospheric pressure vapor phase epitaxy (AP-MOVPE) were investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The planar-view TEM image shows a regular 2D network of misfit dislocations oriented in two orthogonal 〈1 1 0〉 crystallographic directions at the (0 0 1) layer interface. Moreover, the cross-sectional view TEM image reveals InAs-rich and V-shaped precipitates in the near surface region of the GaInNAs epitaxial layer. The resultant undulating surface morphology, known as a cross-hatch pattern, is formed as observed by AFM. The numerical analysis of the AFM image of the GaInNAs layer surface with the well-defined cross-hatch morphology enabled us to determine a lower bound of actual density of misfit dislocations. However, a close correspondence between the asymmetric distribution of interfacial misfit dislocations and undulating surface morphology is observed.

  6. Simultaneous formation of multiscale hierarchical surface morphologies through sequential wrinkling and folding

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Sun, Qingyang; Xiao, Jianliang

    2018-02-01

    Highly organized hierarchical surface morphologies possess various intriguing properties that could find important potential applications. In this paper, we demonstrate a facile approach to simultaneously form multiscale hierarchical surface morphologies through sequential wrinkling. This method combines surface wrinkling induced by thermal expansion and mechanical strain on a three-layer structure composed of an aluminum film, a hard Polydimethylsiloxane (PDMS) film, and a soft PDMS substrate. Deposition of the aluminum film on hard PDMS induces biaxial wrinkling due to thermal expansion mismatch, and recovering the prestrain in the soft PDMS substrate leads to wrinkling of the hard PDMS film. In total, three orders of wrinkling patterns form in this process, with wavelength and amplitude spanning 3 orders of magnitude in length scale. By increasing the prestrain in the soft PDMS substrate, a hierarchical wrinkling-folding structure was also obtained. This approach can be easily extended to other thin films for fabrication of multiscale hierarchical surface morphologies with potential applications in different areas.

  7. Characterization of hematite nanoparticles synthesized via two different pathways

    NASA Astrophysics Data System (ADS)

    Das, Soumya; Hendry, M. Jim

    2014-08-01

    Hematite is one of the most common and thermodynamically stable iron oxides found in both natural and anthropogenic systems. Owing to its ubiquity, stability, moderate specific surface area, and ability to sequester metals and metalloids from aquatic systems, it has been the subject of a large number of adsorption studies published during the past few decades. Although preparation techniques are known to affect the surface morphology of hematite nanoparticles, the effects of aging under environmentally relevant conditions have yet to be tested with respect to surface morphology, surface area, and adsorptive capacity. We prepared hematite via two different pathways and aged it under highly alkaline conditions encountered in many mill tailings settings. Crystal habits and morphologies of the hematite nanoparticles were analyzed via scanning electron microscopy and transmission electron microscopy. X-ray diffraction, Raman spectroscopy, and Brunauer-Emmett-Teller surface area analyses were also conducted on the hematite nanoparticles before and after aging. The hematite synthesized via an Fe(III) salt solution (average particle size 37 nm) was morphologically and structurally different from the hematite synthesized via ferrihydrite aging (average particle size 144 nm). Overall, our data demonstrate that the crystallinity of hematite produced via ferrihydrite transformation is susceptible to morphological alterations/modifications. In contrast, the hematite formed via hydrolysis of an Fe(III) salt solution remains very stable in terms of structure, size, and morphology even under extreme experimental conditions.

  8. Solid particle impingement erosion characteristics of cylindrical surfaces, pre-existing holes and slits

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Buckley, D. H.

    1983-01-01

    The erosion characteristics of aluminum cylinders sand-blasted with both spherical and angular erodent particles were studied and compared with results from previously studied flat surfaces. The cylindrical results are discussed with respect to impact conditions. The relationship between erosion rate and pit morphology (width, depth, and width to depth ratio) is established. The aspects of (1) erosion rate versus time curves on cylindrical surfaces; (2) long-term exposures; and (3) erosion rate versus time curves with spherical and angular particles are presented. The erosion morphology and characteristics of aluminum surfaces with pre-existing circular cylindrical and conical holes of different sizes were examined using weight loss measurements, scanning electron microscopy, a profilometer, and a depth gage. The morphological features (radial and concentric rings) are discussed with reference to flat surfaces, and the erosion features with spherical microglass beads. The similarities and differences of erosion and morphological features are highlighted. The erosion versus time curves of various shapes of holes are discussed and are compared with those of a flat surface. The erosion process at slits is considered.

  9. Morphological investigations of cells that adhered to the irregular patterned polydimethylsiloxane (PDMS) surface without reagents.

    PubMed

    Chung, Sung Hee; Min, Junhong

    2009-07-01

    Polydimethylsiloxane (PDMS) surface consisting irregular pattern was investigated to develop cell-based biochip using PDMS. PDMS surface was modified with nano- and micro-combined patterns using surface deformation technology. Hydrophobicity of nano-patterned PDMS surface was sustained. Nevertheless it has irregular patterns consisting of micro- and nano-patterns. According to atomic force microscopy (AFM), scanning electron microscopy (SEM) and confocal microscopy results by immunostaining method, human mammary epithelial cells (HMEC) adhered well on irregularly patterned surface without any reagents such as gelatin and collagen, compared to commercial culture dish. It implies PDMS material can be utilized as template for cell-based biochip without any reagents.

  10. The effect of activation agent on surface morphology, density and porosity of palm shell and coconut shell activated carbon

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Zakaria, S.; Salleh, M. N. M.; Sunar, N. M.; Feriyanto, D.; Nazri, A. A.

    2017-09-01

    Activated carbon (AC) has one of the promising alternative technology for filtration and adsorption process. It inexpensive material because the sources is abundant especially in Malaysia. Main purpose of this project is to develop AC by chemical activation process to improve adsorption capacity by improving porosity of AC. AC developed via carbonization using designed burner at temperature of 650°C to 850 °C and activated by Potassium Hydroxide (KOH) in 12 hour and then dried at temperature of 300°C. Characterization and analysis is conducted by Scanning Electron Microscopy (SEM) for surface morphology analysis, Energy Dispersive Spectroscopy (EDS) for composition analysis, density and porosity analysis. Results shows that uneven surface has been observed both of AC and non-AC and also AC shows higher porosity as compared to non-AC materials. Density value of raw material has lower than AC up to 11.67% and 47.54% and porosity of raw material has higher than AC up to 31.45% and 45.69% for palm shell and coconut shell AC. It can be concluded that lower density represent higher porosity of material and higher porosity indicated higher adsorption capacity as well.

  11. Procedures for analysis of debris relative to Space Shuttle systems

    NASA Technical Reports Server (NTRS)

    Kim, Hae Soo; Cummings, Virginia J.

    1993-01-01

    Debris samples collected from various Space Shuttle systems have been submitted to the Microchemical Analysis Branch. This investigation was initiated to develop optimal techniques for the analysis of debris. Optical microscopy provides information about the morphology and size of crystallites, particle sizes, amorphous phases, glass phases, and poorly crystallized materials. Scanning electron microscopy with energy dispersive spectrometry is utilized for information on surface morphology and qualitative elemental content of debris. Analytical electron microscopy with wavelength dispersive spectrometry provides information on the quantitative elemental content of debris.

  12. Novel Gemini cationic surfactants as anti-corrosion for X-65 steel dissolution in oilfield produced water under sweet conditions: Combined experimental and computational investigations

    NASA Astrophysics Data System (ADS)

    Migahed, M. A.; elgendy, Amr.; EL-Rabiei, M. M.; Nady, H.; Zaki, E. G.

    2018-05-01

    Two new sequences of Gemini di-quaternary ammonium salts were synthesized characterized by FTIR and 1HNMR spectroscopic techniques and evaluated as corrosion inhibitor for X-65 steel dissolution in deep oil wells formation water saturated with CO2. The anti-corrosion performance of these compounds was studied by different electrochemical techniques i.e. (potentiodynamic polarization and AC impedance methods), Surface morphology (SEM and EDX) analysis and quantum chemical calculations. Results showed that the synthesized compounds were of mixed-type inhibitors and the inhibition capability was influenced by the inhibitor dose and the spacer substitution in their structure as indicated by Tafel plots. Surface active parameters were determined from the surface tension profile. The synthesized compounds adsorbed via Langmuir adsorption model with physiochemical adsorption as inferred from the standard free energy (ΔG°ads) values. Surface morphology (SEM and EDX) data for inhibitor (II) shows the development of adsorbed film on steel specimen. Finally, the experimental results were supported by the quantum chemical calculations using DFT theory.

  13. Sinuous Flow in Cutting of Metals

    NASA Astrophysics Data System (ADS)

    Yeung, Ho; Viswanathan, Koushik; Udupa, Anirudh; Mahato, Anirban; Chandrasekar, Srinivasan

    2017-11-01

    Using in situ high-speed imaging, we unveil details of a highly unsteady plastic flow mode in the cutting of annealed and highly strain-hardening metals. This mesoscopic flow mode, termed sinuous flow, is characterized by repeated material folding, large rotation, and energy dissipation. Sinuous flow effects a very large shape transformation, with local strains of ten or more, and results in a characteristic mushroomlike surface morphology that is quite distinct from the well-known morphologies of metal-cutting chips. Importantly, the attributes of this unsteady flow are also fundamentally different from other well-established unsteady plastic flows in large-strain deformation, like adiabatic shear bands. The nucleation and development of sinuous flow, its dependence on material properties, and its manifestation across material systems are demonstrated. Plastic buckling and grain-scale heterogeneity are found to play key roles in triggering this flow at surfaces. Implications for modeling and understanding flow stability in large-strain plastic deformation, surface quality, and preparation of near-strain-free surfaces by cutting are discussed. The results point to the inadequacy of the widely used shear-zone models, even for ductile metals.

  14. Fabrication and characterization of SPR chips with the modified bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Zhang, Lu-lu; Cui, Da-fu

    2016-03-01

    A facile surface plasmon resonance (SPR) chip is developed for small molecule determination and analysis. The SPR chip was prepared based on a self assembling principle, in which the modified bovine serum albumin (BSA) was directly self-assembled onto the bare gold surface. The surface morphology of the chip with the modified BSA was investigated by atomic force microscopy (AFM) and its optical properties were characterized. The surface binding capacity of the bare facile SPR chip with a uniform morphology is 8 times of that of the bare control SPR chip. Based on the experiments of immune reaction between cortisol antibody and cortisol derivative, the sensitivity of the facile SPR chip with the modified BSA is much higher than that of the control SPR chip with the un-modified BSA. The facile SPR chip has been successfully used to detect small molecules. The lowest detection limit is 5 ng/mL with a linear range of 5—100 ng/mL for cortisol analysis. The novel facile SPR chip can also be applied to detect other small molecules.

  15. Bubbles and Dust: Dissolution Rates of Unhydrated Volcanic Ash as a Function of Morphology, Composition, and Particle Size

    NASA Astrophysics Data System (ADS)

    Wygel, C. M.; Sahagian, D. L.

    2017-12-01

    Volcanic eruptions are natural hazards due to their explosive nature and widespread transportation and deposition of ash particles. After deposition and subsequent leaching in soils or water bodies, ash deposition positively (nutrients) and negatively (contaminants) impacts the health of flora and fauna, including humans. The effects of ash leachates have been difficult to replicate in field and laboratory studies due to the many complexities and differences between ash particles. Ash morphology is characteristic for each eruption, dependent upon eruption energy, and should play a critical role in determining leaching rates. Morphology reflects overall particle surface area, which is strongly influenced by the presence of surface dust. In addition, ash composition, which in part controls morphology and particle size, may also affect leaching rates. This study determines the extent to which ash morphology, surface area, composition, and particle size control ash dissolution rates. Further, it is necessary to determine whether compound vesicular ash particles permit water into their interior structures to understand if both the internal and external surface areas are available for leaching. To address this, six fresh, unhydrated ash samples from diverse volcanic environments and a large range in morphology, from Pele's spheres to vesicular compound ash, are tested in the laboratory. Ash morphology was characterized on the Scanning Electron Microscope (SEM) before and after leaching and surface area was quantified by Brunauer Emmett Teller (BET) analysis and with geometric calculations. Column Leachate Tests (CLT) were conducted to compare leaching rates over a range of basaltic to silicic ashes as a function of time and surface area, to recreate the effects of ash deposition in diverse volcanic environments. After the CLT, post-leaching water analyses were conducted by Ion Coupled Plasma-Mass Spectrometry (ICP-MS) and Ion Chromatography (IC). We find that leaching rates are correlated to characteristic surface area of ash particles.

  16. Fabrication of Monolithic Sapphire Membranes for High Tc Bolometer Array Development

    NASA Technical Reports Server (NTRS)

    Pugel, D. E.; Lakew, B.; Aslam, S.; Wang, L.

    2003-01-01

    This paper examines the effectiveness of Pt/Cr thin film masks for the architecture of monolithic membrane structures in r-plane sapphire. The development of a pinhole-free Pt/Cr composite mask that is resistant to hot H2SO4:H3PO4 etchant, will lead to the fabrication of smooth sapphire membranes whose surfaces are well-suited for the growth of low-noise high Tc films. In particular, the relationship of thermal annealing conditions on the Pt/Cr composite mask system to: (1) changes in the surface morphology and elemental concentration of the Pt/Cr thin film layers and (2) etch pit formation on the sapphire surface will be presented.

  17. Influence of surface morphology on adsorption of potassium stearate molecules on diamond-like carbon substrate: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Guo, Shusen; Cao, Yongzhi; Sun, Tao; Zhang, Junjie; Gu, Le; Zhang, Chuanwei; Xu, Zhiqiang

    2018-05-01

    Molecular dynamics (MD) simulations were used to provide insights into the influence of nano-scale surface morphology on adsorptive behavior of Potassium stearate molecules on diamond-like carbon (DLC) substrates. Particular focus was given to explain that how the distinctive geometric properties of different surface morphologies affect the equilibrium structures and substrate-molecules interactions of monolayers, which was achieved through adsorptive analysis methods including adsorptive process, density profile, density distribution and surface potential energy. Analysis on surface potential energy demonstrated that the adsorptivity of amorphous smooth substrate is uniformly distributed over the surface, while DLC substrates with different surface morphologies appear to be more potentially corrugated, which improves the adsorptivity significantly. Because of the large distance of molecules from carbon atoms located at the square groove bottom, substrate-molecules interactions vanish significantly, and thus potassium stearate molecules cannot penetrate completely into the square groove. It can be observed that the equilibrium substrate-molecules interactions of triangle groove and semi-circle groove are much more powerful than that of square groove due to geometrically advantageous properties. These findings provided key information of optimally design of solid substrates with controllable adsorptivity.

  18. Ag films deposited on Si and Ti: How the film-substrate interaction influences the nanoscale film morphology

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Torrisi, V.

    2017-11-01

    Submicron-thick Ag films were sputter deposited, at room temperature, on Si, covered by the native SiO2 layer, and on Ti, covered by the native TiO2 layer, under normal and oblique deposition angle. The aim of this work was to study the morphological differences in the grown Ag films on the two substrates when fixed all the other deposition parameters. In fact, the surface diffusivity of the Ag adatoms is different on the two substrates (higher on the SiO2 surface) due to the different Ag-SiO2 and Ag-TiO2 atomic interactions. So, the effect of the adatoms surface diffusivity, as determined by the adatoms-substrate interaction, on the final film morphology was analyzed. To this end, microscopic analyses were used to study the morphology of the grown Ag films. Even if the homologous temperature prescribes that the Ag film grows on both substrates in the zone I described by the structure zone model some significant differences are observed on the basis of the supporting substrate. In the normal incidence condition, on the SiO2/Si surface a dense close-packed Ag film exhibiting a smooth surface is obtained, while on the TiO2/Ti surface a more columnar film morphology is formed. In the oblique incidence condition the columnar morphology for the Ag film occurs both on SiO2/Si and TiO2/Ti but a higher porous columnar film is obtained on TiO2/Ti due to the lower Ag diffusivity. These results indicate that the adatoms diffusivity on the substrate as determined by the adatom-surface interaction (in addition to the substrate temperature) strongly determines the final film nanostructure.

  19. A kinetic model for the characteristic surface morphologies of thin films by directional vapor deposition

    NASA Astrophysics Data System (ADS)

    Li, Kun-Dar; Huang, Po-Yu

    2017-12-01

    In order to simulate a process of directional vapor deposition, in this study, a numerical approach was applied to model the growth and evolution of surface morphologies for the crystallographic structures of thin films. The critical factors affecting the surface morphologies in a deposition process, such as the crystallographic symmetry, anisotropic interfacial energy, shadowing effect, and deposition rate, were all enclosed in the theoretical model. By altering the parameters of crystallographic symmetry in the structures, the faceted nano-columns with rectangular and hexagonal shapes were established in the simulation results. Furthermore, for revealing the influences of the anisotropic strength and the deposition rate theoretically on the crystallographic structure formations, various parameters adjusted in the numerical calculations were also investigated. Not only the morphologies but also the surface roughnesses for different processing conditions were distinctly demonstrated with the quantitative analysis of the simulations.

  20. Surface morphology and electrochemical studies on polyaniline/CuO nano composites

    NASA Astrophysics Data System (ADS)

    Ashokkumar, S. P.; Vijeth, H.; Yesappa, L.; Niranjana, M.; Vandana, M.; Basappa, M.; Devendrappa, H.

    2018-05-01

    An electrochemically synthesized Polyaniline (PANI) and Polyaniline/copper oxide (PCN) nano composite have studied the morphology and electrochemical properties. The composite is characterized by X-ray diffraction (XRD) and surface morphology was studied using FESEM and electrochemical behavior is studied using cyclic voltammetry (CV) technique. The CV curves shows rectangular shaped curve and they have contribution to electrical double layer capacitance (EDCL).

  1. Morphological instability of GaAs (7 1 1)A: A transition between (1 0 0) and (5 1 1) terraces

    NASA Astrophysics Data System (ADS)

    Yazdanpanah, V. R.; Wang, Zh. M.; Salamo, G. J.

    2005-06-01

    We report on the use of reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM) study that indicates that the GaAs (7 1 1)A is right at the transition between vicinal GaAs (1 0 0) and vicinal GaAs (5 1 1)A surfaces and that a variation of the As overpressure switches the surface morphology between the two vicinal surfaces. The steps on the vicinal (1 0 0) surface have a width of 1.5 nm creating a staircase surface with excellent possibilities for growth of quantum wells. As-rich conditions can be described by vicinal (5 1 1)A surfaces with a width of 3.5 nm. This surface could find applications as a template for quantum wire growth. The observation suggests that the transition between these two morphologies is understandable based on the increase in surface energy of a vicinal (1 0 0) surface as the step separation approaches the dimer reconstructed separation.

  2. Early-stage aeolian protodune development and migration

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; Baddock, M. C.; Wiggs, G.

    2017-12-01

    Early-stage bedforms, or protodunes, can be observed to form on sandy beaches, desert gravels or superimposed on the surfaces of larger dunes and can develop topography of 0.1 m or more over several hours. These protodunes are the precursors to embryo and eventually mature dunes, and so it is important to understand how feedbacks between flow, transport and form contribute to this development sequence. Whilst theory and conceptual models have offered some explanation for protodune existence and development, we know surprisingly little about how these bedforms initiate and migrate because it is difficult to measure small changes in form (millimetres; seconds) on highly active surfaces of limited topographic expression. Here, we employ terrestrial laser scanning (TLS) to measure morphological change at the high frequency and spatial resolution (sub-millimetre) required to gain new insights into protodune behaviour. Along with TLS derived saltation and surface moisture, additional sediment flux and windspeed measurements help to elucidate how the protodune topography interacts with airflow and sand transport. We focus on a number of coastal bedforms in various development stages including a 0.06 m high protodune which grew vertically by 0.005 m in two hours with the switch from erosion to deposition identified to occur at a point 0.07 m upwind of the crest. This growth was associated with a reduction in time-averaged sediment flux of 18% over the crestal region. We also observed a decline in lower stoss slope steepness (by 3°) and a steepening of the lee slope, indicating a reshaping of initial protodune form towards the morphology of a more mature dune. Our findings highlight the crucial role of form-flow feedbacks, even on very small bedforms, in driving early-stage bedform growth and development, and show how the use of high resolution TLS to measure both surface topography and grains moving above the surface, can offer new insights into a long standing deficiency in aeolian geomorphology.

  3. The role of mechanics during brain development

    NASA Astrophysics Data System (ADS)

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2014-12-01

    Convolutions are a classical hallmark of most mammalian brains. Brain surface morphology is often associated with intelligence and closely correlated with neurological dysfunction. Yet, we know surprisingly little about the underlying mechanisms of cortical folding. Here we identify the role of the key anatomic players during the folding process: cortical thickness, stiffness, and growth. To establish estimates for the critical time, pressure, and the wavelength at the onset of folding, we derive an analytical model using the Föppl-von Kármán theory. Analytical modeling provides a quick first insight into the critical conditions at the onset of folding, yet it fails to predict the evolution of complex instability patterns in the post-critical regime. To predict realistic surface morphologies, we establish a computational model using the continuum theory of finite growth. Computational modeling not only confirms our analytical estimates, but is also capable of predicting the formation of complex surface morphologies with asymmetric patterns and secondary folds. Taken together, our analytical and computational models explain why larger mammalian brains tend to be more convoluted than smaller brains. Both models provide mechanistic interpretations of the classical malformations of lissencephaly and polymicrogyria. Understanding the process of cortical folding in the mammalian brain has direct implications on the diagnostics of neurological disorders including severe retardation, epilepsy, schizophrenia, and autism.

  4. The role of mechanics during brain development

    PubMed Central

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2014-01-01

    Convolutions are a classical hallmark of most mammalian brains. Brain surface morphology is often associated with intelligence and closely correlated to neurological dysfunction. Yet, we know surprisingly little about the underlying mechanisms of cortical folding. Here we identify the role of the key anatomic players during the folding process: cortical thickness, stiffness, and growth. To establish estimates for the critical time, pressure, and the wavelength at the onset of folding, we derive an analytical model using the Föppl-von-Kármán theory. Analytical modeling provides a quick first insight into the critical conditions at the onset of folding, yet it fails to predict the evolution of complex instability patterns in the post-critical regime. To predict realistic surface morphologies, we establish a computational model using the continuum theory of finite growth. Computational modeling not only confirms our analytical estimates, but is also capable of predicting the formation of complex surface morphologies with asymmetric patterns and secondary folds. Taken together, our analytical and computational models explain why larger mammalian brains tend to be more convoluted than smaller brains. Both models provide mechanistic interpretations of the classical malformations of lissencephaly and polymicrogyria. Understanding the process of cortical folding in the mammalian brain has direct implications on the diagnostics of neurological disorders including severe retardation, epilepsy, schizophrenia, and autism. PMID:25202162

  5. A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning.

    PubMed

    Ryu, Won-Hee; Gittleson, Forrest S; Li, Jinyang; Tong, Xiao; Taylor, André D

    2016-08-10

    Understanding the catalyzed formation and evolution of lithium-oxide products in Li-O2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer. We observe the cross-sectional product growth and evolution in Li-O2 cells by characterizing products that grow from the electrode surface. Morphological and structural details of the products in both catalyzed and uncatalyzed cells are investigated independently from the influence of the oxygen electrode. We find that the geometric decoration of catalysts far from the conductive electrode surface significantly improves the reaction reversibility by chemically facilitating the oxidation reaction through local coordination with PdO surfaces. The influence of the catalyst position on product composition is further verified by ex situ X-ray photoelectron spectroscopy and Raman spectroscopy in addition to morphological studies.

  6. Feedback System Control Optimized Electrospinning for Fabrication of an Excellent Superhydrophobic Surface.

    PubMed

    Yang, Jian; Liu, Chuangui; Wang, Boqian; Ding, Xianting

    2017-10-13

    Superhydrophobic surface, as a promising micro/nano material, has tremendous applications in biological and artificial investigations. The electrohydrodynamics (EHD) technique is a versatile and effective method for fabricating micro- to nanoscale fibers and particles from a variety of materials. A combination of critical parameters, such as mass fraction, ratio of N, N-Dimethylformamide (DMF) to Tetrahydrofuran (THF), inner diameter of needle, feed rate, receiving distance, applied voltage as well as temperature, during electrospinning process, to determine the morphology of the electrospun membranes, which in turn determines the superhydrophobic property of the membrane. In this study, we applied a recently developed feedback system control (FSC) scheme for rapid identification of the optimal combination of these controllable parameters to fabricate superhydrophobic surface by one-step electrospinning method without any further modification. Within five rounds of experiments by testing totally forty-six data points, FSC scheme successfully identified an optimal parameter combination that generated electrospun membranes with a static water contact angle of 160 degrees or larger. Scanning electron microscope (SEM) imaging indicates that the FSC optimized surface attains unique morphology. The optimized setup introduced here therefore serves as a one-step, straightforward, and economic approach to fabricate superhydrophobic surface with electrospinning approach.

  7. A new design strategy for observing lithium oxide growth-evolution interactions using geometric catalyst positioning

    DOE PAGES

    Ryu, Won -Hee; Gittleson, Forrest S.; Li, Jinyang; ...

    2016-06-21

    Understanding the catalyzed formation and evolution of lithium-oxide products in Li-O 2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer. We observe the cross-sectional product growth and evolution in Li-O 2 cells by characterizing products that grow from the electrode surface.more » Morphological and structural details of the products in both catalyzed and uncatalyzed cells are investigated independently from the influence of the oxygen electrode. We find that the geometric decoration of catalysts far from the conductive electrode surface significantly improves the reaction reversibility by chemically facilitating the oxidation reaction through local coordination with PdO surfaces. Lastly, the influence of the catalyst position on product composition is further verified by ex situ Xray photoelectron spectroscopy and Raman spectroscopy in addition to morphological studies.« less

  8. Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies.

    PubMed

    Gurlo, Aleksander

    2011-01-01

    Anisotropy is a basic property of single crystals. Dissimilar facets/surfaces have different geometric and electronic structure that results in dissimilar functional properties. Several case studies unambiguously demonstrated that the gas sensing activity of metal oxides is determined by the nature of surfaces exposed to ambient gas. Accordingly, a control over crystal morphology, i.e. over the angular relationships, size and shape of faces in a crystal, is required for the development of better sensors with increased selectivity and sensitivity in the chemical determination of gases. The first step toward this nanomorphological control of the gas sensing properties is the design and synthesis of well-defined nanocrystals which are uniform in size, shape and surface structure. These materials possess the planes of the symmetrical set {hkl} and must therefore behave identically in chemical reactions and adsorption processes. Because of these characteristics, the form-controlled nanocrystals are ideal candidates for fundamental studies of mechanisms of gas sensing which should involve (i) gas sensing measurements on specific surfaces, (ii) their atomistic/quantum chemical modelling and (ii) spectroscopic information obtained on same surfaces under operation conditions of sensors.

  9. Wrinkled, wavelength-tunable graphene-based surface topographies for directing cell alignment and morphology

    PubMed Central

    Wang, Zhongying; Tonderys, Daniel; Leggett, Susan E.; Williams, Evelyn Kendall; Kiani, Mehrdad T.; Steinberg, Ruben Spitz; Qiu, Yang; Wong, Ian Y.; Hurt, Robert H.

    2015-01-01

    Textured surfaces with periodic topographical features and long-range order are highly attractive for directing cell-material interactions. They mimic physiological environments more accurately than planar surfaces and can fundamentally alter cell alignment, shape, gene expression, and cellular assembly into superstructures or microtissues. Here we demonstrate for the first time that wrinkled graphene-based surfaces are suitable as textured cell attachment substrates, and that engineered wrinkling can dramatically alter cell alignment and morphology. The wrinkled surfaces are fabricated by graphene oxide wet deposition onto pre-stretched elastomers followed by relaxation and mild thermal treatment to stabilize the films in cell culture medium. Multilayer graphene oxide films form periodic, delaminated buckle textures whose wavelengths and amplitudes can be systematically tuned by variation in the wet deposition process. Human and murine fibroblasts attach to these textured films and remain viable, while developing pronounced alignment and elongation relative to those on planar graphene controls. Compared to lithographic patterning of nanogratings, this method has advantages in the simplicity and scalability of fabrication, as well as the opportunity to couple the use of topographic cues with the unique conductive, adsorptive, or barrier properties of graphene materials for functional biomedical devices. PMID:25848137

  10. Morphology-dependent photo-induced polarization recovery in ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Wang, J. Y.; Liu, G.; Sando, D.; Nagarajan, V.; Seidel, J.

    2017-08-01

    We investigate photo-induced ferroelectric domain switching in a series of Pb(Zr0.2Ti0.8)O3/La0.7Sr0.3MnO3 (PZT/LSMO) bilayer thin films with varying surface morphologies by piezoresponse force microscopy under light illumination. We demonstrate that reverse poled ferroelectric regions can be almost fully recovered under laser irradiation of the PZT layer and that the recovery process is dependent on the surface morphology on the nanometer scale. The recovery process is well described by the Kolmogorov-Avrami-Ishibashi model, and the evolution speed is controlled by light intensity, sample thickness, and initial write voltage. Our findings shed light on optical control of the domain structure in ferroelectric thin films with different surface morphologies.

  11. Slip-additive migration, surface morphology, and performance on injection moulded high-density polyethylene closures.

    PubMed

    Dulal, Nabeen; Shanks, Robert; Gengenbach, Thomas; Gill, Harsharn; Chalmers, David; Adhikari, Benu; Pardo Martinez, Isaac

    2017-11-01

    The amount and distribution of slip agents, erucamide, and behenamide, on the surface of high-density polyethene, is determined by integral characteristics of slip agent structure and polymer morphology. A suite of surface analysis techniques was applied to correlate physicochemical properties with slip-additive migration behaviour and their surface morphology. The migration, surface morphology and physicochemical properties of the slip additives, crystallinity and orientation of polyethene spherulites and interaction between slip additives and high-density polyethene influence the surface characteristics. The high-density polyethene closures were produced with erucamide and behenamide separately and stored until they produced required torque. Surface composition was determined employing spectroscopy and gas chromatography. The distribution of additives was observed under optical, scanning electron and atomic force microscopes. The surface energy, crystallinity and application torque were measured using contact angle, differential scanning calorimeter and a torque force tester respectively. Each slip additive produced a characteristic amide peak at 1645cm -1 in infrared spectroscopy and peaks of oxygen and nitrogen in X-ray photoelectron spectroscopy, suggesting their presence on the surface. The erucamide produced placoid scale-like structures and behenamide formed denticulate structures. The surface erucamide and behenamide responsible for reducing the torque was found to be 15.7µg/cm 2 and 1.7µg/cm 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Optimization of a biomimetic poly-(lactic acid) ligament scaffold

    NASA Astrophysics Data System (ADS)

    Uehlin, Andrew F.

    The anterior cruciate ligament (ACL) is the most commonly injured ligament of the knee, often requiring orthopedic reconstruction using autograft or allograph tissue, both with significant disadvantages. As a result, tissue engineering an ACL replacement graft has been heavily investigated. The present study attempts to replicate the morphology and mechanical properties of the ACL using a nanomatrix composite of highly-aligned poly(lactic acid) (PLA) fibers with various surface and biochemical modifications. Additionally, this study attempts to recreate the natural mineralization gradient found at the ACL enthesis onto the scaffold, capable of inducing a favorable cellular response in vitro. Unidirectional electrospinning was used to create nanofibers of PLA, followed by an induced degradation of the nanofibers via 0.25M NaOH hydrolysis. The effects of the unidirectional electrospinning as well as the effects of NaOH hydrolysis on fiber alignment, fiber diameter, surface morphology, crystallinity, in vitro swelling, immobilization of fibrin, and mechanical properties were investigated, resulting in a modified morphology correlating to the microstructure of native ligament tissue with similar mechanical properties. Furthering the development of the PLA nanomatrix composite, a bioinkjet printer was used to immobilize nanoparticulate hydroxyapatite (HANP) on the surface of the scaffold. A series of 300pL droplets of HANP bioink were printed over a gradient pattern mimetic of (and spatially corresponding to) the mineralization gradient found over the microanatomy at the ACL enthesis. Proliferation and differentiation response of human mesenchymal stem cells (hMSCs) in vitro was assessed on a variety of conditions and combinations of the PLA nanofiber scaffold surface modifications (inclusive and exclusive of HANP, fibrin, and various time dependent NaOH treatments). It was found that a combinatory effect of the HANP gradient with fibrin on 20 minute NaOH treated PLA nanofibers enhanced the osteogenic differentiation of hMSCs, with an observable morphological change spatially corresponding to the compositional changes of the printed HANP gradient. Using the bioactive scaffold designed in this study as a template and expanding on the methods utilized, future studies can incorporate specific growth factors and other organic/inorganic biomolecules to further develop the engineered PLA nanomatrix into a functional ligament-replacement graft.

  13. [Surface modifications of titanium implant material with excimer laser for more effective osseointegration].

    PubMed

    Pelsoczi, Kovács István; Bereznai, Miklós; Tóth, Zsolt; Turzó, Kinga; Radnai, Márta; Bor, Zsolt; Fazekas, András

    2004-12-01

    The biointegration of dental and orthopaedic implants depends mainly on the morphology and physical-chemical properties of their surfaces. Accordingly, the development of the desired microstructure is a relevant requirement in the bulk manufacture. Besides the widely used sandblasting plus acid etching and plasma-spray coating techniques, the laser surface modification method offers a plausible alternative. In order to analyze the influence of the laser treatment, the surfaces of titanium samples were exposed to excimer laser irradiation. The aim of this study was to develop surfaces that provide optimal conditions for bone-implant contact, bone growth, formation and maintenance of gingival attachment. For this purpose, holes were ablated on the surface of samples by nanosecond (18 ns, ArF) and also sub-picosecond (0,5 ps, KrF) laser pulses. Using pulses of ns length, due to melt ejection, crown-like protrusions were formed at the border of the holes, which made them sensitive to mechanical effects. To avoid these undesirable crown-like structures ultrashort KrF excimer laser pulses were successfully applied. On the other hand, titanium samples were laser-polished in favour of formation and connection of healthy soft tissues. Irradiation by a series of nanosecond laser pulses resulted in an effective smoothening as detected by atomic force microscopy (AFM). By inhibiting plaque accumulation this favours formation of gingival attachment. X-ray photoelectron spectroscopy (XPS) studies showed that laser treatment, in addition to micro-structural and morphological modification, results in decreasing of surface contamination and thickening of the oxide layer. X-ray diffraction (XRD) analysis revealed that the original alpha-titanium crystalline structure of the laser-polished titanium surface was not altered by the irradiation.

  14. Response of Quiescent Cerebral Cortical Astrocytes to Nanofibrillar Scaffold Properties

    NASA Astrophysics Data System (ADS)

    Ayres, Virginia; Mujdat Tiryaki, Volkan; Xie, Kan; Ahmed, Ijaz; Shreiber, David I.

    2013-03-01

    We present results of an investigation to examine the hypothesis that the extracellular environment can trigger specific signaling cascades with morphological consequences. Differences in the morphological responses of quiescent cerebral cortical astrocytes cultured on the nanofibrillar matrices versus poly-L-lysine functionalized glass and Aclar, and unfunctionalized Aclar surfaces were demonstrated using atomic force microscopy (AFM) and phalloidin staining of F-actin. The differences and similarities of the morphological responses were consistent with differences and similarities of the surface polarity and surface roughness of the four surfaces investigated in this work, characterized using contact angle and AFM measurements. The three-dimensional capability of AFM was also used to identify differences in cell spreading. An initial quantitative immunolabeling study further identified significant differences in the activation of the Rho GTPases: Cdc42, Rac1, and RhoA, which are upstream regulators of the observed morphological responses: filopodia, lamellipodia, and stress fiber formation. The results support the hypothesis that the extracellular environment can trigger preferential activation of members of the Rho GTPase family with demonstrable morphological consequences for cerebral cortical astrocytes. The support of NSF PHY-095776 is acknowledged.

  15. Nanoparticle induced piezoelectric, super toughened, radiation resistant, multi-functional nanohybrids.

    PubMed

    Tiwari, Vimal K; Shripathi, T; Lalla, N P; Maiti, Pralay

    2012-01-07

    We have developed multifunctional nanohybrids of poly(vinylidene fluoride-co-chlorotrifluoroethylene) (CTFE) with a small percentage of surface modified inorganic layered silicate showing dramatic improvement in toughness, radiation resistant and piezoelectric properties vis-à-vis pristine polymer. Massive intercalation (d(001) 1.8 → 3.9 nm) of polymer inside the nanoclay galleries and unique crystallization behavior of the fluoropolymer on the surface of individual silicate layer has been reported. Toughness in the nanohybrid increases more than three orders of magnitude as compared to pure CTFE. High energy radiation (80 MeV Si(+7)) causes chain session, amorphization and creates olefinic bonds in the pure polymer while the nanohybrids are radiation resistant at a similar dose. Nanoclay induces the metastable piezoelectric β-phase in CTFE, suitable for sensor and actuator application. Molecular level changes after irradiation and controlled morphology for smart membrane have been confirmed by using spectroscopy, sol-gel technique, surface morphology studies and in situ residual gas analysis.

  16. Surfactant-Free Shape Control of Gold Nanoparticles Enabled by Unified Theoretical Framework of Nanocrystal Synthesis.

    PubMed

    Wall, Matthew A; Harmsen, Stefan; Pal, Soumik; Zhang, Lihua; Arianna, Gianluca; Lombardi, John R; Drain, Charles Michael; Kircher, Moritz F

    2017-06-01

    Gold nanoparticles have unique properties that are highly dependent on their shape and size. Synthetic methods that enable precise control over nanoparticle morphology currently require shape-directing agents such as surfactants or polymers that force growth in a particular direction by adsorbing to specific crystal facets. These auxiliary reagents passivate the nanoparticles' surface, and thus decrease their performance in applications like catalysis and surface-enhanced Raman scattering. Here, a surfactant- and polymer-free approach to achieving high-performance gold nanoparticles is reported. A theoretical framework to elucidate the growth mechanism of nanoparticles in surfactant-free media is developed and it is applied to identify strategies for shape-controlled syntheses. Using the results of the analyses, a simple, green-chemistry synthesis of the four most commonly used morphologies: nanostars, nanospheres, nanorods, and nanoplates is designed. The nanoparticles synthesized by this method outperform analogous particles with surfactant and polymer coatings in both catalysis and surface-enhanced Raman scattering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Understanding and controlling the step bunching instability in aqueous silicon etching

    NASA Astrophysics Data System (ADS)

    Bao, Hailing

    Chemical etching of silicon has been widely used for more than half a century in the semiconductor industry. It not only forms the basis for current wafer cleaning processes, it also serves as a powerful tool to create a variety of surface morphologies for different applications. Its potential for controlling surface morphology at the atomic scale over micron-size regions is especially appealing. In spite of its wide usage, the chemistry of silicon etching is poorly understood. Many seemingly simple but fundamental questions have not been answered. As a result, the development of new etchants and new etching protocols are based on expensive and tedious trial-and-error experiments. A better understanding of the etching mechanism would direct the rational formulation of new etchants that produce controlled etch morphologies. Particularly, micron-scale step bunches spontaneously develop on the vicinal Si(111) surface etched in KOH or other anisotropic aqueous etchants. The ability to control the size, orientation, density and regularity of these surface features would greatly improve the performance of microelectromechanical devices. This study is directed towards understanding the chemistry and step bunching instability in aqueous anisotropic etching of silicon through a combination of experimental techniques and theoretical simulations. To reveal the cause of step-bunching instability, kinetic Monte Carlo simulations were constructed based on an atomistic model of the silicon lattice and a modified kinematic wave theory. The simulations showed that inhomogeneity was the origin of step-bunching, which was confirmed through STM studies of etch morphologies created under controlled flow conditions. To quantify the size of the inhomogeneities in different etchants and to clarify their effects, a five-parallel-trench pattern was fabricated. This pattern used a nitride mask to protect most regions of the wafer; five evenly spaced etch windows were opened to the Si(110) substrate. Combining data from these etched patterns and surface IR spectra, a modified mechanism, which explained most experimental observations, was proposed. Control of the step-bunching instability was accomplished with a second micromachined etch barrier pattern which consisted of a circular array of seventy-two long, narrow trenches in an etch mask. Using this pattern, well aligned, regularly shaped, evenly-distributed, near-atomically flat terraces in micron size were produced controllably.

  18. Morphology of jack pine and tamarack needles in dense stands.

    Treesearch

    Terry F. Strong; J. Zavitkovski

    1978-01-01

    Effects of position in the crown on needle morphology and surface area were studied. Needle length, surface area, and dry weight increased and specific needs area decreased from the lower to the upper third of the crown.

  19. Subsurface Grain Morphology Reconstruction by Differential Aperture X-ray Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenlohr, Philip; Shanthraj, Pratheek; Vande Kieft, Brendan R.

    A multistep, non-destructive grain morphology reconstruction methodology that is applicable to near-surface volumes is developed and tested on synthetic grain structures. This approach probes the subsurface crystal orientation using differential aperture X-ray microscopy (DAXM) on a sparse grid across the microstructure volume of interest. Resulting orientation data is clustered according to proximity in physical and orientation space and used as seed points for an initial Voronoi tessellation to (crudely) approximate the grain morphology. Curvature-driven grain boundary relaxation, simulated by means of the Voronoi Implicit Interface Method (VIIM), progressively improves the reconstruction accuracy. The similarity between bulk and readily accessible surfacemore » reconstruction error provides an objective termination criterion for boundary relaxation.« less

  20. Characterization and control of fungal morphology for improved production performance in biotechnology.

    PubMed

    Krull, Rainer; Wucherpfennig, Thomas; Esfandabadi, Manely Eslahpazir; Walisko, Robert; Melzer, Guido; Hempel, Dietmar C; Kampen, Ingo; Kwade, Arno; Wittmann, Christoph

    2013-01-20

    Filamentous fungi have been widely applied in industrial biotechnology for many decades. In submerged culture processes, they typically exhibit a complex morphological life cycle that is related to production performance--a link that is of high interest for process optimization. The fungal forms can vary from dense spherical pellets to viscous mycelia. The resulting morphology has been shown to be influenced strongly by process parameters, including power input through stirring and aeration, mass transfer characteristics, pH value, osmolality and the presence of solid micro-particles. The surface properties of fungal spores and hyphae also play a role. Due to their high industrial relevance, the past years have seen a substantial development of tools and techniques to characterize the growth of fungi and obtain quantitative estimates on their morphological properties. Based on the novel insights available from such studies, more recent studies have been aimed at the precise control of morphology, i.e., morphology engineering, to produce superior bio-processes with filamentous fungi. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Three-dimensional morphology of heel fat pad: an in vivo computed tomography study.

    PubMed

    Campanelli, Valentina; Fantini, Massimiliano; Faccioli, Niccolò; Cangemi, Alessio; Pozzo, Antonio; Sbarbati, Andrea

    2011-11-01

    Heel fat pad cushioning efficiency is the result of its structure, shape and thickness. However, while a number of studies have investigated heel fat pad (HFP) anatomy, structural behavior and material properties, no previous study has described its three-dimensional morphology in situ. The assessment of the healthy, unloaded, three-dimensional morphology of heel pad may contribute to deepen the understanding of its role and behavior during locomotion. It is the basis for the assessment of possible HFP morphological modifications due to changes in the amount or distribution of the loads normally sustained by the foot. It may also help in guiding the surgical reconstruction of the pad and in improving footwear design, as well as in developing a correct heel pad geometry for finite element models of the foot. Therefore the purpose of this study was to obtain a complete analysis of HFP three-dimensional morphology in situ. The right foot of nine healthy volunteers was scanned with computed tomography. A methodological approach that maximizes reliability and repeatability of the data was developed by building a device to lock the foot in a neutral position with respect to the scan planes during image acquisition. Scan data were used to reconstruct virtual three-dimensional models for both the calcaneus and HFP. A set of virtual coronal and axial sections were extracted from the three-dimensional model of each HFP and processed to extract a set of one- and two-dimensional morphometrical measurements for a detailed description of heel pad morphology. The tissue exhibited a consistent and sophisticated morphology that may reflect the biomechanics of the foot support. HFP was found to be have a crest on its anterior dorsal surface, flanges on the sides and posteriorly, and a thick portion that reached and covered the posterior surface of the calcaneus and the achilles tendon insertion. Its anterior internal portion was thinner and a lump of fat was consistently present in this region. Finally, HFP was found to be thicker in males than in females. © 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland.

  2. Three-dimensional morphology of heel fat pad: an in vivo computed tomography study

    PubMed Central

    Campanelli, Valentina; Fantini, Massimiliano; Faccioli, Niccolò; Cangemi, Alessio; Pozzo, Antonio; Sbarbati, Andrea

    2011-01-01

    Heel fat pad cushioning efficiency is the result of its structure, shape and thickness. However, while a number of studies have investigated heel fat pad (HFP) anatomy, structural behavior and material properties, no previous study has described its three-dimensional morphology in situ. The assessment of the healthy, unloaded, three-dimensional morphology of heel pad may contribute to deepen the understanding of its role and behavior during locomotion. It is the basis for the assessment of possible HFP morphological modifications due to changes in the amount or distribution of the loads normally sustained by the foot. It may also help in guiding the surgical reconstruction of the pad and in improving footwear design, as well as in developing a correct heel pad geometry for finite element models of the foot. Therefore the purpose of this study was to obtain a complete analysis of HFP three-dimensional morphology in situ. The right foot of nine healthy volunteers was scanned with computed tomography. A methodological approach that maximizes reliability and repeatability of the data was developed by building a device to lock the foot in a neutral position with respect to the scan planes during image acquisition. Scan data were used to reconstruct virtual three-dimensional models for both the calcaneus and HFP. A set of virtual coronal and axial sections were extracted from the three-dimensional model of each HFP and processed to extract a set of one- and two-dimensional morphometrical measurements for a detailed description of heel pad morphology. The tissue exhibited a consistent and sophisticated morphology that may reflect the biomechanics of the foot support. HFP was found to be have a crest on its anterior dorsal surface, flanges on the sides and posteriorly, and a thick portion that reached and covered the posterior surface of the calcaneus and the achilles tendon insertion. Its anterior internal portion was thinner and a lump of fat was consistently present in this region. Finally, HFP was found to be thicker in males than in females. PMID:21848602

  3. Effects of ridge cracking and interface sliding on morphological symmetry breaking in straight-sided blisters

    NASA Astrophysics Data System (ADS)

    Li, Shi-Chen; Yu, Sen-Jiang; He, Linghui; Ni, Yong

    2018-03-01

    Complex surface patterns generated by nonlinear buckling originate from various symmetry-breaking instabilities. Identifying possible key factors that regulate the instability modes is critical to reveal the mechanism of the surface pattern selection. In this paper, how another two factors (ridge cracking and interface sliding) including Poisson's ratio influence the morphological symmetry breaking in straight-sided blisters are systematically studied. Morphology diagrams from stability analysis show that ridge cracking and low Poisson's ratio promote symmetric instability mode and favor bubble-like blisters while interface sliding and high Poisson's ratio facilitate antisymmetric instability mode and result in telephone cord buckles. The analytical predictions are evidenced by experimental observations on annealed silicon nitride films on glass substrates and confirmed by nonlinear numerical simulations. This study explains how and why the rarely observed bubble-like blisters in accompany with ridge crack can appear in brittle thin films in comparison with the ubiquitously observed telephone cord buckles that usually form as the development of an antisymmetric instability mode when straight-sided blisters undergo the super-critical isotropic compression.

  4. Morphological modification of alpha-MnO2 catalyst for use in Li/air batteries.

    PubMed

    Park, Min-Sik; Kim, Jae-Hun; Kim, Ki Jae; Jeong, Goojin; Kim, Young-Jun

    2013-05-01

    Single crystal alpha-MnO2 nanowires and nanopowders have been successfully synthesized in order to facilitate a comparison of their catalytic activity for use in Li-air batteries. The importance of the morphological modification of the alpha-MnO2 catalyst for facilitating electrochemical reactions between Li and O2 is addressed. Distinctive catalytic activity of alpha-MnO2 is observed, which is in line with its different morphologies. The catalytic activity significantly affects the reversible capacity of Li-air batteries. A high aspect ratio, large surface area and good dispersibility of alpha-MnO2 in the nanowire form are advantageous providing larger active surfaces for promoting the fundamental reactions in Li-air batteries. We also introduce a robustly designed air-electrode composed of highly porous carbon and nanostructured alpha-MnO2 catalysts, with employs a metal foam current collector to ensure sufficient air-permeability and to maximize electronic conduction during cycles. Our suggestions should prove helpful in forming a basis for further investigations in developing advanced Li-air batteries.

  5. Thin-film-induced morphological instabilities over calcite surfaces

    PubMed Central

    Vesipa, R.; Camporeale, C.; Ridolfi, L.

    2015-01-01

    Precipitation of calcium carbonate from water films generates fascinating calcite morphologies that have attracted scientific interest over past centuries. Nowadays, speleothems are no longer known only for their beauty but they are also recognized to be precious records of past climatic conditions, and research aims to unveil and understand the mechanisms responsible for their morphological evolution. In this paper, we focus on crenulations, a widely observed ripple-like instability of the the calcite–water interface that develops orthogonally to the film flow. We expand a previous work providing new insights about the chemical and physical mechanisms that drive the formation of crenulations. In particular, we demonstrate the marginal role played by carbon dioxide transport in generating crenulation patterns, which are indeed induced by the hydrodynamic response of the free surface of the water film. Furthermore, we investigate the role of different environmental parameters, such as temperature, concentration of dissolved ions and wall slope. We also assess the convective/absolute nature of the crenulation instability. Finally, the possibility of using crenulation wavelength as a proxy of past flows is briefly discussed from a theoretical point of view. PMID:27547086

  6. Morphological study of the lingual papillae in the ferret (Mustela putorius furo).

    PubMed

    Takemura, Akimichi; Uemura, Mamoru; Toda, Isumi; Fang, Gang; Hikida, Masaya; Suwa, Fumihiko

    2009-05-01

    We used four ferrets (Mustela putorius furo) and observed these animals dorsal tongue surface morphology via scanning electron microscope and light microscope. In this investigation, we focused on the food habits and discussed the morphology of the lingual papillae from the viewpoint of comparative anatomy. The ferret has conically-shaped filiform papillae in the posterior, middle and anterior region of the tongue body, and circular-distributed filiform papillae in the lingual apex region. The ferret has fungiform papillae with hemispheric shaped summits in the posterior and middle region with square-shaped summits in the anterior and the lingual apex region. The ferret has V-shaped vallate papillae with eight papillae in two lines or 12 papillae in three lines on the tongue root. No foliate papillae were observed on the dorsal tongue surface of the ferret. The ferret belongs to the carnivore family but has a highly developed vallate papillae which are taste bud papillae and many taste glands. Thus we conclude that the ferrets need a large amount of saliva to swallow food because it demonstrates a large number of taste glands.

  7. Removal of heavy metal ions by biogenic hydroxyapatite: Morphology influence and mechanism study

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Guan, Xiaomei; Huang, Fangzhi; Li, Shikuo; Shen, Yuhua; Chen, Jun; Long, Haibo

    2016-08-01

    Based on the synthesis of hydroxyapatite (HA) with different morphologies, such as nanorod-like, flower-like and sphere-like assembled HA nanorods, a new strategy has been developed for the removal of heavy metal ions such as Pb2+, Cu2+, Mn2+, Zn2+. The dependence of removal efficiency on the morphology and the suspended concentration of trapping agent, the removal time and selectivity were evaluated and discussed. The experimental results proved that the removal capacity of flower-like assembled HA nanorods (NAFL-HA) was the best, and the maximum removal ratio for Pb2+ ion was 99.97%. The mechanism of Pb2+ removal was studied in detail, noting that some metal ions were completely incorporated into hydroxyapatitie to produce Pb-HA. It reveals that the metal ions capture by HA is mainly controlled by sample surface adsorption and co-precipitation, which are directly controlled by sample morphology.

  8. Buckling of paramagnetic chains in soft gels

    NASA Astrophysics Data System (ADS)

    Huang, Shilin; Pessot, Giorgio; Cremer, Peet; Weeber, Rudolf; Holm, Christian; Nowak, Johannes; Odenbach, Stefan; Menzel, Andreas M.; Auernhammer, Günter K.

    We study the magneto-elastic coupling behavior of paramagnetic chains in soft polymer gels exposed to external magnetic fields. To this end, a laser scanning confocal microscope is used to observe the morphology of the paramagnetic chains together with the deformation field of the surrounding gel network. The paramagnetic chains in soft polymer gels show rich morphological shape changes under oblique magnetic fields, in particular a pronounced buckling deformation. The details of the resulting morphological shapes depend on the length of the chain, the strength of the external magnetic field, and the modulus of the gel. Based on the observation that the magnetic chains are strongly coupled to the surrounding polymer network, a simplified model is developed to describe their buckling behavior. A coarse-grained molecular dynamics simulation model featuring an increased matrix stiffness on the surfaces of the particles leads to morphologies in agreement with the experimentally observed buckling effects.

  9. On the morphological instability of a bubble during inertia-controlled growth

    NASA Astrophysics Data System (ADS)

    Martyushev, L. M.; Birzina, A. I.; Soboleva, A. S.

    2018-06-01

    The morphological stability of a spherical bubble growing under inertia control is analyzed. Based on the comparison of entropy productions for a distorted and undistorted surface and using the maximum entropy production principle, the morphological instability of the bubble under arbitrary amplitude distortions is shown. This result allows explaining a number of experiments where the surface roughness of bubbles was observed during their explosive-type growth.

  10. Characterisation of group behaviour surface texturing with multi-layers fitting method

    NASA Astrophysics Data System (ADS)

    Kang, Zhengyang; Fu, Yonghong; Ji, Jinghu; Wang, Hao

    2016-07-01

    Surface texturing was widely applied in improving the tribological properties of mechanical components, but study of measurement of this technology was still insufficient. This study proposed the multi-layers fitting (MLF) method to characterise the dimples array texture surface. Based on the synergistic effect among the dimples, the 3D morphology of texture surface was rebuilt by 2D stylus profiler in the MLF method. The feasible regions of texture patterns and sensitive parameters were confirmed by non-linear programming, and the processing software of MLF method was developed based on the Matlab®. The characterisation parameters system of dimples was defined mathematically, and the accuracy of MLF method was investigated by comparison experiment. The surface texture specimens were made by laser surface texturing technology, in which high consistency of dimples' size and distribution was achieved. Then, 2D profiles of different dimples were captured by employing Hommel-T1000 stylus profiler, and the data were further processed by MLF software to rebuild 3D morphology of single dimple. The experiment results indicated that the MLF characterisation results were similar to those of Wyko T1100, the white light interference microscope. It was also found that the stability of MLF characterisation results highly depended on the number of captured cross-sections.

  11. Morphology Formation in PC/ABS Blends during Thermal Processing and the Effect of the Viscosity Ratio of Blend Partners

    PubMed Central

    Bärwinkel, Stefanie; Seidel, Andreas; Hobeika, Sven; Hufen, Ralf; Mörl, Michaela; Altstädt, Volker

    2016-01-01

    Morphology formation during compounding, as well as injection molding of blends containing 60 wt % polycarbonate (PC) and 40 wt % polybutadiene rubber-modified styrene-acrylonitrile copolymers (ABS), has been investigated by transmission electron microscopy (TEM). Profiles of the blend morphology have been recorded in injection-molded specimens and significant morphology gradients observed between their skin and core. A <10 µm thick surface layer with strongly dispersed and elongated nano-scale (streak-like) styrene acrylonitrile (SAN) phases and well-dispersed, isolated SAN-grafted polybutadiene rubber particles is followed by a 50–150 µm thick skin layer in which polymer morphology is characterized by lamellar SAN/ABS phases. Thickness of these lamellae increases with the distance from the specimen’s surface. In the core of the specimens the SAN-grafted polybutadiene rubber particles are exclusively present within the SAN phases, which exhibit a much coarser and less oriented, dispersed morphology compared to the skin. The effects of the viscosity of the SAN in the PC/ABS blends on phase morphologies and correlations with fracture mechanics in tensile and impact tests were investigated, including scanning electron microscopy (SEM) assessment of the fracture surfaces. A model explaining the mechanisms of morphology formation during injection molding of PC/ABS blends is discussed. PMID:28773780

  12. Various fates of neuronal progenitor cells observed on several different chemical functional groups

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Wang, Ying; He, Jin; Wang, Xiu-Mei; Cui, Fu-Zhai; Xu, Quan-Yuan

    2011-12-01

    Neuronal progenitor cells cultured on gold-coated glass surfaces modified by different chemical functional groups, including hydroxyl (-OH), carboxyl (-COOH), amino (-NH2), bromo (-Br), mercapto (-SH), - Phenyl and methyl (-CH3), were studied here to investigate the influence of surface chemistry on the cells' adhesion, morphology, proliferation and functional gene expression. Focal adhesion staining indicated in the initial culture stage cells exhibited morphological changes in response to different chemical functional groups. Cells cultured on -NH2 grafted surface displayed focal adhesion plaque and flattened morphology and had the largest contact area. However, their counter parts on -CH3 grafted surface displayed no focal adhesion and rounded morphology and had the smallest contact area. After 6 days culture, the proliferation trend was as follows: -NH2 > -SH> -COOH> - Phenyl > - Br > -OH> -CH3. To determine the neural functional properties of the cells affected by surface chemistry, the expression of glutamate decarboxylase (GAD67), nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) were characterized. An increase of GAD67 expression was observed on -NH2, -COOH and -SH grafted surfaces, while no increase in NGF and BDNF expression was observed on any chemical surfaces. These results highlight the importance of surface chemistry in the fate determination of neuronal progenitor cells, and suggest that surface chemistry must be considered in the design of biomaterials for neural tissue engineering.

  13. Effect of an aggressive medium on discontinuous deformation of aluminum-magnesium alloy AlMg6

    NASA Astrophysics Data System (ADS)

    Shibkov, A. A.; Denisov, A. A.; Zolotov, A. E.; Kochegarov, S. S.

    2017-01-01

    It is experimentally shown that the molecular (chemical) process of surface etching of deformed aluminum-magnesium alloy AlMg6 causes the development of a macroscopic plastic strain step with an amplitude of a few percent. Using numerical simulation of the polycrystalline solid etching process, it is shown that the corrosion front morphology varies during etching from Euclid (flat) to fractal (rough). The results obtained show the key role of the surface state on the development of macroscopic mechanical instability of a material exhibiting the Portevin-Le Chatelier effect.

  14. Morphological study of polymethyl methacrylate microcapsules filled with self-healing agents

    NASA Astrophysics Data System (ADS)

    Ahangaran, Fatemeh; Hayaty, Mehran; Navarchian, Amir H.

    2017-03-01

    Polymethyl methacrylate (PMMA) microcapsules filled with epoxy prepolymer, 3-aminomethyl-3,5,5-trimethylcyclohexylamine, and pentaerythritol tetrakis (3-mercaptopropionate) as healing agents have been prepared separately through internal phase separation method for self-healing purposes. PMMA with two different molecular weights (M bar1 = 36,000 g/mol and M bar2 = 550,000 g/mol) were used with two types of different emulsifiers (ionic and polymeric) to prepare microcapsules. The morphology of healing agent microcapsules was investigated using field emission scanning electron microscopy (FESEM). It was found that PMMA microcapsules separately filled with epoxy and amine had core-shell morphologies with smooth surfaces. The mercaptan/PMMA particles exhibited core-shell and acorn-shape morphologies. The surface morphology of mercaptan microcapsules changed from holed to plain in different emulsion systems. The spreading coefficient (S) of phases in the prepared emulsion systems were calculated from interfacial tension (σ) and contact angle (θ) measurements. The theoretical equilibrium morphology of PMMA microcapsules was predicted according to spreading coefficient values of phases in emulsion systems. It was also found that the surface morphology of PMMA microcapsules depended strongly on the nature of the core, molecular weight of PMMA, type and concentration of emulsifier.

  15. Relationships between surface free energy, surface texture parameters and controlled drug release in hydrophilic matrices.

    PubMed

    Saurí, J; Suñé-Negre, J M; Díaz-Marcos, J; Vilana, J; Millán, D; Ticó, J R; Miñarro, M; Pérez-Lozano, P; García-Montoya, E

    2015-01-15

    The study of controlled release and drug release devices has been dominated by considerations of the bulk or average properties of material or devices. Yet the outermost surface atoms play a central role in their performance. The objective of this article has been to characterize the surface of hydrophilic matrix tablets using the contact angle (CA) method to ascertain the surface free energy, and atomic force microscopy (AFM) and confocal microscopy (CM) for the physical characterization of the surface of the hydrophilic matrix. The surface free energy results obtained show that hydroxypropylmethylcellulose K15M hinders the spreading of water on the surface of the tablet, such that the concentration of HPMC K15M increases the reaction rate of the hydrophobic interactions between the chains of HPMC K15M which increases with respect to the rate of penetration of water into the tablet. In this study, we developed a new method to characterize the swelling of the tablets and established a relationship between the new method based on microswelling and the swelling ratio parameter. The surface texture parameters have been determined and the morphology of the tablets of the different formulations and the evolution of the surface morphology after interacting with the water, swelling and forming a gel layer were characterized. This work represents significant progress in the characterization of matrix tablets. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Microstructure, Mechanical and Surface Morphological Properties of Al5Ti5Cr Master Alloy as Friction Material Prepared by Stir Die Casting

    NASA Astrophysics Data System (ADS)

    Ahmed, Syed Faisal; Srivastava, Sanjay; Agarwal, Alka Bani

    2018-04-01

    Metal matrix composite offers outstanding properties for better performance of disc brakes. In the present study, the composite of AlTiCr master alloy was prepared by stir die casting method. The developed material was reinforced with (0-10 wt%) silicon carbide (SiC) and boron carbide (B4C). The effects of SiC reinforcement from 0 to 10 wt% on mechanical, microstructure and surface morphological properties of Al MMC was investigated and compared with B4C reinforcement. Physical properties like density and micro Vickers hardness number show an increasing trend with an increase in the percentage of SiC and B4C reinforcement. Mechanical properties viz. UTS, yield strength and percentage of elongation are improved with increasing the fraction of reinforcement. The surface morphology and phase were identified from scanning electron microscopy (SEM) and X-ray diffraction analysis and the oxidized product formed during the casting was investigated by Fourier transformation infrared spectroscopy. This confirms the presence of crystallization of corundum (α-Al2O3) in small traces as one of the alumina phases, within casting sample. Micro-structural characterization by SEM depicted that the particles tend to be more agglomerated more and more with the percentage of the reinforcement. The AFM results reveal that the surface roughness value shows a decreasing trend with SiC reinforcement while roughness increases with increase the percentage of B4C.

  17. Self-assembly of bimetallic AuxPd1-x alloy nanoparticles via dewetting of bilayers through the systematic control of temperature, thickness, composition and stacking sequence

    NASA Astrophysics Data System (ADS)

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-03-01

    Bimetallic alloy nanoparticles (NPs) are attractive materials for various applications with their morphology and elemental composition dependent optical, electronic, magnetic and catalytic properties. This work demonstrates the evolution of AuxPd1-x alloy nanostructures by the solid-state dewetting of sequentially deposited bilayers of Au and Pd on sapphire (0001). Various shape, size and configuration of AuxPd1‑x alloy NPs are fabricated by the systematic control of annealing temperature, deposition thickness, composition as well as stacking sequence. The evolution of alloy nanostructures is attributed to the surface diffusion, interface diffusion between bilayers, surface and interface energy minimization, Volmer-Weber growth model and equilibrium configuration. Depending upon the temperature, the surface morphologies evolve with the formation of pits, grains and voids and gradually develop into isolated semi-spherical alloy NPs by the expansion of voids and agglomeration of Au and Pd adatoms. On the other hand, small isolated to enlarged elongated and over-grown layer-like alloy nanostructures are fabricated due to the coalescence, partial diffusion and inter-diffusion with the increased bilayer thickness. In addition, the composition and stacking sequence of bilayers remarkably affect the final geometry of AuxPd1‑x nanostructures due to the variation in the dewetting process. The optical analysis based on the UV–vis-NIR reflectance spectra reveals the surface morphology dependent plasmonic resonance, scattering, reflection and absorption properties of AuxPd1‑x alloy nanostructures.

  18. Morphological Aspects of Oral Denticles in the Sharpnose Shark Rhizoprionodon lalandii (Müller and Henle, 1839) (Elasmobranchii, Carcharhinidae).

    PubMed

    Ciena, A P; de S Rangel, B; Bruno, C E M; Miglino, M A; de Amorim, A F; Rici, R E G; Watanabe, I

    2016-04-01

    The oral denticles of some elasmobranchs are found on the surface of the oral cavity and are homologous to those on the body surface, being well developed, independent and non-growing, with varying morphology and distribution depending on the species. The structural and three-dimensional characteristics of oral denticles from the rostro-ventral surface of the sharpnose shark Rhizoprionodon lalandii were described following imaging by both light and scanning electron microscopy. The light microscopy results showed that the triangular shape of the denticles consisted of a base and an apex. Picrosirius staining showed the arrangement of collagen fibres and oral denticles, and a predominance of type-I collagen was found in both structures under polarized light. There was a broad homogeneous distribution of denticles on the ventral surface, forming a leaf-like shape with the cusp facing the caudal region. Interlocking, hexagonal, geometric structures on its rostral side and ridges on the rostral side of the oral denticles were observed under increased magnification. We concluded that the denticle morphology found in R. lalandii differ of others analysed species, and the descriptions of these structures therefore provide important information for the classification of the species. In this species, the main functions can be assigned to help reduce hydrodynamic drag, particularly by this being a species that uses ram ventilation, and to protect the epithelium of the oropharynx of abrasion and parasites. © 2015 Blackwell Verlag GmbH.

  19. Preparation of poly(L-lactic acid) nanofiber scaffolds with a rough surface by phase inversion using supercritical carbon dioxide.

    PubMed

    Yang, Ding-Zhu; Chen, Ai-Zheng; Wang, Shi-Bin; Li, Yi; Tang, Xiao-Lin; Wu, Yong-Jing

    2015-06-24

    Phase inversion using supercritical carbon dioxide (SC-CO2) has been widely used in the development of tissue engineering scaffolds, and particular attention has been given to obtaining desired morphology without additional post-treatments. However, the main challenge of this technique is the difficulty in generating a three-dimensional (3D) nanofiber structure with a rough surface in one step. Here, a poly(L-lactic acid) (PLLA) 3D nanofiber scaffold with a rough surface is obtained via phase inversion using SC-CO2 by carefully choosing fabrication conditions and porogens. It is found that this method can effectively modulate the structure morphology, promote the crystallization process of semicrystalline polymer, and induce the formation of rough structures on the surface of nanofibers. Meanwhile, the porogen of ammonium bicarbonate (AB) can produce a 3D structure with large pores, and porogen of menthol can improve the interconnectivity between the micropores of nanofibers. A significant increase in the fiber diameter is observed as the menthol content increases. Furthermore, the menthol may affect the mutual transition between the α' and α crystals of PLLA during the phase separation process. In addition, the results of protein adsorption, cell adhesion, and proliferation assays indicate that cells tend to have higher viability on the nanofiber scaffold. This process combines the characteristic properties of SC-CO2 and the solubility of menthol to tailor the morphology of polymeric scaffolds, which may have potential applications in tissue engineering.

  20. FY07 LDRD Final Report A Fracture Mechanics and Tribology Approach to Understanding Subsurface Damage on Fused Silica during Grinding and Polishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suratwala, T I; Miller, P E; Menapace, J A

    The objective of this work is to develop a solid scientific understanding of the creation and characteristics of surface fractures formed during the grinding and polishing of brittle materials, specifically glass. In this study, we have experimentally characterized the morphology, number density, and depth distribution of various surface cracks as a function of various grinding and polishing processes (blanchard, fixed abrasive grinding, loose abrasive, pitch polishing and pad polishing). Also, the effects of load, abrasive particle (size, distribution, foreign particles, geometry, velocity), and lap material (pitch, pad) were examined. The resulting data were evaluated in terms of indentation fracture mechanicsmore » and tribological interactions (science of interacting surfaces) leading to several models to explain crack distribution behavior of ground surfaces and to explain the characteristics of scratches formed during polishing. This project has greatly advanced the scientific knowledge of microscopic mechanical damage occurring during grinding and polishing and has been of general interest. This knowledge-base has also enabled the design and optimization of surface finishing processes to create optical surfaces with far superior laser damage resistance. There are five major areas of scientific progress as a result of this LDRD. They are listed in Figure 1 and described briefly in this summary below. The details of this work are summarized through a number of published manuscripts which are included this LDRD Final Report. In the first area of grinding, we developed a technique to quantitatively and statistically measure the depth distribution of surface fractures (i.e., subsurface damage) in fused silica as function of various grinding processes using mixtures of various abrasive particles size distributions. The observed crack distributions were explained using a model that extended known, single brittle indentation models to an ensemble of loaded, sliding particles. The model illustrates the importance of the particle size distribution of the abrasive and its influence on the resulting crack distribution. The results of these studies are summarized in references 1-7. In the second area of polishing, we conducted a series of experiments showing the influence of rogue particles (i.e., particles in the polishing slurry that are larger than base particles) on the creation of scratches on polished surfaces. Scratches can be thought of a as a specific type of sub-surface damage. The characteristics (width, length, type of fractures, concentration) were explained in terms of the rogue particle size, the rogue particle material, and the viscoelastic properties of the lap. The results of these studies are summarized in references 6-7. In the third area of etching, we conducted experiments aimed at understanding the effect of HF:NH{sub 4}F acid etching on surface fractures on fused silica. Etching can be used as a method: (a) to expose sub-surface mechanical damage, (b) to study the morphology of specific mechanical damage occurring by indentation, and (c) to convert a ground surface containing a high concentration of sub-surface mechanical damage into surface roughness. Supporting models have been developed to describe in detail the effect of etching on the morphology and evolution of surface cracks. The results of these studies are summarized in references 8-9. In the fourth area of scratch forensics or scratch fractography, a set of new scratch forensic rule-of-thumbs were developed in order to aid the optical fabricator and process engineer to interpret the cause of scratches and digs on surfaces. The details of how these rules were developed are described in each of the references included in this summary (1-9). Figure 2 provides as a summary of some of the more commonly used rules-of-thumbs that have been developed in this study. In the fifth and final area of laser damage, we demonstrated that the removal of such surface fractures from the surface during optical fabrication can dramatically improve the laser damage.« less

  1. Carbon nanowall scaffold to control culturing of cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Watanabe, Hitoshi; Kondo, Hiroki; Okamoto, Yukihiro; Hiramatsu, Mineo; Sekine, Makoto; Baba, Yoshinobu; Hori, Masaru

    2014-12-01

    The effect of carbon nanowalls (CNWs) on the culturing rate and morphological control of cervical cancer cells (HeLa cells) was investigated. CNWs with different densities were grown using plasma-enhanced chemical vapor deposition and subjected to post-growth plasma treatment for modification of the surface terminations. Although the surface wettability of the CNWs was not significantly dependent on the CNW densities, the cell culturing rates were significantly dependent. Morphological changes of the cells were not significantly dependent on the density of CNWs. These results indicate that plasma-induced surface morphology and chemical terminations enable nanobio applications using carbon nanomaterials.

  2. Data on the surface morphology of additively manufactured Ti-6Al-4V implants during processing by plasma electrolytic oxidation.

    PubMed

    van Hengel, Ingmar A J; Riool, Martijn; Fratila-Apachitei, Lidy E; Witte-Bouma, Janneke; Farrell, Eric; Zadpoor, Amir A; Zaat, Sebastian A J; Apachitei, Iulian

    2017-08-01

    Additively manufactured Ti-6Al-4V implants were biofunctionalized using plasma electrolytic oxidation. At various time points during this process scanning electron microscopy imaging was performed to analyze the surface morphology (van Hengel et al., 2017) [1]. This data shows the changes in surface morphology during plasma electrolytic oxidation. Data presented in this article are related to the research article "Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus" (van Hengel et al., 2017) [1].

  3. Discrete element simulations of gravitational volcanic deformation. 1; Deformation structures and geometries

    NASA Technical Reports Server (NTRS)

    Morgan, Julia K.; McGovern, Patrick J.

    2005-01-01

    We have carried out two-dimensional particle dynamics simulations of granular piles subject to frictional Coulomb failure criteria to gain a first-order understanding of different modes of gravitational deformation within volcanoes. Under uniform basal and internal strength conditions, granular piles grow self-similarly, developing distinctive stratigraphies, morphologies, and structures. Piles constructed upon cohesive substrates exhibit particle avalanching, forming outward dipping strata and angle of repose slopes. Systematic decreases in basal strength lead to progressively deeper and steeper internal detachment faults and slip along a basal decollement; landslide forms grade from shallow slumps to deep-seated landslide and, finally, to axial subsidence and outward flank displacements, or volcanic spreading. Surface slopes decrease and develop concave up morphologies with decreasing decollement strength; depositional layers tilt progressively inward. Spatial variations in basal strength cause lateral transitions in pile structure, stratigraphy, and morphology. This approximation of volcanoes as Coulomb granular piles reproduces the richness of deformational structures and surface morphologies in many volcanic settings. The gentle slopes of Hawaiian volcanoes and Olympus Mons on Mars suggest weak basal decollements that enable volcanic spreading. High-angle normal faults, favored above weak decollements, are interpreted in both settings and may explain catastrophic sector collapse in Hawaii and broad aureole deposits surrounding Olympus Mons. In contrast, steeper slopes and shallow detachment faults predominate in the Canary Islands, thought to lack a weak decollement, favoring smaller, more frequent slope failures than predicted for Hawaii. The numerical results provide a useful predictive tool for interpreting dynamic behavior and associated geologic hazards of active volcanoes.

  4. PRENATAL EXPOSURE TO MATERNAL AND PATERNAL DEPRESSIVE SYMPTOMS AND BRAIN MORPHOLOGY: A POPULATION-BASED PROSPECTIVE NEUROIMAGING STUDY IN YOUNG CHILDREN.

    PubMed

    El Marroun, Hanan; Tiemeier, Henning; Muetzel, Ryan L; Thijssen, Sandra; van der Knaap, Noortje J F; Jaddoe, Vincent W V; Fernández, Guillén; Verhulst, Frank C; White, Tonya J H

    2016-07-01

    Prenatal depressive symptoms have been associated with multiple adverse outcomes. Previously, we demonstrated that prenatal depressive symptoms were associated with impaired growth of the fetus and increased behavioral problems in children aged between 1.5 and 6 years. In this prospective study, we aimed to assess whether prenatal maternal depressive symptoms at 3 years have long-term consequences on brain development in a cohort of children aged 6-10 years. As a contrast, the association of paternal depressive symptoms during pregnancy and brain morphology was assessed to serve as a marker of background confounding due to shared genetic and environmental family factors. We assessed parental depressive symptoms during pregnancy with the Brief Symptom Inventory. At approximately 8 years of age, we collected structural neuroimaging data, using cortical thickness, surface area, and gyrification as outcomes (n = 654). We found that exposure to prenatal maternal depressive symptoms during pregnancy was associated with a thinner superior frontal cortex in the left hemisphere. Additionally, prenatal maternal depressive symptoms were related to larger caudal middle frontal area in the left hemisphere. Maternal depressive symptoms at 3 years were not associated with cortical thickness, surface area, or gyrification in the left and right hemispheres. No effects of paternal depressive symptoms on brain morphology were observed. Prenatal maternal depressive symptoms were associated with differences in brain morphology in children. It is important to prevent, identify, and treat depressive symptoms during pregnancy as it may have long-term consequences on child brain development. © 2016 Wiley Periodicals, Inc.

  5. Effects of annealing temperature and duration on the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire.

    PubMed

    Sui, Mao; Li, Ming-Yu; Kunwar, Sundar; Pandey, Puran; Zhang, Quanzhen; Lee, Jihoon

    2017-01-01

    Metallic nanostructures (NSs) have been widely adapted in various applications and their physical, chemical, optical and catalytic properties are strongly dependent on their surface morphologies. In this work, the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire (0001) is demonstrated by the control of annealing temperature and dwelling duration with the distinct thickness of Pt films. The formation of Pt NSs is led by the surface diffusion, agglomeration and surface and interface energy minimization of Pt thin films, which relies on the growth parameters such as system temperature, film thickness and annealing duration. The Pt layer of 10 nm shows the formation of overlaying NPs below 650°C and isolated Pt nanoparticles above 700°C based on the enhanced surface diffusion and Volmer-Weber growth model whereas larger wiggly nanostructures are formed with 20 nm thick Pt layers based on the coalescence growth model. The morphologies of Pt nanostructures demonstrate a sharp distinction depending on the growth parameters applied. By the control of dwelling duration, the gradual transition from dense Pt nanoparticles to networks-like and large clusters is observed as correlated to the Rayleigh instability and Ostwald ripening. The various Pt NSs show a significant distinction in the reflectance spectra depending on the morphology evolution: i.e. the enhancement in UV-visible and NIR regions and the related optical properties are discussed in conjunction with the Pt NSs morphology and the surface coverage.

  6. Nano-scale surface morphology, wettability and osteoblast adhesion on nitrogen plasma-implanted NiTi shape memory alloy.

    PubMed

    Liu, X M; Wu, S L; Chu, Paul K; Chung, C Y; Chu, C L; Chan, Y L; Lam, K O; Yeung, K W K; Lu, W W; Cheung, K M C; Luk, K D K

    2009-06-01

    Plasma immersion ion implantation (PIII) is an effective method to increase the corrosion resistance and inhibit nickel release from orthopedic NiTi shape memory alloy. Nitrogen was plasma-implanted into NiTi using different pulsing frequencies to investigate the effects on the nano-scale surface morphology, structure, wettability, as well as biocompatibility. X-ray photoelectron spectroscopy (XPS) results show that the implantation depth of nitrogen increases with higher pulsing frequencies. Atomic force microscopy (AFM) discloses that the nano-scale surface roughness increases and surface features are changed from islands to spiky cones with higher pulsing frequencies. This variation in the nano surface structures leads to different surface free energy (SFE) monitored by contact angle measurements. The adhesion, spreading, and proliferation of osteoblasts on the implanted NiTi surface are assessed by cell culture tests. Our results indicate that the nano-scale surface morphology that is altered by the implantation frequencies impacts the surface free energy and wettability of the NiTi surfaces, and in turn affects the osteoblast adhesion behavior.

  7. Surface Characterization of an Organized Titanium Dioxide Layer

    NASA Astrophysics Data System (ADS)

    Curtis, Travis

    Soft lithographic printing techniques can be used to control the surface morphology of titanium dioxide layers on length scales of several hundred nanometers. Controlling surface morphology and volumetric organization of titanium dioxide electrodes can potentially be used in dye-sensitized solar cell devices. This thesis explores how layer-by-layer replication can lead to well defined, dimensionally controlled volumes and details how these control mechanisms influence surface characteristics of the semiconducting oxide.

  8. Formation and metrology of dual scale nano-morphology on SF(6) plasma etched silicon surfaces.

    PubMed

    Boulousis, G; Constantoudis, V; Kokkoris, G; Gogolides, E

    2008-06-25

    Surface roughness and nano-morphology in SF(6) plasma etched silicon substrates are investigated in a helicon type plasma reactor as a function of etching time and process parameters. The plasma etched surfaces are analyzed by atomic force microscopy. It is found that dual scale nano-roughness is formatted on the silicon surface comprising an underlying nano-roughness and superimposed nano-mounds. Detailed metrological quantification is proposed for the characterization of dual scale surface morphology. As etching proceeds, the mounds become higher, fewer and wider, and the underlying nano-roughness also increases. Increase in wafer temperature leads to smoother surfaces with lower, fewer and wider nano-mounds. A mechanism based on the deposition of etch inhibiting particles during the etching process is proposed for the explanation of the experimental behavior. In addition, appropriately designed experiments are conducted, and they confirm the presence of this mechanism.

  9. Helium segregation on surfaces of plasma-exposed tungsten

    DOE PAGES

    Maroudas, Dimitrios; Blondel, Sophie; Hu, Lin; ...

    2016-01-21

    Here we report a hierarchical multi-scale modeling study of implanted helium segregation on surfaces of tungsten, considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations based on a reliable interatomic interaction potential, including molecular-statics simulations to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile He-n (1 <= n <= 7) clusters in the near-surface region are attracted to the surface due to an elastic interaction force that provides themore » thermodynamic driving force for surface segregation. Elastic interaction force induces drift fluxes of these mobile Hen clusters, which increase substantially as the migrating clusters approach the surface, facilitating helium segregation on the surface. Moreover, the clusters' drift toward the surface enables cluster reactions, most importantly trap mutation, in the near-surface region at rates much higher than in the bulk material. Moreover, these near-surface cluster dynamics have significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure. We integrate the findings of such atomic-scale simulations into a properly parameterized and validated spatially dependent, continuum-scale reaction-diffusion cluster dynamics model, capable of predicting implanted helium evolution, surface segregation, and its near-surface effects in tungsten. This cluster-dynamics model sets the stage for development of fully atomistically informed coarse-grained models for computationally efficient simulation predictions of helium surface segregation, as well as helium retention and surface morphological evolution, toward optimal design of plasma facing components.« less

  10. Helium segregation on surfaces of plasma-exposed tungsten

    NASA Astrophysics Data System (ADS)

    Maroudas, Dimitrios; Blondel, Sophie; Hu, Lin; Hammond, Karl D.; Wirth, Brian D.

    2016-02-01

    We report a hierarchical multi-scale modeling study of implanted helium segregation on surfaces of tungsten, considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations based on a reliable interatomic interaction potential, including molecular-statics simulations to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile He n (1  ⩽  n  ⩽  7) clusters in the near-surface region are attracted to the surface due to an elastic interaction force that provides the thermodynamic driving force for surface segregation. This elastic interaction force induces drift fluxes of these mobile He n clusters, which increase substantially as the migrating clusters approach the surface, facilitating helium segregation on the surface. Moreover, the clusters’ drift toward the surface enables cluster reactions, most importantly trap mutation, in the near-surface region at rates much higher than in the bulk material. These near-surface cluster dynamics have significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure. We integrate the findings of such atomic-scale simulations into a properly parameterized and validated spatially dependent, continuum-scale reaction-diffusion cluster dynamics model, capable of predicting implanted helium evolution, surface segregation, and its near-surface effects in tungsten. This cluster-dynamics model sets the stage for development of fully atomistically informed coarse-grained models for computationally efficient simulation predictions of helium surface segregation, as well as helium retention and surface morphological evolution, toward optimal design of plasma facing components.

  11. Slope-Velocity-Equilibrium and evolution of surface roughness on a stony hillslope

    USDA-ARS?s Scientific Manuscript database

    Slope-velocity equilibrium is hypothesized as a state that evolves naturally over time due to the interaction between overland flow and bed morphology, wherein steeper areas develop a relative increase in physical and hydraulic roughness such that flow velocity is a unique function of overland flow ...

  12. Three-dimensional kinetic Monte Carlo simulations of cubic transition metal nitride thin film growth

    NASA Astrophysics Data System (ADS)

    Nita, F.; Mastail, C.; Abadias, G.

    2016-02-01

    A three-dimensional kinetic Monte Carlo (KMC) model has been developed and used to simulate the microstructure and growth morphology of cubic transition metal nitride (TMN) thin films deposited by reactive magnetron sputtering. Results are presented for the case of stoichiometric TiN, chosen as a representative TMN prototype. The model is based on a NaCl-type rigid lattice and includes deposition and diffusion events for both N and Ti species. It is capable of reproducing voids and overhangs, as well as surface faceting. Simulations were carried out assuming a uniform flux of incoming particles approaching the surface at normal incidence. The ballistic deposition model is parametrized with an interaction parameter r0 that mimics the capture distance at which incoming particles may stick on the surface, equivalently to a surface trapping mechanism. Two diffusion models are implemented, based on the different ways to compute the site-dependent activation energy for hopping atoms. The influence of temperature (300-500 K), deposition flux (0.1-100 monolayers/s), and interaction parameter r0 (1.5-6.0 Å) on the obtained growth morphology are presented. Microstructures ranging from highly porous, [001]-oriented straight columns with smooth top surface to rough columns emerging with different crystallographic facets are reproduced, depending on kinetic restrictions, deposited energy (seemingly captured by r0), and shadowing effect. The development of facets is a direct consequence of the diffusion model which includes an intrinsic (minimum energy-based) diffusion anisotropy, although no crystallographic diffusion anisotropy was explicitly taken into account at this stage. The time-dependent morphological evolution is analyzed quantitatively to extract the growth exponent β and roughness exponent α , as indicators of kinetic roughening behavior. For dense TiN films, values of α ≈0.7 and β =0.24 are obtained in good agreement with existing experimental data. At this stage a single lattice is considered but the KMC model will be extended further to address more complex mechanisms, such as anisotropic surface diffusion and grain boundary migration at the origin of the competitive columnar growth observed in polycrystalline TiN-based films.

  13. Bare and protected sputtered-noble-metal films for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Talaga, David; Bonhommeau, Sébastien

    2014-11-01

    Sputtered silver and gold films with different surface morphologies have been prepared and coated with a benzenethiol self-assembled monolayer. Rough noble metal films showed strong Raman features assigned to adsorbed benzenethiol molecules upon irradiation over a wide energy range in the visible spectrum, which disclosed the occurrence of a significant surface-enhanced Raman scattering with maximal enhancement factors as high as 6 × 106. In addition, the adsorption of ethanethiol onto silver surfaces hinders their corrosion over days while preserving mostly intact enhancement properties of naked silver. This study may be applied to develop stable and efficient metalized probes for tip-enhanced Raman spectroscopy.

  14. Geologic map of Mars

    USGS Publications Warehouse

    Tanaka, Kenneth L.; Skinner, James A.; Dohm, James M.; Irwin, Rossman P.; Kolb, Eric J.; Fortezzo, Corey M.; Platz, Thomas; Michael, Gregory G.; Hare, Trent M.

    2014-01-01

    This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet's surface through time, is based on unprecedented variety, quality, and quantity of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.

  15. Altered Calcium Dynamics in Cardiac Cells Grown on Silane-Modified Surfaces

    PubMed Central

    Ravenscroft-Chang, Melissa S.; Stohlman, Jayna; Molnar, Peter; Natarajan, Anupama; Canavan, Heather E.; Teliska, Maggie; Stancescu, Maria; Krauthamer, Victor; Hickman, J.J.

    2013-01-01

    Chemically defined surfaces were created using self-assembled monolayers (SAMs) of hydrophobic and hydrophilic silanes as models for implant coatings, and the morphology and physiology of cardiac myocytes plated on these surfaces were studied in vitro. We focused on changes in intracellular Ca2+ because of its essential role in regulating heart cell function. The SAM-modified coverslips were analyzed using X-ray Photoelectron Spectroscopy to verify composition. The morphology and physiology of the cardiac cells were examined using fluorescence microscopy and intracellular Ca2+ imaging. The imaging experiments used the fluorescent ratiometric dye fura-2, AM to establish both the resting Ca2+ concentration and the dynamic responses to electrical stimulation. A significant difference in excitation-induced Ca2+ changes on the different silanated surfaces was observed. However, no significant change was noted based on the morphological analysis. This result implies a difference in internal Ca2+ dynamics, and thus cardiac function, occurs when the composition of the surface is different, and this effect is independent of cellular morphology. This finding has implications for histological examination of tissues surrounding implants, the choice of materials that could be beneficial as implant coatings and understanding of cell-surface interactions in cardiac systems. PMID:19828193

  16. Effects of erbium, chromium:YSGG laser irradiation on root surface: morphological and atomic analytical studies.

    PubMed

    Kimura, Y; Yu, D G; Kinoshita, J; Hossain, M; Yokoyama, K; Murakami, Y; Nomura, K; Takamura, R; Matsumoto, K

    2001-04-01

    The purpose of this study was to investigate the morphological and atomic changes on the root surface by stereoscopy, field emission-scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectroscopy (SEM-EDX) after erbium, chromium:yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation in vitro. There have been few reports on morphological and atomic analytical study on root surface by Er,Cr:YSGG laser irradiation. Eighteen extracted human premolar and molar teeth were irradiated on root surfaces at a vertical position with water-air spray by an Er,Cr:YSGG laser at the parameter of 5.0 W and 20 Hz for 5 sec while moving. The samples were then morphologically observed by stereoscopy and FE-SEM and examined atomic-analytically by SEM-EDX. Craters having rough but clean surfaces and no melting or carbonization were observed in the samples. An atomic analytical examination showed that the calcium ratio to phosphorus showed no significant changes between the control and irradiated areas (p > 0.01). These results showed that the Er,Cr:YSGG laser has a good cutting effect on root surface and causes no burning or melting after laser irradiation.

  17. Morphology design of porous coordination polymer crystals by coordination modulation.

    PubMed

    Umemura, Ayako; Diring, Stéphane; Furukawa, Shuhei; Uehara, Hiromitsu; Tsuruoka, Takaaki; Kitagawa, Susumu

    2011-10-05

    The design of crystal morphology, or exposed crystal facets, has enabled the development (e.g., catalytic activities, material attributes, and oriented film formation) of porous coordination polymers (PCPs) without changing material compositions. However, because crystal growth mechanisms are not fully understood, control of crystal morphology still remains challenging. Herein, we report the morphology design of [Cu(3)(btc)(2)](n) (btc = benzene-1,3,5-tricarboxylate) by the coordination modulation method (modulator = n-dodecanoic acid or lauric acid). A morphological transition (octahedron-cuboctahedron-cube) in the [Cu(3)(btc)(2)](n) crystal was observed with an increase in concentration of the modulator. By suitably defining a coarse-grained standard unit of [Cu(3)(btc)(2)](n) as its cuboctahedron main pore and determining its attachment energy on crystal surfaces, Monte Carlo coarse-grain modeling revealed the population and orientation of carboxylates and elucidated an important role of the modulator in determining the <100>- and <111>-growth throughout the crystal growth process. This comprehension, in fact, successfully led to designed crystal morphologies with oriented growth on bare substrates. Because selective crystal orientations on the bare substrates were governed by crystal morphology, this contribution also casts a new light on the unexplored issue of the significance of morphology design of PCPs.

  18. Estimation of hydraulic permeability considering the micro morphology of rocks of the borehole YAXCOPOIL-1 (Impact crater Chicxulub, Mexico)

    NASA Astrophysics Data System (ADS)

    Mayr, S. I.; Burkhardt, H.; Popov, Yu.; Wittmann, A.

    2008-04-01

    Internal surface, formation factor, Nuclear Magnetic Resonance (NMR)-T2 relaxation times and pore radius distributions were measured on representative core samples for the estimation of hydraulic permeability. Permeability is estimated using various versions of the classic Kozeny-Carman-equation (K-C) and a further development of K-C, the fractal PaRiS-model, taking into account the internal surface. In addition to grain and pore size distribution, directly connected to permeability, internal surface reflects the internal structure (“micro morphology”). Lithologies could be grouped with respect to differences in internal surface. Most melt rich impact breccia lithologies exhibit large internal surfaces, while Tertiary post-impact sediments and Cretaceous lithologies in displaced megablocks display smaller internal surfaces. Investigations with scanning electron microscopy confirm the correlation between internal surface and micro morphology. In addition to different versions of K-C, estimations by means of NMR, pore radius distributions and some gas permeability measurements serve for cross-checking and calibration. In general, the different estimations from the independent methods and the measurements are in satisfactory accordance. For Tertiary limestones and Suevites bulk with very high porosities (up to 35%) permeabilites between 10-14 and 10-16 m2 are found, whereas in lower Suevite, Cretaceous anhydrites and dolomites, bulk permeabilites are between 10-15 and 10-23 m2.

  19. Darkening effect on AZ31B magnesium alloy surface induced by nanosecond pulse Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Guan, Y. C.; Zhou, W.; Zheng, H. Y.; Li, Z. L.

    2013-09-01

    Permanent darkening effect was achieved on surface of AZ31B Mg alloy irradiated with nanosecond pulse Nd:YAG laser, and special attention was made to examine how surface structure as well as oxidation affect the darkening effect. Experiments were carried out to characterize morphological evolution and chemical composition of the irradiated areas by optical reflection spectrometer, Talysurf surface profiler, SEM, EDS, and XPS. The darkening effect was found to be occurred at the surface under high laser energy. Optical spectra showed that the induced darkening surface was uniform over the spectral range from 200 nm to 1100 nm. SEM and surface profiler showed that surface morphology of darkening areas consisted of large number of micron scale cauliflower-like clusters and protruding particles. EDS and XPS showed that compared to non-irradiated area, oxygen content at the darkening areas increased significantly. It was proposed a mechanism that involved trapping of light in the surface morphology and chemistry variation of irradiated areas to explain the laser-induced darkening effect on AZ31B Mg alloy.

  20. Three-dimensional biofilm structure quantification.

    PubMed

    Beyenal, Haluk; Donovan, Conrad; Lewandowski, Zbigniew; Harkin, Gary

    2004-12-01

    Quantitative parameters describing biofilm physical structure have been extracted from three-dimensional confocal laser scanning microscopy images and used to compare biofilm structures, monitor biofilm development, and quantify environmental factors affecting biofilm structure. Researchers have previously used biovolume, volume to surface ratio, roughness coefficient, and mean and maximum thicknesses to compare biofilm structures. The selection of these parameters is dependent on the availability of software to perform calculations. We believe it is necessary to develop more comprehensive parameters to describe heterogeneous biofilm morphology in three dimensions. This research presents parameters describing three-dimensional biofilm heterogeneity, size, and morphology of biomass calculated from confocal laser scanning microscopy images. This study extends previous work which extracted quantitative parameters regarding morphological features from two-dimensional biofilm images to three-dimensional biofilm images. We describe two types of parameters: (1) textural parameters showing microscale heterogeneity of biofilms and (2) volumetric parameters describing size and morphology of biomass. The three-dimensional features presented are average (ADD) and maximum diffusion distances (MDD), fractal dimension, average run lengths (in X, Y and Z directions), aspect ratio, textural entropy, energy and homogeneity. We discuss the meaning of each parameter and present the calculations in detail. The developed algorithms, including automatic thresholding, are implemented in software as MATLAB programs which will be available at site prior to publication of the paper.

  1. Investigation on large-area fabrication of vivid shark skin with superior surface functions

    NASA Astrophysics Data System (ADS)

    Chen, Huawei; Zhang, Xin; Ma, Lingxi; Che, Da; Zhang, Deyuan; Sudarshan, T. S.

    2014-10-01

    Shark skin has attracted worldwide attention because of its superior drag reduction, antifouling performance induced from its unique surface morphology. Although the vivid shark skin has been fabricated by a bio-replicated micro-imprinting approach in previous studies and superior drag reduction effect has been validated in water tunnel, continuous large-area fabrication is still an obstacle to wide apply. In this paper, one novel bio-replication coating technology is proposed for large-area transfer of shark skin based on rapid UV curable paint. Apart from design of coating system, bio-replication accuracy of surface morphology was validated about 97% by comparison between shark skin template and coating surface morphology. Finally, the drag reduction and anti-fouling function of coating surface were tested in water tunnel and open algae pond respectively. Drag reduction rate of coating surface was validated about 12% higher and anti-fouling was proved to about hundred times ameliorate, all of which are more excellent than simple 2D riblet surface.

  2. Fabrication of Monolithic Sapphire Membranes for High T(sub c) Bolometer Array Development

    NASA Technical Reports Server (NTRS)

    Pugel, D. E.; Lakew, B.; Aslam, S.; Wang, L.

    2004-01-01

    This paper examines the effectiveness of Pt/Cr thin film masks for the architecture of monolithic membrane structures in r-plane single crystal sapphire. The development of a pinhole-free Pt/Cr composite mask that is resistant to boiling H2SO4:H3PO4 etchant will lead to the fabrication of smooth sapphire membranes whose surfaces are well-suited for the growth of low-noise high Tc films. In particular, the relationship of thermal annealing conditions on the Pt/Cr composite mask system to: (1) changes in the surface morphology (2) elemental concentration of the Pt/Cr thin film layers and (3) etch pit formation on the sapphire surface will be presented.

  3. Experimental evaluation of a new morphological approximation of the articular surfaces of the ankle joint.

    PubMed

    Belvedere, Claudio; Siegler, Sorin; Ensini, Andrea; Toy, Jason; Caravaggi, Paolo; Namani, Ramya; Giannini, Giulia; Durante, Stefano; Leardini, Alberto

    2017-02-28

    The mechanical characteristics of the ankle such as its kinematics and load transfer properties are influenced by the geometry of the articulating surfaces. A recent, image-based study found that these surfaces can be approximated by a saddle-shaped, skewed, truncated cone with its apex oriented laterally. The goal of this study was to establish a reliable experimental technique to study the relationship between the geometry of the articular surfaces of the ankle and its mobility and stability characteristics and to use this technique to determine if morphological approximations of the ankle surfaces based on recent discoveries, produce close to normal behavior. The study was performed on ten cadavers. For each specimen, a process based on medical imaging, modeling and 3D printing was used to produce two subject specific artificial implantable sets of the ankle surfaces. One set was a replica of the natural surfaces. The second approximated the ankle surfaces as an original saddle-shaped truncated cone with apex oriented laterally. Testing under cyclic loading conditions was then performed on each specimen following a previously established technique to determine its mobility and stability characteristics under three different conditions: natural surfaces; artificial surfaces replicating the natural surface morphology; and artificial approximation based on the saddle-shaped truncated cone concept. A repeated measure analysis of variance was then used to compare between the three conditions. The results show that (1): the artificial surfaces replicating natural morphology produce close to natural mobility and stability behavior thus establishing the reliability of the technique; and (2): the approximated surfaces based on saddle-shaped truncated cone concept produce mobility and stability behavior close to the ankle with natural surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Relationships between tensile strength, morphology and crystallinity of treated kenaf bast fibers

    NASA Astrophysics Data System (ADS)

    Sosiati, H.; Rohim, Ar; Ma`arif, Triyana, K.; Harsojo

    2013-09-01

    Surface treatments on kenaf bast fibers were carried out with steam, alkali and a combination of steam-alkali. To verify and gain an understanding of their inter-relationship, tensile strength, surface morphology and crystallinity of treated and raw fibers were characterized. Tensile strength of fibers was measured with a universal tensile machine (UTM), crystallinity was estimated using X-ray diffraction (XRD) and Fourier transformation infrared (FTIR) spectroscopy, and surface morphology was examined by scanning electron microscopy (SEM). Tensile strength of the treated fibers was higher than that of the raw fiber. Tensile strength increased after steam treatment and was further improved by alkali treatment, but slightly reduced after steam treatment followed by alkalization. Increase of concentration of alkali tended to increase tensile strength. Differences in tensile strength of the treated fibers are discussed in relation to the changes in surface morphology and crystallinity. Understanding of these relationships may provide direction towards the goal of producing better performance of natural fiber composites.

  5. Digestive enzymatic activity during ontogenetic development in zebrafish (Danio rerio).

    PubMed

    Guerrera, Maria Cristina; De Pasquale, Francesca; Muglia, Ugo; Caruso, Gabriella

    2015-12-01

    Despite the growing importance of zebrafish (Danio rerio) as an experimental model in biomedical research, some aspect of physiological and related morphological age dependent changes in digestive system during larval development are still unknown. In this paper, a biochemical and morphological study of the digestive tract of zebrafish was undertaken to record the functional changes occurring in this species during its ontogenetic development, particularly from 24 hr to 47 days post fertilization (dpf). Endo- and exo-proteases, as well as α-amylase enzymes, were quantified in zebrafish larvae before first feeding (7 dpf). The most morphologically significant events during the ontogenesis of the gut occurred between 3 dpf (mouth opening) and 7 dpf (end of exocrine pancreas differentiation). The presence of a wide range of digestive enzymes, already active at earlier zebrafish larval stages, closely related with the omnivorous diet of this species. Increasing enzyme activities were found with increasing age, probably in relation with intestinal mucosa folding and consequent absorption surface increase. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 699-706, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  6. The Effect of Bi on the Selective Oxide Formation on CMnSi TRIP Steel

    NASA Astrophysics Data System (ADS)

    Oh, Jonghan; Cho, Lawrence; Kim, Myungsoo; Kang, Kichul; De Cooman, Bruno C.

    2016-11-01

    The effect of Bi addition on the selective oxidation and the galvanizability of CMnSi transformation-induced plasticity (TRIP) steels was studied by hot dip galvanizing laboratory simulations. Bi-added TRIP steels were intercritically annealed at 1093 K (820 °C) and galvanized in a 0.22 wt pct Al-containing Zn bath. The oxide morphology was investigated by scanning electron microscopy, transmission electron microscopy, and 3D atom probe tomography. Bi formed a Bi-enriched surface layer during the intercritical annealing. A decrease of the oxygen permeability was observed with increasing Bi addition. The internal oxidation was suppressed in Bi-added CMnSi TRIP steel. The surface oxide morphology was changed from a continuous layer morphology to a more lens-shaped morphology. The galvanizability of the Bi-added TRIP steel was improved by the combination of the change of the oxide morphology and the dissolution of the Bi-enriched surface layer during immersion of the strip in the Zn bath.

  7. Impact of x-Linkable Polymer Blends on Phase Morphology and Adhesion

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Wan, Grace; Keene, Ellen; Harris, Joseph; Zhang, Sipei; Anderson, Stephanie; Li Pi Shan, Colin

    Adhesion to dissimilar substrate is highly important to multiple industrial applications such as automotive adhesives, food packaging, transportation etc. Adhesive design has to include components that are affinity to both substrates, e.g. high surface energy polar and low surface non-polar substrates. Typically, these adhesive components are thermodynamically incompatible with each other, leading to macrophase separation and thus adhesive failure. By using functional adhesive components plus some additives, the adhesive can be in-situ cross-linked to prevent the macrophase separation with controlled phase morphology. Herein, we present the study on a cross-linkable adhesive formulation consisting of acrylic emulsion and polyolefin aqueous dispersion with additives for enhancing cross-linking and controlled phase morphologies. Contact angle measurement and ATR-IR spectroscopy are used to characterize the properties of adhesive surface. DMA is used to study the mechanical property of adhesive before and after cross-linking. The detailed phase morphologies are revealed by AFM, SEM and TEM. The resulting adhesive morphologies are correlated with the adhesive performance to establish structure-property relationship.

  8. Effects of surface morphology on the optical and electrical properties of Schottky diodes of CBD deposited ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Mwankemwa, Benard S.; Akinkuade, Shadrach; Maabong, Kelebogile; Nel, Jackie M.; Diale, Mmantsae

    2018-04-01

    We report on effect of surface morphology on the optical and electrical properties of chemical bath deposited Zinc oxide (ZnO) nanostructures. ZnO nanostructures were deposited on the seeded conducting indium doped tin oxide substrate positioned in three different directions in the growth solution. Field emission scanning electron microscopy was used to evaluate the morphological properties of the synthesized nanostructures and revealed that the positioning of the substrate in the growth solution affects the surface morphology of the nanostructures. The optical absorbance, photoluminescence and Raman spectroscopy of the resulting nanostructures are discussed. The electrical characterization of the Schottky diode such as barrier height, ideality factor, rectification ratios, reverse saturation current and series resistance were found to depend on the nanostructures morphology. In addition, current transport mechanism in the higher forward bias of the Schottky diode was studied and space charge limited current was found to be the dominant transport mechanism in all samples.

  9. Exploring Statistical Characterizations of Morphologic Change and Variability: Fire Island, New York

    NASA Astrophysics Data System (ADS)

    Lentz, E. E.; Hapke, C. J.

    2012-12-01

    A comprehensive understanding of coastal barrier behavior requires high-resolution observations that capture a wide range of morphological changes occurring over a range of spatial and temporal scales. Fire Island National Seashore, located along the coast of Long Island, New York, is a well studied barrier island coast where understanding how morphological changes contribute to barrier island vulnerability have important implications for coastal land management. Previous work has shown that morphologic differences in eastern and western reaches are attributable to the underlying geology and variations sediment transport in the system. In this study, we further explore western and eastern differences and variability with lidar-derived topographic surfaces to provide a unique and comprehensive investigation of dune-beach change at Fire Island, New York. Continuous topographic surfaces generated from 12 lidar surveys collected between 1998 and 2011 are used to examine the three-dimensional variability over a range of time periods over the 50 km long island. Because surveys were collected over a range of seasons and in response to a number of storm events, we explore morphologic configurations reflecting the seasonality, post-storm configuration, and replenishment response to the system through the generation of a representative or average surface. These averaged surfaces provide the context for what would be an expected or typical coastal configuration under certain conditions, and through comparison with an individual event, can be used to derive an event-specific spatial-change signature. To investigate anthropogenic influences, differences in morphology between a survey collected after a substantial beach replenishment project and a typical fair-weather configuration averaged from six surveys are determined. Storm response variations are also explored by assessing differences between Tropical Storm Irene (2011), Nor'Ida (2009), and a typical post-storm configuration averaged from five post-storm surveys. In addition to averaged surfaces, surveys are combined to generate a new raster surface reflecting cell by cell standard deviations over a defined period. Standard deviation surfaces are generated to highlight 1) where areas of highest and lowest morphologic variation are located over the entire period, and 2) whether spatial similarities exist in variability between storm and non-storm morphologies. Results show there are distinct and variable responses in eastern and western reaches attributable to wave climate, profile gradient, and offshore bathymetry, as well as to a general along-coast increase in sediment availability.

  10. Geometric, Kinematic and Radiometric Aspects of Image-Based Measurements

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu

    2002-01-01

    This paper discusses theoretical foundations of quantitative image-based measurements for extracting and reconstructing geometric, kinematic and dynamic properties of observed objects. New results are obtained by using a combination of methods in perspective geometry, differential geometry. radiometry, kinematics and dynamics. Specific topics include perspective projection transformation. perspective developable conical surface, perspective projection under surface constraint, perspective invariants, the point correspondence problem. motion fields of curves and surfaces. and motion equations of image intensity. The methods given in this paper arc useful for determining morphology and motion fields of deformable bodies such as elastic bodies. viscoelastic mediums and fluids.

  11. Mucosal wrinkling in animal antra induced by volumetric growth

    NASA Astrophysics Data System (ADS)

    Li, Bo; Cao, Yan-Ping; Feng, Xi-Qiao; Yu, Shou-Wen

    2011-04-01

    Surface wrinkling of animal mucosas is crucial for the biological functions of some tissues, and the change in their surface patterns is a phenotypic characteristic of certain diseases. Here we develop a biomechanical model to study the relationship between morphogenesis and volumetric growth, either physiological or pathological, of mucosas. Theoretical analysis and numerical simulations are performed to unravel the critical characteristics of mucosal wrinkling in a spherical antrum. It is shown that the thicknesses and elastic moduli of mucosal and submucosal layers dictate the surface buckling morphology. The results hold clinical relevance for such diseases as inflammation and gastritis.

  12. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahat, Nur Akma; Othman, Norinsan Kamil; Sahrani, Fathul Karim

    2015-09-25

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.

  13. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    NASA Astrophysics Data System (ADS)

    Mahat, Nur Akma; Othman, Norinsan Kamil; Sahrani, Fathul Karim

    2015-09-01

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulick, V.C.; Baker, V.R.

    Morphological analyses of six Martian volcanoes, Ceraunius Tholus, Hecates Tholus, Alba Patera, Hadriaca Patera, Apollinaris Patera, and Tyrrhena Patera, indicate that fluvial processes were the dominant influence in the initiation and subsequent development of many dissecting valleys. Lava processes and possibly volcanic density flows were also important as valley-forming processes. Fluvial valleys are especially well developed on Alba Patera, Ceraunius Tholus, and Hecates Tholus. These valleys are inset into the surrounding landscape. They formed in regions of subdued lava flow morphology, contain tributaries, and tend to widen slightly in the downstream direction. Lava channels on Alba Patera are located onmore » the crest of lava flows and have a discontinuous, irregular surface morphology, and distributary patterns. These channels sometimes narrow toward their termini. Possible volcanic density flow channels are located on the northern flank of Ceraunius Tholus. Valleys dissecting Apollinaris Patera, Hadriaca Patera, and Tyrrhena Patera appear to have a complex evolution, probably a mixed fluvial and lava origin. They are inset into a subdued (possibly mantled) surface, lack tributaries, and either have fairly constant widths or widen slightly downvalley. Valleys surrounding the caldera of Apollinaris appear to have formed by fluvial and possibly by volcanic density flow processes, while those on the Apollinaris fan structure may have a mixed lava and fluvial origin. Valleys on Tyrrhena have broad flat floors and theater heads, which have been extensively enlarged, probably by sapping.« less

  15. Controls on morphometry and morphology of alluvial and colluvial fans in the high-Arctic setting, Petuniabukta, Svalbard.

    NASA Astrophysics Data System (ADS)

    Tomczyk, Aleksandra; Ewertowski, Marek

    2016-04-01

    The Petuniabukta (78o42' N, 16o32') is a bay in the northern part of Billefjorden in the central part of Spitsbergen Island, Svalbard. The bay is surrounded by six major, partly glaciated valleys. A numerous alluvial and colluvial fans have developed within valleys as well as along the fiord margins. Distribution and characterization of morphometric parameters of fans were investigated using time-series of orthophotos and digital elevation models (generated based on 1961, 1990, 2009 aerial photographs) and high resolution satellite imagery from 2013. In addition, a very detailed DEM and orthophoto (5 cm resolution) have been produced from unmanned aerial vehicle (UAV) imagery from 2014 and 2015, covering three fans characterised by different types of surface morphology. A 1:40,000 map showing the distribution of almost 300 alluvial and colluvial fans (ranging in area from 325 km2 to 451 275 km2), together with time-series of 1:5,000 geomorphological maps of sample fans enabled an assessment of the spatial and temporal evolution of processes responsible for delivery and erosion of sediments from the fans. The relationship between terrain parameters (e.g. slope, exposition) as well as geology was also investigated. Many of the studied alluvial fans were at least partly coupled and sediments were transferred from the upstream zone to the downstream zone, either due to debris-flow or channelized stream flow. In other cases, coarse sediments were stored within fans, and fines were transported downstream by sheet flows or sub-surface flows. In most of smaller colluvial fans and debris cones, sediments were delivered by mass movement processes (mainly rockfalls and snowfalls) and did not reach lower margin of landforms. Analysis of historical aerial photographs indicated recent increase in the activity of debris-flow modification of surface morphology of fans. Fans located outside limits of the Little Ice Age (LIA) glaciation are dominated by the secondary processes, which do not cause significant aggradation, but can substantially modified surface morphology. In contrary, surface morphology of fans located inside the limits of the LIA glaciation and along contemporary glaciers is dominated by the primary processes of deposition. The research was founded by the Polish National Science Centre.

  16. Preterm birth and maternal responsiveness during childhood are associated with brain morphology in adolescence.

    PubMed

    Frye, Richard E; Malmberg, Benjamin; Swank, Paul; Smith, Karen; Landry, Susan

    2010-09-01

    Although supportive parenting has been shown to have positive effects on development, the neurobiological basis of supportive parenting has not been investigated. Thirty-three adolescents were systemically selected from a longitudinal study on child development based on maternal responsiveness during childhood, a measure of supportive parenting, and whether they were born term or preterm. We analyzed the effect of preterm birth on hemispheric and regional (frontal, temporal, parietal) cortical thickness and surface area using mixed-model analysis while also considering the effect of brain hemisphere (left vs. right). We then determined whether these factors were moderated by maternal responsiveness during childhood. Preterm birth was associated with regional and hemispheric differences in cortical thickness and surface area. Maternal responsiveness during childhood moderated hemispheric cortical thickness. Adolescence with mothers that were inconsistently responsive during childhood demonstrated greater overall cortical thickness and greater asymmetry in cortical thickness during adolescence as compared to adolescence with mothers who were consistently responsive or unresponsive during childhood. Maternal responsiveness and preterm birth did not interact. These data suggest that changes in brain morphology associated with preterm birth continue into adolescence and support the notion that the style of maternal-child interactions during childhood influence brain development into adolescence.

  17. Simultaneous multiplane imaging of human ovarian cancer by volume holographic imaging

    PubMed Central

    Orsinger, Gabriel V.; Watson, Jennifer M.; Gordon, Michael; Nymeyer, Ariel C.; de Leon, Erich E.; Brownlee, Johnathan W.; Hatch, Kenneth D.; Chambers, Setsuko K.; Barton, Jennifer K.; Kostuk, Raymond K.; Romanowski, Marek

    2014-01-01

    Abstract. Ovarian cancer is the most deadly gynecologic cancer, a fact which is attributable to poor early detection and survival once the disease has reached advanced stages. Intraoperative laparoscopic volume holographic imaging has the potential to provide simultaneous visualization of surface and subsurface structures in ovarian tissues for improved assessment of developing ovarian cancer. In this ex vivo ovarian tissue study, we assembled a benchtop volume holographic imaging system (VHIS) to characterize the microarchitecture of 78 normal and 40 abnormal tissue specimens derived from ovarian, fallopian tube, uterine, and peritoneal tissues, collected from 26 patients aged 22 to 73 undergoing bilateral salpingo-oophorectomy, hysterectomy with bilateral salpingo-oophorectomy, or abdominal cytoreductive surgery. All tissues were successfully imaged with the VHIS in both reflectance- and fluorescence-modes revealing morphological features which can be used to distinguish between normal, benign abnormalities, and cancerous tissues. We present the development and successful application of VHIS for imaging human ovarian tissue. Comparison of VHIS images with corresponding histopathology allowed for qualitatively distinguishing microstructural features unique to the studied tissue type and disease state. These results motivate the development of a laparoscopic VHIS for evaluating the surface and subsurface morphological alterations in ovarian cancer pathogenesis. PMID:24676382

  18. Synthesis, Development, and Testing of High-Surface-Area Polymer-Based Adsorbents for the Selective Recovery of Uranium from Seawater

    DOE PAGES

    Oyola, Yatsandra; Janke, Christopher J.; Dai, Sheng

    2016-02-29

    The ocean contains uranium with an approximate concentration of 3.34 ppb, which can serve as an incredible supply source to sustain nuclear energy in the United States. Unfortunately, technology currently available to recover uranium from seawater is not efficient enough and mining uranium on land is still more economical. For this study, we have developed polymer-based adsorbents with high uranium adsorption capacities by grafting amidoxime onto high-surface-area polyethylene (PE) fibers. Various process conditions have been screened, in combination with developing a rapid testing protocol (<24 h), to optimize the process. These adsorbents are synthesized through radiation-induced grafting of acrylonitrile (AN)more » and methacrylic acid (MAA) onto PE fibers, followed by the conversion of nitriles to amidoximes and basic conditioning. In addition, the uranium adsorption capacity, measured in units of g U/kg ads, is greatly increased by reducing the diameter of the PE fiber or changing its morphology. An increase in the surface area of the PE polymer fiber allows for more grafting sites that are positioned in more-accessible locations, thereby increasing access to grafted molecules that would normally be located in the interior of a fiber with a larger diameter. Polymer fibers with hollow morphologies are able to adsorb beyond 1 order of magnitude more uranium from simulated seawater than current commercially available adsorbents. Finally, several high-surface-area fibers were tested in natural seawater and were able to extract 5–7 times more uranium than any adsorbent reported to date.« less

  19. Morphology-dependent low-frequency Raman scattering in ultrathin spherical, cubic, and cuboid SnO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Liu, L. Z.; Wu, X. L.; Li, T. H.; Xiong, S. J.; Chen, H. T.; Chu, Paul K.

    2011-12-01

    Nanoscale spherical, cubic, and cuboid SnO2 nanocrystals (NCs) are used to investigate morphology-dependent low-frequency Raman scattering. A double-peak structure in which the linewidths and energy separation between two subpeaks decrease with increasing sizes of cuboid NCs is observed and attributed to the surface acoustic phonon modes confined in three dimensional directions and determined by the surface/interface compositions. The decrease in energy separation is due to weaker coupling between the acoustic modes in different vibration directions. Our experimental and theoretical studies clearly disclose the morphology-dependent surface vibrational behavior in self-assembled NCs.

  20. Peculiarity of two thermodynamically-stable morphologies and their impact on the efficiency of small molecule bulk heterojunction solar cells

    DOE PAGES

    Herath, Nuradhika; Das, Sanjib; Keum, Jong K.; ...

    2015-08-28

    Structural characteristics of the active layers in organic photovoltaic (OPV) devices play a critical role in charge generation, separation and transport. Here we report on morphology and structural control of p-DTS(FBTTh 2) 2:PC 71BM films by means of thermal annealing and 1,8-diiodooctane (DIO) solvent additive processing, and correlate it to the device performance. By combining surface imaging with nanoscale depth-sensitive neutron reflectometry (NR) and X-ray diffraction, three-dimensional morphologies of the films are reconstituted with information extending length scales from nanometers to microns. DIO promotes the formation of a well-mixed donor-acceptor vertical phase morphology with a large population of small p-DTS(FBTTh2)2more » nanocrystals arranged in an elongated domain network of the film, thereby enhancing the device performance. In contrast, films without DIO exhibit three-sublayer vertical phase morphology with phase separation in agglomerated domains. Our findings are supported by thermodynamic description based on the Flory-Huggins theory with quantitative evaluation of pairwise interaction parameters that explain the morphological changes resulting from thermal and solvent treatments. Our study reveals that vertical phase morphology of small-molecule based OPVs is significantly different from polymer-based systems. Lastly, the significant enhancement of morphology and information obtained from theoretical modeling may aid in developing an optimized morphology to enhance device performance for OPVs.« less

  1. In-Vitro Comparative Study of In-office and Home Bleaching Agents on Surface Micro-morphology of Enamel.

    PubMed

    Fatima, Nazish

    2016-01-01

    To evaluate the effect of home-use bleaching agent containing 16% Carbamide Peroxide (CP) and in-office bleaching agent with 38% Hydrogen Peroxide (HP) on surface micro-morphology of enamel. An experimental study. The discs were prepared at Material Engineering Department of NED University of Engineering and Technology, Karachi, and surface morphology was analyzed at Centralized Science Laboratory of Karachi University, Pakistan. Duration of study was one year from January to December 2012. Forty five sound human third molar crowns, extracted for periodontal reason, were included in the study. Longitudinal sections were made using diamond disks (0.2 mm) under water lubrication to obtain enamel slabs measuring (3 mm x 3 mm). The slabs were embedded in polystyrene resin by using 2.0 cm diameter PVC molds, leaving the outer enamel surface uncovered by the resin. Ninety dental enamel slabs were prepared. The slabs were then randomly divided into 3 groups. Each group contained thirty specimens (n=30). Group 1 was kept in artificial saliva at 37°C in incubator (Memart, Germany) during whole experiment. Group 2 was treated with power whitening gel (White Smile 2011, Germany). Group 3 was treated with tooth whitening pen (White Smile 2011, Germany). The most central region or the region that was most representative of the entire surface area was used. The SEM (Jeol-Japan-JSM6380A, JAPAN) micrographs were examined to determine the type of surface presented. The enamel changes were classified as no or mild alteration, moderate alteration and severe altered surface. Regarding micro-morphology, the enamel surface of control groups showed smooth surface in general with some scattered clear scratches due to the polishing procedure. The specimens bleached in group 2 and group 3, represented areas of mild erosion. Bleaching with 38% Hydrogen Peroxide (HP) and 16% Carbamide Peroxide (CP) resulted in mild changes in surface micro-morphology of enamel.

  2. Inheritance of Occlusal Topography: A Twin Study

    PubMed Central

    Su, C-Y.; Corby, P.M.; Elliot, M.A.; Studen-Pavlovich, D.A.; Ranalli, D.N.; Rosa, B.; Wessel, J.; Schork, N.J.; Hart, T.C.; Bretz, W.A.

    2011-01-01

    Aim This was to determine the relative contribution of genetic factors on the morphology of occlusal surfaces of mandibular primary first molars by employing the twin study model. Methods The occlusal morphology of mandibular primary first molar teeth from dental casts of 9 monozygotic (MZ) twin pairs and 12 dizygotic (DZ) twin pairs 4 to 7 years old, were digitized by contact-type three-dimensional (3D) scanner. To compare the similarity of occlusal morphology between twin sets, each twin pair of occlusal surfaces was superimposed to establish the best fit by using computerized least squared techniques. Heritability was computed using a variance component model, adjusted for age and gender. Results DZ pairs demonstrated a greater degree of occlusal morphology variance. The total amount of difference in surface overlap was 0.0508 mm (0.0018 (inches) for the MZ (n=18) sample and 0.095 mm (0.0034 inches) for the DZ (n=24) sample and were not statistically significant (p=0.2203). The transformed mean differences were not statistically significantly different (p=0.2203). Heritability estimates of occlusal surface areas for right and left mandibular primary first molars were 97.5% and 98.2% (p<0.0001), respectively. Conclusions Occlusal morphology of DZ twin pairs was more variable than that of MZ twin pairs. Heritability estimates revealed that genetic factors strongly influence occlusal morphology of mandibular primary first molars. PMID:18328234

  3. Method of making controlled morphology metal-oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Soydan; Lu, Yuan

    2016-05-17

    A method of making metal oxides having a preselected morphology includes preparing a suspension that includes a solvent, polymeric nanostructures having multiplicities of hydroxyl surface groups and/or carboxyl surface groups, and a metal oxide precursor. The suspension has a preselected ratio of the polymeric nanostructures to the metal oxide precursor of at least 1:3, the preselected ratio corresponding to a preselected morphology. Subsequent steps include depositing the suspension onto a substrate, removing the solvent to form a film, removing the film from the substrate, and annealing the film to volatilize the polymeric nanostructures and convert the metal oxide precursor tomore » metal oxide nanoparticles having the preselected morphology or to a metal oxide nanosheet including conjoined nanoparticles having the preselected morphology.« less

  4. Fabrication and Characterization of Polyvinylidene Fluoride Microfilms for Microfluidic Applications

    NASA Astrophysics Data System (ADS)

    Rao, Yammani Venkat Subba; Raghavan, Aravinda Narayanan; Viswanathan, Meenakshi

    2016-10-01

    The ability to create patterns of piezo responsive material on smooth substrate is an important method to develop efficient microfluidic mixers. This paper reports the fabrication of Poly vinylidene fluoride microfilms using spin-coating on smooth glass surface. The suitable crystalline phases, surface morphology and microstructural properties of the PVDF films have been investigated. We found that films of average thickness 10μm, had average roughness of 0.13μm. These PVDF films are useful in microfluidic mixer applications.

  5. Hydrocarbon-Based Polymer Electrolyte Membranes: Importance of Morphology on Ion Transport and Membrane Stability.

    PubMed

    Shin, Dong Won; Guiver, Michael D; Lee, Young Moo

    2017-03-22

    A fundamental understanding of polymer microstructure is important in order to design novel polymer electrolyte membranes (PEMs) with excellent electrochemical performance and stabilities. Hydrocarbon-based polymers have distinct microstructure according to their chemical structure. The ionic clusters and/or channels play a critical role in PEMs, affecting ion conductivity and water transport, especially at medium temperature and low relative humidity (RH). In addition, physical properties such as water uptake and dimensional swelling behavior depend strongly on polymer morphology. Over the past few decades, much research has focused on the synthetic development and microstructural characterization of hydrocarbon-based PEM materials. Furthermore, blends, composites, pressing, shear field, electrical field, surface modification, and cross-linking have also been shown to be effective approaches to obtain/maintain well-defined PEM microstructure. This review summarizes recent work on developments in advanced PEMs with various chemical structures and architecture and the resulting polymer microstructures and morphologies that arise for potential application in fuel cell, lithium ion battery, redox flow battery, actuators, and electrodialysis.

  6. Characterization of the surface properties of MgO using paper spray mass spectrometry.

    PubMed

    Zheng, Yajun; Zhang, Xiaoling; Bai, Zongquan; Zhang, Zhiping

    2016-08-01

    Significant advances have been made in the preparation of different morphologies of magnesium oxide (MgO), but the relationship between MgO morphology and its interactions with therapeutic drugs is rarely studied. Herein, we investigated the interactions between different morphologies of MgO and therapeutic drugs using paper spray mass spectrometry. Different morphologies of MgO including trapezoidal, needle-like, flower-like and nest-like structures were prepared through a facile precipitation method. The as-obtained MgO particles were then coated onto the surface of filter paper via vacuum filtration strategy. The coated papers with different morphologies of MgO were used as the substrates for paper spray mass spectrometry to explore the interactions between different MgO and therapeutic drugs. Through investigating the interactions between different morphologies of MgO coated papers and therapeutic drugs, it demonstrated that, in contrast to the trapezoidal, needle-like and nest-like MgO coated papers, different drugs in dried blood spots (DBS) were more favourably eluted off from the paper coated with flower-like MgO due to its weaker surface basicity. Also, the signal intensities of different drugs during paper spray were highly dependent on their elution behaviours. Paper spray mass spectrometry (MS) provides an avenue to elaborate the surface properties of MgO with different structures. The surface basicity of MgO played a crucial role in determining the elution behaviours of therapeutic drugs in DBS, and a more favourable elution behaviour tended to result in a higher MS signal. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. An in vitro evaluation of the responses of human osteoblast-like SaOs-2 cells on SLA titanium surfaces irradiated by different powers of CO2 lasers.

    PubMed

    Ayubianmarkazi, Nader; Karimi, Mohammadreza; Koohkan, Shima; Sanasa, Armand; Foroutan, Tahereh

    2015-11-01

    Bacterial biofilms have been identified as the primary etiological factor for the development and progression of peri-implantitis. Lasers have been shown to remove bacterial plaque from titanium surfaces effectively and can restore its biocompatibility without damaging these surfaces. Therefore, the aim of this study was to evaluate the responses (i.e., the cell viability and morphology) of human osteoblast-like SaOs-2 cells to sandblasted, large grit, and acid-etched (SLA) titanium surfaces irradiated by CO2 lasers at two different power outputs. A total of 24 SLA disks were randomly radiated by CO2 lasers at either 6 W (group 1, 12 disks) or 8 W (group 2, 12 disks). Non-irradiated disks were used as a control group (four disks). The cell viability rates of the SaOs-2 cells in the control and study groups (6 and 8 W) were 0.33 ± 0.00, 0.24 ± 0.11, and 0.2372 ± 0.09, respectively (P < 0.6). Cells with cytoplasmic extensions and spreading morphology were most prominent in the control group (141.00 ± 29.00), while in the study groups (6 and 8 W), the number of cells with such morphology was 60.40 ± 26.00 and 35.20 ± 5.40, respectively (P < 0.005). Within the limits of this study, it may be concluded that the use of CO2 lasers with the aforementioned setting parameters could not be recommended for decontamination of SLA titanium surfaces.

  8. Exophiala pisciphila. A study of its development.

    PubMed

    Gaskins, J E; Cheung, P J

    1986-03-01

    Exophiala pisciphila is a dematiaceous fungus that belongs to a group of fungi known as the 'black yeasts'. It was isolated from the skin lesions of a smooth dogfish, Mustelus canis Mitchill, that had been born in the shark exhibit tank of the New York Aquarium. The different stages of development of this fungus were studied by light microscopy and scanning electron microscopy to illustrate the morphology and surface structures of conidia and mycelium. The list of marine and fresh water fish, which have been infected by Exophiala spp. and Exophiala-like fungi has been up-dated. Potato Dextrose Agar and Malt Agar proved to be the best growth media, while Corn Meal Agar proved to be the best medium for studying the morphological features of the conidia and mycelial development of E. pisciphila, which exhibited polymorphic conidiogenesis.

  9. Catalysts for electrochemical generation of oxygen

    NASA Technical Reports Server (NTRS)

    Hagans, P.; Yeager, E.

    1979-01-01

    Several aspects of the electrolytic evolution of oxygen for use in life support systems are analyzed including kinetic studies of various metal and nonmetal electrode materials, the formation of underpotential films on electrodes, and electrode surface morphology and the use of single crystal metals. In order to investigate the role of surface morphology to electrochemical reactions, a low energy electron diffraction and an Auger electron spectrometer are combined with an electrochemical thin-layer cell allowing initial characterization of the surface, reaction run, and then a comparative surface analysis.

  10. Study of Carbon Nanotubes as Etching Masks and Related Applications in the Surface Modification of GaAs-based Light-Emitting Diodes.

    PubMed

    Jin, Yuanhao; Li, Qunqing; Chen, Mo; Li, Guanhong; Zhao, Yudan; Xiao, Xiaoyang; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan

    2015-09-02

    The surface modification of LEDs based on GaAs is realized by super-aligned multiwalled carbon nanotube (SACNT) networks as etching masks. The surface morphology of SACNT networks is transferred to the GaAs. It is found that the light output power of LEDs based on GaAs with a nanostructured surface morphology is greatly enhanced with the electrical power unchanged. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Strike-Slip Faulting Processes on Ganymede: Global Morphological Mapping and Structural Interpretation of Grooved and Transitional Terrains

    NASA Astrophysics Data System (ADS)

    Burkhard, L. M.; Cameron, M. E.; Smith-Konter, B. R.; Seifert, F.; Pappalardo, R. T.; Collins, G. C.

    2015-12-01

    Ganymede's fractured surface reveals many large-scale, morphologically distinct regions of inferred distributed shear and strike-slip faulting that may be important to the structural development of its surface and in the transition from dark to light (grooved) materials. To better understand the role of strike-slip tectonism in shaping Ganymede's complex icy surface, we perform a detailed mapping of key examples of strike-slip morphologies (i.e., en echelon structures, strike-slip duplexes, laterally offset pre-existing features, and possible strained craters) from Galileo and Voyager images. We focus on complex structures associated with grooved terrain (e.g. Nun Sulcus, Dardanus Sulcus, Tiamat Sulcus, and Arbela Sulcus) and terrains transitional from dark to light terrain (e.g. the boundary between Nippur Sulcus and Marius Regio, including Byblus Sulcus and Philus Sulcus). Detailed structural interpretations suggest strong evidence of strike-slip faulting in some regions (i.e., Nun and Dardanus Sulcus); however, further investigation of additional strike-slip structures is required of less convincing regions (i.e., Byblus Sulcus). Where applicable, these results are synthesized into a global database representing an inferred sense of shear for many of Ganymede's fractures. Moreover, when combined with existing observations of extensional features, these results help to narrow down the range of possible principal stress directions that could have acted at the regional or global scale to produce grooved terrain on Ganymede.

  12. Evaluation of Fine Aggregate Morphology by Image Method and Its Effect on Skid-Resistance of Micro-Surfacing.

    PubMed

    Xiao, Yue; Wang, Feng; Cui, Peide; Lei, Lei; Lin, Juntao; Yi, Mingwei

    2018-05-29

    Micro-surfacing is a widely used pavement preventive maintenance technology used all over the world, due to its advantages of fast construction, low maintenance cost, good waterproofness, and skid-resistance performance. This study evaluated the fine aggregate morphology and surface texture of micro-surfacing by AIMS (aggregate image measurement system), and explored the effect of aggregate morphology on skid-resistance of single-grade micro-surfacing. Sand patch test and British pendulum test were also used to detect skid-resistance for comparison with the image-based method. Wet abrasion test was used to measure skid-resistance durability for feasibility verification of single-grade micro-surfacing. The results show that the effect of Form2D on the skid-resistance of micro-surfacing is much stronger than that of angularity. Combining the feasibility analysis of durability and skid-resistance, 1.18⁻2.36 grade micro-surfacing meets the requirements of durability and skid-resistance at the same time. This study also determined that, compared with British pendulum test, the texture result obtained by sand patch test fits better with results of image method.

  13. Dewetting induced Au-Ge composite nanodot evolution in SiO2

    NASA Astrophysics Data System (ADS)

    Datta, D. P.; Chettah, A.; Siva, V.; Kanjilal, D.; Sahoo, P. K.

    2018-01-01

    A composite nanostructure comprising of Au and Ge gradually evolves on SiO2 surface when a bilayer of Au and Ge is irradiated by medium keV Xe-ion beam. The morphology progresses through different stages from nucleating patches to extended islands and finally a Au-Ge composite nanodot array develops on the insulator surface. While ion energy and fluence are found to determine dimensions of the nanostructures, existence of a characteristic lateral length scale is also detected at every stage of evolution. Through morphological and compositional analysis, the observed evolution is understood as an effect of ion beam induced dewetting of Au top layer. Numerical estimation based on the unified thermal spike model using the present experimental condition demonstrates formation of molten zones around the ion track due to nuclear and electronic energy deposition in the target. Dewetting results from mass flow onto the surface driven by local melting along the ion track and combines with sputter erosion of the bilayer film to lead to composite nanodot evolution. The generality of the ion induced processes provides possible route towards metal-semiconductor hybrid nanostructure synthesis on insulator surface.

  14. Coating stainless steel plates with Ag/TiO2 for chlorpyrifos decontamination

    NASA Astrophysics Data System (ADS)

    Abdel Fattah, Wafa I.; Gobara, Mohammed M.; El-Hotaby, Walid; Mostafa, Sherif F. M.; Ali, Ghareib W.

    2016-05-01

    Spray coatings of either nanosilver (Ag), titanium (TiO2) or nanosilver titanium (Ag/TiO2) on stainless steel substrates prepared by sol-gel process were successfully achieved. The efficiency of the Ag/TiO2 coat onto 316 stainless steel surface towards cloropyrifos degradation as a chemical warfare agent (CWA) was proved. The crystalline structure and morphological characterization, as well as surface roughness measurements, were assessed. X-ray diffraction results proved the crystalline TiO2 anatase phase. The uniform distribution of Ag along with TiO2 nanoparticles was evidenced through transmission electron microscopy and scanning electron microscopy mapping. The hydrophilic nature of individual Ag, TiO2 and Ag/TiO2 coats was proved by contact angle measurements. The loading of Ag nanoparticles influenced positively the Ag/TiO2 coats surface roughness. The photocatalytic cloropyrifos degradation achieved about 50% within one-hour post UV treatment proving, therefore, the promising Ag/TiO2 continued decontamination efficiency. In conclusion, tuning the physical and morphological properties of TiO2 coated on stainless steel surface could be significantly enhanced by Ag nanoparticles incorporation. The developed Ag/TiO2 coat could be conveniently applied as CWA decontaminant.

  15. Tuning the morphology of silver nanostructures photochemically coated on glass substrates: an effective approach to large-scale functional surfaces

    NASA Astrophysics Data System (ADS)

    Zaier, Mohamed; Vidal, Loic; Hajjar-Garreau, Samar; Bubendorff, Jean-Luc; Balan, Lavinia

    2017-03-01

    This paper reports on a simple and environmentally friendly photochemical process capable of generating nano-layers (8-22 nm) of silver nanostructures directly onto glass surfaces. This approach opens the way to large-scale functionalized surfaces with plasmonic properties through a single light-induced processing. Thus, Ag nanostructures top-coated were obtained through photo-reduction, at room temperature, of a photosensitive formulation containing a metal precursor, free from extra toxic stabilizers or reducing agents. The reactive formulation was confined between two glass slides and exposed to a continuous near-UV source. In this way, stable silver nano-layers can be generated directly on the substrate with a very good control of the morphology of as-synthesized nanostructures that allows tailoring the optical properties of the coated layers. The position and width of the corresponding surface plasmon resonance bands can be adjusted over a broad spectral window. By extension, this low-cost and easy-to-apply process can also be used to coat ultra thin layers of metal nanostructures on a variety of substrates. The possibility of controlling of nanostructures shape should achieve valuable developments in many fields, as diverse as plasmonics, surface enhanced Raman scattering, nano-electronic circuitry, or medical devices.

  16. Advanced Tools for River Science: EAARL and MD_SWMS: Chapter 3

    USGS Publications Warehouse

    Kinzel, Paul J.

    2009-01-01

    Disruption of flow regimes and sediment supplies, induced by anthropogenic or climatic factors, can produce dramatic alterations in river form, vegetation patterns, and associated habitat conditions. To improve habitat in these fluvial systems, resource managers may choose from a variety of treatments including flow and/or sediment prescriptions, vegetation management, or engineered approaches. Monitoring protocols developed to assess the morphologic response of these treatments require techniques that can measure topographic changes above and below the water surface efficiently, accurately, and in a standardized, cost-effective manner. Similarly, modeling of flow, sediment transport, habitat, and channel evolution requires characterization of river morphology for model input and verification. Recent developments by the U.S. Geological Survey with regard to both remotely sensed methods (the Experimental Advanced Airborne Research LiDAR; EAARL) and computational modeling software (the Multi-Dimensional Surface-Water Modeling System; MD_SWMS) have produced advanced tools for spatially explicit monitoring and modeling in aquatic environments. In this paper, we present a pilot study conducted along the Platte River, Nebraska, that demonstrates the combined use of these river science tools.

  17. Histological preparation of developing vestibular otoconia for scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Huss, D.; Dickman, J. D.

    2003-01-01

    The unique nature of vestibular otoconia as calcium carbonate biominerals makes them particularly susceptible to chemical deformation during histological processing. We fixed and stored otoconia from all three otolith endorgans of embryonic, hatchling and adult Japanese quail in glutaraldehyde containing either phosphate or non-phosphate buffers for varying lengths of time and processed them for scanning electron microscopy. Otoconia from all age groups and otolith endorgans processed in 0.1 M phosphate buffer (pH 7.4) showed abnormal surface morphology when compared to acetone fixed controls. Otoconia processed in 0.1 M sodium cacodylate or HEPES buffered artificial endolymph (pH 7.4) showed normal morphology that was similar to controls. The degree of otoconial deformation was directly related to the time exposed to phosphate buffer. Short duration exposure produced particulate deformations while longer exposures resulted in fused otoconia that formed solid sheets. Otoconial surface deformation and fusing was independent of the glutaraldehyde component of the histological processing. These findings should help vestibular researchers to develop appropriate histological processing protocols in future studies of otoconia.

  18. Origin of phase shift in atomic force microscopic investigation of the surface morphology of NR/NBR blend film.

    PubMed

    Thanawan, S; Radabutra, S; Thamasirianunt, P; Amornsakchai, T; Suchiva, K

    2009-01-01

    Atomic force microscopy (AFM) was used to study the morphology and surface properties of NR/NBR blend. Blends at 1/3, 1/1 and 3/1 weight ratios were prepared in benzene and formed film by casting. AFM phase images of these blends in tapping mode displayed islands in the sea morphology or matrix-dispersed structures. For blend 1/3, NR formed dispersed phase while in blends 1/1 and 3/1 phase inversion was observed. NR showed higher phase shift angle in AFM phase imaging for all blends. This circumstance was governed by adhesion energy hysteresis between the device tip and the rubber surface rather than surface stiffness of the materials, as proved by force distance measurements in the AFM contact mode.

  19. 3D Numerical simulation of bed morphological responses to complex in-streamstructures

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Liu, X.

    2017-12-01

    In-stream structures are widely used in stream restoration for both hydraulic and ecologicalpurposes. The geometries of the structures are usually designed to be extremely complex andirregular, so as to provide nature-like physical habitat. The aim of this study is to develop anumerical model to accurately predict the bed-load transport and the morphological changescaused by the complex in-stream structures. This model is developed in the platform ofOpenFOAM. In the hydrodynamics part, it utilizes different turbulence models to capture thedetailed turbulence information near the in-stream structures. The technique of immersedboundary method (IBM) is efficiently implemented in the model to describe the movable bendand the rigid solid body of in-stream structures. With IBM, the difficulty of mesh generation onthe complex geometry is greatly alleviated, and the bed surface deformation is able to becoupled in to flow system. This morphodynamics model is firstly validated by simple structures,such as the morphology of the scour in log-vane structure. Then it is applied in a more complexstructure, engineered log jams (ELJ), which consists of multiple logs piled together. Thenumerical results including turbulence flow information and bed morphological responses areevaluated against the experimental measurement within the exact same flow condition.

  20. Dynamic potential and surface morphology study of sertraline membrane sensors

    PubMed Central

    Khater, M.M.; Issa, Y.M.; Hassib, H.B.; Mohammed, S.H.

    2014-01-01

    New rapid, sensitive and simple electrometric method was developed to determine sertraline hydrochloride (Ser-Cl) in its pure raw material and pharmaceutical formulations. Membrane sensors based on heteropolyacids as ion associating material were prepared. Silicomolybdic acid (SMA), silicotungstic acid (STA) and phosphomolybdic acid (PMA) were used. The slope and limit of detection are 50.00, 60.00 and 53.24 mV/decade and 2.51, 5.62 and 4.85 μmol L−1 for Ser-ST, Ser-PM and Ser-SM membrane sensors, respectively. Linear range is 0.01–10.00 for the three sensors. These new sensors were used for the potentiometric titration of Ser-Cl using sodium tetraphenylborate as titrant. The surface morphologies of the prepared membranes with and without the modifier (ion-associate) were studied using scanning and atomic force microscopes. PMID:26257944

  1. Analytical Modeling for Mechanical Strength Prediction with Raman Spectroscopy and Fractured Surface Morphology of Novel Coconut Shell Powder Reinforced: Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Singh, Savita; Singh, Alok; Sharma, Sudhir Kumar

    2017-06-01

    In this paper, an analytical modeling and prediction of tensile and flexural strength of three dimensional micro-scaled novel coconut shell powder (CSP) reinforced epoxy polymer composites have been reported. The novel CSP has a specific mixing ratio of different coconut shell particle size. A comparison is made between obtained experimental strength and modified Guth model. The result shows a strong evidence for non-validation of modified Guth model for strength prediction. Consequently, a constitutive modeled equation named Singh model has been developed to predict the tensile and flexural strength of this novel CSP reinforced epoxy composite. Moreover, high resolution Raman spectrum shows that 40 % CSP reinforced epoxy composite has high dielectric constant to become an alternative material for capacitance whereas fractured surface morphology revealed that a strong bonding between novel CSP and epoxy polymer for the application as light weight composite materials in engineering.

  2. The Impact History of Vesta: New Views from the Dawn Mission

    NASA Technical Reports Server (NTRS)

    OBrien, D. P.; Marchi, S.; Schenk, P.; Mittlefehldt, D. W.; Jaumann, R.; Ammannito, E.; Buczkowski, D. L.; DeSanctis, M. C.; Filacchione, G.; Gaskell, R.; hide

    2011-01-01

    The Dawn mission has completed its Survey and High-Altitude Mapping Orbit (HAMO) phases at Vesta, resulting in 60-70 meter per pixel imaging, high-resolution image-derived topography, and visual and infrared spectral data covering up to approx.50 degrees north latitude (the north pole was in shadow during these mission phases). These data have provided unprecedented views of the south polar impact structure first detected in HST imaging [1], now named Rheasilvia, and in addition hint at the existence of a population of ancient basins. Smaller craters are seen at all stages from fresh to highly-eroded, with some exposing atypically bright or dark material. The morphology of some craters has been strongly influenced by regional slope. Detailed studies of crater morphology are underway. We have begun making crater counts to constrain the relative ages of different regions of the surface, and are working towards developing an absolute cratering chronology for Vesta's surface.

  3. Morphological driven photocatalytic activity of ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Abbas, Khaldoon N.; Bidin, Noriah

    2017-02-01

    Using a simple combination of pulse laser ablation in liquid and hydrothermal (PLAL-H) approaches, we control the morphology of ZnO nanostructures (ZNSs) to determine the feasibility of their photocatalytic efficacy. These ZNSs are deposited on Si (100) substrates and two different morphologies are achieved. In this synergistic approach, PLAL synthesized NSs are used as a nutrient solution with different pH for further hydrothermal treatment at 110 °C under varying growth time (5, 30 and 60 min). Surface morphology, structure, composition, and optical characteristics of the prepared ZNSs are determined using FESEM, XRD, FTIR and Photoluminescence (PL) and UV-vis absorption measurements. The morphology revealed remarkable transformation from nanorods (NRs)/nanoflowers (NFs) (at pH 7.6) to nanoparticles (NPs)-like (at pH 10.5) structure. XRD patterns showed better polycrystallinity for NPs with enlarged band gap than NR/NF-like structures. Both PL and UV-vis spectral analysis of ZNPs exhibited higher surface area and deep level defects density dependent morphology, where the nutrient pH and growth time variation are found to play a significant role towards structural evolution. Furthermore, the photocatalytic activities of, such ZNSs are evaluated via sunlight driven photo-degradation of methylene blue (MB) dye. The photocatalytic efficiency of ZNPs is demonstrated to be much superior (97.4%) than ZNRs/ZNFs-like morphology (86%). Such enhanced photocatalytic activities of as-synthesized ZNPs is attributed to the synergism of the improved surface area and defects density, which is useful for promoting the adsorption of the MB dye and suppressed surface recombination of photo-generated charge carriers.

  4. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography

    NASA Astrophysics Data System (ADS)

    Liu, Qinhe; Xu, Xianhui; Xia, Weixing; Che, Renchao; Chen, Chen; Cao, Qi; He, Jingang

    2015-01-01

    To design and fabricate rational surface architecture of individual particles is one of the key factors that affect their magnetic properties and microwave absorption capability, which is still a great challenge. Herein, a series of Co20Ni80 hierarchical structures with different surface morphologies, including flower-, urchin-, ball-, and chain-like morphologies, were obtained using structure-directing templates via a facile one-step solvothermal treatment. The microwave reflection loss (RL) of urchin-like Co20Ni80 hierarchical structures reaches as high as -33.5 dB at 3 GHz, with almost twice the RL intensity of the ball- and chain-like structures, and the absorption bandwidth (<-10 dB) is about 5.5 GHz for the flower-like morphology, indicating that the surface nanospikes and nanoflakes on the Co20Ni80 microsphere surfaces have great influences on their magnetic microwave absorption properties. Electron holography analysis reveals that the surface nanospikes and nanoflakes could generate a high density of stray magnetic flux lines and contribute a large saturation magnetization (105.62 emu g-1 for urchin-like and 96.41 emu g-1 for flower-like morphology), leading the urchin-like and flower-like Co20Ni80 to possess stronger microwave RL compared with the ball-like and chain-like Co20Ni80 alloys. The eddy-current absorption mechanism μ''(μ')-2(f)-1 is dominant in the frequency region above 8 GHz, implying that eddy-current loss is a vital factor for microwave RL in the high frequency range. It can be supposed from our findings that different surface morphologies of magnetic hierarchical structures might become an effective path to achieve high-performance microwave absorption for electromagnetic shielding and stealth camouflage applications.To design and fabricate rational surface architecture of individual particles is one of the key factors that affect their magnetic properties and microwave absorption capability, which is still a great challenge. Herein, a series of Co20Ni80 hierarchical structures with different surface morphologies, including flower-, urchin-, ball-, and chain-like morphologies, were obtained using structure-directing templates via a facile one-step solvothermal treatment. The microwave reflection loss (RL) of urchin-like Co20Ni80 hierarchical structures reaches as high as -33.5 dB at 3 GHz, with almost twice the RL intensity of the ball- and chain-like structures, and the absorption bandwidth (<-10 dB) is about 5.5 GHz for the flower-like morphology, indicating that the surface nanospikes and nanoflakes on the Co20Ni80 microsphere surfaces have great influences on their magnetic microwave absorption properties. Electron holography analysis reveals that the surface nanospikes and nanoflakes could generate a high density of stray magnetic flux lines and contribute a large saturation magnetization (105.62 emu g-1 for urchin-like and 96.41 emu g-1 for flower-like morphology), leading the urchin-like and flower-like Co20Ni80 to possess stronger microwave RL compared with the ball-like and chain-like Co20Ni80 alloys. The eddy-current absorption mechanism μ''(μ')-2(f)-1 is dominant in the frequency region above 8 GHz, implying that eddy-current loss is a vital factor for microwave RL in the high frequency range. It can be supposed from our findings that different surface morphologies of magnetic hierarchical structures might become an effective path to achieve high-performance microwave absorption for electromagnetic shielding and stealth camouflage applications. Electronic supplementary information (ESI) available: EDS analysis data, SEM images, electron holography schematic diagram, electron holography and magnetic hysteresis loops. See DOI: 10.1039/c4nr05547k

  5. An overview of biofunctionalization of metals in Japan

    PubMed Central

    Hanawa, Takao

    2009-01-01

    Surface modification is an important and predominant technique for obtaining biofunction and biocompatibility in metals for biomedical use. The surface modification technique is a process that changes the surface composition, structure and morphology of a material, leaving the bulk mechanical properties intact. A tremendous number of surface modification techniques using dry and wet processes to improve the hard tissue compatibility of titanium have been developed. Some are now commercially available. Most of these processes have been developed by Japanese institutions since the 1990s. A second approach is the immobilization of biofunctional molecules to the metal surface to control the adsorption of proteins and adhesion of cells, platelets and bacteria. The immobilization of poly(ethylene glycol) to a metal surface with electrodeposition and its effect on biofunction are reviewed. The creation of a metal–polymer composite is another way to obtain metal-based biofunctional materials. The relationship between the shear bonding strength and the chemical structure at the bonding interface of a Ti-segmentated polyurethane composite through a silane coupling agent is explained. PMID:19158014

  6. Effect of mass density on surface morphology of electrodeposited manganese oxide films

    NASA Astrophysics Data System (ADS)

    Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2018-05-01

    This work focus on high surface area morphology of manganese oxide films which are currently required for electrochemical capacitor electrode to enhance their performance. Electrodeposition of manganese oxide films was carried out using Chronoamperometry for different deposition time ranging from 30 to 120 sec. Cronoamperomertic I-T integrated data have been used to analyze active mass of all electrodeposited films. Morphological study of the deposited films with different mass was carried out through scanning electron microscopy. Film deposited for 30 sec time show highest porous morphology than others. Manganese oxide films with high porosity are suitable for electrochemical capacitor electrode.

  7. 2D Thermoluminescence imaging of dielectric surface long term charge memory of plasma surface interaction in DBD discharges

    NASA Astrophysics Data System (ADS)

    Ambrico, Paolo F.; Ambrico, Marianna; Schiavulli, Luigi; De Benedictis, Santolo

    2014-07-01

    The charge trapping effect due to the exposure of alumina surfaces to plasma has been studied in a volume dielectric barrier discharge (DBD) in Ar and He noble gases. The long lasting charge trapping of alumina dielectric plates, used as barriers in DBDs, is evidenced by an ex situ thermoluminescence (TL) experiment performed with a standard and a custom two-dimensional (2D)-TL apparatus. The spatial density of trapped surface charges is found to be strongly correlated to the plasma morphology, and the surface spatial memory lasted for several minutes to hours after plasma exposure. In the case of Ar, the plasma channel impact signature on the surface shows a higher equivalent radiation dose with respect to the surface plasma wave and the post-discharge species signature. As a consequence, for the development of discharges, inside the dielectric surface the availability of lower energy trapped electrons is larger in the first region of plasma impact. The reported spatial memory increases the likelihood of the occurrence of plasma filaments in the same position in different runs. In He plasmas, the dielectric barrier shows an almost uniform distribution of trapped charges, meaning that there is no preferred region for the development of the discharge. In all cases a slight asymmetry was shown in the direction of the gas flow. This can be interpreted as being due to the long-living species moving in the direction of the gas flow, corresponding with the TL side experiment on the sample exposed to the plasma afterglow. The maximum values and the integral of the 2D-TL images showed a linear relation with the total charge per ac cycle, corresponding with findings for the TL glow curve. In conclusion, 2D-TL images allow the retrieval of information regarding the plasma surface interaction such as the plasma morphology, trap sites and their activation temperature.

  8. Amelogenin-assisted ex vivo remineralization of human enamel: effects of supersaturation degree and fluoride concentration

    PubMed Central

    Fan, Yuwei; Nelson, James R.; Alvarez, Jason R.; Hagan, Joseph; Berrier, Allison; Xu, Xiaoming

    2011-01-01

    The formation of organized nanocrystals that resemble enamel is crucial for successful enamel remineralization. Calcium, phosphate and fluoride ions and amelogenin are important ingredients for the formation of organized hydroxyapatite (HAP) crystals in vitro. However, the effects of these remineralization agents on the enamel crystal morphology have not been thoroughly studied. The objective of this study was to investigate the effects of fluoride ions, supersaturation degree and amelogenin on the crystal morphology and organization of ex vivo remineralized human enamel. Extracted third molars were sliced thin and acid-etched to provide the enamel surface for immersion in different remineralization solutions. The crystal morphology and mineral phase of the remineralized enamel surface were analyzed by FE-SEM, ATR-FTIR and XRD. The concentration of fluoride and supersaturation degree of hydroxyapatite had significant effects on the crystal morphology and crystal organization, which varied from plate-like loose crystals to rod-like densely packed nanocrystal arrays. Densely packed arrays of fluoridated hydroxyapatite nanorods were observed under the following conditions: σ(HAP) = 10.2±2.0 with fluoride 1.5±0.5 mg/L and amelogenin 40±10 µg/mL, pH 6.8±0.4. A phase diagram summarized the conditions that form dense or loose hydroxyapatite nanocrystal structures. This study provides the basis for the development of novel dental materials for caries management. PMID:21256987

  9. Influence of polarized bias and porous silicon morphology on the electrical behavior of Au-porous silicon contacts*

    PubMed Central

    Zhao, Yue; Li, Dong-sheng; Xing, Shou-xiang; Yang, De-ren; Jiang, Min-hua

    2005-01-01

    This paper reports the surface morphology and I-V curves of porous silicon (PS) samples and related devices. The observed fabrics on the PS surface were found to affect the electrical property of PS devices. When the devices were operated under different external bias (10 V or 3 V) for 10 min, their observed obvious differences in electrical properties may be due to the different control mechanisms in the Al/PS interface and PS matrix morphology. PMID:16252350

  10. Lithography-free glass surface modification by self-masking during dry etching

    NASA Astrophysics Data System (ADS)

    Hein, Eric; Fox, Dennis; Fouckhardt, Henning

    2011-01-01

    Glass surface morphologies with defined shapes and roughness are realized by a two-step lithography-free process: deposition of an ~10-nm-thin lithographically unstructured metallic layer onto the surface and reactive ion etching in an Ar/CF4 high-density plasma. Because of nucleation or coalescence, the metallic layer is laterally structured during its deposition. Its morphology exhibits islands with dimensions of several tens of nanometers. These metal spots cause a locally varying etch velocity of the glass substrate, which results in surface structuring. The glass surface gets increasingly rougher with further etching. The mechanism of self-masking results in the formation of surface structures with typical heights and lateral dimensions of several hundred nanometers. Several metals, such as Ag, Al, Au, Cu, In, and Ni, can be employed as the sacrificial layer in this technology. Choice of the process parameters allows for a multitude of different glass roughness morphologies with individual defined and dosed optical scattering.

  11. Theory, Investigation and Stability of Cathode Electrocatalytic Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Dong; Liu, Mingfei; Lai, Samson

    2012-09-30

    The main objective of this project is to systematically characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF, aiming to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating. The understanding gained will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance. More specifically, the technical objectives include: (1) to characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF; (2) to characterize the microscopic details andmore » stability of the LSCF-catalyst (e.g., LSM) interfaces; (3) to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating; and (4) to demonstrate that the performance and stability of porous LSCF cathodes can be enhanced by the application of a thin-film coating of LSM through a solution infiltration process in small homemade button cells and in commercially available cells of larger dimension. We have successfully developed dense, conformal LSM films with desired structure, composition, morphology, and thickness on the LSCF surfaces by two different infiltration processes: a non-aqueous and a water-based sol-gel process. It is demonstrated that the activity and stability of LSCF cathodes can be improved by the introduction of a thin-film LSM coating through an infiltration process. Surface and interface of the LSM-coated LSCF cathode were systematically characterized using advanced microscopy and spectroscopy techniques. TEM observation suggests that a layer of La and Sr oxide was formed on LSCF surfaces after annealing. With LSM infiltration, in contrast, we no longer observe such La/Sr oxide layer on the LSM-coated LSCF samples after annealing under similar conditions. This was also confirmed by x-ray analyses. For example, soft x-ray XANES data reveal that Co cations displace the Mn cations as being more favored to be reduced. Variations in the Sr-O in the annealed LSCF Fourier-transformed (FT) EXAFS suggest that some Sr segregation is occurring, but is not present in the annealed LSM-infiltrated LSCF cathode materials. Further, a surface enhanced Raman technique was also developed into to probe and map LSM and LSCF phase on underlying YSZ substrate, enabling us to capture important chemical information of cathode surfaces under practical operating conditions. Electrochemical models for the design of test cells and understanding of mechanism have been developed for the exploration of fundamental properties of electrode materials. Novel catalyst coatings through particle depositions (SDC, SSC, and LCC) or continuous thin films (PSM and PSCM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized LSM infiltration process. Microstructure examination of the tested cells did not show obvious differences between blank and infiltrated cells, suggesting that the infiltrated LSM may form a coherent film on the LSCF cathodes. There was no significant change in the morphology or microstructure of the LSCF cathode due to the structural similarity of LSCF and LSM. Raman analysis of the tested cells indicated small peaks emerging on the blank cells that correspond to trace amounts of secondary phase formation during operation (e.g., CoO{sub x}). The formation of this secondary phase might be attributed to performance degradation. In contrast, there was no such secondary phase observed in the LSM infiltrated cells, indicating that the LSM modification staved off secondary phase formation and thus improved the stability.« less

  12. Carapace surface architecture facilitates camouflage of the decorator crab Tiarinia cornigera.

    PubMed

    Sanka, Immanuel; Suyono, Eko Agus; Rivero-Müller, Adolfo; Alam, Parvez

    2016-09-01

    This paper elucidates the unique setal morphology of the decorator crab Tiarinia cornigera, and further presents evidence to that setal morphology promotes micro-organism nucleation and adhesion. The carapace of this crab is covered by clusters of setae, each comprising a hollow acicular stem that is enveloped by a haystack-like structure. Using computational fluid dynamics, we find that these setae are responsible for manipulating water flow over the carapace surface. Micro-organisms in the sea water, nest in areas of flow stagnation and as a result, nucleate to and biofoul the setae by means of chemical adhesion. Attached micro-organisms secrete extracellular polymeric substances, which we deduce must also provide an additional element of chemical adhesion to mechanically interlocked mesoscopic and macroscopic biomatter. By coupling physical and chemical methods for adhesion, T. cornigera is able to hierarchically decorate its carapace. Our paper brings to light the unique decorator crab carapace morphology of T. cornigera; and furthermore evidences its function in micro-organism nucleation and adhesion. We show how this special carapace morphology directs and guides water flow to form nesting regions of water stagnation where micro-organisms can nucleate and adhere. In the literature, decorator crab carapaces are presumed to be able to mechanically interlock biomatter as camouflage using hook-like setal outgrowths. T. cornigera contrarily exhibits clusters of hay-stack like structures. By encouraging micro-organism adhesion to the carapace setae, T. cornigera is able to effectively attach biomatter using both chemical and physical principles of adhesion. T. cornigera essentially has a super-biofouling carapace surface, for at least micro-organisms. Our work will have an impact on researchers interested in biofouling, adhesion, biomedical and purification filter systems, and in the development of novel biomimetic surfaces with tailored properties. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Bio-Tribology Properties of Bionic Carp Scale Morphology on Ti6A14V Surface

    NASA Astrophysics Data System (ADS)

    Wang, W.; Y Wei, X.; Meng, K.; Zhong, L. H.; Wang, Y.; Yu, X. H.

    2017-12-01

    In order to improve the bio-tribology properties of Ti6A14V surface, the bionic carp scale appearance pattern on Ti6A14V surface was prepared by laser surface texturing technology. The ball-disc reciprocating linear tribological experiment under different lubricants with dry friction was carried out by MRTR multifunction friction and wear testing machine using ZrO2/Ti6A14V as friction pair. The wear scar morphology of the sample surface was observed by SEM. The results show that for dry friction, the friction factor of the bionic carp scale morphology Ti6A14V reduces by 0.23 than those without bionic carp scale morphology, a decline of 45%. Under different lubrication conditions, the friction factors of samples with the bionic carp scale are increased in varying degrees with the increase of size of bionic texturing. The friction factor with same specimen under different lubrication conditions according to the ascending order are 0.5g/dl of sodium hyaluronate +0.5g/dl-γglobulin and 0.5g/dl mixed aqueous solution of sodium hyaluronate solution and artificial saliva. The wear volume also showed a similar variation.

  14. Graphene-based textured surface by pulsed laser deposition as a robust platform for surface enhanced Raman scattering applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tite, T.; Donnet, C.; Loir, A.-S.

    We have developed a surface enhanced Raman scattering (SERS)-active substrate based on gold nanoparticles-decorated few-layer (fl) graphene grown by pulsed laser deposition. Diamond-Like Carbon film has been converted to fl-graphene after thermal annealing at low temperature. The formation of fl-graphene was confirmed by Raman spectroscopy, and surface morphology was highlighted by scanning electron microscopy. We found that textured fl-graphene film with nanoscale roughness was highly beneficial for SERS detection. Rhodamine 6G and p-aminothiophenol proposed as test molecules were detected with high sensitivity. The detection at low concentration of deltamethrin, an active molecule of a commercial pesticide was further demonstrated.

  15. Predictive model for ice formation on superhydrophobic surfaces.

    PubMed

    Bahadur, Vaibhav; Mishchenko, Lidiya; Hatton, Benjamin; Taylor, J Ashley; Aizenberg, Joanna; Krupenkin, Tom

    2011-12-06

    The prevention and control of ice accumulation has important applications in aviation, building construction, and energy conversion devices. One area of active research concerns the use of superhydrophobic surfaces for preventing ice formation. The present work develops a physics-based modeling framework to predict ice formation on cooled superhydrophobic surfaces resulting from the impact of supercooled water droplets. This modeling approach analyzes the multiple phenomena influencing ice formation on superhydrophobic surfaces through the development of submodels describing droplet impact dynamics, heat transfer, and heterogeneous ice nucleation. These models are then integrated together to achieve a comprehensive understanding of ice formation upon impact of liquid droplets at freezing conditions. The accuracy of this model is validated by its successful prediction of the experimental findings that demonstrate that superhydrophobic surfaces can fully prevent the freezing of impacting water droplets down to surface temperatures of as low as -20 to -25 °C. The model can be used to study the influence of surface morphology, surface chemistry, and fluid and thermal properties on dynamic ice formation and identify parameters critical to achieving icephobic surfaces. The framework of the present work is the first detailed modeling tool developed for the design and analysis of surfaces for various ice prevention/reduction strategies. © 2011 American Chemical Society

  16. Developmental changes in haemocyte morphology in response to Staphylococcus aureus and latex beads in the beetle Tenebrio molitor L.

    PubMed

    Urbański, Arkadiusz; Adamski, Zbigniew; Rosiński, Grzegorz

    2018-01-01

    The evolutionary success of insects is undoubtedly related to a well-functioning immune system. This is especially apparent during insect development by the adaptation of individuals to the changing risk of infection. In addition, current studies show that the insect immune system is characterized by some specificity in response to natural pathogens (for example, bacteria, viruses or fungi) and artificial challengers (for example, latex beads or nylon filaments). However, developmental changes and the specificity of immune system reactions simultaneously have not been analysed. Thus, the aim of the present research was to determine changes in haemocyte morphology in response to attenuated Staphylococcus aureus and latex beads across each developmental stage of the beetle Tenebrio molitor. The results of the present research clearly showed differences in the morphology of T. molitor haemocytes during development. The haemocytes of larvae and 4-day-old adult males were characterized by the highest adhesion ability, which was expressed as the largest average surface area, filopodia length and number of filopodia. In contrast, the haemocytes of pupae and 30-day-old adult males had a significantly lower value for these morphological parameters, which was probably related to metamorphosis (pupae) and immunosenescence (30-day-old adults). The haemocytes of the tested individuals reacted differently to the presence of S. aureus and latex beads. The presence of S. aureus led to a significant decrease in all previously mentioned morphological parameters in larvae and in both groups of adult individuals. In these groups, incubation of haemocytes with latex beads caused only a slight decrease in surface area and filopodia length and number. This morphological response of haemocytes to biotic and artificial challengers might be related to an increase in the migration abilities of haemocytes during infection. However, the differences in haemocyte reactivity towards S. aureus and latex beads might be explained by differences in pathogen recognition. Conversely, increased adhesive abilities of pupal haemocytes were also observed, which might be related to the specificity of metamorphosis and the hormonal titre during this developmental stage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Characterization and Properties of Electroless Nickel Plated Poly (ethylene terephthalate) Nonwoven Fabric Enhanced by Dielectric Barrier Discharge Plasma Pretreatment

    NASA Astrophysics Data System (ADS)

    Geng, Yamin; Lu, Canhui; Liang, Mei; Zhang, Wei

    2010-12-01

    In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of poly (ethylene terephthalate) (PET) nonwoven fabric. The properties of the PET nonwoven fabric including its liquid absorptive capacity (WA), aging behavior, surface chemical composition, morphology of the surface, adhesion strength, surface electrical resistivity and electromagnetic interference (EMI)- shielding effectiveness (SE) were studied. The liquid absorptive capacity (WA) increased due to the incorporation of oxygen-containing and nitrogen-containing functional groups on the surface of PET nonwoven fabric after DBD air-plasma treatment. The surface morphology of the nonwoven fibers became rougher after plasma treatment. Therefore, the surface was more prone to absorb tin sensitizer and palladium catalyst to form an active layer for the deposition of electroless nickel. SEM and X-ray diffraction (XRD) measurements indicated that a uniform coating of nickel was formed on the PET nonwoven fabric. The average EMI-SE of Ni-plating of PET nonwoven fabric maintained a relatively stable value (38.2 dB to 37.3 dB) in a frequency range of 50 MHz to 1500 MHz. It is concluded that DBD is feasible for pretreatment of nonwoven fabric for electroless nickel plating to prepare functional material with good EMI-SE properties.

  18. A molecular dynamics simulation of solvent effects on the crystal morphology of HMX.

    PubMed

    Duan, Xiaohui; Wei, Chunxue; Liu, Yonggang; Pei, Chonghua

    2010-02-15

    The solvent has a large effect on the crystal morphology of the organic explosive compound octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX, C(4)H(8)N(8)O(8)). The attachment energy calculations predict a growth morphology in vacuum dominated by (020), (011), (102 ), (111 ) and (100) crystal forms. Molecular dynamics simulations are performed for these crystal faces of HMX in contact with acetone solvent. A corrected attachment energy model, accounting for the surface chemistry and the associated topography (step structure) of the habit crystal plane, is applied to predict the morphological importance of a crystal surface in solvent. From the solvent-effected attachment energy calculations it follows that the (100) face becomes morphologically more important compared with that in vacuum, while the (020) and (102 ) are not visible at all. This agrees well with the observed experimental HMX morphology grown from the acetone solution.

  19. Surface Morphology of Vapor-Deposited Chitosan: Evidence of Solid-State Dewetting during the Formation of Biopolymer Films.

    PubMed

    Retamal, Maria Jose; Corrales, Tomas P; Cisternas, Marcelo A; Moraga, Nicolas H; Diaz, Diego I; Catalan, Rodrigo E; Seifert, Birger; Huber, Patrick; Volkmann, Ulrich G

    2016-03-14

    Chitosan is a useful and versatile biopolymer with several industrial and biological applications. Whereas its physical and physicochemical bulk properties have been explored quite intensively in the past, there is a lack of studies regarding the morphology and growth mechanisms of thin films of this biopolymer. Of particular interest for applications in bionanotechnology are ultrathin films with thicknesses under 500 Å. Here, we present a study of thin chitosan films prepared in a dry process using physical vapor deposition and in situ ellipsometric monitoring. The prepared films were analyzed with atomic force microscopy in order to correlate surface morphology with evaporation parameters. We find that the surface morphology of our final thin films depends on both the optical thickness, i.e., measured with ellipsometry, and the deposition rate. Our work shows that ultrathin biopolymer films can undergo dewetting during film formation, even in the absence of solvents and thermal annealing.

  20. Controlling Morphological Parameters of Anodized Titania Nanotubes for Optimized Solar Energy Applications

    PubMed Central

    Haring, Andrew; Morris, Amanda; Hu, Michael

    2012-01-01

    Anodized TiO2 nanotubes have received much attention for their use in solar energy applications including water oxidation cells and hybrid solar cells [dye-sensitized solar cells (DSSCs) and bulk heterojuntion solar cells (BHJs)]. High surface area allows for increased dye-adsorption and photon absorption. Titania nanotubes grown by anodization of titanium in fluoride-containing electrolytes are aligned perpendicular to the substrate surface, reducing the electron diffusion path to the external circuit in solar cells. The nanotube morphology can be optimized for the various applications by adjusting the anodization parameters but the optimum crystallinity of the nanotube arrays remains to be realized. In addition to morphology and crystallinity, the method of device fabrication significantly affects photon and electron dynamics and its energy conversion efficiency. This paper provides the state-of-the-art knowledge to achieve experimental tailoring of morphological parameters including nanotube diameter, length, wall thickness, array surface smoothness, and annealing of nanotube arrays.

  1. Theoretical approach for determining the relation between the morphology and surface magnetism of Co3O4

    NASA Astrophysics Data System (ADS)

    Ribeiro, R. A. P.; de Lazaro, S. R.; Gracia, L.; Longo, E.; Andrés, J.

    2018-05-01

    Precisely controlling the different aspects of the morphology and magnetic properties of metal oxides are fundamental to materials design. A theoretical approach, based on the Wulff construction and magnetization density (M) index, is presented to clarify the relation between the morphology and surface magnetism. The M index allows us to evaluate the uncompensated spins at the (1 0 0), (1 1 0), (1 1 1) and (1 1 2) surfaces of Co3O4 with a spinel structure. The investigated morphologies show an excellent agreement with the experimental results, with the main contribution coming from the (1 0 0) and (1 1 1) magnetic planes. The present results are also helpful in clarifying the intriguing magnetic properties reported for Co3O4 nanoparticles, suggesting that the same technique may serve as a guide for the study of shape-oriented magnetic materials.

  2. Protection of Conductive and Non-conductive Advanced Polymer-based Paints from Highly Aggressive Oxidative Environments

    NASA Technical Reports Server (NTRS)

    Gudimenko, Y.; Ng, R.; Iskanderova, Z.; Kleiman, J.; Grigorevsky, A.; Kiseleva, L.; Finckenor, M.; Edwards, D.

    2005-01-01

    Research has been continued to further improve the space durability of conductive and non-conductive polymer-based paints and of conductive thermal control paints for space applications. Efforts have been made to enhance the space durability and stability of functional Characteristics in ground-based space environment imitating conditions, using specially developed surface modification treatment. The results of surface modification of new conductive paints, including the ground-based testing in aggressive oxidative environments, such as atomic oxygen/UV and oxygen plasma, and performance evaluation are presented. Functional properties and performance characteristics, such as thermal optical properties (differential solar absorptance and thermal emittance representing the thermal optical performance of thermal control paints) and surface resistivity characteristics of pristine, surface modified, and tested materials were verified. Extensive surface analysis studies have been performed using complementary surface analyses including SEM/EDS and XPS. Test results revealed that the successfully treated materials exhibit reduced mass loss and no surface morphology change, thus indicating good protection from the severe oxidative environment. It was demonstrated that the developed surface modification treatment could be applied successfully to charge dissipative and conductive paints.

  3. Surface modification of Ni–Ti alloys for stent application after magnetoelectropolishing

    PubMed Central

    Musaramthota, Vishal; Munroe, Norman; Datye, Amit; Dua, Rupak; Haider, Waseem; McGoron, Anthony; Rokicki, Ryszard

    2015-01-01

    The constant demand for new implant materials and the multidisciplinary design approaches for stent applications have expanded vastly over the past decade. The biocompatibility of these implant materials is a function of their surface characteristics such as morphology, surface chemistry, roughness, surface charge and wettability. These surface characteristics can directly influence the material's corrosion resistance and biological processes such as endothelialization. Surface morphology affects the thermodynamic stability of passivating oxides, which renders corrosion resistance to passivating alloys. Magnetoelectropolishing (MEP) is known to alter the morphology and composition of surface films, which assist in improving corrosion resistance of Nitinol alloys. This work aims at analyzing the surface characteristics of MEP Nitinol alloys by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the alloys was determined by contact angle measurements and the mechanical properties were assessed by Nanoindentation. Improved mechanical properties were observed with the addition of alloying elements. Cyclic potentiodynamic polarization tests were performed to determine the corrosion susceptibility. Further, the alloys were tested for their cytotoxicity and cellular growth with endothelial cells. Improved corrosion resistance and cellular viability were observed with MEP surface treated alloys. PMID:25746243

  4. Effects of scaffold surface morphology on cell adhesion and survival rate in vitreous cryopreservation of tenocyte-scaffold constructs

    NASA Astrophysics Data System (ADS)

    Wang, Zhi; Qing, Quan; Chen, Xi; Liu, Cheng-Jun; Luo, Jing-Cong; Hu, Jin-Lian; Qin, Ting-Wu

    2016-12-01

    The purpose of this study was to investigate the effects of scaffold surface morphology on cell adhesion and survival rate in vitreous cryopreservation of tenocyte-scaffold constructs. Tenocytes were obtained from tail tendons of rats. Polydimethylsiloxane (PDMS) was used to fabricate three types of scaffolds with varying surface morphological characteristics, i.e., smooth, micro-grooved, and porous surfaces, respectively. The tenocytes were seeded on the surfaces of the scaffolds to form tenocyte-scaffold constructs. The constructs were cryopreserved in a vitreous cryoprotectant (CPA) with a multi-step protocol. The cell adhesion to scaffolds was observed with electronic scanning microscopy (SEM). The elongation index of the living tenocytes and ratio of live/dead cell number were examined based on a live/dead dual fluorescent staining technique, and the survival rate of tenocytes was studied with flow cytometry (FC). The results showed the shapes of tenocytes varied between the different groups: flat or polygonal (on smooth surface), spindle (on micro-grooved surface), and spindle or ellipse (on porous surface). After thawing, the porous surface got the most living tenocytes and a higher survival rate, suggesting its potential application for vitreous cryopreservation of engineered tendon constructs.

  5. An examination of surface epithelium structures of the embryo across the genus Poeciliopsis (Poeciliidae).

    PubMed

    Panhuis, Tami M; Fris, Megan; Tuhela, Laura; Kwan, Lucia

    2017-12-01

    In viviparous, teleost fish, with postfertilization maternal nutrient provisioning, embryonic structures that facilitate maternal-fetal nutrient transfer are predicted to be present. For the family Poeciliidae, only a handful of morphological studies have explored these embryonic specializations. Here, we present a comparative morphological study in the viviparous poeciliid genus, Poeciliopsis. Using microscopy techniques, we examine the embryonic surface epidermis of Poeciliopsis species that vary in their level of postfertilization maternal nutrient provisioning and placentation across two phylogenetic clades and three independent evolutionary origins of placentation. We focus on surface features of the embryo that may facilitate maternal-fetal nutrient transfer. Specifically, we studied cell apical-surface morphology associated with the superficial epithelium that covers the body and sac (yolk and pericardial) of embryos at different developmental stages. Scanning electron microscopy revealed common surface epithelial cells across species, including pavement cells with apical-surface microridges or microvilli and presumed ionocytes and/or mucus-secreting cells. For three species, in the mid-stage embryos, the surface of the body and sac were covered in microvillus epithelium. The remaining species did not display microvillus epithelium at any of the stages examined. Instead, their epithelium of the body and sac were composed of cells with apical-surface microridges. For all species, in the late stage embryos, the surface of the body proper was composed of apical-surface microridges in a "fingerprint-like arrangement." Despite the differences in the surface epithelium of embryos across Poeciliopsis species and embryonic developmental stages, this variation was not associated with the level of postfertilization maternal nutrient provisioning. We discuss these results in light of previous morphological studies of matrotrophic, teleost fish, phylogenetic relationships of Poeciliopsis species, and our earlier comparative microscopy work on the maternal tissue of the Poeciliopsis placenta. © 2017 Wiley Periodicals, Inc.

  6. Novel Galvanic Nanostructures of Ag and Pd for Efficient Laser Desorption/Ionization of Low Molecular Weight Compounds

    NASA Astrophysics Data System (ADS)

    Silina, Yuliya E.; Meier, Florian; Nebolsin, Valeriy A.; Koch, Marcus; Volmer, Dietrich A.

    2014-05-01

    A simple approach for synthesis of palladium and silver nanostructures with readily adjustable morphologies was developed using galvanic electrochemical deposition, for application to surface-assisted laser desorption/ionization (SALDI) of small biological molecules. A range of fatty acids, triglycerides, carbohydrates, and antibiotics were investigated to assess the performance of the new materials. Intense analyte cations were generated from the galvanic surfaces upon UV laser irradiation such as potassium adducts for a film thickness <100 nm (originating from impurities of the electrolyte solution) and Pd and Ag cluster ions for films with a thickness >120 nm. Possible laser desorption/ionization mechanisms of these galvanic structures are discussed. The films exhibited self-organizing abilities and adjustable morphologies by changing electrochemical parameters. They did not require any stabilizing agents and were inexpensive and very easy to produce. SALDI analysis showed that the materials were stable under ambient conditions and analytical results with excellent measurement reproducibility and detection sensitivity similar to MALDI were obtained. Finally, we applied the galvanic surfaces to fast screening of natural oils with minimum sample preparation.

  7. Morphometric analysis of erythrocytes from patients with thalassemia using tomographic diffractive microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Yang-Hsien; Huang, Shin-Shyang; Wu, Shang-Ju; Sung, Kung-Bin

    2017-11-01

    Complete blood count is the most common test to detect anemia, but it is unable to obtain the abnormal shape of erythrocytes, which highly correlates with the hematologic function. Tomographic diffractive microscopy (TDM) is an emerging technique capable of quantifying three-dimensional (3-D) refractive index (RI) distributions of erythrocytes without labeling. TDM was used to characterize optical and morphological properties of 172 erythrocytes from healthy volunteers and 419 erythrocytes from thalassemic patients. To efficiently extract and analyze the properties of erythrocytes, we developed an adaptive region-growing method for automatically delineating erythrocytes from 3-D RI maps. The thalassemic erythrocytes not only contained lower hemoglobin content but also showed doughnut shape and significantly lower volume, surface area, effective radius, and average thickness. A multi-indices prediction model achieved perfect accuracy of diagnosing thalassemia using four features, including the optical volume, surface-area-to-volume ratio, sphericity index, and surface area. The results demonstrate the ability of TDM to provide quantitative, hematologic measurements and to assess morphological features of erythrocytes to distinguish healthy and thalassemic erythrocytes.

  8. Self-organized microstructures induced by MeV ion beam on silicon surface

    NASA Astrophysics Data System (ADS)

    Ahmad, Muthanna

    2017-02-01

    Micro patterning of self organized structure on silicon surface is induced by ion implantation of energetic (MeV) copper ions. This work reports for the first time the ability of using energetic ions for producing highly ordered ripples and dots of micro sizes. The experiments are realized at the Tandem ion beam accelerator (3 MV) at the IBA laboratory of the Atomic Energy Commission of Syria. Similarly to nano patterning formed by slow ions, the formation of micro patterned structures dots and ripples is observed to be depending on the angle of ion beam incidence, energy and ion fluence. The observation of such microstructures formation is limited to a range of ion energies (few MeV) at fluence higher than 1.75 × 1017 ion cm-2. The patterned surface layer is completely amorphousized by the ion implantation. Shadowing effect is observed in the formation of microripples and superstructures in the top of ripples. The superstructure develops new morphology that is not observed before. This morphology has butterfly shape with symmetry in its structure.

  9. Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology.

    PubMed

    Canetta, Elisabetta; Adya, Ashok K; Walker, Graeme M

    2006-02-01

    The detrimental effects of ethanol toxicity on the cell surface morphology of Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354) were investigated using an atomic force microscope (AFM). In combination with culture viability and mean cell volume measurements AFM studies allowed us to relate the cell surface morphological changes, observed on nanometer lateral resolution, with the cellular stress physiology. Exposing yeasts to increasing stressful concentrations of ethanol led to decreased cell viabilities and mean cell volumes. Together with the roughness and bearing volume analyses of the AFM images, the results provided novel insight into the relative ethanol tolerance of S. cerevisiae and Sc. pombe.

  10. Variability in surface ECG morphology: signal or noise?

    NASA Technical Reports Server (NTRS)

    Smith, J. M.; Rosenbaum, D. S.; Cohen, R. J.

    1988-01-01

    Using data collected from canine models of acute myocardial ischemia, we investigated two issues of major relevance to electrocardiographic signal averaging: ECG epoch alignment, and the spectral characteristics of the beat-to-beat variability in ECG morphology. With initial digitization rates of 1 kHz, an iterative a posteriori matched filtering alignment scheme, and linear interpolation, we demonstrated that there is sufficient information in the body surface ECG to merit alignment to a precision of 0.1 msecs. Applying this technique to align QRS complexes and atrial pacing artifacts independently, we demonstrated that the conduction delay from atrial stimulus to ventricular activation may be so variable as to preclude using atrial pacing as an alignment mechanism, and that this variability in conduction time be modulated at the frequency of respiration and at a much lower frequency (0.02-0.03Hz). Using a multidimensional spectral technique, we investigated the beat-to-beat variability in ECG morphology, demonstrating that the frequency spectrum of ECG morphological variation reveals a readily discernable modulation at the frequency of respiration. In addition, this technique detects a subtle beat-to-beat alternation in surface ECG morphology which accompanies transient coronary artery occlusion. We conclude that physiologically important information may be stored in the variability in the surface electrocardiogram, and that this information is lost by conventional averaging techniques.

  11. Recent development, applications, and perspectives of mesoporous silica particles in medicine and biotechnology.

    PubMed

    Pasqua, Luigi; Cundari, Sante; Ceresa, Cecilia; Cavaletti, Guido

    2009-01-01

    Mesoporous silica particles (MSP) are a new development in nanotechnology. Covalent modification of the surface of the silica is possible both on the internal pore and on the external particle surface. It allows the design of functional nanostructured materials with properties of organic, biological and inorganic components. Research and development are ongoing on the MSP, which have applications in catalysis, drug delivery and imaging. The most recent and interesting advancements in size, morphology control and surface functionalization of MSP have enhanced the biocompatibility of these materials with high surface areas and pore volumes. In the last 5 years several reports have demonstrated that MSP can be efficiently internalized using in vitro and animal models. The functionalization of MSP with organic moieties or other nanostructures brings controlled release and molecular recognition capabilities to these mesoporous materials for drug/gene delivery and sensing applications, respectively. Herein, we review recent research progress on the design of functional MSP materials with various mechanisms of targeting and controlled release.

  12. Relationship Between Anterior Lamina Cribrosa Surface Tilt and Glaucoma Development in Myopic Eyes.

    PubMed

    Lee, Eun Jung; Han, Jong Chul; Kee, Changwon

    2017-05-01

    To evaluate the anterior lamina cribrosa (LC) surface tilt angle in myopic eyes and associate it with glaucoma development. In this retrospective study, medical records of myopic patients referred for glaucoma examination from July 1, 2012 to March 30, 2016 were reviewed. Comprehensive ophthalmic examination including spectral-domain optical coherence tomography were performed. We measured the angle of anterior LC surface tilt against Bruch's membrane opening from optical coherence tomography images at the center of the clinical optic disc margin. In horizontal and vertical sections, the angles were defined as α and β, respectively. Patients were grouped according to the presence of glaucomatous damage and factors including optic nerve head morphologic parameters and LC tilt angles were compared between the 2 groups. Among 138 patients originally enrolled, 102 patients were finally analyzed. One eye from 1 patient was randomly chosen. Fifty-five eyes had glaucoma and 47 were normal. The degree of myopia and all optic nerve head morphologic parameters were not significantly different between the 2 groups. However, |α| and |β| were significantly larger in the glaucoma group (all P<0.001), and significances were maintained in multivariate analysis (P<0.001). Larger anterior LC surface tilt angles were related to the presence of glaucoma in normal-pressure myopic eyes. Angulation of the LC against Bruch's membrane opening plane might be associated with increased glaucoma susceptibility in myopic eyes. Further investigations are warranted before clinical utilization of LC tilt as glaucoma susceptibility biomarker.

  13. A computation study on the interplay between surface morphology and electrochemical performance of patterned thin film electrodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gur, Sourav; Frantziskonis, George N.; Aifantis, Katerina E.

    2017-08-01

    Recent experiments illustrate that the morphology of the electrode surface impacts the voltage - capacity curves and long term cycling performance of Li-ion batteries. The present study systematically explores the role of the electrode surface morphology and uncertainties in the reactions that occur during electrochemical cycling, by performing kinetic Monte Carlo (kMC) simulations using the lattice Boltzmann method (LBM). This allows encoding of the inherent stochasticity at discrete microscale reaction events over the deterministic mean field reaction dynamics that occur in Li-ion cells. The electrodes are taken to be dense thin films whose surfaces are patterned with conical, trapezoidal, dome-shaped, or pillar-shaped structures. It is shown that the inherent perturbations in the reactions together with the characteristics of the electrode surface configuration can significantly improve battery performance, mainly because patterned surfaces, as opposed to flat surfaces, result in a smaller voltage drop. The most efficient pattern was the trapezoidal, which is consistent with experimental evidence on Si patterned electrodes.

  14. Formation of Nanocones on Highly Oriented Pyrolytic Graphite by Oxygen Plasma

    PubMed Central

    Vesel, Alenka; Eleršič, Kristina; Modic, Martina; Junkar, Ita; Mozetič, Miran

    2014-01-01

    Improvement in hemocompatibility of highly oriented pyrolytic graphite (HOPG) by formation of nanostructured surface by oxygen plasma treatment is reported. We have showed that by appropriate fine tuning of plasma and discharge parameters we are able to create nanostructured surface which is densely covered with nanocones. The size of the nanocones strongly depended on treatment time. The optimal results in terms of material hemocompatibility were obtained after treatment with oxygen plasma for 15 s, when both the nanotopography and wettability were the most favorable, since marked reduction in adhesion and activation of platelets was observed on this surface. At prolonged treatment times, the rich surface topography was lost and thus also its antithrombogenic properties. Chemical composition of the surface was always more or less the same, regardless of its morphology and height of the nanocones. Namely, on all plasma treated samples, only a few atomic percent of oxygen was found, meaning that plasma caused mostly etching, leading to changes in the surface morphology. This indicates that the main preventing mechanism against platelets adhesion was the right surface morphology. PMID:28788553

  15. Laser-Induced Damage with Femtosecond Pulses

    NASA Astrophysics Data System (ADS)

    Kafka, Kyle R. P.

    The strong electric fields of focused femtosecond laser pulses lead to non-equilibrium dynamics in materials, which, beyond a threshold intensity, causes laser-induced damage (LID). Such a strongly non-linear and non-perturbative process renders important LID observables like fluence and intensity thresholds and damage morphology (crater) extremely difficult to predict quantitatively. However, femtosecond LID carries a high degree of precision, which has been exploited in various micro/nano-machining and surface engineering applications, such as human eye surgery and super-hydrophobic surfaces. This dissertation presents an array of experimental studies which have measured the damage behavior of various materials under femtosecond irradiation. Precision experiments were performed to produce extreme spatio-temporal confinement of the femtosecond laser-solid damage interaction on monocrystalline Cu, which made possible the first successful direct-benchmarking of LID simulation with realistic damage craters. A technique was developed to produce laser-induced periodic surface structures (LIPSS) in a single pulse (typically a multi-pulse phenomenon), and was used to perform a pump-probe study which revealed asynchronous LIPSS formation on copper. Combined with 1-D calculations, this new experimental result suggests more drastic electron heating than expected. Few-cycle pulses were used to study the LID performance and morphology of commercial ultra-broadband optics, which had not been systematically studied before. With extensive surface analysis, various morphologies were observed, including LIPSS, swelling (blisters), simple craters, and even ring-shaped structures, which varied depending on the coating design, number of pulses, and air/vacuum test environment. Mechanisms leading to these morphologies are discussed, many of which are ultrafast in nature. The applied damage behavior of multi-layer dielectric mirrors was measured and compared between long pulse (150 ps) and femtosecond (33 fs) regimes for a large number of optics contributed by manufacturers globally. The damage performance of the mirrors in the 150 ps tests was shown to be uncorrelated with the 33 fs tests, which implies that the two regimes are guided by different mechanisms. In fact, one of the worst-performing mirrors in the long-pulse regime turned out to be the best-performer in the femtosecond regime. The broad array of experimental results presented here all found that LID in the femtosecond regime is distinctly different from long pulse damage, and paves multiple pathways into developing the next stage of theoretical models and applications of femtosecond laser-induced damage.

  16. To attach or not to attach? The effect of carrier surface morphology and topography on attachment of phoretic deutonymphs of Uropoda orbicularis (Acari).

    PubMed

    Bajerlein, Daria; Adamski, Zbigniew; Kacalak, Wojciech; Tandecka, Katarzyna; Wiesner, Maciej; Jurga, Stefan

    2016-08-01

    Previous studies on preferences of phoretic deutonymphs of Uropodina for attachment sites have shown that they frequently select smooth and hydrophobic surfaces. The aim of our study was to provide the detailed morphological and topographical characteristics of beetle body surfaces to which deutonymphs frequently attach and to verify how the presence of setae and surface sculpture affects deutonymph attachment. The study was conducted on Uropoda orbicularis (Müller, 1776) and its common beetle carriers: Aphodius prodromus (Brahm, 1790), Aphodius fimetarius (Linnaeus, 1758), Onthophagus nuchicornis (Linnaeus, 1758) and Margarinotus carbonarius (Hoffmann, 1803). Morphology and topography of elytra, femora, propygidia and pygidia of beetles were analysed mainly using SEM methods supported with CLSM and AFM techniques. The hypothesis that deutonymphs may attach to surfaces covered with setae, if seta density is low enough not to disturb mite movement, was tested. The study revealed that deutonymphs attach to surfaces of various types as follows: (i) smooth, (ii) hairy, i.e., covered with setae, (iii) flat and (iv) sculptured. Smooth body parts and body parts covered with setae of low density were most frequently and intensively occupied with deutonymphs. Surfaces of high seta density were avoided by mites. Within elytra of Aphodius beetles, deutonymphs definitely preferred flat surfaces of elytral intervals. On the contrary, densely punctuated propygidium and pygidium in M. carbonarius were heavily infested with deutonymphs. We conclude that carrier surface morphology and topography are important for Uropodina deutonymph attachment, but these two factors cannot fully explain the observed relation.

  17. Morphology-Driven Control of Metabolite Selectivity Using Nanostructure-Initiator Mass Spectrometry

    DOE PAGES

    Gao, Jian; Louie, Katherine B.; Steinke, Philipp; ...

    2017-05-26

    Nanostructure-initiator mass spectrometry (NIMS) is a laser desorption/ionization analysis technique based on the vaporization of a nanostructure-trapped liquid "initiator" phase. Here we report an intriguing relationship between NIMS surface morphology and analyte selectivity. Scanning electron microscopy and spectroscopic ellipsometry were used to characterize the surface morphologies of a series of NIMS substrates generated by anodic electrochemical etching. Mass spectrometry imaging was applied to compare NIMS sensitivity of these various surfaces toward the analysis of diverse analytes. The porosity of NIMS surfaces was found to increase linearly with etching time where the pore size ranged from 4 to 12 nm withmore » corresponding porosities estimated to be 7-70%. Surface morphology was found to significantly and selectively alter NIMS sensitivity. The small molecule ( < 2k Da) sensitivity was found to increase with increased porosity, whereas low porosity had the highest sensitivity for the largest molecules examined. Estimation of molecular sizes showed that this transition occurs when the pore size is < 3× the maximum of molecular dimensions. While the origins of selectivity are unclear, increased signal from small molecules with increased surface area is consistent with a surface area restructuring-driven desorption/ionization process where signal intensity increases with porosity. In contrast, large molecules show highest signal for the low-porosity and small-pore-size surfaces. We attribute this to strong interactions between the initiator-coated pore structures and large molecules that hinder desorption/ionization by trapping large molecules. This finding may enable us to design NIMS surfaces with increased specificity to molecules of interest.« less

  18. To attach or not to attach? The effect of carrier surface morphology and topography on attachment of phoretic deutonymphs of Uropoda orbicularis (Acari)

    NASA Astrophysics Data System (ADS)

    Bajerlein, Daria; Adamski, Zbigniew; Kacalak, Wojciech; Tandecka, Katarzyna; Wiesner, Maciej; Jurga, Stefan

    2016-08-01

    Previous studies on preferences of phoretic deutonymphs of Uropodina for attachment sites have shown that they frequently select smooth and hydrophobic surfaces. The aim of our study was to provide the detailed morphological and topographical characteristics of beetle body surfaces to which deutonymphs frequently attach and to verify how the presence of setae and surface sculpture affects deutonymph attachment. The study was conducted on Uropoda orbicularis (Müller, 1776) and its common beetle carriers: Aphodius prodromus (Brahm, 1790), Aphodius fimetarius (Linnaeus, 1758), Onthophagus nuchicornis (Linnaeus, 1758) and Margarinotus carbonarius (Hoffmann, 1803). Morphology and topography of elytra, femora, propygidia and pygidia of beetles were analysed mainly using SEM methods supported with CLSM and AFM techniques. The hypothesis that deutonymphs may attach to surfaces covered with setae, if seta density is low enough not to disturb mite movement, was tested. The study revealed that deutonymphs attach to surfaces of various types as follows: (i) smooth, (ii) hairy, i.e., covered with setae, (iii) flat and (iv) sculptured. Smooth body parts and body parts covered with setae of low density were most frequently and intensively occupied with deutonymphs. Surfaces of high seta density were avoided by mites. Within elytra of Aphodius beetles, deutonymphs definitely preferred flat surfaces of elytral intervals. On the contrary, densely punctuated propygidium and pygidium in M. carbonarius were heavily infested with deutonymphs. We conclude that carrier surface morphology and topography are important for Uropodina deutonymph attachment, but these two factors cannot fully explain the observed relation.

  19. Effects of nanoparticle shape on the morphology and properties of porous CdSe assemblies (aerogels).

    PubMed

    Yu, Hongtao; Brock, Stephanie L

    2008-08-01

    We demonstrate the effect of differently shaped CdSe nanoscale building blocks (dots, rods, branched nanoparticles, and hyperbranched nanoparticles) on the morphologies, surface characteristics, and optical properties of resultant porous CdSe nanostructured aerogels. Monolithic CdSe aerogels were produced by controlled oxidative removal of surface thiolate ligands from differently shaped CdSe nanoparticles to yield a wet gel, followed by CO(2) supercritical drying. The X-ray diffraction data show that the resultant CdSe aerogels maintain the crystalline phase of the building blocks without significant grain growth. However, the transmission electron microscopy images indicate that the morphology of CdSe aerogels changes from a colloid-type morphology to a polymer-type morphology when the building block changes from dot to rod or the branched nanoparticle. The morphology of the CdSe aerogel assembled from hyperbranched nanoparticles appears to be intermediate between the colloid-type and the polymer-type. Nitrogen physisorption measurements suggest that the surface areas and porosity are a direct function of the shape of the primary building blocks, with aerogels formed from rods or branched particles exhibiting the greatest surface areas (>200 m(2)/g) and those prepared from hyperbranched nanoparticles exhibiting the least (<100 m(2)/g). Band gap measurements and photoluminescence studies show that the as-prepared CdSe aerogels retain to a large extent the intrinsic quantum confinement of the differently shaped building blocks, despite being connected into a 3D network.

  20. Bulk and Surface Morphologies of ABC Miktoarm Star Terpolymers Composed of PDMS, PI, and PMMA Arms

    DOE PAGES

    Chernyy, Sergey; Kirkensgaard, Jacob Judas Kain; Mahalik, Jyoti P.; ...

    2018-02-02

    DIM miktoarm star copolymers, composed of polydimethylsiloxane [D], poly(1,4-isoprene) [I], and poly(methyl methacrylate) [M], were synthesized using a newly developed linking methodology with 4-allyl-1,1-diphenylethylene as a linking agent. The equilibrium bulk morphologies of the DIM stars were found to range from [6.6.6] tiling patterns to alternating lamellar and alternating cylindrical morphologies, as determined experimentally by small-angle X-ray scattering and transmission electron microscopy and confirmed by dissipative particle dynamics and self-consistent field theory based arguments. The thin film morphologies, which differ from those found in the bulk, were identified by scanning electron microscopy, coupled with oxygen plasma etching. Finally, square arraysmore » of the PDMS nanodots and empty core cylinders were formed on silica after oxygen plasma removal of the poly(1,4-isoprene) and poly(methyl methacrylate) which generated nanostructured substrates decorated with these features readily observable.« less

  1. Bulk and Surface Morphologies of ABC Miktoarm Star Terpolymers Composed of PDMS, PI, and PMMA Arms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernyy, Sergey; Kirkensgaard, Jacob Judas Kain; Mahalik, Jyoti P.

    DIM miktoarm star copolymers, composed of polydimethylsiloxane [D], poly(1,4-isoprene) [I], and poly(methyl methacrylate) [M], were synthesized using a newly developed linking methodology with 4-allyl-1,1-diphenylethylene as a linking agent. The equilibrium bulk morphologies of the DIM stars were found to range from [6.6.6] tiling patterns to alternating lamellar and alternating cylindrical morphologies, as determined experimentally by small-angle X-ray scattering and transmission electron microscopy and confirmed by dissipative particle dynamics and self-consistent field theory based arguments. The thin film morphologies, which differ from those found in the bulk, were identified by scanning electron microscopy, coupled with oxygen plasma etching. Finally, square arraysmore » of the PDMS nanodots and empty core cylinders were formed on silica after oxygen plasma removal of the poly(1,4-isoprene) and poly(methyl methacrylate) which generated nanostructured substrates decorated with these features readily observable.« less

  2. Volume regulation and shape bifurcation in the cell nucleus

    PubMed Central

    Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M.; Wirtz, Denis; Sun, Sean X.

    2015-01-01

    ABSTRACT Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation. PMID:26243474

  3. Volume regulation and shape bifurcation in the cell nucleus.

    PubMed

    Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M; Wirtz, Denis; Sun, Sean X

    2015-09-15

    Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation. © 2015. Published by The Company of Biologists Ltd.

  4. Influence of polymer coating morphology on microsensor response

    NASA Astrophysics Data System (ADS)

    Levit, Natalia; Pestov, Dmitry; Tepper, Gary C.

    2004-03-01

    Nanoscale polymeric coatings are used in a variety of sensor systems. The influence of polymer coating morphology on sensor response was investigated and it was determined that coating morphology plays a particularly important role in transducers based on optical or acoustic resonance such as surface acoustic wave (SAW) or surface plasmon resonance (SPR) devices. Nanoscale polymeric coatings were deposited onto a number of miniature devices using a "solvent-free" deposition technique known as Rapid Expansion of Supercritical Solutions (RESS). In RESS, the supercritical solvent goes into the vapor phase upon fast depressurization and separates from the polymer. Therefore, dry polymer particles are deposited from the gas phase. The average diameter of RESS precipitates is about two orders of magnitude smaller than the minimum droplet size achievable by the air-brush method. For rubbery polymers, such as PIB and PDMS, the nanoscale solute droplets produced by RESS agglomerate on the surface forming a highly-uniform continuous nanoscale film. For glassy and crstalline polymers, the RESS droplets produce uniform particulate coatings exhibiting high surface-to-volume ratio. The coating morphology can be changed by controlling the RESS processing conditions.

  5. High sensitivity of Franz-Keldysh oscillations in photoreflectance spectra for probing morphology in Al{x}Ga{1-{x}}N/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Takeuchi, H.; Yamamoto, Y.; Kamo, Y.; Kunii, T.; Oku, T.; Wakaiki, S.; Nakayama, M.

    2007-02-01

    We demonstrate that Franz-Keldysh oscillations (FKOs) observed by photoreflectance (PR) spectroscopy are highly sensitive to the surface morphology of Al{x}Ga{1-x}N layers in Al{x}Ga{1-x}N heterostructures. Three Al{0.2}Ga{0.8}N/GaN heterostructures with different surface-morphology profiles, which are confirmed with atomic force microscopy, have been investigated. The X-ray-diffraction patterns are hardly affected by the Al{0.2}Ga{0.8}N/GaN-layer morphology. In contrast, it is revealed that cracks and pits dominating the morphology remarkably reduce the amplitude of the FKOs from the Al{0.2}Ga{0.8}N/GaN layer, which is attributed to the following two mechanisms related to the cracks and pits. One is lifetime broadening due to carrier scattering, and the other is the suppression of the modulation magnitude for the built-in electric field, which is caused by the trapping and recombination of photogenerated carriers at the surface.

  6. Dry etching of copper phthalocyanine thin films: effects on morphology and surface stoichiometry.

    PubMed

    Van Dijken, Jaron G; Brett, Michael J

    2012-08-24

    We investigate the evolution of copper phthalocyanine thin films as they are etched with argon plasma. Significant morphological changes occur as a result of the ion bombardment; a planar surface quickly becomes an array of nanopillars which are less than 20 nm in diameter. The changes in morphology are independent of plasma power, which controls the etch rate only. Analysis by X-ray photoelectron spectroscopy shows that surface concentrations of copper and oxygen increase with etch time, while carbon and nitrogen are depleted. Despite these changes in surface stoichiometry, we observe no effect on the work function. The absorbance and X-ray diffraction spectra show no changes other than the peaks diminishing with etch time. These findings have important implications for organic photovoltaic devices which seek nanopillar thin films of metal phthalocyanine materials as an optimal structure.

  7. 3D morphology of Au and Au@Ag nanobipyramids

    NASA Astrophysics Data System (ADS)

    Burgin, Julien; Florea, Ileana; Majimel, Jérôme; Dobri, Adam; Ersen, Ovidiu; Tréguer-Delapierre, Mona

    2012-02-01

    The morphologies of Au and Au@Ag nanobipyramids were investigated using electron tomography. The 3D reconstruction reveals that the Au bipyramids have an irregular six-fold twinning structure with highly stepped dominant {151} facets. These short steps/edges stabilized via surface adsorbed CTAB favor the growth of silver on the lateral facets leading to strong blue shifts in longitudinal plasmon surface resonance.The morphologies of Au and Au@Ag nanobipyramids were investigated using electron tomography. The 3D reconstruction reveals that the Au bipyramids have an irregular six-fold twinning structure with highly stepped dominant {151} facets. These short steps/edges stabilized via surface adsorbed CTAB favor the growth of silver on the lateral facets leading to strong blue shifts in longitudinal plasmon surface resonance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11454b

  8. Nickel-Phosphorous Development for Total Solar Irradiance Measurement

    NASA Astrophysics Data System (ADS)

    Carlesso, F.; Berni, L. A.; Vieira, L. E. A.; Savonov, G. S.; Nishimori, M.; Dal Lago, A.; Miranda, E.

    2017-10-01

    The development of an absolute radiometer instrument is currently a effort at INPE for TSI measurements. In this work, we describe the development of black Ni-P coatings for TSI radiometers absorptive cavities. We present a study of the surface blackening process and the relationships between morphological structure, chemical composition and coating absorption. Ni-P deposits with different phosphorous content were obtained by electroless techniques on aluminum substrates with a thin zincate layer. Appropriate phosphorus composition and etching parameters process produce low reflectance black coatings.

  9. Smooth polishing of femtosecond laser induced craters on cemented carbide by ultrasonic vibration method

    NASA Astrophysics Data System (ADS)

    Wang, H. P.; Guan, Y. C.; Zheng, H. Y.

    2017-12-01

    Rough surface features induced by laser irradiation have been a challenging for the fabrication of micro/nano scale features. In this work, we propose hybrid ultrasonic vibration polishing method to improve surface quality of microcraters produced by femtosecond laser irradiation on cemented carbide. The laser caused rough surfaces are significantly smoothened after ultrasonic vibration polishing due to the strong collision effect of diamond particles on the surfaces. 3D morphology, SEM and AFM analysis has been conducted to characterize surface morphology and topography. Results indicate that the minimal surface roughness of Ra 7.60 nm has been achieved on the polished surfaces. The fabrication of microcraters with smooth surfaces is applicable to molding process for mass production of micro-optical components.

  10. Modeling, Fabrication and Characterization of Scalable Electroless Gold Plated Nanostructures for Enhanced Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Jang, Gyoung Gug

    The scientific and industrial demand for controllable thin gold (Au) film and Au nanostructures is increasing in many fields including opto-electronics, photovoltaics, MEMS devices, diagnostics, bio-molecular sensors, spectro-/microscopic surfaces and probes. In this study, a novel continuous flow electroless (CF-EL) Au plating method is developed to fabricate uniform Au thin films in ambient condition. The enhanced local mass transfer rate and continuous deposition resulting from CF-EL plating improved physical uniformity of deposited Au films and thermally transformed nanoparticles (NPs). Au films and NPs exhibited improved optical photoluminescence (PL) and surface plasmon resonance (SPR), respectively, relative to batch immersion EL (BI-EL) plating. Suggested mass transfer models of Au mole deposition are consistent with optical feature of CF-EL and BI-EL films. The prototype CF-EL plating system is upgraded an automated scalable CF-EL plating system with real-time transmission UV-vis (T-UV) spectroscopy which provides the advantage of CF-EL plating, such as more uniform surface morphology, and overcomes the disadvantages of conventional EL plating, such as no continuous process and low deposition rate, using continuous process and controllable deposition rate. Throughout this work, dynamic morphological and chemical transitions during redox-driven self-assembly of Ag and Au film on silica surfaces under kinetic and equilibrium conditions are distinguished by correlating real-time T-UV spectroscopy with X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The characterization suggests that four previously unrecognized time-dependent physicochemical regimes occur during consecutive EL deposition of silver (Ag) and Au onto tin-sensitized silica surfaces: self-limiting Ag activation; transitory Ag NP formation; transitional Au-Ag alloy formation during galvanic replacement of Ag by Au; and uniform morphology formation under controlled hydraulic conditions. A method to achieve the time-resolved optical profile of EL Au plating was devised and provided a new transitional EL Au film growth model which validated mass transfer model prediction of the deposited thickness of ≤100 nm thin films. As a part of the project, validation of mass transfer model, a spectrophotometric method for quantitative analysis of metal ion is developed that improves the limit of detection comparable to conventional instrumental analysis. The present work suggests that modeling, fabrication and characterization of this novel CF-EL plating method is performed to achieve an ultimate purpose: developing a reliable, inexpensive wet chemical process for controlled metal thin film and nanostructure fabrication.

  11. Biogeography, phylogeny, and morphological evolution of central Texas cave and spring salamanders

    PubMed Central

    2013-01-01

    Background Subterranean faunal radiations can result in complex patterns of morphological divergence involving both convergent or parallel phenotypic evolution and cryptic species diversity. Salamanders of the genus Eurycea in central Texas provide a particularly challenging example with respect to phylogeny reconstruction, biogeography and taxonomy. These predominantly aquatic species inhabit karst limestone aquifers and spring outflows, and exhibit a wide range of morphological and genetic variation. We extensively sampled spring and cave populations of six Eurycea species within this group (eastern Blepsimolge clade), to reconstruct their phylogenetic and biogeographic history using mtDNA and examine patterns and origins of cave- and surface-associated morphological variation. Results Genetic divergence is generally low, and many populations share ancestral haplotypes and/or show evidence of introgression. This pattern likely indicates a recent radiation coupled with a complex history of intermittent connections within the aquatic karst system. Cave populations that exhibit the most extreme troglobitic morphologies show no or very low divergence from surface populations and are geographically interspersed among them, suggesting multiple instances of rapid, parallel phenotypic evolution. Morphological variation is diffuse among cave populations; this is in contrast to surface populations, which form a tight cluster in morphospace. Unexpectedly, our analyses reveal two distinct and previously unrecognized morphological groups encompassing multiple species that are not correlated with spring or cave habitat, phylogeny or geography, and may be due to developmental plasticity. Conclusions The evolutionary history of this group of spring- and cave-dwelling salamanders reflects patterns of intermittent isolation and gene flow influenced by complex hydrogeologic dynamics that are characteristic of karst regions. Shallow genetic divergences among several species, evidence of genetic exchange, and nested relationships across morphologically disparate cave and spring forms suggests that cave invasion was recent and many troglobitic morphologies arose independently. These patterns are consistent with an adaptive-shift hypothesis of divergence, which has been proposed to explain diversification in other karst fauna. While cave and surface forms often do not appear to be genetically isolated, morphological diversity within and among populations may be maintained by developmental plasticity, selection, or a combination thereof. PMID:24044519

  12. Processing of zero-derived words in English: an fMRI investigation.

    PubMed

    Pliatsikas, Christos; Wheeldon, Linda; Lahiri, Aditi; Hansen, Peter C

    2014-01-01

    Derivational morphological processes allow us to create new words (e.g. punish (V) to noun (N) punishment) from base forms. The number of steps from the basic units to derived words often varies (e.g., nationalitybridge-V) i.e., zero-derivation (Aronoff, 1980). We compared the processing of one-step (soaking

  13. Emplacement of Pahoehoe Toe Networks: Observations of May, 2010 Tube-fed Flows at Kilauea Volcano, Hawai'i

    NASA Astrophysics Data System (ADS)

    Crown, D. A.; Ramsey, M.; Hon, K.

    2010-12-01

    Pahoehoe lava flows are compound features that consist of multiple overlapping and interfingering lobes and exhibit morphologically diverse surfaces characterized by channelized zones, smooth-surfaced sheets, and numerous, small toe networks. Previous work compiled detailed planform maps of solidified pahoehoe toe networks to document their morphology, morphometry and connective relationships in order to provide constraints on lava transport models. In order to expand this research to active flow emplacement, we observed slow-moving, tube-fed pahoehoe flows on the coastal plain near Kalapana, Hawaii in May, 2010. The evolution of pahoehoe toe and toe network characteristics over their emplacement history was examined and the role of small-scale flow inflation on the advance of pahoehoe lobes evaluated. We collected both visible video footage and high-speed, high-precision thermal infrared (TIR) data using a FLIR S-40 camera. The TIR data provide surface temperature maps that can be easily used to identify formation of new toes and track their growth and surface cooling. From these maps, lobe development, connective relationships, and frontal and lateral spreading rates can be analyzed. Preliminary results suggest that regular cycles of activity characterize the development of these pahoehoe lobes: 1) emplacement of new toes in local topographic lows at the front, margin, and within the interior of an active lobe forming small interconnected networks, 2) decline and sometimes temporary cessation in the production of new pahoehoe toes, 3) inflation of the recently emplaced flow surface, either partially or en masse depending on the rate of influx of new lava, the degree of irregularity of the pre-flow surface, and/or the slope across the recently emplaced lava surface, and 4) fracturing of the recently emplaced surface crust that feeds emplacement of new toes. Inflation fractures typically cut across several previously emplaced toes and can occur at the front, along the margins, or within the active lobe, even at significant distances behind the flow front.

  14. Electroplasma coatings based on silicon-containing hydroxyapatite: Technology and properties

    NASA Astrophysics Data System (ADS)

    Lyasnikova, A. V.; Markelova, O. A.

    2016-09-01

    IR analysis and the plasma deposition of silicon-containing hydroxyapatite powder have been carried out. It has been shown that the coating exhibits developed morphology and consists of molten powder (including nanosize) particles uniformly distributed over the entire surface. The adhesion characteristics have been calculated and scanning electron microscope images of the resultant coating have been analyzed.

  15. Rutile (β-)MnO2 surfaces and vacancy formation for high electrochemical and catalytic performance.

    PubMed

    Tompsett, David A; Parker, Stephen C; Islam, M Saiful

    2014-01-29

    MnO2 is a technologically important material for energy storage and catalysis. Recent investigations have demonstrated the success of nanostructuring for improving the performance of rutile MnO2 in Li-ion batteries and supercapacitors and as a catalyst. Motivated by this we have investigated the stability and electronic structure of rutile (β-)MnO2 surfaces using density functional theory. A Wulff construction from relaxed surface energies indicates a rod-like equilibrium morphology that is elongated along the c-axis, and is consistent with the large number of nanowire-type structures that are obtainable experimentally. The (110) surface dominates the crystallite surface area. Moreover, higher index surfaces than considered in previous work, for instance the (211) and (311) surfaces, are also expressed to cap the rod-like morphology. Broken coordinations at the surface result in enhanced magnetic moments at Mn sites that may play a role in catalytic activity. The calculated formation energies of oxygen vacancy defects and Mn reduction at key surfaces indicate facile formation at surfaces expressed in the equilibrium morphology. The formation energies are considerably lower than for comparable structures such as rutile TiO2 and are likely to be important to the high catalytic activity of rutile MnO2.

  16. Study of the Effect of Nanoparticles and Surface Morphology on Reverse Osmosis and Nanofiltration Membrane Productivity

    PubMed Central

    Fang, Yuming; Duranceau, Steven J.

    2013-01-01

    To evaluate the significance of reverse osmosis (RO) and nanofiltration (NF) surface morphology on membrane performance, productivity experiments were conducted using flat-sheet membranes and three different nanoparticles, which included SiO2, TiO2 and CeO2. In this study, the productivity rate was markedly influenced by membrane surface morphology. Atomic force microscopy (AFM) analysis of membrane surfaces revealed that the higher productivity decline rates associated with polyamide RO membranes as compared to that of a cellulose acetate NF membrane was due to the inherent ridge-and-valley morphology of the active layer. The unique polyamide active layer morphology was directly related to the surface roughness, and was found to contribute to particle accumulation in the valleys causing a higher flux decline than in smoother membranes. Extended RO productivity experiments using laboratory grade water and diluted pretreated seawater were conducted to compare the effect that different nanoparticles had on membrane active layers. Membrane flux decline was not affected by particle type when the feed water was laboratory grade water. On the other hand, membrane productivity was affected by particle type when pretreated diluted seawater served as feed water. It was found that CeO2 addition resulted in the least observable flux decline, followed by SiO2 and TiO2. A productivity simulation was conducted by fitting the monitored flux data into a cake growth rate model, where the model was modified using a finite difference method to incorporate surface thickness variation into the analysis. The ratio of cake growth term (k1) and particle back diffusion term (k2) was compared in between different RO and NF membranes. Results indicated that k2 was less significant for surfaces that exhibited a higher roughness. It was concluded that the valley areas of thin-film membrane surfaces have the ability to capture particles, limiting particle back diffusion. PMID:24956946

  17. Real-time and post-plasma studies of influence of low levels of tungsten on carbon erosion and surface evolution behaviour in D2 plasma

    NASA Astrophysics Data System (ADS)

    Weilnboeck, F.; Fox-Lyon, N.; Oehrlein, G. S.; Doerner, R. P.

    2010-02-01

    A profound influence of monolayer tungsten coverage of hard carbon films on the evolution of carbon surface erosion behaviour, surface chemistry and morphology in D2 plasma has been established by real-time ellipsometry, x-ray photoelectron spectroscopy and atomic force microscopy measurements. The erosion of tungsten-covered carbon showed two distinct stages of plasma material interactions: rapid tungsten removal during the initial erosion period and steady-state amorphous carbon removal accompanied by large-scale surface roughness development. The initial removal of tungsten takes place at a rate that significantly exceeds typical sputter yields at the ion energies used here and is attributed to elimination of weakly bonded tungsten from the surface. The tungsten remaining on the a-C : H film surface causes surface roughness development of the eroding carbon surface by a masking effect, and simultaneously leads to a seven fold reduction of the steady-state carbon erosion rate for long plasma surface interaction times (~100 s). Results presented are of direct relevance for material transport and re-deposition, and the interaction of those films with plasma in the divertor region and on mirror surfaces of fusion devices.

  18. Heterogeneous Nucleation of Dicalcium Phosphate Dihydrate on Modified Silica Surfaces

    PubMed Central

    Miller, Carrie; Komunjer, Ljepša; Hlady, Vladimir

    2012-01-01

    Heterogeneous nucleation of dicalcium phosphate dihydrate, CaHPO4•2H2O (DCPD) was studied on untreated planar fused silica and on three modified silica surfaces: octadecylsilyl (OTS) modified silica, human serum albumin treated OTS silica, and UV-oxidized 3-mercaptopropyltriethoxysilyl (MTS) modified silica. The supersaturation ratio of calcium and phosphate solution with respect to DCPD was kept below ~10. The nucleated crystals were observed 24 hours and one week after initial contact between supersaturated solutions and substrate surfaces using bright field and reflectance interference contrast microscopy. No DCPD crystals nucleated on albumin-treated OTS-silica. Majority of the DCDP crystals formed on the other modified silica surfaces appeared to be morphologically similar irrespective of the nature of nucleating substrate. Reflectance interference contrast microscopy provided a proof that the majority of the crystals on these substrates do not develop an extended contact with the substrate surface. The images showed that the most extended contact planes were between the DCPD crystals and MTS modified silica surface. The crystals nucleated on OTS-treated and untreated silica surfaces showed only few or none well-developed contact planes. PMID:25264399

  19. A Biostereometric Approach To The Study Of Infants' And Children's Body Growth

    NASA Astrophysics Data System (ADS)

    Coblentz, A.; Ignazi, G.

    1980-07-01

    Studies on the somatic growth of young children have traditionally been made using conventional anthropometry techniques. As a result, while the conditions of growth of morphological variables such as weight or segmental dimensions are well known, the same cannot be said of the more global aspect of the development of the body in a three-dimensional reference space. Yet body volumes and surfaces represent morphological characteristics which are just as necessary for a good understanding of physiological phenomena (thermoregulation, energy balance, etc.) as the conventional linear data. In the volume of their research on children's growth in recent years, the authors have found that in none of the studies mentioned in the literature was consideration given to the dynamic aspect of the child's somatic development in a three-dimensional space. A primary reason for such omission is largely to be found in the technical difficulties encountered in the measure-ment of somatic characteristics such as body volume and surface. Yet, among the several possible methods of study, biostereometry and particularly the photogrammetric tool, is certainly one of the most rewarding. This being so, the authors propose to use the photogrammetric technique to undertake, in a first stage, a methodological study that will draw up, on a limited sample of infants and young children, the development chart, over a period of time, of the surfaces and volumes of segmental elements. Thus will be checked the relationships between the growth rates of different characteristics : surfaces, volumes, weight, linear dimensions. Quite apart from the intrinsic value of such studies, the data thus collected will eventually provide practitioners, pediatricians and physiologists with the reference records that have so far been lacking.

  20. Interaction between aggrading geomorphic surfaces and the formation of a late pleistocene paleosol in the palouse loess of eastern Washington state

    NASA Astrophysics Data System (ADS)

    McDonald, Eric V.; Busacca, Alan J.

    1990-09-01

    Variable rates of loess deposition contributed to dramatic regional variation in a soil-stratigraphic unit, the Washtucna Soil, in the Palouse loess deposits in the Channeled Scabland of eastern Washington state. Throughout most of the Channeled Scabland, the morphology of the Washtucna Soil is that of a single buried soil, but it bifurcates into two well-developed and pedologically distinct buried soils in areas immediately downwind of the major source of loessial sediment. Regional loess stratigraphy confirms that the two well-developed soils formed during the same interval of time during which only one soil formed in areas that are distal to loess source areas. The variable and perhaps rapid rates of soil formation suggested by the stratigraphy resulted from an interaction between variable rates of loess deposition and the formation of superimposed calcic soils. Petrocalcic horizons with weak Stage IV morphology formed as the zone of carbonate accumulation moved up into former A and cambic horizons that had been profusely burrowed by cicadas. The development of cicada burrows in one phase of soil development that were subsequently engulfed by pedogenic carbonate under a rising land surface seems to have greatly accelerated the development of the petrocalcic horizons. Accelerated rates of formation of the petrocalcic horizons occurred when extrinsic (pulses of loess deposition) and intrinsic (engulfment of burrowed horizons) thresholds were exceeded. Stratigraphic evidence suggests that the soil formation that accompanied the rise in the land surface due to additional loess deposition may have occurred during the late Wisconsin glaciation when giant glacial outburst floods in the channeled Scabland triggered a new cycle of loess deposition.

  1. Morphology selection for cupric oxide thin films by electrodeposition.

    PubMed

    Dhanasekaran, V; Mahalingam, T; Chandramohan, R

    2011-10-01

    Polycrystalline cupric oxide thin films were deposited using alkaline solution bath employing cathodic electrodeposition method. The thin films were electrodeposited at various solution pH. The surface morphology and elemental analyzes of the films were studied using scanning electron microscopy (SEM) and energy dispersive X-ray analysis, respectively. SEM studies revealed that the surface morphology could be tailored suitably by adjusting the pH value during deposition. Mesh average on multiple lattice mode atomic force microscopy image was obtained and reported. Copyright © 2011 Wiley-Liss, Inc.

  2. Vertical self-sorting behavior in juvenile Chinook salmon (Oncorhynchus tshawytscha): evidence for family differences and variation in growth and morphology

    USGS Publications Warehouse

    Unrein, Julia R.; Billman, E.J.; Cogliati, Karen M.; Chitwood, Rob S.; Noakes, David L. G.; Schreck, Carl B.

    2018-01-01

    Life history variation is fundamental to the evolution of Pacific salmon and their persistence under variable conditions. We discovered that Chinook salmon sort themselves into surface- and bottom-oriented groups in tanks within days after exogenous feeding. We hypothesised that this behaviour is correlated with subsequent differences in body morphology and growth (as measured by final length and mass) observed later in life. We found consistent morphological differences between surface and bottom phenotypes. Furthermore, we found that surface and bottom orientation within each group is maintained for at least one year after the phenotypes were separated. These surface and bottom phenotypes are expressed across genetic stocks, brood years, and laboratories and we show that the proportion of surface- and bottom-oriented offspring also differed among families. Importantly, feed delivery location did not affect morphology or growth, and the surface fish were longer than bottom fish at the end of the rearing experiment. The body shape of the former correlates with wild individuals that rear in mainstem habitats and migrate in the fall as subyearlings and the latter resemble those that remain in the upper tributaries and migrate as yearling spring migrants. Our findings suggest that early self-sorting behaviour may have a genetic basis and be correlated with other phenotypic traits that are important indicators for juvenile migration timing.

  3. Non-native three-dimensional block copolymer morphologies

    DOE PAGES

    Rahman, Atikur; Majewski, Pawel W.; Doerk, Gregory; ...

    2016-12-22

    Self-assembly is a powerful paradigm, wherein molecules spontaneously form ordered phases exhibiting well-defined nanoscale periodicity and shapes. However, the inherent energy-minimization aspect of self-assembly yields a very limited set of morphologies, such as lamellae or hexagonally packed cylinders. Here, we show how soft self-assembling materials—block copolymer thin films—can be manipulated to form a diverse library of previously unreported morphologies. In this iterative assembly process, each polymer layer acts as both a structural component of the final morphology and a template for directing the order of subsequent layers. Specifically, block copolymer films are immobilized on surfaces, and template successive layers throughmore » subtle surface topography. As a result, this strategy generates an enormous variety of three-dimensional morphologies that are absent in the native block copolymer phase diagram.« less

  4. Non-native three-dimensional block copolymer morphologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Atikur; Majewski, Pawel W.; Doerk, Gregory

    Self-assembly is a powerful paradigm, wherein molecules spontaneously form ordered phases exhibiting well-defined nanoscale periodicity and shapes. However, the inherent energy-minimization aspect of self-assembly yields a very limited set of morphologies, such as lamellae or hexagonally packed cylinders. Here, we show how soft self-assembling materials—block copolymer thin films—can be manipulated to form a diverse library of previously unreported morphologies. In this iterative assembly process, each polymer layer acts as both a structural component of the final morphology and a template for directing the order of subsequent layers. Specifically, block copolymer films are immobilized on surfaces, and template successive layers throughmore » subtle surface topography. As a result, this strategy generates an enormous variety of three-dimensional morphologies that are absent in the native block copolymer phase diagram.« less

  5. Sedimentation Waves on the Martian North Polar Cap: Analogy with Megadunes in Antarctica

    NASA Astrophysics Data System (ADS)

    Herny, C.; Masse, M.; Bourgeois, O.; Carpy, S.; Le Mouelic, S.; Appéré, T.; Smith, I. B.; Spiga, A.; Perret, L.; Rodriguez, S.; Piquet, T.; Gaudin, D.; Le Menn, E.

    2014-12-01

    Complex feedbacks between katabatic winds and the cryosphere may lead to the development of sedimentation waves at the surface of ice sheets. These have been first described and named megadunes in Antarctica. Here we use topographic data, optical images, spectroscopic data and radar soundings, acquired by Mars orbiters, to show that the surface of the Martian North Polar Cap displays two superimposed sets of sedimentation waves with differing wavelengths. These sedimentation waves grow and migrate upwind in response to the development of periodic accumulation/ablation patterns controlled by katabatic winds. They have similarities with Antarctic megadunes regarding their surface morphology, texture, grain size, and internal stratigraphic architecture. Based on this analogy, we are currently developing a model of ice/wind interaction at the surface of ice sheets. In Antarctica the accumulation processes on megadunes fields is generally attributed to the wind-blown snow transport while on sedimentation waves of the North Polar Cap of Mars the accumulation seems to be dominated by sublimation/condensation processes at the surface. The model is designed to explore the implication of the water vapor mass transfer and heat transfer on the development of sedimentation waves both on Mars and Earth.

  6. Breakthrough and future: nanoscale controls of compositions, morphologies, and mesochannel orientations toward advanced mesoporous materials.

    PubMed

    Yamauchi, Yusuke; Suzuki, Norihiro; Radhakrishnan, Logudurai; Wang, Liang

    2009-01-01

    Currently, ordered mesoporous materials prepared through the self-assembly of surfactants have attracted growing interests owing to their special properties, including uniform mesopores and a high specific surface area. Here we focus on fine controls of compositions, morphologies, mesochannel orientations which are important factors for design of mesoporous materials with new functionalities. This Review describes our recent progress toward advanced mesoporous materials. Mesoporous materials now include a variety of inorganic-based materials, for example, transition-metal oxides, carbons, inorganic-organic hybrid materials, polymers, and even metals. Mesoporous metals with metallic frameworks can be produced by using surfactant-based synthesis with electrochemical methods. Owing to their metallic frameworks, mesoporous metals with high electroconductivity and high surface areas hold promise for a wide range of potential applications, such as electronic devices, magnetic recording media, and metal catalysts. Fabrication of mesoporous materials with controllable morphologies is also one of the main subjects in this rapidly developing research field. Mesoporous materials in the form of films, spheres, fibers, and tubes have been obtained by various synthetic processes such as evaporation-mediated direct templating (EDIT), spray-dried techniques, and collaboration with hard-templates such as porous anodic alumina and polymer membranes. Furthermore, we have developed several approaches for orientation controls of 1D mesochannels. The macroscopic-scale controls of mesochannels are important for innovative applications such as molecular-scale devices and electrodes with enhanced diffusions of guest species. Copyright 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  7. Facile Fabrication of Binary Nanoscale Interface for No-Loss Microdroplet Transportation.

    PubMed

    Liang, Weitao; Zhu, Liqun; Li, Weiping; Xu, Chang; Liu, Huicong

    2016-06-07

    Binary nanoscale interfacial materials are fundamental issues in many applications for smart surfaces. A binary nanoscale interface with binary surface morphology and binary wetting behaviors has been prepared by a facile wet-chemical method. The prepared surface presents superhydrophobicity and high adhesion with the droplet at the same time. The composition, surface morphology, and wetting behaviors of the prepared surface have been systematic studied. The special wetting behaviors can be contributed to the binary nanoscale effect. The stability of the prepared surface was also investigated. As a primary application, a facile device based on the prepared binary nanoscale interface with superhydrophobicity and high adhesion was constructed for microdroplet transportation.

  8. Impact of plasma treatment under atmospheric pressure on surface chemistry and surface morphology of extruded and injection-molded wood-polymer composites (WPC)

    NASA Astrophysics Data System (ADS)

    Hünnekens, Benedikt; Avramidis, Georg; Ohms, Gisela; Krause, Andreas; Viöl, Wolfgang; Militz, Holger

    2018-05-01

    The influence of plasma treatment performed at atmospheric pressure and ambient air as process gas by a dielectric barrier discharge (DBD) on the morphological and chemical surface characteristics of wood-polymer composites (WPC) was investigated by applying several surface-sensitive analytical methods. The surface free energy showed a distinct increase after plasma treatment for all tested materials. The analyzing methods for surface topography-laser scanning microscopy (LSM) and atomic force microscopy (AFM)-revealed a roughening induced by the treatment which is likely due to a degradation of the polymeric surface. This was accompanied by the formation of low-molecular-weight oxidized materials (LMWOMs), appearing as small globular structures. With increasing discharge time, the nodules increase in size and the material degradation proceeds. The surface degradation seems to be more serious for injection-molded samples, whereas the formation of nodules became more apparent and were evenly distributed on extruded surfaces. These phenomena could also be confirmed by scanning electron microscopy (SEM). In addition, differences between extruded and injection-molded surfaces could be observed. Besides the morphological changes, the chemical composition of the substrates' surfaces was affected by the plasma discharge. Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) indicated the formation of new oxygen containing polar groups on the modified surfaces.

  9. Wear Behavior of Medium Carbon Steel with Biomimetic Surface Under Starved Lubricated Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihui; Shao, Feixian; Liang, Yunhong; Lin, Pengyu; Tong, Xin; Ren, Luquan

    2017-07-01

    Friction and wear under starved lubrication condition are both key life-related factors for mechanical performance of many structural parts. In this paper, different surface morphologies on medium carbon steel were fabricated using laser, inspired by the surface coupling effect of biological system. The friction and sliding wear behaviors of biomimetic specimens (characterized by convex and concave units on the specimen surface) were studied under starved lubrication condition. The stress distribution on different sliding surfaces under sliding friction was studied using finite element method. The results showed that the tribological performance of studied surfaces under starved lubrication condition depended not only on the surface morphology but also on the structure of biomimetic units below surface (subsurface structure). The friction coefficient of biomimetic surface was effectively reduced by the concave unit depth, while the refined microstructure with higher hardness led to the much better wear resistance. In addition to lubricant reserving and wear debris trapping effect derived from the surface concave morphology, it was believed that the well-formed subsurface structure of biomimetic units could carry much heavy loads against tribopair, which enhanced the function of surface topography and resulted in complementary lubrication in the wear contact area. The uniform stress distribution on the entire biomimetic surface also played an important role in stabilizing the friction coefficient and reducing the wear cracks.

  10. Effects of space environment on structural materials - A preliminary study and development of materials characterization protocols

    NASA Technical Reports Server (NTRS)

    Miglionico, C.; Stein, C.; Murr, L. E.

    1991-01-01

    A preliminary study of materials exposed in space in LEO for nearly six years in the NASA Long-Duration Exposure Facility is presented. It is demonstrated that it will be necessary to isolate surface debris and reaction products from materials exposed in space. Replication techniques originally designed for electron microscopy examination of surfaces can be applied to lift off and isolate such surface features. Debris and reaction products were examined through a variety of analytical techniques, including the surface morphology by SEM, and internal microstructures by STEM and TEM, EDS, and SAD. The results illustrate the role that atomic oxygen and micrometeorites play in surface alteration and reaction in LEO space environments, as well as the role of debris created from other proximate materials.

  11. MORPHOLOGICAL AND CULTURAL COMPARISON OF MICROORGANISMS IN SURFACE SOIL AND SUBSURFACE SEDIMENTS AT A PRISTINE STUDY SITE IN OKLAHOMA (JOURNAL VERSION)

    EPA Science Inventory

    Surface-soil and subsurface microfloras at the site of a shallow aquifer in Oklahoma were examined and compared with respect to (1) total and viable cell numbers, (2) colony and cell types that grew on various plating media, (3) cell morphologies seen in flotation films stripped ...

  12. Surface morphology of Al0.3Ga0.7N/Al2O3-high electron mobility transistor structure.

    PubMed

    Cörekçi, S; Usanmaz, D; Tekeli, Z; Cakmak, M; Ozçelik, S; Ozbay, E

    2008-02-01

    We present surface properties of buffer films (AIN and GaN) and Al0.3Gao.zN/Al2O3-High Electron Mobility Transistor (HEMT) structures with/without AIN interlayer grown on High Temperature (HT)-AIN buffer/Al2O3 substrate and Al2O3 substrate. We have found that the GaN surface morphology is step-flow in character and the density of dislocations was about 10(8)-10(9) cm(-2). The AFM measurements also exhibited that the presence of atomic steps with large lateral step dimension and the surface of samples was smooth. The lateral step sizes are in the range of 100-250 nm. The typical rms values of HEMT structures were found as 0.27, 0.30, and 0.70 nm. HT-AIN buffer layer can have a significant impact on the surface morphology of Al0.3Ga0.7N/Al2O3-HEMT structures.

  13. Surface study of irradiated sapphires from Phrae Province, Thailand using AFM

    NASA Astrophysics Data System (ADS)

    Monarumit, N.; Jivanantaka, P.; Mogmued, J.; Lhuaamporn, T.; Satitkune, S.

    2017-09-01

    The irradiation is one of the gemstone enhancements for improving the gem quality. Typically, there are many varieties of irradiated gemstones in the gem market such as diamond, topaz, and sapphire. However, it is hard to identify the gemstones before and after irradiation. The aim of this study is to analyze the surface morphology for classifying the pristine and irradiated sapphires using atomic force microscope (AFM). In this study, the sapphire samples were collected from Phrae Province, Thailand. The samples were irradiated by high energy electron beam for a dose of ionizing radiation at 40,000 kGy. As the results, the surface morphology of pristine sapphires shows regular atomic arrangement, whereas, the surface morphology of irradiated sapphires shows the nano-channel observed by the 2D and 3D AFM images. The atomic step height and root mean square roughness have changed after irradiation due to the micro-structural defect on the sapphire surface. Therefore, this study is a frontier application for sapphire identification before and after irradiation.

  14. Impact of surface morphology on the properties of light emission in InGaN epilayers

    NASA Astrophysics Data System (ADS)

    Kristijonas Uždavinys, Tomas; Marcinkevičius, Saulius; Mensi, Mounir; Lahourcade, Lise; Carlin, Jean-François; Martin, Denis; Butté, Raphaël; Grandjean, Nicolas

    2018-05-01

    Scanning near-field optical microscopy was used to study the influence of the surface morphology on the properties of light emission and alloy composition in InGaN epitaxial layers grown on GaN substrates. A strong correlation between the maps of the photoluminescence (PL) peak energy and the gradient of the surface morphology was observed. This correlation demonstrates that the In incorporation strongly depends on the geometry of the monolayer step edges that form during growth in the step-flow mode. The spatial distribution of nonradiative recombination centers — evaluated from PL intensity maps — was found to strongly anticorrelate with the local content of In atoms in the InGaN alloy.

  15. Shape evolution of a core-shell spherical particle under hydrostatic pressure.

    PubMed

    Colin, Jérôme

    2012-03-01

    The morphological evolution by surface diffusion of a core-shell spherical particle has been investigated theoretically under hydrostatic pressure when the shear modulii of the core and shell are different. A linear stability analysis has demonstrated that depending on the pressure, shear modulii, and radii of both phases, the free surface of the composite particle may be unstable with respect to a shape perturbation. A stability diagram finally emphasizes that the roughness development is favored in the case of a hard shell with a soft core.

  16. Enhancement of Fluorescence and Raman Scattering in Cyanine-Dye Molecules on the Surface of Silicon-Coated Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kamalieva, A. N.; Toropov, N. A.; Bogdanov, K. V.; Vartanyan, T. A.

    2018-03-01

    A method of formation of a composite structure based on silver nanoparticles and a thin protective silicon film (Ag NPs/Si) is developed. Enhancement of the fluorescence and Raman scattering in cyaninedye molecules deposited onto the formed nanostructure is observed. The optical properties and morphology stability of particles that are in contact with cyanine-dye solutions in organic solvents are studied. It is shown that the Ag NPs/Si composite structure can be multiply used as an SERS-active surface.

  17. Catalytic Micromotors Moving Near Polyelectrolyte-Modified Substrates: The Roles of Surface Charges, Morphology, and Released Ions.

    PubMed

    Wei, Mengshi; Zhou, Chao; Tang, Jinyao; Wang, Wei

    2018-01-24

    Synthetic microswimmers, or micromotors, are finding potential uses in a wide range of applications, most of which involve boundaries. However, subtle yet important effects beyond physical confinement on the motor dynamics remain less understood. In this letter, glass substrates were functionalized with positively and negatively charged polyelectrolytes, and the dynamics of micromotors moving close to the modified surfaces was examined. Using acoustic levitation and numerical simulation, we reveal how the speed of a chemically propelled micromotor slows down significantly near a polyelectrolyte-modified surface by the combined effects of surface charges, surface morphology, and ions released from the films.

  18. An experimental study to investigate biomechanical aspects of the initial stability of press-fit implants.

    PubMed

    Berahmani, Sanaz; Janssen, Dennis; van Kessel, Sal; Wolfson, David; de Waal Malefijt, Maarten; Buma, Pieter; Verdonschot, Nico

    2015-02-01

    Initial fixation of press-fit implants depends on interference fit, surface morphology, and bone material properties. To understand the biomechanical effect of each factor and their interactions, the pull-out strength of seven types of CoCrMo tapered implants, with four different interference fits, three different surface morphologies (low, medium and high roughness), and at two time points (0 and 30 min) were tested in trabecular bone with varying density. The effect of interference fit on pull-out strength depended on the surface morphology and time. In contrast with our expectations, samples with a higher roughness had a lower pull-out strength. We found a similar magnitude of bone damage for the different surface morphologies, but the type of damage was different, with bone compaction versus bone abrasion for low and high frictional surfaces, respectively. This explains a reduced sensitivity of fixation strength to bone mineral density in the latter group. In addition, a reduction in fixation strength after a waiting period only occurred for the low frictional specimens. Our study demonstrates that it is essential to evaluate the interplay between different factors and emphasizes the importance of testing in natural bone in order to optimize the initial stability of press-fit implants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Dependence of Plant Uptake and Diffusion of Polycyclic Aromatic Hydrocarbons on the Leaf Surface Morphology and Micro-structures of Cuticular Waxes

    NASA Astrophysics Data System (ADS)

    Li, Qingqing; Li, Yungui; Zhu, Lizhong; Xing, Baoshan; Chen, Baoliang

    2017-04-01

    The uptake of organic chemicals by plants is considered of great significance as it impacts their environmental transport and fate and threatens crop growth and food safety. Herein, the dependence of the uptake, penetration, and distribution of sixteen polycyclic aromatic hydrocarbons (PAHs) on the morphology and micro-structures of cuticular waxes on leaf surfaces was investigated. Plant surface morphologies and wax micro-structures were examined by scanning emission microscopy, and hydrophobicities of plant surfaces were monitored through contact angle measurements. PAHs in the cuticles and inner tissues were distinguished by sequential extraction, and the cuticle was verified to be the dominant reservoir for the accumulation of lipophilic pollutants. The interspecies differences in PAH concentrations cannot be explained by normalizing them to the plant lipid content. PAHs in the inner tissues became concentrated with the increase of tissue lipid content, while a generally negative correlation between the PAH concentration in cuticles and the epicuticular wax content was found. PAHs on the adaxial and abaxial sides of a leaf were differentiated for the first time, and the divergence between these two sides can be ascribed to the variations in surface morphologies. The role of leaf lipids was redefined and differentiated.

  20. Effect of copper concentration in the electrolyte on the surface morphology and the microstructure of CuInSe2 films

    NASA Astrophysics Data System (ADS)

    Hung, Pin-Kun; Kuo, Ting-Wei; Huang, Kuo-Chan; Wang, Na-Fu; Hsieh, Po-Tsung; Houng, Mau-Phon

    2012-07-01

    The surface morphology and the microstructure of CuInSe2 precursor films have been investigated by co-electrodeposition with different [Cu2+] concentrations from 2 mM to 4 mM. The characteristic of the precursor films was examined using field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), glancing incidence angle X-ray diffraction (GIXRD) and micro-Raman spectrometer, respectively. The surface morphology of the precursor films become more smoother and compact with choice of appropriate [Cu2+] concentration (3-3.5 mM) in the electrolyte. The relation between surface morphology and [Cu2+] concentration is also considered in terms of electrodeposition nucleation mechanisms using the mathematical models of Scharifker and Hills. It is suggested that the higher [Cu2+] concentrations can provide more numbers of nucleation sites on the surface of the electrode. Results simulated from the Rietveld refinement method suggest that decreasing dCusbnd Se is related to charge transfer from interstitial copper atoms and can affect the film microstructure. Micro-Raman spectrum also shows that the excess Cu atoms in the precursor films does not contribute significantly to large amounts of secondary phases but rather exists in the crystallite structure as other defect types.

  1. An investigation of the degradation of Fluorinated Ethylene Propylene (FEP) copolymer thermal blanketing materials aboard LDEF in the laboratory

    NASA Technical Reports Server (NTRS)

    Stiegman, A. E.; Brinza, David E.; Anderson, Mark S.; Minton, Timothy K.; Laue, Eric G.; Liang, Ranty H.

    1991-01-01

    Samples of fluorinated ethylene propylene copolymer thermal blanketing material, recovered from the Long Duration Exposure Facility (LDEF), were investigated to determine the nature and the extent of degradation due to exposure to the low-Earth-orbit environment. Samples recovered from the ram-facing direction of LDEF, which received vacuum-ultraviolet (VUV) radiation and atomic-oxygen impingement, and samples from the trailing edge, which received almost exclusively VUV exposure, were investigated by scanning electron microscopy and atomic force microscopy. The most significant result of this investigation was found on samples that received only VUV exposure. These samples possessed a hard, embrittled surface layer that was absent from the atomic-oxygen exposed sample and from unexposed control samples. This surface layer is believed to be responsible for the 'synergistic' effect between VUV and atomic oxygen. Overall, the investigation revealed dramatically different morphologies for the two samples. The sample receiving both atomic-oxygen and VUV exposure was deeply eroded and had a characteristic 'rolling' surface morphology, while the sample that received only VUV exposure showed mild erosion and a surface morphology characterized by sharp high-frequency peaks. The morphologies observed in the LDEF samples, including the embrittled surface layer, were successfully duplicated in the laboratory.

  2. Cell behavior on surface modified polydimethylsiloxane (PDMS).

    PubMed

    Stanton, Morgan M; Rankenberg, Johanna M; Park, Byung-Wook; McGimpsey, W Grant; Malcuit, Christopher; Lambert, Christopher R

    2014-07-01

    Designing complex tissue culture systems requires cell alignment and directed extracellular matrix (ECM) and gene expression. Here, a micro-rough, polydimethylsiloxane (PDMS) surface, that also integrates a micro-pattern of 50 µm wide lines of fibronectin (FN) separated by 60 µm wide lines of bovine serum albumin (BSA), is developed. Human fibroblasts cultured on the rough, patterned substrate have aligned growth and a significant change in morphology when compared to cells on a flat, patterned surface. The rough PDMS topography significantly decreases cell area and induces the upregulation of several ECM related genes by two-fold when compared to cells cultured on flat PDMS. This study describes a simple surface engineering procedure for creating surface architecture for scaffolds to design and control the cell-surface interface. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Experimental investigation of various surface integrity aspects in hard turning of AISI 4340 alloy steel with coated and uncoated cermet

    NASA Astrophysics Data System (ADS)

    Das, Anshuman; Patel, S. K.; Sateesh Kumar, Ch.; Biswal, B. B.

    2018-03-01

    The newer technological developments are exerting immense pressure on domain of production. These fabrication industries are busy finding solutions to reduce the costs of cutting materials, enhance the machined parts quality and testing different materials, which can be made versatile for cutting materials, which are difficult for machining. High-speed machining has been the domain of paramount importance for mechanical engineering. In this study, the variation of surface integrity parameters of hardened AISI 4340 alloy steel was analyzed. The surface integrity parameters like surface roughness, micro hardness, machined surface morphology and white layer of hardened AISI 4340 alloy steel were compared using coated and uncoated cermet inserts under dry cutting condition. From the results, it was deduced that coated insert outperformed uncoated one in terms of different surface integrity characteristics.

  4. Microparticle impacts in space: Results from Solar Max and shuttle witness plate inspections

    NASA Technical Reports Server (NTRS)

    Mckay, David S.

    1989-01-01

    The Solar Maximum Satellite developed electronic problems after operating successfully in space for several years. Astronauts on Space Shuttle mission STS-41C retrieved the satellite into the orbiter cargo bay, replaced defective components, and re-deployed the repaired satellite into orbit. The defective components were returned to Earth for study. The space-exposed surfaces were examined. The approach and objectives were to: document morphology of impact; find and analyze projectile residue; classify impact by origin; determine flux distribution; and determine implications for space exposure. The purpose of the shuttle witness plate experiment was to detect impacts from PAM D2 solid rocket motor; determine flux and size distribution of particles; and determine abrasion effects on various conditions. Results are given for aluminum surfaces, copper surfaces, stainless steel surfaces, Inconel surfaces, and quartz glass surfaces.

  5. Additively Manufactured and Surface Biofunctionalized Porous Nitinol.

    PubMed

    Gorgin Karaji, Z; Speirs, M; Dadbakhsh, S; Kruth, J-P; Weinans, H; Zadpoor, A A; Amin Yavari, S

    2017-01-18

    Enhanced bone tissue regeneration and improved osseointegration are among the most important goals in design of multifunctional orthopedic biomaterials. In this study, we used additive manufacturing (selective laser melting) to develop multifunctional porous nitinol that combines superelasticity with a rationally designed microarchitecture and biofunctionalized surface. The rational design based on triply periodic minimal surfaces aimed to properly adjust the pore size, increase the surface area (thereby amplifying the effects of surface biofunctionalization), and resemble the curvature characteristics of trabecular bone. The surface of additively manufactured (AM) porous nitinol was biofunctionalized using polydopamine-immobilized rhBMP2 for better control of the release kinetics. The actual morphological properties of porous nitinol measured by microcomputed tomography (e.g., open/close porosity, and surface area) closely matched the design values. The superelasticity originated from the austenite phase formed in the nitinol porous structure at room temperature. Polydopamine and rhBMP2 signature peaks were confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy tests. The release of rhBMP2 continued until 28 days. The early time and long-term release profiles were found to be adjustable independent of each other. In vitro cell culture showed improved cell attachment, cell proliferation, cell morphology (spreading, spindle-like shape), and cell coverage as well as elevated levels of ALP activity and increased calcium content for biofunctionalized surfaces as compared to as-manufactured specimens. The demonstrated functionalities of porous nitinol could be used as a basis for deployable orthopedic implants with rationally designed microarchitectures that maximize bone tissue regeneration performance by release of biomolecules with adjustable and well-controlled release profiles.

  6. Application of morphologic burrow interpretations to discern continental burrow architects: Lungfish or crayfish?

    USGS Publications Warehouse

    Hasiotis, Stephen T.; Mitchell, Charles E.; Dubiel, Russell R.

    1993-01-01

    A methodology for trace fossil identification using burrowing signatures is tested by evaluating ancient and modern lungfish and crayfish burrows and comparing them to previously undescribed burrows in a stratigraphic interval thought to contain both lungfish and crayfish burrows. Permian burrows that bear skeletal remains of the lungfish Gnathorhiza, from museum collections, were evaluated to identify unique burrow morphologies that could be used to distinguish lungfish from crayfish burrows when fossil remains are absent. The lungfish burrows were evaluated for details of the burrowing mechanism preserved in the burrow morphologies together forming burrowing signatures and were compared to new burrows in the Chinle Formation of western Colorado to test the methodology of using burrow signatures to identify unknown burrows.Permian lungfish aestivation burrows show simple, nearly vertical, unbranched architectures and relatively smooth surficial morphologies with characteristic quasi‐horizontal striae on the burrow walls and vertical striae on the bulbous terminus. Burrow lengths do not exceed 0.5 m. In contrast, modern and ancient crayfish burrows exhibit simple to highly complex architectures with highly textured surficial morphologies. Burrow lengths may reach 4 to 5 m.Burrow morphologies unlike those identified in Gnathorhiza aestivation burrows were found in four burrow groups from museum collections. Two of these groups exhibit simple architectures and horizontal striae that were greater in sinuosity and magnitude, respectively. One of these burrows contains the remains of Lysoro‐phus, but the burrow surface reveals no reliable surficial characteristics. It is not clear whether Lysorophustruly burrowed or merely occupied a pre‐existing structure. The other two groups exhibit surficial morphologies similar to those found on modern and ancient crayfish burrows and may provide evidence of freshwater crayfish in the Permian.Burrows from the Upper Triassic Chinle Formation in western Colorado exhibit simple to moderately complex architectural morphologies, ranging from predominantly vertical, unbranched, with little or no chamber development to predominantly vertical, few branches, and with minor chamber development. Surficial burrow morphologies are moderate to highly textured. The burrows have scrape marks, scratch marks, mud and lag‐liners, knobby surfaces, pleopod striae, and body impressions.Although no fossil remains of the burrowing organism were found within or associated with the Chinle burrows from western Colorado, the similarity of architectural and surficial burrow morphologies to those in the Chinle of Canyonlands, Utah and to modern crayfish burrows, clearly indicates that the Colorado burrows are the product of burrowing crayfish rather than lungfish. Evaluation of burrowing signatures preserved in the architectural and surficial burrow morphologies is a very useful tool to compare and contrast Chinle burrows from different regions on the Colorado Plateau. Documentation of crayfish burrows in the Chinle of Utah and Colorado strongly suggests that other large‐diameter Chinle burrows elsewhere on the Colorado Plateau and in stratigraphically equivalent units may also be the product of crayfish activity.

  7. The Influence of Topography on the Emplacement Dynamics of Martian Lava flows

    NASA Astrophysics Data System (ADS)

    Tremblay, J.; Fitch, E. P.; Fagents, S. A.

    2017-12-01

    Lava flows on the Martian surface exhibit a diverse array of complex morphologies. Previous emplacement models, based on terrestrial flows, do not fully account for these observed complex morphologies. We assert that the topography encountered by the flow can exert substantial control over the thermal, rheological, and morphological evolution of the flow, and that these effects can be better incorporated into flow models to predict Martian flow morphologies. Our development of an updated model can be used to account for these topographical effects and better constrain flow parameters. The model predicts that a slope break or flow meander induces eddy currents within the flow, resulting in the disruption of the flow surface crust. The exposure of the flow core results in accelerated cooling of the flow and a resultant increase in viscosity, leading to slowing of the flow. A constant source lava flux and a stagnated flow channel would then result in observable morphological changes, such as overflowing of channel levees. We have identified five morphological types of Martian flows, representing a range of effusion rates, eruption durations and topographic settings, which are suitable for application of our model. To characterize flow morphology, we used imaging and topographic data sets to collect data on flow dimensions. For eight large (50 to hundreds of km long) channelized flows in the Tharsis region, we used the MOLA 128 ppd DEM and/or individual MOLA shot points to derive flow cross-sectional thickness profiles, from which we calculated the cross-sectional area of the flow margins adjacent to the main channel. We found that the largest flow margin cross sectional areas (excluding the channel) occur in association with a channel bend, typically near the bend apex. Analysis of high-resolution images indicates that these widened flow margins are the result of repeated overflows of the channel levees and emplacement of short flow lobes adjacent to the main flow. In the context of our model, the morphological changes associated with channel bends and slope breaks support our interpretation of lava crust disruption and enhanced flow cooling. We are currently working to obtain data for the additional three flow types and to further apply our lava emplacement model.

  8. Development of B cells expressing surface immunoglobulin molecules that lack V(D)J-encoded determinants in the avian embryo bursa of Fabricius

    PubMed Central

    Sayegh, Camil E.; Demaries, Sandra L.; Iacampo, Sandra; Ratcliffe, Michael J. H.

    1999-01-01

    Immunoglobulin gene rearrangement in avian B cell precursors generates surface Ig receptors of limited diversity. It has been proposed that specificities encoded by these receptors play a critical role in B lineage development by recognizing endogenous ligands within the bursa of Fabricius. To address this issue directly we have introduced a truncated surface IgM, lacking variable region domains, into developing B precursors by retroviral gene transfer in vivo. Cells expressing this truncated receptor lack endogenous surface IgM, and the low level of endogenous Ig rearrangements that have occurred within this population of cells has not been selected for having a productive reading frame. Such cells proliferate rapidly within bursal epithelial buds of normal morphology. In addition, despite reduced levels of endogenous light chain rearrangement, those light chain rearrangements that have occurred have undergone variable region diversification by gene conversion. Therefore, although surface expression of an Ig receptor is required for bursal colonization and the induction of gene conversion, the specificity encoded by the prediversified receptor is irrelevant and, consequently, there is no obligate ligand for V(D)J-encoded determinants of prediversified avian cell surface IgM receptor. PMID:10485907

  9. Dynamic Mechanical Properties and Fracture Surface Morphologies of Core-Shell Rubber (CSR) Toughened Epoxy at Liquid Nitrogen (Ln2) Temperatures

    NASA Technical Reports Server (NTRS)

    Wang, J.; Magee, D.; Schneider, J. A.

    2009-01-01

    The dynamic mechanical properties and fracture surface morphologies were evaluated for a commercial epoxy resin toughened with two types of core-shell rubber (CSR) toughening agents (Kane Ace(Registered TradeMark) MX130 and MX960). The impact resistance (R) was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The resulting fracture surface morphologies were examined using Scanning Electron Microscopy (SEM). Fractographic observations of the CSR toughened epoxy tested at ambient temperature, showed a fracture as characterized by slender dendrite textures with large voids. The increasing number of dendrites and decreasing size of scale-like texture with more CSR particles corresponded with increased R. As the temperature decreased to Liquid Nitrogen (LN 2), the fracture surfaces showed a fracture characterized by a rough, torn texture containing many river markings and deep furrows.

  10. Tribological behaviors of UHMWPE composites with different counter surface morphologies

    NASA Astrophysics Data System (ADS)

    Wang, Yanzhen; Yin, Zhongwei; Li, Hulin; Gao, Gengyuan

    2017-12-01

    The influence of counter surface morphologies on hybrid glass fiber (GF) and carbon fiber (CF) filled ultrahigh molecular weight polyethylene (UHMWPE) were studied under various contact pressure and sliding speed against GCr15 steel in dry condition. The goals were to investigate the tribological behavior of GF/CF/UHMWPE composite as a kind of water lubricated journal bearing material. The friction and wear behavior of composites were examined using a pin-on-disc tribometer. The morphologies of the worn surface were examined by scanning electron microscopy (SEM) and laser 3D micro-imaging and profile measurement. Generally, the wear rate and friction coefficient of composites increase as the increment of counter surface roughness. The friction coefficient increases firstly and then decrease with an increase in sliding speed and contact pressure for counterface with Ra=0.2 and 3.5 μm, while the friction coefficient decreased for counterface with Ra=0.6 μm.

  11. Metagenomic analysis of microbial communities yields insight into impacts of nanoparticle design

    NASA Astrophysics Data System (ADS)

    Metch, Jacob W.; Burrows, Nathan D.; Murphy, Catherine J.; Pruden, Amy; Vikesland, Peter J.

    2018-01-01

    Next-generation DNA sequencing and metagenomic analysis provide powerful tools for the environmentally friendly design of nanoparticles. Herein we demonstrate this approach using a model community of environmental microbes (that is, wastewater-activated sludge) dosed with gold nanoparticles of varying surface coatings and morphologies. Metagenomic analysis was highly sensitive in detecting the microbial community response to gold nanospheres and nanorods with either cetyltrimethylammonium bromide or polyacrylic acid surface coatings. We observed that the gold-nanoparticle morphology imposes a stronger force in shaping the microbial community structure than does the surface coating. Trends were consistent in terms of the compositions of both taxonomic and functional genes, which include antibiotic resistance genes, metal resistance genes and gene-transfer elements associated with cell stress that are relevant to public health. Given that nanoparticle morphology remained constant, the potential influence of gold dissolution was minimal. Surface coating governed the nanoparticle partitioning between the bioparticulate and aqueous phases.

  12. Surface Morphology and Tooth Adhesion of a Novel Nanostructured Dental Restorative Composite

    PubMed Central

    Salerno, Marco; Loria, Patrizia; Matarazzo, Giunio; Tomè, Francesco; Diaspro, Alberto; Eggenhöffner, Roberto

    2016-01-01

    Recently, a novel dental restorative composite based on nanostructured micro-fillers of anodic porous alumina has been proposed. While its bulk properties are promising thanks to decreased aging and drug delivery capabilities, its surface properties are still unknown. Here we investigated the surface morphology and the adhesion to tooth dentin of this composite as prepared. For comparison, we used two commercial composites: Tetric EVO Flow (Ivoclar) and Enamel HRi Plus (Micerium). The surface morphology was characterized by atomic force microscopy and the adhesion strength by tensile tests. The experimental composite is rougher than the commercial composites, with root mean square roughness of ~549 nm against 170–511 nm, and presents an adhesion strength of ~15 MPa against 19–21 MPa. These results show at the same time some proximity to the commercial composites, but also the need for optimization of the experimental material formulation. PMID:28773327

  13. Investigation of Nitride Morphology After Self-Aligned Contact Etch

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Keil, J.; Helmer, B. A.; Chien, T.; Gopaladasu, P.; Kim, J.; Shon, J.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Self-Aligned Contact (SAC) etch has emerged as a key enabling technology for the fabrication of very large-scale memory devices. However, this is also a very challenging technology to implement from an etch viewpoint. The issues that arise range from poor oxide etch selectivity to nitride to problems with post etch nitride surface morphology. Unfortunately, the mechanisms that drive nitride loss and surface behavior remain poorly understood. Using a simple langmuir site balance model, SAC nitride etch simulations have been performed and compared to actual etched results. This approach permits the study of various etch mechanisms that may play a role in determining nitride loss and surface morphology. Particle trajectories and fluxes are computed using Monte-Carlo techniques and initial data obtained from double Langmuir probe measurements. Etched surface advancement is implemented using a shock tracking algorithm. Sticking coefficients and etch yields are adjusted to obtain the best agreement between actual etched results and simulated profiles.

  14. Effect of the Cold-Sprayed Aluminum Coating-Substrate Interface Morphology on Bond Strength for Aircraft Repair Application

    NASA Astrophysics Data System (ADS)

    Blochet, Quentin; Delloro, Francesco; N'Guyen, Franck; Jeulin, Dominique; Borit, François; Jeandin, Michel

    2017-04-01

    This article is dealing with the effects of surface preparation of the substrate on aluminum cold-sprayed coating bond strength. Different sets of AA2024-T3 specimens have been coated with pure Al 1050 feedstock powder, using a conventional cold spray coating technique. The sets were grit-blasted (GB) before coating. The study focuses on substrate surface topography evolution before coating and coating-substrate interface morphology after coating. To study coating adhesion by LASAT® technique for each set, specimens with and without preceding GB treatment were tested in load-controlled conditions. Then, several techniques were used to evaluate the effects of substrate surface treatment on the final coating mechanical properties. Irregularities induced by the GB treatment modify significantly the interface morphology. Results showed that particle anchoring was improved dramatically by the presence of craters. The substrate surface was characterized by numerous anchors. Numerical simulation results exhibited the increasing deformation of particle onto the grit-blasted surface. In addition, results showed a strong relationship between the coating-substrate bond strength on the deposited material and surface preparation.

  15. Surface analytical characterization of Streptavidin/poly(3-hexylthiophene) bilayers for bio-electronic applications

    NASA Astrophysics Data System (ADS)

    Sportelli, M. C.; Picca, R. A.; Manoli, K.; Re, M.; Pesce, E.; Tapfer, L.; Di Franco, C.; Cioffi, N.; Torsi, L.

    2017-10-01

    The analytical performance of bioelectronic devices is highly influenced by their fabrication methods. In particular, the final architecture of field-effect transistor biosensors combining spin-cast poly(3-hexylthiophene) (P3HT) film and a biomolecule interlayer deposited on a SiO2/Si substrate can lead to the development of highly performing sensing systems, such as for the case of streptavidin (SA) used for biotin sensing. To gain a better understanding of the quality of the interfacial area, critical is the assessment of the morphological features characteristic of the adopted biolayer deposition protocol, namely: the layer-by-layer (LbL) approach and the spin coating technique. The present study relies on a combined surface spectroscopic and morphological characterization. Specifically, X-ray photoelectron spectroscopy operated in the parallel angle-resolved mode allowed the non-destructive investigation of the in-depth chemical composition of the SA film, alone or in the presence of the P3HT overlayer. Spectroscopic data were supported and corroborated by the results obtained with a Scanning Electron and a Helium Ion microscope investigation performed on the SA layer that provided relevant information on the protein structural arrangement or on its surface morphology. Clear differences emerged between the SA layers prepared by the two approaches, with the layer-by-layer deposition resulting in a smoother and better defined bio-electronic interface. Such findings support the superior analytical performance shown by bioelectronic devices based on LbL-deposited protein layers over spin coated ones.

  16. Stability diagrams for the surface patterns of GaN(0001bar) as a function of Schwoebel barrier height

    NASA Astrophysics Data System (ADS)

    Krzyżewski, Filip; Załuska-Kotur, Magdalena A.

    2017-01-01

    Height and type of Schwoebel barriers (direct or inverse) decides about the character of the surface instability. Different surface morphologies are presented. Step bunches, double steps, meanders, mounds and irregular patterns emerge at the surface as a result of step (Schwoebel) barriers at some temperature or miscut values. The study was carried out on the two-component kinetic Monte Carlo (kMC) model of GaN(0001bar) surface grown in nitrogen rich conditions. Diffusion of gallium adatoms over N-polar surface is slow and nitrogen adatoms are almost immobile. We show that in such conditions surfaces remain smooth when gallium adatoms diffuse in the presence of low inverse Schwoebel barrier. It is illustrated by adequate stability diagrams for surface morphologies.

  17. Channel-morphology data for the Tongue River and selected tributaries, southeastern Montana, 2001-02

    USGS Publications Warehouse

    Chase, Katherine J.

    2004-01-01

    Coal-bed methane exploration and production have begun within the Tongue River watershed in southeastern Montana. The development of coal-bed methane requires production of large volumes of ground water, some of which may be discharged to streams, potentially increasing stream discharge and sediment load. Changes in stream discharge or sediment load may result in changes to channel morphology through changes in erosion and vegetation. These changes might be subtle and difficult to detect without baseline data that indicate stream-channel conditions before extensive coal-bed methane development began. In order to provide this baseline channel-morphology data, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, collected channel-morphology data in 2001-02 to document baseline conditions for several reaches along the Tongue River and selected tributaries. This report presents channel-morphology data for five sites on the mainstem Tongue River and four sites on its tributaries. Bankfull, water-surface, and thalweg elevations, channel sections, and streambed-particle sizes were measured along reaches near streamflow-gaging stations. At each site, the channel was classified using methods described by Rosgen. For six sites, bankfull discharge was determined from the stage- discharge relation at the gage for the stage corresponding to the bankfull elevation. For three sites, the step-backwater computer model HEC-RAS was used to estimate bankfull discharge. Recurrence intervals for the bankfull discharge also were estimated for eight of the nine sites. Channel-morphology data for each site are presented in maps, tables, graphs, and photographs.

  18. The spectroscopy and chemical dynamics of microparticles explored using an ultrasonic trap.

    PubMed

    Mason, N J; Drage, E A; Webb, S M; Dawes, A; McPheat, R; Hayes, G

    2008-01-01

    Microsized particles play an important role in many diverse areas of science and technology, for example, surface reactions of micron-sized particles play a key role in astrochemistry, plasma reactors and atmospheric chemistry. To date much of our knowledge of such surface chemistry is derived from 'traditional' surface science-based research. However, the large surface area and morphology of surface material commonly used in such surface science techniques may not necessarily mimic that on the surface of micron/nano scale particles. Hence, a new generation of experiments in which the spectroscopy (e.g., albedo) and chemical reactivity of micron-sized particles can be studied directly must be developed. One, as yet underexploited, non-invasive technique is the use of ultrasonic levitation. In this article, we describe the operation of an 'ultrasonic trap' to store and study the physical and chemical properties of microparticles.

  19. A novel approach for quantitative evaluation of the physicochemical interactions between rough membrane surface and sludge foulants in a submerged membrane bioreactor.

    PubMed

    Lin, Hongjun; Zhang, Meijia; Mei, Rongwu; Chen, Jianrong; Hong, Huachang

    2014-11-01

    This study proposed a novel approach for quantitative evaluation of the physicochemical interactions between a particle and rough surface. The approach adopts the composite Simpson's rule to numerically calculate the double integrals in the surface element integration of these physicochemical interactions. The calculation could be achieved by a MATLAB program based on this approach. This approach was then applied to assess the physicochemical interactions between rough membrane surface and sludge foulants in a submerged membrane bioreactor (MBR). The results showed that, as compared with smooth membrane surface, rough membrane surface had a much lower strength of interactions with sludge foulants. Meanwhile, membrane surface morphology significantly affected the strength and properties of the interactions. This study showed that the newly developed approach was feasible, and could serve as a primary tool for investigating membrane fouling in MBRs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. pp iii Morphological response to Quaternary deformation at an intermontane basin piedmont, the northern Tien Shan, Kyrghyzstan

    NASA Astrophysics Data System (ADS)

    Bowman, Dan; Korjenkov, Andrey; Porat, Naomi; Czassny, Birka

    2004-11-01

    The Tien Shan is a most active intracontinental mountain-building range with abundant Quaternary fault-related folding. In order to improve our understanding of Quaternary intermontane basin deformation, we investigated the intermontane Issyk-Kul Lake area, an anticline that was up-warped through the piedmont cover, causing partitioning of the alluvial fan veneer. To follow the morphological scenario during the warping process, we relied on surface-exposed and trenched structures and on alluvial fans and bajadas as reference surfaces. We used air photos and satellite images to analyze the spatial-temporal morphological record and determined the age of near surface sediments by luminescence dating. We demonstrate that the up-warped Ak-Teke hills are a thrust-generated subdued anticline with strong morphological asymmetry which results from the coupling of the competing processes of up-warp and erosional feedback. The active creeks across the up-warped anticline indicate that the antecedent drainage system kept pace with the rate of uplift. The rivers which once sourced the piedmont, like the Toru-Aygyr, Kultor and the Dyuresu, became deeply entrenched and gradually transformed the study area into an abandoned morphological surface. The up-warp caused local lateral drainage diversion in front of the northern backlimb and triggered the formation of a dendritic drainage pattern upfan. Luminescence dating suggest that the period of up-warp and antecedent entrenchment started after 157 ka. The morphologically mature study area demonstrates the response of fluvial systems to growing folds on piedmont areas, induced by a propagating frontal fold at a thrust belt edge, following shortening.

  1. Re-analysis of previous laboratory phase curves: 1. Variations of the opposition effect morphology with the textural properties, and an application to planetary surfaces

    NASA Astrophysics Data System (ADS)

    Déau, Estelle; Flandes, Alberto; Spilker, Linda J.; Petazzoni, Jérôme

    2013-11-01

    Typical variations in the opposition effect morphology of laboratory samples at optical wavelengths are investigated to probe the role of the textural properties of the surface (roughness, porosity and grain size). A previously published dataset of 34 laboratory phase curves is re-analyzed and fit with several morphological models. The retrieved morphological parameters that characterize the opposition surge, amplitude, width and slope (A, HWHM and S respectively) are correlated to the single scattering albedo, the roughness, the porosity and the grain size of the samples. To test the universality of the laboratory samples’ trends, we use previously published phase curves of planetary surfaces, including the Moon, satellites and rings of the giant planets. The morphological parameters of the surge (A and HWHM) for planetary surfaces are found to have a non-monotonic variation with the single scattering albedo, similar to that observed in asteroids (Belskaya, I.N., Shevchenko, V.G. [2000]. Icarus 147, 94-105), which is unexplained so far. The morphological parameters of the surge (A and HWHM) for laboratory samples seem to exhibit the same non-monotonic variation with single scattering albedo. While the non-monotonic variation with albedo was already observed by Nelson et al. (Nelson, R.M., Hapke, B.W., Smythe, W.D., Hale, A.S., Piatek, J.L. [2004]. Planetary regolith microstructure: An unexpected opposition effect result. In: Mackwell, S., Stansbery, E. (Eds.), Proc. Lunar Sci. Conf. 35, p. 1089), we report here the same variation for the angular width.

  2. Nanopatterning dynamics on Si(100) during oblique 40-keV Ar+ erosion with metal codeposition: Morphological and compositional correlation

    NASA Astrophysics Data System (ADS)

    Redondo-Cubero, A.; Gago, R.; Palomares, F. J.; Mücklich, A.; Vinnichenko, M.; Vázquez, L.

    2012-08-01

    The formation and dynamics of nanopatterns produced on Si(100) surfaces by 40-keV Ar+ oblique (α = 60°) bombardment with concurrent Fe codeposition have been studied. Morphological and chemical analysis has been performed by ex situ atomic force microscopy, Rutherford backscattering spectrometry, x-ray photoelectron spectroscopy, and scanning and transmission electron microscopies. During irradiation, Fe atoms incorporated into the target surface react with Si to form silicides, a process enhanced at this medium-ion energy range. The silicides segregate at the nanoscale from the early irradiation stages. As the irradiation proceeds, a ripple pattern is formed without any correlation with silicide segregation. From the comparison with the pattern dynamics reported previously for metal-free conditions, it is demonstrated that the metal incorporation alters both the pattern dynamics and the morphology. Although the pattern formation and dynamics are delayed for decreasing metal content, once ripples emerge, the same qualitative pattern of morphological evolution is observed for different metal content, resulting in an asymptotic saw-tooth-like facetted surface pattern. Despite the medium ion energy employed, the nanopatterning process with concurrent Fe deposition can be explained by those mechanisms proposed for low-ion energy irradiations such as shadowing, height fluctuations, silicide formation and segregation, ensuing composition dependent sputter rate, and ion sculpting effects. In particular, the interplay between the ion irradiation and metal flux geometries, differences in sputtering rates, and the surface pattern morphology produces a dynamic compositional patterning correlated with the evolving morphological one.

  3. Surface morphology evolution during plasma etching of silicon: roughening, smoothing and ripple formation

    NASA Astrophysics Data System (ADS)

    Ono, Kouichi; Nakazaki, Nobuya; Tsuda, Hirotaka; Takao, Yoshinori; Eriguchi, Koji

    2017-10-01

    Atomic- or nanometer-scale roughness on feature surfaces has become an important issue to be resolved in the fabrication of nanoscale devices in industry. Moreover, in some cases, smoothing of initially rough surfaces is required for planarization of film surfaces, and controlled surface roughening is required for maskless fabrication of organized nanostructures on surfaces. An understanding, under what conditions plasma etching results in surface roughening and/or smoothing and what are the mechanisms concerned, is of great technological as well as fundamental interest. In this article, we review recent developments in the experimental and numerical study of the formation and evolution of surface roughness (or surface morphology evolution such as roughening, smoothing, and ripple formation) during plasma etching of Si, with emphasis being placed on a deeper understanding of the mechanisms or plasma-surface interactions that are responsible for. Starting with an overview of the experimental and theoretical/numerical aspects concerned, selected relevant mechanisms are illustrated and discussed primarily on the basis of systematic/mechanistic studies of Si etching in Cl-based plasmas, including noise (or stochastic roughening), geometrical shadowing, surface reemission of etchants, micromasking by etch inhibitors, and ion scattering/chanelling. A comparison of experiments (etching and plasma diagnostics) and numerical simulations (Monte Carlo and classical molecular dynamics) indicates a crucial role of the ion scattering or reflection from microscopically roughened feature surfaces on incidence in the evolution of surface roughness (and ripples) during plasma etching; in effect, the smoothing/non-roughening condition is characterized by reduced effects of the ion reflection, and the roughening-smoothing transition results from reduced ion reflections caused by a change in the predominant ion flux due to that in plasma conditions. Smoothing of initially rough surfaces as well as non-roughening of initially planar surfaces during etching (normal ion incidence) and formation of surface ripples by plasma etching (off-normal ion incidence) are also presented and discussed in this context.

  4. Objectification of Public Bus Stop's Pavement Surface Morphology

    NASA Astrophysics Data System (ADS)

    Decký, Martin; Kováč, Matúš; Mužík, Juraj; Mičechová, Lenka; Ďuriš, Lukáš

    2018-06-01

    The article deals with the road pavement surface morphology objectification in term of the surface unevenness degradation during the life cycle of bus stop pavements. The article presents the results of long-term rut depth measurements performed during 25 years on selected bus stops which were intended to determine correlation dependences of pavement rut depth on a number of design axles. The article also presents different methods for rut depth measurements including the straightedge test, Profilograph GE, TRIMBLE CX, and dynamic Road Scanner.

  5. Development of nanostructured ZnO thin film via electrohydrodynamic atomization technique and its photoconductivity characteristics.

    PubMed

    Duraisamy, Navaneethan; Kwon, Ki Rin; Jo, Jeongdai; Choi, Kyung-Hyun

    2014-08-01

    This article presents the non-vacuum technique for the preparation of nanostructured zinc oxide (ZnO) thin film on glass substrate through electrohydrodynamic atomization (EHDA) technique. The detailed process parameters for achieving homogeneous ZnO thin films are clearly discussed. The crystallinity and surface morphology of ZnO thin film are investigated by X-ray diffraction and field emission scanning electron microscopy. The result shows that the deposited ZnO thin film is oriented in the wurtzite phase with void free surface morphology. The surface roughness of deposited ZnO thin film is found to be ~17.8 nm. The optical properties of nanostructured ZnO thin films show the average transmittance is about 90% in the visible region and the energy band gap is found to be 3.17 eV. The surface chemistry and purity of deposited ZnO thin films are analyzed by fourier transform infrared and X-ray photoelectron spectroscopy, conforming the presence of Zn-O in the deposited thin films without any organic moiety. The photocurrent measurement of nanostructured ZnO thin film is examined in the presence of UV light illumination with wavelength of 365 nm. These results suggest that the deposited nanostructured ZnO thin film through EHDA technique possess promising applications in the near future.

  6. Electrodeposition of Sn-Ni Alloy Coatings for Water-Splitting Application from Alkaline Medium

    NASA Astrophysics Data System (ADS)

    Shetty, Sandhya; Hegde, A. Chitharanjan

    2017-02-01

    In this work, Sn-Ni alloy coatings were developed onto the surface of copper from a newly formulated electrolytic bath by a simple and cost-effective electrodeposition technique using gelatin as an additive. The electrocatalytic behavior of coatings deposited at different current densities (c.d.'s) for water-splitting applications, in terms of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), has been researched. The experimental results showed that the electrocatalytic activity of Sn-Ni coatings has a close relationship with its composition, surface morphology, and phase structure depending on the c.d. used, supported by scanning electron microscopy (SEM-EDX) and X-ray diffraction (XRD) analyses. Cyclic voltammetry and chronopotentiometry techniques have demonstrated that Sn-Ni alloy deposited at 4.0 A dm-2 (having 37.6 wt pct Ni) and 1.0 A dm-2 (having 19.6 wt pct Ni) exhibit, respectively, the highest electrocatalytic behavior for HER and OER in 1.0-M KOH solution. Sn-Ni alloy coatings were found to be stable under working conditions of electrolysis, confirmed by electrochemical corrosion tests. High electrocatalytic activity of Sn-Ni alloy coatings for both HER and OER is specific to their composition, surface morphology, and active surface area.

  7. The effect of silver or gallium doped titanium against the multidrug resistant Acinetobacter baumannii.

    PubMed

    Cochis, A; Azzimonti, B; Della Valle, C; De Giglio, E; Bloise, N; Visai, L; Cometa, S; Rimondini, L; Chiesa, R

    2016-02-01

    Implant-related infection of biomaterials is one of the main causes of arthroplasty and osteosynthesis failure. Bacteria, such as the rapidly-emerging Multi Drug Resistant (MDR) pathogen Acinetobacter Baumannii, initiate the infection by adhering to biomaterials and forming a biofilm. Since the implant surface plays a crucial role in early bacterial adhesion phases, titanium was electrochemically modified by an Anodic Spark Deposition (ASD) treatment, developed previously and thought to provide osseo-integrative properties. In this study, the treatment was modified to insert gallium or silver onto the titanium surface, to provide antibacterial properties. The material was characterized morphologically, chemically, and mechanically; biological properties were investigated by direct cytocompatibility assay, Alkaline Phosphatase (ALP) activity, Scanning Electron Microscopy (SEM), and Immunofluorescent (IF) analysis; antibacterial activity was determined by counting Colony Forming Units, and viability assay. The various ASD-treated surfaces showed similar morphology, micrometric pore size, and uniform pore distribution. Of the treatments studied, gallium-doped specimens showed the best ALP synthesis and antibacterial properties. This study demonstrates the possibility of successfully doping the surface of titanium with gallium or silver, using the ASD technique; this approach can provide antibacterial properties and maintain high osseo-integrative potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Simultaneous measurements of photoemission and morphology of various Al alloys during mechanical deformation

    NASA Astrophysics Data System (ADS)

    Cai, M.; Li, W.; Dickinson, J. T.

    2006-11-01

    We report simultaneous measurements of strain and photoelectron emission from high purity Al (1350), Al-Mg (5052), Al-Mn (3003), Al-Cu (2024), and Al-Mg-Si (6061) alloys under uniaxial tension due to pulsed excimer laser radiation (248nm). The emission of low-energy photoelectrons is sensitive to deformation-induced changes in surface morphology, including the formation of slip lines and slip bands. Alloy composition and surface treatment significantly influence the photoemission during deformation. Surface oxide enhances the signal-to-noise level during photoemission measurement. In the early stage of deformation (strain ⩽0.04), photoemission intensity increases gradually in a nonlinear fashion. While subsequent photoemission increases almost linearly with strain until failure in samples with thin oxide layer (˜31Å), there are two linear segments of photoemission for the samples with oxide of 45Å. The onset of strain localization corresponds to the intersection point of two linear segments, usually at a strain of 0.08-0.20. A constitutive model incorporating microstructure evolution and work hardening during tensile deformation is proposed to qualitatively interpret the growth of the photoemission as a function of strain. Photoemissions from various alloys are interpreted in the light of surface treatment, work function, composition, and microstructural development during deformation.

  9. Distinct differences in striatal dysmorphology between attention deficit hyperactivity disorder boys with and without a comorbid reading disability.

    PubMed

    Goradia, Dhruman D; Vogel, Sherry; Mohl, Brianne; Khatib, Dalal; Zajac-Benitez, Caroline; Rajan, Usha; Robin, Arthur; Rosenberg, David R; Stanley, Jeffrey A

    2016-12-30

    There is evidence of greater cognitive deficits in attention deficit hyperactivity disorder with a comorbid reading disability (ADHD/+RD) compared to ADHD alone (ADHD/-RD). Additionally, the striatum has been consistently implicated in ADHD. However, the extent of morphological alterations in the striatum of ADHD/+RD is poorly understood, which is the main purpose of this study. Based on structural MRI images, the surface deformation of the caudate and putamen was assessed in 59 boys matching in age and IQ [19 ADHD/-RD, 15 ADHD/+RD and 25 typically developing controls (TDC)]. A vertex based analysis with multiple comparison correction was conducted to compare ADHD/-RD and ADHD/+RD to TDC. Compared to TDC, ADHD/+RD showed multiple bilateral significant clusters of surface compression. In contrast, ADHD/-RD showed fewer significant clusters of surface compression and restricted to the left side. Regarding the putamen, only ADHD/-RD showed significant clusters of surface compression. Results demonstrate for the first time a greater extent of morphological alterations in the caudate of ADHD/+RD than ADHD/-RD compared to TDC, which may suggest greater implicated cortical areas projecting to the caudate that are associated with the greater neuropsychological impairments observed in ADHD/+RD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. In-situ growth of ZIF-8 on layered double hydroxide: Effect of Zn/Al molar ratios on their structural, morphological and adsorption properties.

    PubMed

    Yang, Yingli; Yan, Xinlong; Hu, Xiaoyan; Feng, Rui; Zhou, Min

    2017-11-01

    In-situ growth of Zeolite imidazolate frameworks (ZIFs) on layered double hydroxides (LDHs) to form porous composites is a promising and challenging strategy to develop materials for separation application. Herein, the Zn-Al LDH with different Zn/Al molar ratios was prepared and used as matrix for the growth of ZIF-8 on its surface. The resulting composites were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N 2 physisorption, thermogravimetric (TG), scanning electron microscope (SEM) and elemental analysis followed by testing for As V removal from aqueous solution. Results showed that ZIF-8 could form on the surface of LDH with different Zn/Al molar ratios. At low Zn/Al molar ratios, the morphology and surface area of the ZIF/LDH composites and the content of ZIF-8 in the composites were little affected by the Zn/Al molar ratio. With increasing Zn/Al molar ratio, ZIF-8/LDH exhibited a lower surface area, which resulted from reduced content of ZIF-8 caused by impurities generated in the LDH matrix. All ZIF-8/LDH samples showed high As V adsorption capacity, which was significantly higher than that of pure LDH or ZIF-8. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Effect of heat treatment of wood on the morphology, surface roughness and penetration of simulated and human blood.

    PubMed

    Rekola, J; Lassila, L V J; Nganga, S; Ylä-Soininmäki, A; Fleming, G J P; Grenman, R; Aho, A J; Vallittu, P K

    2014-01-01

    Wood has been used as a model material for the development of novel fiber-reinforced composite bone substitute biomaterials. In previous studies heat treatment of wood was perceived to significantly increase the osteoconductivity of implanted wood material. The objective of this study was to examine some of the changing attributes of wood materials that may contribute to improved biological responses gained with heat treatment. Untreated and 140°C and 200°C heat-treated downy birch (Betula pubescens Ehrh.) were used as the wood materials. Surface roughness and the effect of pre-measurement grinding were measured with contact and non-contact profilometry. Liquid interaction was assessed with a dipping test using two manufactured liquids (simulated blood) as well as human blood. SEM was used to visualize possible heat treatment-induced changes in the hierarchical structure of wood. The surface roughness was observed to significantly decrease with heat treatment. Grinding methods had more influence on the surface contour and roughness than heat treatment. The penetration of the human blood in the 200°C heat-treated exceeded that in the untreated and 140°C heat-treated materials. SEM showed no significant change due to heat treatment in the dry-state morphology of the wood. The results of the liquid penetration test support previous findings in literature concerning the effects of heat treatment on the biological response to implanted wood. Heat-treatment has only a marginal effect on the surface contour of wood. The highly specialized liquid conveyance system of wood may serve as a biomimetic model for the further development of tailored fiber-composite materials.

  12. Development of the human lateral geniculate nucleus: A morphometric and computerized 3D-reconstruction study.

    PubMed

    Yamaguchi, Katsuyuki

    2018-04-04

    The lateral geniculate nucleus (LGN) is the major relay center of the visual pathway in humans. There are few quantitative data on the morphology of LGN in prenatal infants. In this study, using serial brain sections, the author investigated the morphology of this nucleus during the second half of fetal period. Eleven human brains were obtained at routine autopsy from preterm infants aged 20-39 postmenstrual weeks. After fixation, the brain was embedded en bloc in celloidin and cut serially at 30 μm in the horizontal plane. The sections were stained at regular intervals using the Klüver-Barrera method. At 20-21 weeks, the long axis of LGN declined obliquely from the vertical to horizontal plane, while a deep groove was noted on the ventro-lateral surface of the superior half. At this time, an arcuate cell-sparse zone appeared in the dorso-medial region, indicating the beginning of lamination. From 25 weeks onwards, the magnocellular and parvocellular layers were distinguishable, and the characteristic six-layered structure was recognized. The magnocellular layer covered most of the dorsal surface, and parts of the medial, lateral, and inferior surfaces but not the ventral and superior surfaces. Nuclear volume increased exponentially with age during 20-39 weeks, while the mean neuronal profile area increased linearly during 25-39 weeks. Human LGN develops a deep groove on the ventro-lateral surface at around mid-gestation, when the initial lamination is recognized in the prospective magnocellular layer. Thereafter, the nuclear volume increases with age in an exponential function. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Structural and ultrastructural features of the agouti tongue (Dasyprocta aguti Linnaeus, 1766)

    PubMed Central

    Ciena, Adriano Polican; Bolina, Cristina de Sousa; de Almeida, Sonia Regina Yokomizo; Rici, Rose Eli Grassi; de Oliveira, Moacir Franco; da da Silva, Marcelo Cavenaghi Pereira; Miglino, Maria Angélica; Watanabe, Ii-sei

    2013-01-01

    The agouti (Dasyprocta aguti Linnaeus, 1766) is a wild rodent belonging to the family Dasyproctidae that is found throughout Brazil and feeds on fruits and seeds. The aim of the present study was to describe the following features of the tongue of agouti: its morphological structures, the three-dimensional characteristics of the lingual papillae surface, the connective tissue cores (CTCs) and the epithelial cell ultrastructure. Four types of papillae were observed on the dorsal surface of the tongue with a triangular shape: filiform, fungiform, foliate and vallate. Filiform papillae were distributed throughout the tongue surface, and removal of the epithelial surface revealed conical CTCs and multifilaments. Fungiform papillae were observed in the rostral and middle regions, whereas foliate papillae developed in pairs on the lateral margin of the caudal region. Removal of the epithelium in these regions revealed CTCs with parallel laminar conformation. Vallate papillae were arranged in a V-shape in the caudal region, and their CTCs ranged in shape from elongate to ovoid. The ultrastructural components of the dorsal epithelium were the basal, spinous, granular and keratinised layers. A broad area with cytoplasmic projections was identified in the interface region between the lamina propria and the basal layer. Flattened cells with intermediate filaments were observed in the transitional region between spinous and granular layers. The keratinised layer was composed of superimposed epithelial cells where desmosomes and cell-surface microridges were observed. These structural features, including the three-dimensional aspects of the lingual papillae, the CTCs and the epithelial ultrastructure, indicate that when compared with other animals, particularly other rodent species, the morphological features of the tongue of agouti are relatively well developed, especially regarding foliate and vallate papillae. PMID:23701183

  14. Morphometric analysis of primary graft non-function in liver transplantation.

    PubMed

    Vertemati, M; Sabatella, G; Minola, E; Gambacorta, M; Goffredi, M; Vizzotto, L

    2005-04-01

    Primary graft non-function (PNF) is a life-threatening condition that is thought to be the consequence of microcirculation injury. The aim of the present study was to assess, with a computerized morphometric model, the morphological changes at reperfusion in liver biopsy specimens from patients who developed PNF after liver transplantation. Biopsy specimens were obtained at maximum ischaemia and at the end of reperfusion. Morphology included many stereological parameters, such as volumes of all parenchymal components, surface density, size distribution and mean diameter of hepatocytes. Other variables examined were intensive care unit stay, degree of steatosis, serum liver function tests and ischaemic time. In the postoperative period, the PNF group showed elevated serum levels of alanine transferase, decreased daily rate of bile production and prothrombin activity. Blood lactates were significantly higher in the PNF group than in a control group. When comparing groups, the volumetric parameters related to hepatocytes and sinusoids and the surface densities of the hepatic cells showed an inverse relationship. At the end of reperfusion, in PNF group the volume fraction of hepatocyte cytoplasm was decreased; in contrast, the volume fraction of sinusoidal lumen was markedly increased. The cell profiles showed the same inverse trend: the surface density of the parenchymal border of hepatocytes was decreased in PNF when compared with the control group, while the surface density of the vascular border was increased. In the PNF group, the surface density of the sinusoidal bed was directly correlated with alanine transferase, daily rate of bile production, prothrombin activity and cold ischaemic time. The alterations in hepatic architecture, as demonstrated by morphometric analysis in liver transplant recipients that developed PNF, provide additional information that may represent useful viability markers of the graft to complement conventional histological analysis.

  15. Hippocampal Morphology and Distinguishing Late-Onset From Early-Onset Elderly Depression

    PubMed Central

    Ballmaier, Martina; Narr, Katherine L.; Toga, Arthur W.; Elderkin-Thompson, Virginia; Thompson, Paul M.; Hamilton, Liberty; Haroon, Ebrahim; Pham, Daniel; Heinz, Andreas; Kumar, Anand

    2010-01-01

    Objective Despite evidence for hippocampal abnormalities in elderly depression, it is unknown whether these changes are regionally specific. This study used three-dimensional mapping techniques to identify regional hippocampal abnormalities in early- and late-onset depression. Neuropsychological correlates of hippocampal morphology were also investigated. Method With high-resolution magnetic resonance imaging, hippocampal morphology was compared among elderly patients with early- (N=24) and late-onset (N=22) depression and comparison subjects (N=34). Regional structural abnormalities were identified by comparing distances, measured from homologous hippocampal surface points to the central core of each individual’s hippocampal surface model, between groups. Results Hippocampal volumes differed between depressed patients and comparison subjects but not between patients with early- and late-onset depression. However, statistical mapping results showed that regional surface contractions were significantly pronounced in late-compared to early-onset depression in the anterior of the subiculum and lateral posterior of the CA1 subfield in the left hemisphere. Significant shape differences were observed bilaterally in anterior CA1–CA3 subfields and the subiculum in patients in relation to comparison subjects. These results were similar when each disease group was separately compared to comparison subjects. Hippocampal surface contractions significantly correlated with memory measures among late- but not early-onset depressed patients or comparison subjects. Conclusions More pronounced regional volume deficits and their associations with memory in late-onset depression may suggest that these patients are more likely to develop cognitive impairment over time than individuals with early-onset depression. Mapping regional hippocampal abnormalities and their cognitive correlates may help guide research in defining risk profiles and treatment strategies. PMID:17986679

  16. Development from childhood to adulthood increases morphological and functional inter-individual variability in the right superior temporal cortex.

    PubMed

    Bonte, Milene; Frost, Martin A; Rutten, Sanne; Ley, Anke; Formisano, Elia; Goebel, Rainer

    2013-12-01

    We study the developmental trajectory of morphology and function of the superior temporal cortex (STC) in children (8-9 years), adolescents (14-15 years) and young adults. We analyze cortical surface landmarks and functional MRI (fMRI) responses to voices, other natural categories and tones and examine how hemispheric asymmetry and inter-subject variability change across age. Our results show stable morphological asymmetries across age groups, including a larger left planum temporale and a deeper right superior temporal sulcus. fMRI analyses show that a rightward lateralization for voice-selective responses is present in all groups but decreases with age. Furthermore, STC responses to voices change from being less selective and more spatially diffuse in children to highly selective and focal in adults. Interestingly, the analysis of morphological landmarks reveals that inter-subject variability increases during development in the right--but not in the left--STC. Similarly, inter-subject variability of cortically-realigned functional responses to voices, other categories and tones increases with age in the right STC. Our findings reveal asymmetric developmental changes in brain regions crucial for auditory and voice perception. The age-related increase of inter-subject variability in right STC suggests that anatomy and function of this region are shaped by unique individual developmental experiences. © 2013.

  17. Statistical analysis of whole-body absorption depending on anatomical human characteristics at a frequency of 2.1 GHz.

    PubMed

    Habachi, A El; Conil, E; Hadjem, A; Vazquez, E; Wong, M F; Gati, A; Fleury, G; Wiart, J

    2010-04-07

    In this paper, we propose identification of the morphological factors that may impact the whole-body averaged specific absorption rate (WBSAR). This study is conducted for the case of exposure to a front plane wave at a 2100 MHz frequency carrier. This study is based on the development of different regression models for estimating the WBSAR as a function of morphological factors. For this purpose, a database of 12 anatomical human models (phantoms) has been considered. Also, 18 supplementary phantoms obtained using the morphing technique were generated to build the required relation. This paper presents three models based on external morphological factors such as the body surface area, the body mass index or the body mass. These models show good results in estimating the WBSAR (<10%) for families obtained by the morphing technique, but these are still less accurate (30%) when applied to different original phantoms. This study stresses the importance of the internal morphological factors such as muscle and fat proportions in characterization of the WBSAR. The regression models are then improved using internal morphological factors with an estimation error of approximately 10% on the WBSAR. Finally, this study is suitable for establishing the statistical distribution of the WBSAR for a given population characterized by its morphology.

  18. Statistical analysis of whole-body absorption depending on anatomical human characteristics at a frequency of 2.1 GHz

    NASA Astrophysics Data System (ADS)

    El Habachi, A.; Conil, E.; Hadjem, A.; Vazquez, E.; Wong, M. F.; Gati, A.; Fleury, G.; Wiart, J.

    2010-04-01

    In this paper, we propose identification of the morphological factors that may impact the whole-body averaged specific absorption rate (WBSAR). This study is conducted for the case of exposure to a front plane wave at a 2100 MHz frequency carrier. This study is based on the development of different regression models for estimating the WBSAR as a function of morphological factors. For this purpose, a database of 12 anatomical human models (phantoms) has been considered. Also, 18 supplementary phantoms obtained using the morphing technique were generated to build the required relation. This paper presents three models based on external morphological factors such as the body surface area, the body mass index or the body mass. These models show good results in estimating the WBSAR (<10%) for families obtained by the morphing technique, but these are still less accurate (30%) when applied to different original phantoms. This study stresses the importance of the internal morphological factors such as muscle and fat proportions in characterization of the WBSAR. The regression models are then improved using internal morphological factors with an estimation error of approximately 10% on the WBSAR. Finally, this study is suitable for establishing the statistical distribution of the WBSAR for a given population characterized by its morphology.

  19. Bumps and Ridges: Trabeculation Effects in Embryonic Heart Development

    NASA Astrophysics Data System (ADS)

    Battista, Nicholas; Lane, Andrea; Miller, Laura

    2014-11-01

    Trabeculae form in developing zebrafish hearts for Re on the order of 0.1; effects of trabeculae in this flow is not well understood. Dynamic processes, such as vortex formation, are important in the generation of shear at the endothelial surface layer and strains at the epithelial layer, which aid in proper morphology and functionality. In this study, CFD is used to quantify the effects of Re and idealized trabeculae height on the resulting flows.

  20. Development of the morphology during functional stack build-up of P3HT:PCBM bulk heterojunction solar cells with inverted geometry.

    PubMed

    Wang, Weijia; Pröller, Stephan; Niedermeier, Martin A; Körstgens, Volker; Philipp, Martine; Su, Bo; Moseguí González, Daniel; Yu, Shun; Roth, Stephan V; Müller-Buschbaum, Peter

    2015-01-14

    Highly efficient poly(3-hexylthiophene-2,5-diyl) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction solar cells are achieved by using an inverted geometry. The development of the morphology is investigated as a function of the multilayer stack assembling during the inverted solar cell preparation. Atomic force microscopy is used to reveal the surface morphology of each stack, and the inner structure is probed with grazing incidence small-angle X-ray scattering. It is found that the smallest domain size of P3HT is introduced by replicating the fluorine-doped tin oxide structure underneath. The structure sizes of the P3HT:PCBM active layer are further optimized after thermal annealing. Compared to devices with standard geometry, the P3HT:PCBM layer in the inverted solar cells shows smaller domain sizes, which are much closer to the exciton diffusion length in the polymer. The decrease in domain sizes is identified as the main reason for the improvement of the device performance.

  1. Surface morphology and structure of Ge layer on Si(111) after solid phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yoshida, Ryoma; Tosaka, Aki; Shigeta, Yukichi

    2018-05-01

    The surface morphology change of a Ge layer on a Si(111) surface formed by solid phase epitaxy has been investigated with a scanning tunneling microscope (STM). The Ge film was deposited at room temperature and annealed at 400 °C or 600 °C. The STM images of the sample surface after annealing at 400 °C show a flat wetting layer (WL) with small three-dimensional islands on the WL. After annealing at 600 °C, the STM images show a surface roughening with large islands. From the relation between the average height of the roughness and the deposited layer thickness, it is confirmed that the diffusion of Ge atoms becomes very active at 600 °C. The Si crystal at the interface is reconstructed and the intermixing occurs over 600 °C. However, the intermixing is fairly restricted in the solid phase epitaxy growth at 400 °C. The surface morphology changes with the crystallization at 400 °C are discussed by the shape of the islands formed on the WL surface. It is shown that the diffusion of the Ge atoms in the amorphous phase is active even at 400 °C.

  2. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOEpatents

    Li, Ting [Ventura, CA

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  3. Imaging cell picker: A morphology-based automated cell separation system on a photodegradable hydrogel culture platform.

    PubMed

    Shibuta, Mayu; Tamura, Masato; Kanie, Kei; Yanagisawa, Masumi; Matsui, Hirofumi; Satoh, Taku; Takagi, Toshiyuki; Kanamori, Toshiyuki; Sugiura, Shinji; Kato, Ryuji

    2018-06-09

    Cellular morphology on and in a scaffold composed of extracellular matrix generally represents the cellular phenotype. Therefore, morphology-based cell separation should be interesting method that is applicable to cell separation without staining surface markers in contrast to conventional cell separation methods (e.g., fluorescence activated cell sorting and magnetic activated cell sorting). In our previous study, we have proposed a cloning technology using a photodegradable gelatin hydrogel to separate the individual cells on and in hydrogels. To further expand the applicability of this photodegradable hydrogel culture platform, we here report an image-based cell separation system imaging cell picker for the morphology-based cell separation on a photodegradable hydrogel. We have developed the platform which enables the automated workflow of image acquisition, image processing and morphology analysis, and collection of a target cells. We have shown the performance of the morphology-based cell separation through the optimization of the critical parameters that determine the system's performance, such as (i) culture conditions, (ii) imaging conditions, and (iii) the image analysis scheme, to actually clone the cells of interest. Furthermore, we demonstrated the morphology-based cloning performance of cancer cells in the mixture of cells by automated hydrogel degradation by light irradiation and pipetting. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Tensorial Minkowski functionals of triply periodic minimal surfaces

    PubMed Central

    Mickel, Walter; Schröder-Turk, Gerd E.; Mecke, Klaus

    2012-01-01

    A fundamental understanding of the formation and properties of a complex spatial structure relies on robust quantitative tools to characterize morphology. A systematic approach to the characterization of average properties of anisotropic complex interfacial geometries is provided by integral geometry which furnishes a family of morphological descriptors known as tensorial Minkowski functionals. These functionals are curvature-weighted integrals of tensor products of position vectors and surface normal vectors over the interfacial surface. We here demonstrate their use by application to non-cubic triply periodic minimal surface model geometries, whose Weierstrass parametrizations allow for accurate numerical computation of the Minkowski tensors. PMID:24098847

  5. Polythiophene thin films by surface-initiated polymerization: Mechanistic and structural studies

    DOE PAGES

    Youm, Sang Gil; Hwang, Euiyong; Chavez, Carlos A.; ...

    2016-06-15

    The ability to control nanoscale morphology and molecular organization in organic semiconducting polymer thin films is an important prerequisite for enhancing the efficiency of organic thin-film devices including organic light-emitting and photovoltaic devices. The current “top-down” paradigm for making such devices is based on utilizing solution-based processing (e.g., spin-casting) of soluble semiconducting polymers. This approach typically provides only modest control over nanoscale molecular organization and polymer chain alignment. A promising alternative to using solutions of presynthesized semiconducting polymers pursues instead a “bottom-up” approach to prepare surface-grafted semiconducting polymer thin films by surface-initiated polymerization of small-molecule monomers. Herein, we describe themore » development of an efficient method to prepare polythiophene thin films utilizing surface-initiated Kumada catalyst transfer polymerization. In this study, we provided evidence that the surface-initiated polymerization occurs by the highly robust controlled (quasi-“living”) chain-growth mechanism. Further optimization of this method enabled reliable preparation of polythiophene thin films with thickness up to 100 nm. Extensive structural studies of the resulting thin films using X-ray and neutron scattering methods as well as ultraviolet photoemission spectroscopy revealed detailed information on molecular organization and the bulk morphology of the films, and enabled further optimization of the polymerization protocol. One of the remarkable findings was that surface-initiated polymerization delivers polymer thin films showing complex molecular organization, where polythiophene chains assemble into lateral crystalline domains of about 3.2 nm size, with individual polymer chains folded to form in-plane aligned and densely packed oligomeric segments (7-8 thiophene units per each segment) within each domain. Achieving such a complex mesoscale organization is virtually impossible with traditional methods relying on solution processing of presynthesized polymers. Another significant advantage of surface-confined polymer thin films is their remarkable stability toward organic solvents and other processing conditions. In addition to controlled bulk morphology, uniform molecular organization, and stability, a unique feature of the surface-initiated polymerization is that it can be used for the preparation of large-area uniformly nanopatterned polymer thin films. Lastly, this was demonstrated using a combination of particle lithography and surface-initiated polymerization. In general, surface-initiated polymerization is not limited to polythiophene but can be also expanded toward other classes of semiconducting polymers and copolymers.« less

  6. Influence of head size on the development of metallic wear and on the characteristics of carbon layers in metal-on-metal hip joints

    PubMed Central

    Sprecher, Christoph M; Wimmer, Markus A; Milz, Stefan; Taeger, Georg

    2009-01-01

    Background and purpose Particles originating from the articulating surfaces of hip endoprostheses often induce an inflammatory response, which can be related to implant failure. We therefore analyzed the metal content in capsular tissue from 44 McKee-Farrar metal-on-metal hip prostheses (with 3 different head sizes) and we also analyzed the morphological structure of layers located on articulating surfaces. Methods Atomic absorption spectrometry (AAS) was used to analyze the metal content in capsular tissue. Visually detectable carbon layers located on the articulating surfaces were evaluated using scanning electron microscopy (SEM), energy-dispersive Xray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). Results Metallic debris was detected in all capsular tissue samples but no statistically significant differences in metal content were found in relation to implant head size. The morphological characteristics of the different layer zones allowed an exact analysis of contact and non-contact areas. Furthermore, surface layers appear to have a protective function because they can prevent sharp-edged particles from damaging the prostheses surface. Interpretation The implant head size does not appear to influence the amount of metallic debris. The layers obviously act like a lubricating agent because the protection function does not occur in regions without layers where the metal surface often shows numerous scratches. As layers are not generated immediately after the implantation of hip prostheses, these findings may at least partially explain the high amount of wear early after implantation. PMID:19421914

  7. Atypical Red Blood Cells Are Prevalent in California Sea Lion Pups Born during Anomalous Sea Surface Temperature Events.

    PubMed

    Flores-Morán, Adriana; Banuet-Martínez, Marina; Elorriaga-Verplancken, Fernando R; García-Ortuño, Luis Enrique; Sandoval-Sierra, Julieta; Acevedo-Whitehouse, Karina

    To date, there is limited knowledge of the effects that abnormal sea surface temperature (SST) can have on the physiology of neonate pinnipeds. However, maternal nutritional deficiencies driven by alimentary restrictions would expectedly impact pinniped development and fitness, as an adequate supply of nutrients is essential for growth and proper functioning of all body systems, including red blood cell synthesis and clearance. Here, we investigated red blood cell morphology of California sea lion (CSL) pups from the San Benito Archipelago born during the 2014 and 2015 anomalously high SST events recorded in the northeastern Pacific Ocean. We examined whether atypical erythrocyte morphologies were more common in 2015, when the high SST event was more pronounced, and whether the stable isotope signature of pup fur, as an indicator of maternal feeding strategies, accounted for the number of atypical cells. Various atypical erythrocyte morphologies were more prevalent and more abundant than reference values. Evidence of iron deficiency was found in both years, and only pups born in 2014 showed evidence of active erythropoiesis. Microcytes and reticulocytes were more common in pups with higher isotopic δ 13 C and lower δ 15 N values, suggesting a probable relationship between maternal feeding strategies and the effect of climatic anomalies on red blood cell physiology of their pups. As developing pinnipeds require increased oxygen storage capacity for diving and foraging, the presence of atypical erythrocytes could be relevant to CSL pup fitness if the underlying cause is not reverted. This study is a first step to explore the effects that climatic alterations in the marine environment can have on the blood physiology of developing individuals.

  8. Biomimetic multifunctional surfaces inspired from animals.

    PubMed

    Han, Zhiwu; Mu, Zhengzhi; Yin, Wei; Li, Wen; Niu, Shichao; Zhang, Junqiu; Ren, Luquan

    2016-08-01

    Over millions of years, animals have evolved to a higher intelligent level for their environment. A large number of diverse surface structures on their bodies have been formed to adapt to the extremely harsh environment. Just like the structural diversity existed in plants, the same also applies true in animals. Firstly, this article provides an overview and discussion of the most common functional surface structures inspired from animals, such as drag reduction, noise reduction, anti-adhesion, anti-wear, anti-erosion, anti-fog, water capture, and optical surfaces. Then, some typical characteristics of morphologies, structures, and materials of the animal multifunctional surfaces were discussed. The adaptation of these surfaces to environmental conditions was also analyzed. It mainly focuses on the relationship between their surface functions and their surface structural characteristics. Afterwards, the multifunctional mechanisms or principles of these surfaces were discussed. Models of these structures were provided for the development of structure materials and machinery surfaces. At last, fabrication techniques and existing or potential technical applications inspired from biomimetic multifunctional surfaces in animals were also discussed. The application prospects of the biomimetic functional surfaces are very broad, such as civil field of self-cleaning textile fabrics and non-stick pots, ocean field of oil-water separation, sports field of swimming suits, space development field of lens arrays. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Buckling Instabilities in Polymer Brush Surfaces via Postpolymerization Modification

    DOE PAGES

    Guo, Wei; Reese, Cassandra M.; Xiong, Li; ...

    2017-10-30

    We report a simple route to engineer ultrathin polymer brush surfaces with wrinkled morphologies using postpolymerization modification (PPM), where the length scale of the buckled features can be tuned using PPM reaction time. Here, we show that partial crosslinking of the outer layer of the polymer brush under poor solvent conditions is critical to obtain wrinkled morphologies upon swelling.

  10. TiO2 nanofibers resembling 'yellow bristle grass' in morphology by a soft chemical transformation.

    PubMed

    Nandan, Sandeep; Deepak, T G; Nair, Shantikumar V; Nair, A Sreekumaran

    2015-05-28

    We synthesized a uniquely shaped one-dimensional (1-D) TiO2 nanostructure having the morphology of yellow bristle grass with high surface area by the titanate route under mild reaction conditions. The electrospun TiO2-SiO2 composite nanofibers upon treatment with concentrated NaOH at 80 °C under ambient pressure for 24 h resulted in sodium titanate (Na2Ti3O7) nanostructures. The Na2Ti3O7 nanostructures have an overall 1-D fibrous morphology but the highly porous fiber surfaces were decorated with layered thorn-like features (a morphology resembling that of yellow bristle grass) resulting in high surface area (113 m(2) g(-1)) and porosity. The Na2Ti3O7 nanostructures were converted into TiO2 nanostructures of the same morphology by acidification (0.1 N HCl) followed by low temperature sintering (110 °C) processes. Dye-sensitized solar cells (DSCs) constructed out of the material (cells of area 0.20 cm(2) and thickness 12 μm) showed a power conversion efficiency (η) of 8.02% in comparison with commercial P-25 TiO2 (η = 6.1%).

  11. Micro-nano zinc oxide film fabricated by biomimetic mineralization: Designed architectures for SERS substrates

    NASA Astrophysics Data System (ADS)

    Lu, Fei; Guo, Yue; Wang, Yunxin; Song, Wei; Zhao, Bing

    2018-05-01

    In this study, we have investigated the effect of the surface morphologies of the zinc oxide (ZnO) substrates on surface enhanced Raman spectroscopy (SERS). During synthetic process, the self-assembly monolayers (SAMs) with different terminal groups are used as templates to induce the nucleation and growth of Zn(NO3)2·6H2O crystals, then different morphologies micro-nano ZnO powders are obtained by annealing Zn(NO3)2·6H2O crystals at 450 °C. The products obtained at different conditions are characterized by means of X-ray diffraction (XRD) patterns, scanning electron microscopy (SEM) and Raman spectra. The as-prepared ZnO micro-sized particles have been used the efficient Surface enhanced Raman scattering (SERS) substrates, and the SERS signals of 4-mercaptopyridine (Mpy) probe molecules are much influenced by the morphologies of the ZnO structures. Results indicated that the more (0001) facets appear in the of ZnO morphology, the greater degree of charge-transfer (PCT) for the SERS enhancement on the surface of semiconductors is achieved. The chemical interaction between ZnO structures and Mpy molecules plays a very important role in the SERS enhancement.

  12. Quantitative Correlation of 7B04 Aluminum Alloys Pitting Corrosion Morphology Characteristics with Stress Concentration Factor

    NASA Astrophysics Data System (ADS)

    Liu, Zhiguo; Yan, Guangyao; Mu, Zhitao; Li, Xudong

    2018-01-01

    The accelerated pitting corrosion test of 7B04 aluminum alloy specimen was carried out according to the spectrum which simulated airport environment, and the corresponding pitting corrosion damage was obtained and was defined through three parameters A and B and C which respectively denoted the corrosion pit surface length and width and corrosion pit depth. The ratio between three parameters could determine the morphology characteristics of corrosion pits. On this basis the stress concentration factor of typical corrosion pit morphology under certain load conditions was quantitatively analyzed. The research shows that the corrosion pits gradually incline to be ellipse in surface and moderate in depth, and most value of B/A and C/A lies in 1 between 4 and few maximum exceeds 4; The stress concentration factor Kf of corrosion pits is obviously affected by the its morphology, the value of Kf increases with corrosion pits depth increasement under certain corrosion pits surface geometry. Also, the value of Kf decreases with surface width increasement under certain corrosion pits depth. The research conclusion can set theory basis for corrosion fatigue life analysis of aircraft aluminum alloy structure.

  13. The effects of engine operating conditions on CCD chemistry and morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, S.W.; Moore, S.M.; Sabourin, E.T.

    1996-10-01

    The effects of engine driving cycle and engine coolant temperature on combustion chamber deposit (CCD) surface chemistry and morphology were assessed by the use of XPS and scanning electron micrographs. A 3.1L V6 test cell engine was used to generate a six test matrix that compared deposit surface chemistry and morphology under two distinctly different driving cycles, each cycle being evaluated at three separate engine coolant temperatures. Deposit material for each respective test was collected by removable combustion chamber sample probes that were subjected to XPS surface analysis and SEM evaluation. Discernible trends were observed in surface chemistry and depositmore » amounts with respect to changes in both driving cycle and coolant temperature. However, much more pronounced were deposit morphological changes recorded by SEM in different engine coolant temperature regimes for both of the utilized driving cycles. Deposit nodules formed in one temperature regime were seen to be typically much larger in size, highly irregular in shape, and appeared to be porous in structure. At a different operating temperature, the deposit nodules were observed to be extremely uniform and more tightly packed.« less

  14. Influence of Particle Morphology on 3D Kinematic Behavior and Strain Localization of Sheared Sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alshibli, Khalid A.; Jarrar, Maha F.; Druckrey, Andrew M.

    The constitutive behavior of sheared sand is highly influenced by particle morphology, gradation, mineralogy, specimen density, loading condition, stress path, and boundary conditions. The current literature lacks a three-dimensional (3D) systematic experimental study that investigates the influence of particle morphology, confining pressure, and specimen density on the failure mode of sheared sand. In this paper, surface texture, roundness, and sphericity of three uniform sands and glass beads with similar grain size were quantified by using 3D images of particles. In situ nondestructive 3D synchrotron microcomputed tomography (SMT) was used to monitor the deformation of medium-dense and very dense dry sandmore » specimens that were tested under axisymmetric triaxial loading condition at 15 and 400 kPa confining pressures. The particles were identified and tracked in 3D as shearing progressed within the specimens, and maps of incremental particle translation and rotation were developed and used to uncover the relationship between particle morphology, specimen density, and confining pressure on the deformation and failure mode of sheared sand. This paper discusses the relationship between the failure mode and particle morphology, specimen density, and confining pressure.« less

  15. Scaling mimesis: Morphometric and ecomorphological similarities in three sympatric plant-mimetic fish of the family Carangidae (Teleostei).

    PubMed

    Queiroz, Alexya Cunha de; Vallinoto, Marcelo; Sakai, Yoichi; Giarrizzo, Tommaso; Barros, Breno

    2018-01-01

    The mimetic juveniles of a number of carangid fish species resemble plant parts floating near the water surface, such as leaves, seeds and other plant debris. The present study is the first to verify the morphological similarities and ecomorphological relationships between three carangids (Oligoplites saurus, Oligoplites palometa and Trachinotus falcatus) and their associated plant models. Behavioral observations were conducted in the estuary of Curuçá River, in northeastern Pará (Brazil) between August 2015 and July 2016. Individual fishes and associated floating objects (models) were sampled for comparative analysis using both geometric and morphometric approaches. While the mimetic fish and their models retain their own distinct, intrinsic morphological features, a high degree of morphological similarity was found between each fish species and its model. The morphometric analyses revealed a general tendency of isometric development in all three fish species, probably related to their pelagic habitats, during all ontogenetic stages.

  16. Morphological evolution of porous nanostructures grown from a single isolated anodic alumina nanochannel.

    PubMed

    Chen, Shih-Yung; Chang, Hsuan-Hao; Lai, Ming-Yu; Liu, Chih-Yi; Wang, Yuh-Lin

    2011-09-07

    Porous anodic aluminum oxide (AAO) membranes have been widely used as templates for growing nanomaterials because of their ordered nanochannel arrays with high aspect ratio and uniform pore diameter. However, the intrinsic growth behavior of an individual AAO nanochannel has never been carefully studied for the lack of a means to fabricate a single isolated anodic alumina nanochannel (SIAAN). In this study, we develop a lithographic method for fabricating a SIAAN, which grows into a porous hemispherical structure with its pores exhibiting fascinating morphological evolution during anodization. We also discover that the mechanical stress affects the growth rate and pore morphology of AAO porous structures. This study helps reveal the growth mechanism of arrayed AAO nanochannels grown on a flat aluminum surface and provides insights to help pave the way to altering the geometry of nanochannels on AAO templates for the fabrication of advanced nanocomposite materials.

  17. Morphological evolution of porous nanostructures grown from a single isolated anodic alumina nanochannel

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Yung; Chang, Hsuan-Hao; Lai, Ming-Yu; Liu, Chih-Yi; Wang, Yuh-Lin

    2011-09-01

    Porous anodic aluminum oxide (AAO) membranes have been widely used as templates for growing nanomaterials because of their ordered nanochannel arrays with high aspect ratio and uniform pore diameter. However, the intrinsic growth behavior of an individual AAO nanochannel has never been carefully studied for the lack of a means to fabricate a single isolated anodic alumina nanochannel (SIAAN). In this study, we develop a lithographic method for fabricating a SIAAN, which grows into a porous hemispherical structure with its pores exhibiting fascinating morphological evolution during anodization. We also discover that the mechanical stress affects the growth rate and pore morphology of AAO porous structures. This study helps reveal the growth mechanism of arrayed AAO nanochannels grown on a flat aluminum surface and provides insights to help pave the way to altering the geometry of nanochannels on AAO templates for the fabrication of advanced nanocomposite materials.

  18. Slip Morphology of Elastic Strips on Frictional Rigid Substrates.

    PubMed

    Sano, Tomohiko G; Yamaguchi, Tetsuo; Wada, Hirofumi

    2017-04-28

    The morphology of an elastic strip subject to vertical compressive stress on a frictional rigid substrate is investigated by a combination of theory and experiment. We find a rich variety of morphologies, which-when the bending elasticity dominates over the effect of gravity-are classified into three distinct types of states: pinned, partially slipped, and completely slipped, depending on the magnitude of the vertical strain and the coefficient of static friction. We develop a theory of elastica under mixed clamped-hinged boundary conditions combined with the Coulomb-Amontons friction law and find excellent quantitative agreement with simulations and controlled physical experiments. We also discuss the effect of gravity in order to bridge the difference in the qualitative behaviors of stiff strips and flexible strings or ropes. Our study thus complements recent work on elastic rope coiling and takes a significant step towards establishing a unified understanding of how a thin elastic object interacts vertically with a solid surface.

  19. Synthesis of thoria nano-particles at low temperature through base electrogeneration on steel 316L surface: Effect of current density

    NASA Astrophysics Data System (ADS)

    Yousefi, Taher; Torab-Mostaedi, Meisam; Mobtaker, Hossein Ghasemi; Keshtkar, Ali Reza

    2016-10-01

    The strategy developed in this study, offers significant advantages (simplicity and cleanness of method and also a product purity and new morphology of the product) over the conventional routes for the synthesis of ThO2 nanostructure. The effect of current density on morphology was studied. The synthesized powder was characterized by means of Powder X-ray Diffraction (PXRD), Transmission Electron Microscopy (TEM, Phillips EM 2085) Brunauer-Emmett-Teller (BET) and Fourier Transform Infrared (FT-IR) spectroscopy. The results show that the current density has a great effect on the morphology of the samples. The average size of the particles decreases as the applied current density increases and the average size of the samples decreases from 50 to 15 nm when the current density increases from 2 to 5 mA cm-2.

  20. Microstructural characterization of Ti-6Al-4V alloy subjected to the duplex SMAT/plasma nitriding.

    PubMed

    Pi, Y; Faure, J; Agoda-Tandjawa, G; Andreazza, C; Potiron, S; Levesque, A; Demangel, C; Retraint, D; Benhayoune, H

    2013-09-01

    In this study, microstructural characterization of Ti-6Al-4V alloy, subjected to the duplex surface mechanical attrition treatment (SMAT)/nitriding treatment, leading to improve its mechanical properties, was carried out through novel and original samples preparation methods. Instead of acid etching which is limited for morphological characterization by scanning electron microscopy (SEM), an original ion polishing method was developed. Moreover, for structural characterization by transmission electron microscopy (TEM), an ion milling method based with the use of two ions guns was also carried out for cross-section preparation. To demonstrate the efficiency of the two developed methods, morphological investigations were done by traditional SEM and field emission gun SEM. This was followed by structural investigations through selected area electron diffraction (SAED) coupled with TEM and X-ray diffraction techniques. The results demonstrated that ionic polishing allowed to reveal a variation of the microstructure according to the surface treatment that could not be observed by acid etching preparation. TEM associated to SAED and X-ray diffraction provided information regarding the nanostructure compositional changes induced by the duplex SMAT/nitriding process. Copyright © 2013 Wiley Periodicals, Inc.

  1. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors

    NASA Astrophysics Data System (ADS)

    Hsiao, Chaio-Ru; Lin, Cheng-Wei; Chou, Chia-Man; Chung, Chi-Jen; He, Ju-Liang

    2015-08-01

    This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF4) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF4 (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF4 (fH) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiOx nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The sbnd CF functional group, sbnd CF2 bonding, and SiOx were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply that the pp-HC coating can potentially prevent the formation of thrombi and provide an alternative means of modifying the surfaces of blood-contacting biomaterials.

  2. Synthesis and processing of ELISA polymer substitute: The influence of surface chemistry and morphology on detection sensitivity

    NASA Astrophysics Data System (ADS)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Rothan, Hussin A.; Yusof, Rohana; van der Marel, Cees; Koole, Leo H.

    2014-10-01

    Despite the known drawbacks of enzyme-linked immunosorbent assay (ELISA), one of the deficiencies that have relatively been ignored is the performance of ELISA substrate itself. Polystyrene (PS), as the cost effective material of choice for mass production of ELISA well-plates, has shown obvious lacks of suitable physical and chemical properties for protein attachment. The general concept of this work was to develop a potential substrate that can be suggested as a material of choice for production of a new generation of ELISA analytical kits. Spin-coated thin films of polymethyl methacrylate-co-methacrylic acid (PMMA-co-MAA) on silicon surfaces were designed and processed for detection of dengue virus. Coated surfaces of different molar ratios have been investigated as carboxyl-functionalized layers for obtaining platform for biomolecule immobilization with high level of protein activity. To improve the sensitivity of detection, we have used amine functional "spacers", hexamethylenediamine (HMDA) and polyethyleneimine (PEI), which were covalently bonded to the surfaces of PMMA-co-MAA coatings. Results demonstrate that the variation of surface concentration of carboxyl groups of PMMA-co-MAA can be used to control the amine surface concentration after carbodiimide coupling with HMDA and PEI spacers. The presence of amine spacers increases hydrophilicity of the coatings and significantly impacts the polymer surface morphology. In particular, protein immobilization via amine-bearing spacers has been achieved in two effective steps: (1) carbodiimide bonding between amine spacer molecules and PMMA-co-MAA polymer coatings; and (2) covalent immobilization of antibody via glutaraldehyde reaction with amine groups from amine-treated surfaces. The application of PEI spacer in comparison to HMDA has shown much higher intensity of detection signal in ELISA experiment, indicating better immobilization efficiency and preservation of antibody activity upon attachment to the polymer surface.

  3. Micro and sub-micron surface structuring of AZ31 by laser re-melting and dimpling

    NASA Astrophysics Data System (ADS)

    Furlan, Valentina; Demir, Ali Gökhan; Previtali, Barbara

    2015-12-01

    In this work, the use of ns-pulsed fibre laser for surface structuring of AZ31 Mg alloy is investigated. Surface re-melting was employed to change surface morphology, especially in terms of surface roughness. Dimpling by percussion microdrilling was investigated to control the hole geometry.. With surface remelting mono-directional and homogeneous surfaces were obtained with Fl<500 J/cm2. Above 500 J/cm2 particle generation was observed, which induced sub-micron structure growth with nano-fibrous features. Moreover, surface roughness could be controlled below the initial value and much higher. With dimpling, transformation from gentle to strong ablation was observed at F0=10.3 J/cm2. XRD analysis was employed to link oxide growth to the surface morphology. Tensile tests were carried out to assess the damage on the mechanical properties after surface structuring.

  4. Effects of CO2 laser irradiation on matrix-rich biofilm development formation-an in vitro study.

    PubMed

    Zancopé, Bruna Raquel; Dainezi, Vanessa B; Nobre-Dos-Santos, Marinês; Duarte, Sillas; Pardi, Vanessa; Murata, Ramiro M

    2016-01-01

    A carbon dioxide (CO 2 ) laser has been used to morphologically and chemically modify the dental enamel surface as well as to make it more resistant to demineralization. Despite a variety of experiments demonstrating the inhibitory effect of a CO 2 laser in reduce enamel demineralization, little is known about the effect of surface irradiated on bacterial growth. Thus, this in vitro study was preformed to evaluate the biofilm formation on enamel previously irradiated with a CO 2 laser (λ = 10.6 µM). For this in vitro study, 96 specimens of bovine enamel were employed, which were divided into two groups (n = 48): 1) Control-non-irradiated surface and 2) Irradiated enamel surface. Biofilms were grown on the enamel specimens by one, three and five days under intermittent cariogenic condition in the irradiated and non-irradiated surface. In each assessment time, the biofilm were evaluated by dry weigh, counting the number of viable colonies and, in fifth day, were evaluated by polysaccharides analysis, quantitative real time Polymerase Chain Reaction (PCR) as well as by contact angle. In addition, the morphology of biofilms was characterized by fluorescence microscopy and field emission scanning electron microscopy (FESEM). Initially, the assumptions of equal variances and normal distribution of errors were conferred and the results are analyzed statistically by t-test and Mann Whitney test. The mean of log CFU/mL obtained for the one-day biofilm evaluation showed that there is statistical difference between the experimental groups. When biofilms were exposed to the CO 2 laser, CFU/mL and CFU/dry weight in three day was reduced significantly compared with control group. The difference in the genes expression (Glucosyltransferases (gtfB) and Glucan-binding protein (gbpB)) and polysaccharides was not statically significant. Contact angle was increased relative to control when the surface was irradiated with the CO 2 laser. Similar morphology was also visible with both treatments; however, the irradiated group revealed evidence of melting and fusion in the specimens. In conclusion, CO 2 laser irradiation modifies the energy surface and disrupts the initial biofilm formation.

  5. Generalizing roughness: experiments with flow-oriented roughness

    NASA Astrophysics Data System (ADS)

    Trevisani, Sebastiano

    2015-04-01

    Surface texture analysis applied to High Resolution Digital Terrain Models (HRDTMs) improves the capability to characterize fine-scale morphology and permits the derivation of useful morphometric indexes. An important indicator to be taken into account in surface texture analysis is surface roughness, which can have a discriminant role in the detection of different geomorphic processes and factors. The evaluation of surface roughness is generally performed considering it as an isotropic surface parameter (e.g., Cavalli, 2008; Grohmann, 2011). However, surface texture has often an anisotropic character, which means that surface roughness could change according to the considered direction. In some applications, for example involving surface flow processes, the anisotropy of roughness should be taken into account (e.g., Trevisani, 2012; Smith, 2014). Accordingly, we test the application of a flow-oriented directional measure of roughness, computed considering surface gravity-driven flow. For the calculation of flow-oriented roughness we use both classical variogram-based roughness (e.g., Herzfeld,1996; Atkinson, 2000) as well as an ad-hoc developed robust modification of variogram (i.e. MAD, Trevisani, 2014). The presented approach, based on a D8 algorithm, shows the potential impact of considering directionality in the calculation of roughness indexes. The use of flow-oriented roughness could improve the definition of effective proxies of impedance to flow. Preliminary results on the integration of directional roughness operators with morphometric-based models, are promising and can be extended to more complex approaches. Atkinson, P.M., Lewis, P., 2000. Geostatistical classification for remote sensing: an introduction. Computers & Geosciences 26, 361-371. Cavalli, M. & Marchi, L. 2008, "Characterization of the surface morphology of an alpine alluvial fan using airborne LiDAR", Natural Hazards and Earth System Science, vol. 8, no. 2, pp. 323-333. Grohmann, C.H., Smith, M.J., Riccomini, C., 2011. Multiscale Analysis of Topographic Surface Roughness in the Midland Valley, Scotland. IEEE Transactions on Geoscience and Remote Sensing 49, 1220-1213. Herzfeld, U.C., Higginson, C.A., 1996. Automated geostatistical seafloor classification - Principles, parameters, feature vectors, and discrimination criteria. Computers and Geosciences, 22 (1), pp. 35-52. Smith, M.W. 2014, "Roughness in the Earth Sciences", Earth-Science Reviews, vol. 136, pp. 202-225. Trevisani, S., Cavalli, M. & Marchi, L. 2012, "Surface texture analysis of a high-resolution DTM: Interpreting an alpine basin", Geomorphology, vol. 161-162, pp. 26-39. Trevisani S., Rocca M., 2014. Geomorphometric analysis of fine-scale morphology for extensive areas: a new surface-texture operator. Geophysical Research Abstracts, Vol. 16, EGU2014-5612, 2014. EGU General Assembly 2014.

  6. Effect of laser treatment on the attachment and viability of mesenchymal stem cell responses on shape memory NiTi alloy.

    PubMed

    Chan, C W; Hussain, I; Waugh, D G; Lawrence, J; Man, H C

    2014-09-01

    The objectives of this study were to investigate the effect of laser-induced surface features on the morphology, attachment and viability of mesenchymal stem cells (MSCs) at different periods of time, and to evaluate the biocompatibility of different zones: laser-melted zone (MZ), heat-affected zone (HAZ) and base metal (BM) in laser-treated NiTi alloy. The surface morphology and composition were studied by scanning electron microscope (SEM) and X-ray photoemission spectroscopy (XPS), respectively. The cell morphology was examined by SEM while the cell counting and viability measurements were done by hemocytometer and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. The results indicated that the laser-induced surface features, such as surface roughening, presence of anisotropic dendritic pattern and complete surface Ni oxidation were beneficial to improve the biocompatibility of NiTi as evidenced by the highest cell attachment (4 days of culture) and viability (7 days of culture) found in the MZ. The biocompatibility of the MZ was the best, followed by the BM with the HAZ being the worst. The defective and porous oxide layer as well as the coarse grained structure might attribute to the inferior cell attachment (4 days of culture) and viability (7 days of culture) on the HAZ compared with the BM which has similar surface morphology. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Mechanical properties and fractal analysis of the surface texture of sputtered hydroxyapatite coatings

    NASA Astrophysics Data System (ADS)

    Bramowicz, Miroslaw; Braic, Laurentiu; Azem, Funda Ak; Kulesza, Slawomir; Birlik, Isil; Vladescu, Alina

    2016-08-01

    This aim of this work is to establish a relationship between the surface morphology and mechanical properties of hydroxyapatite coatings prepared using RF magnetron sputtering at temperatures in the range from 400 to 800 °C. The topography of the samples was scanned using atomic force microscopy, and the obtained 3D maps were analyzed using fractal methods to derive the spatial characteristics of the surfaces. X-ray photoelectron spectroscopy revealed the strong influence of the deposition temperature on the Ca/P ratio in the growing films. The coatings deposited at 600-800 °C exhibited a Ca/P ratio between 1.63 and 1.69, close to the stoichiometric hydroxyapatite (Ca/P = 1.67), which is crucial for proper osseointegration. Fourier-transform infrared spectroscopy showed that the intensity of phosphate absorption bands increased with increasing substrate temperature. Each sample exhibited well defined and sharp hydroxyapatite band at 566 cm-1, although more pronounced for the coatings deposited above 500 °C. Both the hardness and elastic modulus of the coated samples decrease with increasing deposition temperature. The surface morphology strongly depends on the deposition temperature. The sample deposited at 400 °C exhibits circular cavities dug in an otherwise flat surface. At higher deposition temperatures, these cavities increase in size and start to overlap each other so that at 500 °C the surface is composed of closely packed peaks and ridges. At that point, the characteristics of the surface turns from the dominance of cavities to grains of similar size, and develops in a similar manner at higher temperatures.

  8. Diagnostics of microwave assisted electron cyclotron resonance plasma source for surface modification of nylon 6

    NASA Astrophysics Data System (ADS)

    More, Supriya E.; Das, Partha Sarathi; Bansode, Avinash; Dhamale, Gayatri; Ghorui, S.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Mathe, Vikas L.

    2018-01-01

    Looking at the increasing scope of plasma processing of materials surface, here we present the development and diagnostics of a microwave assisted Electron Cyclotron Resonance (ECR) plasma system suitable for surface modification of polymers. Prior to the surface-treatment, a detailed diagnostic mapping of the plasma parameters throughout the reactor chamber was carried out by using single and double Langmuir probe measurements in Ar plasma. Conventional analysis of I-V curves as well as the elucidation form of the Electron Energy Distribution Function (EEDF) has become the source of calibration of plasma parameters in the reaction chamber. The high energy tail in the EEDF of electron temperature is seen to extend beyond 60 eV, at much larger distances from the ECR zone. This proves the suitability of the rector for plasma processing, since the electron energy is much beyond the threshold energy of bond breaking in most of the polymers. Nylon 6 is used as a representative candidate for surface processing in the presence of Ar, H2 + N2, and O2 plasma, treated at different locations inside the plasma chamber. In a typical case, the work of adhesion is seen to almost get doubled when treated with oxygen plasma. Morphology of the plasma treated surface and its hydrophilicity are discussed in view of the variation in electron density and electron temperature at these locations. Nano-protrusions arising from plasma treatment are set to be responsible for the hydrophobicity. Chemical sputtering and physical sputtering are seen to influence the surface morphology on account of sufficient electron energies and increased plasma potential.

  9. The use of an ion-beam source to alter the surface morphology of biological implant materials

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.

    1978-01-01

    An electron bombardment, ion thruster was used as a neutralized-ion beam sputtering source to texture the surfaces of biological implant materials. Scanning electron microscopy was used to determine surface morphology changes of all materials after ion-texturing. Electron spectroscopy for chemical analysis was used to determine the effects of ion texturing on the surface chemical composition of some polymers. Liquid contact angle data were obtained for ion textured and untextured polymer samples. Results of tensile and fatigue tests of ion-textured metal alloys are presented. Preliminary data of tissue response to ion textured surfaces of some metals, polytetrafluoroethylene, alumina, and segmented polyurethane were obtained.

  10. Optical properties and surface morphology studies of palladium contacts on mercuric iodide single crystals

    NASA Astrophysics Data System (ADS)

    George, M. A.; Azoulay, M.; Burger, A.; Biao, Y.; Silberman, E.; Nason, D.

    1993-04-01

    Palladium is chemically suitable for electric contacts on mercuric iodide detectors for photon and nuclear radiation detection, so the understanding of palladium contacts is important for fundamental and practical scientific purposes. A study has been conducted on the surface morphology of evaporated contacts using atomic force microscopy (AFM) and optical transmission and reflection. Evaporated palladium coatings are typically nonuniform and may deposit selectively on mercuric iodide surface defects. Reflection measurements show that coating thickness and surface treatment affect intensity, position, and shape of a reflected peak characteristic of the mercuric iodide structure. Results indicate that the band gap energy in the surface of the mercuric iodide is lowered by palladium contacts.

  11. Surface Selective Oxidation of Sn-Added CMnSi TRIP Steel

    NASA Astrophysics Data System (ADS)

    Cho, Lawrence; Seo, Eun Jung; Jung, Geun Su; Suh, Dong Woo; De Cooman, Bruno C.

    2016-04-01

    The influence of the addition of Sn on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. A reference TRIP steel and TRIP steels containing Sn in the range of 0.05 to 1 wt pct were intercritically annealed at 1093 K (820 °C) in an N2+ 5 pct H2 gas atmosphere with a dew point of -60 °C. The thin-film oxides formed on the surface of the Sn-added CMnSi TRIP steel were investigated using transmission electron microscopy and 3-dimensional atom probe tomography. The addition of Sn (≥0.05 wt pct) changed the morphology of the xMnO·SiO2 surface oxides from a continuous film morphology to a lens-shaped island morphology. It also suppressed the formation of the Mn-rich oxides of MnO and 2MnO·SiO2. The changes in the morphology and chemistry of the surface oxides were clearly related to the surface segregation of Sn, which appeared to result in a decrease of the oxygen permeability at the surface. The formation of lens-shaped oxides improved the wettability of the CMnSi TRIP steel surface by the molten Zn. The improved wetting effect was attributed to an increased area fraction of the surface where the oxide layer was thinner. This enabled a direct, unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer in the initial stages of the hot dipping. The addition of a small amount of Sn was also found to decrease significantly the density of Zn-coating defects on CMnSi TRIP steel.

  12. Controls on valley spacing in landscapes subject to rapid base-level fall

    USGS Publications Warehouse

    McGuire, Luke; Pelletier, John D.

    2015-01-01

    What controls the architecture of drainage networks is a fundamental question in geomorphology. Recent work has elucidated the mechanisms of drainage network development in steadily uplifting landscapes, but the controls on drainage-network morphology in transient landscapes are relatively unknown. In this paper we exploit natural experiments in drainage network development in incised Plio-Quaternary alluvial fan surfaces in order to understand and quantify drainage network development in highly transient landscapes, i.e. initially unincised low-relief surfaces that experience a pulse of rapid base-level drop followed by relative base-level stasis. Parallel drainage networks formed on incised alluvial-fan surfaces tend to have a drainage spacing that is approximately proportional to the magnitude of the base-level drop. Numerical experiments suggest that this observed relationship between the magnitude of base-level drop and mean drainage spacing is the result of feedbacks among the depth of valley incision, mass wasting and nonlinear increases in the rate of colluvial sediment transport with slope gradient on steep valley side slopes that lead to increasingly wide valleys in cases of larger base-level drop. We identify a threshold magnitude of base-level drop above which side slopes lengthen sufficiently to promote increases in contributing area and fluvial incision rates that lead to branching and encourage drainage networks to transition from systems of first-order valleys to systems of higher-order, branching valleys. The headward growth of these branching tributaries prevents the development of adjacent, ephemeral drainages and promotes a higher mean valley spacing relative to cases in which tributaries do not form. Model results offer additional insights into the response of initially unincised landscapes to rapid base-level drop and provide a preliminary basis for understanding how varying amounts of base-level change influence valley network morphology.

  13. Soil morphology of a debris flow chronosequence in a coniferous forest, southern California, USA

    USGS Publications Warehouse

    Turk, J.K.; Goforth, B.R.; Graham, R.C.; Kendrick, K.J.

    2008-01-01

    Soils on a series of debris flow deposits, ranging from < 1 to 244??years old, were described and sampled in order to investigate the early stages of soil development. The parent material at the site is debris flow regolith, composed mainly of gneiss, the soil moisture regime is xeric, and the vegetation is mixed coniferous forest. Ages of the deposits were assessed using dendrochronology. Morphologic trends in the organic horizons included a thickening of the humus form over time, along with the development of Fm and Hr horizons. The humus forms underwent a progression from Mormodors (20??years old), to Hemimors (26-101??years old), and finally Lignomors (163??years old) and Resimors (184-244??years old). Changes in physical properties of the uppermost mineral horizons as a function of increasing age included a decrease in the volume of coarse fragments, a linear decrease in bulk density, and a darkening and reddening of the soil color. No significant soil development took place in the subsoil during the time span of this chronosequence. The soils described were classified as Typic Xerofluvents and Typic Xerorthents (Regosols and Leptosols). Buried A horizons were observed in many of the soils. Where the A horizons could be linked to dendrochronology to assess the age of the buried surface, we found that the properties of the buried A horizons do not serve as a good indicator of the age of the surface. This study suggests rapid development of the humus form profile (organic horizons and A horizon) following debris flow deposition and rapid degradation of these horizons when the debris flow surface is buried. ?? 2008 Elsevier B.V.

  14. Live celloidosome structures based on the assembly of individual cells by colloid interactions.

    PubMed

    Fakhrullin, Rawil F; Brandy, Marie-Laure; Cayre, Olivier J; Velev, Orlin D; Paunov, Vesselin N

    2010-10-14

    A new class of colloid structures, celloidosomes, has been developed which represent hollow microcapsules whose membranes consist of a single monolayer of living cells. Two routes for producing these structures were designed based on templating of: (i) air bubbles and (ii) anisotropic microcrystals of calcium carbonate with living cells, which allowed us to fabricate celloidosomes of spherical, rhombohedral and needle-like morphologies. Air microbubbles were templated by yeast cells coated with poly(allylamine hydrochloride) (PAH), then coated with carboxymethylcellulose and rehydrated resulting in the formation of spherical multicellular structures. Similarly, calcium carbonate microcrystals of anisotropic shapes were coated with several consecutive layers of oppositely charged polyelectrolytes to obtain a positive surface charge which was used to immobilise yeast cells coated with anionic polyelectrolyte of their surfaces. After dissolving of sacrificial cores, hollow multicellular structures were obtained. The viability of the cells in the produced structures was confirmed by using fluorescein diacetate. In order to optimize the separation of celloidosomes from free cells magnetic nanoparticles were immobilised onto the surface of templates prior to the cells deposition, which greatly facilitated the separation using a permanent magnet. Two alternative approaches were developed to form celloidosome structures using magnetically functionalised core-shell microparticles which resulted in the formation of celloidosomes with needle-like and cubic-like geometries which follows the original morphology of the calcium carbonate microcrystals. Our methods for fabrication of celloidosomes may found applications in the development of novel symbiotic bio-structures, artificial multicellular organisms and in tissue engineering. The unusual structure of celloidosomes resembles the primitive forms of multicellular species, like Volvox, and other algae and could be regarded as one possible mechanism of the evolutionary development of multicellularity.

  15. Influence of lead ions on the macromorphology of electrodeposited zinc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuda, Tetsuaki; Tobias, Charles W.

    1981-09-01

    The morphology of zinc as it is electrodeposited from acid solutions demonstrates a remarkable imprint of electrolyte flow conditions. The development of macromorphology of zinc deposits has been investigated under galvanostatic conditions on a rotating plantinum disk electrode by use of photomacrography, scanning electron microscopy, electron probe microanalysis and Auger microprobe analysis. Logarithmic spiral markings, which reflect the hydrodynamic flow on a rotating disk, appear in a certain region of current density well below the limiting current density. Morphological observations revealed the major influence of trace lead ions on the amplifications of surface roughness through coalescence and preferred growth ofmore » initial protrusions. Results obtained from ultra-pure electrolyte suggest preferred crystal growth towards well-mixed orientation in the concentration field caused by slight differences in crystallization overpotential. A qualitative model involving a coupling mechanism between the evolving surface roughness and instability phenomena in the boundary layer is advanced to explain the formation of spiral patterns.« less

  16. Optimization of hetero-epitaxial growth for the threading dislocation density reduction of germanium epilayers

    NASA Astrophysics Data System (ADS)

    Chong, Haining; Wang, Zhewei; Chen, Chaonan; Xu, Zemin; Wu, Ke; Wu, Lan; Xu, Bo; Ye, Hui

    2018-04-01

    In order to suppress dislocation generation, we develop a "three-step growth" method to heteroepitaxy low dislocation density germanium (Ge) layers on silicon with the MBE process. The method is composed of 3 growth steps: low temperature (LT) seed layer, LT-HT intermediate layer as well as high temperature (HT) epilayer, successively. Threading dislocation density (TDD) of epitaxial Ge layers is measured as low as 1.4 × 106 cm-2 by optimizing the growth parameters. The results of Raman spectrum showed that the internal strain of heteroepitaxial Ge layers is tensile and homogeneous. During the growth of LT-HT intermediate layer, TDD reduction can be obtained by lowering the temperature ramping rate, and high rate deposition maintains smooth surface morphology in Ge epilayer. A mechanism based on thermodynamics is used to explain the TDD and surface morphological dependence on temperature ramping rate and deposition rate. Furthermore, we demonstrate that the Ge layer obtained can provide an excellent platform for III-V materials integrated on Si.

  17. Modification of Semiconductor Surfaces through Si-N Linkages by Wet-Chemistry Approaches and Modular Functionalization of Zinc Oxide Surfaces for Chemical Protection of Material Morphology

    NASA Astrophysics Data System (ADS)

    Gao, Fei

    Semiconductor substrates are widely used in many applications. Multiple practical uses involving these materials require the ability to tune their physical and chemical properties to adjust those to a specific application. In recent years, surface and interface reactions have affected dramatically device fabrication and material design. Novel surface functionalization techniques with diverse chemical approaches make the desired physical, thermal, electrical, and mechanical properties attainable. Meanwhile, the modified surface can serve as one of the most important key steps for further assembly process in order to make novel devices and materials. In the following chapters, novel chemical approaches to the functionalization of silicon and zinc oxide substrates will be reviewed and discussed. The specific functionalities including amines, azides, and alkynes on surfaces of different materials will be applied to address subsequent attachment of large molecules and assembly processes. This research is aimed to develop new strategies for manipulating the surface properties of semiconductor materials in a controlled way. The findings of these investigations will be relevant for future applications in molecular and nanoelectronics, sensing, and solar energy conversion. The ultimate goals of the projects are: 1) Preparation of an oxygen-and carbon-free silicon surface based exclusively on Si-N linkages for further modification protocols.. This project involves designing the surface reaction of hydrazine on chlorine-terminated silicon surface, introduction of additional functional group through dehydrohalogenation condensation reaction and direct covalent attachment of C60. 2) Demonstrating alternative method to anchor carbon nanotubes to solid substrates directly through the carbon cage.. This project targets surface modification of silicon and gold substrates with amine-terminated organic monolayers and the covalent attachment of nonfunctionalized and carboxylic acid-functionalized carbon nanotubes. 3) Designing a universal method for the modular functionalization of zinc oxide surface for the chemical protection of material morphology.. This project involves surface modification of zinc oxide nanopowder under vacuum condition with propiolic acid, followed by "click" reaction. A combination of spectroscopy and microscopy techniques was utilized to study the surface functionalization and assembly processes. Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and time of fight secondary ion mass spectroscopy (ToF-SIMS) were employed to elucidate the chemical structure of the modified surface. Atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were combined to obtain the surface morphological information. Density functional theory (DFT) calculations were applied to confirm the experimental results and to suggest plausible reaction mechanisms. Other complementary techniques for these projects also include nuclear magnetic resonance (NMR) spectroscopy to identify the chemical species on the surface and charge-carrier lifetime measurements to evaluate the electronic property of C60-modified silicon surface.

  18. Approximate cluster analysis method and three-dimensional diagram of optical characteristics of lunar surface

    NASA Astrophysics Data System (ADS)

    Yevsyukov, N. N.

    1985-09-01

    An approximate isolation algorithm for the isolation of multidimensional clusters is developed and applied in the construction of a three-dimensional diagram of the optical characteristics of the lunar surface. The method is somewhat analogous to that of Koontz and Fukunaga (1972) and involves isolating two-dimensional clusters, adding a new characteristic, and linearizing, a cycle which is repeated a limited number of times. The lunar-surface parameters analyzed are the 620-nm albedo, the 620/380-nm color index, and the 950/620-nm index. The results are presented graphically; the reliability of the cluster-isolation process is discussed; and some correspondences between known lunar morphology and the cluster maps are indicated.

  19. Surface/interface effects on high-performance thin-film all-solid-state Li-ion batteries

    DOE PAGES

    Gong, Chen; Ruzmetov, Dmitry; Pearse, Alexander; ...

    2015-10-05

    The further development of all-solid-state batteries is still limited by the understanding/engineering of the interfaces formed upon cycling. Here, we correlate the morphological, chemical, and electrical changes of the surface of thin-film devices with Al negative electrodes. The stable Al–Li–O alloy formed at the stress-free surface of the electrode causes rapid capacity fade, from 48.0 to 41.5 μAh/cm 2 in two cycles. Surprisingly, the addition of a Cu capping layer is insufficient to prevent the device degradation. Furthermore, Si electrodes present extremely stable cycling, maintaining >92% of its capacity after 100 cycles, with average Coulombic efficiency of 98%.

  20. Reconditioning perovskite films in vapor environments through repeated cation doping

    NASA Astrophysics Data System (ADS)

    Boonthum, Chirapa; Pinsuwan, Kusuma; Ponchai, Jitprabhat; Srikhirin, Toemsak; Kanjanaboos, Pongsakorn

    2018-06-01

    Perovskites have attracted considerable attention for application as high-efficiency photovoltaic devices owing to their low-cost and low-temperature fabrication. A good surface and high crystallinity are necessary for high-performance devices. We examine the negative effects of chemical ambiences on the perovskite crystal formation and morphology. The repeated cation doping (RCD) technique was developed to remedy these issues by gradually dropping methylammonium ions on top of about-to-form perovskite surfaces to cause recrystallization. RCD promotes pinhole-free, compact, and polygonal-like surfaces under various vapor conditions. Furthermore, it enhances the electronic properties and crystallization. The benefits of RCD extend beyond perovskites under vapor ambiences, as it can improve regular and wasted perovskites.

Top