Sample records for surface muscle electrostimulation

  1. Effects of electrostimulation on the vastus medialis in the deoxygenation and the blood volume signals obtained by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Verdaguer-Codina, Joan

    1996-12-01

    The electrotherapy field has been generated as a technique to improve the muscles of people affected by various pathologies. For this reason the electrotherapy is increasing its use as part of a treatment in muscle therapy. However there are not studies related to electrostimulation and near-IR spectroscopy. This work was designed to assess by near-IR spectroscopy the effects of electrostimulation in the vastus medialis, applying a tetanic contraction in this muscle with a compensated rectangular impulse at 100Hz, tolerating the subject 10mA of current. In the results obtained, we have not observed significant variations in the deoxygenation and blood volume signals, whereas as light change was observed comparing the calibration signals before and after to apply electrostimulation. It is postulated that electrostimulation only increases the diameter of the vessels, because the muscle doesn't do a metabolic work, and the heart rate frequency of the subject has not increased.

  2. Electrostimulation of muscles as a method for the treatment and prophylaxis of hemodynamic disturbances during prolonged hypokinesia

    NASA Technical Reports Server (NTRS)

    Dukhin, Y. O.; Zhukovskyy, L. Y.

    1980-01-01

    Hemodynamic and periopheral circulation indexes were recorded before, at the end of, and 5 days after 10 days of electrostimulation for 45 min daily, at rest and after a physical loading test. It was found that stroke and minute volume, cardiac output, and regional circulation improved and heart rate and peripheral resistance decreased. The functional state of the cardiac muscle and vascular tone are improved by electrostimulation of selected groups of skeletal muscles.

  3. Concordance of the location of the innervation zone of the tibialis anterior muscle using voluntary and imposed contractions by electrostimulation.

    PubMed

    Guzmán-Venegas, R A; Bralic, M P; Cordero, J J; Cavada, G; Araneda, O F

    2016-04-01

    The innervation zone (IZ) corresponds to the location of the neuromuscular junctions. Its location can be determined by using arranged surface linear electrode arrays. Typically, voluntary muscle contractions (VC) are used in this method. However, it also may be necessary to locate the IZ under clinical conditions such as spasticity, in which this type of contraction is difficult to perform. Therefore, contractions imposed by electrostimulation (ES) can be an alternative. There is little background comparing the locations of IZ obtained by two different types of contractions. Evaluate the concordance between using voluntary and imposed contractions from electrostimulation in order to determine the location of the innervation zone of the tibialis anterior muscle in healthy volunteers. The tibialis anterior (TA) muscle of sixteen volunteers (men: 8; women: 8; age: 22.1±1.4years, weight: 61.6±7.5kg, height: 167.1±7.5cm) were evaluated using a linear electrode array. The IZ of the TA muscle was located using two types of muscle contractions, voluntary (10% MVC) and imposed contractions by ES. The concordance between both conditions was evaluated using the Bland-Altman method and the concordance correlation coefficient (CCC). The analyses were applied to the absolute and relative positions to the length of an anatomical landmark frame. CCC for absolute position was 0.98 (p<0.0001, 95% CI [0.98-1.00], and CCC for relative positions also was 0.98 (p<0.0001, 95% CI [0.97-1.00]). The Bland-Altman analysis for absolute data showed an average difference of -0.63mm (SD: 4.1). Whereas, for adjusted data, the average difference was -0.20% (SD: 1.2). The power of the results, based on absolute data, was 98%, whereas for relative data, 82%. In healthy volunteers, there was a substantially concordance between the location of the IZ of the TA muscle derived from using contractions imposed by ES and the location derived from using VC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Extracellular formation and uptake of adenosine during skeletal muscle contraction in the rat: role of adenosine transporters

    PubMed Central

    Lynge, J; Juel, C; Hellsten, Y

    2001-01-01

    The existence of adenosine transporters in plasma membrane giant vesicles from rat skeletal muscles and in primary skeletal muscle cell cultures was investigated. In addition, the contribution of intracellularly or extracellularly formed adenosine to the overall extracellular adenosine concentration during muscle contraction was determined in primary skeletal muscle cell cultures. In plasma membrane giant vesicles, the carrier-mediated adenosine transport demonstrated saturation kinetics with Km= 177 ± 36 μm and Vmax= 1.9 ± 0.2 nmol ml−1 s−1 (0.7 nmol (mg protein)−1 s−1). The existence of an adenosine transporter was further evidenced by the inhibition of the carrier-mediated adenosine transport in the presence of NBMPR (nitrobenzylthioinosine; 72 % inhibition) or dipyridamol (64 % inhibition; P < 0.05). In primary skeletal muscle cells, the rate of extracellular adenosine accumulation was 5-fold greater (P < 0.05) with electrical stimulation than without electrical stimulation. Addition of the adenosine transporter inhibitor NBMPR led to a 57 % larger (P < 0.05) rate of extracellular adenosine accumulation in the electro-stimulated muscle cells compared with control cells, demonstrating that adenosine is taken up by the skeletal muscle cells during contractions. Inhibition of ecto-5′-nucleotidase with AOPCP in electro-stimulated cells resulted in a 70 % lower (P < 0.05) rate of extracellular adenosine accumulation compared with control cells, indicating that adenosine to a large extent is formed in the extracellular space during contraction. The present study provides evidence for the existence of an NBMPR-sensitive adenosine transporter in rat skeletal muscle. Our data furthermore demonstrate that the increase in extracellular adenosine observed during electro-stimulation of skeletal muscle is due to production of adenosine in the extracellular space of skeletal muscle and that adenosine is taken up rather than released by the skeletal muscle cells during contraction. PMID:11731589

  5. Transcutaneous calf-muscle electro-stimulation: A prospective treatment for diabetic claudicants?

    PubMed

    Ellul, Christian; Gatt, Alfred

    2016-11-01

    First-line therapy for claudicants with diabetes include supervised exercise programmes to improve walking distance. However, exercise comes with a number of barriers and may be contraindicated in certain conditions. The aim of this study was to evaluate whether calf-muscle electro-stimulation improves claudication distance. A prospective, one-group, pretest-posttest study design was employed on 40 participants living with type 2 diabetes mellitus, peripheral artery disease (ankle-brachial pressure index < 0.90) and calf-muscle claudication. Calf-muscle electro-stimulation of varying frequencies (1-250 Hz) was applied on both ischaemic limbs (N = 80) for 1 h per day for 12 consecutive weeks. The absolute claudication distance was measured at baseline and following the intervention. The cohort (n = 40; 30 males; mean age = 71 years; mean ankle-brachial pressure index = 0.70) registered a mean baseline absolute claudication distance of 333.71 m (standard deviation = 208). Following 91.68 days (standard deviation = 6.23) of electrical stimulation, a significant mean increase of 137 m (standard deviation = 136) in the absolute claudication distance was registered (p = 0.000, Wilcoxon signed rank test). Electrical stimulation of varying low to high frequencies on ischaemic calf muscles significantly increased the maximal walking capacity in claudicants with type 2 diabetes. This therapeutic approach may be considered in patients with impaired exercise tolerance or as an adjunct treatment modality. © The Author(s) 2016.

  6. High variability of facial muscle innervation by facial nerve branches: A prospective electrostimulation study.

    PubMed

    Raslan, Ashraf; Volk, Gerd Fabian; Möller, Martin; Stark, Vincent; Eckhardt, Nikolas; Guntinas-Lichius, Orlando

    2017-06-01

    To examine by intraoperative electric stimulation which peripheral facial nerve (FN) branches are functionally connected to which facial muscle functions. Single-center prospective clinical study. Seven patients whose peripheral FN branching was exposed during parotidectomy under FN monitoring received a systematic electrostimulation of each branch starting with 0.1 mA and stepwise increase to 2 mA with a frequency of 3 Hz. The electrostimulation and the facial and neck movements were video recorded simultaneously and evaluated independently by two investigators. A uniform functional allocation of specific peripheral FN branches to a specific mimic movement was not possible. Stimulation of the whole spectrum of branches of the temporofacial division could lead to eye closure (orbicularis oculi muscle function). Stimulation of the spectrum of nerve branches of the cervicofacial division could lead to reactions in the midface (nasal and zygomatic muscles) as well as around the mouth (orbicularis oris and depressor anguli oris muscle function). Frontal and eye region were exclusively supplied by the temporofacial division. The region of the mouth and the neck was exclusively supplied by the cervicofacial division. Nose and zygomatic region were mainly supplied by the temporofacial division, but some patients had also nerve branches of the cervicofacial division functionally supplying the nasal and zygomatic region. FN branches distal to temporofacial and cervicofacial division are not necessarily covered by common facial nerve monitoring. Future bionic devices will need a patient-specific evaluation to stimulate the correct peripheral nerve branches to trigger distinct muscle functions. 4 Laryngoscope, 127:1288-1295, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  7. [Treatment of stress urinary incontinence with perineal biofeedback by using superficial electrodes].

    PubMed

    Lorenzo Gómez, M F; Silva Abuín, J M; García Criado, F J; Geanini Yagüez, A; Urrutia Avisrror, M

    2008-06-01

    We analyze the pelvic floor muscles treatment outcomes by using biofeedback (BFB) with electromyography with superficial electrodes in women diagnosed as having stress urinary incontinence (SUI). Besides, we compare this treatment with pelvic floor muscle exercises (PFME) plus vaginal electrostimulation. 85 women with stress urinary incontinence, aged 42 - 74 years. We divided the patients in two groups: Group 1 (N = 50): This patients carry out a perineal biofeedback with superficial electrodes without electrostimulation, and Group 2 (N = 35): This patients were treated with pelvis floor muscle exercices and vaginal electrostimulation. All patients carry out two session per week (of 30 minutes each one) during ten weeks. We assess the outcomes through international urinary incontinence questionnaires (IU-5 and ICIQ-SF) and urinary incontinence related quality of life test (King's questionnaire). Student t-test and Fisher Exact test were used, p < 0.05 was considered statistically significant. No difference was found in the age average of both groups. 84% of patients of group 1 and 80% of patients of group 2 were cured with the treatment. We assumed they were cured when incontinence episodes not happened or they do not need to use absorbent materials. In the Group 1, 50% of patients in the fourth week and 84% in the tenth week were cured. In the Group 2, 71.42% of patients in the fourth week and 80% in the tenth week were cured. In the Group 2, eight patients (22.85%) complained side effects. Both groups improved the quality of life similarly. Grade 1 and grade 2 stress urinary incontinence treatment by using perineal biofeedback with superficial electrodes electromyography is better or similar to more invasive treatments. Also pelvic floor muscle exercices plus vaginal electrostimulation have good outcomes although some patients complain side effects. Both conservative treatments are effective and feasible.

  8. Investigating the effectiveness of postural muscle electrostimulation and static posturography feedback exercises in elders with balance disorder.

    PubMed

    Alptekin, Kerem; Karan, Ayse; Dıracoglu, Demirhan; Yildiz, Aysel; Baskent, Akin; Eskiyurt, Nurten

    2016-01-01

    Deterioration associated with aging in the erect posture and balance to change the location of the center increased the rate of fall in older age is one of the reasons. Loss of muscle strength is one of the major factors affecting the posture. In this prospective, randomized and controlled study, it was aimed to investigate the effectiveness of strengthening postural muscles through electrostimulation or by applying biofeedback exercises with static posturography in patients aged 60 years and over with balance disorder. Patients aged between 60-80 years, who applied to Istanbul Faculty of Medicine Physical Medicine and Rehabilitation Department outpatient clinic and had been diagnosed with balance disorder using the Timed Up and Go (TUG) test, were included. 250 patients were screened, from them 67 patients were enrolled and 57 of them completed the study. Patients were randomized to three groups. The patients in Tetrax® group (TG) group (n:18) participated in a 15-minute exercise with Tetrax® which consisted of 15 minutes exercise session 3 times weekly for 4 weeks. The patients in EG group (n:19) received an electrostimulation program of postural muscles of 40 minutes per session 3 times weekly for 4 weeks. Patients in the control group (n:20) did 6-week balance exercises which were performed by other groups as well. 48 out of 57 patients attended the 6th-month control. As determinants of balance status Timed Up and Go Test (TUG), Berg Balance Scale (BBS) and Fall Index measured by Tetrax® were calculated at baseline, 1-month and 6-month follw up assesments. The patient's quality of life was assesed by Turkish version of World Health Organisation Quality of Life Questionnaire in Older Adults (WHOQOL-OLD.TR) at baseline and 6-month follow up assesments. TUG values in both EG and TG decreased significantly between baseline assesment and 1-month (mean differences for TG: -4,00 ± 1,309 and EG -2,588 ± 1,839 p= 0,002 for the each of groups) and baseline assesment and 6-month (mean differences for TG: -2,933± 1,223 and EG -2,058 ± 1,477 p= 0,003 for the each of groups). A significant increase was determined in BBS values between baseline and 1-month (mean differences for TG: 4.000 ± 2,360 and EG: 3,529 ± 2,672 p= 0,031 for the each of groups). Fall Index (FI) measured by Tetrax® decreased between baseline assesment and 1-month (p= 0,185), and 6-month (p= 0,086) respectively, also between 1-month and 6-month follow up assesments (p= 0,627), but all of them were not significant changes. In all three groups the quality of life (p= 0,951) improved. Exercises conducted with Tetrax® were more effective than electrostimulation of postural muscles in increasing TUG values and decreasing BBS values. Even though applying electrostimulation to postural muscles affected patients positively compared to pre-treatment, exercises performed with Tetrax® were more effective than the electrostimulation protocol to postural muscles in reducing balance disorder and this well-being continued even in the 6th month.

  9. The Effectiveness of Calf Muscle Electrostimulation on Vascular Perfusion and Walking Capacity in Patients Living With Type 2 Diabetes Mellitus and Peripheral Artery Disease.

    PubMed

    Ellul, Christian; Formosa, Cynthia; Gatt, Alfred; Hamadani, Auon Abbas; Armstrong, David G

    2017-06-01

    The aim of the study was to explore calf muscle electrostimulation on arterial inflow and walking capacity in claudicants with peripheral artery disease and diabetes mellitus. A prospective, 1-group, pretest-posttest study design was used on 40 high-risk participants (n = 40) who exhibited bilateral limb ischemia (ankle brachial pressure index [ABPI] <0.90), diabetes mellitus, and calf muscle claudication. A program of calf muscle electrical stimulation with varying frequency (1-250 Hz) was prescribed for 1 hour per day for 12 weeks. Spectral waveforms analysis, ABPI, absolute claudication distance (ACD), and thermographic temperature patterns across 4 specified regions of interest (hallux, medial forefoot, lateral forefoot, heel) at rest and after exercise, were recorded at baseline and following intervention to evaluate for therapeutic outcomes. A significant improvement in ACD and ABPI was registered following the intervention ( P = .000 and P = .001, respectively). Resting foot temperatures increased significantly ( P = .000) while the postexercise temperature drops were halved across all regions at follow-up, with hallux ( P = .005) and lateral forefoot ( P = .038) reaching statistical significance. Spectral Doppler waveforms were comparable ( P = .304) between both serial assessments. Electrical stimulation of varying frequency for 1 hour per day for 12 consecutive weeks registered statistically significant improvement in outcome measures that assess arterial inflow and walking capacity in claudicants with diabetes mellitus. These results favor the use of electrostimulation as a therapeutic measure in this high-risk population.

  10. Reflection of induced and amplified food motivation in impulse activity of the masticatory muscles during electrostimulation of the "hunger center" in the lateral hypothalamus in rabbits.

    PubMed

    Ignatova, J P; Kromin, A A

    2012-04-01

    We studied reflection of artificially induced and amplified food motivation in impulse activity of the masticatory muscles during electrostimulation of "hunger center" of the lateral hypothalamus in the absence and presence of food. The threshold stimulation of the lateral hypothalamus in hungry and satiated animals in the absence of food induced incessant food-procuring behavior paralleled by regular generation of spike bursts in masticatory muscles with biomodal distributions of intervals between pulses. This reaction of masticatory muscles during stimulation of the lateral hypothalamus in the absence of food was an example of the anticipatory reaction reflecting characteristics of the action result acceptor. Higher level of hunger motivation during threshold stimulation of the lateral hypothalamus in hungry and satiated rabbits in the course of effective food-procuring behavior increased the incidence of spike burst generation during the food capture phase, but did not modify this parameter during the chewing phase. Impulse activity of the masticatory muscles reflected convergent interactions of food motivation and support excitation on neurons of the central generator of chewing pattern.

  11. Muscle atrophy associated with microgravity in rat: Basic data for countermeasures

    NASA Astrophysics Data System (ADS)

    Falempin, M.; Mounier, Y.

    Morphological, contractile properties and myosin heavy chain (MHC) composition of rat soleus muscles were studied after 2 weeks of unloading (HS) and after 2 weeks of HS associated with selective deafferentation (HS + DEAF) at the level L4 and L5. The same significant reductions in muscle mass and tetanic tension were found after HS and HS + DEAF. However, the transformation of the slow-twitch soleus muscle towards a faster type characterized by a decrease in twitch time parameters and an increase in fast-twitch type MHC isoforms in HS did not appear in HS + DEAF conditions. Our results also showed that a pattern similar to firing rate of motoneurones innervating slow-twitch muscles inhibited the slow to fast fiber changes observed during HS. Nevertheless, neither the loss of mass or force output in the HS muscles were prevented by electrostimulation. Immobilization in a stretched position during HS maintained the muscle wet weight, mechanical and electrophoretical characteristics close to control values. We concluded that the decrease in mechanical strains imposed on the muscle during unloading was the main factor for the development of atrophy, while the kinetic changes might be predominantly modulated by the nervous command. These basic data suggested that some experimental conditions such as electrostimulation or stretching, could participate in countermeasure programmes.

  12. [Pelvic floor muscle training and pelvic floor disorders in women].

    PubMed

    Thubert, T; Bakker, E; Fritel, X

    2015-05-01

    Our goal is to provide an update on the results of pelvic floor rehabilitation in the treatment of urinary incontinence and genital prolapse symptoms. Pelvic floor muscle training allows a reduction of urinary incontinence symptoms. Pelvic floor muscle contractions supervised by a healthcare professional allow cure in half cases of stress urinary incontinence. Viewing this contraction through biofeedback improves outcomes, but this effect could also be due by a more intensive and prolonged program with the physiotherapist. The place of electrostimulation remains unclear. The results obtained with vaginal cones are similar to pelvic floor muscle training with or without biofeedback or electrostimulation. It is not known whether pelvic floor muscle training has an effect after one year. In case of stress urinary incontinence, supervised pelvic floor muscle training avoids surgery in half of the cases at 1-year follow-up. Pelvic floor muscle training is the first-line treatment of post-partum urinary incontinence. Its preventive effect is uncertain. Pelvic floor muscle training may reduce the symptoms associated with genital prolapse. In conclusion, pelvic floor rehabilitation supervised by a physiotherapist is an effective short-term treatment to reduce the symptoms of urinary incontinence or pelvic organ prolapse. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Two years of Functional Electrical Stimulation by large surface electrodes for denervated muscles improve skin epidermis in SCI

    PubMed Central

    Albertin, Giovanna; Kern, Helmut; Hofer, Christian; Guidolin, Diego; Porzionato, Andrea; Rambaldo, Anna; Caro, Raffaele De; Piccione, Francesco; Marcante, Andrea; Zampieri, Sandra

    2018-01-01

    Our previous studies have shown that severely atrophic Quadriceps muscles of spinal cord injury (SCI) patients suffering with complete conus and cauda equina lesions, and thus with permanent denervation-induced atrophy and degeneration of muscle fibers, were almost completely rescued to normal size after two years of home-based Functional Electrical Stimulation (h-bFES). Since we used large surface electrodes to stimulate the thigh muscles, we wanted to know if the skin was affected by long-term treatment. Here we report preliminary data of morphometry of skin biopsies harvested from legs of 3 SCI patients before and after two years of h-bFES to determine the total area of epidermis in transverse skin sections. By this approach we support our recently published results obtained randomly measuring skin thickness in the same biopsies after H-E stain. The skin biopsies data of three subjects, taken together, present indeed a statistically significant 30% increase in the area of the epidermis after two years of h-bFES. In conclusion, we confirm a long term positive modulation of electrostimulated epidermis, that correlates with the impressive improvements of the FES-induced muscle strength and bulk, and of the size of the muscle fibers after 2-years of h-bFES. PMID:29686823

  14. Cardiovascular responses to hypogravic environments

    NASA Technical Reports Server (NTRS)

    Sandler, H.

    1983-01-01

    The cardiovascular deconditioning observed during and after space flight is characterized in a review of human space and simulation studies and animal simulations. The various simulation techniques (horizontal bed rest, head-down tilt, and water immersion in man, and immobilization of animals) are examined, and sample results are presented in graphs. Countermeasures such as exercise regimens, fluid replacement, drugs, venous pooling, G-suits, oscillating beds, electrostimulation of muscles, lower-body negative pressure, body-surface cooling, and hypoxia are reviewed and found to be generally ineffective or unreliable. The need for future space experimentation in both humans and animals is indicated.

  15. [Effect of electrostimulation "hunger center" of lateral hypothalamus on the impulse activity of masticatory muscles in unfed and fed rabbits in the absence and the presence of food].

    PubMed

    Ignatova, Iu P; Kromin, A A

    2011-01-01

    In chronic experiences on rabbits the influence of electrostimulation of "the hunger centres" of the lateral hypothalamus (LH) on impulse activity of chewing muscles of rabbits under the conditions of hunger and satiation was studied. It is established, threshold irritation of the LH of hungry and preliminary fed animals in the absence of food caused the occurrence of incessant search behavior which was followed by the regular generation of bursts of AP by masseter and mylohyoideus muscles with bimodal distributions of interpulse intervals. Such reaction of chewing muscles during irritation of the LH in the absence of food is an example of advancing type reaction. The increase of level of alimentary motivation, arising at threshold irritation of the LH of rabbits under the conditions of hunger and satiety during the resultant food-intake behavior, increased frequency of generation of bursts of AP in a phase of the capture of food, but did not influence on this indicator in a phase of chewing of food. The received results testify about descending stimulating influences of alimentary motivational excitation on neurons of the chewing centre in medulla and on impulse activity of chewing muscles.

  16. Effects of electrostimulation associated with masticatory training in individuals with down syndrome.

    PubMed

    Pinheiro, Denilma Lígia da Silva Alves; Alves, Giorvan Ânderson Dos Santos; Fausto, Fernanda Magda Montenegro; Pessoa, Luciane Spinelli de Figueiredo; Silva, Lidiane Assis da; Pereira, Suzana Maria de Freitas; Almeida, Larissa Nadjara Alves de

    2018-01-01

    Purpose Investigate and measure the effects of electrostimulation on the orofacial musculature and on the chewing, breathing and swallowing functions of individuals with Down syndrome. Methods Study participants were 16 individuals with Down syndrome (six males and 10 females) from an institutional extension project aged nine to 25 years. Speech-language pathology assessment was performed using the protocol of Orofacial Myofunctional Evaluation with Scores (OMES) pre- and post-intervention. This protocol comprised eight weekly electrostimulation sessions. Functional Electrical Stimulation (FES) current was used at a frequency of 10Hz in warm-up and 30Hz in application, intermittent stimulation (cycling pulses) with ON-time of 5s and OFF-time of 10s common to both stages, and pulse width of 200μs in warm-up and 250μs in application. Results Significant differences were observed between pre- and post-application of FES regarding cheek appearance (flaccidity and arching), tongue mobility (right and left laterality), and musculature behavior during performance of functions of the stomatognathic system: respiration, deglutition (lip behavior), and mastication (bite and trituration). Conclusion Effects of electrostimulation associated with masticatory training of the masseter muscles were statistically identified, with functional gains in chewing, breathing and swallowing performance in individuals with Down syndrome.

  17. The SH3 and cysteine-rich domain 3 (Stac3) gene is important to growth, fiber composition, and calcium release from the sarcoplasmic reticulum in postnatal skeletal muscle.

    PubMed

    Cong, Xiaofei; Doering, Jonathan; Mazala, Davi A G; Chin, Eva R; Grange, Robert W; Jiang, Honglin

    2016-01-01

    The SH3 and cysteine-rich domain 3 (Stac3) gene is specifically expressed in the skeletal muscle. Stac3 knockout mice die perinatally. In this study, we determined the potential role of Stac3 in postnatal skeletal muscle growth, fiber composition, and contraction by generating conditional Stac3 knockout mice. We disrupted the Stac3 gene in 4-week-old male mice using the Flp-FRT and tamoxifen-inducible Cre-loxP systems. RT-qPCR and western blotting analyses of the limb muscles of target mice indicated that nearly all Stac3 mRNA and more than 70 % of STAC3 protein were deleted 4 weeks after tamoxifen injection. Postnatal Stac3 deletion inhibited body and limb muscle mass gains. Histological staining and gene expression analyses revealed that postnatal Stac3 deletion decreased the size of myofibers and increased the percentage of myofibers containing centralized nuclei, with no effect on the total myofiber number. Grip strength and grip time tests indicated that postnatal Stac3 deletion decreased limb muscle strength in mice. Muscle contractile tests revealed that postnatal Stac3 deletion reduced electrostimulation-induced but not the ryanodine receptor agonist caffeine-induced maximal force output in the limb muscles. Calcium imaging analysis of single flexor digitorum brevis myofibers indicated that postnatal Stac3 deletion reduced electrostimulation- but not caffeine-induced calcium release from the sarcoplasmic reticulum. This study demonstrates that STAC3 is important to myofiber hypertrophy, myofiber-type composition, contraction, and excitation-induced calcium release from the sarcoplasmic reticulum in the postnatal skeletal muscle.

  18. Efficacy of combined electrostimulation in patients with acute exacerbation of COPD: randomised clinical trial.

    PubMed

    Lopez Lopez, Laura; Granados Santiago, Maria; Donaire Galindo, Maria; Torres Sanchez, Irene; Ortiz Rubio, Araceli; Valenza, Marie Carmen

    2018-04-25

    Muscle dysfunction is very common in patients with chronic obstructive pulmonary disease (COPD). Muscular strength depletion is a result of numerous hospitalisations and this causes an increase in the symptomatology. Numerous interventions have been used in these patients, but there is no consensus on the best. The main objective of this study is to compare the effectiveness of two physiotherapy interventions during hospitalisation in COPD patients. In this clinical trial, we included 39 patients who were randomised into three groups. A control group received standard medical treatment (oxygen therapy and pharmacotherapy), and two groups received, in addition to standard medical treatment, a physiotherapy intervention, one with functional electrostimulation and one with calisthenic exercises. The main variables were the ability to exercise using the Five-time sit-to-stand test as well as the functionality associated with symptomatology, as measured by the London Chest Activity of Daily Living Scale. After comparing the results, there was a significant improvement in dyspnea on discharge versus admission in all three groups. In addition, we found significant differences in functionality, exercise capacity, and fatigue in both intervention groups, being better in the electrostimulation with calisthenic exercises group than in the functional group. An electrostimulation treatment improves the exercise capacity, functionality and fatigue in hospitalised AECOPD patients. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  19. The effect of pelvic floor muscle training alone or in combination with electrostimulation in the treatment of sexual dysfunction in women with multiple sclerosis.

    PubMed

    Lúcio, A C; D'Ancona, C A L; Lopes, M H B M; Perissinotto, M C; Damasceno, B P

    2014-11-01

    Sexual dysfunction (SD) affects up to 80% of multiple sclerosis (MS) patients and pelvic floor muscles (PFMs) play an important role in the sexual function of these patients. The objective of this paper is to evaluate the impact of a rehabilitation program to treat lower urinary tract symptoms on SD of women with MS. Thirty MS women were randomly allocated to one of three groups: pelvic floor muscle training (PFMT) with electromyographic (EMG) biofeedback and sham neuromuscular electrostimulation (NMES) (Group I), PFMT with EMG biofeedback and intravaginal NMES (Group II), and PFMT with EMG biofeedback and transcutaneous tibial nerve stimulation (TTNS) (Group III). Assessments, before and after the treatment, included: PFM function, PFM tone, flexibility of the vaginal opening and ability to relax the PFMs, and the Female Sexual Function Index (FSFI) questionnaire. After treatment, all groups showed improvements in all domains of the PERFECT scheme. PFM tone and flexibility of the vaginal opening was lower after the intervention only for Group II. All groups improved in arousal, lubrication, satisfaction and total score domains of the FSFI questionnaire. This study indicates that PFMT alone or in combination with intravaginal NMES or TTNS contributes to the improvement of SD. © The Author(s), 2014.

  20. Fast-to-slow transformation and nuclear import/export kinetics of the transcription factor NFATc1 during electrostimulation of rabbit muscle cells in culture

    PubMed Central

    Kubis, Hans-Peter; Scheibe, Renate J; Meißner, Joachim D; Hornung, Gunther; Gros, Gerolf

    2002-01-01

    Contractile activity imposed by chronic electrical stimulation of a primary skeletal muscle cell culture grown on microcarriers over several days led to an increase of slow myosin heavy chain I (MHCI) and a decrease of fast MHCII expression at mRNA and protein levels, indicating an ongoing fast-to-slow transformation. Only patterns with periods of continuous stimulation of > 5 min in a 45 min cycle were capable of inducing a fibre type transformation, and this was independent of the applied stimulation frequency over the range 1-10 Hz. We have shown before that the calcineurin-NFATc1 signalling pathway is indispensable in mediating MHCI upregulation during fibre type transformation. Therefore, subcellular localization of NFATc1 was studied immunocytochemically. This revealed that only one stimulation train lasting for > 5 min was sufficient to induce nuclear import of this factor, which was about complete after 20 min of continuous stimulation. For both induction of NFATc1 import and MHCI mRNA upregulation, the minimum stimulation interval of > 5 min was sufficient and stimulation frequency was not crucial between 1 and 10 Hz. Repetition of stimulation cycles, with pauses (< 40 min) shorter than the time required for complete export of NFATc1, led to an accumulation of NFATc1 in the nuclei with each cycle and thus to an amplification of the transformation signal during extended periods of electrostimulation. The temporal behaviour of NFATc import/export appears to determine the effectiveness of various electrostimulation protocols in inducing fast-to-slow fibre transformation. PMID:12068044

  1. [Influence of electrical stimulation of "hunger center" of the lateral hypothalamus and food reinforcements on myoelectrical activity of the gastro-esophageal sphincter and stomach in rabbits under the conditions of hunger and satiation].

    PubMed

    Kromin, A A; Zenina, O Iu

    2013-01-01

    To study the combined effect of electrostimulation of "hunger center" of the lateral hypothalamus (LH) and food-obtaining behavior arising from it on myoelectrical activity of gastro-esophageal sphincter (GES) and the stomach in pre-fed and subjected to food deprivation animals . MATERIAL AND METHODS. Registration of myoelectrical GES and the stomach activity was carried out under free-behavior conditions in rabbits subjected to food deprivation or pre-fed before the experiment. It was done by means of chronically implanted electrodes during LH electrostimulation in the presence of food. Simultaneously using the web-camera the animals behavior was recorded. LH stimulation was produced by STM-100C stimulator (USA) with implanted bipolar nichrome electrodes. Analysis of temporal parameters of myoelectrical activity of GES and the stomach were carried out by the program AcqKnowledge (USA), and statistical analysis of the data by the program Statistica 6. Significanse of differences between the samples was assessed by the U-Mann-Whitney test (p < 0.05). Electrostimulation of "hunger center" of the lateral hypothalamus in pre-fed rabbits and the rabbits subjected to daily food deprivation, in the presence of food causes resultant food behavior which is accompanied by regular generations of bursts of peak potentials, frequency of which is essentially different in hungry and satiated animals and depends on intensity of artificially induced and artificially reinforced food motivation. In the process of LH stimulation arising resultant food behavior in satiated animals is accompanied by regular generation of high-amplitude slow electrical waves (SEW) by the muscles of lesser curvature (LC), the body and antrum of the stomach (AS) and this is reflected in the structure of temporal organization of slow electrical activity (SEA) in the form of monomodal distributions of SEW periods, typical of satiation state. Despite the increase in food motivation level, due to LH stimulation, additional entry of food into the stomach of satiated rabbits completely eliminates inhibitory effect of starvational motivational excitation on SEA of the muscles of LC, the body and AS. SEA alterations of the stomach muscles in hungry rabbits in the presence of food and thus arising of food-obtaining behavior during LH stimulation have two-phase character. At the initial stage of food behavior in hungry animals during LH stimulation high extent of scaterring of the values of SEW periods generated by the body and AS muscles is preserved, as evidenced by the bimodal distribution of SEW periods characteristic of the state of hunger. In spite of food entry into the stomach at the 1-st phase of LH stimulation, inhibitory effect of artificially reinforced starvational motivational excitation on pacemaker activity of the stomach is retained. At the 2-nd phase of LH electrostimulation food reinforcement eliminates inhibitory effect of food motivational excitation on myoelectrical activity of pacemaker of the stomach that gives maximal rhythm of SEW generation to the body and AS, monomodal distributions of SEW periods indicate to it. lnteraction of artificially induced and artificially reinforced food motivational excitation with afferentation from food reinforcement on neurons of the central generator of deglutition pattern and dorsal vagal complex due to LH electrostimulation and thereby arising resultant food obtaining behavior is specifically reflected in patterns of myoelectrical activity of GES, LC, the body and AS.

  2. [Multicentric prospective randomized study evaluating the interest of intravaginal electro-stimulation at home for urinary incontinence after prior perineal reeducation. Interim analysis].

    PubMed

    Lopès, P; Levy-Toledano, R; Chiarelli, P; Rimbault, F; Marès, P

    2014-03-01

    Perineal reeducation of stress urinary incontinence is beneficial in 80% of cases. However, patients have to perform self-retraining exercises of the perineal muscles at home, in order to maintain the benefit of the physiotherapy. The aim of this study is to assess the benefit of GYNEFFIK(®), a perineal electro-stimulator, during this home-care phase. Women with stress urinary incontinence (UI) or with mixed UI (composed predominantly of stress UI) that responded to physiotherapy were included in this study in two parallel groups. The groups followed a self-reeducation program, with or without GYNEFFIK(®) electro-stimulation sessions. The comparison of the two groups was based on the rate of women for whom the benefit of the initial perineal reeducation was maintained (defined as non-worsening ICIQ and Ditrovie scales' score). According to the protocol, an interim analysis was performed on 95 patients (i.e. almost half of the expected sample size) who had had at least one evaluation under treatment, among which 44 patients had finished the study. The therapeutic benefit of the initial perineal reeducation was maintained in 87.8% of the GYNEFFIK(®) patient group, while it was maintained in 52.2% (P=0.0001) in the usual care group (i.e. who did not use electro-stimulation). Likewise, patient had a more favorable subjective impression when using GYNEFFIK(®) (83.7% versus 60.0% in the usual care group) as they felt that they improved during the study. In the GYNEFFIK(®) group, no increase in symptoms was reported, whereas almost one out of five patients in the usual care group felt that their condition had worsened. Copyright © 2014. Published by Elsevier SAS.

  3. Effects of neuromuscular electrostimulation in patients with heart failure admitted to ward.

    PubMed

    de Araújo, Carlos José Soares; Gonçalves, Fernanda Souza; Bittencourt, Hugo Souza; dos Santos, Noélia Gonçalves; Mecca Junior, Sérgio Vitor; Neves, Júlio Leal Bandeira; Fernandes, André Maurício Souza; Aras Junior, Roque; dos Reis, Francisco José Farias Borges; Guimarães, Armênio Costa; Rodrigues Junior, Erenaldo de Souza; Carvalho, Vitor Oliveira

    2012-11-15

    Neuromuscular electrostimulation has become a promising issue in cardiovascular rehabilitation. However there are few articles published in the literature regarding neuromuscular electrostimulation in patients with heart failure during hospital stay. This is a randomized controlled pilot trial that aimed to investigate the effect of neuromuscular electrostimulation in the walked distance by the six-minute walking test in 30 patients admitted to ward for heart failure treatment in a tertiary cardiology hospital. Patients in the intervention group performed a conventional rehabilitation and neuromuscular electrostimulation. Patients underwent 60 minutes of electrostimulation (wave frequency was 20 Hz, pulse duration of 20 us) two times a day for consecutive days until hospital discharge. The walked distance in the six-minute walking test improved 75% in the electrostimulation group (from 379.7 ± 43.5 to 372.9 ± 46.9 meters to controls and from 372.9 ± 62.4 to 500 ± 68 meters to electrostimulation, p<0.001). On the other hand, the walked distance in the control group did not change. The neuromuscular electrostimulation group showed greater improvement in the walked distance in the six-minute walking test in patients admitted to ward for compensation of heart failure.

  4. Circulating progenitor cells during exercise, muscle electro-stimulation and intermittent hypobaric hypoxia in patients with traumatic brain injury: a pilot study.

    PubMed

    Corral, Luisa; Conde, Laura; Guillamó, Elisabet; Blasi, Juan; Juncadella, Montserrat; Javierre, Casimiro; Viscor, Ginés; Ventura, Josep L

    2014-01-01

    Circulating progenitor cells (CPC) treatments may have great potential for the recovery of neurons and brain function. To increase and maintain CPC with a program of exercise, muscle electro-stimulation (ME) and/or intermittent-hypobaric-hypoxia (IHH), and also to study the possible improvement in physical or psychological functioning of participants with Traumatic Brain Injury (TBI). Twenty-one participants. Four groups: exercise and ME group (EEG), cycling group (CyG), IHH and ME group (HEG) and control group (CG). Psychological and physical stress tests were carried out. CPC were measured in blood several times during the protocol. Psychological tests did not change. In the physical stress tests the VO2 uptake increased in the EEG and the CyG, and the maximal tolerated workload increased in the HEG. CPC levels increased in the last three weeks in EEG, but not in CyG, CG and HEG. CPC levels increased in the last three weeks of the EEG program, but not in the other groups and we did not detect performed psychological test changes in any group. The detected aerobic capacity or workload improvement must be beneficial for the patients who have suffered TBI, but exercise type and the mechanisms involved are not clear.

  5. MRI-based registration of pelvic alignment affected by altered pelvic floor muscle characteristics.

    PubMed

    Bendová, Petra; Růzicka, Pavel; Peterová, Vera; Fricová, Martina; Springrová, Ingrid

    2007-11-01

    Pelvic floor muscles have potential to influence relative pelvic alignment. Side asymmetry in pelvic floor muscle tension is claimed to induce pelvic malalignment. However, its nature and amplitude are not clear. There is a need for non-invasive and reliable assessment method. An intervention experiment of unilateral pelvic floor muscle activation on healthy females was performed using image data for intra-subject comparison of normal and altered configuration of bony pelvis. Sequent magnetic resonance imaging of 14 females in supine position was performed with 1.5 T static body coil in coronal orientation. The intervention, surface functional electrostimulation, was applied to activate pelvic floor muscles on the right side. Spatial coordinates of 23 pelvic landmarks were localized in each subject and registered by specially designed magnetic resonance image data processing tool (MPT2006), where individual error calculation; data registration, analysis and 3D visualization were interfaced. The effect of intervention was large (Cohen's d=1.34). We found significant differences in quantity (P<0.01) and quality (P=0.02) of normal and induced pelvic displacements. After pelvic floor muscle activation on the right side, pelvic structures shifted most frequently to the right side in ventro-caudal direction. The right femoral head, the right innominate and the coccyx showed the largest displacements. The consequences arising from the capacity of pelvic floor muscles to displace pelvic bony structures are important to consider not only in management of malalignment syndrome but also in treatment of incontinence. The study has demonstrated benefits associated with processing of magnetic resonance image data within pelvic region with high localization and registration reliability.

  6. Primary skeletal muscle cells cultured on gelatin bead microcarriers develop structural and biochemical features characteristic of adult skeletal muscle.

    PubMed

    Kubis, Hans-Peter; Scheibe, Renate J; Decker, Brigitte; Hufendiek, Karsten; Hanke, Nina; Gros, Gerolf; Meissner, Joachim D

    2016-04-01

    A primary skeletal muscle cell culture, in which myoblasts derived from newborn rabbit hindlimb muscles grow on gelatin bead microcarriers in suspension and differentiate into myotubes, has been established previously. In the course of differentiation and beginning spontaneous contractions, these multinucleated myotubes do not detach from their support. Here, we describe the development of the primary myotubes with respect to their ultrastructural differentiation. Scanning electron microscopy reveals that myotubes not only grow around the surface of one carrier bead but also attach themselves to neighboring carriers, forming bridges between carriers. Transmission electron microscopy demonstrates highly ordered myofibrils, T-tubules, and sarcoplasmic reticulum. The functionality of the contractile apparatus is evidenced by contractile activity that occurs spontaneously or can be elicited by electrostimulation. Creatine kinase activity increases steadily until day 20 of culture. Regarding the expression of isoforms of myosin heavy chains (MHC), we could demonstrate that from day 16 on, no non-adult MHC isoform mRNAs are present. Instead, on day 28 the myotubes express predominantly adult fast MHCIId/x mRNA and protein. This MHC pattern resembles that of fast muscles of adult rabbits. In contrast, primary myotubes grown on matrigel-covered culture dishes express substantial amounts of non-adult MHC protein even on day 21. To conclude, primary myotubes grown on microcarriers in their later stages exhibit many features of adult skeletal muscle and characteristics of fast type II fibers. Thus, the culture represents an excellent model of adult fast skeletal muscle, for example, when investigating molecular mechanisms of fast-to-slow fiber-type transformation. © 2015 International Federation for Cell Biology.

  7. Assessment of the mechanical properties of the muscle-tendon unit by supersonic shear wave imaging elastography: a review

    PubMed Central

    2018-01-01

    This review aimed to describe the state of the art in muscle-tendon unit (MTU) assessment by supersonic shear wave imaging (SSI) elastography in states of muscle contraction and stretching, during aging, and in response to injury and therapeutic interventions. A consensus exists that MTU elasticity increases during passive stretching or contraction, and decreases after static stretching, electrostimulation, massage, and dry needling. There is currently no agreement regarding changes in the MTU due to aging and injury. Currently, the application of SSI for the purpose of diagnosis, rehabilitation, and physical training remains limited by a number of issues, including the lack of normative value ranges, the lack of consensus regarding the appropriate terminology, and an inadequate understanding of the main technical limitations of this novel technology. PMID:28607322

  8. Fabrication and characterization of a cell electrostimulator device combining physical vapor deposition and laser ablation

    NASA Astrophysics Data System (ADS)

    Aragón, Angel L.; Pérez, Eliseo; Pazos, Antonio; Bao-Varela, Carmen; Nieto, Daniel

    2017-08-01

    In this work we present the process of fabrication and optimization of a prototype of a cell electrostimulator device for medical application combining physical vapor deposition and laser ablation. The fabrication of the first prototype begins with a deposition of a thin layer of 200 nm of aluminium on a borosilicate glass substrate using physical vapor deposition (PVD). In the second stage the geometry design of the electrostimulator is made in a CAD-like software available in a Nd:YVO4 Rofin Power line 20E, operating at the fundamental wavelength of 1064 nm and 20 ns pulse width. Choosing the proper laser parameters the negative of the electrostimulator desing is ablated. After that the glass is assembled between two polycarbonate sheets and a thick sheet of polydimethylsiloxane (PDMS). The PDMS sheet has a round hole in where cells are placed. There is also included a thin soda-lime silicate glass (100 μm) between the electrostimulator and the PMDS to prevent the cells for being in contact with the electric circuit. In order to control the electrical signal applied to the electrostimulator is used a digital I/O device from National Instruments (USB-6501) which provides 5 V at the output monitored by a software programmed in LabVIEW. Finally, the optical and electrical characterization of the cell electrostimulator device is presented.

  9. [Multicentric prospective randomized and controlled study assessing effectiveness of intravaginal electrostimulation at home compared to usual care in female patients with urinary incontinence and prior perineal reeducation].

    PubMed

    Lopès, P; Rimbault, F; Scheffler, M; André, C; Cappelletti, M-C; Marès, P

    2014-11-01

    In order to maintain the benefits of perineal reeducation, patients with stress urinary incontinence need to perform self-retraining exercises of the perineal muscles at home. The aim of this randomized prospective multicentric study is to assess the effectiveness of GYNEFFIK(®), a perineal electrostimulator, during this home-care phase. Two parallel groups of women with stress urinary incontinence (UI) or with mixed UI (composed predominantly of stress UI), improved by physiotherapy, have followed a self-reeducation program, either with electrostimulation sessions (GYNEFFIK(®) or home perineal electrostimulation [HPES] arm) or with usual care (UC) only, without electrostimulation. The comparison of the two groups was based on the rate of women in which the benefit of the initial perineal reeducation was maintained (defined as the ICIQ and Ditrovie scales' score not worsening) at 2, 4 and 6 months. A total of 161 patients were analyzed (76 in the HPES arm and 85 in the UC arm). The therapeutic benefit of the initial perineal reeducation at the last available measure (6 months for a wide majority of patients) was maintained in 81.6% in the HPES arm versus 62.4% in the UC arm (P=0.007). This significant difference reflects a significant improvement both in clinical symptomatology and in quality of life. ICIQ score was improved in 44% of patients of HPES arm while it was improved in 14% of patients of UC arm (P<0.001) and daily number of urine leakage decreased of 1.2 leakage in the HPES arm versus 0.1 leakage in UC arm (P<0.05). Likewise, improvement of quality of life was superior in the HPES arm (48% improvement of Ditrovie score versus 19% in the UC group ; P<0.05). Investigator global impression was more favorable in the HPES arm (clinical improvement in 83% of patients versus 68% in the UC arm). At the last measure (i.e. endpoint), the benefit of initial physiotherapy was considered maintained or improved in all patients of the HPES arm while it was reported as worsened in 16.5% of the UC group. Using GYNEFFIK(®) favorably impacts quality of life, particularly physical activity and vitality and decreases emotional consequences of UI (i.e. anxiety and depression score as assessed by HAD scale). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Imaging two-dimensional mechanical waves of skeletal muscle contraction.

    PubMed

    Grönlund, Christer; Claesson, Kenji; Holtermann, Andreas

    2013-02-01

    Skeletal muscle contraction is related to rapid mechanical shortening and thickening. Recently, specialized ultrasound systems have been applied to demonstrate and quantify transient tissue velocities and one-dimensional (1-D) propagation of mechanical waves during muscle contraction. Such waves could potentially provide novel information on musculoskeletal characteristics, function and disorders. In this work, we demonstrate two-dimensional (2-D) mechanical wave imaging following the skeletal muscle contraction. B-mode image acquisition during multiple consecutive electrostimulations, speckle-tracking and a time-stamp sorting protocol were used to obtain 1.4 kHz frame rate 2-D tissue velocity imaging of the biceps brachii muscle contraction. The results present novel information on tissue velocity profiles and mechanical wave propagation. In particular, counter-propagating compressional and shear waves in the longitudinal direction were observed in the contracting tissue (speed 2.8-4.4 m/s) and a compressional wave in the transverse direction of the non-contracting muscle tissue (1.2-1.9 m/s). In conclusion, analysing transient 2-D tissue velocity allows simultaneous assessment of both active and passive muscle tissue properties. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. [Postpartum pelvic floor muscle training and abdominal rehabilitation: Guidelines].

    PubMed

    Deffieux, X; Vieillefosse, S; Billecocq, S; Battut, A; Nizard, J; Coulm, B; Thubert, T

    2015-12-01

    Provide guidelines for clinical practice concerning postpartum rehabilitation. Systematically review of the literature concerning postpartum pelvic floor muscle training and abdominal rehabilitation. Pelvic-floor rehabilitation using pelvic floor muscle contraction exercises is recommended to treat persistent urinary incontinence at 3 months postpartum (grade A), regardless of the type of incontinence. At least 3 guided sessions with a therapist is recommended, associated with pelvic floor muscle exercises at home. This postpartum rehabilitation improves short-term urinary incontinence (1 year) but not long-term (6-12 years). Early pelvic-floor rehabilitation (within 2 months following childbirth) is not recommended (grade C). Postpartum pelvic-floor rehabilitation in women presenting with anal incontinence, is associated with a lower prevalence of anal incontinence symptoms in short-term (1 year) (EL3) but not long-term (6 and 12) (EL3). Postpartum pelvic-floor rehabilitation is recommended to treat anal incontinence (grade C) but results are not maintained in medium or long term. No randomized trials have evaluated the pelvic-floor rehabilitation in asymptomatic women in order to prevent urinary or anal incontinence in medium or long term. It is therefore not recommended (expert consensus). Rehabilitation supervised by a therapist (physiotherapist or midwife) is not associated with better results than simple advice for voluntary contraction of the pelvic floor muscles to prevent/correct, in short term (6 months), a persistent prolapse 6 weeks postpartum (EL2), whether or not with a levator ani avulsion (EL3). Postpartum pelvic-floor rehabilitation is not associated with a decrease in the prevalence of dyspareunia at 1-year follow-up (EL3). Postpartum pelvic-floor rehabilitation guided by a therapist is therefore not recommended to treat or prevent prolapse (grade C) or dyspareunia (grade C). No randomized trials have evaluated the effect of pelvic floor muscle training after an episode of postpartum urinary retention or bladder outlet obstruction symptoms, or for the primary prevention of anal incontinence following third-degree anal sphincter tear or in patients presenting with anal incontinence after third-degree anal sphincter tear. The electrostimulation devices used alone were not assessed in this postpartum context (regardless of symptoms); therefore, isolated pelvic floor electrostimulation is not recommended (expert consensus). Pelvic floor muscle therapy is recommended for persistent postpartum urinary (grade A) or anal (grade C) incontinence (3 months after delivery). Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Reversing Age Related Changes of the Laryngeal Muscles by Chronic Electrostimulation of the Recurrent Laryngeal Nerve

    PubMed Central

    Karbiener, Michael; Jarvis, Jonathan C.; Perkins, Justin D.; Lanmüller, Hermann; Schmoll, Martin; Rode, Hanna S.; Gerstenberger, Claus; Gugatschka, Markus

    2016-01-01

    Age related atrophy of the laryngeal muscles -mainly the thyroarytenoid muscle (TAM)- leads to a glottal gap and consequently to a hoarse and dysphonic voice that significantly affects quality of life. The aim of our study was to reverse this atrophy by inducing muscular hypertrophy by unilateral functional electrical stimulation (FES) of the recurrent laryngeal nerve (RLN) in a large animal model using aged sheep (n = 5). Suitable stimulation parameters were determined by fatiguing experiments of the thyroarytenoid muscle in an acute trial. For the chronic trial an electrode was placed around the right RLN and stimulation was delivered once daily for 29 days. We chose a very conservative stimulation pattern, total stimulation time was two minutes per day, or 0.14% of total time. Overall, the mean muscle fiber diameter of the stimulated right TAM was significantly larger than the non-stimulated left TAM (30μm±1.1μm vs. 28μm±1.1 μm, p<0.001). There was no significant shift in fiber type distribution as judged by immunohistochemistry. The changes of fiber diameter could not be observed in the posterior cricoarytenoid muscle (PCAM). FES is a possible new treatment option for reversing the effects of age related laryngeal muscle atrophy. PMID:27893858

  13. Reversing Age Related Changes of the Laryngeal Muscles by Chronic Electrostimulation of the Recurrent Laryngeal Nerve.

    PubMed

    Karbiener, Michael; Jarvis, Jonathan C; Perkins, Justin D; Lanmüller, Hermann; Schmoll, Martin; Rode, Hanna S; Gerstenberger, Claus; Gugatschka, Markus

    2016-01-01

    Age related atrophy of the laryngeal muscles -mainly the thyroarytenoid muscle (TAM)- leads to a glottal gap and consequently to a hoarse and dysphonic voice that significantly affects quality of life. The aim of our study was to reverse this atrophy by inducing muscular hypertrophy by unilateral functional electrical stimulation (FES) of the recurrent laryngeal nerve (RLN) in a large animal model using aged sheep (n = 5). Suitable stimulation parameters were determined by fatiguing experiments of the thyroarytenoid muscle in an acute trial. For the chronic trial an electrode was placed around the right RLN and stimulation was delivered once daily for 29 days. We chose a very conservative stimulation pattern, total stimulation time was two minutes per day, or 0.14% of total time. Overall, the mean muscle fiber diameter of the stimulated right TAM was significantly larger than the non-stimulated left TAM (30μm±1.1μm vs. 28μm±1.1 μm, p<0.001). There was no significant shift in fiber type distribution as judged by immunohistochemistry. The changes of fiber diameter could not be observed in the posterior cricoarytenoid muscle (PCAM). FES is a possible new treatment option for reversing the effects of age related laryngeal muscle atrophy.

  14. [The application of combined physiotherapeutic methods for the complex treatment of patients with dyscirculatory encephalopathy].

    PubMed

    Shiman, A G; Klocheva, E G; Kaiumov, S F; Shoferova, S D; Zhukova, M V

    2012-01-01

    This article reports the results of applying basic pharmacotherapy (enalapril, cytoflavin) and its combination with physical factors (transcranial electrostimulation, combined application oftranscranial electrostimulation and low-frequency magnetic therapy) in the complex treatment of patients with stage I-II dyscirculatory encephalopathy. The study has demonstrated that the combined treatment with cytoflavin, enalapril, transcranial electrostimulation and low-frequency magnetic therapy produced the most pronounced therapeutic effect (82.5%), as confirmed by positive dynamics of clinical and functional parameters.

  15. Electrostimulation's enhancement of recovery during a rugby preseason.

    PubMed

    Beaven, C Martyn; Cook, Christian; Gray, David; Downes, Paul; Murphy, Ian; Drawer, Scott; Ingram, John R; Kilduff, Liam P; Gill, Nicholas

    2013-01-01

    Rugby preseason training involves high-volume strength and conditioning training, necessitating effective management of the recovery-stress state to avoid overtraining and maximize adaptive gains. Compression garments and an electrostimulation device have been proposed to improve recovery by increasing venous blood flow. These devices were assessed using salivary testosterone and cortisol, plasma creatine kinase, and player questionnaires to determine sleep quality, energy level, mood, and enthusiasm. Twenty-five professional rugby players were assigned to 1 of 2 treatments (compression garment or a concurrent combination of electrostimulation and compression) in a crossover design over 2 × 2-wk training blocks. Substantial benefits were observed in self-assessed energy levels (effect size [ES] 0.86), and enthusiasm (ES 0.80) as a result of the combined treatment when compared with compression-garment use. The combination treatment had no discernable effect on salivary hormones, with no treatment effect observed. The electrostimulation device did tend to accelerate the return of creatine kinase to baseline levels after 2 preseason rugby games when compared with the compression-garment intervention (ES 0.61; P = .08). Electrostimulation elicited psychometric and physiological benefits reflective of an improved recovery-stress state in professional male rugby players when combined with a lower-body compression garment.

  16. Effect of Physical Methods of Lymphatic Drainage on Postexercise Recovery of Mixed Martial Arts Athletes.

    PubMed

    Zebrowska, Aleksandra; Trybulski, Robert; Roczniok, Robert; Marcol, Wieslaw

    2017-08-16

    Physical methods are reported to be important for accelerating skeletal muscle regeneration, decreasing muscle soreness, and shortening of the recovery time. The aim of the study was to assess the effect of the physical methods of lymphatic drainage (PMLD) such as manual lymphatic drainage (MLD), the Bodyflow (BF) therapy, and lymphatic drainage by deep oscillation (DO) on postexercise regeneration of the forearm muscles of mixed martial arts (MMA) athletes. Eighty MMA athletes aged 27.5 ± 6.4 years were allocated to 4 groups: MLD, the BF device, DO therapy, and the control group. Blood flow velocity in the cephalic vein was measured with the ultrasound Doppler velocity meter. Maximal strength of the forearm muscles (Fmax), muscle tissue tension, pain threshold, blood lactate concentration (LA), and activity of creatine kinase were measured in all groups at rest, after the muscle fatigue test (post-ex) and then 20 minutes, 24, and 48 hours after the application of PMLD. The muscle fatigue test reduced Fmax in all subjects, but in the groups receiving MLD, DO, and BF significantly higher Fmax was observed at recovery compared with post-ex values. The application of MDL reduced the postexercise blood LA and postexercise muscle tension. The lymphatic drainage methods, whether manual or using electro-stimulation and DO, improve postexercise regeneration of the forearm muscles of MMA athletes. The methods can be an important element of therapeutic management focused on optimizing training effects and reducing the risk of injuries of the combat sports athletes.

  17. [Using autonomous electrostimulation device Erektron in treating female overactive bladder].

    PubMed

    Yarin, G Yu; Shelyakina, O V; Fedorenko, V N; Alekseeva, A V; Vilgelmi, I A

    2016-11-01

    Overactive bladder (OAB) is one of the most common syndromes of lower urinary tract dysfunction. Besides standard therapy using anticholinergic medications, comprehensive management of overactive bladder includes physiotherapy. To test the clinical effectiveness and safety of autonomous electrostimulation device "Erektron" in treating OAB in women. The study was conducted at the Urology and Gynecology Clinic of the Innovative Medical Technology Center between 25.04.2014 and 30.01.2015. It included 20 women with newly diagnosed OAB both with and without urinary urgency incontinence or urinary stress incontinence. The patients were divided into 2 groups. All patients were treated with the first line anticholinergic agent solifenacin 5 mg daily. In patients of group 1, anticholinergic therapy was administered concurrently with intravaginal electrostimulation using "Erektron" device. In both groups, the treatment resulted in positive results, but a more pronounced improvement was found in group 1 patients with mixed incontinence. Autonomous electrostimulation device MT-RV "Erektron" can be used in comprehensive management of patients with OAB, including those with stress urinary incontinence.

  18. New synthetic prosthesis for peripheral nerve injuries: an experimental pilot study.

    PubMed

    Uranüs, Selman; Bretthauer, Georg; Nagele-Moser, Doris; Saliba, Sarah; Tomasch, Gordana; Rafolt, Dietmar; Justich, Ivo; Waldert, Jörg; Berghold, Andrea; Kleinert, Reinhold; Becker, Heinz; Voges, Udo; Wiederstein-Grasser, Iris; Koch, Horst

    2013-04-01

    Even the most modern technology has failed to induce satisfactory functional regeneration of traumatically severed peripheral nerves. Delayed neural regeneration and in consequence, slower neural conduction seriously limit muscle function in the area supplied by the injured nerve. This study aimed to compare a new nerve coaptation system involving an innovative prosthesis with the classical clinical method of sutured nerve coaptation. Besides the time and degree of nerve regeneration, the influence of electrostimulation was also tested. The sciatic nerve was severed in 14 female Göttingen minipigs with an average weight of 40.4 kg. The animals were randomized into 2 groups: One group received the new prosthesis and the other underwent microsurgical coaptation. In each group, according to the randomization a part of the animals received postoperative electrostimulation. Postoperative monitoring and the stimulation schedule covered a period of 9 months, during which axonal budding was evaluated monthly. The data from the pilot study indicate that results with the nerve prosthesis were comparable with those of conventional coaptation. The results indicate that implantation of the nerve prosthesis allows for good and effective neural regeneration. This new and simple treatment option for peripheral nerve injuries can be performed in any hospital with surgical facilities as it does not involve the demanding microsurgical suture technique that can only be performed in specialized centers.

  19. [Electrostimulation and magnetic therapy in the treatment of accommodation cramp and in the prevention of progressive myopia in children and adolescents].

    PubMed

    Riabtseva, A A; Gerasimenko, M Iu; Savina, M M; Filatova, E V

    2002-01-01

    The paper presents a procedure and results of use of electrostimulation, magnetic therapy, and electrophoresis during treatment for accommodation cramp and in the prevention of myopia in children and adolescents. Data that characterize the dynamics and stability of achieved results are given.

  20. Bone structure and quality preserved by active versus passive muscle exercise in 21 days tail-suspended rats

    NASA Astrophysics Data System (ADS)

    Luan, Huiqin; Sun, Lian-wen; Fan, Yu-bo

    2012-07-01

    Humans in Space suffer from microgravity-induced attenuated bone strength that needs to be addressed by on-orbit exercise countermeasures. However, exercise prescriptions so far did not adequately counteract the bone loss of astronauts in spaceflight because even active muscle contractions were converted to passive mode during voluntary bouts. We tested our hypothesis in unloaded rat hind limb following twenty-one days of tail-suspension (TS) combined with exercise using a hind limb stepper device designed by our group. Female Sprague Dawley rats (250g b.wt.) were divided into four groups (n=5, each): TS-only (hind limb unloading), TS plus passive mode exercise (TSP) induced by mechanically-forced passive hind limb lifting, TS plus active mode exercise (TSA) entrained by plantar electrostimulation, and control (CON) group. Standard measures of bone (e.g., mineral density, trabecular microstructure, biomechanics and ash weight) were monitored. Results provided that the attenuated properties of unloaded hind limb bone in TS-rats were more effectively supported by active mode than by passive mode motions. We here propose a modified exercise regimen combined with spontaneous muscle contractions thereby considering the biodynamic demands of both muscle and bone during resistive-load exercise in microgravity. Keywords: rat, BMD, DXA, passive exercise, active exercise, bone loss, tail suspension, spaceflight analogue, exercise countermeasure.

  1. [Regional differences in the level of ERK1/2 phosphorylation and expression of the myogenic regulatory factors following electrostimulation with different mechanic and metabolic action on the gastrocnemius muscle].

    PubMed

    Borzykh, A A; Kuz'min, I V; Lysenko, E A; Vinogradova, O L

    2014-01-01

    Effect of high-frequency electrical stimulation of the sciatic nerve on ERK1/2 kinase phosphorylation and mRNA expression in MyoD (myogenic regulation factor) and myogenin in the red (RGM) and white (WGM) parts of the medial head in rat's m. gastrocnemius was studied. Two stimulation regimes were equalized both lengthwise and in total effort but differed in duration and number of contractions and, therefore, in mechanic and metabolic effects on the muscle. It was shown that growth of the number of phosphorylated ERK1/2 was particularly high in WCM due to application of the protocol for multiple short-time contractions. Whatever the stimulation regime, MyoD mRNA expression in RGM and WGM increases to the same extent, whereas myogenin mRNA expression does not change. Consequently, the regime with the predominantly mechanic effect is favorable to activation of the ERK signaling pathway in glycolytic myofibers.

  2. Characteristics of lateral electrical surface stimulation (LESS) and its effect on the degree of spinal deformity in idiopathic scoliosis

    NASA Astrophysics Data System (ADS)

    Kowalski, Ireneusz M.; Palko, Tadeusz; Pasniczek, Roman; Szarek, Jozef

    2009-01-01

    Clinical studies were carried out in the period of 2003-2006 at the Provincial Children's Rehabilitation Hospital in Ameryka near Olsztyn (Poland). The study involved a group of children and youth exhibiting spinal deformity progression in idiopathic scoliosis (IS) of more than 5° per year according to the Cobb scale. Four hundred and fifty patients between 4 and 15 years of age were divided into three groups (n = 150). Group I and group II received 2-hour and 9-hour lateral electrical surface stimulation (LESS), respectively, whereas group III (control) was treated only with corrective exercises for 30 minutes twice a day. LESS was performed with the use of a battery-operated SCOL-2 stimulator manufactured by Elmech, Warsaw, Poland. The effectiveness of this method was confirmed in the treatment of spinal IS in children and youth, especially when the initial spinal deformity did not exceed 20° according to the Cobb scale. A short-duration electrostimulation (2 hours daily) was found to produce results similar to those obtained after overnight (9 h) electrostimulation. Moreover, the analysis of the Harrington prognostic index F confirms the positive effect of LESS in both groups of patients (2 h and 9 h of LESS).

  3. A multi-channel biomimetic neuroprosthesis to support treadmill gait training in stroke patients.

    PubMed

    Chia, Noelia; Ambrosini, Emilia; Baccinelli, Walter; Nardone, Antonio; Monticone, Marco; Ferrigno, Giancarlo; Pedrocchi, Alessandra; Ferrante, Simona

    2015-01-01

    This study presents an innovative multi-channel neuroprosthesis that induces a biomimetic activation of the main lower-limb muscles during treadmill gait training to be used in the rehabilitation of stroke patients. The electrostimulation strategy replicates the physiological muscle synergies used by healthy subjects to walk on a treadmill at their self-selected speed. This strategy is mapped to the current gait sub-phases, which are identified in real time by a custom algorithm. This algorithm divides the gait cycle into six sub-phases, based on two inertial sensors placed laterally on the shanks. Therefore, the pre-defined stimulation profiles are expanded or stretched based on the actual gait pattern of each single subject. A preliminary experimental protocol, involving 10 healthy volunteers, was carried out to extract the muscle synergies and validate the gait-detection algorithm, which were afterwards used in the development of the neuroprosthesis. The feasibility of the neuroprosthesis was tested on one healthy subject who simulated different gait patterns, and a chronic stroke patient. The results showed the correct functioning of the system. A pilot study of the neurorehabilitation treatment for stroke patients is currently being carried out.

  4. Surgical treatment of glioblastoma multiforme localized in the motor area of the brain using the technique of cortical electrostimulation.

    PubMed

    Bogosavljevic, Vojislav; Tasic, Goran; Nestorovic, Branislav; Jovanovic, Vladimir; Rakic, Miodrag; Samardzic, Miroslav

    2012-01-01

    Glioblastoma multiforme in the motor area is the surgical challenge because of the need for more radical resection in order to extend the life of the patient, and the risk that radicalism could lead to additional neurological deficit. We present series of 26 patients with glioblastoma multiforme localized in and around the motor area, who were hospitalized from October 2004 to February 2009. During all operations, we conducted electrostimulation display area of the brain, to the anatomical location of M1 segment of the motor cortex. Distance of the central sulcus in relation to the coronary suture, measured by magnetic resonance imaging (MRI) was 18.38 mm ± 9.564 mm. The volume of electricity required for a motor response was mean 8.79 ± 1.484 mA, with increasing distance from the coronary suture the amperage required to explicit motor responses decreased. The difference (mm) between the distance from the coronary suture measured using MRI and distances measured electrostimulation smaller and power consumption was less (F = 13.285, p < 0.01). The method of cortical cerebral cortex electrostimulation is simple and safe method and a binding protocol to the patient safe operation glioblastoma multiforme localized in the motor area of the brain.

  5. Electrostimulation improves muscle perfusion but does not affect either muscle deoxygenation or pulmonary oxygen consumption kinetics during a heavy constant-load exercise.

    PubMed

    Layec, Gwenael; Millet, Grégoire P; Jougla, Aurélie; Micallef, Jean-Paul; Bendahan, David

    2008-02-01

    Electromyostimulation (EMS) is commonly used as part of training programs. However, the exact effects at the muscle level are largely unknown and it has been recently hypothesized that the beneficial effect of EMS could be mediated by an improved muscle perfusion. In the present study, we investigated rates of changes in pulmonary oxygen consumption (VO(2p)) and muscle deoxygenation during a standardized exercise performed after an EMS warm-up session. We aimed at determining whether EMS could modify pulmonary O(2) uptake and muscle deoxygenation as a result of improved oxygen delivery. Nine subjects performed a 6-min heavy constant load cycling exercise bout preceded either by an EMS session (EMS) or under control conditions (CONT). VO(2p) and heart rate (HR) were measured while deoxy-(HHb), oxy-(HbO(2)) and total haemoglobin/myoglobin (Hb(tot)) relative contents were measured using near infrared spectroscopy. EMS significantly increased (P < 0.05) the Hb(tot) resting level illustrating a residual hyperaemia. The EMS priming exercise did not affect either the HHb time constant (17.7 +/- 14.2 s vs. 13.1 +/- 2.3 s under control conditions) or the VO(2p) kinetics (time-constant = 18.2 +/- 5.2 s vs. 15.4 +/- 4.6 s under control conditions). Likewise, the other VO(2p) parameters were unchanged. Our results further indicated that EMS warm-up improved muscle perfusion through a residual hyperaemia. However, neither VO(2p) nor [HHb] kinetics were modified accordingly. These results suggest that improved O(2) delivery by residual hyperaemia induced by EMS does not accelerate the rate of aerobic metabolism during heavy exercise at least in trained subjects.

  6. Effects of electrical stimulation in the treatment of osteonecrosis of the femoral head.

    PubMed

    Fornell, Salvador; Ribera, Juan; Mella, Mario; Carranza, Andrés; Serrano-Toledano, David; Domecq, Gabriel

    2017-10-16

    The aim of this study was to examine whether the use of an internal electrostimulator could improve the results obtained with core decompression alone in the treatment of osteonecrosis of the femoral head. We performed a retrospective study of 41 patients (55 hips) treated for osteonecrosis of the femoral head between 2005 and 2014. Mean follow-up time was 56 (12-108) months. We recorded 3 parameters: time to recurrence of pain, time to conversion to arthroplasty and time to radiographic failure. Survival was estimated using the Kaplan-Meier method. The equality of the survival distributions was determined by the Log rank test. Implanted electrostimulator was a factor that increased the survival of hips in a pre-op Steinberg stage of II or below, while it remained unchanged if the stage was III or higher. The addition of an internal electrostimulator provides increased survival compared to core decompression alone at stages below III.

  7. [The new potentials of magneto-laser therapy and electrostimulation in children with cleft palate and upper lip].

    PubMed

    Gerasimenko, M Iu; Filatova, E V; Borisenko, O V; Levchenkova, V D; Grishina, N V; Spiridonova, N Z; Shevchenko, E Iu; Goncharenko, L L

    2000-01-01

    The paper presents rationale for design of new procedures of physiotherapy in children with expanded palate and upper lip; morphofunctional features of prenatal and early postnatal formation of central nervous system; a multilayer technique of magneto-laser radiation to the projection of the anterior central gyrus and the technique of electrostimulation by the system of the wink reflex which can influence central mechanisms of regulation and adaptation before and early after uranoplasty and cheiloplasty.

  8. Capsiate supplementation reduces oxidative cost of contraction in exercising mouse skeletal muscle in vivo.

    PubMed

    Yashiro, Kazuya; Tonson, Anne; Pecchi, Émilie; Vilmen, Christophe; Le Fur, Yann; Bernard, Monique; Bendahan, David; Giannesini, Benoît

    2015-01-01

    Chronic administration of capsiate is known to accelerate whole-body basal energy metabolism, but the consequences in exercising skeletal muscle remain very poorly documented. In order to clarify this issue, the effect of 2-week daily administration of either vehicle (control) or purified capsiate (at 10- or 100-mg/kg body weight) on skeletal muscle function and energetics were investigated throughout a multidisciplinary approach combining in vivo and in vitro measurements in mice. Mechanical performance and energy metabolism were assessed strictly non-invasively in contracting gastrocnemius muscle using magnetic resonance (MR) imaging and 31-phosphorus MR spectroscopy (31P-MRS). Regardless of the dose, capsiate treatments markedly disturbed basal bioenergetics in vivo including intracellular pH alkalosis and decreased phosphocreatine content. Besides, capsiate administration did affect neither mitochondrial uncoupling protein-3 gene expression nor both basal and maximal oxygen consumption in isolated saponin-permeabilized fibers, but decreased by about twofold the Km of mitochondrial respiration for ADP. During a standardized in vivo fatiguing protocol (6-min of repeated maximal isometric contractions electrically induced at a frequency of 1.7 Hz), both capsiate treatments reduced oxidative cost of contraction by 30-40%, whereas force-generating capacity and fatigability were not changed. Moreover, the rate of phosphocreatine resynthesis during the post-electrostimulation recovery period remained unaffected by capsiate. Both capsiate treatments further promoted muscle mass gain, and the higher dose also reduced body weight gain and abdominal fat content. These findings demonstrate that, in addition to its anti-obesity effect, capsiate supplementation improves oxidative metabolism in exercising muscle, which strengthen this compound as a natural compound for improving health.

  9. Calcineurin regulates slow myosin, but not fast myosin or metabolic enzymes, during fast-to-slow transformation in rabbit skeletal muscle cell culture

    PubMed Central

    Meißner, Joachim D; Gros, Gerolf; Scheibe, Renate J; Scholz, Michael; Kubis, Hans-Peter

    2001-01-01

    The addition of cyclosporin A (500 ng ml−1) - an inhibitor of the Ca2+-calmodulin-regulated serine/threonine phosphatase calcineurin - to primary cultures of rabbit skeletal muscle cells had no influence on the expression of fast myosin heavy chain (MHC) isoforms MHCIIa and MHCIId at the level of protein and mRNA, but reduced the expression of slow MHCI mRNA. In addition, no influence of cyclosporin A on the expression of citrate synthase (CS) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA was found. The level of enzyme activity of CS was also not affected. When the Ca2+ ionophore A23187 (4 × 10−7m) was added to the medium, a partial fast-to-slow transformation occurred. The level of MHCI mRNA increased, and the level of MHCIId mRNA decreased. Cotreatment with cyclosporin A was able to prevent the upregulation of MHCI at the level of mRNA as well as protein, but did not reverse the decrease in MHCIId expression. The expression of MHCIIa was also not influenced by cyclosporin A. Cyclosporin A was not able to prevent the upregulation of CS mRNA under Ca2+ ionophore treatment and failed to reduce the increased enzyme activity of CS. The expression of GAPDH mRNA was reduced under Ca2+ ionophore treatment and was not altered under cotreatment with cyclosporin A. When the myotubes in the primary muscle culture were electrostimulated at 1 Hz for 15 min periods followed by pauses of 30 min, a partial fast-to-slow transformation was induced. Again, cotreatment with cyclosporin A prevented the upregulation of MHCI at the level of mRNA and protein without affecting MHCIId expression. The nuclear translocation of the calcineurin-regulated transcription factor nuclear factor of activated thymocytes (NFATc1) during treatment with Ca2+ ionophore, and the prevention of the translocation in the presence of cyclosporin A, were demonstrated immunocytochemically in the myotubes of the primary culture. The effects of cyclosporin A demonstrate the involvement of calcineurin-dependent signalling pathways in controlling the expression of MHCI, but not of MHCIIa, MHCIId, CS and GAPDH, during Ca2+ ionophore- and electrostimulation-induced fast-to-slow transformations. The data indicate a differential regulation of MHCI, of MHCII and of metabolism. Calcineurin alone is not sufficient to mediate the complete transformation. PMID:11351029

  10. The Effects of Blood Flow Restricted Electrostimulation on Strength and Hypertrophy.

    PubMed

    Slysz, Joshua T; Burr, Jamie F

    2018-05-22

    The combined effect of neuromuscular electrical stimulation (NMES) and blood flow restriction (BFR) on muscle mass and strength has not been thoroughly investigated. To examine the effects of combined and independent BFR and a low-intensity NMES on skeletal muscle adaptation. Exploratory study. Laboratory. Twenty recreationally active subjects. Subjects had each leg randomly allocated to 1 of 4 possible intervention groups: (1) cyclic BFR alone, (2) NMES alone, (3) BFR + NMES, or (4) control. Each leg was stimulated in its respective intervention group for 32 minutes, 4 days per week for 6 weeks. Mean differences in size (in grams) and isometric strength (in kilograms), between week 0 and week 6, were calculated for each group. Leg strength increased 32 (19) kg in the BFR + NMES group, which differed from the 3 (11) kg change in the control group (P = .03). The isolated NMES and BFR groups revealed increases of 16 (28) kg and 18 (17) kg, respectively, but these did not statistically differ from the control, or one another. No alterations were statistically significant for leg size. Compared with a control that received no treatment, the novel combination of BFR and NMES led to increasing muscular strength of the knee extensors, but not muscle mass which had a large interindividual variability in response.

  11. Reconstructive procedures for impaired upper airway function: laryngeal respiration

    PubMed Central

    Müller, Andreas

    2005-01-01

    The larynx is the "bottleneck" of the human airway. For this reason, the effects of stenosing laryngeal pathologies on the vital factor respiratory gas exchange are particularly critical. Internal stabilization is a prerequisite for recovery of the laryngeal respiratory function in severe forms of inspiratory collapse (laryngomalacia). Effective laser surgery techniques have been developed to this end in recent years. Glottis-dilating surgery in cases of bilateral vocal cord motion impairment is now moving in the direction of endoscopic laser cordotomy or cordectomy, whereas arytenoidectomy and open surgical procedures are now used only rarely due to higher secondary morbidity rates. In individual cases, in particular if functional recovery is expected, temporary laterofixation of a vocal cord using an endoscopic suturing technique can be a helpful approach. Extensive laryngeal defects can be covered by means of composite grafts with mucosal lining, a supporting skeleton and their own vascularization. Autologous transplantation of the larynx, with its complex surgical and immunological problems, has become a manageable procedure. The problems of post-transplantation reinnervation and risk assessment of immunosuppression-induced recurrence of the tumor are still under consideration. Reanimation of the bilaterally paralyzed larynx by means of neurorrhaphy (neurosuture), neural grafting and, more recently, functional electrostimulation (pacemaker) represents a challenge for the coming years. In most cases of paralysis of the recurrent laryngeal nerve, a part of the muscles is maintained by synkinetic reinnervation when therapy is carried out, which however also prevents effective vocal cord movement due to simultaneous activity of agonists and antagonists. Modulation of reinnervation by means of electrostimulation and modern genetic therapy approaches justify hopes of better outcomes in the future. PMID:22073057

  12. [Physical therapy intervention during hospitalization in patients with acute exacerbation of chronic obstructive pulmonary disease and pneumonia: A randomized clinical trial].

    PubMed

    Martín-Salvador, Adelina; Colodro-Amores, Gloria; Torres-Sánchez, Irene; Moreno-Ramírez, M Paz; Cabrera-Martos, Irene; Valenza, Marie Carmen

    2016-04-01

    Respiratory infections involve not only hospitalization due to pneumonia, but also acute exacerbations of COPD (AECOPD). The objective of the present study was to evaluate the effectiveness of a physical therapy intervention during hospitalization in patients admitted due to community-acquired pneumonia (CAP) and AECOPD. Randomized clinical trial, 44 patients were randomized into 2 groups: a control group which received standard medical therapy (oxygen therapy and pharmacotherapy) and an experimental group that received standard treatment and a physical therapy intervention (breathing exercises, electrostimulation, exercises with elastic bands and relaxation). Between-groups analysis showed that after the intervention (experimental vs. control) significant differences were found in perceived dyspnoea (P=.041), and right and left quadriceps muscle strength (P=.008 and P=.010, respectively). In addition, the subscale of "domestic activities" of the functional ability related to respiratory symptoms questionnaire showed significant differences (P=.036). A physical therapy intervention during hospitalization in patients with AECOPD and CAP can generate skeletal muscle level gains that exceed the deterioration caused by immobilization during hospitalization. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  13. A Hydrogel/Carbon-Nanotube Needle-Free Device for Electrostimulated Skin Drug Delivery.

    PubMed

    Guillet, Jean-François; Flahaut, Emmanuel; Golzio, Muriel

    2017-10-06

    The permeability of skin allows passive diffusion across the epidermis to reach blood vessels but this is possible only for small molecules such as nicotine. In order to achieve transdermal delivery of large molecules such as insulin or plasmid DNA, permeability of the skin and mainly the permeability of the stratum corneum skin layer has to be increased. Moreover, alternative routes that avoid the use of needles will improve the quality of life of patients. A method known as electropermeabilisation has been shown to increase skin permeability. Herein, we report the fabrication of an innovative hydrogel made of a nanocomposite material. This nanocomposite device aims to permeabilise the skin and deliver drug molecules at the same time. It includes a biocompatible polymer matrix (hydrogel) and double-walled carbon nanotubes (DWCNTs) in order to bring electrical conductivity and improve mechanical properties. Carbon nanotubes and especially DWCNTs are ideal candidates, combining high electrical conductivity with a very high specific surface area together with a good biocompatibility when included into a material. The preparation and characterization of the nanocomposite hydrogel as well as first results of electrostimulated transdermal delivery using an ex vivo mouse skin model are presented. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Management of obstructed defecation.

    PubMed

    Podzemny, Vlasta; Pescatori, Lorenzo Carlo; Pescatori, Mario

    2015-01-28

    The management of obstructed defecation syndrome (ODS) is mainly conservative and mainly consists of fiber diet, bulking laxatives, rectal irrigation or hydrocolontherapy, biofeedback, transanal electrostimulation, yoga and psychotherapy. According to our experience, nearly 20% of the patients need surgical treatment. If we consider ODS an "iceberg syndrome", with "emerging rocks", rectocele and rectal internal mucosal prolapse, that may benefit from surgery, at least two out of ten patients also has "underwater rocks" or occult disorders, such as anismus, rectal hyposensation and anxiety/depression, which mostly require conservative treatment. Rectal prolapse excision or obliterative suture, rectocele and/or enterocele repair, retrograde Malone's enema and partial myotomy of the puborectalis muscle are effective in selected cases. Laparoscopic ventral sacral colporectopexy may be an effective surgical option. Stapled transanal rectal resection may lead to severe complications. The Transtar procedure seems to be safer, when dealing with recto-rectal intussusception. A multidisciplinary approach to ODS provides the best results.

  15. Management of obstructed defecation

    PubMed Central

    Podzemny, Vlasta; Pescatori, Lorenzo Carlo; Pescatori, Mario

    2015-01-01

    The management of obstructed defecation syndrome (ODS) is mainly conservative and mainly consists of fiber diet, bulking laxatives, rectal irrigation or hydrocolontherapy, biofeedback, transanal electrostimulation, yoga and psychotherapy. According to our experience, nearly 20% of the patients need surgical treatment. If we consider ODS an “iceberg syndrome”, with “emerging rocks”, rectocele and rectal internal mucosal prolapse, that may benefit from surgery, at least two out of ten patients also has “underwater rocks” or occult disorders, such as anismus, rectal hyposensation and anxiety/depression, which mostly require conservative treatment. Rectal prolapse excision or obliterative suture, rectocele and/or enterocele repair, retrograde Malone’s enema and partial myotomy of the puborectalis muscle are effective in selected cases. Laparoscopic ventral sacral colporectopexy may be an effective surgical option. Stapled transanal rectal resection may lead to severe complications. The Transtar procedure seems to be safer, when dealing with recto-rectal intussusception. A multidisciplinary approach to ODS provides the best results. PMID:25632177

  16. Enhancing functional electrical stimulation for emerging rehabilitation robotics in the framework of HYPER project.

    PubMed

    Brunetti, F; Garay, Á; Moreno, J C; Pons, J L

    2011-01-01

    This paper presents the development of a novel functional electrical stimulation (FES) system. New approaches in emerging rehabilitation robotics propose the use of residual muscular activity or limbs movements during the rehabilitation process of neuromotor. More ambitious projects propose the use of FES systems to restore or compensate motor capabilities by controlling existing muscles or subject limbs. These emerging approaches require more sophisticated FES devices in terms of channels, signals controls and portability. In the framework of HYPER project, such devices are being developed to support the main objective of the project: the development of neurorobots and neuroprosthetics to restore functional motor capabilities in patients who suffered cerebrovascular accidents or spinal cord injury. The presented portable FES system includes novel elec-trostimulator circuits and improved channel switching capacities to enable emerging approaches in rehabilitation robotics. © 2011 IEEE

  17. Effect of external anal sphincter contraction on the ischiocavernosus muscle and its suggested role in the sexual act.

    PubMed

    Shafik, Ahmed; Shafik, Ismail; El-Sibai, Olfat; Shafik, Ali A

    2006-01-01

    Whereas the bulbocavernosus muscle shares its contractile activity with the external anal sphincter (EAS), the response of the ischiocavernosus muscle (ICM) to EAS contraction could not be traced in the literature. We investigated the hypothesis that the ICM contracts reflexly upon EAS contraction. The response of the ICM to EAS squeeze and stimulation was recorded in 21 healthy volunteers (13 men, 8 women, age 36.8 +/- 10.7 [SD] years). An electromyographic (EMG) needle (stimulating) electrode was introduced into the EAS and another (recording) one was inserted into the ICM. The test was repeated after individual anesthetization of the EAS and ICM and after muscle infiltration with normal saline instead of lidocaine. EAS electrostimulation (10 stimuli, 200 micros duration, 0.2 Hz frequency, 0-100 mA intensity) produced an increase of ICM EMG activity to a mean of 267.8 +/- 42.7 microV, whereas anal squeeze effected an increase to a mean of 224.5 +/- 45.3 microV. The ICM did not respond to stimulation of the EAS after individual anesthetization of the ICM and EAS, but it did after saline infiltration. The results were reproducible. ICM contracted upon EAS contraction. This effect seems to be mediated through a reflex that we call "anocavernosal excitatory reflex." The ICM lever action is suggested to share in the erectile mechanism by elevating the penile shaft to above the horizontal level. The reflex may prove of diagnostic significance in sexual function disorders, a point that needs further study.

  18. Sialorphin (the mature peptide product of Vcsa1) relaxes corporal smooth muscle tissue and increases erectile function in the ageing rat.

    PubMed

    Davies, Kelvin P; Tar, Moses; Rougeot, Catherine; Melman, Arnold

    2007-02-01

    To determine if the mature peptide product of the Vcsa1 gene, sialorphin, could restore erectile function in ageing rats, and whether these effects are mediated through relaxation of corporal smooth muscle tissue, as we recently reported that Vcsa1 is one of the most down-regulated genes in the corpora of rats in three distinct models of erectile dysfunction, and gene transfer of plasmids expressing Vcsa1 into the corpora of ageing rats restored erectile function. Sialorphin was injected intracorporeally into retired breeder rats, and the effect on the physiology of corporal tissue was analysed by intracorporal/blood pressure (ICP/BP) measurement at different times after injection. In organ-bath studies, the ability of sialorphin (1 microg/mL) to enhance C-type natriuretic peptide (CNP) relaxation of corporal smooth muscle tissue strips was investigated after pre-contraction with 1 microm phenylephrine. Intracorporal injection of 100 microg sialorphin into retired breeder rats resulted in a time-dependent increase in the ICP/BP response to electrostimulation of the cavernosal nerve. After 55-65 min the ICP/BP ratio increased to approximately 0.6, a value associated with normal erectile function. In organ-bath studies after pre-contraction with 1 microm phenylephrine, 1 microm CNP significantly (67%) increased the relaxation rate of corporal tissue. This rate of relaxation was increased by 2.5-fold after incubation with sialorphin (1 microg/mL) compared with carrier alone. These results show that sialorphin has a role in erectile function, probably through a mechanism that involves relaxation of corporal smooth muscle tissue.

  19. Changes in mast cells and in permeability of mesenteric microvessels under the effect of immobilization and electrostimulation

    NASA Technical Reports Server (NTRS)

    Gorizontova, M. P.

    1980-01-01

    It was shown that a reduction in the amount of mast cells in the mesentery and an increase in their degranulation was accompanied by an increase in vascular permeability of rat mesentery. It is supposed that immobilization and electrostimulation causing degranulation of mast cells prompted histamine and serotonin release from them, thus increasing the permeability of the venular portion of the microvascular bed. Prophylactic use of esculamin preparation with P-vitaminic activity decreased mast cell degranulation, which apparently prolonged the release of histamine and serotonin from them and normalized vascular permeability.

  20. An animal model for the neuromodulation of neurogenic bladder dysfunction.

    PubMed

    Zvara, P; Sahi, S; Hassouna, M M

    1998-08-01

    To develop an animal model to examine the pathophysiology by which S3 sacral root electrostimulation alters the micturition reflex in patients with bladder hyper-reflexia. Chronic sacral nerve root electrostimulation was applied to spinally transected rats; 21 animals were divided into four groups. The spinal cord was completely transected at the T10-11 level and stainless-steel electrodes implanted into the sacral foramen in 17 animals; these animals were subsequently divided into two groups (1 and 2). Six rats in group 1 underwent sacral root elctrostimulation for 2 h/day and five in group 2 for 6 h/day, for 21 days. The sham group (group 3, six rats) received no stimulation and four rats were used as healthy controls (group 4). Voiding frequency was recorded and each animal was evaluated cystometrically at the end of the stimulation period. The results were compared with the sham and control groups. Spinal cord transection resulted in bladder areflexia and complete urinary retention; 7-9 days after the injury, the bladder recovered its activity. Twenty-one days after transection all animals had evidence of uninhibited bladder contractions. The mean (SD) hourly frequency of urination was 0.66 (0.18) in healthy controls, 0.83 (0.21) in group 1, 0.87 (0.34) in group 2 and 1.1 (0.31) in group 3. There was a significant decrease in eh cystometric signs of bladder hyper-reflexia in groups 1 and 2 when compared with group 3. This work reports and initial study showing that chronic electrostimulation of sacral nerve roots can reduce the signs of bladder hyper-reflexia in the spinally injured rat. To our knowledge, this is the first report describing the rat as an animal model to determine the effects of chronic electrostimulation on the micturition reflex.

  1. Synergetic analgesic effect of the combination of arnica and hydroxyethyl salicylate in ethanolic solution following cutaneous application by transcutaneous electrostimulation.

    PubMed

    Kucera, Miroslav; Horácek, Ondrej; Kálal, Jan; Kolár, Pavel; Korbelar, Peter; Polesná, Zora

    2003-01-01

    A combination of the active agents arnica and hydroxyethyl salicylate (HES) in ethanolic solution (Sportino Acute Spray) is cutaneously applied for the treatment of sports injuries and diseases of the locomotor apparatus. The aim was to examine the efficacy and synergism of the single substances and the combination with regard to the analgesic effect after cutaneous application as well as to validate the method of transcutaneous electronic stimulation as a method of measuring the analgesic effect. In the present article, the method of transcutaneous electrostimulation was used in a randomized, controlled, single-blind trial on healthy volunteers to provide objective evidence that the combination of active agents displays a significantly greater analgesic effect than the individual active agents. Thus there is synergy between the active agents arnica and hydroxyethyl salicylate in the combination preparation. In addition, the effect of the vehicle ethanol and the reference substance water could be determined within the framework of these comparative experiments and the difference between the combination preparation and the individual substances arnica and HES could be shown. The method of transcutaneous electrostimulation used for the objective measurement of the analgesic effect was validated.

  2. Mapping the connectivity underlying multimodal (verbal and non-verbal) semantic processing: a brain electrostimulation study.

    PubMed

    Moritz-Gasser, Sylvie; Herbet, Guillaume; Duffau, Hugues

    2013-08-01

    Accessing the meaning of words, objects, people and facts is a human ability, made possible thanks to semantic processing. Although studies concerning its cortical organization are proficient, the subcortical connectivity underlying this semantic network received less attention. We used intraoperative direct electrostimulation, which mimics a transient virtual lesion during brain surgery for glioma in eight awaken patients, to map the anatomical white matter substrate subserving the semantic system. Patients performed a picture naming task and a non-verbal semantic association test during the electrical mapping. Direct electrostimulation of the inferior fronto-occipital fascicle, a poorly known ventral association pathway which runs throughout the brain, induced in all cases semantic disturbances. These transient disorders were highly reproducible, and concerned verbal as well as non-verbal output. Our results highlight for the first time the essential role of the left inferior fronto-occipital fascicle in multimodal (and not only in verbal) semantic processing. On the basis of these original findings, and in the lights of phylogenetic considerations regarding this fascicle, we suggest its possible implication in the monitoring of the human level of consciousness related to semantic memory, namely noetic consciousness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Sialorphin (the mature peptide product of Vcsa1) relaxes corporal smooth muscle tissue and increases erectile function in the ageing rat

    PubMed Central

    Davies, Kelvin P.; Tar, Moses; Rougeot, Catherine; Melman, Arnold

    2007-01-01

    OBJECTIVE To determine if the mature peptide product of the Vcsa1 gene, sialorphin, could restore erectile function in ageing rats, and whether these effects are mediated through relaxation of corporal smooth muscle tissue, as we recently reported that Vcsa1 is one of the most down-regulated genes in the corpora of rats in three distinct models of erectile dysfunction, and gene transfer of plasmids expressing Vcsa1 into the corpora of ageing rats restored erectile function. MATERIALS AND METHODS Sialorphin was injected intracorporeally into retired breeder rats, and the effect on the physiology of corporal tissue was analysed by intracorporal/blood pressure (ICP/BP) measurement at different times after injection. In organ-bath studies, the ability of sialorphin (1 μg/mL) to enhance C-type natriuretic peptide (CNP) relaxation of corporal smooth muscle tissue strips was investigated after pre-contraction with 1 μM phenylephrine. RESULTS Intracorporal injection of 100 μg sialorphin into retired breeder rats resulted in a time-dependent increase in the ICP/BP response to electrostimulation of the cavernosal nerve. After 55–65 min the ICP/BP ratio increased to ≈ 0.6, a value associated with normal erectile function. In organ-bath studies after pre-contraction with 1 μM phenylephrine, 1 μM CNP significantly (67%) increased the relaxation rate of corporal tissue. This rate of relaxation was increased by 2.5-fold after incubation with sialorphin (1 μg/mL) compared with carrier alone. CONCLUSION These results show that sialorphin has a role in erectile function, probably through a mechanism that involves relaxation of corporal smooth muscle tissue. PMID:17026587

  4. Development of an electro-responsive platform for the controlled transfection of mammalian cells

    NASA Astrophysics Data System (ADS)

    Hook, Andrew L.; Thissen, Helmut W.; Hayes, Jason P.; Voelcker, Nicolas H.

    2005-02-01

    The recent development of living microarrays as novel tools for the analysis of gene expression in an in-situ environment promises to unravel gene function within living organisms. In order to significantly enhance microarray performance, we are working towards electro-responsive DNA transfection chips. This study focuses on the control of DNA adsorption and desorption by appropriate surface modification of highly doped p++ silicon. Silicon was modified by plasma polymerisation of allylamine (ALAPP), a non-toxic surface that sustains cell growth. Subsequent high surface density grafting of poly(ethylene oxide) formed a layer resistant to biomolecule adsorption and cell attachment. Spatially controlled excimer laser ablation of the surface produced micron resolution patterns of re-exposed plasma polymer whilst the rest of the surface remained non-fouling. We observed electro-stimulated preferential adsorption of DNA to the ALAPP surface and subsequent desorption by the application of a negative bias. Cell culture experiments with HEK 293 cells demonstrated efficient and controlled transfection of cells using the expression of green fluorescent protein as a reporter. Thus, these chemically patterned surfaces are promising platforms for use as living microarrays.

  5. Effects of electrostimulation therapy on recovery from acute team-sport activity.

    PubMed

    Finberg, Matthew; Braham, Rebecca; Goodman, Carmel; Gregory, Peter; Peeling, Peter

    2013-05-01

    To assess the efficacy of a 1-off electrostimulation treatment as a recovery modality from acute team-sport exercise, directly comparing the benefits to contrast water therapy. Ten moderately trained male athletes completed a simulated team-game circuit (STGC). At the conclusion of exercise, participants then completed a 30-min recovery modality of either electrostimulation therapy (EST), contrast water therapy (CWT), or a passive resting control condition (CON). Twenty-four hours later, participants were required to complete a modified STGC as a measure of next-day performance. Venous blood samples were collected preexercise and 3 and 24 h postexercise. Blood samples were analyzed for circulating levels of interleukin-6 (IL-6) and C-reactive protein (CRP). The EST trial resulted in significantly faster sprint times during the 24-h postrecovery than with CON (P < .05), with no significant differences recorded between EST and CWT or between CWT and CON (P > .05). There were no differences in IL-6 or CRP across all trials. Finally, the perception of recovery was significantly greater in the EST trial than in the CWT and CON (P < .05). These results suggest that a 1-off treatment with EST may be beneficial to perceptual recovery, which may enhance next-day performance.

  6. Cyclic voltammetry of apple fruits: Memristors in vivo.

    PubMed

    Volkov, Alexander G; Nyasani, Eunice K; Tuckett, Clayton; Blockmon, Avery L; Reedus, Jada; Volkova, Maya I

    2016-12-01

    A memristor is a resistor with memory that exhibits a pinched hysteretic relationship in cyclic voltammetry. Recently, we have found memristors in the electrical circuitry of plants and seeds. There are no publications in literature about the possible existence of memristors and electrical differentiators in fruits. Here we found that the electrostimulation of Golden Delicious or Arkansas Black apple fruits by bipolar periodic waves induces hysteresis loops with pinched points in cyclic voltammograms at low frequencies between 0.1MHz and 1MHz. At high frequencies of 1kHz, the pinched hysteresis loop transforms to a non-pinched hysteresis loop instead of a single line I=V/R for ideal memristors because the amplitude of electrical current depends on capacitance of a fruit's tissue and electrodes, frequency and direction of scanning. Electrostimulation of electrical circuits in apple fruits by periodic voltage waves also induces electrotonic potential propagation due to cell-to-cell electrical coupling with electrical differentiators. A differentiator is an electrical circuit in which the output of the circuit is approximately directly proportional to the rate of change of the input. The information gained from electrostimulation can be used to elucidate and to observe electrochemical and electrophysiological properties of electrical circuits in fruits. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Common questions about Bell palsy.

    PubMed

    Albers, Janet R; Tamang, Stephen

    2014-02-01

    Bell palsy is an acute affliction of the facial nerve, resulting in sudden paralysis or weakness of the muscles on one side of the face. Testing patients with unilateral facial paralysis for diabetes mellitus or Lyme disease is not routinely recommended. Patients with Lyme disease typically present with additional manifestations, such as arthritis, rash, or facial swelling. Diabetes may be a comorbidity of Bell palsy, but testing is not needed in the absence of other indications, such as hypertension. In patients with atypical symptoms, magnetic resonance imaging with contrast enhancement can be used to rule out cranial mass effect and to add prognostic value. Steroids improve resolution of symptoms in patients with Bell palsy and remain the preferred treatment. Antiviral agents have a limited role, and may improve outcomes when combined with steroids in patients with severe symptoms. When facial paralysis is prolonged, surgery may be indicated to prevent ocular desiccation secondary to incomplete eyelid closure. Facial nerve decompression is rarely indicated or performed. Physical therapy modalities, including electrostimulation, exercise, and massage, are neither beneficial nor harmful.

  8. A randomized placebo-controlled study of noninvasive cortical electrostimulation in the treatment of fibromyalgia patients.

    PubMed

    Hargrove, Jeffrey B; Bennett, Robert M; Simons, David G; Smith, Susan J; Nagpal, Sunil; Deering, Donald E

    2012-01-01

    The aim of this multicenter study was to evaluate the efficacy, safety, and tolerability of noninvasive cortical electrostimulation in the management of fibromyalgia (FM). A prospective, randomized, double-blind, placebo-controlled design was used. Setting.  Subjects received therapy at two different outpatient clinical locations. There were 77 subjects meeting the American College of Rheumatology 1990 classification criteria for FM. Intervention.  Thirty-nine (39) active treatment (AT) FM patients and 38 placebo controls received 22 applications of either noninvasive cortical electrostimulation or a sham therapy over an 11-week period. The primary outcome measures were the number of tender points (TePs) and pressure pain threshold (PPT). Secondary outcome measures were responses to the Fibromyalgia Impact Questionnaire (FIQ), Symptom Checklist-90 (SCL-90), Beck Depression Inventory-II, and a novel sleep questionnaire, all evaluated at baseline and at the end of treatment. Intervention provided significant improvements in TeP measures: compared with placebo, the AT patients improved in the number of positive TePs (-7.4 vs -0.2, P<0.001) and the PPT (19.6 vs -3.2, P<0.001). Most secondary outcomes also improved more in the AT group: total FIQ score (-15.5 vs -5.6, P=0.03), FIQ pain (-2.0 vs -0.6, P=0.03), FIQ fatigue (-2.0 vs -0.4, P=0.02), and FIQ refreshing sleep (-2.1 vs -0.7, P=0.02); and while FIQ function improved (-1.0 vs -0.2), the between-group change had a 14% likelihood of occurring due to chance (P=0.14). There were no significant side effects observed. Noninvasive cortical electrostimulation in FM patients provided modest improvements in pain, TeP measures, fatigue, and sleep; and the treatment was well tolerated. This form of therapy could potentially provide worthwhile adjunctive symptom relief for FM patients. Wiley Periodicals, Inc.

  9. Acupuncture and related interventions for smoking cessation.

    PubMed

    White, Adrian R; Rampes, Hagen; Liu, Jian Ping; Stead, Lindsay F; Campbell, John

    2011-01-19

    Acupuncture and related techniques are promoted as a treatment for smoking cessation in the belief that they may reduce nicotine withdrawal symptoms. The objectives of this review are to determine the effectiveness of acupuncture and the related interventions of acupressure, laser therapy and electrostimulation in smoking cessation, in comparison with no intervention, sham treatment, or other interventions. We searched the Cochrane Tobacco Addiction Group specialized register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, BIOSIS Previews, PsycINFO, Science Citation Index, AMED, Acubriefs in November 2010; and four Chinese databases: Chinese Biomedical Database, China National Knowledge Infrastructure, Wanfang Data and VIP in November 2010. Randomized trials comparing a form of acupuncture, acupressure, laser therapy or electrostimulation with either no intervention, sham treatment or another intervention for smoking cessation. We extracted data in duplicate on the type of smokers recruited, the nature of the intervention and control procedures, the outcome measures, method of randomization, and completeness of follow up.We assessed abstinence from smoking at the earliest time-point (before six weeks), and at the last measurement point between six months and one year. We used the most rigorous definition of abstinence for each trial, and biochemically validated rates if available. Those lost to follow up were counted as continuing smokers. Where appropriate, we performed meta-analysis using a fixed-effect model. We included 33 reports of studies. Compared with sham acupuncture, the fixed-effect risk ratio (RR) for the short-term effect of acupuncture was 1.18 (95% confidence interval 1.03 to 1.34), and for the long-term effect was 1.05 (CI 0.82 to 1.35). The studies were not judged to be free from bias. Acupuncture was less effective than nicotine replacement therapy (NRT). There was no evidence that acupuncture is superior to waiting list, nor to psychological interventions in short- or long-term. The evidence on acupressure and laser stimulation was insufficient and could not be combined. The evidence suggested that electrostimulation is not superior to sham electrostimulation. There is no consistent, bias-free evidence that acupuncture, acupressure, laser therapy or electrostimulation are effective for smoking cessation, but lack of evidence and methodological problems mean that no firm conclusions can be drawn. Further, well designed research into acupuncture, acupressure and laser stimulation is justified since these are popular interventions and safe when correctly applied, though these interventions alone are likely to be less effective than evidence-based interventions.

  10. A platform for the advanced spatial and temporal control of biomolecules

    NASA Astrophysics Data System (ADS)

    Hook, Andrew L.; Thissen, Helmut; Hayes, Jason P.; Voelcker, Nicolas H.

    2007-01-01

    Manipulating biomolecules at solid/liquid interfaces is important for the development of various biodevices including microarrays. Smart materials that enable both spatial and temporal control of biomolecules by combining switchability with patterned surface chemistry offer unprecedented levels of control of biomolecule manipulation. Such a system has been developed for the microscale spatial control over both DNA and cell growth on highly doped p-type silicon. Surface modification, involving plasma polymerisation of allylamine and poly(ethlylene glycol) grafting with subsequent laser ablation, led to the production of a patterned surface with dual biomolecule adsorption and desorption properties. On patterned surfaces, preferential electro-stimulated adsorption of DNA to the allylamine plasma polymer surface and subsequent desorption by the application of a negative bias was observed. The ability of this surface to control both DNA and cell attachment in four dimensions has been demonstrated, exemplifying its capacity to be used for complex biological studies such as gene function analysis. This system has been successfully applied to living microarray applications and is an exciting platform for any system incorporating biomolecules.

  11. Imaging of biophoton emission from electrostimulated skin acupuncture point jg4: effect of light enhancers.

    PubMed

    Slawinski, Janusz; Gorski, Zbigniew

    2008-05-01

    Using an ultrasensitive CCD camera, an extremely low light intensity from the acupuncture-sensitive point JG4 at the left hand was recorded. As the intensity of the light was very weak and the time of electrostimulation exceeded the recommended period, the quality of biophoton images was poor. Chemiluminescent and fluorescent hydrophilic, hydrophobic and amphyphilic molecular probes were used to: (i) ensure penetration of probes into skin, (ii) enhance the intensity of BP emission, (iii) shorten time and (iv) obtain information about mechanisms of biophotons generation in EAP-sensitive points and channels. The results obtained partially fulfilled expectations and indicate on the necessity to elaborate special techniques of probes deposition on the skin.

  12. The use of the analytic hierarchy process to aid decision making in acquired equinovarus deformity.

    PubMed

    van Til, Janine A; Renzenbrink, Gerbert J; Dolan, James G; Ijzerman, Maarten J

    2008-03-01

    To increase the transparency of decision making about treatment in patients with equinovarus deformity poststroke. The analytic hierarchy process (AHP) was used as a structured methodology to study the subjective rationale behind choice of treatment. An 8-hour meeting at a centrally located rehabilitation center in The Netherlands, during which a patient video was shown to all participants (using a personal computer and a large screen) and the patient details were provided on paper. A panel of 10 health professionals from different backgrounds. Not applicable. The performance of the applicable treatments on outcome, impact, comfort, cosmetics, daily effort, and risks and side effects of treatment, as well as the relative importance of criteria in the choice of treatment. According to the model, soft-tissue surgery (.413) ranked first as the preferred treatment, followed by orthopedic footwear (.181), ankle-foot orthosis (.147), surface electrostimulation (.137), and finally implanted electrostimulation (.123). Outcome was the most influential consideration affecting treatment choice (.509), followed by risk and side effects (.194), comfort (.104), daily effort (.098), cosmetics (.065), and impact of treatment (.030). Soft-tissue surgery was judged best on outcome, daily effort, comfortable shoe wear, and cosmetically acceptable result and was thereby preferred as a treatment alternative by the panel in this study. In contrast, orthosis and orthopedic footwear are usually preferred in daily practice. The AHP method was found to be suitable methodology for eliciting subjective opinions and quantitatively comparing treatments in the absence of scientific evidence.

  13. Changes in erectile organ structure and function in a rat model of chronic prostatitis/chronic pelvic pain syndrome.

    PubMed

    Wang, X-J; Xia, L-L; Xu, T-Y; Zhang, X-H; Zhu, Z-W; Zhang, M-G; Liu, Y; Xu, C; Zhong, S; Shen, Z-J

    2016-04-01

    There is a growing recognition of the association between chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) and erectile dysfunction (ED); however, most of the reports are based on questionnaires which cannot distinguish between organic and functional ED. The purpose of this study was to determine the exact relationship between CP/CPPS and ED, and to investigate the changes in erectile organ structure and function in a rat model of CP/CPPS. We established a rat model of experimental autoimmune prostatitis (EAP), which is a valid model for CP/CPPS. Erectile function in EAP and normal rats was comparable after cavernous nerve electrostimulation. The serum testosterone and oestradiol levels, ultrastructure of the corpus cavernosum and expression of endothelial nitric oxide synthase and neuronal nitric oxide synthase in the two groups were similar; however, there was a decrease in smooth muscle-to-collagen ratio and alpha-smooth muscle actin expression and an increase in transforming growth factor-beta 1 expression was observed in EAP rats. Thus, organic ED may not exist in EAP rats. We speculate that ED complained by patients with CP/CPPS may be psychological, which could be caused by impairment in the quality of life; however, further studies are needed to fully understand the potential mechanisms underlying the penile fibrosis in EAP rats. © 2015 Blackwell Verlag GmbH.

  14. Peripheral neurostimulation for control of intractable occipital neuralgia.

    PubMed

    Weiner, R L; Reed, K L

    1999-07-01

    Objective. To present a novel approach for treatment of intractable occipital neuralgia using percutaneous peripheral nerve electrostimulation techniques. Methods. Thirteen patients underwent 17 implant procedures for medically refractory occipital neuralgia. A subcutaneous electrode placed transversely at the level of C1 across the base of the occipital nerve trunk produced paresthesias and pain relief covering the regions of occipital nerve pain Results. With follow-up ranging from 1-½ to 6 years, 12 patients continue to report good to excellent response with greater than 50% pain control and requiring little or no additional medications. The 13th patient (first in the series) was subsequently explanted following symptom resolution. Conclusions. In patients with medically intractable occipital neuralgia, peripheral nerve electrostimulation subcutaneously at the level of C1 appears to be a reasonable alternative to more invasive surgical procedures following failure of more conservative therapies.

  15. Feeding biomechanics of the cownose ray, Rhinoptera bonasus, over ontogeny

    PubMed Central

    Kolmann, Matthew A; Huber, Daniel R; Motta, Philip J; Grubbs, R Dean

    2015-01-01

    Growth affects the performance of structure, so the pattern of growth must influence the role of a structure and an organism. Because animal performance is linked to morphological specialization, ontogenetic change in size may influence an organism's biological role. High bite force generation is presumably selected for in durophagous taxa. Therefore, these animals provide an excellent study system for investigating biomechanical consequences of growth on performance. An ontogenetic series of 27 cownose rays (Rhinoptera bonasus) were dissected in order to develop a biomechanical model of the feeding mechanism, which was then compared with bite forces measured from live rays. Mechanical advantage of the feeding apparatus was generally conserved throughout ontogeny, while an increase in the mass and cross-sectional area of the jaw adductors resulted in allometric gains in bite force generation. Of primary importance to forceful biting in this taxon is the use of a fibrocartilaginous tendon associated with the insertion of the primary jaw adductor division. This tendon may serve to redirect muscle forces anteriorly, transmitting them within the plane of biting. Measured bite forces obtained through electrostimulation of the jaw adductors in live rays were higher than predicted, possibly due to differences in specific tension of actual batoid muscle and that used in the model. Mass-specific bite forces in these rays are the highest recorded for elasmobranchs. Cownose rays exemplify a species that, through allometric growth of bite performance and morphological novelties, have expanded their ecological performance over ontogeny. PMID:26183820

  16. Memory elements in the electrical network of Mimosa pudica L.

    PubMed Central

    Volkov, Alexander G; Reedus, Jada; Mitchell, Colee M; Tuckett, Clayton; Volkova, Maya I; Markin, Vladislav S; Chua, Leon

    2014-01-01

    The fourth basic circuit element, a memristor, is a resistor with memory that was postulated by Chua in 1971. Here we found that memristors exist in vivo. The electrostimulation of the Mimosa pudica by bipolar sinusoidal or triangle periodic waves induce electrical responses with fingerprints of memristors. Uncouplers carbonylcyanide-3-chlorophenylhydrazone and carbonylcyanide-4-trifluoromethoxy-phenyl hydrazone decrease the amplitude of electrical responses at low and high frequencies of bipolar sinusoidal or triangle periodic electrostimulating waves. Memristive behavior of an electrical network in the Mimosa pudica is linked to the properties of voltage gated ion channels: the channel blocker TEACl reduces the electric response to a conventional resistor. Our results demonstrate that a voltage gated K+ channel in the excitable tissue of plants has properties of a memristor. The discovery of memristors in plants creates a new direction in the modeling and understanding of electrical phenomena in plants. PMID:25482796

  17. Memory elements in the electrical network of Mimosa pudica L.

    PubMed

    Volkov, Alexander G; Reedus, Jada; Mitchell, Colee M; Tuckett, Clayton; Volkova, Maya I; Markin, Vladislav S; Chua, Leon

    2014-01-01

    The fourth basic circuit element, a memristor, is a resistor with memory that was postulated by Chua in 1971. Here we found that memristors exist in vivo. The electrostimulation of the Mimosa pudica by bipolar sinusoidal or triangle periodic waves induce electrical responses with fingerprints of memristors. Uncouplers carbonylcyanide-3-chlorophenylhydrazone and carbonylcyanide-4-trifluoromethoxy-phenyl hydrazone decrease the amplitude of electrical responses at low and high frequencies of bipolar sinusoidal or triangle periodic electrostimulating waves. Memristive behavior of an electrical network in the Mimosa pudica is linked to the properties of voltage gated ion channels: the channel blocker TEACl reduces the electric response to a conventional resistor. Our results demonstrate that a voltage gated K(+) channel in the excitable tissue of plants has properties of a memristor. The discovery of memristors in plants creates a new direction in the modeling and understanding of electrical phenomena in plants.

  18. Memristors in the electrical network of Aloe vera L.

    PubMed Central

    Volkov, Alexander G; Reedus, Jada; Mitchell, Colee M; Tucket, Clayton; Forde-Tuckett, Victoria; Volkova, Maya I; Markin, Vladislav S; Chua, Leon

    2014-01-01

    A memristor is a resistor with memory, which is a non-linear passive two-terminal electrical element relating magnetic flux linkage and electrical charge. Here we found that memristors exist in vivo. The electrostimulation of the Aloe vera by bipolar sinusoidal or triangle periodic waves induce electrical responses with fingerprints of memristors. Uncouplers carbonylcyanide-3-chlorophenylhydrazone and carbonylcyanide-4-trifluoromethoxy-phenyl hydrazone decrease the amplitude of electrical responses at low and high frequencies of bipolar periodic sinusoidal or triangle electrostimulating waves. Memristive behavior of an electrical network in the Aloe vera is linked to the properties of voltage gated ion channels: the K+ channel blocker TEACl reduces the electric response to a conventional resistor. Our results demonstrate that a voltage gated K+ channel in the excitable tissue of plants has properties of a memristor. The discovery of memristors in plants creates a new direction in the modeling and understanding of electrical phenomena in plants. PMID:25763487

  19. Biotechnological advances in neuro-electro-stimulation for the treatment of hyposalivation and xerostomia.

    PubMed

    Lafaurie, Gloria; Fedele, Stefano; López, Rafael Martín-Granizo; Wolff, Andy; Strietzel, Frank; Porter, Stephen R; Konttinen, Yrjö T

    2009-02-01

    Treatment of xerostomia is a common clinical challenge in the oral medicine practice. Although some treatments have been used to improve the symptoms of xerostomia, none is completely satisfactory for the patients who suffer of this alteration. In the last years non-pharmacological treatments based on electro-stimulation for the treatment of xerostomia have been developed. This review is aimed at presenting new developments for the treatment of xerostomia, applying neuro-electro-stimulation by miniaturized intra-oral electro-stimulators. These devices increase salivary secretion and improve symptoms of oral dryness. Their effect is obtained by means of stimulation of the lingual nerve, in whose proximity the electrodes of the apparatus are placed. The objective of this mechanism is both to directly stimulate the salivary glands controlled by that nerve and to enhance the salivary reflex. Clinical studies have been carried out that have demonstrated the wetting effect of the method described in this article.

  20. Synergy effects of combined multichannel EMG-triggered electrical stimulation and mirror therapy in subacute stroke patients with severe or very severe arm/hand paresis.

    PubMed

    Schick, Thomas; Schlake, Hans-Peter; Kallusky, Juliane; Hohlfeld, Günter; Steinmetz, Maria; Tripp, Florian; Krakow, Karsten; Pinter, Michaela; Dohle, Christian

    2017-01-01

    Neurorehabilitation requires the development of severity-dependent and successful therapies for arm/hand rehabilitation in stroke patients. To evaluate the effectiveness of adding mirror therapy to bilateral EMG-triggered multi-channel electrostimulation for the treatment of severe arm/hand paresis in stroke patients. The subjects of this randomized, controlled, multicentre study were stroke patients who had suffered their first insult between 1 and 6 months before study start and had severe or very severe arm/hand paresis, as classified by Fugl-Meyer-Assessment. Subjects were randomly allocated to an intervention group (n = 16) or control group (n = 17). Both groups were treated for 3 weeks (5x week, 30 minutes) with bilateral EMG-triggered multi-channel electrostimulation. The intervention group additionally received mirror feedback of the unaffected limb. The primary outcome measure was motor recovery of the upper extremities, as measured by the Fugl-Meyer Assessment. The Intervention Group with very severe paresis had significantly better motor recovery in total Fugl-Meyer Assessment (p = 0.017) at a medium effect size (Cohen) of d = 0.7, due to a significant recovery of shoulder and elbow function (p = 0.003) in the Fugl-Meyer Assessment Part A subtest. For subjects with severe paresis, additional mirror therapy did not significantly influence outcome. Additional mirror therapy in combination with EMG-triggered multi-channel electrostimulation is therapeutically beneficial for post-acute stroke patients with very severe arm/hand paresis.

  1. Safety and efficacy of an intra-oral electrostimulator for the relief of dry mouth in patients with chronic graft versus host disease: Case Series

    PubMed Central

    Zadik, Yehuda; Zeevi, Itai; Luboshitz-Shon, Noa; Dakwar, Nasri; Wolff, Andy; Shapira, Michael Y.; Or, Reuven

    2014-01-01

    Objectives: Patients with chronic graft-versus-host disease (cGVHD) often suffer from dry mouth and oral mucosal lesions. The primary objective of this study was to investigate the safety of an intra-oral electrostimulator (GenNarino) in symptomatic cGVHD patients. The secondary objective was to study the impact on the salivary gland involvement of cGVHD patients. Study Design: This paper presents a case series. The study included patients treated for 4 weeks, randomly assigned to the active device and then crossed-over to a sham-device or vice versa. The patients and clinicians were blind to the treatment delivered. Data regarding oral mucosal and salivary gland involvement were collected. Results: Six patients were included in this series. Most of the intraoral areas with manifestations of cGVHD were not in contact with the GenNarino device. Two patients developed mild mucosal lesions in areas in contact with the GenNarino during the study. However, only one of them had a change in the National Institutes of Health (NIH) score for oral cGVHD. The unstimulated and stimulated salivary flow rate increased in 4 out of the 5 patients included in this analysis. Symptoms of dry mouth and general oral comfort improved. Conclusion: This study suggests that GenNarino is safe in cGVHD patients with respect to oral tissues. Furthermore the use of GenNarino resulted in subjective and objective improvements in dry mouth symptoms. A large scale study is needed to confirm the impact and safety of GenNarino on systemic cGVHD. Key words:Dry mouth, graft versus host disease, electrostimulation, oral mucosa, hematopoietic stem cell transplantation. PMID:24121920

  2. Surgical anatomy of the prostate in the era of radical robotic prostatectomy.

    PubMed

    Walz, Jochen; Graefen, Markus; Huland, Hartwig

    2011-05-01

    New insights in the anatomy of the prostate and the surrounding tissue evolve the technique of radical prostatectomy for the treatment of prostate cancer. Regarding the course of the erectile nerves along the prostate, recent studies confirmed the presence of parasympathetic pro-erectile nerve fibers at the anterolateral aspect of the prostate. Another study of intraoperative electrostimulation of those nerves confirmed an increase in intracavernosal pressure by stimulations between the 1 and 3 o'clock position. Therefore, it is very likely that these anterior nerve fibers have an effect on erectile function. Regarding the urethral sphincter in the male, a study showed no attachment of the external sphincter to the levator ani muscle, probably resulting in an absence of a levator ani support to the continence mechanism. The male urinary sphincter seems to be in isolation responsible for urinary continence. The nerve fibers at the anterolateral aspect of the prostate seem to participate in erectile function, which renders the concept of a high anterior release during nerve sparing beneficial. The isolated urinary sphincter mechanism results in the need to conserve as much urethral length as possible during radical prostatectomy to avoid urinary incontinence.

  3. Adrenergic nerve fibres and mast cells: correlation in rat thymus.

    PubMed

    Artico, Marco; Cavallotti, Carlo; Cavallotti, Daniela

    2002-10-21

    The interactions between adrenergic nerve fibres and mast cells (MCs) were studied in the thymus of adult and old rats by morphological methods and by quantitative analysis of images (QAIs). The whole thymus was drawn in adult (12 months old) rats: normal, sympathectomized or electrostimulated. Thymuses from the above-mentioned animals were weighed, measured and dissected. Thymic slices were stained with eosin orange for detection of microanatomical details and with Bodian's method for identification of the whole nerve fibres. Thymic MCs were stained with Astrablau. Histofluorescence microscopy was used for staining of adrenergic nerve fibres. Finally, all morphological results were submitted to the QAIs and statistical analysis of data. Our results suggest that after surgical sympathectomy, the greater part of adrenergic nerve fibres disappear while related MCs appear to show less evident fluorescence and few granules. On the contrary, electrostimulation of the cervical superior ganglion induced an increase in the fluorescence of adrenergic nerve fibres and of related MCs.

  4. [The history of electrostimulation in rehabilitation medicine].

    PubMed

    Dolhem, R

    2008-07-01

    In antiquity, the electrical properties of torpedo fishes were used for therapeutic purposes (in headache and gout). In the 18th century, some practitioners used Leyde jars (Musschenbroek, 1746) and electrostatic devices to treat (notably) neuralgia, contractures and paralysis. L. Galvani's (1737-1798) description of "animal electricity" and A. Volta's (1745-1827) discovery of bimetallic electricity and invention of the voltaic battery prompted renewed interest in the therapeutic effects of galvanism. In the mid-19th century, Duchenne de Boulogne (1806-1875) improved electrotherapy procedures with volta and magnetofaradaic apparatuses. During the first half of the 20th century, research in electrophysiology (chronaxia and rheobasis) progressed in parallel with the work of electroradiologists such as A. d'Arsonval (1851-1940) and his high-frequency currents. From the 1960s onwards, the combination of progress in electronics with data processing and the miniaturization of medical devices opened up the way to today's electrostimulation techniques and their implementations in physical medicine and rehabilitation.

  5. Surface EMG electrodes do not accurately record from lumbar multifidus muscles.

    PubMed

    Stokes, Ian A F; Henry, Sharon M; Single, Richard M

    2003-01-01

    This study investigated whether electromyographic signals recorded from the skin surface overlying the multifidus muscles could be used to quantify their activity. Comparison of electromyography signals recorded from electrodes on the back surface and from wire electrodes within four different slips of multifidus muscles of three human subjects performing isometric tasks that loaded the trunk from three different directions. It has been suggested that suitably placed surface electrodes can be used to record activity in the deep multifidus muscles. We tested whether there was a stronger correlation and more consistent regression relationship between signals from electrodes overlying multifidus and longissimus muscles respectively than between signals from within multifidus and from the skin surface electrodes over multifidus. The findings provided consistent evidence that the surface electrodes placed over multifidus muscles were more sensitive to the adjacent longissimus muscles than to the underlying multifidus muscles. The R(2) for surface versus intra-muscular comparisons was 0.64, while the average R(2) for surface-multifidus versus surface-longissimus comparisons was 0.80. Also, the magnitude of the regression coefficients was less variable between different tasks for the longissimus versus surface multifidus comparisons. Accurate measurement of multifidus muscle activity requires intra-muscular electrodes. Electromyography is the accepted technique to document the level of muscular activation, but its specificity to particular muscles depends on correct electrode placement. For multifidus, intra-muscular electrodes are required.

  6. Effectiveness of Electrostimulation on Whole Salivary Flow Among Patients with Type 2 Diabetes Mellitus

    PubMed Central

    Dyasnoor, Sujatha; Kamath, Shwetha; Khader, Nishat Fatima Abdul

    2017-01-01

    Context Xerostomia and hyposalivation are associated with diabetes. Research is sparse regarding electrostimulation as a mainstream therapy for salivary gland hypofunction. Objective To clinically evaluate the effectiveness of transcutaneous electric nerve stimulation (TENS) therapy in stimulating whole salivary flow among patients with xerostomia and hyposalivation caused by diabetes mellitus. Design Forty patients between age 30 to 75 years with diabetes mellitus categorized as controlled or uncontrolled who had subjective symptoms of xerostomia and an objective sign of hyposalivation were included in a prospective study. Main Outcome Measures Unstimulated saliva through the “low forced spitting” method and stimulated saliva collection using TENS were assessed and compared. Longer-term effects of TENS application were evaluated by recalling the patient 24 hours later. Results A statistically significant increase in stimulated whole saliva after TENS application in continuous mode (p < 0.001) was demonstrated compared with unstimulated saliva, especially in xerostomic patients with diabetes. Burst mode inferred a statistically significant decrease in salivary flow (p < 0.001). Conclusion In patients with diabetes with xerostomia and hyposalivation, TENS was highly effective in stimulating whole salivary flow. PMID:28488983

  7. The effect of unilateral electrostimulation of the subthalamic nucleus on respiratory/phonatory subsystems of speech production in Parkinson's disease--a preliminary report.

    PubMed

    Wang, Emily; Verhagen Metman, Leo; Bakay, Roy; Arzbaecher, Jean; Bernard, Bryan

    2003-01-01

    This paper reports findings on the respiratory/phonatory subsystems from an on-going study investigating the effect of unilateral electrostimulation of the subthalamic nucleus (STN) on different speech subsystems in people with Parkinson's disease (PD). Speech recordings were made in the medication-off state at baseline, three months post surgery with stimulation-on, and with stimulation-off, in six right-handed PD patients. Subjects completed several speech tasks. Acoustic analyses of the maximally sustained vowel phonation were reported. The results were compared to the scores of the motor section of the Unified Parkinson's Disease Rating Scale (UPDRS-III) obtained under the same conditions. Results showed that stimulation-on improved UPDRS-III scores in all six subjects. While mild improvement was observed for all subjects in the Stimulation-on condition, three subjects received left-STN stimulation showed a significant decline in vocal intensity and vowel duration from their baseline indicating the speech function was very susceptible to micro lesions due to the surgical procedure itself when the surgical site was in the dominant hemisphere.

  8. Cortico-subcortical organization of language networks in the right hemisphere: an electrostimulation study in left-handers.

    PubMed

    Duffau, Hugues; Leroy, Marianne; Gatignol, Peggy

    2008-12-01

    We have studied the configuration of the cortico-subcortical language networks within the right hemisphere (RH) in nine left-handers, being operated on while awake for a cerebral glioma. Intraoperatively, language was mapped using cortico-subcortical electrostimulation, to avoid permanent deficit. In frontal regions, cortical stimulation elicited articulatory disorders (ventral premotor cortex), anomia (dorsal premotor cortex), speech arrest (pars opercularis), and semantic paraphasia (dorsolateral prefrontal cortex). Insular stimulation generated dysarthria, parietal stimulation phonemic paraphasias, and temporal stimulation semantic paraphasias. Subcortically, the superior longitudinal fasciculus (inducing phonological disturbances when stimulated), inferior occipito-frontal fasciculus (eliciting semantic disturbances during stimulation), subcallosal fasciculus (generating control disturbances when stimulated), and common final pathway (inducing articulatory disorders during stimulation) were identified. These cortical and subcortical structures were preserved, avoiding permanent aphasia, despite a transient immediate postoperative language worsening. Both intraoperative results and postsurgical transitory dysphasia support the major role of the RH in language in left-handers, and provide new insights into the anatomo-functional cortico-subcortical organization of the language networks in the RH-suggesting a "mirror" configuration in comparison to the left hemisphere.

  9. Measurement and simulation of unmyelinated nerve electrostimulation: Lumbricus terrestris experiment and numerical model

    NASA Astrophysics Data System (ADS)

    Šarolić, A.; Živković, Z.; Reilly, J. P.

    2016-06-01

    The electrostimulation excitation threshold of a nerve depends on temporal and frequency parameters of the stimulus. These dependences were investigated in terms of: (1) strength-duration (SD) curve for a single monophasic rectangular pulse, and (2) frequency dependence of the excitation threshold for a continuous sinusoidal current. Experiments were performed on the single-axon measurement setup based on Lumbricus terrestris having unmyelinated nerve fibers. The simulations were performed using the well-established SENN model for a myelinated nerve. Although the unmyelinated experimental model differs from the myelinated simulation model, both refer to a single axon. Thus we hypothesized that the dependence on temporal and frequency parameters should be very similar. The comparison was made possible by normalizing each set of results to the SD time constant and the rheobase current of each model, yielding the curves that show the temporal and frequency dependencies regardless of the model differences. The results reasonably agree, suggesting that this experimental setup and method of comparison with SENN model can be used for further studies of waveform effect on nerve excitability, including unmyelinated neurons.

  10. Effect of Supervised Pelvic Floor Biofeedback and Electrical Stimulation in Women With Mixed and Stress Urinary Incontinence.

    PubMed

    Richmond, Cherrilyn F; Martin, Deanna K; Yip, Sallis O; Dick, Madeline A; Erekson, Elisabeth A

    2016-01-01

    The aim of this study was to compare the symptomatic change in urinary symptom distress before and after treatment with pelvic floor biofeedback and electrical stimulation in women with mixed urinary incontinence (MUI) and stress urinary incontinence (SUI). We conducted a retrospective cohort study of women who underwent supervised pelvic floor biofeedback therapy and electrostimulation for the treatment of MUI and SUI. Our primary outcome was change in the Urinary Distress Inventory-6 (UDI-6) score before and after therapy. Overall, a significant drop in UDI-6 score was seen in women with MUI (mean decrease, 29.1 [27.5]; P < 0.001), and a nonsignificant drop was seen in women with SUI (mean decrease, 6.8 [20.3]; P = 0.07) after treatment. Significantly greater change in UDI-6 score from baseline to follow-up was noted in women with MUI compared with those with SUI (P = 0.002). Women with MUI have greater urinary distress symptoms than women with SUI. Both women with MUI and SUI experienced significant improvement in their urinary distress symptoms after pelvic floor biofeedback and electrostimulation.

  11. Measurement and simulation of unmyelinated nerve electrostimulation: Lumbricus terrestris experiment and numerical model.

    PubMed

    Šarolić, A; Živković, Z; Reilly, J P

    2016-06-21

    The electrostimulation excitation threshold of a nerve depends on temporal and frequency parameters of the stimulus. These dependences were investigated in terms of: (1) strength-duration (SD) curve for a single monophasic rectangular pulse, and (2) frequency dependence of the excitation threshold for a continuous sinusoidal current. Experiments were performed on the single-axon measurement setup based on Lumbricus terrestris having unmyelinated nerve fibers. The simulations were performed using the well-established SENN model for a myelinated nerve. Although the unmyelinated experimental model differs from the myelinated simulation model, both refer to a single axon. Thus we hypothesized that the dependence on temporal and frequency parameters should be very similar. The comparison was made possible by normalizing each set of results to the SD time constant and the rheobase current of each model, yielding the curves that show the temporal and frequency dependencies regardless of the model differences. The results reasonably agree, suggesting that this experimental setup and method of comparison with SENN model can be used for further studies of waveform effect on nerve excitability, including unmyelinated neurons.

  12. [Intravesical electrostimulation and magnetotherapy in chronic pyelonephritis and cystitis in children with urodynamic disorders].

    PubMed

    Sharkov, S M; Iatsik, S P; Bolotova, N V; Raĭgorodskiĭ, Iu M; Konova, O M; Tkacheva, E N

    2011-01-01

    The results of the treatment of 38 children (6 boys and 32 girls, age 6-14 years) with chronic pyelonephritis and/or cystitis complicated with neurogenic dysfunction of the urinary bladder (NDUB) and/or vesicoureteral reflux (VUR) of the first-third degree demonstrate efficacy of intravesical electrostimulation (IVES) and adrenal magnetotherapy. IVES was conducted with high-frequency current impulses (2.2 kHz) by means of INTRASTIM attachment to the device AMUS-01-INTRAMAG in the region of the urethrovesical anastomosis via solution of the drugs for instillation. As the result of exposure to both physical factors in the presence of standard medication, NDUB symptoms alleviated (by E.L. Vishnevsky's criteria) by 59.5% against 38.1% in the control group. Dopplerographic examination of renal vessels stated a 24.3% increase in blood flow in the major renal artery in the study group against 10.5% in the control. The proposed complex pharmacological plus physiotherapeutic treatment of chronic pyelonephritis and cystitis in abnormal urodynamics resulted in a 2.2-fold decrease in the number of recurrences compared to the standard treatment.

  13. Nociception from blood vessels is independent of the sympathetic nervous system under physiological conditions in humans.

    PubMed

    Kindgen-Milles, D; Holthusen, H

    1997-06-05

    To test the hypothesis that vascular pain depends on sympathetic drive under physiological conditions we studied the effects of both alpha-adrenoceptor stimulation by noradrenaline and alpha-adrenoceptor blockade by phentolamine on the intensity of physicochemically evoked pain from veins in humans. In seven healthy volunteers, a vascularly isolated hand vein segment was perfused continuously with noradrenaline (6 x 10(-9)-6 x 10(-6) M), or phentolamine (1.24 x 10(-4) M). Pain was evoked by intraluminal electrostimulation or by injection of hyperosmolar saline during control perfusion of isoosmolar saline and after each noradrenaline concentration, as well as after perfusion of phentolamine. Subjects rated pain intensity continuously on an electronically controlled visual analogue scale (VAS) between 0% VAS (no pain) and 100% VAS (tolerance maximum). Intravenous electrostimulation as well as hyperosmolar solutions evoked pain in each subject. The intensity of pain was neither influenced by noradrenaline, nor by phentolamine, so that nociception from blood vessels is unlikely to be modulated by the sympathetic nervous system under physiological conditions in humans.

  14. Effectiveness of Electrostimulation on Whole Salivary Flow Among Patients with Type 2 Diabetes Mellitus.

    PubMed

    Dyasnoor, Sujatha; Kamath, Shwetha; Khader, Nishat Fatima Abdul

    2017-01-01

    Xerostomia and hyposalivation are associated with diabetes. Research is sparse regarding electrostimulation as a mainstream therapy for salivary gland hypofunction. To clinically evaluate the effectiveness of transcutaneous electric nerve stimulation (TENS) therapy in stimulating whole salivary flow among patients with xerostomia and hyposalivation caused by diabetes mellitus. Forty patients between age 30 to 75 years with diabetes mellitus categorized as controlled or uncontrolled who had subjective symptoms of xerostomia and an objective sign of hyposalivation were included in a prospective study. Unstimulated saliva through the "low forced spitting" method and stimulated saliva collection using TENS were assessed and compared. Longer-term effects of TENS application were evaluated by recalling the patient 24 hours later. A statistically significant increase in stimulated whole saliva after TENS application in continuous mode (p < 0.001) was demonstrated compared with unstimulated saliva, especially in xerostomic patients with diabetes. Burst mode inferred a statistically significant decrease in salivary flow (p < 0.001). In patients with diabetes with xerostomia and hyposalivation, TENS was highly effective in stimulating whole salivary flow.

  15. Cerebro-afferent vessel and pupillary basal diameter variation induced by stomatognathic trigeminal proprioception: a case report.

    PubMed

    De Cicco, Vincenzo

    2012-09-03

    A patient affected by asymmetric hemodynamics of cerebro-afferent vessels underwent duplex color scanner investigations in occlusal proprioceptive un- and rebalance conditions. Pupillometric video-oculographic examinations were performed in order to spot connected trigeminal proprioceptive motor patterns able to interfere on sympathetic autonomic activity. The aim of this case report is to verify if involuntary jaw closing during swallowing, executed in unbalance and rebalance myoelectric activity, would be able to modify cerebral hemodynamics. A 56-year-old Caucasian Italian woman affected by asymmetric blood flow of cerebro-afferent vessels underwent an electromyographic investigation of her occlusal muscles in order to assess their occlusal functional balance. The extreme asymmetry of myoelectric activity in dental occlusion evidenced by electromyographic values suggested the rebalancing of the functions of occlusal muscles through concurrent transcutaneous stimulation of the trigeminal nerve supra- and submandibular motor branches. The above-mentioned method allowed the detection of a symmetric craniomandibular muscular relation that can be kept constant through the use of a cusp bite modeled on the inferior dental arch: called orthotic-syntropic bite for its peculiar use of electrostimulation. A few days later, the patient underwent a duplex color scanner investigation and pupillometric video-oculographic examinations in occlusal unbalance and rebalance conditions. A comparative data analysis showed that an unbalanced dental occlusal function may represent an interferential pattern on cerebral hemodynamics velocity and pupillometric evaluations have proved useful both in the analysis of locus coeruleus functional modalities and as a diagnostic tool in the assessment of pathologies involving locus coeruleus and autonomic systems. The inclusion of myoelectric masseter examinations can be useful in patients with asymmetric hemodynamics of cerebro-afferent vessels and dental occlusal proprioceptive rebalance can integrate the complex therapy of patients with increased chronic sympathetic activity.

  16. Randomized controlled trial of electro-stimulation therapies to modulate retinal blood flow and visual function in retinitis pigmentosa.

    PubMed

    Bittner, Ava K; Seger, Kenneth; Salveson, Rachel; Kayser, Samantha; Morrison, Natalia; Vargas, Patricia; Mendelsohn, Deborah; Han, Jorge; Bi, Hua; Dagnelie, Gislin; Benavente, Alexandra; Ramella-Roman, Jessica

    2018-05-01

    We examined changes in visual function and ocular and retinal blood flow (RBF) among retinitis pigmentosa (RP) participants in a randomized controlled trial of electro-stimulation therapies. Twenty-one RP participants were randomized (1:1:1) to transcorneal electrical stimulation (TES) at 6 weekly half-hour sessions, electro-acupuncture or inactive laser acupuncture (sham control) at 10 half-hour sessions over 2 weeks. Early Treatment of Diabetic Retinopathy Study (ETDRS) visual acuity (VA), quick contrast sensitivity function, Goldmann visual fields, AdaptDx scotopic sensitivity, spectral flow and colour Doppler imaging of the central retinal artery (CRA), and RBF in macular capillaries were measured twice pre-treatment, after 2 TES sessions, within a week and a month after intervention completion. We measured a significant improvement in retrobulbar CRA mean flow velocity for both the TES (p = 0.038) and electro-acupuncture groups (p = 0.001) on average after 2 weeks of treatment when compared to sham controls. Transcorneal electrical simulation (TES) and electro-acupuncture subjects had significant 55% and 34% greater increases, respectively, in RBF in the macular vessels when compared to sham controls (p < 0.001; p = 0.008) within a week of completing six TES sessions or a month after electro-acupuncture. There was a significant difference in the proportion of eyes that had improved visual function when comparing the three intervention groups (p = 0.038): four of seven TES subjects (57%), two of seven electro-acupuncture subjects (29%) and none of the seven control subjects (0%) had a significant visual improvement outside of typical test-retest variability at two consecutive post-treatment visits. Increased blood flow following electro-stimulation therapies is an objective, physiological change that occurred in addition to visual function improvements in some RP patients. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  17. Dissociation of Subtraction and Multiplication in the Right Parietal Cortex: Evidence from Intraoperative Cortical Electrostimulation

    ERIC Educational Resources Information Center

    Yu, Xiaodan; Chen, Chuansheng; Pu, Song; Wu, Chenxing; Li, Yongnian; Jiang, Tao; Zhou, Xinlin

    2011-01-01

    Previous research has consistently shown that the left parietal cortex is critical for numerical processing, but the role of the right parietal lobe has been much less clear. This study used the intraoperative cortical electrical stimulation approach to investigate neural dissociation in the right parietal cortex for subtraction and…

  18. Electrical stimulation attenuates morphological alterations and prevents atrophy of the denervated cranial tibial muscle.

    PubMed

    Bueno, Cleuber Rodrigo de Souza; Pereira, Mizael; Favaretto, Idvaldo Aparecido; Bortoluci, Carlos Henrique Fachin; Santos, Thais Caroline Pereira Dos; Dias, Daniel Ventura; Daré, Letícia Rossi; Rosa, Geraldo Marco

    2017-01-01

    To investigate if electrical stimulation through Russian current is able to maintain morphology of the cranial tibial muscle of experimentally denervated rats. Thirty-six Wistar rats were divided into four groups: the Initial Control Group, Final Control Group, Experimental Denervated and Treated Group, Experimental Denervated Group. The electrostimulation was performed with a protocol of Russian current applied three times per week, for 45 days. At the end, the animals were euthanized and histological and morphometric analyses were performed. Data were submitted to statistical analysis with a significance level of p<0.05. The Experimental Denervated Group and the Experimental Denervated and Treated Group had cross-sectional area of smaller fiber compared to the Final Control Group. However, there was significant difference between the Experimental Denervated Group and Experimental Denervated and Treated Group, showing that electrical stimulation minimized muscle atrophy. The Experimental Denervated and Treated Group and Initial Control Group showed similar results. Electrical stimulation through Russian current acted favorably in maintaining morphology of the cranial tibial muscle that was experimentally denervated, minimizing muscle atrophy. Investigar se a estimulação elétrica pela corrente russa é capaz de manter a morfologia do músculo tibial cranial de ratos desnervados experimentalmente. Foram utilizados 36 ratos Wistar, distribuídos em quatro grupos: Grupo Controle Inicial, Grupo Controle Final, Grupo Experimental Desnervado Tratado, Grupo Experimental Desnervado. A eletroestimulação foi realizada com um protocolo de corrente russa aplicada três vezes por semanas, durante 45 dias. Ao final, os animais foram eutanasiados e, em seguida, foram realizadas as análises histológica e morfométrica. Os dados foram submetidos à análise estatística, com nível de significância de p<0,05. Os Grupos Experimental Desnervado e o Grupo Experimental Desnervado Tratado apresentaram área de secção transversal da fibra menor quando comparados ao Grupo Controle Final. Entretanto, constatou-se diferença significativa entre o Grupo Experimental Desnervado e o Grupo Experimental Desnervado Tratado, mostrando que a estimulação elétrica minimizou atrofia muscular. Ainda, observou-se que o Grupo Experimental Desnervado Tratado apresentou resultados semelhantes ao Grupo Controle Inicial. A estimulação elétrica por meio da corrente russa foi favorável na manutenção da morfologia do músculo tibial cranial desnervado experimentalmente, minimizando a atrofia muscular.

  19. [The experience with the application of the selective electro-stimulation impacts in the children presenting with the disturbances of the locomotor function].

    PubMed

    Vlasenko, A V; Mikhnovich, V I; Machanskaya, A V; Pogodina, A V; Bugun, O V; Rychkova, L V; Astakhova, T A

    2017-12-28

    The objective of the present study was the improvement of the effectiveness of medical rehabilitation of the children presenting with the disturbances of the locomotor function using a «LymphaVision» apparatus for the selective electrical stimulation. The study included 42 patients with movement disorders divided into two groups depending on the method of non-drug therapy. The main group was comprised of the patients receiving the treatment by electrical stimulation with the use of the «LymphaVision» apparatus while the remaining patients made up the group of comparison (they were treated with by means of Vermel electrophoresis with the use of a 1% sodium bromide solution). The increase of the muscular strength evaluated based on the scoring system and the number of motor skills were used as the criteria of the effectiveness of the treatment. The applied Statistica for Windows package, version 6.0 («StatSoft», USA). Was employed for the statistical analysis of the data obtained. The significance and number of differences between two independent samples of the quantitative features were assessed using the Mann-Whitney U test. The Wilcoxon matched pairs test was used to compare the two matched groups. The children comprising the group treated by means of selective exposure to electrical stimulation with the use of the «LymphaVision» apparatus in the course of the rehabilitation process exhibited a significant increase in the strength of the muscles of the lower extremities and the trunk over the baseline values (p=0.003 and p=0.04 respectively) and acquired a significantly greater number of the new motor skills (p=0.02). The application of the proposed method is characterized by the highly pronounced clinical efficiency. This approach is pathogenetically well-substantiated for the treatment of the children presenting with the locomotor disorders developing as the consequences of perinatal lesions in the central nervous system and promotes the restoration of the capabilities of the child's body, such as normalization of the muscle tone, increase of the motor activity and muscle strength.

  20. Chronic prostatitis/chronic pelvic pain syndrome impairs erectile function through increased endothelial dysfunction, oxidative stress, apoptosis, and corporal fibrosis in a rat model.

    PubMed

    Hu, Y; Niu, X; Wang, G; Huang, J; Liu, M; Peng, B

    2016-11-01

    Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is an independent risk factor for the development of erectile dysfunction (ED). But the molecular mechanisms underlying the relationship between CP/CPPS and ED are still unclear. The aim of this study was to investigate the effect of CP/CPPS on erectile function in a rat model and the possible mechanisms. A rat model of experimental autoimmune prostatitis (EAP) was established to mimic human CP⁄CPPS. Then twenty 2-month-old male Sprague-Dawley rats were divided into EAP group and control group. Intracavernosal pressure (ICP) and mean arterial pressure (MAP) were measured during cavernous nerve electrostimulation, the ratio of max ICP/MAP was calculated. Blood was collected to measure the levels of serum C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and testosterone, respectively. The expression of endothelial nitric oxide synthase (eNOS), cyclic guanosine monophosphate (cGMP) levels, superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels in corpus cavernosum were detected. We also evaluated the smooth muscle/collagen ratio and apoptotic index (AI). The ratio of max ICP/MAP in EAP group were significantly lower than that in control group. The levels of serum CRP, TNF-α, IL-1β, and IL-6 in EAP group were all significantly higher than these in control group. The expression of eNOS and cGMP levels in corpus cavernosum of EAP rats were significantly downregulated. Furthermore, decreased SOD activity and smooth muscle/collagen ratio, increased MDA levels and AI were found in corpus cavernosum of EAP rats. In conclusion, CP/CPPS impaired penile erectile function in a rat model. The declines of eNOS expression and cGMP levels in corpus cavernosum may be an important mechanism of CP/CPPS-induced ED. CP/CPPS also increased oxidative stress, cell apoptosis and decreased smooth muscle/collagen ratio in corpus cavernosum of rats, which were all important for erectile function. © 2016 American Society of Andrology and European Academy of Andrology.

  1. [Electrophysical effects in combined treatment of neurosensory hypoacusis].

    PubMed

    Morenko, V M; Enin, I P

    2002-01-01

    The authors consider different methods of electrobiophysical impacts on the body in the treatment of neurosensory hypoacusis: laser beam, laser puncture, electrostimulation, magnetotherapy, magnetolasertherapy, electrophoresis, etc. These methods find more and more intensive application in modern medicine. Further success of physiotherapy for neurosensory hypoacusis depends on adequate knowledge about mechanisms of action of each physical method used and introduction of novel techniques.

  2. Impact of electro-stimulation on denitrifying bacterial growth and analysis of bacterial growth kinetics using a modified Gompertz model in a bio-electrochemical denitrification reactor.

    PubMed

    Liu, Hengyuan; Chen, Nan; Feng, Chuanping; Tong, Shuang; Li, Rui

    2017-05-01

    This study aimed to investigate the effect of electro-stimulation on denitrifying bacterial growth in a bio-electrochemical reactor, and the growth were modeled using modified Gompertz model under different current densities at three C/Ns. It was found that the similar optimum current density of 250mA/m 2 was obtained at C/N=0.75, 1.00 and 1.25, correspondingly the maximum nitrate removal efficiencies were 98.0%, 99.2% and 99.9%. Moreover, ATP content and cell membrane permeability of denitrifying bacteria were significantly increased at optimum current density. Furthermore, modified Gompertz model fitted well with the microbial growth curves, and the highest maximum growth rates (µ max ) and shorter lag time were obtained at the optimum current density for all C/Ns. This study demonstrated that the modified Gompertz model could be used for describing microbial growth under different current densities and C/Ns in a bio-electrochemical denitrification reactor, and it provided an alternative for improving the performance of denitrification process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Electrotonic and action potentials in the Venus flytrap.

    PubMed

    Volkov, Alexander G; Vilfranc, Chrystelle L; Murphy, Veronica A; Mitchell, Colee M; Volkova, Maia I; O'Neal, Lawrence; Markin, Vladislav S

    2013-06-15

    The electrical phenomena and morphing structures in the Venus flytrap have attracted researchers since the nineteenth century. We have observed that mechanical stimulation of trigger hairs on the lobes of the Venus flytrap induces electrotonic potentials in the lower leaf. Electrostimulation of electrical circuits in the Venus flytrap can induce electrotonic potentials propagating along the upper and lower leaves. The instantaneous increase or decrease in voltage of stimulating potential generates a nonlinear electrical response in plant tissues. Any electrostimulation that is not instantaneous, such as sinusoidal or triangular functions, results in linear responses in the form of small electrotonic potentials. The amplitude and sign of electrotonic potentials depend on the polarity and the amplitude of the applied voltage. Electrical stimulation of the lower leaf induces electrical signals, which resemble action potentials, in the trap between the lobes and the midrib. The trap closes if the stimulating voltage is above the threshold level of 4.4V. Electrical responses in the Venus flytrap were analyzed and reproduced in the discrete electrical circuit. The information gained from this study can be used to elucidate the coupling of intracellular and intercellular communications in the form of electrical signals within plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. Analysis of linear electrode array EMG for assessment of hemiparetic biceps brachii muscles.

    PubMed

    Yao, Bo; Zhang, Xu; Li, Sheng; Li, Xiaoyan; Chen, Xiang; Klein, Cliff S; Zhou, Ping

    2015-01-01

    This study presents a frequency analysis of surface electromyogram (EMG) signals acquired by a linear electrode array from the biceps brachii muscles bilaterally in 14 hemiparetic stroke subjects. For different levels of isometric contraction ranging from 10 to 80% of the maximum voluntary contraction (MVC), the power spectra of 19 bipolar surface EMG channels arranged proximally to distally along the muscle fibers were examined in both paretic and contralateral muscles. It was found that across all stroke subjects, the median frequency (MF) and the mean power frequency (MPF), averaged from different surface EMG channels, were significantly smaller in the paretic muscle compared to the contralateral muscle at each of the matched percent MVC contractions. The muscle fiber conduction velocity (MFCV) was significantly slower in the paretic muscle than in the contralateral muscle. No significant correlation between the averaged MF, MPF, or MFCV vs. torque was found in both paretic and contralateral muscles. However, there was a significant positive correlation between the global MFCV and MF. Examination of individual EMG channels showed that electrodes closest to the estimated muscle innervation zones produced surface EMG signals with significantly higher MF and MPF than more proximal or distal locations in both paretic and contralateral sides. These findings suggest complex central and peripheral neuromuscular alterations (such as selective loss of large motor units, disordered control of motor units, increased motor unit synchronization, and atrophy of muscle fibers, etc.) which can collectively influence the surface EMG signals. The frequency difference with regard to the innervation zone also confirms the relevance of electrode position in surface EMG analysis.

  5. Electrotonic potentials in Aloe vera L.: Effects of intercellular and external electrodes arrangement.

    PubMed

    Volkov, Alexander G; Nyasani, Eunice K; Tuckett, Clayton; Scott, Jessenia M; Jackson, Mariah M Z; Greeman, Esther A; Greenidge, Ariane S; Cohen, Devin O; Volkova, Maia I; Shtessel, Yuri B

    2017-02-01

    Electrostimulation of plants can induce plant movements, activation of ion channels, ion transport, gene expression, enzymatic systems activation, electrical signaling, plant-cell damage, enhanced wound healing, and influence plant growth. Here we found that electrical networks in plant tissues have electrical differentiators. The amplitude of electrical responses decreases along a leaf and increases by decreasing the distance between polarizing Pt-electrodes. Intercellular Ag/AgCl electrodes inserted in a leaf and extracellular Ag/AgCl electrodes attached to the leaf surface were used to detect the electrotonic potential propagation along a leaf of Aloe vera. There is a difference in duration and amplitude of electrical potentials measured by electrodes inserted in a leaf and those attached to a leaf's surface. If the external reference electrode is located in the soil near the root, it changes the amplitude and duration of electrotonic potentials due to existence of additional resistance, capacitance, ion channels and ion pumps in the root. The information gained from this study can be used to elucidate extracellular and intercellular communication in the form of electrical signals within plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Assessing the validity of surface electromyography for recording muscle activation patterns from serratus anterior.

    PubMed

    Hackett, Lucien; Reed, Darren; Halaki, Mark; Ginn, Karen A

    2014-04-01

    No direct evidence exists to support the validity of using surface electrodes to record muscle activity from serratus anterior, an important and commonly investigated shoulder muscle. The aims of this study were to determine the validity of examining muscle activation patterns in serratus anterior using surface electromyography and to determine whether intramuscular electromyography is representative of serratus anterior muscle activity. Seven asymptomatic subjects performed dynamic and isometric shoulder flexion, extension, abduction, adduction and dynamic bench press plus tests. Surface electrodes were placed over serratus anterior and around intramuscular electrodes in serratus anterior. Load was ramped during isometric tests from 0% to 100% maximum load and dynamic tests were performed at 70% maximum load. EMG signals were normalised using five standard maximum voluntary contraction tests. Surface electrodes significantly underestimated serratus anterior muscle activity compared with the intramuscular electrodes during dynamic flexion, dynamic abduction, isometric flexion, isometric abduction and bench press plus tests. All other test conditions showed no significant differences including the flexion normalisation test where maximum activation was recorded from both electrode types. Low correlation between signals was recorded using surface and intramuscular electrodes during concentric phases of dynamic abduction and flexion. It is not valid to use surface electromyography to assess muscle activation levels in serratus anterior during isometric exercises where the electrodes are not placed at the angle of testing and dynamic exercises. Intramuscular electrodes are as representative of the serratus anterior muscle activity as surface electrodes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Morphing Structures, Mechanosensors, and Osmotic Motors in Plants

    DTIC Science & Technology

    2014-07-24

    2.00 4.00 Alexander G. Volkov, Lawrence O’Neal, Maia I. Volkova-Gugeshashvili, Vladislav S. Markin. Electrostimulation of Aloe Vera L., Mimosa Pudica...electrochemical circuits in Aloe vera and Mimosa pudica, Bioelectrochemistry and Bioenergetics, (04 2011): 390. doi: 10.1016/j.bioelechem.2011.01.004... Mimosa pudica L., Plant Signaling & Behavior (07 2014) Vladislav Markin, Alexander Volkov, Leon Chua. An analytical model of memristors in plants

  8. The relationship between anatomically correct electric and magnetic field dosimetry and publishe delectric and magnetic field exposure limits.

    PubMed

    Kavet, Robert; Dovan, Thanh; Reilly, J Patrick

    2012-12-01

    Electric and magnetic field exposure limits published by International Commission for Non-Ionizing Radiation Protection and Institute of Electrical and Electronics Engineers are aimed at protection against adverse electrostimulation, which may occur by direct coupling to excitable tissue and, in the case of electric fields, through indirect means associated with surface charge effects (e.g. hair vibration, skin sensations), spark discharge and contact current. For direct coupling, the basic restriction (BR) specifies the not-to-be-exceeded induced electric field. The key results of anatomically based electric and magnetic field dosimetry studies and the relevant characteristics of excitable tissue were first identified. This permitted us to assess the electric and magnetic field exposure levels that induce dose in tissue equal to the basic restrictions, and the relationships of those exposure levels to the limits now in effect. We identify scenarios in which direct coupling of electric fields to peripheral nerve could be a determining factor for electric field limits.

  9. A three-dimensional muscle activity imaging technique for assessing pelvic muscle function

    NASA Astrophysics Data System (ADS)

    Zhang, Yingchun; Wang, Dan; Timm, Gerald W.

    2010-11-01

    A novel multi-channel surface electromyography (EMG)-based three-dimensional muscle activity imaging (MAI) technique has been developed by combining the bioelectrical source reconstruction approach and subject-specific finite element modeling approach. Internal muscle activities are modeled by a current density distribution and estimated from the intra-vaginal surface EMG signals with the aid of a weighted minimum norm estimation algorithm. The MAI technique was employed to minimally invasively reconstruct electrical activity in the pelvic floor muscles and urethral sphincter from multi-channel intra-vaginal surface EMG recordings. A series of computer simulations were conducted to evaluate the performance of the present MAI technique. With appropriate numerical modeling and inverse estimation techniques, we have demonstrated the capability of the MAI technique to accurately reconstruct internal muscle activities from surface EMG recordings. This MAI technique combined with traditional EMG signal analysis techniques is being used to study etiologic factors associated with stress urinary incontinence in women by correlating functional status of muscles characterized from the intra-vaginal surface EMG measurements with the specific pelvic muscle groups that generated these signals. The developed MAI technique described herein holds promise for eliminating the need to place needle electrodes into muscles to obtain accurate EMG recordings in some clinical applications.

  10. Effects of extra-corporeal shock waves on penile hemodynamics and histopathology in rats.

    PubMed

    Tefekli, Ahmet; Armagan, Abdullah; Erol, Bulent; Celtik, Murat; Kilicaslan, Isi; Nurten, Asiye; Kadioglu, Ates

    2002-12-01

    To study the effect of extra-corporeal shock wave (ESW) on the penile hemodynamics and histopathology in rats. Adult male Sprague-Dawley rats were divided at random into 3 groups. ESW application was performed with a Siemens Lithostar with the rats under anesthesia lying prone on the balloon probe. Rats in Group I received a total of 1000 shocks at 18 kV and immediately underwent hemodynamic evaluation performed by direct electrostimulation of the cavernous nerve and measurement of intracavernous pressure (ICP). Rats in Group II received 3 times 1000 shocks at 18 kV at weekly intervals and hemodynamic evaluation was performed 1 month after the last ESW application. Group III served as the control. Histopathological examinations of penile tissues were done on Masson's trichrome and hematoxylin and eosin stained sections. Penile hemodynamic evaluation showed a trend toward a diminished mean maximal ICP, duration of erection, ICP during the plateau phase and maximal ICP/ blood pressure ratio in Group I, although there was no significant significance. The mean latency period in Groups I and II was prolonged. Petechial bleeding within tunical layers and small foci of hemorrhage within the corpora cavernosa were observed in Group I. However, histopathological examination failed to reveal any significant differences between the groups in terms of smooth muscle content, tunical thickness, organization of collagen bundles and elastic fiber-lattice framework. ESW has certain damaging effects on the penis.

  11. EMG responses to maintain stance during multidirectional surface translations

    NASA Technical Reports Server (NTRS)

    Henry, S. M.; Fung, J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)

    1998-01-01

    To characterize muscle synergy organization underlying multidirectional control of stance posture, electromyographic activity was recorded from 11 lower limb and trunk muscles of 7 healthy subjects while they were subjected to horizontal surface translations in 12 different, randomly presented directions. The latency and amplitude of muscle responses were quantified for each perturbation direction. Tuning curves for each muscle were examined to relate the amplitude of the muscle response to the direction of surface translation. The latencies of responses for the shank and thigh muscles were constant, regardless of perturbation direction. In contrast, the latencies for another thigh [tensor fascia latae (TFL)] and two trunk muscles [rectus abdominis (RAB) and erector spinae (ESP)] were either early or late, depending on the perturbation direction. These three muscles with direction-specific latencies may play different roles in postural control as prime movers or as stabilizers for different translation directions, depending on the timing of recruitment. Most muscle tuning curves were within one quadrant, having one direction of maximal activity, generally in response to diagonal surface translations. Two trunk muscles (RAB and ESP) and two lower limb muscles (semimembranosus and peroneus longus) had bipolar tuning curves, with two different directions of maximal activity, suggesting that these muscle can play different roles as part of different synergies, depending on translation direction. Muscle tuning curves tended to group into one of three regions in response to 12 different directions of perturbations. Two muscles [rectus femoris (RFM) and TFL] were maximally active in response to lateral surface translations. The remaining muscles clustered into one of two diagonal regions. The diagonal regions corresponded to the two primary directions of active horizontal force vector responses. Two muscles (RFM and adductor longus) were maximally active orthogonal to their predicted direction of maximal activity based on anatomic orientation. Some of the muscles in each of the synergic regions were not anatomic synergists, suggesting a complex central organization for recruitment of muscles. The results suggest that neither a simple reflex mechanism nor a fixed muscle synergy organization is adequate to explain the muscle activation patterns observed in this postural control task. Our results are consistent with a centrally mediated pattern of muscle latencies combined with peripheral influence on muscle magnitude. We suggest that a flexible continuum of muscle synergies that are modifiable in a task-dependent manner be used for equilibrium control in stance.

  12. Shoulder Muscle Activation Levels During the Push-Up-Plus Exercise on Stable and Unstable Surfaces.

    PubMed

    Torres, Rafaela J B; Pirauá, André L T; Nascimento, Vinícius Y S; Dos Santos, Priscila S; Beltrão, Natália B; de Oliveira, Valéria M A; Pitangui, Ana Carolina R; de Araújo, Rodrigo C

    2017-07-01

    The aim of this study was to evaluate the acute effect of the use of stable and unstable surfaces on electromyography (EMG) activity and coactivation of the scapular and upper-limb muscles during the push-up plus (with full protraction of the scapula). Muscle activation of anterior deltoid (AD), posterior deltoid (PD), pectoralis major, biceps brachii (BB), triceps brachii (TB), upper trapezius (UT), middle trapezius (MT), lower trapezius (LT), and serratus anterior (SA) levels and coactivation index were determined by surface EMG in 20 young men during push-up plus performed on a stable and unstable condition (2 unstable devices applied to hands and feet). The paired t test and Cohen d were used for statistical analysis. The results showed that during the execution of the push-up plus on the unstable surface an increased EMG activity of the scapular stabilizing muscles (SA, MT, and LT) was observed, while AD and PD muscles showed a decrease. During exercise execution on the unstable surface there was a higher index of coactivation of the scapular muscles (SA-MT and UT-LT pairs). No significant differences were observed in TB-BB and AD-PD pairs. These results suggest that the push-up-plus exercise associated with unstable surfaces produced greater EMG activity levels and coactivation index of the scapular stabilizing muscle. On the other hand, the use of an unstable surface does not promote the same effect for the shoulder muscles.

  13. Support surface related changes in feedforward and feedback control of standing posture

    PubMed Central

    Mohapatra, Sambit; Kukkar, Komal K.; Aruin, Alexander S.

    2013-01-01

    The aim of the study was to investigate the effect of different support surfaces on feedforward and feedback components of postural control. Nine healthy subjects were exposed to external perturbations applied to their shoulders while standing on a rigid platform, foam, and wobble board with eyes open or closed. Electrical activity of nine trunk and leg muscles and displacements of the center of pressure were recorded and analyzed during the time frames typical of feedforward and feedback postural adjustments. Feedforward control of posture was characterized by earlier activation of anterior muscles when the subjects stood on foam compared to a wobble board or a firm surface. In addition, the magnitude of feedforward muscle activity was the largest when the foam was used. During the feedback control, anterior muscles were activated prior to posterior muscles irrespective of the nature of surface. Moreover, the largest muscle activity was seen when the supporting surface was foam. Maximum CoP displacement occurred when subjects were standing on a rigid surface. Altering support surface affects both feedforward and feedback components of postural control. This information should be taken into consideration in planning rehabilitation interventions geared towards improvement of balance. PMID:24268589

  14. Support surface related changes in feedforward and feedback control of standing posture.

    PubMed

    Mohapatra, Sambit; Kukkar, Komal K; Aruin, Alexander S

    2014-02-01

    The aim of the study was to investigate the effect of different support surfaces on feedforward and feedback components of postural control. Nine healthy subjects were exposed to external perturbations applied to their shoulders while standing on a rigid platform, foam, and wobble board with eyes open or closed. Electrical activity of nine trunk and leg muscles and displacements of the center of pressure were recorded and analyzed during the time frames typical of feedforward and feedback postural adjustments. Feedforward control of posture was characterized by earlier activation of anterior muscles when the subjects stood on foam compared to a wobble board or a firm surface. In addition, the magnitude of feedforward muscle activity was the largest when the foam was used. During the feedback control, anterior muscles were activated prior to posterior muscles irrespective of the nature of surface. Moreover, the largest muscle activity was seen when the supporting surface was foam. Maximum CoP displacement occurred when subjects were standing on a rigid surface. Altering support surface affects both feedforward and feedback components of postural control. This information should be taken into consideration in planning rehabilitation interventions geared towards improvement of balance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. [Effects of therapeutic complexes including balneoradonokinesitherapy, electromyostimulation and low-frequency magnetotherapy on regional blood flow in patients with postrraumatic gonarthritis].

    PubMed

    Raspopova, E A; Udartsev, E Iu

    2006-01-01

    Balneoradonokinesitherapy alone and its combination with electrostimulation and low-frequency magnetotherapy were used for the treatment of regional blood flow disorders in 76 patients with posttraumatic gonarthritis. Balneoradonokinesitherapy in combination with electromyostimulation improved blood circulation. When low-frequency magnetotherapy was added to the latter complex, the regress of regional blood flow disorders of a damaged extremity was most significant.

  16. Intraoperative Subcortical Electrical Mapping of the Optic Tract in Awake Surgery Using a Virtual Reality Headset.

    PubMed

    Mazerand, Edouard; Le Renard, Marc; Hue, Sophie; Lemée, Jean-Michel; Klinger, Evelyne; Menei, Philippe

    2017-01-01

    Brain mapping during awake craniotomy is a well-known technique to preserve neurological functions, especially the language. It is still challenging to map the optic radiations due to the difficulty to test the visual field intraoperatively. To assess the visual field during awake craniotomy, we developed the Functions' Explorer based on a virtual reality headset (FEX-VRH). The impaired visual field of 10 patients was tested with automated perimetry (the gold standard examination) and the FEX-VRH. The proof-of-concept test was done during the surgery performed on a patient who was blind in his right eye and presenting with a left parietotemporal glioblastoma. The FEX-VRH was used intraoperatively, simultaneously with direct subcortical electrostimulation, allowing identification and preservation of the optic radiations. The FEX-VRH detected 9 of the 10 visual field defects found by automated perimetry. The patient who underwent an awake craniotomy with intraoperative mapping of the optic tract using the FEX-VRH had no permanent postoperative visual field defect. Intraoperative visual field assessment with the FEX-VRH during direct subcortical electrostimulation is a promising approach to mapping the optical radiations and preventing a permanent visual field defect during awake surgery for epilepsy or tumor. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Semen collection and ejaculate characteristics of the Leopard Tortoise (Stigmochelys pardalis)

    PubMed Central

    Mitchell, Mark A

    2017-01-01

    Abstract The preservation of spermatozoa is an important tool used in conservation programs to increase the genetic diversity of threatened and endangered species. Although routinely used to manage conservation programs for higher vertebrates, there have been limited attempts to establish reproductive assistance programs for tortoises. The purpose of this study was to develop a model for collecting and characterizing semen in Testudinidae. Semen was collected from 13/16 (81.2%, 95% CI: 62–100) adult male leopard tortoises (Stigmochelys pardalis) via electroejaculation under propofol anesthesia. Semen samples were collected most frequently after the second series of electrostimulations (6/13, 46.1%), with fewer animals producing semen after the first (5/13, 38.5%) or third (2/13, 15.4%) electrostimulations. The average volume of a semen sample in the tortoises was 0.26 ml (standard deviation: 0.16, minimum–maximum: 0.1–0.6), the average spermatozoal concentration was 101.62 × 106/ml, and the average motility at time of collection was 57.3%. A rapid decrease in motility was observed in refrigerated samples over 24 h resulting in a median motility of 0% at 24 h post-collection. The results of this study suggest that electroejaculation is a safe and efficient method for collecting semen from leopard tortoises. PMID:29230293

  18. Examination of Poststroke Alteration in Motor Unit Firing Behavior Using High-Density Surface EMG Decomposition.

    PubMed

    Li, Xiaoyan; Holobar, Ales; Gazzoni, Marco; Merletti, Roberto; Rymer, William Zev; Zhou, Ping

    2015-05-01

    Recent advances in high-density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study, we applied high-density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations poststroke. Surface EMG signals were collected using a 64-channel 2-D electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high-density surface EMG signals and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations poststroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness.

  19. Examination of Post-stroke Alteration in Motor Unit Firing Behavior Using High Density Surface EMG Decomposition

    PubMed Central

    Li, Xiaoyan; Holobar, Aleš; Gazzoni, Marco; Merletti, Roberto; Rymer, William Z.; Zhou, Ping

    2014-01-01

    Recent advances in high density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study we applied high density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations post-stroke. Surface EMG signals were collected using a 64-channel 2-dimensional electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 N to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high density surface EMG signals, and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (CoV, averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations post-stroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness. PMID:25389239

  20. Interventions for the management of dry mouth: non-pharmacological interventions.

    PubMed

    Furness, Susan; Bryan, Gemma; McMillan, Roddy; Worthington, Helen V

    2013-08-30

    Xerostomia is the subjective sensation of dry mouth. Common causes of xerostomia include adverse effects of many commonly prescribed medications, disease (e.g. Sjogren's Syndrome) and radiotherapy treatment for head and neck cancers. Non-pharmacological techniques such as acupuncture or mild electrostimulation may be used to improve symptoms. To assess the effects of non-pharmacological interventions administered to stimulate saliva production for the relief of dry mouth. We searched the Cochrane Oral Health Group's Trials Register (to 16th April 2013), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 3), MEDLINE via OVID (1948 to 16th April 2013), EMBASE via OVID (1980 to 16th April 2013), AMED via OVID (1985 to 16th April 2013), CINAHL via EBSCO (1981 to 16th April 2013), and CANCERLIT via PubMed (1950 to 16th April 2013). The metaRegister of Controlled Clinical Trials (www.controlled-trials.com) and ClinicalTrials.gov (www.clinicaltrials.gov) were also searched to identify ongoing and completed trials. References lists of included studies and relevant reviews were also searched. There were no restrictions on the language of publication or publication status. We included parallel group randomised controlled trials of non-pharmacological interventions to treat dry mouth, where participants had dry mouth symptoms at baseline. At least two review authors assessed each of the included studies to confirm eligibility, assess risk of bias and extract data using a piloted data extraction form. We calculated mean difference (MD) and 95% confidence intervals (CI) for continuous outcomes or where different scales were used to assess an outcome, we calculated standardised mean differences (SMD) together with 95% CIs. We attempted to extract data on adverse effects of interventions. Where data were missing or unclear we attempted to contact study authors to obtain further information. There were nine studies (total 366 participants randomised) included in this review of non-pharmacological interventions for dry mouth which were divided into three comparisons. Eight studies were assessed at high risk of bias in at least one domain and the remaining study was at unclear risk of bias.Five small studies (total 153 participants, with dry mouth following radiotherapy treatment) compared acupuncture with placebo. Four were assessed at high risk and one at unclear risk of bias. Two trials reported outcome data for dry mouth in a form suitable for meta-analysis. The pooled estimate of these two trials (70 participants, low quality evidence) showed no difference between acupuncture and control in dry mouth symptoms (SMD -0.34, 95% CI -0.81 to 0.14, P value 0.17, I(2) = 39%) with the confidence intervals including both a possible reduction or a possible increase in dry mouth symptoms. Acupuncture was associated with more adverse effects (tiny bruises and tiredness which were mild and temporary). There was a very small increase in unstimulated whole saliva (UWS) at the end of 4 to 6 weeks of treatment (three trials, 71 participants, low quality evidence) (MD 0.02 ml/minute, 95% CI 0 to 0.04, P value 0.04, I(2) = 57%), and this benefit persisted at the 12-month follow-up evaluation (two trials, 54 participants, low quality evidence) (UWS, MD 0.06 ml/minute, 95% CI 0.01 to 0.11, P value 0.03, I(2) = 10%). For the outcome of stimulated whole saliva (SWS, three trials, 71 participants, low quality evidence) there was a benefit favouring acupuncture (MD 0.19 ml/minute, 95% CI 0.07 to 0.31, P value 0.002, I(2) = 1%) an effect which also persisted at the 12-month follow-up evaluation (SWS MD 0.28 ml/minute, 95% CI 0.09 to 0.47, P value 0.004, I(2) = 0%) (two trials, 54 participants, low quality evidence).Two small studies, both at high risk of bias, compared the use of an electrostimulation device with a placebo device in participants with Sjögren's Syndrome (total 101 participants). A further study, also at high risk of bias, compared acupuncture-like electrostimulation of different sets of points in participants who had previously been treated with radiotherapy. None of these studies reported the outcome of dry mouth. There was no difference between electrostimulation and placebo in the outcomes of UWS or SWS at the end of the 4-week treatment period in the one study (very low that provided data for these outcomes. No adverse effects were reported.A single study at high risk of bias, compared the stimulatory effect of powered versus manual toothbrushing and found no difference for the outcomes of UWS or SWS. There is low quality evidence that acupuncture is no different from placebo acupuncture with regard to dry mouth symptoms, which is the most important outcome. This may be because there were insufficient participants included in the two trials to show a possible effect or it may be that there was some benefit due to 'placebo' acupuncture which could have biased the effect to the null. There is insufficient evidence to determine the effects of electrostimulation devices on dry mouth symptoms. It is well known that dry mouth symptoms may be problematic even when saliva production is increased, yet only two of the trials that evaluated acupuncture reported dry mouth symptoms, a worrying reporting bias. There is some low quality evidence that acupuncture results in a small increase in saliva production in patients with dry mouth following radiotherapy.There is insufficient evidence to determine the effects of electrostimulation devices on dry mouth symptoms or saliva production in patients with Sjögren's Syndrome. Reported adverse effects of acupuncture are mild and of short duration, and there were no reported adverse effects from electrostimulation.

  1. Interventions for the management of dry mouth: non-pharmacological interventions.

    PubMed

    Furness, Susan; Bryan, Gemma; McMillan, Roddy; Birchenough, Sarah; Worthington, Helen V

    2013-09-05

    Xerostomia is the subjective sensation of dry mouth. Common causes of xerostomia include adverse effects of many commonly prescribed medications, disease (e.g. Sjogren's Syndrome) and radiotherapy treatment for head and neck cancers. Non-pharmacological techniques such as acupuncture or mild electrostimulation may be used to improve symptoms. To assess the effects of non-pharmacological interventions administered to stimulate saliva production for the relief of dry mouth. We searched the Cochrane Oral Health Group's Trials Register (to 16th April 2013), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 3), MEDLINE via OVID (1948 to 16th April 2013), EMBASE via OVID (1980 to 16th April 2013), AMED via OVID (1985 to 16th April 2013), CINAHL via EBSCO (1981 to 16th April 2013), and CANCERLIT via PubMed (1950 to 16th April 2013). The metaRegister of Controlled Clinical Trials (www.controlled-trials.com) and ClinicalTrials.gov (www.clinicaltrials.gov) were also searched to identify ongoing and completed trials. References lists of included studies and relevant reviews were also searched. There were no restrictions on the language of publication or publication status. We included parallel group randomised controlled trials of non-pharmacological interventions to treat dry mouth, where participants had dry mouth symptoms at baseline. At least two review authors assessed each of the included studies to confirm eligibility, assess risk of bias and extract data using a piloted data extraction form. We calculated mean difference (MD) and 95% confidence intervals (CI) for continuous outcomes or where different scales were used to assess an outcome, we calculated standardised mean differences (SMD) together with 95% CIs. We attempted to extract data on adverse effects of interventions. Where data were missing or unclear we attempted to contact study authors to obtain further information. There were nine studies (total 366 participants randomised) included in this review of non-pharmacological interventions for dry mouth which were divided into three comparisons. Eight studies were assessed at high risk of bias in at least one domain and the remaining study was at unclear risk of bias.Five small studies (total 153 participants, with dry mouth following radiotherapy treatment) compared acupuncture with placebo. Four were assessed at high risk and one at unclear risk of bias. Two trials reported outcome data for dry mouth in a form suitable for meta-analysis. The pooled estimate of these two trials (70 participants, low quality evidence) showed no difference between acupuncture and control in dry mouth symptoms (SMD -0.34, 95% CI -0.81 to 0.14, P value 0.17, I(2) = 39%) with the confidence intervals including both a possible reduction or a possible increase in dry mouth symptoms. Acupuncture was associated with more adverse effects (tiny bruises and tiredness which were mild and temporary). There was a very small increase in unstimulated whole saliva (UWS) at the end of 4 to 6 weeks of treatment (three trials, 71 participants, low quality evidence) (MD 0.02 ml/minute, 95% CI 0 to 0.04, P value 0.04, I(2) = 57%), and this benefit persisted at the 12-month follow-up evaluation (two trials, 54 participants, low quality evidence) (UWS, MD 0.06 ml/minute, 95% CI 0.01 to 0.11, P value 0.03, I(2) = 10%). For the outcome of stimulated whole saliva (SWS, three trials, 71 participants, low quality evidence) there was a benefit favouring acupuncture (MD 0.19 ml/minute, 95% CI 0.07 to 0.31, P value 0.002, I(2) = 1%) an effect which also persisted at the 12-month follow-up evaluation (SWS MD 0.28 ml/minute, 95% CI 0.09 to 0.47, P value 0.004, I(2) = 0%) (two trials, 54 participants, low quality evidence).Two small studies, both at high risk of bias, compared the use of an electrostimulation device with a placebo device in participants with Sjögren's Syndrome (total 101 participants). A further study, also at high risk of bias, compared acupuncture-like electrostimulation of different sets of points in participants who had previously been treated with radiotherapy. None of these studies reported the outcome of dry mouth. There was no difference between electrostimulation and placebo in the outcomes of UWS or SWS at the end of the 4-week treatment period in the one study (very low that provided data for these outcomes. No adverse effects were reported.A single study at high risk of bias, compared the stimulatory effect of powered versus manual toothbrushing and found no difference for the outcomes of UWS or SWS. There is low quality evidence that acupuncture is no different from placebo acupuncture with regard to dry mouth symptoms, which is the most important outcome. This may be because there were insufficient participants included in the two trials to show a possible effect or it may be that there was some benefit due to 'placebo' acupuncture which could have biased the effect to the null. There is insufficient evidence to determine the effects of electrostimulation devices on dry mouth symptoms. It is well known that dry mouth symptoms may be problematic even when saliva production is increased, yet only two of the trials that evaluated acupuncture reported dry mouth symptoms, a worrying reporting bias. There is some low quality evidence that acupuncture results in a small increase in saliva production in patients with dry mouth following radiotherapy.There is insufficient evidence to determine the effects of electrostimulation devices on dry mouth symptoms or saliva production in patients with Sjögren's Syndrome. Reported adverse effects of acupuncture are mild and of short duration, and there were no reported adverse effects from electrostimulation.

  2. Influence of different shortening velocities preceding stretch on human triceps surae moment generation in vivo.

    PubMed

    De Monte, Gianpiero; Arampatzis, Adamantios

    2008-07-19

    The purpose of this study was to examine the influence of different shortening velocities preceding the stretch on moment generation of the triceps surae muscles and architecture of the m. gastrocnemius medialis after shortening-stretch cycles of equal magnitude in vivo. Eleven male subjects (31.6+/-5.8 years, 178.4+/-7.3cm, 80.6+/-9.6kg) performed a series of electro-stimulated (85Hz) shortening-stretch plantar flexion contractions. The shortening-stretch cycles were performed at three constant angular velocities (25, 50, 100 degrees /s) in the plantar flexion direction (shortening) and at 50 degrees /s in the dorsiflexion direction (stretching). The resultant ankle joint moments were calculated through inverse dynamics. Pennation angle and fascicle length of the m. gastrocnemius medialis at rest and during contractions were measured using ultrasonography. The corresponding ankle moments, kinematics and changes in muscle architecture were analysed at seven time intervals. An analysis of variance for repeated measurements and post hoc test with Bonferroni correction was used to check the velocity-related effects on moment enhancement (alpha=0.05). The results show an increase in pennation angles and a decrease in fascicle lengths after the shortening-stretch cycle. The ankle joint moment ratio (post to pre) was higher (p<0.01) than 1.0 indicating a moment enhancement after the shortening-stretch cycle. The found ankle joint moment enhancement was 2-5% after the shortening-stretch cycle and was independed of the shortening velocity. Furthermore, the decrease in fascicle length after the shortening-stretch cycle indicates that the moment enhancement found in the present study is underestimated at least by 1-3%. Considering that the experiments have been done at the ascending limb of the force-length curve and that force enhancement is higher at the descending and the plateau region of the force-length curve, we conclude that the moment enhancement after shortening-stretch cycle can have important physiological affects while locomotion.

  3. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses

    PubMed Central

    2015-01-01

    Electrical stimulation is used in order to restore nerve mediated functions in patients with neurological disorders, but its applicability is constrained by the invasiveness of the systems required to perform it. As an alternative to implantable systems consisting of central stimulation units wired to the stimulation electrodes, networks of wireless microstimulators have been devised for fine movement restoration. Miniaturization of these microstimulators is currently hampered by the available methods for powering them. Previously, we have proposed and demonstrated a heterodox electrical stimulation method based on electronic rectification of high frequency current bursts. These bursts can be delivered through textile electrodes on the skin. This approach has the potential to result in an unprecedented level of miniaturization as no bulky parts such as coils or batteries are included in the implant. We envision microstimulators designs based on application-specific integrated circuits (ASICs) that will be flexible, thread-like (diameters < 0.5 mm) and not only with controlled stimulation capabilities but also with sensing capabilities for artificial proprioception. We in vivo demonstrate that neuroprostheses composed of addressable microstimulators based on this electrical stimulation method are feasible and can perform controlled charge-balanced electrical stimulation of muscles. We developed miniature external circuit prototypes connected to two bipolar probes that were percutaneously implanted in agonist and antagonist muscles of the hindlimb of an anesthetized rabbit. The electronic implant architecture was able to decode commands that were amplitude modulated on the high frequency (1 MHz) auxiliary current bursts. The devices were capable of independently stimulating the target tissues, accomplishing controlled dorsiflexion and plantarflexion joint movements. In addition, we numerically show that the high frequency current bursts comply with safety standards both in terms of tissue heating and unwanted electro-stimulation. We demonstrate that addressable microstimulators powered by rectification of epidermically applied currents are feasible. PMID:26147771

  4. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses.

    PubMed

    Becerra-Fajardo, Laura; Ivorra, Antoni

    2015-01-01

    Electrical stimulation is used in order to restore nerve mediated functions in patients with neurological disorders, but its applicability is constrained by the invasiveness of the systems required to perform it. As an alternative to implantable systems consisting of central stimulation units wired to the stimulation electrodes, networks of wireless microstimulators have been devised for fine movement restoration. Miniaturization of these microstimulators is currently hampered by the available methods for powering them. Previously, we have proposed and demonstrated a heterodox electrical stimulation method based on electronic rectification of high frequency current bursts. These bursts can be delivered through textile electrodes on the skin. This approach has the potential to result in an unprecedented level of miniaturization as no bulky parts such as coils or batteries are included in the implant. We envision microstimulators designs based on application-specific integrated circuits (ASICs) that will be flexible, thread-like (diameters < 0.5 mm) and not only with controlled stimulation capabilities but also with sensing capabilities for artificial proprioception. We in vivo demonstrate that neuroprostheses composed of addressable microstimulators based on this electrical stimulation method are feasible and can perform controlled charge-balanced electrical stimulation of muscles. We developed miniature external circuit prototypes connected to two bipolar probes that were percutaneously implanted in agonist and antagonist muscles of the hindlimb of an anesthetized rabbit. The electronic implant architecture was able to decode commands that were amplitude modulated on the high frequency (1 MHz) auxiliary current bursts. The devices were capable of independently stimulating the target tissues, accomplishing controlled dorsiflexion and plantarflexion joint movements. In addition, we numerically show that the high frequency current bursts comply with safety standards both in terms of tissue heating and unwanted electro-stimulation. We demonstrate that addressable microstimulators powered by rectification of epidermically applied currents are feasible.

  5. Muscle activation when performing the chest press and shoulder press on a stable bench vs. a Swiss ball.

    PubMed

    Uribe, Brandon P; Coburn, Jared W; Brown, Lee E; Judelson, Daniel A; Khamoui, Andy V; Nguyen, Diamond

    2010-04-01

    The aim of this study was to examine the effects of a stable surface (bench) vs. an unstable surface (Swiss ball) on muscle activation when performing the dumbbell chest press and shoulder press. Sixteen healthy men (24.19 +/- 2.17 years) performed 1 repetition maximum (1RM) tests for the chest press and shoulder press on a stable surface. A minimum of 48 hours post 1RM, subjects returned to perform 3 consecutive repetitions each of the chest press and shoulder press at 80% 1RM under 4 different randomized conditions (chest press on bench, chest press on Swiss ball, shoulder press on bench, shoulder press on Swiss ball). Electromyography was used to assess muscle activation of the anterior deltoid, pectoralis major, and rectus abdominus. The results revealed no significant difference in muscle activation between surface types for either exercise. This suggests that using an unstable surface neither improves nor impairs muscle activation under the current conditions. Coaches and other practitioners can expect similar muscle activation when using a Swiss ball vs. a bench.

  6. A Preliminary Study on the Pattern, the Physiological Bases and the Molecular Mechanism of the Adductor Muscle Scar Pigmentation in Pacific Oyster Crassostrea gigas

    PubMed Central

    Yu, Wenchao; He, Cheng; Cai, Zhongqiang; Xu, Fei; Wei, Lei; Chen, Jun; Jiang, Qiuyun; Wei, Na; Li, Zhuang; Guo, Wen; Wang, Xiaotong

    2017-01-01

    The melanin pigmentation of the adductor muscle scar and the outer surface of the shell are among attractive features and their pigmentation patterns and mechanism still remains unknown in the Pacific oyster Crassostrea gigas. To study these pigmentation patterns, the colors of the adductor muscle scar vs. the outer surface of the shell on the same side were compared. No relevance was found between the colors of the adductor muscle scars and the corresponding outer surface of the shells, suggesting that their pigmentation processes were independent. Interestingly, a relationship between the color of the adductor muscle scars and the dried soft-body weight of Pacific oysters was found, which could be explained by the high hydroxyl free radical scavenging capacity of the muscle attached to the black adductor muscle scar. After the transcriptomes of pigmented and unpigmented adductor muscles and mantles were studied by RNAseq and compared, it was found that the retinol metabolism pathway were likely to be involved in melanin deposition on the adductor muscle scar and the outer surface of the shell, and that the different members of the tyrosinase or Cytochrome P450 gene families could play a role in the independent pigmentation of different organs. PMID:28955252

  7. The application of muscle wrapping to voxel-based finite element models of skeletal structures.

    PubMed

    Liu, Jia; Shi, Junfen; Fitton, Laura C; Phillips, Roger; O'Higgins, Paul; Fagan, Michael J

    2012-01-01

    Finite elements analysis (FEA) is now used routinely to interpret skeletal form in terms of function in both medical and biological applications. To produce accurate predictions from FEA models, it is essential that the loading due to muscle action is applied in a physiologically reasonable manner. However, it is common for muscle forces to be represented as simple force vectors applied at a few nodes on the model's surface. It is certainly rare for any wrapping of the muscles to be considered, and yet wrapping not only alters the directions of muscle forces but also applies an additional compressive load from the muscle belly directly to the underlying bone surface. This paper presents a method of applying muscle wrapping to high-resolution voxel-based finite element (FE) models. Such voxel-based models have a number of advantages over standard (geometry-based) FE models, but the increased resolution with which the load can be distributed over a model's surface is particularly advantageous, reflecting more closely how muscle fibre attachments are distributed. In this paper, the development, application and validation of a muscle wrapping method is illustrated using a simple cylinder. The algorithm: (1) calculates the shortest path over the surface of a bone given the points of origin and ultimate attachment of the muscle fibres; (2) fits a Non-Uniform Rational B-Spline (NURBS) curve from the shortest path and calculates its tangent, normal vectors and curvatures so that normal and tangential components of the muscle force can be calculated and applied along the fibre; and (3) automatically distributes the loads between adjacent fibres to cover the bone surface with a fully distributed muscle force, as is observed in vivo. Finally, we present a practical application of this approach to the wrapping of the temporalis muscle around the cranium of a macaque skull.

  8. Gait Characteristics When Walking on Different Slippery Walkways.

    PubMed

    Whitmore, Mariah W; Hargrove, Levi J; Perreault, Eric J

    2016-01-01

    This study sought to determine the changes in muscle activity about the ankle, knee, and hip in able-bodied people walking at steady state on surfaces with different degrees of slipperiness. Muscle activity was measured through electromyographic signals from selected lower limb muscles and quantified to directly compare changes across surface conditions. Our results showed distinct changes in the patterns of muscle activity controlling each joint. Muscles controlling the ankle showed a significant reduction in activity as the surface became more slippery, presumably resulting in a compliant distal joint to facilitate full contact with the surface. Select muscles about the knee and hip showed a significant increase in activity as the surface became more slippery. This resulted in increased knee and hip flexion likely contributing to a lowering of the body's center of mass and stabilization of the proximal leg and trunk. These findings suggest a proximal-distal gradient in the control of muscle activity that could inform the future design of adaptable prosthetic controllers. Walking on a slippery surface is extremely difficult, especially for individuals with lower limb amputations because current prostheses do not allow the compensatory changes in lower limb dynamics that occur involuntarily in unimpaired subjects. With recent advances in prosthetic control, there is the potential to provide some of these compensatory changes; however, we first need to understand how able-bodied individuals modulate their gait under these challenging conditions.

  9. Surface Electromyographic Examination of Poststroke Neuromuscular Changes in Proximal and Distal Muscles Using Clustering Index Analysis

    PubMed Central

    Tang, Weidi; Zhang, Xu; Tang, Xiao; Cao, Shuai; Gao, Xiaoping; Chen, Xiang

    2018-01-01

    Whether stroke-induced paretic muscle changes vary across different distal and proximal muscles remains unclear. The objective of this study was to compare paretic muscle changes between a relatively proximal muscle (the biceps brachii muscle) and two distal muscles (the first dorsal interosseous muscle and the abductor pollicis brevis muscle) following hemisphere stroke using clustering index (CI) analysis of surface electromyograms (EMGs). For each muscle, surface EMG signals were recorded from the paretic and contralateral sides of 12 stroke subjects versus the dominant side of eight control subjects during isometric muscle contractions to measure the consequence of graded levels of contraction (from a mild level to the maximal voluntary contraction). Across all examined muscles, it was found that partial paretic muscles had abnormally higher or lower CI values than those of the healthy control muscles, which exhibited a significantly larger variance in the CI via a series of homogeneity of variance tests (p < 0.05). This finding indicated that both neurogenic and myopathic changes were likely to take place in paretic muscles. When examining two distal muscles of individual stroke subjects, relatively consistent CI abnormalities (toward neuropathy or myopathy) were observed. By contrast, consistency in CI abnormalities were not found when comparing proximal and distal muscles, indicating differences in motor unit alternation between the proximal and distal muscles on the paretic sides of stroke survivors. Furthermore, CI abnormalities were also observed for all three muscles on the contralateral side. Our findings help elucidate the pathological mechanisms underlying stroke sequels, which might prove useful in developing improved stroke rehabilitation protocols. PMID:29379465

  10. Effect of knee joint angle on neuromuscular activation of the vastus intermedius muscle during isometric contraction.

    PubMed

    Watanabe, K; Akima, H

    2011-12-01

    The purpose of this study was to compare the relationship between surface electromyography (EMG) and knee joint angle of the vastus intermedius muscle (VI) with the synergistic muscles in the quadriceps femoris (QF) muscle group. Fourteen healthy men performed maximal voluntary contractions during isometric knee extension at four knee joint angles from 90°, 115°, 140°, and 165° (180° being full extension). During the contractions, surface EMG was recorded at four muscle components of the QF muscle group: the VI, vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) muscles. The root mean square of the surface EMG at each knee joint angle was calculated and normalized by that at a knee joint angle of 90° for individual muscles. The normalized RMS of the VI muscle was significantly lower than those of the VL and RF muscles at the knee joint angles of 115° and 165° and those of the VL, VM, and RF muscles at the knee joint angle of 140° (P<0.05). The present results suggest that the neuromuscular activation of the VI muscle is regulated in a manner different from the alteration of the knee joint angle compared with other muscle components of the QF muscle group. © 2011 John Wiley & Sons A/S.

  11. Surface electromyography in orthodontics – a literature review

    PubMed Central

    WoŸniak, Krzysztof; Piątkowska, Dagmara; Lipski, Mariusz; Mehr, Katarzyna

    2013-01-01

    Electromyography is the most objective and reliable technique for evaluating muscle function and efficiency by detecting their electrical potentials. It makes it possible to assess the extent and duration of muscle activity. The main aim of surface electromyography is to detect signals from many muscle fibers in the area of the detecting surface electrodes. These signals consist of a weighted summation of the spatial and temporal activity of many motor units. Hence, the analysis of the recordings is restricted to an assessment of general muscle activity, the cooperation of different muscles, and the variability of their activity over time. This study presents the main assumptions in the assessment of electrical muscle activity through the use of surface electromyography, along with its limitations and possibilities for further use in many areas of orthodontics. The main clinical uses of sEMG include the diagnostics and therapy of temporomandibular joint disorders, an assessment of the extent of stomatognathic system dysfunctions in subjects with malocclusion, and the monitoring of orthodontic therapies. PMID:23722255

  12. Pain-evoked trunk muscle activity changes during fatigue and DOMS.

    PubMed

    Larsen, L H; Hirata, R P; Graven-Nielsen, T

    2017-05-01

    Muscle pain may reorganize trunk muscle activity but interactions with exercise-related muscle fatigue and delayed onset muscle soreness (DOMS) is to be clarified. In 19 healthy participants, the trunk muscle activity during 20 multi-directional unpredictable surface perturbations were recorded after bilateral isotonic saline injections (control) and during unilateral and bilateral hypertonic saline-induced low back pain (LBP) in conditions of back muscle fatigue (Day-1) and DOMS (Day-2). Pain intensity and distribution were assessed by visual analogue scale (VAS) scores and pain drawings. The degree of fatigue and DOMS were assessed by Likert scale scores. Root-mean-square electromyographic (RMS-EMG) signals were recorded post-perturbation from six bilateral trunk muscles and the difference from baseline conditions (Delta-RMS-EMG) was extracted and averaged across abdominal and back muscles. In DOMS, peak VAS scores were higher during bilateral control and bilateral saline-induced pain than fatigue (p < 0.001) and during bilateral compared with unilateral pain (p < 0.001). The saline-induced pain areas were larger during DOMS than fatigue (p < 0.01). In response to surface perturbations during fatigue and DOMS, the back muscle Delta-RMS-EMG increased during bilateral compared with unilateral pain and control injections (p < 0.001) and decreased during unilateral pain compared with control injections (p < 0.04). In DOMS compared with fatigue, the post-perturbation Delta-RMS-EMG in back muscles was higher during bilateral pain and lower during unilateral pain (p < 0.001). The abdominal Delta-RMS-EMG was not significantly affected. Facilitated and attenuated back muscle responses to surface perturbations in bilateral and unilateral LBP, respectively, was more expressed during exercise-induced back muscle soreness compared with fatigue. Back muscle activity decreased during unilateral and increased during bilateral pain after unpredictable surface perturbations during muscle fatigue and DOMS. Accumulation effects of DOMS on pain intensity and spreading and trunk muscle activity after pain-induction. © 2017 European Pain Federation - EFIC®.

  13. The changes of lumbar muscle flexion-relaxation phenomenon due to antero-posteriorly slanted ground surfaces.

    PubMed

    Hu, Boyi; Ning, Xiaopeng; Dai, Fei; Almuhaidib, Ibrahim

    2016-09-01

    Uneven ground surface is a common occupational injury risk factor in industries such as agriculture, fishing, transportation and construction. Studies have shown that antero-posteriorly slanted ground surfaces could reduce spinal stability and increase the risk of falling. In this study, the influence of antero-posteriorly slanted ground surfaces on lumbar flexion-relaxation responses was investigated. Fourteen healthy participants performed sagittally symmetric and asymmetric trunk bending motions on one flat and two antero-posteriorly slanted surfaces (-15° (uphill facing) and 15° (downhill facing)), while lumbar muscle electromyography and trunk kinematics were recorded. Results showed that standing on a downhill facing slanted surface delays the onset of lumbar muscle flexion-relaxation phenomenon (FRP), while standing on an uphill facing ground causes lumbar muscle FRP to occur earlier. In addition, compared to symmetric bending, when performing asymmetric bending, FRP occurred earlier on the contralateral side of lumbar muscles and significantly smaller maximum lumbar flexion and trunk inclination angles were observed. Practitioner Summary: Uneven ground surface is a common risk factor among a number of industries. In this study, we investigated the influence of antero-posteriorly slanted ground surface on trunk biomechanics during trunk bending. Results showed the slanted surface alters the lumbar tissue load-sharing mechanism in both sagittally symmetric and asymmetric bending.

  14. Acupuncture and related interventions for smoking cessation.

    PubMed

    White, Adrian R; Rampes, Hagen; Liu, Jian Ping; Stead, Lindsay F; Campbell, John

    2014-01-23

    Acupuncture and related techniques are promoted as a treatment for smoking cessation in the belief that they may reduce nicotine withdrawal symptoms. The objectives of this review are to determine the effectiveness of acupuncture and the related interventions of acupressure, laser therapy and electrostimulation in smoking cessation, in comparison with no intervention, sham treatment, or other interventions. We searched the Cochrane Tobacco Addiction Group Specialized Register (which includes trials of smoking cessation interventions identified from the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, and PsycINFO) and AMED in October 2013. We also searched four Chinese databases in September 2013: Sino-Med, China National Knowledge Infrastructure, Wanfang Data and VIP. Randomized trials comparing a form of acupuncture, acupressure, laser therapy or electrostimulation with either no intervention, sham treatment or another intervention for smoking cessation. We extracted data in duplicate on the type of smokers recruited, the nature of the intervention and control procedures, the outcome measures, method of randomization, and completeness of follow-up.We assessed abstinence from smoking at the earliest time-point (before six weeks) and at the last measurement point between six months and one year. We used the most rigorous definition of abstinence for each trial, and biochemically validated rates if available. Those lost to follow-up were counted as continuing smokers. Where appropriate, we performed meta-analysis pooling risk ratios using a fixed-effect model. We included 38 studies. Based on three studies, acupuncture was not shown to be more effective than a waiting list control for long-term abstinence, with wide confidence intervals and evidence of heterogeneity (n = 393, risk ratio [RR] 1.79, 95% confidence interval [CI] 0.98 to 3.28, I² = 57%). Compared with sham acupuncture, the RR for the short-term effect of acupuncture was 1.22 (95% CI 1.08 to 1.38), and for the long-term effect was 1.10 (95% CI 0.86 to 1.40). The studies were not judged to be free from bias, and there was evidence of funnel plot asymmetry with larger studies showing smaller effects. The heterogeneity between studies was not explained by the technique used. Acupuncture was less effective than nicotine replacement therapy (NRT). There was no evidence that acupuncture is superior to psychological interventions in the short- or long-term. There is limited evidence that acupressure is superior to sham acupressure for short-term outcomes (3 trials, n = 325, RR 2.54, 95% CI 1.27 to 5.08), but no trials reported long-term effects, The pooled estimate for studies testing an intervention that included continuous auricular stimulation suggested a short-term benefit compared to sham stimulation (14 trials, n = 1155, RR 1.69, 95% CI 1.32 to 2.16); subgroup analysis showed an effect for continuous acupressure (7 studies, n = 496, RR 2.73, 95% CI 1.78 to 4.18) but not acupuncture with indwelling needles (6 studies, n = 659, RR 1.24, 95% CI 0.91 to 1.69). At longer follow-up the CIs did not exclude no effect (5 trials, n = 570, RR 1.47, 95% CI 0.79 to 2.74). The evidence from two trials using laser stimulation was inconsistent and could not be combined. The combined evidence on electrostimulation suggests it is not superior to sham electrostimulation (short-term abstinence: 6 trials, n = 634, RR 1.13, 95% CI 0.87 to 1.46; long-term abstinence: 2 trials, n = 405, RR 0.87, 95% CI 0.61 to 1.23). Although pooled estimates suggest possible short-term effects there is no consistent, bias-free evidence that acupuncture, acupressure, or laser therapy have a sustained benefit on smoking cessation for six months or more. However, lack of evidence and methodological problems mean that no firm conclusions can be drawn. Electrostimulation is not effective for smoking cessation. Well-designed research into acupuncture, acupressure and laser stimulation is justified since these are popular interventions and safe when correctly applied, though these interventions alone are likely to be less effective than evidence-based interventions.

  15. Physical therapy for Bell's palsy (idiopathic facial paralysis).

    PubMed

    Teixeira, Lázaro J; Valbuza, Juliana S; Prado, Gilmar F

    2011-12-07

    Bell's palsy (idiopathic facial paralysis) is commonly treated by various physical therapy strategies and devices, but there are many questions about their efficacy. To evaluate physical therapies for Bell's palsy (idiopathic facial palsy). We searched the Cochrane Database of Systematic Reviews and the Cochrane Central Register of Controlled Trials (The Cochrane Library, Issue 1, 2011), MEDLINE (January 1966 to February 2011), EMBASE (January 1946 to February 2011), LILACS (January 1982 to February 2011), PEDro (from 1929 to February 2011), and CINAHL (January 1982 to February 2011). We included searches in clinical trials register databases until February 2011. We selected randomised or quasi-randomised controlled trials involving any physical therapy. We included participants of any age with a diagnosis of Bell's palsy and all degrees of severity. The outcome measures were: incomplete recovery six months after randomisation, motor synkinesis, crocodile tears or facial spasm six months after onset, incomplete recovery after one year and adverse effects attributable to the intervention. Two authors independently scrutinised titles and abstracts identified from the search results. Two authors independently carried out risk of bias assessments, which , took into account secure methods of randomisation, allocation concealment, observer blinding, patient blinding, incomplete outcome data, selective outcome reporting and other bias. Two authors independently extracted data using a specially constructed data extraction form. We undertook separate subgroup analyses of participants with more and less severe disability. For this update to the original review, the search identified 65 potentially relevant articles. Twelve studies met the inclusion criteria (872 participants). Four trials studied the efficacy of electrical stimulation (313 participants), three trials studied exercises (199 participants), and five studies compared or combined some form of physical therapy with acupuncture (360 participants). For most outcomes we were unable to perform meta-analysis because the interventions and outcomes were not comparable.For the primary outcome of incomplete recovery after six months, electrostimulation produced no benefit over placebo (moderate quality evidence from one study with 86 participants). Low quality comparisons of electrostimulation with prednisolone (an active treatment)(149 participants), or the addition of electrostimulation to hot packs, massage and facial exercises (22 participants), reported no significant differences. Similarly a meta-analysis from two studies, one of three months and the other of six months duration, (142 participants) found no statistically significant difference in synkinesis, a complication of Bell's palsy, between participants receiving electrostimulation and controls. A single low quality study (56 participants), which reported at three months, found worse functional recovery with electrostimulation (mean difference (MD) 12.00 points (scale of 0 to 100) 95% confidence interval (CI) 1.26 to 22.74).Two trials of facial exercises, both at high risk of bias, found no difference in incomplete recovery at six months when exercises were compared to waiting list controls or conventional therapy. There is evidence from a single small study (34 participants) of moderate quality that exercises are beneficial on measures of facial disability to people with chronic facial palsy when compared with controls (MD 20.40 points (scale of 0 to 100), 95% CI 8.76 to 32.04) and from another single low quality study with 145 people with acute cases treated for three months where significantly fewer participants developed facial motor synkinesis after exercise (risk ratio 0.24, 95% CI 0.08 to 0.69). The same study showed statistically significant reduction in time for complete recovery, mainly in more severe cases (47 participants, MD -2.10 weeks, 95% CI -3.15 to -1.05) but this was not a prespecified outcome in this meta analysis.Acupuncture studies did not provide useful data as all were short and at high risk of bias. None of the studies included adverse events as an outcome. There is no high quality evidence to support significant benefit or harm from any physical therapy for idiopathic facial paralysis. There is low quality evidence that tailored facial exercises can help to improve facial function, mainly for people with moderate paralysis and chronic cases. There is low quality evidence that facial exercise reduces sequelae in acute cases. The suggested effects of tailored facial exercises need to be confirmed with good quality randomised controlled trials.

  16. Limited evidence for non-pharmacological interventions for the relief of dry mouth.

    PubMed

    Bakarman, Eman O; Keenan, Analia Veitz

    2014-03-01

    The Cochrane Oral Health Group's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), Medline, Embase, AMED, CINAHL and CANCERLIT databases were searched. The metaRegister of Controlled Clinical Trials and ClinicalTrials.gov were also searched to identify ongoing and completed trials. Reference lists of included studies and relevant reviews were also searched. There were no restrictions on the language of publication or publication status. Randomised controlled trials of non-pharmacological treatments for patients with dry mouth at baseline. Study assessment and data extraction were carried out independently by at least two reviewers. Mean difference (MD) and standardised mean differences (SMD) together with 95% CIs were calculated where appropriate. Nine studies (366 participants) were included in this review, eight were assessed at high risk of bias and one at unclear risk of bias. Five small studies (153 participants), with dry mouth following radiotherapy treatment compared acupuncture with placebo. Four were at high risk and one at unclear risk of bias. Two trials reported outcome data for dry mouth in a form suitable for meta- analysis. The pooled estimate of these two trials (70 participants, low quality evidence) showed no difference between acupuncture and control in dry mouth symptoms (SMD -0.34, 95% CI -0.81 to 0.14, P value 0.17, I2 = 39%) with the confidence intervals including both a possible reduction or a possible increase in dry mouth symptoms.Acupuncture was associated with more adverse effects (tiny bruises and tiredness which were mild and temporary). There was a very small increase in unstimulated whole saliva (UWS) at the end of four to six weeks of treatment (three trials, 71 participants, low quality evidence) (MD 0.02 ml/minute, 95% CI 0 to 0.04, P value 0.04, I2 = 57%), and this benefit persisted at the 12-month follow-up evaluation (two trials, 54 participants, low quality evidence) (UWS, MD 0.06 ml/minute, 95% CI 0.01 to 0.11, P value 0.03, I2 = 10%). For the outcome of stimulated whole saliva (SWS, three trials, 71 participants, low quality evidence) there was a benefit favouring acupuncture (MD 0.19 ml/minute, 95% CI 0.07 to 0.31, P value 0.002, I2 = 1%) an effect which also persisted at the 12-month follow-up evaluation (SWS MD 0.28 ml/minute, 95% CI 0.09 to 0.47, P value 0.004, I2 = 0%) (two trials, 54 participants, low quality evidence).Two small studies, both at high risk of bias, compared the use of an electrostimulation device with a placebo device in participants with Sjögren's Syndrome (total 101 participants). A further study, also at high risk of bias, compared acupuncture-like electrostimulation. None of these studies reported the outcome of dry mouth.A single study at high risk of bias compared the stimulatory effect of powered versus manual toothbrushing and found no difference for the outcomes of UWS or SWS. There is low quality evidence that acupuncture is no different from placebo acupuncture with regard to dry mouth symptoms, which is the most important outcome. This may be because there were insufficient participants included in the two trials to show a possible effect or it may be that there was some benefit due to 'placebo' acupuncture, which could have biased the effect to the null. There is insufficient evidence to determine the effects of electrostimulation devices on dry mouth symptoms. It is well known that dry mouth symptoms may be problematic even when saliva production is increased, yet only two of the trials that evaluated acupuncture reported dry mouth symptoms, a worrying reporting bias. There is some low quality evidence that acupuncture results in a small increase in saliva production in patients with dry mouth following radiotherapy.There is insufficient evidence to determine the effects of electrostimulation devices on dry mouth symptoms or saliva production in patients with Sjögren's Syndrome. Reported adverse effects of acupuncture are mild and of short duration, and there were no reported adverse effects from electrostimulation.

  17. Electrical properties of rat muscle after sciatic nerve injury: Impact on surface impedance measurements assessed via finite element analysis

    NASA Astrophysics Data System (ADS)

    Ahad, M. A.; Rutkove, S. B.

    2010-04-01

    Tetrapolar surface electrical impedance methods are sensitive to changes in muscle status and can therefore provide a means for studying neuromuscular disease noninvasively. In order to better understand the relationship between surface impedance measurements and the actual muscle electrical properties, we performed measurements on 20 adult Wistar rats, 8 of which underwent sciatic nerve crush. Surface impedance measurements were performed on the left hind limb both before injury and out to 2 weeks after injury. In addition, both normal and sciatic crush animals were sacrificed and the dielectric properties of the extracted gastrocnemius muscle measured. We found that 50 kHz conductivities were greater in the animals that underwent crush than in the animals that did not. The permittivities in both directions, however, showed non-significant differences. In order to analyze the effect of these changes as well as the accompanying reduction in muscle volume, a finite element model of the hind limb was developed based on computerized tomographic imaging. The model successfully predicted the surface impedance values in the animals after crush injury and, by its inverse application, may be used to help determine the underlying electrical properties of muscle in various neuromuscular diseases based on surface impedance data.

  18. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint.

    PubMed

    Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan Rt

    2017-01-01

    Data about a muscle's fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function.

  19. [Treatment of cardiospasm using cardiodilatation technique].

    PubMed

    Shevchenko, A N

    2007-01-01

    139 patients with achalasia of cardiac orifice among which two third were women and one third--men aged 20-65 years have been observed. 97 patients (69.7%) were treated by cardiodilatation. 17 patients (22.3%) of the main group were treated with pneumocardiodilatation. 44 patients (57.3%) underwent cardiodilatation with the help of pneumo-cardiodilatator improved by the author and electrostimulation. Cardiodilatation technique in a complex treatment of achalasia of cardiac orifice was substantiated by the author.

  20. Induction of Contraception by Intraepididymal Sclerotherapy

    PubMed Central

    Park, Hyoung Keun; Paick, Sung Hyun; Kim, Hyeong Gon; Lho, Yong Soo

    2014-01-01

    Purpose The objective of the present study was to evaluate the efficacy of a sclerosing solution for inducing epididymal occlusion in male rats. Materials and Methods Male Sprague-Dawley rats were divided into two groups: an injection group (n=20) and control group (n=20). Before injecting the sclerosing agent, seminal vesiculectomy and sperm identification using electrostimulation were performed in all of the rats. In the injection group, 0.2 mL of 0.1% sodium tetradecyl sulfate solution was injected into the epididymis. In the sham group, only the identification of the epididymis was performed. At 4 and 12 weeks after the injection, semen was collected by electrostimulation and evaluated to assess the contraceptive effect. Epididymis was evaluated by hematoxylin and eosin (H&E) staining. Results After 4 and 12 weeks, semen collection was performed in the two groups. Sperms were not observed in the injection group, while there was no change in the sperms in the sham group. H&E staining showed the obstruction of epididymal tubules and an accumulation of inflammatory cells in the injection group. Conclusions This study showed that the sclerosing agent induced sterilization in male rats. This result suggests that the injection method can replace vasectomy as a contraceptive method. However, a further study of large animals and a clinical study are needed. Further, the long-term effectiveness of this method needs to be studied. PMID:25237657

  1. Technical principles of direct bipolar electrostimulation for cortical and subcortical mapping in awake craniotomy.

    PubMed

    Pallud, J; Mandonnet, E; Corns, R; Dezamis, E; Parraga, E; Zanello, M; Spena, G

    2017-06-01

    Intraoperative application of electrical current to the brain is a standard technique during brain surgery for inferring the function of the underlying brain. The purpose of intraoperative functional mapping is to reliably identify cortical areas and subcortical pathways involved in eloquent functions, especially motor, sensory, language and cognitive functions. The aim of this article is to review the rationale and the electrophysiological principles of the use of direct bipolar electrostimulation for cortical and subcortical mapping under awake conditions. Direct electrical stimulation is a window into the whole functional network that sustains a particular function. It is an accurate (spatial resolution of about 5mm) and a reproducible technique particularly adapted to clinical practice for brain resection in eloquent areas. If the procedure is rigorously applied, the sensitivity of direct electrical stimulation for the detection of cortical and subcortical eloquent areas is nearly 100%. The main disadvantage of this technique is its suboptimal specificity. Another limitation is the identification of eloquent areas during surgery, which, however, could have been functionally compensated postoperatively if removed surgically. Direct electrical stimulation is an easy, accurate, reliable and safe invasive technique for the intraoperative detection of both cortical and subcortical functional brain connectivity for clinical purpose. In our opinion, it is the optimal technique for minimizing the risk of neurological sequelae when resecting in eloquent brain areas. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. [The post-discectomy syndrome: clinical and electroneuromyographic characteristics and methods of treatment].

    PubMed

    Musaev, A V; Guseĭnova, S G; Musaeva, I R

    2008-01-01

    The data of the Azerbaijan Neurosurgical Center, including 2618 case-reports of patients operated on for low back discal hernia between 1997 and 2002, have been analyzed. The retrospective analysis of the data reveals that 26,4% of patients need further restorative treatment due to the presence of various neurological disturbances: pain syndromes of different intensity, motor deficits (pareses), sensory disorders and functional disorders of pelvic organs. The retrospective analysis of the data reveals that 26,4% of patients need further restorative treatment due to the presence of various neurological disturbances: pain syndromes of different intensity, motor deficits (pareses), sensory disorders and functional disorders of pelvic organs. Along with these data, the results of our own clinical and neurophysiological study of 110 patients have been summarized as well. Along with these data, the results of our own clinical and neurophysiological study of 110 patients have been summarized as well. A high effectiveness of electrostimulation and naphthalan therapy alone and in combination with massage and medical gymnastics has been revealed. A high effectiveness of electrostimulation and naphthalan therapy alone and in combination with massage and medical gymnastics has been revealed. Electroneuromyographic data revealing the positive dynamics as a result of the treatment of patients with the post-discectomy syndrome are presented. Electroneuromyographic data revealing the positive dynamics as a result of the treatment of patients with the post-discectomy syndrome are presented.

  3. Collection, Evaluation, and Coagulum Dissolution of Semen from Goeldi's Monkey, Callimico goeldii.

    PubMed

    Arakaki, Paloma Rocha; Carvalho, Fernanda Maria de; Castro, Paulo Henrique Gomes de; Muniz, José Augusto Pereira Carneiro; Valle, Rodrigo Del Rio do

    2017-01-01

    Research on Neotropical primates' reproduction is necessary due to the lack of available information and the increasing threat to these species. Callimico goeldii is listed as Vulnerable on the IUCN Red List of Threatened Species. This study aimed to test rectal electrostimulation for semen collection and evaluate seminal characteristics. Therefore, semen from 6 captive Goeldi's monkeys was collected and, for the first time, seminal characteristics are described. Coagulum formation was noted in all ejaculates, and we obtained partial or complete liquefaction of the samples. Results were (means ± SD): volume = 26.9 ± 11.87 μL; pH = 7.61 ± 0.28; concentration = 143.18 ± 174.96 × 106 spermatozoa/mL; total sperm motility = 83.33 ± 5.16%; linear progressive motility = 46 ± 24.08%; plasma membrane integrity = 36.38 ± 16.11%; acrosome integrity using fast-green/bengal-rose staining = 63.41 ± 11.72%, and kit Spermac® = 69.36 ± 11.81%; abnormal sperm = 72.5 ± 17.7%, with 16.2 ± 7.7% major defects and 56.3 ± 10% minor defects; sperm with high mitochondrial activity class I = 16.45 ± 22.25%. Rectal electrostimulation was an efficient method for semen collection in this species. Investigations are required to improve semen collection and handling, including cryopreservation methods. © 2017 S. Karger AG, Basel.

  4. The effects of surface condition on abdominal muscle activity during single-legged hold exercise.

    PubMed

    Ha, Sung-min; Oh, Jae-seop; Jeon, In-cheol; Kwon, Oh-yun

    2015-02-01

    To treat low-back pain, various spinal stability exercises are commonly used to improve trunk muscle function and strength. Because human movement for normal daily activity occurs in multi-dimensions, the importance of exercise in multi-dimensions or on unstable surfaces has been emphasized. Recently, a motorized rotating platform (MRP) for facilitating multi-dimensions dynamic movement was introduced for clinical use. However, the abdominal muscle activity with this device has not been reported. The purpose of this study was to compare the abdominal muscle activity (rectus abdominis, external and internal oblique muscles) during an active single-leg-hold (SLH) exercise on a floor (stable surface), foam roll, and motorized rotating platform (MRP). Thirteen healthy male subjects participated in this study. Using electromyography, the abdominal muscle activity was measured while the subjects performed SLH exercises on floor (stable surface), foam roll, and MRP. There were significant differences in the abdominal muscle activities among conditions (P<.05), except for left EO (P>.05) (Fig. 2). After the Bonferroni correction, however, no significant differences among conditions remained, except for differences in both side IO muscle activity between the floor and foam roll conditions (padj<0.017). The findings suggest that performing the SLH exercises on a foam roll and MRP is more effective increased activities of both side of RA and IO, and Rt. EO compared to floor condition. However, there were no significant differences in abdominal muscles activity in the multiple comparison between conditions (mean difference were smaller than the standard deviation in the abdominal muscle activities) (padj>0.017), except for differences in both side IO muscle activity between the floor (stable surface) and foam roll (padj<0.017) (effect size: 0.79/0.62 (non-supporting/supporting leg) for foam-roll versus floor). Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. An electromyographic analysis of shoulder muscle activation during push-up variations on stable and labile surfaces.

    PubMed

    Sandhu, Jaspal S; Mahajan, Shruti; Shenoy, Shweta

    2008-04-01

    Numerous exercises are used to strengthen muscles around the shoulder joint including the push-up and the push-up plus. An important consideration is the addition of surface instability in the form of swiss ball for rehabilitation and strength. The justification for the use of the swiss ball is based on its potential for increasing muscular demand required to maintain postural stability and for improving joint proprioception. Evidence for this is lacking in literature. To compare the myoelectric amplitude of shoulder muscles during push-ups on labile and stable surface. Same subject experimental study. Thirty healthy male subjects in the age group 20-30 years with a mean height of 173.65 cm (+/- SD 2.56) and a mean weight of 69.9 kg (+/-SD 0.2) were taken. Surface electromyogram was recorded from triceps, pectoralis major, serratus anterior and upper trapezius while performing push-up and push-up plus exercises, both on labile and stable surface. Significant increase in muscle activity was observed in pectoralis major and triceps muscle (only during eccentric phase of elbow pushups), while serratus anterior and upper trapezius showed no change in activation level on swiss ball. The addition of a swiss ball is capable of influencing shoulder muscle activity during push-up variations, although the effect is task and muscle dependent.

  6. Dutch evidence statement for pelvic physical therapy in patients with anal incontinence.

    PubMed

    Berghmans, L C M; Groot, J A M; van Heeswijk-Faase, I C; Bols, E M J

    2015-04-01

    To promote agreement among and support the quality of pelvic physiotherapists' skills and clinical reasoning in The Netherlands, an Evidence Statement Anal Incontinence (AI) was developed based on the practice-driven problem definitions outlined. We present a summary of the current state of knowledge and formulate recommendations for a methodical assessment and treatment for patients with AI, and place the evidence in a broader perspective of current developments. Electronic literature searches were conducted in relevant databases with regard to prevalence, incidence, costs, etiological and prognostic factors, predictors of response to therapy, prevention, assessment, and treatment. The recommendations have been formulated on the basis of scientific evidence and where no evidence was available, recommendations were consensus-based. The evidence statement incorporates a practice statement with corresponding notes that clarify the recommendations, and accompanying flowcharts, describing the steps and recommendations with regard to the diagnostic and therapeutic process. The diagnostic process consists of history-taking and physical examination supported by measurement instruments. For each problem category for patients with AI, a certain treatment plan can be distinguished dependent on the presence of pelvic floor dysfunction, awareness of loss of stools, comorbidity, neurological problems, adequate anorectal sensation, and (in)voluntary control. Available evidence and expert opinion support the use of education, pelvic floor muscle training, biofeedback, and electrostimulation in selected patients. The evidence statement reflects the current state of knowledge for a methodical and systematic physical therapeutic assessment and treatment for patients with AI.

  7. Interspecific scaling patterns of talar articular surfaces within primates and their closest living relatives

    PubMed Central

    Yapuncich, Gabriel S; Boyer, Doug M

    2014-01-01

    The articular facets of interosseous joints must transmit forces while maintaining relatively low stresses. To prevent overloading, joints that transmit higher forces should therefore have larger facet areas. The relative contributions of body mass and muscle-induced forces to joint stress are unclear, but generate opposing hypotheses. If mass-induced forces dominate, facet area should scale with positive allometry to body mass. Alternatively, muscle-induced forces should cause facets to scale isometrically with body mass. Within primates, both scaling patterns have been reported for articular surfaces of the femoral and humeral heads, but more distal elements are less well studied. Additionally, examination of complex articular surfaces has largely been limited to linear measurements, so that ‘true area' remains poorly assessed. To re-assess these scaling relationships, we examine the relationship between body size and articular surface areas of the talus. Area measurements were taken from microCT scan-generated surfaces of all talar facets from a comprehensive sample of extant euarchontan taxa (primates, treeshrews, and colugos). Log-transformed data were regressed on literature-derived log-body mass using reduced major axis and phylogenetic least squares regressions. We examine the scaling patterns of muscle mass and physiological cross-sectional area (PCSA) to body mass, as these relationships may complicate each model. Finally, we examine the scaling pattern of hindlimb muscle PCSA to talar articular surface area, a direct test of the effect of mass-induced forces on joint surfaces. Among most groups, there is an overall trend toward positive allometry for articular surfaces. The ectal (= posterior calcaneal) facet scales with positive allometry among all groups except ‘sundatherians', strepsirrhines, galagids, and lorisids. The medial tibial facet scales isometrically among all groups except lemuroids. Scaling coefficients are not correlated with sample size, clade inclusivity or behavioral diversity of the sample. Muscle mass scales with slight positive allometry to body mass, and PCSA scales at isometry to body mass. PCSA generally scales with negative allometry to articular surface area, which indicates joint surfaces increase faster than muscles' ability to generate force. We suggest a synthetic model to explain the complex patterns observed for talar articular surface area scaling: whether ‘muscles or mass' drive articular facet scaling is probably dependent on the body size range of the sample and the biological role of the facet. The relationship between ‘muscle vs. mass' dominance is likely bone-and facet-specific, meaning that some facets should respond primarily to stresses induced by larger body mass, whereas others primarily reflect muscle forces. PMID:24219027

  8. Muscle force output and electromyographic activity in squats with various unstable surfaces.

    PubMed

    Saeterbakken, Atle H; Fimland, Marius S

    2013-01-01

    The purpose of the study was to compare force output and muscle activity of leg and trunk muscles in isometric squats executed on stable surface (i.e., floor), power board, BOSU ball, and balance cone. Fifteen healthy men (23.3 ± 2.7 years, mass: 80.5 ± 8.5 kg, height: 1.81 ± 0.09 m) volunteered. The force output and electromyographic (EMG) activities of the rectus femoris, vastus medialis, vastus lateralis, biceps femoris, soleus, rectus abdominis, oblique external, and erector spinae were assessed. The order of the surfaces was randomized. One familiarization session was executed before the experimental test. Compared with stable surface (749 ± 222 N), the force output using power board was similar (-7%, p = 0.320) but lower for BOSU ball (-19%, p = 0.003) and balance cone (-24%, p ≤ 0.001). The force output using BOSU ball and balance cone was approximately 13% (p = 0.037) and approximately 18% (p = 0.001) less than the power board. There were similar EMG activities between the surfaces in all muscles except for rectus femoris, in which stable squat provided greater EMG activity than did the other exercises (p = 0.004-0.030). Lower EMG activity was observed in the rectus femoris using balance cone compared with the BOSU ball (p = 0.030). In conclusion, increasing the instability of the surface during maximum effort isometric squats usually maintains the muscle activity of lower-limb and superficial trunk muscles although the force output is reduced. This suggests that unstable surfaces in the squat may be beneficial in rehabilitation and as a part of periodized training programs, because similar muscle activity can be achieved with reduced loads.

  9. Reliability of surface electromyography in the assessment of paraspinal muscle fatigue: an updated systematic review.

    PubMed

    Mohseni Bandpei, Mohammad A; Rahmani, Nahid; Majdoleslam, Basir; Abdollahi, Iraj; Ali, Shabnam Shah; Ahmad, Ashfaq

    2014-09-01

    The purpose of this study was to review the literature to determine whether surface electromyography (EMG) is a reliable tool to assess paraspinal muscle fatigue in healthy subjects and in patients with low back pain (LBP). A literature search for the period of 2000 to 2012 was performed, using PubMed, ProQuest, Science Direct, EMBASE, OVID, CINAHL, and MEDLINE databases. Electromyography, reliability, median frequency, paraspinal muscle, endurance, low back pain, and muscle fatigue were used as keywords. The literature search yielded 178 studies using the above keywords. Twelve articles were selected according to the inclusion criteria of the study. In 7 of the 12 studies, the surface EMG was only applied in healthy subjects, and in 5 studies, the reliability of surface EMG was investigated in patients with LBP or a comparison with a control group. In all of these studies, median frequency was shown to be a reliable EMG parameter to assess paraspinal muscles fatigue. There was a wide variation among studies in terms of methodology, surface EMG parameters, electrode location, procedure, and homogeneity of the study population. The results suggest that there seems to be a convincing body of evidence to support the merit of surface EMG in the assessment of paraspinal muscle fatigue in healthy subject and in patients with LBP. Copyright © 2014 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  10. Effect of a Facial Muscle Exercise Device on Facial Rejuvenation

    PubMed Central

    Hwang, Ui-jae; Kwon, Oh-yun; Jung, Sung-hoon; Ahn, Sun-hee; Gwak, Gyeong-tae

    2018-01-01

    Abstract Background The efficacy of facial muscle exercises (FMEs) for facial rejuvenation is controversial. In the majority of previous studies, nonquantitative assessment tools were used to assess the benefits of FMEs. Objectives This study examined the effectiveness of FMEs using a Pao (MTG, Nagoya, Japan) device to quantify facial rejuvenation. Methods Fifty females were asked to perform FMEs using a Pao device for 30 seconds twice a day for 8 weeks. Facial muscle thickness and cross-sectional area were measured sonographically. Facial surface distance, surface area, and volumes were determined using a laser scanning system before and after FME. Facial muscle thickness, cross-sectional area, midfacial surface distances, jawline surface distance, and lower facial surface area and volume were compared bilaterally before and after FME using a paired Student t test. Results The cross-sectional areas of the zygomaticus major and digastric muscles increased significantly (right: P < 0.001, left: P = 0.015), while the midfacial surface distances in the middle (right: P = 0.005, left: P = 0.047) and lower (right: P = 0.028, left: P = 0.019) planes as well as the jawline surface distances (right: P = 0.004, left: P = 0.003) decreased significantly after FME using the Pao device. The lower facial surface areas (right: P = 0.005, left: P = 0.006) and volumes (right: P = 0.001, left: P = 0.002) were also significantly reduced after FME using the Pao device. Conclusions FME using the Pao device can increase facial muscle thickness and cross-sectional area, thus contributing to facial rejuvenation. Level of Evidence: 4 PMID:29365050

  11. A study on muscle activity and ratio of the knee extensor depending on the types of squat exercise

    PubMed Central

    Kang, Jeong-Il; Park, Joon-Su; Choi, Hyun; Jeong, Dae-Keun; Kwon, Hye-Min; Moon, Young-Jun

    2017-01-01

    [Purpose] For preventing the patellofemoral pain syndrome, this study aims to suggest a proper squat method, which presents selective muscle activity of Vastus Medialis Oblique and muscle activity ratios of Vastus Medialis Oblique/Vastus Lateralis by applying squat that is a representative weight bearing exercise method in various ways depending on the surface conditions and knee bending angles. [Subjects and Methods] An isometric squat that was accompanied by hip adduction, depending on the surface condition and the knee joint flexion angle, was performed by 24 healthy students. The muscle activity and the ratio of muscle activity were measured. [Results] In a comparison of muscle activity depending on the knee joint flexion angle on a weight-bearing surface, the vastus medialis oblique showed a significant difference at 15° and 60°. Meanwhile, in a comparison of the muscle activity ratio between the vastus medialis oblique and the vastus lateralis depending on the knee joint flexion angle on a weight-bearing surface, significant differences were observed at 15° and 60°. [Conclusion] An efficient squat exercise posture for preventing the patellofemoral pain syndrome is to increase the knee joint bending angle on a stable surface. But it would be efficient for patients with difficulties in bending the knee joint to keep a knee joint bending angle of 15 degrees or less on an unstable surface. It is considered that in future, diverse studies on selective Vastus Medialis Oblique strengthening exercise methods would be needed after applying them to patients with the patellofemoral pain syndrome. PMID:28210036

  12. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint

    PubMed Central

    Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan RT

    2016-01-01

    Data about a muscle’s fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function. PMID:29805194

  13. Effect of instruction, surface stability, and load intensity on trunk muscle activity.

    PubMed

    Bressel, Eadric; Willardson, Jeffrey M; Thompson, Brennan; Fontana, Fabio E

    2009-12-01

    The aim of this study was to assess the effect of verbal instruction, surface stability, and load intensity on trunk muscle activity levels during the free weight squat exercise. Twelve trained males performed a free weight squat under four conditions: (1) standing on stable ground lifting 50% of their 1-repetition maximum (RM), (2) standing on a BOSU balance trainer lifting 50% of their 1-RM, (3) standing on stable ground lifting 75% of their 1-RM, and (4) receiving verbal instructions to activate the trunk muscles followed by lifting 50% of their 1-RM. Surface EMG activity from muscles rectus abdominis (RA), external oblique (EO), transversus abdominis/internal oblique (TA/IO), and erector spinae (ES) were recorded for each condition and normalized for comparisons. Muscles RA, EO, and TA/IO displayed greater peak activity (39-167%) during squats with instructions compared to the other squat conditions (P=0.04-0.007). Peak EMG activity of muscle ES was greater for the 75% 1-RM condition than squats with instructions or lifting 50% of 1-RM (P=0.04-0.02). The results indicate that if the goal is to enhance EMG activity of the abdominal muscles during a multi-joint squat exercise then verbal instructions may be more effective than increasing load intensity or lifting on an unstable surface. However, in light of other research, conscious co-activation of the trunk muscles during the squat exercise may lead to spinal instability and hazardous compression forces in the lumbar spine.

  14. An Accurate and Dynamic Computer Graphics Muscle Model

    NASA Technical Reports Server (NTRS)

    Levine, David Asher

    1997-01-01

    A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.

  15. Effectiveness of the Wavelet Transform on the Surface EMG to Understand the Muscle Fatigue During Walk

    NASA Astrophysics Data System (ADS)

    Hussain, M. S.; Mamun, Md.

    2012-01-01

    Muscle fatigue is the decline in ability of a muscle to create force. Electromyography (EMG) is a medical technique for measuring muscle response to nervous stimulation. During a sustained muscle contraction, the power spectrum of the EMG shifts towards lower frequencies. These effects are due to muscle fatigue. Muscle fatigue is often a result of unhealthy work practice. In this research, the effectiveness of the wavelet transform applied to the surface EMG (SEMG) signal as a means of understanding muscle fatigue during walk is presented. Power spectrum and bispectrum analysis on the EMG signal getting from right rectus femoris muscle is executed utilizing various wavelet functions (WFs). It is possible to recognize muscle fatigue appreciably with the proper choice of the WF. The outcome proves that the most momentous changes in the EMG power spectrum are symbolized by WF Daubechies45. Moreover, this research has compared bispectrum properties to the other WFs. To determine muscle fatigue during gait, Daubechies45 is used in this research to analyze the SEMG signal.

  16. Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography.

    PubMed

    Hu, Xiaogang; Suresh, Aneesha K; Rymer, William Z; Suresh, Nina L

    2016-08-01

    Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.

  17. Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography

    NASA Astrophysics Data System (ADS)

    Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.

    2016-08-01

    Objective. Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Approach. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Main results. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Significance. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.

  18. Surface-distributed low-frequency asynchronous stimulation delays fatigue of stimulated muscles.

    PubMed

    Maneski, Lana Z Popović; Malešević, Nebojša M; Savić, Andrej M; Keller, Thierry; Popović, Dejan B

    2013-12-01

    One important reason why functional electrical stimulation (FES) has not gained widespread clinical use is the limitation imposed by rapid muscle fatigue due to non-physiological activation of the stimulated muscles. We aimed to show that asynchronous low-pulse-rate (LPR) electrical stimulation applied by multipad surface electrodes greatly postpones the occurrence of muscle fatigue compared with conventional stimulation (high pulse rate, HPR). We compared the produced force vs. time of the forearm muscles responsible for finger flexion in 2 stimulation protocols, LPR (fL = 10 Hz) and HPR (fH = 40 Hz). Surface-distributed low-frequency asynchronous stimulation (sDLFAS) doubles the time interval before the onset of fatigue (104 ± 80%) compared with conventional synchronous stimulation. Combining the performance of multipad electrodes (increased selectivity and facilitated positioning) with sDLFAS (decreased fatigue) can improve many FES applications in both the lower and upper extremities. Copyright © 2013 Wiley Periodicals, Inc.

  19. Subcortical electrostimulation to identify network subserving motor control.

    PubMed

    Schucht, Philippe; Moritz-Gasser, Sylvie; Herbet, Guillaume; Raabe, Andreas; Duffau, Hugues

    2013-11-01

    Recent anatomical-functional studies have transformed our understanding of cerebral motor control away from a hierarchical structure and toward parallel and interconnected specialized circuits. Subcortical electrical stimulation during awake surgery provides a unique opportunity to identify white matter tracts involved in motor control. For the first time, this study reports the findings on motor modulatory responses evoked by subcortical stimulation and investigates the cortico-subcortical connectivity of cerebral motor control. Twenty-one selected patients were operated while awake for frontal, insular, and parietal diffuse low-grade gliomas. Subcortical electrostimulation mapping was used to search for interference with voluntary movements. The corresponding stimulation sites were localized on brain schemas using the anterior and posterior commissures method. Subcortical negative motor responses were evoked in 20/21 patients, whereas acceleration of voluntary movements and positive motor responses were observed in three and five patients, respectively. The majority of the stimulation sites were detected rostral of the corticospinal tract near the vertical anterior-commissural line, and additional sites were seen in the frontal and parietal white matter. The diverse interferences with motor function resulting in inhibition and acceleration imply a modulatory influence of the detected fiber network. The subcortical stimulation sites were distributed veil-like, anterior to the primary motor fibers, suggesting descending pathways originating from premotor areas known for negative motor response characteristics. Further stimulation sites in the parietal white matter as well as in the anterior arm of the internal capsule indicate a large-scale fronto-parietal motor control network. Copyright © 2012 Wiley Periodicals, Inc.

  20. EMG-force relationship during static contraction: Effects on sensor placement locations on biceps brachii muscle.

    PubMed

    Ahamed, Nizam Uddin; Sundaraj, Kenneth; Alqahtani, Mahdi; Altwijri, Omar; Ali, Md Asraf; Islam, Md Anamul

    2014-10-15

    The relationship between surface electromyography (EMG) and force have been the subject of ongoing investigations and remain a subject of controversy. Even under static conditions, the relationships at different sensor placement locations in the biceps brachii (BB) muscle are complex. The aim of this study was to compare the activity and relationship between surface EMG and static force from the BB muscle in terms of three sensor placement locations. Twenty-one right hand dominant male subjects (age 25.3 ± 1.2 years) participated in the study. Surface EMG signals were detected from the subject's right BB muscle. The muscle activation during force was determined as the root mean square (RMS) electromyographic signal normalized to the peak RMS EMG signal of isometric contraction for 10 s. The statistical analysis included linear regression to examine the relationship between EMG amplitude and force of contraction [40-100% of maximal voluntary contraction (MVC)], repeated measures ANOVA to assess differences among the sensor placement locations, and coefficient of variation (CoV) for muscle activity variation. The results demonstrated that when the sensor was placed on the muscle belly, the linear slope coefficient was significantly greater for EMG versus force testing (r^{2} = 0.61, P > 0.05) than when placed on the lower part (r^{2}=0.31, P< 0.05) and upper part of the muscle belly (r^{2}=0.29, P > 0.05). In addition, the EMG signal activity on the muscle belly had less variability than the upper and lower parts (8.55% vs. 15.12% and 12.86%, respectively). These findings indicate the importance of applying the surface EMG sensor at the appropriate locations that follow muscle fiber orientation of the BB muscle during static contraction. As a result, EMG signals of three different placements may help to understand the difference in the amplitude of the signals due to placement.

  1. EMG-force relationship during static contraction: effects on sensor placement locations on biceps brachii muscle.

    PubMed

    Ahamed, Nizam Uddin; Sundaraj, Kenneth; Alqahtani, Mahdi; Altwijri, Omar; Ali, Md Asraf; Islam, Md Anamul

    2014-01-01

    The relationship between surface electromyography (EMG) and force have been the subject of ongoing investigations and remain a subject of controversy. Even under static conditions, the relationships at different sensor placement locations in the biceps brachii (BB) muscle are complex. The aim of this study was to compare the activity and relationship between surface EMG and static force from the BB muscle in terms of three sensor placement locations. Twenty-one right hand dominant male subjects (age 25.3±1.2 years) participated in the study. Surface EMG signals were detected from the subject's right BB muscle. The muscle activation during force was determined as the root mean square (RMS) electromyographic signal normalized to the peak RMS EMG signal of isometric contraction for 10 s. The statistical analysis included linear regression to examine the relationship between EMG amplitude and force of contraction [40-100% of maximal voluntary contraction (MVC)], repeated measures ANOVA to assess differences among the sensor placement locations, and coefficient of variation (CoV) for muscle activity variation. The results demonstrated that when the sensor was placed on the muscle belly, the linear slope coefficient was significantly greater for EMG versus force testing (r2=0.62, P<0.05) than when placed on the lower part (r2=0.31, P>0.05) and upper part of the muscle belly (r2=0.29, P<0.05). In addition, the EMG signal activity on the muscle belly had less variability than the upper and lower parts (8.55% vs. 15.12% and 12.86%, respectively). These findings indicate the importance of applying the surface EMG sensor at the appropriate locations that follow muscle fiber orientation of the BB muscle during static contraction. As a result, EMG signals of three different placements may help to understand the difference in the amplitude of the signals due to placement.

  2. Surface electromyographic amplitude does not identify differences in neural drive to synergistic muscles.

    PubMed

    Martinez-Valdes, Eduardo; Negro, Francesco; Falla, Deborah; De Nunzio, Alessandro Marco; Farina, Dario

    2018-04-01

    Surface electromyographic (EMG) signal amplitude is typically used to compare the neural drive to muscles. We experimentally investigated this association by studying the motor unit (MU) behavior and action potentials in the vastus medialis (VM) and vastus lateralis (VL) muscles. Eighteen participants performed isometric knee extensions at four target torques [10, 30, 50, and 70% of the maximum torque (MVC)] while high-density EMG signals were recorded from the VM and VL. The absolute EMG amplitude was greater for VM than VL ( P < 0.001), whereas the EMG amplitude normalized with respect to MVC was greater for VL than VM ( P < 0.04). Because differences in EMG amplitude can be due to both differences in the neural drive and in the size of the MU action potentials, we indirectly inferred the neural drives received by the two muscles by estimating the synaptic inputs received by the corresponding motor neuron pools. For this purpose, we analyzed the increase in discharge rate from recruitment to target torque for motor units matched by recruitment threshold in the two muscles. This analysis indicated that the two muscles received similar levels of neural drive. Nonetheless, the size of the MU action potentials was greater for VM than VL ( P < 0.001), and this difference explained most of the differences in EMG amplitude between the two muscles (~63% of explained variance). These results indicate that EMG amplitude, even following normalization, does not reflect the neural drive to synergistic muscles. Moreover, absolute EMG amplitude is mainly explained by the size of MU action potentials. NEW & NOTEWORTHY Electromyographic (EMG) amplitude is widely used to compare indirectly the strength of neural drive received by synergistic muscles. However, there are no studies validating this approach with motor unit data. Here, we compared between-muscles differences in surface EMG amplitude and motor unit behavior. The results clarify the limitations of surface EMG to interpret differences in neural drive between muscles.

  3. Nonlinear analysis of electromyogram following gait training with myoelectrically triggered neuromuscular electrical stimulation in stroke survivors

    NASA Astrophysics Data System (ADS)

    Dutta, Anirban; Khattar, Bhawna; Banerjee, Alakananda

    2012-12-01

    Neuromuscular electrical stimulation (NMES) facilitates ambulatory function after paralysis by activating the muscles of the lower extremities. The NMES-assisted stepping can either be triggered by a heel-switch (switch-trigger), or by an electromyogram (EMG)-based gait event detector (EMG-trigger). The command sources—switch-trigger or EMG-trigger—were presented to each group of six chronic (>6 months post-stroke) hemiplegic stroke survivors. The switch-trigger group underwent transcutaneous NMES-assisted gait training for 1 h, five times a week for 2 weeks, where the stimulation of the tibialis anterior muscle of the paretic limb was triggered with a heel-switch detecting heel-rise of the same limb. The EMG-trigger group underwent transcutaneous NMES-assisted gait training of the same duration and frequency where the stimulation was triggered with surface EMG from medial gastrocnemius (MG) of the paretic limb in conjunction with a heel-switch detecting heel-rise of the same limb. During the baseline and post-intervention surface EMG assessment, a total of 10 s of surface EMG was recorded from bilateral MG muscle while the subjects tried to stand steady on their toes. A nonlinear tool—recurrence quantification analysis (RQA)—was used to analyze the surface EMG. The objective of this study was to find the effect of NMES-assisted gait training with switch-trigger or EMG-trigger on two RQA parameters—the percentage of recurrence (%Rec) and determinism (%Det), which were extracted from surface EMG during fatiguing contractions of the paretic muscle. The experimental results showed that during fatiguing contractions, (1) %Rec and %Det have a higher initial value for paretic muscle than the non-paretic muscle, (2) the rate of change in %Rec and %Det was negative for the paretic muscle but positive for the non-paretic muscle, (3) the rate of change in %Rec and %Det significantly increased from baseline for the paretic muscle after EMG-triggered NMES-assisted gait training. Therefore, the study showed an improvement in paretic muscle function during a fatiguing task following gait training with EMG-triggered NMES. This study also showed that RQA parameters—%Rec and %Det—were sensitive to changes in paretic/non-paretic muscle properties due to gait training and can be used for non-invasive muscle monitoring in stroke survivors undergoing rehabilitation.

  4. Season-long increases in perceived muscle soreness in professional rugby league players: role of player position, match characteristics and playing surface.

    PubMed

    Fletcher, Ben D; Twist, Craig; Haigh, Julian D; Brewer, Clive; Morton, James P; Close, Graeme L

    2016-01-01

    Rugby League (RL) is a high-impact collision sport characterised by repeated sprints and numerous high-speed impacts and consequently players often report immediate and prolonged muscle soreness in the days after a match. We examined muscle soreness after matches during a full season to understand the extent to which match characteristics influence soreness. Thirty-one elite Super League players provided daily measures of muscle soreness after each of the 26 competitive fixtures of the 2012 season. Playing position, phase of the season, playing surface and match characteristics were recorded from each match. Muscle soreness peaked at day 1 and was still apparent at day 4 post-game with no attenuation in the magnitude of muscle soreness over the course of the season. Neither playing position, phase of season or playing surface had any effects on the extent of muscle soreness. Playing time and total number of collisions were significantly correlated with higher ratings of muscle soreness, especially in the forwards. These data indicate the absence "contact adaptations" in elite rugby players with soreness present throughout the entire season. Strategies must now be implemented to deal with the physical and psychological consequences of prolonged feeling of pain.

  5. An EMG-CT method using multiple surface electrodes in the forearm.

    PubMed

    Nakajima, Yasuhiro; Keeratihattayakorn, Saran; Yoshinari, Satoshi; Tadano, Shigeru

    2014-12-01

    Electromyography computed tomography (EMG-CT) method is proposed for visualizing the individual muscle activities in the human forearm. An EMG conduction model was formulated for reverse-estimation of muscle activities using EMG signals obtained with multi surface electrodes. The optimization process was calculated using sequential quadratic programming by comparing the estimated EMG values from the model with the measured values. The individual muscle activities in the deep region were estimated and used to produce an EMG tomographic image. For validation of the method, isometric contractions of finger muscles were examined for three subjects, applying a flexion load (4.9, 7.4 and 9.8 N) to the proximal interphalangeal joint of the middle finger. EMG signals in the forearm were recorded during the tasks using multiple surface electrodes, which were bound around the subject's forearm. The EMG-CT method illustrates the distribution of muscle activities within the forearm. The change in amplitude and area of activated muscles can be observed. The normalized muscle activities of all three subjects appear to increase monotonically with increases in the load. Kinesiologically, this method was able to estimate individual muscle activation values and could provide a novel tool for studying hand function and development of an examination for evaluating rehabilitation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Activation Pattern of Lower Leg Muscles in Running on Asphalt, Gravel and Grass.

    PubMed

    Dolenec, Aleš; Štirn, Igor; Strojnik, Vojko

    2015-07-01

    Running is performed on different natural surfaces (outdoor) and artificial surfaces (indoor). Different surface characteristics cause modification of the lower leg muscle activation pattern to adopt ankle stiffness to these characteristics. So the purpose of our investigation was to study changes of lower leg muscles activation pattern in running on different natural running surfaces. Six male and two female runners participated. The participants ran at a freely chosen velocity in trials on asphalt while in trials on gravel, and grass surfaces they were attempting to reach similar velocities as in the trials on asphalt. Muscle activation of the peroneus brevis, tibialis anterior, soleus, and gastrocnemius medialis of the right leg was recorded. Running on asphalt increased average EMG amplitude of the m. tibialis anterior in the pre-activation phase and the m. gastrocnemius medialis in the entire contact phase compared to running on grass from 0.222 ± 0.113 V to 0.276 ± 0.136 V and from 0.214 ± 0.084 V to 0.238 ± 0.088 V, respectively. The average EMG of m. peroneus brevis in pre-activation phase increased from 0.156 ± 0.026 V to 0.184 ± 0.455 V in running on grass in comparison to running on gravel. Running on different surfaces is connected with different activation patterns of lower leg muscles. Running on asphalt requires stiff ankle joints, running on gravel requires greater stability in ankle joints, while running on grass is the least demanding on lower leg muscles.

  7. The image of motor units architecture in the mechanomyographic signal during the single motor unit contraction: in vivo and simulation study.

    PubMed

    Kaczmarek, P; Celichowski, J; Drzymała-Celichowska, H; Kasiński, A

    2009-08-01

    The mechanomyographic (MMG) signal analysis has been performed during single motor unit (MU) contractions of the rat medial gastrocnemius muscle. The MMG has been recorded as a muscle surface displacement by using a laser distance sensor. The profiles of the MMG signal let to categorize these signals for particular MUs into three classes. Class MMG-P (positive) comprises MUs with the MMG signal similar to the force signal profile, where the distance between the muscle surface and the laser sensor increases with the force increase. The class MMG-N (negative) has also the MMG profile similar to the force profile, however the MMG is inverted in comparison to the force signal and the distance measured by using laser sensor decreases with the force increase. The third class MMG-M (mixed) characterize the MMG which initially increases with the force increases and when the force exceeds some level it starts to decrease towards the negative values. The semi-pennate muscle model has been proposed, enabling estimation of the MMG generated by a single MU depending on its localization. The analysis have shown that in the semi-pennate muscle the localization of the MU and the relative position of the laser distance sensor determine the MMG profile and amplitude. Thus, proposed classification of the MMG recordings is not related to the physiological types of MUs, but only to the MU localization and mentioned sensor position. When the distance sensor is located over the middle of the muscle belly, a part of the muscle fibers have endings near the location of the sensor beam. For the MU MMG of class MMG-N the deflection of the muscle surface proximal to the sensor mainly influences the MMG recording, whereas for the MU MMG class MMG-P, it is mainly the distal muscle surface deformation. For the MU MMG of MMG-M type the effects of deformation within the proximal and distal muscle surfaces overlap. The model has been verified with experimental recordings, and its responses are consistent and adequate in comparison to the experimental data.

  8. EMGAN: A computer program for time and frequency domain reduction of electromyographic data

    NASA Technical Reports Server (NTRS)

    Hursta, W. N.

    1975-01-01

    An experiment in electromyography utilizing surface electrode techniques was developed for the Apollo-Soyuz test project. This report describes the computer program, EMGAN, which was written to provide first order data reduction for the experiment. EMG signals are produced by the membrane depolarization of muscle fibers during a muscle contraction. Surface electrodes detect a spatially summated signal from a large number of muscle fibers commonly called an interference pattern. An interference pattern is usually so complex that analysis through signal morphology is extremely difficult if not impossible. It has become common to process EMG interference patterns in the frequency domain. Muscle fatigue and certain myopathic conditions are recognized through changes in muscle frequency spectra.

  9. Analysis of surface EMG baseline for detection of hidden muscle activity

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Zhou, Ping

    2014-02-01

    Objective. This study explored the feasibility of detecting hidden muscle activity in surface electromyogram (EMG) baseline. Approach. Power spectral density (PSD) analysis and multi-scale entropy (MSE) analysis were used. Both analyses were applied to computer simulations of surface EMG baseline with the presence (representing activity data) or absence (representing reference data) of hidden muscle activity, as well as surface electrode array EMG baseline recordings of healthy control and amyotrophic lateral sclerosis (ALS) subjects. Main results. Although the simulated reference data and the activity data yielded no distinguishable difference in the time domain, they demonstrated a significant difference in the frequency and signal complexity domains with the PSD and MSE analyses. For a comparison using pooled data, such a difference was also observed when the PSD and MSE analyses were applied to surface electrode array EMG baseline recordings of healthy control and ALS subjects, which demonstrated no distinguishable difference in the time domain. Compared with the PSD analysis, the MSE analysis appeared to be more sensitive for detecting the difference in surface EMG baselines between the two groups. Significance. The findings implied the presence of a hidden muscle activity in surface EMG baseline recordings from the ALS subjects. To promote the presented analysis as a useful diagnostic or investigatory tool, future studies are necessary to assess the pathophysiological nature or origins of the hidden muscle activity, as well as the baseline difference at the individual subject level.

  10. Analysis of Surface EMG Baseline for Detection of Hidden Muscle Activity

    PubMed Central

    Zhang, Xu; Zhou, Ping

    2014-01-01

    Objective This study explored the feasibility of detecting hidden muscle activity in surface electromyogram (EMG) baseline. Approach Power spectral density (PSD) analysis and multi-scale entropy (MSE) analysis were used respectively. Both analyses were applied to computer simulations of surface EMG baseline with presence (representing activity data) or absence (representing reference data) of hidden muscle activity, as well as surface electrode array EMG baseline recordings of healthy control and amyotrophic lateral sclerosis (ALS) subjects. Main results Although the simulated reference data and the activity data yielded no distinguishable difference in the time domain, they demonstrated a significant difference in the frequency and signal complexity domains with the PSD and MSE analyses. For a comparison using pooled data, such a difference was also observed when the PSD and MSE analyses were applied to surface electrode array EMG baseline recordings of healthy control and ALS subjects, which demonstrated no distinguishable difference in the time domain. Compared with the PSD analysis, the MSE analysis appeared to be more sensitive for detecting the difference in surface EMG baselines between the two groups. Significance The findings implied presence of hidden muscle activity in surface EMG baseline recordings from the ALS subjects. To promote the presented analysis as a useful diagnostic or investigatory tool, future studies are necessary to assess the pathophysiological nature or origins of the hidden muscle activity, as well as the baseline difference at the individual subject level. PMID:24445526

  11. Potential clinical application of surface electromyography as indicator of neuromuscular recovery during weaning tests after organophosphate poisoning.

    PubMed

    Sánchez, Maria Bernarda Salazar; Valdivieso, Alher Mauricio Hernández; Villanueva, Miguel Ángel Mañanas; Salazar, Andrés Felipe Zuluaga

    2017-01-01

    This study aimed to explore the usefulness of measuring respiratory muscle activity in mechanically ventilated patients suffering from acute organophosphate poisoning, with a view towards providing complementary information to determine the best time to suspend ventilatory support. Surface electromyography in respiratory muscles (diaphragm, external intercostal and sternocleidomastoid muscles) was recorded in a young man affected by self-poisoning with an unknown amount of parathion to determine the muscle activity level during several weaning attempts from mechanical ventilation. The energy distribution of each surface electromyography signal frequency, the synchronization between machine and patient and between muscles, acetylcholinesterase enzyme activity, and work of breathing and rapid shallow breathing indices were calculated in each weaning attempt. The work of breathing and rapid shallow breathing indices were not correlated with the failure/success of the weaning attempt. The diaphragm gradually increased its engagement with ventilation, achieving a maximal response that correlated with successful weaning and maximal acetylcholinesterase enzyme activity; in contrast, the activity of accessory respiratory muscles showed an opposite trend.

  12. Potential clinical application of surface electromyography as indicator of neuromuscular recovery during weaning tests after organophosphate poisoning

    PubMed Central

    Sánchez, Maria Bernarda Salazar; Valdivieso, Alher Mauricio Hernández; Villanueva, Miguel Ángel Mañanas; Salazar, Andrés Felipe Zuluaga

    2017-01-01

    This study aimed to explore the usefulness of measuring respiratory muscle activity in mechanically ventilated patients suffering from acute organophosphate poisoning, with a view towards providing complementary information to determine the best time to suspend ventilatory support. Surface electromyography in respiratory muscles (diaphragm, external intercostal and sternocleidomastoid muscles) was recorded in a young man affected by self-poisoning with an unknown amount of parathion to determine the muscle activity level during several weaning attempts from mechanical ventilation. The energy distribution of each surface electromyography signal frequency, the synchronization between machine and patient and between muscles, acetylcholinesterase enzyme activity, and work of breathing and rapid shallow breathing indices were calculated in each weaning attempt. The work of breathing and rapid shallow breathing indices were not correlated with the failure/success of the weaning attempt. The diaphragm gradually increased its engagement with ventilation, achieving a maximal response that correlated with successful weaning and maximal acetylcholinesterase enzyme activity; in contrast, the activity of accessory respiratory muscles showed an opposite trend. PMID:28977266

  13. The effects of work surface hardness on mechanical stress, muscle activity, and wrist postures.

    PubMed

    Kim, Jeong Ho; Aulck, Lovenoor; Trippany, David; Johnson, Peter W

    2015-01-01

    Contact pressure is a risk factor which can contribute to musculoskeletal disorders. The objective of the present study was to determine whether a work surface with a soft, pliable front edge could reduce contact pressure, muscle activity, and subjective musculoskeletal comfort, and improve wrist posture relative to a conventional, hard work surface. In a repeated-measures blinded experiment with eighteen subjects (8 females and 10 males), contact pressure, wrist posture, typing productivity, perceived fatigue, wrist and shoulder muscle activity, and subjective comfort were compared between the two different work surfaces during keyboard use, mouse use and mixed mouse and keyboard use. The results showed that across the three modes of computer work, the contact pressure was lower on the soft-edge work surface compared to the conventional work surface (p's <0.03) and subjects reported to have less perceived fatigue in the forearms and wrists. No differences in muscle activity, wrist posture, and subjective comfort were measured between the two work surfaces. Given the significant reduction in contact pressure and corresponding lower ratings in perceived fatigue, the soft-edge work surface subjectively and objectively improved measures of contact stress which may reduce physical exposures associated with the onset and development of musculoskeletal disorders.

  14. Rat supraspinatus muscle atrophy after tendon detachment.

    PubMed

    Barton, Elisabeth R; Gimbel, Jonathan A; Williams, Gerald R; Soslowsky, Louis J

    2005-03-01

    Rotator cuff tears are one of the most common tendon disorders found in the healthy population. Tendon tears not only affect the biomechanical properties of the tendon, but can also lead to debilitation of the muscles attached to the damaged tendons. The changes that occur in the muscle after tendon detachment are not well understood. A rat rotator cuff model was utilized to determine the time course of changes that occur in the supraspinatus muscle after tendon detachment. It was hypothesized that the lack of load on the supraspinatus muscle would cause a significant decrease in muscle mass and a conversion of muscle fiber properties toward those of fast fiber types. Tendons were detached at the insertion on the humerus without repair. Muscle mass, morphology and fiber properties were measured at one, two, four, eight, and 16 weeks after detachment. Tendon detachment resulted in a rapid loss of muscle mass, an increase in the proportion of fast muscle fibers, and an increase in the fibrotic content of the muscle bed, concomitant with the appearance of adhesions of the tendon to surrounding surfaces. At 16 weeks post-detachment, muscle mass and the fiber properties in the deep muscle layers returned to normal levels. However, the fiber shifts observed in the superficial layers persisted throughout the experiment. These results suggest that load returned to the muscle via adhesions to surrounding surfaces, which may be sufficient to reverse changes in muscle mass.

  15. Computation and evaluation of features of surface electromyogram to identify the force of muscle contraction and muscle fatigue.

    PubMed

    Arjunan, Sridhar P; Kumar, Dinesh K; Naik, Ganesh

    2014-01-01

    The relationship between force of muscle contraction and muscle fatigue with six different features of surface electromyogram (sEMG) was determined by conducting experiments on thirty-five volunteers. The participants performed isometric contractions at 50%, 75%, and 100% of their maximum voluntary contraction (MVC). Six features were considered in this study: normalised spectral index (NSM5), median frequency, root mean square, waveform length, normalised root mean square (NRMS), and increase in synchronization (IIS) index. Analysis of variance (ANOVA) and linear regression analysis were performed to determine the significance of the feature with respect to the three factors: muscle force, muscle fatigue, and subject. The results show that IIS index of sEMG had the highest correlation with muscle fatigue and the relationship was statistically significant (P < 0.01), while NSM5 associated best with level of muscle contraction (%MVC) (P < 0.01). Both of these features were not affected by the intersubject variations (P > 0.05).

  16. Computation and Evaluation of Features of Surface Electromyogram to Identify the Force of Muscle Contraction and Muscle Fatigue

    PubMed Central

    Arjunan, Sridhar P.; Kumar, Dinesh K.; Naik, Ganesh

    2014-01-01

    The relationship between force of muscle contraction and muscle fatigue with six different features of surface electromyogram (sEMG) was determined by conducting experiments on thirty-five volunteers. The participants performed isometric contractions at 50%, 75%, and 100% of their maximum voluntary contraction (MVC). Six features were considered in this study: normalised spectral index (NSM5), median frequency, root mean square, waveform length, normalised root mean square (NRMS), and increase in synchronization (IIS) index. Analysis of variance (ANOVA) and linear regression analysis were performed to determine the significance of the feature with respect to the three factors: muscle force, muscle fatigue, and subject. The results show that IIS index of sEMG had the highest correlation with muscle fatigue and the relationship was statistically significant (P < 0.01), while NSM5 associated best with level of muscle contraction (%MVC) (P < 0.01). Both of these features were not affected by the intersubject variations (P > 0.05). PMID:24995275

  17. Robust passive dynamics of the musculoskeletal system compensate for unexpected surface changes during human hopping

    PubMed Central

    van der Krogt, Marjolein M.; de Graaf, Wendy W.; Farley, Claire T.; Moritz, Chet T.; Richard Casius, L. J.; Bobbert, Maarten F.

    2009-01-01

    When human hoppers are surprised by a change in surface stiffness, they adapt almost instantly by changing leg stiffness, implying that neural feedback is not necessary. The goal of this simulation study was first to investigate whether leg stiffness can change without neural control adjustment when landing on an unexpected hard or unexpected compliant (soft) surface, and second to determine what underlying mechanisms are responsible for this change in leg stiffness. The muscle stimulation pattern of a forward dynamic musculoskeletal model was optimized to make the model match experimental hopping kinematics on hard and soft surfaces. Next, only surface stiffness was changed to determine how the mechanical interaction of the musculoskeletal model with the unexpected surface affected leg stiffness. It was found that leg stiffness adapted passively to both unexpected surfaces. On the unexpected hard surface, leg stiffness was lower than on the soft surface, resulting in close-to-normal center of mass displacement. This reduction in leg stiffness was a result of reduced joint stiffness caused by lower effective muscle stiffness. Faster flexion of the joints due to the interaction with the hard surface led to larger changes in muscle length, while the prescribed increase in active state and resulting muscle force remained nearly constant in time. Opposite effects were found on the unexpected soft surface, demonstrating the bidirectional stabilizing properties of passive dynamics. These passive adaptations to unexpected surfaces may be critical when negotiating disturbances during locomotion across variable terrain. PMID:19589956

  18. Functional mapping of the pelvic floor and sphincter muscles from high-density surface EMG recordings.

    PubMed

    Peng, Yun; He, Jinbao; Khavari, Rose; Boone, Timothy B; Zhang, Yingchun

    2016-11-01

    Knowledge of the innervation of pelvic floor and sphincter muscles is of great importance to understanding the pathophysiology of female pelvic floor dysfunctions. This report presents our high-density intravaginal and intrarectal electromyography (EMG) probes and a comprehensive innervation zone (IZ) imaging technique based on high-density EMG readings to characterize the IZ distribution. Both intravaginal and intrarectal probes are covered with a high-density surface electromyography electrode grid (8 × 8). Surface EMG signals were acquired in ten healthy women performing maximum voluntary contractions of their pelvic floor. EMG decomposition was performed to separate motor-unit action potentials (MUAPs) and then localize their IZs. High-density surface EMG signals were successfully acquired over the vaginal and rectal surfaces. The propagation patterns of muscle activity were clearly visualized for multiple muscle groups of the pelvic floor and anal sphincter. During each contraction, up to 218 and 456 repetitions of motor units were detected by the vaginal and rectal probes, respectively. MUAPs were separated with their IZs identified at various orientations and depths. The proposed probes are capable of providing a comprehensive mapping of IZs of the pelvic floor and sphincter muscles. They can be employed as diagnostic and preventative tools in clinical practices.

  19. Assessment of low back muscle fatigue by surface EMG signal analysis: methodological aspects.

    PubMed

    Farina, Dario; Gazzoni, Marco; Merletti, Roberto

    2003-08-01

    This paper focuses on methodological issues related to surface electromyographic (EMG) signal detection from the low back muscles. In particular, we analysed (1) the characteristics (in terms of propagating components) of the signals detected from these muscles; (2) the effect of electrode location on the variables extracted from surface EMG; (3) the effect of the inter-electrode distance (IED) on the same variables; (4) the possibility of assessing fatigue during high and very low force level contractions. To address these issues, we detected single differential surface EMG signals by arrays of eight electrodes from six locations on the two sides of the spine, at the levels of the first (L1), the second (L2), and the fifth (L5) lumbar vertebra. In total, 42 surface EMG channels were acquired at the same time during both high and low force, short and long duration contractions. The main results were: (1) signal quality is poor with predominance of non-travelling components; (2) as a consequence of point (1), in the majority of the cases it is not possible to reliably estimate muscle fiber conduction velocity; (3) despite the poor signal quality, it was possible to distinguish the fatigue properties of the investigated muscles and the fatigability at different contraction levels; (4) IED affects the sensitivity of surface EMG variables to electrode location and large IEDs are suggested when spectral and amplitude analysis is performed; (5) the sensitivity of surface EMG variables to changes in electrode location is on average larger than for other muscles with less complex architecture; (6) IED influences amplitude initial values and slopes, and spectral variable initial values; (7) normalized slopes for both amplitude and spectral variables are not affected by IED and, thus, are suggested for fatigue analysis at different postures or during movement, when IED may change in different conditions (in case of separated electrodes); (8) the surface EMG technique at the global level of amplitude and spectral analysis cannot be used to characterize fatigue properties of low back muscles during very low level, long duration contractions since in these cases the non-stable MU pool has a major influence on the EMG variables. These considerations clarify issues only partially investigated in past studies. The limitations indicated above are important and should be carefully discussed when presenting surface EMG results as a means for low back muscle assessment in clinical practice.

  20. An animal model to study lower urinary tract symptoms and erectile dysfunction: the hyperlipidaemic rat.

    PubMed

    Rahman, Nadeem U; Phonsombat, Surat; Bochinski, Derek; Carrion, Rafael E; Nunes, Lora; Lue, Tom F

    2007-09-01

    To present evidence that rats fed a high-fat diet could serve as a useful animal model to study both lower urinary tract symptoms (LUTS) and erectile dysfunction (ED), as recent epidemiological studies have shown a strong association between LUTS and ED but the physiological basis behind this relationship is unknown. In all, 24 male Sprague-Dawley rats were divided into two groups: nine controls were fed a 'normal' diet and 15 were fed a high-fat diet (hyperlipidaemic rats). After 6 months all the rats had bladder and erectile functions evaluated using awake cystometry and cavernosal nerve electrostimulation, respectively. After the functional studies were completed, the penis, prostate and bladder were collected for immunohistochemical analysis. The hyperlipidaemic rats had significantly higher serum cholesterol and low-density lipoprotein than the controls (P < 0.05). The hyperlipidaemic rats also had significantly worse erectile function (P = 0.004) and developed more bladder overactivity (P = 0.004) than the controls. In the hyperlipidaemic rats there was significant muscle hypertrophy in the peri-urethral lobe of the prostate (P < 0.001) and in the bladder (P < 0.05). There was also greater P2X(1) (purinoceptor) staining as well as other molecular changes in the bladder of the hyperlipidaemic rats. In this hyperlipidaemic rat model three abnormalities were consistently detected: prostatic enlargement, bladder overactivity, and ED. This rat model could be a useful research tool for understanding the common causes of LUTS and ED, as well as facilitating the development of preventive measures and better therapies to treat both conditions.

  1. Effects of electrical stimulation on VO2 kinetics and delta efficiency in healthy young men

    PubMed Central

    Perez, M; Lucia, A; Santalla, A; Chicharro, J

    2003-01-01

    Objective: To determine the effects of electrical stimulation (ES) on oxygen uptake (VO2) kinetics and delta efficiency (DE) during gradual exercise. The hypothesis was that ES would attenuate the VO2-workload relation and improve DE. Methods: Fifteen healthy, untrained men (mean (SD) age 22 (5) years) were selected. Ten were electrostimulated on both quadriceps muscles with a frequency of 45–60 Hz, with 12 seconds of stimulation followed by eight seconds recovery for a total of 30 minutes a day, three days a week for six weeks. The remaining five subjects were assigned to a control group. A standardised exercise test on a cycle ergometer (ramp protocol, workload increases of 20 W/min) was performed by each subject before and after the experimental period. The slope of the VO2-power output (W) relation (ΔVO2/ΔW) and DE were calculated in each subject at moderate to high intensities (above the ventilatory threshold—that is, from 50–60% to 100% VO2max). Results: The mean (SEM) values for ΔVO2/ΔW and DE had significantly decreased and increased respectively after the six week ES programme (p<0.05; 9.8 (0.2) v 8.6 (0.5) ml O2/W/min respectively and 27.7 (0.9) v 31.5 (1.4)% respectively). Conclusions: ES could be used as a supplementary tool to improve two of the main determinants of endurance capacity, namely VO2 kinetics and work efficiency. PMID:12663356

  2. Spinal muscle evaluation in healthy individuals and low-back-pain patients: a literature review.

    PubMed

    Demoulin, Christophe; Crielaard, Jean-Michel; Vanderthommen, Marc

    2007-01-01

    This article reviews available techniques for spinal muscle investigation, as well as data on spinal muscles in healthy individuals and in patients with low back pain. In patients with chronic low back pain, medical imaging studies show paraspinal muscle wasting with reductions in cross-sectional surface area and fiber density. In healthy individuals, the paraspinal muscles contain a high proportion of slow-twitch fibers (Type I), reflecting their role in maintaining posture. The proportion of Type I fibers is higher in females, leading to better adaptation to aerobic exertion compared to males. Abnormalities seen in paraspinal muscles from patients with chronic low back pain include marked Type II fiber atrophy, conversion of Type I to Type II fibers, and an increased number of nonspecific abnormalities. Limited data are available from magnetic resonance spectroscopy used to investigate muscle metabolism and from near infrared spectroscopy used to measure oxygen uptake by the paraspinal muscles. Surface electromyography in patients with chronic low back pain shows increased paraspinal muscle fatigability, often with abolition of the flexion-relaxation phenomenon.

  3. bioLights: light emitting wear for visualizing lower-limb muscle activity.

    PubMed

    Igarashi, Naoto; Suzuki, Kenji; Kawamoto, Hiroaki; Sankai, Yoshiyuki

    2010-01-01

    Analysis of muscle activity by electrophysiological techniques is commonly used to analyze biomechanics. Although the simultaneous and intuitive understanding of both muscle activity and body motion is important in various fields, it is difficult to realize. This paper proposes a novel technique for visualizing physiological signals related to muscle activity by means of surface electromyography. We developed a wearable light-emitting interface that indicates lower-limb muscle activity or muscular tension on the surface of the body in real time by displaying the shape of the activated muscle. The developed interface allows users to perceive muscle activity in an intuitive manner by relating the level of the muscle activity to the brightness level of the glowing interface placed on the corresponding muscle. In order to verify the advantage of the proposed method, a cognitive experiment was conducted to evaluate the system performance. We also conducted an evaluation experiment using the developed interface in conjunction with an exoskeleton robot, in order to investigate the possible applications of the developed interface in the field of neurorehabilitation.

  4. Finger muscle control in children with dystonia.

    PubMed

    Young, Scott J; van Doornik, Johan; Sanger, Terence D

    2011-06-01

    Childhood dystonia is a disorder that involves inappropriate muscle activation during attempts at voluntary movement. Few studies have investigated the muscle activity associated with dystonia in children, and none have done so in the hands. In this study, we measured surface electromyographic activity in four intrinsic hand muscles while participants attempted to perform an isometric tracking task using one of the muscles. Children with dystonia had greater tracking error with the task-related muscle and greater overflow to non-task muscles. Both tracking error and overflow correlated with the Barry-Albright Dystonia scale of the respective upper limb. Overflow also decreased when participants received visual feedback of non-task muscle activity. We conclude that two of the motor deficits in childhood dystonia--motor overflow and difficulties in actively controlling muscles--can be seen in the surface electromyographic activity of individual muscles during an isometric task. As expected from results in adults, overflow is an important feature of childhood dystonia. However, overflow may be at least partially dependent on an individual's level of awareness of their muscle activity. Most importantly, poor single-muscle tracking shows that children with dystonia have deficits of individual muscle control in addition to overflow or co-contraction. These results provide the first quantitative measures of the muscle activity associated with hand dystonia in children, and they suggest possible directions for control of dystonic symptoms. Copyright © 2011 Movement Disorder Society.

  5. Architecture and fiber type of the pyramidalis muscle.

    PubMed

    Lovering, Richard M; Anderson, Larry D

    2008-12-01

    The paired pyramidalis muscles are small triangular-shaped muscles that lie between the anterior surface of the rectus abdominus and the posterior surface of the rectus sheath. The precise function of pyramidalis muscles is unclear, but together the muscles are thought to tense the linea alba. The muscles are not always present, or are often unilateral, and vary greatly in size. Their wider inferior margins attach to the pubic symphyses and pubic crests, whereas their narrow superior margins attach to the linea alba. The gross anatomy and innervation of the pyramidalis muscles has been described by others, but their architecture and fiber type have not been determined in previous publications. The purpose of the present paper was therefore to investigate these parameters and place the findings into context for the literature available on this muscle. An example of bilateral pyramidalis muscles was recently encountered in a male cadaver that provided ample tissue for an analysis of its architecture and fiber type. The muscle mass, muscle length, fiber length, and pennation angle of muscle fibers were measured to ascertain physiological cross-sectional area and thereby estimate force production. Fiber type composition was also examined using immunofluorescent labeling. The results show that this is a muscle of mixed fiber type composition, similar to the rectus abdominus, and that the estimated forces generated by this muscle are relatively small.

  6. Estimating contraction level using root mean square amplitude in control subjects and patients with neuromuscular disorders.

    PubMed

    Boe, Shaun G; Rice, Charles L; Doherty, Timothy J

    2008-04-01

    To assess the utility of the surface electromyographic signal as a means of estimating the level of muscle force during quantitative electromyography studies by examining the relationship between muscle force and the amplitude of the surface electromyographic activity signal; and to determine the impact of a reduction in the number of motor units on this relationship, through inclusion of a sample of patients with neuromuscular disease. Cross-sectional, cohort study design. Tertiary care, ambulatory, electromyography laboratory. A volunteer, convenience sample of healthy control subjects (n=10), patients with amyotrophic lateral sclerosis (n=9), and patients with Charcot-Marie-Tooth disease type X (n=5). Not applicable. The first dorsal interosseous (FDI) and biceps brachii muscles were examined. Force values (at 10% increments) were calculated from two 4-second maximal voluntary contractions (MVCs). Surface electromyographic activity was recorded during separate 4-second voluntary contractions at 9 force increments (10% -90% of MVC). Additionally, a motor unit number estimate was derived for each subject to quantify the degree of motor unit loss in patients relative to control subjects. The relationships between force and surface electromyographic activity for both muscles (controls and patients) were best fit by a linear function. The variability about the grouped regression lines was quantified by 95% confidence intervals and found to be +/-6.7% (controls) and +/-8.5% (patients) for the FDI and +/-5% (controls) and +/-6.1% (patients) for the biceps brachii. These results suggest that the amplitude of the surface electromyographic activity signal may be used as a means of estimating the level of muscle force during quantitative electromyography studies. Future studies should be directed at examining if the variability associated with these force and surface electromyographic activity relationships is acceptable in replacing previous methods of measuring muscle force.

  7. Numerical simulation of electrically stimulated osteogenesis in dental implants.

    PubMed

    Vanegas-Acosta, J C; Garzón-Alvarado, D A; Lancellotti, V

    2014-04-01

    Cell behavior and tissue formation are influenced by a static electric field (EF). Several protocols for EF exposure are aimed at increasing the rate of tissue recovery and reducing the healing times in wounds. However, the underlying mechanisms of the EF action on cells and tissues are still a matter of research. In this work we introduce a mathematical model for electrically stimulated osteogenesis at the bone-dental implant interface. The model describes the influence of the EF in the most critical biological processes leading to bone formation at the bone-dental implant interface. The numerical solution is able to reproduce the distribution of spatial-temporal patterns describing the influence of EF during blood clotting, osteogenic cell migration, granulation tissue formation, displacements of the fibrillar matrix, and formation of new bone. In addition, the model describes the EF-mediated cell behavior and tissue formation which lead to an increased osteogenesis in both smooth and rough implant surfaces. Since numerical results compare favorably with experimental evidence, the model can be used to predict the outcome of using electrostimulation in other types of wounds and tissues. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Subcellular trafficking of FGF controls tracheal invasion of Drosophila flight muscle

    PubMed Central

    Peterson, Soren J.; Krasnow, Mark A.

    2015-01-01

    SUMMARY To meet the extreme oxygen demand of insect flight muscle, tracheal (respiratory) tubes ramify not only on its surface, as in other tissues, but also within T-tubules and ultimately surrounding every mitochondrion. Although this remarkable physiological specialization has long been recognized, its cellular and molecular basis is unknown. Here we show that Drosophila tracheoles invade flight muscle T-tubules through transient surface openings. Like other tracheal branching events, invasion requires the Branchless FGF pathway. However, localization of the FGF chemoattractant changes from all muscle membranes to T-tubules as invasion begins. Core regulators of epithelial basolateral membrane identity localize to T-tubules, and knockdown of AP-1γ, required for basolateral trafficking, redirects FGF from T-tubules to surface, increasing tracheal surface ramification and preventing invasion. We propose that tracheal invasion is controlled by an AP-1-dependent switch in FGF trafficking. Thus, subcellular targeting of a chemoattractant can direct outgrowth to specific domains including inside the cell. PMID:25557078

  9. Subcellular trafficking of FGF controls tracheal invasion of Drosophila flight muscle.

    PubMed

    Peterson, Soren J; Krasnow, Mark A

    2015-01-15

    To meet the extreme oxygen demand of insect flight muscle, tracheal (respiratory) tubes ramify not only on its surface, as in other tissues, but also within T-tubules and ultimately surrounding every mitochondrion. Although this remarkable physiological specialization has long been recognized, its cellular and molecular basis is unknown. Here, we show that Drosophila tracheoles invade flight muscle T-tubules through transient surface openings. Like other tracheal branching events, invasion requires the Branchless FGF pathway. However, localization of the FGF chemoattractant changes from all muscle membranes to T-tubules as invasion begins. Core regulators of epithelial basolateral membrane identity localize to T-tubules, and knockdown of AP-1γ, required for basolateral trafficking, redirects FGF from T-tubules to surface, increasing tracheal surface ramification and preventing invasion. We propose that tracheal invasion is controlled by an AP-1-dependent switch in FGF trafficking. Thus, subcellular targeting of a chemoattractant can direct outgrowth to specific domains, including inside the cell. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Finger Muscle Control in Children with Dystonia

    PubMed Central

    Young, Scott J.; van Doornik, Johan; Sanger, Terence D.

    2010-01-01

    Childhood dystonia is a disorder that involves inappropriate muscle activation during attempts at voluntary movement. Few studies have investigated the muscle activity associated with dystonia in children, and none have done so in the hands. In this study, we measured surface electromyographic activity in four intrinsic hand muscles while participants attempted to perform an isometric tracking task using one of the muscles. Children with dystonia had greater tracking error with the task-related muscle and greater overflow to non-task muscles. Both tracking error and overflow correlated with the Barry-Albright Dystonia scale of the respective upper limb. Overflow also decreased when participants received visual feedback of non-task muscle activity. We conclude that two of the motor deficits in childhood dystonia—motor overflow and difficulties in actively controlling muscles—can be seen in the surface electromyographic activity of individual muscles during an isometric task. As expected from results in adults, overflow is an important feature of childhood dystonia. However, overflow may be at least partially dependent on an individual’s level of awareness of their muscle activity. Most importantly, poor single-muscle tracking shows that children with dystonia have deficits of individual muscle control in addition to overflow or co-contraction. These results provide the first quantitative measures of the muscle activity associated with hand dystonia in children, and they suggest possible directions for control of dystonic symptoms. PMID:21449015

  11. Core muscle activity in a series of balance exercises with different stability conditions.

    PubMed

    Calatayud, Joaquin; Borreani, Sebastien; Martin, Julio; Martin, Fernando; Flandez, Jorge; Colado, Juan C

    2015-07-01

    Literature that provides progression models based on core muscle activity and postural manipulations is scarce. The purpose of this study was to investigate the core muscle activity in a series of balance exercises with different stability levels and additional elastic resistance. A descriptive study of electromyography (EMG) was performed with forty-four healthy subjects that completed 12 exercises in a random order. Exercises were performed unipedally or bipedally with or without elastic tubing as resistance on various unstable (uncontrolled multiaxial and uniaxial movement) and stable surfaces. Surface EMG on the lumbar multífidus spinae (LM), thoracic multífidus spinae (TM), lumbar erector spinae (LE), thoracic erector spinae (TE) and gluteus maximus (GM), on the dominant side of the body were collected to quantify the amount of muscle activity and were expressed as a % of the maximum voluntary isometric contraction (MVIC). Significant differences (p<.001) were found between exercises. The three unipedal standing exercises with additional elastic resistance generated the greatest EMG values, ranging from 19% MVIC to 30% MVIC. Postural manipulations with additional elastic resistance and/or unstable devices increase core muscle activity. An adequate exercise progression based on global core EMG could start with seated positions, progressing to bipedal standing stance (i.e., from either multiaxial or stable surface to uniaxial surface). Following this, unipedal standing positions may be performed (i.e., from either multiaxial or stable surface to uniaxial surface) and finally, elastic resistance must be added in order to increase EMG levels (i.e., from stable surface progressing to any of the used unstable surfaces). Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Activity of periscapular muscles and its correlation with external oblique during push-up: Does scapular dyskinesis change the electromyographic response?

    PubMed

    de Araújo, Rodrigo Cappatode; Pirauá, André Luiz Torres; Beltrão, Natália Barros; Pitangui, Ana Carolina Rodarti

    2018-03-01

    Scapular dyskinesis is the term used to describe changes in the positioning or movement of the scapula. Such dysfunction is associated with changes in the activation of the scapular muscles. However, the influence of the axial muscles on the scapular muscles activity of subjects with scapular dyskinesis is unknown. This study aimed to compare the electromyography (EMG) activity of periscapular muscles and its correlation with the external oblique muscle during the execution of push-up performed in different surfaces, in volunteers with and without scapular dyskinesis. Thirty-six men, divided in two groups (control and dyskinesis), performed push-up on stable and unstable surface. The EMG activity of serratus anterior (SA_5th and SA_7th fibers), upper (UT) and lower (LT) trapezius, external oblique (EO) was recorded during execution of each task condition. Statistical analyzes were performed using two way ANOVA repeated measures and Pearson correlation. It was observed effect of interaction between factors, being evidenced increased activity of UT, SA_7th and OE for the control group and decreased activity of SA_5th, SA_7th and EO for dyskinesis group during execution of push-up on unstable surface. In both groups positive correlations (r > 0.47) were observed between EMG activity of SA and EO. In the exercises tested, there seems to be an anatomical and functional relationship between the SA and EO muscles. The use of the unstable surface promotes increased neuromuscular demand, but the neuromuscular strategies appear to differ between groups.

  13. Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models.

    PubMed

    Nolte, Daniel; Tsang, Chui Kit; Zhang, Kai Yu; Ding, Ziyun; Kedgley, Angela E; Bull, Anthony M J

    2016-10-03

    Accurate muscle geometry for musculoskeletal models is important to enable accurate subject-specific simulations. Commonly, linear scaling is used to obtain individualised muscle geometry. More advanced methods include non-linear scaling using segmented bone surfaces and manual or semi-automatic digitisation of muscle paths from medical images. In this study, a new scaling method combining non-linear scaling with reconstructions of bone surfaces using statistical shape modelling is presented. Statistical Shape Models (SSMs) of femur and tibia/fibula were used to reconstruct bone surfaces of nine subjects. Reference models were created by morphing manually digitised muscle paths to mean shapes of the SSMs using non-linear transformations and inter-subject variability was calculated. Subject-specific models of muscle attachment and via points were created from three reference models. The accuracy was evaluated by calculating the differences between the scaled and manually digitised models. The points defining the muscle paths showed large inter-subject variability at the thigh and shank - up to 26mm; this was found to limit the accuracy of all studied scaling methods. Errors for the subject-specific muscle point reconstructions of the thigh could be decreased by 9% to 20% by using the non-linear scaling compared to a typical linear scaling method. We conclude that the proposed non-linear scaling method is more accurate than linear scaling methods. Thus, when combined with the ability to reconstruct bone surfaces from incomplete or scattered geometry data using statistical shape models our proposed method is an alternative to linear scaling methods. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  14. Evaluating the Training Effects of Two Swallowing Rehabilitation Therapies Using Surface Electromyography--Chin Tuck Against Resistance (CTAR) Exercise and the Shaker Exercise.

    PubMed

    Sze, Wei Ping; Yoon, Wai Lam; Escoffier, Nicolas; Rickard Liow, Susan J

    2016-04-01

    In this study, the efficacy of two dysphagia interventions, the Chin Tuck against Resistance (CTAR) and Shaker exercises, were evaluated based on two principles in exercise science-muscle-specificity and training intensity. Both exercises were developed to strengthen the suprahyoid muscles, whose contractions facilitate the opening of the upper esophageal sphincter, thereby improving bolus transfer. Thirty-nine healthy adults performed two trials of both exercises in counter-balanced order. Surface electromyography (sEMG) recordings were simultaneously collected from suprahyoid muscle group and sternocleidomastoid muscle during the exercises. Converging results using sEMG amplitude analyses suggested that the CTAR was more specific in targeting the suprahyoid muscles than the Shaker exercise. Fatigue analyses on sEMG signals further indicated that the suprahyoid muscle group were equally or significantly fatigued (depending on metric), when participants carried out CTAR compared to the Shaker exercise. Importantly, unlike during Shaker exercise, the sternocleidomastoid muscles were significantly less activated and fatigued during CTAR. Lowering the chin against resistance is therefore sufficiently specific and intense to fatigue the suprahyoid muscles.

  15. Establishment of assisted reproduction technologies in female and male African wild dogs (Lycaon pictus).

    PubMed

    Hermes, R; Göritz, F; Maltzan, J; Blottner, S; Proudfoot, J; Fritsch, G; Fassbender, M; Quest, M; Hildebrandt, T B

    2001-01-01

    Transrectal ultrasonography, electroejaculation and cryopreservation of spermatozoa were applied to the African wild dog (Lycaon pictus) to establish non-invasive protocols for assessing the reproductive health of one of the most endangered African canids. Transrectal ultrasonography was performed on immobilized male (n = 2) and female (n = 5) captive wild dogs. The testes and epididymides of the male dogs were imaged transcutaneously, followed by electrostimulation and cryopreservation of spermatozoa. The sonomorphology of the female and male urogenital tracts was characterized. In females, the vagina, cervix, non-pregnant uterus and ovary were imaged and the reproductive health of each female was evaluated. The sonographic assessment helped to identify one pyometra and extensive abdominal fat deposits in two other individuals in which pyometra had been suspected. Images of the adrenal glands showed differences in size among individuals of the same breeding group. Whether these differences were related to the dominance hierarchy remains to be determined. In males, visualization of the prostate gland, testis and epididymis indicated sexual maturity. Three ejaculatory fractions (1.0, 1.5 and 0.5 ml, with 50, 95 and 95% motility, respectively; 1.125 x 10(8) spermatozoa per ejaculate) were collected from one male. The motility of each of these fractions after thawing was 0, 30 and 40%, respectively. Electrostimulation of the second male, in which a cystic structure in a testis had been identified by sonography, resulted in an aspermic ejaculate (0.5 and 1.0 ml). These technologies provided basic data on reproduction in female and male African wild dogs and were an efficient way to evaluate reproductive health.

  16. Safety and efficacy of an intra-oral electrostimulator for the relief of dry mouth in patients with chronic graft versus host disease: Case series.

    PubMed

    Zadik, Yehuda; Zeevi, Itai; Luboshitz-Shon, Noa; Dakwar, Nasri; Wolff, Andy; Shapira, Michael Y; Or, Reuven; Elad, Sharon

    2014-05-01

    Patients with chronic graft-versus-host disease (cGVHD) often suffer from dry mouth and oral mucosal lesions. The primary objective of this study was to investigate the safety of an intra-oral electrostimulator (GenNarino) in symptomatic cGVHD patients. The secondary objective was to study the impact on the salivary gland involvement of cGVHD patients. This paper presents a case series. The study included patients treated for 4 weeks, randomly assigned to the active device and then crossed-over to a sham-device or vice versa. The patients and clinicians were blind to the treatment delivered. Data regarding oral mucosal and salivary gland involvement were collected. Six patients were included in this series. Most of the intraoral areas with manifestations of cGVHD were not in contact with the GenNarino device. Two patients developed mild mucosal lesions in areas in contact with the GenNarino during the study. However, only one of them had a change in the National Institutes of Health (NIH) score for oral cGVHD. The unstimulated and stimulated salivary flow rate increased in 4 out of the 5 patients included in this analysis. Symptoms of dry mouth and general oral comfort improved. This study suggests that GenNarino is safe in cGVHD patients with respect to oral tissues. Furthermore the use of GenNarino resulted in subjective and objective improvements in dry mouth symptoms. A large scale study is needed to confirm the impact and safety of GenNarino on systemic cGVHD.

  17. Harvesting Venom Toxins from Assassin Bugs and Other Heteropteran Insects.

    PubMed

    Walker, Andrew Allan; Rosenthal, Max; Undheim, Eivind E A; King, Glenn F

    2018-04-21

    Heteropteran insects such as assassin bugs (Reduviidae) and giant water bugs (Belostomatidae) descended from a common predaceous and venomous ancestor, and the majority of extant heteropterans retain this trophic strategy. Some heteropterans have transitioned to feeding on vertebrate blood (such as the kissing bugs, Triatominae; and bed bugs, Cimicidae) while others have reverted to feeding on plants (most Pentatomomorpha). However, with the exception of saliva used by kissing bugs to facilitate blood-feeding, little is known about heteropteran venoms compared to the venoms of spiders, scorpions and snakes. One obstacle to the characterization of heteropteran venom toxins is the structure and function of the venom/labial glands, which are both morphologically complex and perform multiple biological roles (defense, prey capture, and extra-oral digestion). In this article, we describe three methods we have successfully used to collect heteropteran venoms. First, we present electrostimulation as a convenient way to collect venom that is often lethal when injected into prey animals, and which obviates contamination by glandular tissue. Second, we show that gentle harassment of animals is sufficient to produce venom extrusion from the proboscis and/or venom spitting in some groups of heteropterans. Third, we describe methods to harvest venom toxins by dissection of anaesthetized animals to obtain the venom glands. This method is complementary to other methods, as it may allow harvesting of toxins from taxa in which electrostimulation and harassment are ineffective. These protocols will enable researchers to harvest toxins from heteropteran insects for structure-function characterization and possible applications in medicine and agriculture.

  18. Right parietal cortex and calculation processing: intraoperative functional mapping of multiplication and addition in patients affected by a brain tumor.

    PubMed

    Della Puppa, Alessandro; De Pellegrin, Serena; d'Avella, Elena; Gioffrè, Giorgio; Munari, Marina; Saladini, Marina; Salillas, Elena; Scienza, Renato; Semenza, Carlo

    2013-11-01

    The role of parietal areas in number processing is well known. The significance of intraoperative functional mapping of these areas has been only partially explored, however, and only a few discordant data are available in the surgical literature with regard to the right parietal lobe. The purpose of this study was to evaluate the clinical impact of simple calculation in cortical electrostimulation of right-handed patients affected by a right parietal brain tumor. Calculation mapping in awake surgery was performed in 3 right-handed patients affected by high-grade gliomas located in the right parietal lobe. Preoperatively, none of the patients presented with calculation deficits. In all 3 cases, after sensorimotor and language mapping, cortical and intraparietal sulcus areas involved in single-digit multiplication and addition calculations were mapped using bipolar electrostimulation. In all patients, different sites of the right parietal cortex, mainly in the inferior lobule, were detected as being specifically related to calculation (multiplication or addition). In 2 patients the intraparietal sulcus was functionally specific for multiplication. No functional sites for language were detected. All sites functional for calculation were spared during tumor resection, which was complete in all cases without postoperative neurological deficits. These findings provide intraoperative data in support of an anatomofunctional organization for multiplication and addition within the right parietal area. Furthermore, the study shows the potential clinical relevance of intraoperative mapping of calculation in patients undergoing surgery in the right parietal area. Further and larger studies are needed to confirm these data and assess whether mapped areas are effectively essential for function.

  19. Devices for noninvasive transcranial electrostimulation of the brain endorphinergic system: application for improvement of human psycho-physiological status.

    PubMed

    Lebedev, Valery P; Malygin, A V; Kovalevski, A V; Rychkova, S V; Sisoev, V N; Kropotov, S P; Krupitski, E M; Gerasimova, L I; Glukhov, D V; Kozlowski, G P

    2002-03-01

    It is well known that deficit of endorphins plays an important role in disturbances of human psycho-physiological status. Previously, we revealed that brain endorphinergic structures have quasiresonance characteristics. On the basis of these data, a method of activation of the brain endorphinergic structures by means of noninvasive and rather selective transcranial electrostimulation (TES) as a kind of functional electrical stimulation (FES) was elaborated. New models of TES devices (TRANSAIR) were developed for indoor and outdoor usage. To increase the efficacy of TES, the frequency modulation according to normal distribution in the limits of the quasiresonance characteristics was put into operation. The blind and placebo-controlled (passive and active placebo) study was produced to estimate the TES effects on stress events and accompanied psycho-physiological and autonomic disturbances of different intensities on volunteers and patients in the following groups: everyday stress and fatigue; stress in regular military service and in field conditions; stress in the relatives of those lost in mass disaster; posttraumatic stress (thermal burns); and affective disorders in a postabstinence period. Some subjective verbal and nonverbal tests and objective tests (including heart rate variability) were used for estimation of the initial level of psycho-physiological status, which changes after TES sessions. It was demonstrated that fatigue, stress, and other accompanied psycho-physiological disturbances were significantly improved or abolished after 2-5 TES sessions. The TES effects were more pronounced in cases of heavier disturbances. In conclusion, activation of the brain endorphinergic structures by TES is an effective homeostatic method of FES that sufficiently improves quality of life.

  20. Role of the left frontal aslant tract in stuttering: a brain stimulation and tractographic study.

    PubMed

    Kemerdere, Rahsan; de Champfleur, Nicolas Menjot; Deverdun, Jérémy; Cochereau, Jérôme; Moritz-Gasser, Sylvie; Herbet, Guillaume; Duffau, Hugues

    2016-01-01

    The neural correlates of stuttering are to date incompletely understood. Although the possible involvement of the basal ganglia, the cerebellum and certain parts of the cerebral cortex in this speech disorder has previously been reported, there are still not many studies investigating the role of white matter fibers in stuttering. Axonal stimulation during awake surgery provides a unique opportunity to study the functional role of structural connectivity. Here, our goal was to investigate the white matter tracts implicated in stuttering, by combining direct electrostimulation mapping and postoperative tractography imaging, with a special focus on the left frontal aslant tract. Eight patients with no preoperative stuttering underwent awake surgery for a left frontal low-grade glioma. Intraoperative cortical and axonal electrical mapping was used to interfere in speech processing and subsequently provoke stuttering. We further assessed the relationship between the subcortical sites leading to stuttering and the spatial course of the frontal aslant tract. All patients experienced intraoperative stuttering during axonal electrostimulation. On postsurgical tractographies, the subcortical distribution of stimulated sites matched the topographical position of the left frontal aslant tract. This white matter pathway was preserved during surgery, and no patients had postoperative stuttering. For the first time to our knowledge, by using direct axonal stimulation combined with postoperative tractography, we provide original data supporting a pivotal role of the left frontal aslant tract in stuttering. We propose that this speech disorder could be the result of a disconnection within a large-scale cortico-subcortical circuit subserving speech motor control.

  1. Electrostimulation mapping of comprehension of auditory and visual words.

    PubMed

    Roux, Franck-Emmanuel; Miskin, Krasimir; Durand, Jean-Baptiste; Sacko, Oumar; Réhault, Emilie; Tanova, Rositsa; Démonet, Jean-François

    2015-10-01

    In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. [Difference analysis of muscle fatigue during the exercises of core stability training].

    PubMed

    Xiao, Jinzhuang; Sun, Jinli; Wang, Hongrui; Yang, Xincai; Zhao, Jinkui

    2017-04-01

    The present study was carried out with the surface electromyography signal of subjects during the time when subjects did the exercises of the 6 core stability trainings. We analyzed the different activity level of surface electromyography signal, and finally got various fatigue states of muscles in different exercises. Thirty subjects completed exercises of 6 core stability trainings, which were prone bridge, supine bridge, unilateral bridge (divided into two trainings, i.e. the left and right sides alternatively) and bird-dog (divided into two trainings, i.e. the left and right sides alternatively), respectively. Each exercise was held on for 1 minute and 2 minutes were given to relax between two exercises in this test. We measured both left and right sides of the body's muscles, which included erector spina, external oblique, rectus abdominis, rectus femoris, biceps femoris, anterior tibial and gastrocnemius muscles. We adopted the frequency domain characteristic value of the surface electromyography signal, i.e . median frequency slope to analyze the muscle fatigue in this study. In the present paper, the results exhibit different fatigue degrees of the above muscles during the time when they did the core stability rehabilitation exercises. It could be concluded that supine bridge and unilateral bridge can cause more fatigue on erector spina muscle, prone bridge caused Gastrocnemius muscle much fatigue and there were statistical significant differences ( P <0.05) between prone bridge and other five rehabilitation exercises in the degree of rectus abdominis muscle fatigue. There were no statistical significant differences ( P >0.05) between all the left and right sides of the same-named muscles in the median frequency slope during all the exercises of the six core stability trainings, i.e. the degree which the various kinds of rehabilitation exercises effected the left and right side of the same-named muscle had no statistical significant difference ( P >0.05). In this research, the conclusion presents quantized guidelines on the effects of core stability trainings on different muscles.

  3. Leg and trunk muscle coordination and postural sway during increasingly difficult standing balance tasks in young and older adults.

    PubMed

    Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver

    2016-09-01

    Ageing impairs body balance and increases older adults' fall risk. Balance training can improve intrinsic fall risk factors. However, age comparisons of muscle activity responses during balance tasks are lacking. This study investigated relative muscle activity, muscle coordination and postural sway during various recommended static balance training tasks. Muscle activity (%MVC), amplitude ratios (AR) and co-activity (CAI) were determined during standing tasks for 30s (1: double limb stance on a foam surface, eyes open; 2: double limb stance on firm ground, eyes closed; 3: double limb stance, feet in step position on a foam surface, eyes open; 4: double limb stance, feet in step position on firm ground, eyes closed; 5: single limb stance on firm ground, eyes open) in 20 healthy young adults (24±2 y) and 20 older adults (73±6 y). Surface electromyography (SEMG) was applied (SENIAM guidelines) to ankle (tibialis anterior, soleus, medial gastrocnemius, peroneus longus) and thigh (vastus lateralis, vastus medialis, biceps femoris, semitendinosus) muscles (non-dominant leg). Electrodes over trunk (multifidus and internal oblique) muscles were applied bilaterally. Two- to six-fold higher levels of relative muscle activity were found in older adults for ankle (0.0002

  4. The effects of local forearm muscle cooling on motor unit properties.

    PubMed

    Mallette, Matthew M; Green, Lara A; Gabriel, David A; Cheung, Stephen S

    2018-02-01

    Muscle cooling impairs maximal force. Using needle electromyography (EMG) to assess motor unit properties during muscle cooling, is limited and equivocal. Therefore, we aimed to determine the impact of local muscle cooling on motor unit firing properties using surface EMG decomposition. Twenty participants (12 M, 8 F) completed maximal, evoked, and trapezoidal contractions during thermoneutral and cold muscle conditions. Forearm muscle temperature was manipulated using 10-min neutral (~ 32 °C) or 20-min cold (~ 3 °C) water baths. Twitches and maximal voluntary contractions were performed prior to, and after, forearm immersion in neutral or cold water. Motor unit properties were assessed during trapezoidal contractions to 50% baseline force using surface EMG decomposition. Impaired contractile properties from muscle cooling were evident in the twitch amplitude, duration, and rate of force development indicating that the muscle was successfully cooled from the cold water bath (all d ≥ 0.5, P < 0.05). Surface EMG decomposition showed muscle cooling increased the number of motor units (d = 0.7, P = 0.01) and motor unit action potential (MUAP) duration (d = 0.6, P < 0.001), but decreased MUAP amplitude (d = 0.2, P = 0.012). Individually, neither motor unit firing rates (d = 0.1, P = 0.843) nor recruitment threshold (d = 0.1, P = 0.746) changed; however, the relationship between the recruitment threshold and motor unit firing rate was steeper (d = 1.0, P < 0.001) and had an increased y-intercept (d = 0.9, P = 0.007) with muscle cooling. Since muscle contractility is impaired with muscle cooling, these findings suggest a compensatory increase in the number of active motor units, and small but coupled changes in motor unit firing rates and recruitment threshold to produce the same force.

  5. Trunk muscle activity during bridging exercises on and off a Swissball

    PubMed Central

    Lehman, Gregory J; Hoda, Wajid; Oliver, Steven

    2005-01-01

    Background A Swiss ball is often incorporated into trunk strengthening programs for injury rehabilitation and performance conditioning. It is often assumed that the use of a Swiss ball increases trunk muscle activity. The aim of this study was to determine whether the addition of a Swiss ball to trunk bridging exercises influences trunk muscle activity. Methods Surface electrodes recorded the myoelectric activity of trunk muscles during bridging exercises. Bridging exercises were performed on the floor as well as on a labile surface (Swiss ball). Results and Discussion During the prone bridge the addition of an exercise ball resulted in increased myoelectric activity in the rectus abdominis and external oblique. The internal oblique and erector spinae were not influenced. The addition of a swiss ball during supine bridging did not influence trunk muscle activity for any muscles studied. Conclusion The addition of a Swiss ball is capable of influencing trunk muscle activity in the rectus abdominis and external oblique musculature during prone bridge exercises. Modifying common bridging exercises can influence the amount of trunk muscle activity, suggesting that exercise routines can be designed to maximize or minimize trunk muscle exertion depending on the needs of the exercise population. PMID:16053529

  6. Comparison of deep and superficial abdominal muscle activity between experienced Pilates and resistance exercise instructors and controls during stabilization exercise.

    PubMed

    Moon, Ji-Hyun; Hong, Sang-Min; Kim, Chang-Won; Shin, Yun-A

    2015-06-01

    Pilates and resistance exercises are used for lumbar stabilization training. However, it is unclear which exercise is more effective for lumbar stabilization. In our study, we aimed to compare surface muscle activity and deep muscle thickness during relaxation and spinal stabilization exercise in experienced Pilates and resistance exercise instructors. This study is a retrospective case control study set in the Exercise Prescription Laboratory and Sports Medicine Center. The participants included Pilates instructors (mean years of experience, 3.20±1.76; n=10), resistance exercise instructors (mean years of experience, 2.53±0.63; n=10), and controls (n=10). The participants performed 4 different stabilization exercises: abdominal drawing-in maneuver, bridging, roll-up, and one-leg raise. During the stabilization exercises, surface muscle activity was measured with electromyography, whereas deep muscle thickness was measured by ultrasound imaging. During the 4 stabilization exercises, the thickness of the transverse abdominis (TrA) was significantly greater in the Pilates-trained group than the other 2 other groups. The internal oblique (IO) thickness was significantly greater in the Pilates- and resistance-trained group than the control group, during the 4 exercises. However, the surface muscle activities were similar between the groups. Both Pilates and resistance exercise instructors had greater activation of deep muscles, such as the TrA and IO, than the control subjects. Pilates and resistance exercise are both effective for increasing abdominal deep muscle thickness.

  7. Comparison of deep and superficial abdominal muscle activity between experienced Pilates and resistance exercise instructors and controls during stabilization exercise

    PubMed Central

    Moon, Ji-Hyun; Hong, Sang-Min; Kim, Chang-Won; Shin, Yun-A

    2015-01-01

    Pilates and resistance exercises are used for lumbar stabilization training. However, it is unclear which exercise is more effective for lumbar stabilization. In our study, we aimed to compare surface muscle activity and deep muscle thickness during relaxation and spinal stabilization exercise in experienced Pilates and resistance exercise instructors. This study is a retrospective case control study set in the Exercise Prescription Laboratory and Sports Medicine Center. The participants included Pilates instructors (mean years of experience, 3.20±1.76; n=10), resistance exercise instructors (mean years of experience, 2.53±0.63; n=10), and controls (n=10). The participants performed 4 different stabilization exercises: abdominal drawing-in maneuver, bridging, roll-up, and one-leg raise. During the stabilization exercises, surface muscle activity was measured with electromyography, whereas deep muscle thickness was measured by ultrasound imaging. During the 4 stabilization exercises, the thickness of the transverse abdominis (TrA) was significantly greater in the Pilates-trained group than the other 2 other groups. The internal oblique (IO) thickness was significantly greater in the Pilates- and resistance-trained group than the control group, during the 4 exercises. However, the surface muscle activities were similar between the groups. Both Pilates and resistance exercise instructors had greater activation of deep muscles, such as the TrA and IO, than the control subjects. Pilates and resistance exercise are both effective for increasing abdominal deep muscle thickness. PMID:26171383

  8. Equivalent complex conductivities representing the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by external-electrode method

    NASA Astrophysics Data System (ADS)

    Sekine, Katsuhisa

    2017-12-01

    In order to represent the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by the external-electrode method, analytical relations for the equivalent complex conductivities of hypothetical smooth surface membranes were derived. In the relations, the effects of each tubule were represented by the admittance of a straight cable. The effects of the folding of a surface membrane were represented by the increased area of surface membranes. The equivalent complex conductivities were represented as summation of these effects, and the effects of the T-tubules were different between the transversal and longitudinal directions. The validity of the equivalent complex conductivities was supported by the results of finite-difference method (FDM) calculations made using three-dimensional models in which T-tubules and folded surface membranes were represented explicitly. FDM calculations using the equivalent complex conductivities suggested that the electrically inhomogeneous structure due to the existence of muscle cells with T-tubules was sufficient for explaining the experimental results previously obtained using the external-electrode method. Results of FDM calculations in which the structural changes caused by muscle contractions were taken into account were consistent with the reported experimental results.

  9. Analysis of concentric and eccentric contractions in biceps brachii muscles using surface electromyography signals and multifractal analysis.

    PubMed

    Marri, Kiran; Swaminathan, Ramakrishnan

    2016-06-23

    Muscle contractions can be categorized into isometric, isotonic (concentric and eccentric) and isokinetic contractions. The eccentric contractions are very effective for promoting muscle hypertrophy and produce larger forces when compared to the concentric or isometric contractions. Surface electromyography signals are widely used for analyzing muscle activities. These signals are nonstationary, nonlinear and exhibit self-similar multifractal behavior. The research on surface electromyography signals using multifractal analysis is not well established for concentric and eccentric contractions. In this study, an attempt has been made to analyze the concentric and eccentric contractions associated with biceps brachii muscles using surface electromyography signals and multifractal detrended moving average algorithm. Surface electromyography signals were recorded from 20 healthy individuals while performing a single curl exercise. The preprocessed signals were divided into concentric and eccentric cycles and in turn divided into phases based on range of motion: lower (0°-90°) and upper (>90°). The segments of surface electromyography signal were subjected to multifractal detrended moving average algorithm, and multifractal features such as strength of multifractality, peak exponent value, maximum exponent and exponent index were extracted in addition to conventional linear features such as root mean square and median frequency. The results show that surface electromyography signals exhibit multifractal behavior in both concentric and eccentric cycles. The mean strength of multifractality increased by 15% in eccentric contraction compared to concentric contraction. The lowest and highest exponent index values are observed in the upper concentric and lower eccentric contractions, respectively. The multifractal features are observed to be helpful in differentiating surface electromyography signals along the range of motion as compared to root mean square and median frequency. It appears that these multifractal features extracted from the concentric and eccentric contractions can be useful in the assessment of surface electromyography signals in sports medicine and training and also in rehabilitation programs. © IMechE 2016.

  10. The length-force behavior and operating length range of squid muscle vary as a function of position in the mantle wall.

    PubMed

    Thompson, Joseph T; Shelton, Ryan M; Kier, William M

    2014-06-15

    Hollow cylindrical muscular organs are widespread in animals and are effective in providing support for locomotion and movement, yet are subject to significant non-uniformities in circumferential muscle strain. During contraction of the mantle of squid, the circular muscle fibers along the inner (lumen) surface of the mantle experience circumferential strains 1.3 to 1.6 times greater than fibers along the outer surface of the mantle. This transmural gradient of strain may require the circular muscle fibers near the inner and outer surfaces of the mantle to operate in different regions of the length-tension curve during a given mantle contraction cycle. We tested the hypothesis that circular muscle contractile properties vary transmurally in the mantle of the Atlantic longfin squid, Doryteuthis pealeii. We found that both the length-twitch force and length-tetanic force relationships of the obliquely striated, central mitochondria-poor (CMP) circular muscle fibers varied with radial position in the mantle wall. CMP circular fibers near the inner surface of the mantle produced higher force relative to maximum isometric tetanic force, P0, at all points along the ascending limb of the length-tension curve than CMP circular fibers near the outer surface of the mantle. The mean ± s.d. maximum isometric tetanic stresses at L₀ (the preparation length that produced the maximum isometric tetanic force) of 212 ± 105 and 290 ± 166 kN m(-2) for the fibers from the outer and inner surfaces of the mantle, respectively, did not differ significantly (P=0.29). The mean twitch:tetanus ratios for the outer and inner preparations, 0.60 ± 0.085 and 0.58 ± 0.10, respectively, did not differ significantly (P=0.67). The circular fibers did not exhibit length-dependent changes in contraction kinetics when given a twitch stimulus. As the stimulation frequency increased, L₀ was approximately 1.06 times longer than LTW, the mean preparation length that yielded maximum isometric twitch force. Sonomicrometry experiments revealed that the CMP circular muscle fibers operated in vivo primarily along the ascending limb of the length-tension curve. The CMP fibers functioned routinely over muscle lengths at which force output ranged from only 85% to 40% of P₀, and during escape jets from 100% to 30% of P₀. Our work shows that the functional diversity of obliquely striated muscles is much greater than previously recognized. © 2014. Published by The Company of Biologists Ltd.

  11. Associations between motor unit action potential parameters and surface EMG features.

    PubMed

    Del Vecchio, Alessandro; Negro, Francesco; Felici, Francesco; Farina, Dario

    2017-10-01

    The surface interference EMG signal provides some information on the neural drive to muscles. However, the association between neural drive to muscle and muscle activation has long been debated with controversial indications due to the unavailability of motor unit population data. In this study, we clarify the potential and limitations of interference EMG analysis to infer motor unit recruitment strategies with an experimental investigation of several concurrently active motor units and of the associated features of the surface EMG. For this purpose, we recorded high-density surface EMG signals during linearly increasing force contractions of the tibialis anterior muscle, up to 70% of maximal force. The recruitment threshold (RT), conduction velocity (MUCV), median frequency (MDF MU ), and amplitude (RMS MU ) of action potentials of 587 motor units from 13 individuals were assessed and associated with features of the interference EMG. MUCV was positively associated with RT ( R 2 = 0.64 ± 0.14), whereas MDF MU and RMS MU showed a weaker relation with RT ( R 2 = 0.11 ± 0.11 and 0.39 ± 0.24, respectively). Moreover, the changes in average conduction velocity estimated from the interference EMG predicted well the changes in MUCV ( R 2 = 0.71), with a strong association to ankle dorsiflexion force ( R 2 = 0.81 ± 0.12). Conversely, both the average EMG MDF and RMS were poorly associated with motor unit recruitment. These results clarify the limitations of EMG spectral and amplitude analysis in inferring the neural strategies of muscle control and indicate that, conversely, the average conduction velocity could provide relevant information on these strategies. NEW & NOTEWORTHY The surface EMG provides information on the neural drive to muscles. However, the associations between EMG features and neural drive have been long debated due to unavailability of motor unit population data. Here, by using novel highly accurate decomposition of the EMG, we related motor unit population behavior to a wide range of voluntary forces. The results fully clarify the potential and limitation of the surface EMG to provide estimates of the neural drive to muscles. Copyright © 2017 the American Physiological Society.

  12. [Evaluation of swallowing function with surface electromyography before and after tonsillectomy].

    PubMed

    Gürkan, Emre; Veyseller, Bayram; Açıkalın, Reşit Murat; Elbistanlı, Suphi; Yurtsever, Serveren; Acar, Hürtan

    2011-01-01

    In this study, we evaluated the swallowing function with surface electromyography before and after tonsillectomy. Twenty patients (12 males, 8 females; mean age 23.8 years; range 17 to 30 years) who had tonsillectomy indication as study group, and 10 healthy individuals (8 males, 2 females; mean age 26 years; range 18 to 35 years) as control group were included in this prospective study between October 2008 and February 2009. Due to their significant role on oral and faringeal phases of swallowing; the surface electromyography prosedure is performed on the masseter muscle, the submental-submandibular muscle group and the infrahyoid muscles to measure their electrical activity and duration of contraction. For this purpose, single swallow and continuous drinking of 100 cc water tests were applied to each patient preoperatively and; in the postoperative 1st week and the 1st month. The preoperative duration of drinking periods were significanly longer in the study group compared to the control group (p<0.05). At the end of the first postoperative week the duration of drinking 100 cc water test was significantly longer than the preoperative mean of the study group (p<0.05). After one month single- swallow durations of study group were significantly shorter then the preoperative mean (p<0.05). The electrical activity of the masseter and infrahyoid muscles were significantly higher in study group compared with control group (p<0.05). The close proximity of the surgical area to the muscles affects swallowing after tonsillectomy. The surface electromyography is a simple, non-invasive and reliable method for postoperative evaluation of the swallowing functions of the throat muscles and thereby allows monitoring of the recovery and functional improvement of these muscles.

  13. Sorting receptor Rer1 controls surface expression of muscle acetylcholine receptors by ER retention of unassembled alpha-subunits.

    PubMed

    Valkova, Christina; Albrizio, Marina; Röder, Ira V; Schwake, Michael; Betto, Romeo; Rudolf, Rüdiger; Kaether, Christoph

    2011-01-11

    The nicotinic acetylcholine receptor of skeletal muscle is composed of five subunits that are assembled in a stepwise manner. Quality control mechanisms ensure that only fully assembled receptors reach the cell surface. Here, we show that Rer1, a putative Golgi-ER retrieval receptor, is involved in the biogenesis of acetylcholine receptors. Rer1 is expressed in the early secretory pathway in the myoblast line C2C12 and in mouse skeletal muscle, and up-regulated during myogenesis. Upon down-regulation of Rer1 in C2C12 cells, unassembled acetylcholine receptor α-subunits escape from the ER and are transported to the plasma membrane and lysosomes, where they are degraded. As a result, the amount of fully assembled receptor at the cell surface is reduced. In vivo Rer1 knockdown and genetic inactivation of one Rer1 allele lead to significantly smaller neuromuscular junctions in mice. Our data show that Rer1 is a functionally important unique factor that controls surface expression of muscle acetylcholine receptors by localizing unassembled α-subunits to the early secretory pathway.

  14. Computed myography: three-dimensional reconstruction of motor functions from surface EMG data

    NASA Astrophysics Data System (ADS)

    van den Doel, Kees; Ascher, Uri M.; Pai, Dinesh K.

    2008-12-01

    We describe a methodology called computed myography to qualitatively and quantitatively determine the activation level of individual muscles by voltage measurements from an array of voltage sensors on the skin surface. A finite element model for electrostatics simulation is constructed from morphometric data. For the inverse problem, we utilize a generalized Tikhonov regularization. This imposes smoothness on the reconstructed sources inside the muscles and suppresses sources outside the muscles using a penalty term. Results from experiments with simulated and human data are presented for activation reconstructions of three muscles in the upper arm (biceps brachii, bracialis and triceps). This approach potentially offers a new clinical tool to sensitively assess muscle function in patients suffering from neurological disorders (e.g., spinal cord injury), and could more accurately guide advances in the evaluation of specific rehabilitation training regimens.

  15. Fractal based complexity measure and variation in force during sustained isometric muscle contraction: effect of aging.

    PubMed

    Arjunan, Sridhar P; Kumar, Dinesh K; Bastos, Teodiano

    2012-01-01

    This study has investigated the effect of age on the fractal based complexity measure of muscle activity and variance in the force of isometric muscle contraction. Surface electromyogram (sEMG) and force of muscle contraction were recorded from 40 healthy subjects categorized into: Group 1: Young - age range 20-30; 10 Males and 10 Females, Group 2: Old - age range 55-70; 10 Males and 10 Females during isometric exercise at Maximum Voluntary contraction (MVC). The results show that there is a reduction in the complexity of surface electromyogram (sEMG) associated with aging. The results demonstrate that there is an increase in the coefficient of variance (CoV) of the force of muscle contraction and a decrease in complexity of sEMG for the Old age group when compared with the Young age group.

  16. Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery.

    PubMed

    Llucià-Valldeperas, A; Sanchez, B; Soler-Botija, C; Gálvez-Montón, C; Prat-Vidal, C; Roura, S; Rosell-Ferrer, J; Bragos, R; Bayes-Genis, A

    2015-11-01

    A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. Our aim was to examine the effect of electrical stimulation on the cardiodifferentiation potential of cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs). Three different electrical stimulation protocols were tested; the selected protocol consisted of 2 ms monophasic square-wave pulses of 50 mV/cm at 1 Hz over 14 days. Cardiac and subcutaneous ATDPCs were grown on biocompatible patterned surfaces. Cardiomyogenic differentiation was examined by real-time PCR and immunocytofluorescence. In cardiac ATDPCs, MEF2A and GATA-4 were significantly upregulated at day 14 after stimulation, while subcutaneous ATDPCs only exhibited increased Cx43 expression. In response to electrical stimulation, cardiac ATDPCs elongated, and both cardiac and subcutaneous ATDPCs became aligned following the linear surface pattern of the construct. Cardiac ATDPC length increased by 11.3%, while subcutaneous ATDPC length diminished by 11.2% (p = 0.013 and p = 0.030 vs unstimulated controls, respectively). Compared to controls, electrostimulated cells became aligned better to the patterned surfaces when the pattern was perpendicular to the electric field (89.71 ± 28.47º for cardiac ATDPCs and 92.15 ± 15.21º for subcutaneous ATDPCs). Electrical stimulation of cardiac ATDPCs caused changes in cell phenotype and genetic machinery, making them more suitable for cardiac regeneration approaches. Thus, it seems advisable to use electrical cell training before delivery as a cell suspension or within engineered tissue. Copyright © 2013 John Wiley & Sons, Ltd.

  17. [Low-frequency pulsed magnetotherapy combined with electrostimulation of biologically active points in the combined treatment of traumatic mandibular osteomyelitis].

    PubMed

    Korotkikh, N G; Oreshkin, A V

    1999-01-01

    The results of treatment are analyzed in 51 patients (35 with exacerbation of chronic traumatic mandibular osteomyelitis and 16 with chronic traumatic mandibular osteomyelitis). Low-intensity pulsed magnetic therapy of the focus in combination with electric stimulation of segmentary bioactive points, synchronized by the patient's pulse, are proposed to be added to the therapeutic complex. Such a modality improved the regional hemodynamics, promoted liquidation of the postoperative edema on days 1-2 after intervention, and sooner than after traditional therapy repaired the energy of the patient's organism.

  18. Insulin-mediated translocation of GLUT-4-containing vesicles is preserved in denervated muscles.

    PubMed

    Zhou, M; Vallega, G; Kandror, K V; Pilch, P F

    2000-06-01

    Skeletal muscle denervation decreases insulin-sensitive glucose uptake into this tissue as a result of marked GLUT-4 protein downregulation ( approximately 20% of controls). The process of insulin-stimulated glucose transport in muscle requires the movement or translocation of intracellular GLUT-4-rich vesicles to the cell surface, and it is accompanied by the translocation of several additional vesicular cargo proteins. Thus examining GLUT-4 translocation in muscles from denervated animals allows us to determine whether the loss of a major cargo protein, GLUT-4, affects the insulin-dependent behavior of the remaining cargo proteins. We find no difference, control vs. denervated, in the insulin-dependent translocation of the insulin-responsive aminopeptidase (IRAP) and the receptors for transferrin and insulin-like growth factor II/mannose 6-phosphate, proteins that completely (IRAP) or partially co-localize with GLUT-4. We conclude that 1) denervation of skeletal muscle does not block the specific branch of insulin signaling pathway that connects receptor proximal events to intracellular GLUT-4-vesicles, and 2) normal levels of GLUT-4 protein are not necessary for the structural organization and insulin-sensitive translocation of its cognate intracellular compartment. Muscle denervation also causes a twofold increase in GLUT-1. In normal muscle, all GLUT-1 is present at the cell surface, but in denervated muscle a significant fraction (25.1 +/- 6.1%) of this transporter is found in intracellular vesicles that have the same sedimentation coefficient as GLUT-4-containing vesicles but can be separated from the latter by immunoadsorption. These GLUT-1-containing vesicles respond to insulin and translocate to the cell surface. Thus the formation of insulin-sensitive GLUT-1-containing vesicles in denervated muscle may be a compensatory mechanism for the decreased level of GLUT-4.

  19. Occlusal splint versus modified nociceptive trigeminal inhibition splint in bruxism therapy: a randomized, controlled trial using surface electromyography.

    PubMed

    Dalewski, B; Chruściel-Nogalska, M; Frączak, B

    2015-12-01

    An occlusal splint and a modified nociceptive trigeminal inhibition splint (AMPS, anterior deprogrammer, Kois deprogrammer, Lucia jig, etc.) are commonly and quite frequently used in the treatment of masticatory muscle disorders, although their sustainable and long-lasting effect on these muscles' function is still not very well known. Results of scant surface electromyography studies in patients with temporomandibular disorders have been contradictory. The aim of this study was to evaluate both devices in bruxism therapy; EMG activity levels during postural activity and maximum voluntary contraction of the superficial temporal and masseter muscles were compared before and after 30 days of treatment. Surface electromyography of the examined muscles was performed in two groups of bruxers (15 patients each). Patients in the first group used occlusal splints, while those in the second used modified nociceptive trigeminal inhibition splints. The trial was randomized, controlled and semi-blind. Neither device affected the asymmetry index or postural activity/maximum voluntary contraction ratio after 1 month of treatment. Neither the occlusal nor the nociceptive trigeminal inhibition splint showed any significant influence on the examined muscles. Different scientific methods should be considered in clinical applications that require either direct influence on the muscles' bioelectrical activity or a quantitative measurement of the treatment quality. © 2015 Australian Dental Association.

  20. Effect of virtual reality exercise using the nintendo wii fit on muscle activities of the trunk and lower extremities of normal adults.

    PubMed

    Park, Jungseo; Lee, Daehee; Lee, Sangyong

    2014-02-01

    [Purpose] The present study aimed to determine the effect of virtual reality exercise using the Nintendo Wii Fit on the muscle activities of the trunk and lower extremities of normal adults. [Subjects] The subjects of the study were 24 normal adults who were divided into a virtual reality exercise group (VREG, n=12) and a stable surface exercise group (SEG, n=12). [Methods] The exercises of the VREG using the Nintendo Wii Fit and the SEG using a stable surface were conducted three times a week for six weeks. Electromyography was used to measure the muscle activities of the tibialis anterior (TA), medial gastrocnemius (MG), erector spinae (ES), and rectus abdominal (RA) muscles. [Results] VREG showed significant within group differences in TA and MG muscle activities, while the SEG showed a significant difference in the muscle activity of the MG. [Conclusion] Virtual reality exercise using the Nintendo Wii Fit was an effective intervention for the muscle activities of the TA and MG of normal adults.

  1. Effect of Virtual Reality Exercise Using the Nintendo Wii Fit on Muscle Activities of the Trunk and Lower Extremities of Normal Adults

    PubMed Central

    Park, Jungseo; Lee, Daehee; Lee, Sangyong

    2014-01-01

    [Purpose] The present study aimed to determine the effect of virtual reality exercise using the Nintendo Wii Fit on the muscle activities of the trunk and lower extremities of normal adults. [Subjects] The subjects of the study were 24 normal adults who were divided into a virtual reality exercise group (VREG, n=12) and a stable surface exercise group (SEG, n=12). [Methods] The exercises of the VREG using the Nintendo Wii Fit and the SEG using a stable surface were conducted three times a week for six weeks. Electromyography was used to measure the muscle activities of the tibialis anterior (TA), medial gastrocnemius (MG), erector spinae (ES), and rectus abdominal (RA) muscles. [Results] VREG showed significant within group differences in TA and MG muscle activities, while the SEG showed a significant difference in the muscle activity of the MG. [Conclusion] Virtual reality exercise using the Nintendo Wii Fit was an effective intervention for the muscle activities of the TA and MG of normal adults. PMID:24648647

  2. Effects of fatigue and surface instability on neuromuscular performance during jumping.

    PubMed

    Lesinski, M; Prieske, O; Demps, M; Granacher, U

    2016-10-01

    It has previously been shown that fatigue and unstable surfaces affect jump performance. However, the combination thereof is unresolved. Thus, the purpose of this study was to examine the effects of fatigue and surface instability on jump performance and leg muscle activity. Twenty elite volleyball players (18 ± 2 years) performed repetitive vertical double-leg box jumps until failure. Before and after a fatigue protocol, jump performance (i.e., jump height) and electromyographic activity of selected lower limb muscles were recorded during drop jumps (DJs) and countermovement jumps (CMJs) on a force plate on stable and unstable surfaces (i.e., balance pad on top of force plate). Jump performance (3-7%; P < 0.05; 1.14 ≤ d ≤ 2.82), and muscle activity (2-27%; P < 0.05; 0.59 ≤ d ≤ 3.13) were lower following fatigue during DJs and CMJs, and on unstable compared with stable surfaces during DJs only (jump performance: 8%; P < 0.01; d = 1.90; muscle activity: 9-25%; P < 0.05; 1.08 ≤ d ≤ 2.54). No statistically significant interactions of fatigue by surface condition were observed. Our findings revealed that fatigue impairs neuromuscular performance during DJs and CMJs in elite volleyball players, whereas surface instability affects neuromuscular DJ performance only. Absent fatigue × surface interactions indicate that fatigue-induced changes in jump performance are similar on stable and unstable surfaces in jump-trained athletes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Effects of treadmill inclination on electromyographic activity and hind limb kinematics in healthy hounds at a walk.

    PubMed

    Lauer, Susanne K; Hillman, Robert B; Li, Li; Hosgood, Giselle L

    2009-05-01

    To evaluate the effect of treadmill incline on muscle activity and joint range of motion (ROM) in hind limbs of dogs. 8 purpose-bred healthy adult hounds. Activities of the hamstring (semimembranosus, semitendinosus, and biceps femoris muscles), gluteal (superficial, middle, and deep gluteal muscles), and quadriceps (femoris, vastus lateralis, vastus intermedius, and vastus medialis muscles) muscle groups and hip and stifle joint ROM were measured with surface electrogoniometric and myographic sensors in hounds walking on a treadmill at 0.54 m/s at inclines of 5%, 0%, and -5% in random order. Mean electromyographic activities and mean ROMs at each inclination were compared for swing and stance phases. Treadmill inclination did not affect duration of the stance and swing phases or the whole stride. When treadmill inclination was increased from -5% to 5%, hip joint ROM increased and the degree of stifle joint extension decreased significantly. In the beginning of the stance phase, activity of the hamstring muscle group was significantly increased when walking at a 5% incline versus a 5% decline. In the end of the stance phase, that activity was significantly increased when walking at a 5% incline versus at a 5% decline or on a flat surface. Activity of the gluteal and quadriceps muscle groups was not affected when treadmill inclination changed. Treadmill inclination affected joint kinematics only slightly. Walking on a treadmill at a 5% incline had more potential to strengthen the hamstring muscle group than walking on a treadmill with a flat or declined surface.

  4. Can surface electromyography improve surgery planning? Electromyographic assessment and intraoperative verification of the nerve bundle entry point location of the gracilis muscle.

    PubMed

    Romaniszyn, Michal; Walega, Piotr; Nowakowski, Michal; Nowak, Wojciech

    2016-06-01

    To verify the precision of surface electromyography (sEMG) in locating the innervation zone of the gracilis muscle, by comparing the location of the IZ estimated by means of sEMG with in vivo location of the nerve bundle entry point in patients before graciloplasty procedure due to fecal incontinence. Nine patients who qualified for the graciloplasty procedure underwent sEMG on both gracilis muscle before their operations. During surgery the nerve bundle was identified by means of electrical stimulation. The distance between the proximal attachment and the nerve entry point into the muscle's body was measured. Both measurements (sEMG and in vivo identification) were compared for each subject. On average, the IZ was located 65.5mm from the proximal attachment. The mean difference in location of the innervation zones in each individual was 10±9.7mm, maximal - 30mm, the difference being statistically significant (p=0.017). It was intraoperatively confirmed, that the nerve entered the muscle an average of 62mm from the proximal attachment. The largest difference between the EMG IZ estimation and nerve bundle entry point was 5mm (mean difference 2.8mm, p=0.767). Preoperative surface electromyography of both gracilis muscles is a safe, precise and reliable method of assessing the location of the innervation zones of the gracilis muscles. The asymmetry of the IZ location in left and right muscles may be important in context of technical aspects of the graciloplasty procedure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Electrolysis stimulates creatine transport and transporter cell surface expression in incubated mouse skeletal muscle: potential role of ROS.

    PubMed

    Derave, Wim; Straumann, Nadine; Olek, Robert A; Hespel, Peter

    2006-12-01

    Electrical field stimulation of isolated, incubated rodent skeletal muscles is a frequently used model to study the effects of contractions on muscle metabolism. In this study, this model was used to investigate the effects of electrically stimulated contractions on creatine transport. Soleus and extensor digitorum longus muscles of male NMRI mice (35-50 g) were incubated in an oxygenated Krebs buffer between platinum electrodes. Muscles were exposed to [(14)C]creatine for 30 min after either 12 min of repeated tetanic isometric contractions (contractions) or electrical stimulation of only the buffer before incubation of the muscle (electrolysis). Electrolysis was also investigated in the presence of the reactive oxygen species (ROS) scavenging enzymes superoxide dismutase (SOD) and catalase. Both contractions and (to a lesser degree) electrolysis stimulated creatine transport severalfold over basal. The amount of electrolysis, but not contractile activity, induced (determined) creatine transport stimulation. Incubation with SOD and catalase at 100 and 200 U/ml decreased electrolysis-induced creatine transport by approximately 50 and approximately 100%, respectively. The electrolysis effects on creatine uptake were completely inhibited by beta-guanidino propionic acid, a competitive inhibitor of (creatine for) the creatine transporter (CRT), and were accompanied by increased cell surface expression of CRT. Muscle glucose transport was not affected by electrolysis. The present results indicate that electrical field stimulation of incubated mouse muscles, independently of contractions per se, stimulates creatine transport by a mechanism that depends on electrolysis-induced formation of ROS in the incubation buffer. The increased creatine uptake is paralleled by an increased cell surface expression of the creatine transporter.

  6. An electromyographic study of the effect of hand grip sizes on forearm muscle activity and golf performance.

    PubMed

    Sorbie, Graeme G; Hunter, Henry H; Grace, Fergal M; Gu, Yaodong; Baker, Julien S; Ugbolue, Ukadike Chris

    2016-01-01

    The study describes the differences in surface electromyography (EMG) activity of two forearm muscles in the lead and trail arm at specific phases of the golf swing using a 7-iron with three different grip sizes among amateur and professional golfers. Fifteen right-handed male golfers performed five golf swings using golf clubs with three different grip sizes. Surface EMG was used to measure muscle activity of the extensor carpi radialis brevis (ECRB) and flexor digitorum superficialis (FDS) on both forearms. There were no significant differences in forearm muscle activity when using the three golf grips within the group of 15 golfers (p > 0.05). When using the undersize grip, club head speed significantly increased (p = 0.044). During the backswing and downswing phases, amateurs produced significantly greater forearm muscle activity with all three grip sizes (p < 0.05). In conclusion, forearm muscle activity is not affected by grip sizes. However, club head speed increases when using undersize grips.

  7. Surface electromyography activity of the rectus abdominis, internal oblique, and external oblique muscles during forced expiration in healthy adults.

    PubMed

    Ito, Kenichi; Nonaka, Koji; Ogaya, Shinya; Ogi, Atsushi; Matsunaka, Chiaki; Horie, Jun

    2016-06-01

    We aimed to characterize rectus abdominis, internal oblique, and external oblique muscle activity in healthy adults under expiratory resistance using surface electromyography. We randomly assigned 42 healthy adult subjects to 3 groups: 30%, 20%, and 10% maximal expiratory intraoral pressure (PEmax). After measuring 100% PEmax and muscle activity during 100% PEmax, the activity and maximum voluntary contraction of each muscle during the assigned experimental condition were measured. At 100% PEmax, the external oblique (p<0.01) and internal oblique (p<0.01) showed significantly elevated activity compared with the rectus abdominis muscle. Furthermore, at 20% and 30% PEmax, the external oblique (p<0.05 and<0.01, respectively) and the internal oblique (p<0.05 and<0.01, respectively) showed significantly elevated activity compared with the rectus abdominis muscle. At 10% PEmax, no significant differences were observed in muscle activity. Although we observed no significant difference between 10% and 20% PEmax, activity during 30% PEmax was significantly greater than during 20% PEmax (external oblique: p<0.05; internal oblique: p<0.01). The abdominal oblique muscles are the most active during forced expiration. Moreover, 30% PEmax is the minimum intensity required to achieve significant, albeit very slight, muscle activity during expiratory resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Muscle activity and spine load during pulling exercises: influence of stable and labile contact surfaces and technique coaching.

    PubMed

    McGill, Stuart M; Cannon, Jordan; Andersen, Jordan T

    2014-10-01

    This study examined pulling exercises performed on stable surfaces and unstable suspension straps. Specific questions included: which exercises challenged particular muscles, what was the magnitude of resulting spine load, and did technique coaching influence results. Fourteen males performed pulling tasks while muscle activity, external force, and 3D body segment motion were recorded. These data were processed and input to a sophisticated and anatomically detailed 3D model that used muscle activity and body segment kinematics to estimate muscle force, in this way the model was sensitive to each individual's choice of motor control for each task. Muscle forces and linked segment joint loads were used to calculate spine loads. There were gradations of muscle activity and spine load characteristics to every task. It appears that suspension straps alter muscle activity less in pulling exercises, compared to studies reporting on pushing exercises. The chin-up and pull-up exercises created the highest spine load as they required the highest muscle activation, despite the body "hanging" under tractioning gravitational load. Coaching shoulder centration through retraction increased spine loading but undoubtedly adds proximal stiffness. An exercise atlas of spine compression was constructed to help with the decision making process of exercise choice for an individual. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Impact of Functional Appliances on Muscle Activity: A Surface Electromyography Study in Children

    PubMed Central

    Woźniak, Krzysztof; Piątkowska, Dagmara; Szyszka-Sommerfeld, Liliana; Buczkowska-Radlińska, Jadwiga

    2015-01-01

    Background Electromyography (EMG) is the most objective tool for assessing changes in the electrical activity of the masticatory muscles. The purpose of the study was to evaluate the tone of the masseter and anterior temporalis muscles in growing children before and after 6 months of treatment with functional removable orthodontic appliances. Material/Methods The sample conisted of 51 patients with a mean age 10.7 years with Class II malocclusion. EMG recordings were performed by using a DAB-Bluetooth instrument (Zebris Medical GmbH, Germany). Recordings were performed in mandibular rest position, during maximum voluntary contraction (MVC), and during maximum effort. Results The results of the study indicated that the electrical activity of the muscles in each of the clinical situations was the same in the group of girls and boys. The factor that determined the activity of the muscles was their type. In mandibular rest position and in MVC, the activity of the temporalis muscles was significantly higher that that of the masseter muscels. The maximum effort test indicated a higher fatigue in masseter than in temporalis muscles. Conclusions Surface electromyography is a useful tool for monitoring muscle activity. A 6-month period of functional therapy resulted in changes in the activity of the masticatory muscles. PMID:25600247

  10. Multivariate Analyses of Rotator Cuff Pathologies in Shoulder Disability

    PubMed Central

    Henseler, Jan F.; Raz, Yotam; Nagels, Jochem; van Zwet, Erik W.; Raz, Vered; Nelissen, Rob G. H. H.

    2015-01-01

    Background Disability of the shoulder joint is often caused by a tear in the rotator cuff (RC) muscles. Four RC muscles coordinate shoulder movement and stability, among them the supraspinatus and infraspinatus muscle which are predominantly torn. The contribution of each RC muscle to tear pathology is not fully understood. We hypothesized that muscle atrophy and fatty infiltration, features of RC muscle degeneration, are predictive of superior humeral head translation and shoulder functional disability. Methods Shoulder features, including RC muscle surface area and fatty infiltration, superior humeral translation and RC tear size were obtained from a consecutive series of Magnetic Resonance Imaging with arthrography (MRA). We investigated patients with superior (supraspinatus, n = 39) and posterosuperior (supraspinatus and infraspinatus, n = 30) RC tears, and patients with an intact RC (n = 52) as controls. The individual or combinatorial contribution of RC measures to superior humeral translation, as a sign of RC dysfunction, was investigated with univariate or multivariate models, respectively. Results Using the univariate model the infraspinatus surface area and fatty infiltration in both the supraspinatus and infraspinatus had a significant contribution to RC dysfunction. With the multivariate model, however, the infraspinatus surface area only affected superior humeral translation (p<0.001) and discriminated between superior and posterosuperior tears. In contrast neither tear size nor fatty infiltration of the supraspinatus or infraspinatus contributed to superior humeral translation. Conclusion Our study reveals that infraspinatus atrophy has the strongest contribution to RC tear pathologies. This suggests a pivotal role for the infraspinatus in preventing shoulder disability. PMID:25710703

  11. Utility of multi-channel surface electromyography in assessment of focal hand dystonia.

    PubMed

    Sivadasan, Ajith; Sanjay, M; Alexander, Mathew; Devasahayam, Suresh R; Srinivasa, Babu K

    2013-09-01

    Surface electromyography (SEMG) allows objective assessment and guides selection of appropriate treatment in focal hand dystonia (FHD). Sixteen-channel SEMG obtained during different phases of a writing task was used to study timing, activation patterns, and spread of muscle contractions in FHD compared with normal controls. Customized software was developed to acquire and analyze EMG signals. SEMG of FHD subjects (20) showed "early onset" during motor imagery, rapid proximal muscle recruitment, agonist-antagonist co-contraction involving proximal muscle groups, "delayed offset" after stopping writing, higher rectified mean amplitudes, and mirror activity in contralateral limb compared with controls (16). Muscle activation latencies were heterogenous in FHD. Anticipation, delayed relaxation, and mirror EMG activation were noted in FHD. A clear pattern of muscle activation cannot be ascertained. Multi-channel SEMG can aid in objective assessment of temporal-spatial distribution of activity and can refine targeted therapies like chemodenervation and biofeedback. Copyright © 2013 Wiley Periodicals, Inc.

  12. Stimulation of abdominal and upper thoracic muscles with surface electrodes for respiration and cough: Acute studies in adult canines.

    PubMed

    Walter, James S; Posluszny, Joseph; Dieter, Raymond; Dieter, Robert S; Sayers, Scott; Iamsakul, Kiratipath; Staunton, Christine; Thomas, Donald; Rabbat, Mark; Singh, Sanjay

    2018-05-01

    To optimize maximal respiratory responses with surface stimulation over abdominal and upper thorax muscles and using a 12-Channel Neuroprosthetic Platform. Following instrumentation, six anesthetized adult canines were hyperventilated sufficiently to produce respiratory apnea. Six abdominal tests optimized electrode arrangements and stimulation parameters using bipolar sets of 4.5 cm square electrodes. Tests in the upper thorax optimized electrode locations, and forelimb moment was limited to slight-to-moderate. During combined muscle stimulation tests, the upper thoracic was followed immediately by abdominal stimulation. Finally, a model of glottal closure for cough was conducted with the goal of increased peak expiratory flow. Optimized stimulation of abdominal muscles included three sets of bilateral surface electrodes located 4.5 cm dorsal to the lateral line and from the 8 th intercostal space to caudal to the 13 th rib, 80 or 100 mA current, and 50 Hz stimulation frequency. The maximal expired volume was 343 ± 23 ml (n=3). Optimized upper thorax stimulation included a single bilateral set of electrodes located over the 2 nd interspace, 60 to 80 mA, and 50 Hz. The maximal inspired volume was 304 ± 54 ml (n=4). Sequential stimulation of the two muscles increased the volume to 600 ± 152 ml (n=2), and the glottal closure maneuver increased the flow. Studies in an adult canine model identified optimal surface stimulation methods for upper thorax and abdominal muscles to induce sufficient volumes for ventilation and cough. Further study with this neuroprosthetic platform is warranted.

  13. Model-based inverse estimation for active contraction stresses of tongue muscles using 3D surface shape in speech production.

    PubMed

    Koike, Narihiko; Ii, Satoshi; Yoshinaga, Tsukasa; Nozaki, Kazunori; Wada, Shigeo

    2017-11-07

    This paper presents a novel inverse estimation approach for the active contraction stresses of tongue muscles during speech. The proposed method is based on variational data assimilation using a mechanical tongue model and 3D tongue surface shapes for speech production. The mechanical tongue model considers nonlinear hyperelasticity, finite deformation, actual geometry from computed tomography (CT) images, and anisotropic active contraction by muscle fibers, the orientations of which are ideally determined using anatomical drawings. The tongue deformation is obtained by solving a stationary force-equilibrium equation using a finite element method. An inverse problem is established to find the combination of muscle contraction stresses that minimizes the Euclidean distance of the tongue surfaces between the mechanical analysis and CT results of speech production, where a signed-distance function represents the tongue surface. Our approach is validated through an ideal numerical example and extended to the real-world case of two Japanese vowels, /ʉ/ and /ɯ/. The results capture the target shape completely and provide an excellent estimation of the active contraction stresses in the ideal case, and exhibit similar tendencies as in previous observations and simulations for the actual vowel cases. The present approach can reveal the relative relationship among the muscle contraction stresses in similar utterances with different tongue shapes, and enables the investigation of the coordination of tongue muscles during speech using only the deformed tongue shape obtained from medical images. This will enhance our understanding of speech motor control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Electromyographic analysis of the serratus anterior and trapezius muscles during push-ups on stable and unstable bases in subjects with scapular dyskinesis.

    PubMed

    Pirauá, André Luiz Torres; Pitangui, Ana Carolina Rodarti; Silva, Juliana Pereira; Pereira dos Passos, Muana Hiandra; Alves de Oliveira, Valéria Mayaly; Batista, Laísla da Silva Paixão; Cappato de Araújo, Rodrigo

    2014-10-01

    The present study was performed to assess the electromyographic activity of the scapular muscles during push-ups on a stable and unstable surface, in subjects with scapular dyskinesis. Muscle activation (upper trapezius [UT]; lower trapezius [LT]; upper serratus anterior [SA_5th]; lower serratus anterior [SA_7th]) and ratios (UT/LT; UT/SA_5th; UT/ SA_7th) levels were determined by surface EMG in 30 asymptomatic men with scapular dyskinesis, during push-up performed on a stable and unstable surface. Multivariate analysis of variance with repeated measures was used for statistical analyses. The unstable surface caused a decrease in the EMG activity of the serratus anterior and an increase in EMG activity of the trapezius (p=0.001). UT/SA_5th and UT/ SA_7th ratios were higher during unstable push-ups (p=0.001). The results suggest that, in individuals with scapular dyskinesis, there is increased EMG activity of the trapezius and decreased EMG activity of the serratus anterior in response to an unstable surface. These results suggest that the performance of the push up exercise on an unstable surface may be more favorable to produce higher levels of trapezius activation and lower levels of serratus anterior activation. However, if the goal of the exercise program is the strengthening of the SA muscle, it is suggested to perform the push up on a stable surface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Real-time controller for foot-drop correction by using surface electromyography sensor.

    PubMed

    Al Mashhadany, Yousif I; Abd Rahim, Nasrudin

    2013-04-01

    Foot drop is a disease caused mainly by muscle paralysis, which incapacitates the nerves generating the impulses that control feet in a heel strike. The incapacity may stem from lesions that affect the brain, the spinal cord, or peripheral nerves. The foot becomes dorsiflexed, affecting normal walking. A design and analysis of a controller for such legs is the subject of this article. Surface electromyography electrodes are connected to the skin surface of the human muscle and work on the mechanics of human muscle contraction. The design uses real surface electromyography signals for estimation of the joint angles. Various-speed flexions and extensions of the leg were analyzed. The two phases of the design began with surface electromyography of real human leg electromyography signal, which was subsequently filtered, amplified, and normalized to the maximum amplitude. Parameters extracted from the surface electromyography signal were then used to train an artificial neural network for prediction of the joint angle. The artificial neural network design included various-speed identification of the electromyography signal and estimation of the angles of the knee and ankle joints by a recognition process that depended on the parameters of the real surface electromyography signal measured through real movements. The second phase used artificial neural network estimation of the control signal, for calculation of the electromyography signal to be stimulated for the leg muscle to move the ankle joint. Satisfactory simulation (MATLAB/Simulink version 2012a) and implementation results verified the design feasibility.

  16. How to Quantify Penile Corpus Cavernosum Structures with Histomorphometry: Comparison of Two Methods

    PubMed Central

    Felix-Patrício, Bruno; De Souza, Diogo Benchimol; Gregório, Bianca Martins; Costa, Waldemar Silva; Sampaio, Francisco José

    2015-01-01

    The use of morphometrical tools in biomedical research permits the accurate comparison of specimens subjected to different conditions, and the surface density of structures is commonly used for this purpose. The traditional point-counting method is reliable but time-consuming, with computer-aided methods being proposed as an alternative. The aim of this study was to compare the surface density data of penile corpus cavernosum trabecular smooth muscle in different groups of rats, measured by two observers using the point-counting or color-based segmentation method. Ten normotensive and 10 hypertensive male rats were used in this study. Rat penises were processed to obtain smooth muscle immunostained histological slices and photomicrographs captured for analysis. The smooth muscle surface density was measured in both groups by two different observers by the point-counting method and by the color-based segmentation method. Hypertensive rats showed an increase in smooth muscle surface density by the two methods, and no difference was found between the results of the two observers. However, surface density values were higher by the point-counting method. The use of either method did not influence the final interpretation of the results, and both proved to have adequate reproducibility. However, as differences were found between the two methods, results obtained by either method should not be compared. PMID:26413547

  17. How to Quantify Penile Corpus Cavernosum Structures with Histomorphometry: Comparison of Two Methods.

    PubMed

    Felix-Patrício, Bruno; De Souza, Diogo Benchimol; Gregório, Bianca Martins; Costa, Waldemar Silva; Sampaio, Francisco José

    2015-01-01

    The use of morphometrical tools in biomedical research permits the accurate comparison of specimens subjected to different conditions, and the surface density of structures is commonly used for this purpose. The traditional point-counting method is reliable but time-consuming, with computer-aided methods being proposed as an alternative. The aim of this study was to compare the surface density data of penile corpus cavernosum trabecular smooth muscle in different groups of rats, measured by two observers using the point-counting or color-based segmentation method. Ten normotensive and 10 hypertensive male rats were used in this study. Rat penises were processed to obtain smooth muscle immunostained histological slices and photomicrographs captured for analysis. The smooth muscle surface density was measured in both groups by two different observers by the point-counting method and by the color-based segmentation method. Hypertensive rats showed an increase in smooth muscle surface density by the two methods, and no difference was found between the results of the two observers. However, surface density values were higher by the point-counting method. The use of either method did not influence the final interpretation of the results, and both proved to have adequate reproducibility. However, as differences were found between the two methods, results obtained by either method should not be compared.

  18. Assessment of alterations in the electrical impedance of muscle after experimental nerve injury via finite-element analysis.

    PubMed

    Wang, Lucy L; Ahad, Mohammad; McEwan, Alistair; Li, Jia; Jafarpoor, Mina; Rutkove, Seward B

    2011-06-01

    The surface measurement of electrical impedance of muscle, incorporated as the technique of electrical impedance myography (EIM), provides a noninvasive approach for evaluating neuromuscular diseases, including amyotrophic lateral sclerosis. However, the relationship between alterations in surface impedance and the electrical properties of muscle remains uncertain. In order to investigate this further, a group of healthy adult rats, a group of rats two weeks postsciatic crush, and a group of animals six months postcrush underwent EIM of the gastrocnemius-soleus complex. The animals were then killed and the conductivity and permittivity of the extracted muscle measured. Finite-element models based on MRI data were then constructed for each group. The characteristic EIM parameter, 50 kHz phase (±standard error), obtained with surface impedance measurements was 17.3° ± 0.3° for normal animals, 13.8° ± 0.7° for acutely injured animals, and 16.1° ± 0.5° for chronically injured animals. The models predicted parallel changes with phase values of 24.3°, 18.8°, and 21.2° for the normal, acute, and chronic groups, respectively. Other multifrequency impedance parameters showed similar alterations. These results confirm that surface impedance measurements taken in conjunction with anatomical data and finite-element models may offer a noninvasive approach for assessing biophysical alterations in muscle in neuromuscular disease states.

  19. [Three-month rehabilitation of a patient with the III, IV and VI cranial nerve damage caused by a neurosurgery of the left internal carotid artery aneurysm].

    PubMed

    Mosiński, Eliasz; Kikowski, Łukasz; Irzmański, Robert

    Introduction: Oculomotor nerve palsy is an eye condition resulting from damage to the third cranial nerve or a branch thereof. Third nerve damage weakens the muscles innervated by the nerve . Also adversely affect the fourth and sixth nerve , causing impairment of their activity. Rehabilitation third nerve palsy is rarely described in the available literature . The whole process is very difficult , but the effects of physiotherapy is very beneficial for the patient. The aim:The assessment of the influence of the outpatient rehabilitation on the patient's condition after a three-month treatment and the use of physical therapy. Material and methods:Case studies of the 38-yerar-old patient after having operated a big aneurism of the left ICA, which was clipped. After the procedure, the III, IV and VI cranial nerves were deeply impaired and the amnesic aphasia occurred. The patient started the rehabilitation a month after the incident. To assess the process of rehabilitation, the own movement examination of the eyeball was implemented. Active and passive exercises, Tigger Point therapy, kinesiotaping, laser and electrostimulation were inserted. Results: The significant improvement of the eyeball movement has been proved on the basis of the same own examination. A physiotherapy has had a positive influence on the speech disorder, namely amnesic aphasia, and after the month of the rehabilitation it has been completely removed. The positive influence of the rehabilitation, which has been pointed out, is clinically essential. Conclusions: Obtained results have not been described in literature yet, that is why it is essential to widen further research and emphasise the importance of the rehabilitation, which is rarely implemented in an intense way in such medical conditions.

  20. Progress in nanotechnology for healthcare.

    PubMed

    Raffa, V; Vittorio, O; Riggio, C; Cuschieri, A

    2010-06-01

    This review based on the Wickham lecture given by AC at the 2009 SMIT meeting in Sinaia outlines the progress made in nano-technology for healthcare. It describes in brief the nature of nano-materials and their unique properties which accounts for the significant research both in scientific institutions and industry for translation into new therapies embodied in the emerging field of nano-medicine. It stresses that the potential of nano-medicine to make significant inroads for more effective therapies both for life-threatening and life-disabling disorders will only be achieved by high-quality life science research. The first generation of passive nano-diagnostics based on nanoparticle contrast agents for magnetic resonance imaging is well established in clinical practice and new such contrast agents are undergoing early clinical evaluation. Likewise active (second generation) nano-therapies, exemplified by targeted control drug release systems are undergoing early clinical evaluation. The situation concerning other nano-materials such as carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs) is less advanced although considerable progress has been made on their coating for aqueous dispersion and functionalisation to enable carriage of drugs, genes and fluorescent markers. The main problem related to the clinical use of these nanotubes is that there is no consent among scientists on the fate of such nano-materials following injection or implantation in humans. Provided carbon nanotubes are manufactured to certain medical criteria (length around 1 mum, purity of 97-99% and low Fe content) they exhibit no cytotoxicity on cell cultures and demonstrate full bio-compatibility on in vivo animal studies. The results of recent experimental studies have demonstrated the potential of technologies based on CNTs for low voltage wireless electro-chemotherapy of tumours and for electro-stimulation therapies for cardiac, neurodegenerative and skeletal and visceral muscle disorders.

  1. Muscular activity of lower limb muscles associated with working on inclined surfaces

    PubMed Central

    Lu, Ming-Lun; Kincl, Laurel; Lowe, Brian; Succop, Paul; Bhattacharya, Amit

    2015-01-01

    This study investigated effects of visual cues, muscular fatigue, task performance and experience of working on inclined surfaces on activity of postural muscles in the lower limbs associated with maintaining balance on three inclined surfaces—0°, 14° and 26°. Normalized electromyographic (NEMG) data were collected on 44 professional roofers bilaterally from the rectus femoris, biceps femoris, tibialii anterior, and gastrocnemii medial muscle groups. The 50th and 95th percentile normalized EMG amplitudes were used as EMG variables. Results showed that inclination angle and task performance caused a significant increase in the NEMG amplitudes of all postural muscles. Visual cues were significantly associated with a decrease in the 95th percentile EMG amplitude for the right gastrocnemius medial and tibialis anterior. Fatigue was related to a significant decrease in the NEMG amplitude for the rectus femoris. Experience of working on inclined surfaces did not have a significant effect on the NEMG amplitude. PMID:25331562

  2. Percutaneous Perineal Electrostimulation Induces Erection: Clinical Significance in Patients With Spinal Cord Injury and Erectile Dysfunction

    PubMed Central

    Shafik, Ahmed; Shafik, Ali A; Shafik, Ismail A; Sibai, Olfat El

    2008-01-01

    Objectives: Approximately one third to one half of the penis is embedded in the pelvis and can be felt through the scrotum and in the perineum. The main arteries and nerves enter the penis through this perineal part of the penis, which seems to represent a highly sensitive area. We investigated the hypothesis that percutaneous perineal stimulation evokes erection in patients with neurogenic erectile dysfunction. Methods: Percutaneous electrostimulation of the perineum (PESP) with synchronous intracorporeal pressure (ICP) recording was performed in 28 healthy volunteers (age 36.3 ± 7.4 y) and 18 patients (age 36.6 ± 6.8 y) with complete neurogenic erectile dysfunction (NED). Current was delivered in a sine wave summation fashion. Average maximal voltages and number of stimulations delivered per session were 15 to 18 volts and 15 to 25 stimulations, respectively. Results: PESP of healthy volunteers effected an ICP increase (P < 0.0001), which returned to the basal value upon stimulation cessation. The latent period recorded was 2.5 ± 0.2 seconds. Results were reproducible on repeated PESP in the same subject but with an increase of the latent period. Patients with NED recorded an ICP increase that was lower (P < 0.05) and a latent period that was longer (P < 0.0001) than those of healthy volunteers. Conclusion: PESP effected ICP increase in the healthy volunteers and patients with NED. The ICP was significantly higher and latent period shorter in the healthy volunteers than in the NED patients. PESP may be of value in the treatment of patients with NED, provided that further studies are performed to reproduce these results. PMID:18533410

  3. Time-variant fMRI activity in the brainstem and higher structures in response to acupuncture.

    PubMed

    Napadow, Vitaly; Dhond, Rupali; Park, Kyungmo; Kim, Jieun; Makris, Nikos; Kwong, Kenneth K; Harris, Richard E; Purdon, Patrick L; Kettner, Norman; Hui, Kathleen K S

    2009-08-01

    Acupuncture modulation of activity in the human brainstem is not well known. This structure is plagued by physiological artifact in neuroimaging experiments. In addition, most studies have used short (<15 min) block designs, which miss delayed responses following longer duration stimulation. We used brainstem-focused cardiac-gated fMRI and evaluated time-variant brain response to longer duration (>30 min) stimulation with verum (VA, electro-stimulation at acupoint ST-36) or sham point (SPA, non-acupoint electro-stimulation) acupuncture. Our results provide evidence that acupuncture modulates brainstem nuclei important to endogenous monoaminergic and opioidergic systems. Specifically, VA modulated activity in the substantia nigra (SN), nucleus raphe magnus, locus ceruleus, nucleus cuneiformis, and periaqueductal gray (PAG). Activation in the ventrolateral PAG was greater for VA compared to SPA. Linearly decreasing time-variant activation, suggesting classical habituation, was found in response to both VA and SPA in sensorimotor (SII, posterior insula, premotor cortex) brain regions. However, VA also produced linearly time-variant activity in limbic regions (amygdala, hippocampus, and SN), which was bimodal and not likely habituation--consisting of activation in early blocks, and deactivation by the end of the run. Thus, acupuncture induces different brain response early, compared to 20-30 min after stimulation. We attribute the fMRI differences between VA and SPA to more varied and stronger psychophysical response induced by VA. Our study demonstrates that acupuncture modulation of brainstem structures can be studied non-invasively in humans, allowing for comparison to animal studies. Our protocol also demonstrates a fMRI approach to study habituation and other time-variant phenomena over longer time durations.

  4. Influence of needle position on lumbar segmental nerve root block selectivity.

    PubMed

    Wolff, André P; Groen, Gerbrand J; Wilder-Smith, Oliver H

    2006-01-01

    In patients with chronic low back pain radiating to the leg, segmental nerve root blocks (SNRBs) are performed to predict surgical outcome and identify the putative symptomatic spinal nerve. Epidural spread may lead to false interpretation, affecting clinical decision making. Systematic fluoroscopic analysis of epidural local anesthetic spread and its relationship to needle tip location has not been published to date. Study aims include assessment of epidural local anesthetic spread and its relationship to needle position during fluoroscopy-assisted blocks. Patients scheduled for L4, L5, and S1 blocks were included in this prospective observational study. Under fluoroscopy and electrostimulation, they received 0.5 mL of a mixture containing lidocaine 5 mg and iohexol 75 mg. X-rays with needle tip and contrast were scored for no epidural spread (grade 0), local spread epidurally (grade 1), or to adjacent nerve roots (grade 2). Sixty-five patients were analyzed for epidural spread, 62 for needle position. Grade 1 epidural spread occurred in 47% of L4 and 28% of L5 blocks and grade 2 spread in 3 blocks (5%; L5 n = 1, S1 n = 2). For lumbar blocks, the needle was most frequently found in the lateral upper half of the intervertebral foramen. Epidural spread occurred more frequently with medial needle positions (P = .06). The findings suggest (P = .06) that the risk of grade 1 and 2 lumbar epidural spread, which results in decreased SNRB selectivity, is greater with medial needle positions in the intervertebral foramen. The variability in anatomic position of the dorsal root ganglion necessitates electrostimulation to guide SNRB in addition to fluoroscopy.

  5. New method of neck surface electromyography for the evaluation of tongue-lifting activity.

    PubMed

    Manda, Y; Maeda, N; Pan, Q; Sugimoto, K; Hashimoto, Y; Tanaka, Y; Kodama, N; Minagi, S

    2016-06-01

    Elevation of the posterior part of the tongue is important for normal deglutition and speech. The purpose of this study was to develop a new surface electromyography (EMG) method to non-invasively and objectively evaluate activity in the muscles that control lifting movement in the posterior tongue. Neck surface EMG (N-EMG) was recorded using differential surface electrodes placed on the neck, 1 cm posterior to the posterior border of the mylohyoid muscle on a line orthogonal to the lower border of the mandible. Experiment 1: Three healthy volunteers (three men, mean age 37·7 years) participated in an evaluation of detection method of the posterior tongue lifting up movement. EMG recordings from the masseter, temporalis and submental muscles and N-EMG revealed that i) N-EMG was not affected by masseter muscle EMG and ii) N-EMG activity was not observed during simple jaw opening and tongue protrusion, revealing the functional difference between submental surface EMG and N-EMG. Experiment 2: Seven healthy volunteers (six men and one woman, mean age 27·9 years) participated in a quantitative evaluation of muscle activity. Tongue-lifting tasks were perfor-med, exerting a prescribed force of 20, 50, 100 and 150 gf with visual feedback. For all subjects, a significant linear relationship was observed bet-ween the tongue-lifting force and N-EMG activity (P < 0·01). These findings indicate that N-EMG can be used to quantify the force of posterior tongue lifting and could be useful to evaluate the effect of tongue rehabilitation in future studies. © 2016 John Wiley & Sons Ltd.

  6. Assessment of muscle fatigue during biking.

    PubMed

    Knaflitz, Marco; Molinari, Filippo

    2003-03-01

    The analysis of the surface myoelectric signal recorded while a muscle is performing a sustained contraction is a valuable tool for assessing the progression of localized fatigue. It is well known that the modifications of the spectral content of the myoelectric signal are mainly related to changes in the interstitial fluid pH, which, in turn, affect the membrane excitability of the active muscle fibers. This paper describes the effects of muscle fatigue on the surface myoelectric signal recorded from three thigh and leg muscles during biking, on a population consisting of 22 young healthy volunteers. The purpose of this study was to obtain normative data relative to an exercise protocol mild enough to be applicable, in the future, to pathological subjects as well. Each subject was asked to exercise 30 min on a cycloergometer at a constant velocity and against a constant torque. While subjects were biking, the surface myoelectric signal was recorded from the rectus femoris, the biceps femoris, and the gastrocnemius muscles. In this study, we considered two different aspects of muscle fatigue: first, the localized muscle fatigue as shown by the decrement of the instantaneous frequency of the myoelectric signal during the exercise; second, the modifications of the muscle ON-OFF timing, which could be explained as a strategy for increasing endurance by modifying the role of different muscles during the exercise. The first aspect was studied by obtaining the spectral characteristics of the signals by means of bilinear time-frequency transforms and by applying an original estimator of the instantaneous frequency of stochastic processes based on cross time-frequency transforms. Our results demonstrated that none of the subjects showed significant signs of localized muscle fatigue, since the decrement of the instantaneous frequency during the exercise was always lower than 5% of its initial value. Muscle ON-OFF timing was obtained by applying to the raw myoelectric signal a double threshold statistical detector to identify the time intervals during which the observed muscles were active. This demonstrated that the subjective feeling of fatigue each subject reported during the exercise did not cause a change of the activation strategy of the observed muscles. It is concluded that the experimental protocol herein described and the signal processing procedures adopted are appropriate for monitoring different effects of muscle fatigue during biking. Moreover, data obtained from our sample population can be considered as a reference for studying the manifestations of muscle fatigue in pathological subjects asked to follow a similar experimental protocol.

  7. Effects of the antigravitary modification of the myotension of asset (MAGMA) therapy on myogenic cranio-cervical-mandibular dysfunction: a longitudinal surface electromyography analysis.

    PubMed

    D'Attilio, Michele; Di Meo, Silvio; Perinetti, Giuseppe; Filippi, Maria Rita; Tecco, Simona; D'Alconzo, Francesco; Festa, Felice

    2003-01-01

    This study was aimed at evaluating the effects of a novel physiotherapy machine called MAGMA (AntiGravitary Modification of the Myotensions of Asset) on postural and masticatory muscles of subjects with myogenic cranio-cervical-mandibular dysfunction (CMD), by using surface electromyography (sEMG). Fifteen subjects, nine males and six females (mean age 27.6 years), with CMD were included in the study. The bilaterally monitored muscles were: masseter, anterior and posterior temporalis, digastric, posterior cervical, sternocleidomastoid, and upper and lower trapezius. All muscles were monitored at rest, with a second record of maximal voluntary clenching (MVC) for both the masseter and anterior temporalis. Patients were subjected to MAGMA therapy for one session/week of 30 min over ten weeks. The surface EMG activity was recorded twice, at the baseline and at the end of the therapy. After MAGMA therapy, the sEMG activity at rest of the monitored muscles was significantly better when compared to the baseline; the only exception was the anterior and posterior temporalis muscles which did not improve. On the contrary, with the MVC, all the monitored muscles (masseter and anterior temporalis) significantly improved their sEMG activity. Although more investigations are needed, these results indicate that the use of such antigravitary therapy can provide a tool for resolving myogenic CMD.

  8. A systematic review of surface electromyography analyses of the bench press movement task.

    PubMed

    Stastny, Petr; Gołaś, Artur; Blazek, Dusan; Maszczyk, Adam; Wilk, Michał; Pietraszewski, Przemysław; Petr, Miroslav; Uhlir, Petr; Zając, Adam

    2017-01-01

    The bench press exercise (BP) plays an important role in recreational and professional training, in which muscle activity is an important multifactorial phenomenon. The objective of this paper is to systematically review electromyography (EMG) studies performed on the barbell BP exercise to answer the following research questions: Which muscles show the greatest activity during the flat BP? Which changes in muscle activity are related to specific conditions under which the BP movement is performed? PubMed, Scopus, Web of Science and Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library were searched through June 10, 2016. A combination of the following search terms was used: bench press, chest press, board press, test, measure, assessment, dynamometer, kinematics and biomechanics. Only original, full-text articles were considered. The search process resulted in 14 relevant studies that were included in the discussion. The triceps brachii (TB) and pectoralis major (PM) muscles were found to have similar activity during the BP, which was significantly higher than the activity of the anterior deltoid. During the BP movement, muscle activity changes with exercise intensity, velocity of movement, fatigue, mental focus, movement phase and stability conditions, such as bar vibration or unstable surfaces. Under these circumstances, TB is the most common object of activity change. PM and TB EMG activity is more dominant and shows greater EMG amplitude than anterior deltoid during the BP. There are six factors that can influence muscle activity during the BP; however, the most important factor is exercise intensity, which interacts with all other factors. The research on muscle activity in the BP has several unresolved areas, such as clearly and strongly defined guidelines to perform EMG measurements (e.g., how to elaborate with surface EMG limits) or guidelines for the use of exact muscle models.

  9. The thoracic muscular system and its innervation in third instar Calliphora vicina Larvae. I. Muscles of the pro- and mesothorax and the pharyngeal complex.

    PubMed

    Hanslik, Ulrike; Schoofs, Andreas; Niederegger, Senta; Heinzel, Hans-Georg; Spiess, Roland

    2010-08-01

    An anatomical description is given by the muscles in the pro- and mesothorax, and those associated with the feeding apparatus (cephalopharyngeal skeleton, CPS) that participate in feeding behavior in third instar Calliphora larvae. The body wall muscles in the pro- and mesothoracic segments are organized in three layers: internal, intermedial, and external. The muscles were labeled with roman numerals according to the nomenclature in use for the abdominal segments. Muscles associated with the CPS are labeled according to their function. The prothorax bears five pairs of lateral symmetrically longitudinal segmental body wall muscles and lacks the transversal muscle group present in the mesothorax and abdominal segments. Additionally, four pairs of intersegmental muscles project from the prothorax to the second, fourth, and fifth segment. The mesothorax bears 15 pairs of segmental longitudinal and 18 pairs of transversal muscles. The accessory pharyngeal muscles span the CPS and the cuticle. Three pairs of protractors and retractors and two pairs of mouth hook accessors (MH(AC)) exist, which move the CPS relative to the body. The pharyngeal muscles are exclusively attached to the structures of the CPS. The mouth hook elevators and depressors, which mediate the hooks rotation are attached to the ventral arm of the CPS and project to a dorsal (elevators) or ventral (depressors) protuberance of the mouth hooks. The cibarial dilator muscles (CDM) span the dorsal arms of the CPS and the dorsal surface of the esophagus and mediate food ingestion. The labial retractors (LRs) lack antagonists and project from the ventral surface of the CPS to the unpaired labium. Contractions of these muscles open the mouth cavity. J. Morphol. 271:960-968, 2010. (c) 2010 Wiley-Liss, Inc.

  10. Myoelectric manifestations of jaw elevator muscle fatigue and recovery in healthy and TMD subjects.

    PubMed

    Castroflorio, T; Falla, D; Tartaglia, G M; Sforza, C; Deregibus, A

    2012-09-01

    The effects of muscle pain and fatigue on the control of jaw elevator muscles are not well known. Furthermore, the myoelectric manifestations of fatigue and recovery from fatigue in the masticatory muscles are not reported in literature. The main aims of this study were (i) to evaluate the possible use of surface electromyography (sEMG) as an objective measure of fatigue of the jaw elevator muscles, (ii) to compare the myoelectric manifestations of fatigue in the temporalis anterior and masseter muscles bilaterally, (iii) to assess recovery of the investigated muscles after an endurance test and (iv) to compare fatigue and recovery of the jaw elevator muscles in healthy subjects and patients with muscle-related temporomandibular disorders (TMD). The study was performed on twenty healthy volunteers and eighteen patients with muscle-related TMD. An intra-oral compressive-force sensor was used to measure the voluntary contraction forces close to the intercuspal position and to provide visual feedback of submaximal forces to the subject. Surface EMG signals were recorded with linear electrode arrays during isometric contractions at 20%, 40%, 60% and 80% of the maximum voluntary contraction force, during an endurance test and during the recovery phase. The results showed that (i) the slope of the mean power spectral frequency (MNF) and the initial average rectified value (ARV) could be used to monitor fatigue of the jaw elevators, (ii) the temporalis anterior and masseter muscle show the same myoelectric manifestations of fatigue and recovery and (iii) the initial values of MNF and ARV were lower in patients with muscle-related TMD. The assessment of myoelectric manifestations of fatigue in the masticatory muscles may assist in the clinical assessment of TMDs. © 2012 Blackwell Publishing Ltd.

  11. Changes in shoulder muscle activity pattern on surface electromyography after breast cancer surgery.

    PubMed

    Yang, Eun Joo; Kwon, YoungOk

    2018-02-01

    Alterations in muscle activation and restricted shoulder mobility, which are common in breast cancer patients, have been found to affect upper limb function. The purpose of this study was to determine muscle activity patterns, and to compare the prevalence of abnormal patterns among the type of breast surgery. In total, 274 breast cancer patients were recruited after surgery. Type of breast surgery was divided into mastectomy without reconstruction (Mastectomy), reconstruction with tissue expander/implant (TEI), latissimus dorsi (LD) flap, or transverse rectus abdominis flap (TRAM). Activities of shoulder muscles were measured using surface electromyography. Experimental analysis was conducted using a Gaussian filter smoothing method with regression. Patients demonstrated different patterns of muscle activation, such as normal, lower muscle electrical activity, and tightness. After adjusting for BMI and breast surgery, the odds of lower muscle electrical activity and tightness in the TRAM are 40.2% and 38.4% less than in the Mastectomy only group. The prevalence of abnormal patterns was significantly greater in the ALND than SLNB in all except TRAM. Alterations in muscle activity patterns differed by breast surgery and reconstruction type. For breast cancer patients with ALND, TRAM may be the best choice for maintaining upper limb function. © 2017 Wiley Periodicals, Inc.

  12. Anticipation of direction and time of perturbation modulates the onset latency of trunk muscle responses during sitting perturbations.

    PubMed

    Milosevic, Matija; Shinya, Masahiro; Masani, Kei; Patel, Kramay; McConville, Kristiina M V; Nakazawa, Kimitaka; Popovic, Milos R

    2016-02-01

    Trunk muscles are responsible for maintaining trunk stability during sitting. However, the effects of anticipation of perturbation on trunk muscle responses are not well understood. The objectives of this study were to identify the responses of trunk muscles to sudden support surface translations and quantify the effects of anticipation of direction and time of perturbation on the trunk neuromuscular responses. Twelve able-bodied individuals participated in the study. Participants were seated on a kneeling chair and support surface translations were applied in the forward and backward directions with and without direction and time of perturbation cues. The trunk started moving on average approximately 40ms after the perturbation. During unanticipated perturbations, average latencies of the trunk muscle contractions were in the range between 103.4 and 117.4ms. When participants anticipated the perturbations, trunk muscle latencies were reduced by 16.8±10.0ms and the time it took the trunk to reach maximum velocity was also reduced, suggesting a biomechanical advantage caused by faster muscle responses. These results suggested that trunk muscles have medium latency responses and use reflexive mechanisms. Moreover, anticipation of perturbation decreased trunk muscles latencies, suggesting that the central nervous system modulated readiness of the trunk based on anticipatory information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Electromyographic analysis of an eccentric calf muscle exercise in persons with and without Achilles tendinopathy.

    PubMed

    Reid, Duncan; McNair, Peter J; Johnson, Shelley; Potts, Geoff; Witvrouw, Erik; Mahieu, Nele

    2012-08-01

    To compare surface electromyographic (EMG) activity of the gastrocnemius and soleus muscles between persons with and without Achilles tendinopathy (AT) during an eccentric muscle exercise in different knee joint positions. Repeated measures design. Research laboratory. Participants (n = 18) diagnosed with AT and 18 control subjects were recruited. Gastrocnemius and soleus muscle activity was examined by surface (EMG) during extended and flexed knee joint conditions while performing the eccentric training technique. The EMG data were expressed as a percentage of a maximum voluntary contraction (MVC). EMG activity was notably higher (mean difference: 10%, effect size: 0.59) in those subjects with AT. Irrespective of the presence of AT, there was a significant interaction effect between muscle and joint position. The gastrocnemius muscle was significantly more active in the extended knee condition and soleus muscle activity was unchanged across joint positions. The results indicated that the presence of AT influenced calf muscle activity levels during performance of the eccentric exercise. There were differences in muscle activity during the extended and flexed knee conditions. This result does support performing Alfredson, Pietila, Jonsson, and Lorentzon (1998) eccentric exercise in an extended knee position but the specific effects of the knee flexed position on the Achilles tendon during eccentric exercise have yet to be determined, particularly in those with AT. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. An Analysis of Muscle Activities of Healthy Women during Pilates Exercises in a Prone Position.

    PubMed

    Kim, Bo-In; Jung, Ju-Hyeon; Shim, Jemyung; Kwon, Hae-Yeon; Kim, Haroo

    2014-01-01

    [Purpose] This study analyzed the activities of the back and hip muscles during Pilates exercises conducted in a prone position. [Subjects] The subjects were 18 healthy women volunteers who had practiced at a Pilates center for more than three months. [Methods] The subjects performed three Pilates exercises. To examine muscle activity during the exercises, 8-channel surface electromyography (Noraxon USA, Inc., Scottsdale, AZ) was used. The surface electrodes were attached to the bilateral latissimus dorsi muscle, multifidus muscle, gluteus maximus, and semitendinous muscle. Three Pilates back exercises were compared: (1) double leg kick (DLK), (2) swimming (SW), and (3) leg beat (LB). Electrical muscle activation was normalized to maximal voluntary isometric contraction. Repeated measures analysis of variance was performed to assess the differences in activation levels among the exercises. [Results] The activity of the multifidus muscle was significantly high for the SW (52.3±11.0, 50.9±9.8) and LB exercises(51.8±12.8, 48.3±13.9) and the activity of the semitendinosus muscle was higher for the LB exercise (49.2±8.7, 52.9±9.3) than for the DLK and SW exercises. [Conclusion] These results may provide basic material for when Pilates exercises are performed in a prone position and may be useful information on clinical Pilates for rehabilitation programs.

  15. Electromyographic and kinetic analysis of two abdominal muscle performance tests.

    PubMed

    Haladay, Douglas E; Denegar, Craig R; Miller, Sayers J; Challis, John

    2015-01-01

    In order to accurately assess the abdominal muscles, clinicians need valid clinical measures. The double leg lowering test (DLLT) and lower abdominal muscle progression (LAMP) are two common tests of abdominal muscle performance. The purposes of this study were to determine the relation between surface electromyographic (EMG) activity during the DLLT and LAMP levels; hip joint resultant moments and DLLT and LAMP levels; and the two measures of DLLT and LAMP. Ten healthy participants were tested under both conditions. Surface EMG activity of the abdominal muscles was obtained, while pelvic movement was detected simultaneously. A moderate to strong association was found between rectus abdominus muscle activity and a moderate association with the external obliques with both test levels. For the internal oblique/transversus abdominus, a moderate and weak association was found with the DLLT and LAMP, respectively. A very strong association existed between the hip resultant joint moments (RJM) and the DLLT, while there was a weak correlation between hip RJM and the LAMP. No significant correlation was found between the DLLT and LAMP grades. This finding suggests that these tests may measure different qualities of muscle performance and provides preliminary support for their use. Further evaluation of these assessments with clinical populations is necessary.

  16. Postural responses to yaw rotation of support surface.

    PubMed

    Chen, Chiung-Ling; Lou, Shu-Zon; Wu, Hong-Wen; Wu, Shyi-Kuen; Yeung, Kwok-Tak; Su, Fong-Chin

    2013-02-01

    The purposes of this study were to investigate EMG and kinematic responses to yaw rotation of a support surface. Twenty people participated in four conditions, i.e., two velocities (240°/s, 120°/s) and two amplitudes (30°, 15°). Longer latency and smaller muscle responses were induced for yaw rotation, and distal ankle and knee muscles were activated earlier than trunk and neck muscles. Joint kinematics demonstrated larger angular displacements in axial rotation. Velocity and amplitude did not affect onset latency or magnitude of muscle activation but had significant effects on joint movements and COM displacements. Preliminary information about normative data of healthy subjects was obtained, and questions were generated about optimal velocity and amplitude test protocols that require further investigation. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Strengthening of back muscles using a module of flexible strain sensors.

    PubMed

    Chuang, Wan-Chun; Lin, Hwai-Ting; Chen, Wei-Long

    2015-02-09

    This research aims at developing a flexible strain module applied to the strengthening of back muscles. Silver films were sputtered onto flexible substrates to produce a flexible sensor. Assuming that back muscle elongation is positively correlated with the variations in skin surface length, real-time resistance changes exhibited by the sensor during simulated training sessions were measured. The results were used to identify the relationship between resistance change of sensors and skin surface stretch. In addition, muscle length changes from ultrasound images were used to determine the feasibility of a proof of concept sensor. Furthermore, this module is capable of detecting large muscle contractions, some of which may be undesirable for the prescribed training strategy. Therefore, the developed module can facilitate real-time assessments of the movement accuracy of users during training, and the results are instantly displayed on a screen. People using the developed training system can immediately adjust their posture to the appropriate position. Thus, the training mechanism can be constructed to help user improve the efficiency of back muscle strengthening.

  18. Neuromuscular electrostimulation techniques: historical aspects and current possibilities in treatment of pain and muscle waisting.

    PubMed

    Heidland, August; Fazeli, Gholamreza; Klassen, André; Sebekova, Katarina; Hennemann, Hans; Bahner, Udo; Di Iorio, Biagio

    2013-01-01

    Application of electricity for pain treatment dates back to thousands of years BC. The Ancient Egyptians and later the Greeks and Romans recognized that electrical fishes are capable of generating electric shocks for relief of pain. In the 18th and 19th centuries these natural producers of electricity were replaced by man-made electrical devices. This happened in following phases. The first was the application of static electrical currents (called Franklinism), which was produced by a friction generator. Christian Kratzenstein was the first to apply it medically, followed shortly by Benjamin Franklin. The second phase was Galvanism. This method applied a direct electrical current to the skin by chemical means, applied a direct and pulsed electrical current to the skin. In the third phase the electrical current was induced intermittently and in alternate directions (called Faradism). The fourth stage was the use of high frequency currents (called d'Arsonvalisation). The 19th century was the "golden age" of electrotherapy. It was used for countless dental, neurological, psychiatric and gynecological disturbances. However, at beginning of the 20th century electrotherapy fell from grace. It was dismissed as lacking a scientific basis and being used also by quacks and charlatans for unserious aims. Furthermore, the development of effective analgesic drugs decreased the interest in electricity. In the second half of the 20th century electrotherapy underwent a revival. Based on animal experiments and clinical investigations, its neurophysiological mechanisms were elucidated in more details. The pain relieving action of electricity was explained in particular by two main mechanisms: first, segmental inhibition of pain signals to the brain in the dorsal horn of the spinal cord and second, activation of the descending inhibitory pathway with enhanced release of endogenous opioids and other neurochemical compounds (serotonin, noradrenaline, gamma aminobutyric acid (GABA), acetylcholine and adenosine). The modern electrotherapy of neuromusculo- skeletal pain is based in particular on the following types: transcutaneous electrical nerve stimulation (TENS), percutaneous electrical nerve stimulation (PENS or electro-acupuncture) and spinal cord stimulation (SCS). In mild to moderate pain, TENS and PENS are effective methods, whereas SCS is very useful for therapy of refractory neuropathic or ischemic pain. In 2005, high tone external muscle stimulation (HTEMS) was introduced. In diabetic peripheral neuropathy, its analgesic action was more pronounced than TENS application. HTEMS appeared also to have value in the therapy of symptomatic peripheral neuropathy in end-stage renal disease (ESRD). Besides its pain-relieving effect, electrical stimulation is of major importance for prevention or treatment of muscle dysfunction and sarcopenia. In controlled clinical studies electrical myostimulation (EMS) has been shown to be effective against the sarcopenia of patients with chronic congestive heart disease, diabetes, chronic obstructive pulmonary disease and ESRD.

  19. Intracortical inhibition in the human trigeminal motor system.

    PubMed

    Jaberzadeh, Shapour; Pearce, Sophie L; Miles, Timothy S; Türker, Kemal S; Nordstrom, Michael A

    2007-08-01

    To investigate the presence and features of short-interval intracortical inhibition (SICI) in the human trigeminal motor system. Surface electromyogram (EMG) was recorded from left and right digastric muscles in 7 subjects, along with additional experiments with intramuscular EMG in 2 subjects. Focal transcranial magnetic stimulation (TMS) was used to activate the motor cortex of one hemisphere and elicit motor evoked potentials (MEPs) in digastric muscles on each side, at rest and while subjects activated the muscles at 10% maximal EMG. Paired or single TMS pulses were delivered in blocks of trials, while conditioning TMS intensity and interstimulus interval (ISI) were varied. At rest, paired TMS (3-ms ISI) with conditioning intensities 0.8-0.9x active motor threshold (TA) reduced the digastric MEP amplitude to a similar extent bilaterally. Conditioning at 0.5-0.7TA did not significantly reduce the MEP. MEP amplitude was reduced to a similar extent in both digastric muscles by ISIs between 1 and 4 ms (0.8TA). Voluntary bilateral activation of digastric muscles reduced the effectiveness of conditioning TMS compared to the resting state, with no differences between sides. The similarity of the responses in both digastric muscles was not due to EMG cross-talk (estimated to be approximately 10% in surface records and approximately 2% in intramuscular records), as the intramuscular records showed the same pattern as the surface records. The effects of paired-pulse TMS on digastric are similar to those reported for contralateral hand muscles, and are consistent with activation of SICI circuits in M1 by conditioning TMS. Our evidence further suggests that the corticomotor representations of left and right digastric muscles in M1 of a single hemisphere receive analogous inhibitory modulation from SICI circuits. SICI has been demonstrated in the face area of motor cortex controlling the trigeminal motor system in normal subjects. This method can be used to investigate abnormalities of SICI in movement disorders affecting the masticatory muscles in humans.

  20. Impact of Workstation Accommodation on Fatigue and Performance

    DTIC Science & Technology

    2006-12-01

    Surface electromyography was collected on the left and right trapezius and deltoid muscles. Cerebral oxygenation levels were monitored via non... trapezius muscles using a static contraction testing device that consisted of a load cell to which the subject’s right arm was tethered and an output...experimental conditions. Surface electromyography (EMG) signals of the deltoid and trapezius were recorded during the contractions. In addition to

  1. Spectroscopy and imaging of oxygen delivery to tissue under strenuous conditions (NIR in athletes)

    NASA Astrophysics Data System (ADS)

    Chance, Britton; Nioka, Shoko; Long, Hong; Xie, Chunhua; Ma, XuHui; Ntziachristos, Vasilis; Luo, Qingming

    2000-04-01

    It was demonstrated that the dynamics of muscle oxygen utilization can readily be measured using dual wavelength hemoglobin oximetry. This method can be used for muscle training exercise and also for evaluation of exercise performance where the anaerobic threshold must be avoided. It was shown that CW imaging technology gives images along the surface of the muscle while the time resolved spectroscopy gives images transverse to the muscle.

  2. Wireless communication links for brain-machine interface applications

    NASA Astrophysics Data System (ADS)

    Larson, L.

    2016-05-01

    Recent technological developments have given neuroscientists direct access to neural signals in real time, with the accompanying ability to decode the resulting information and control various prosthetic devices and gain insight into deeper aspects of cognition. These developments - along with deep brain stimulation for Parkinson's disease and the possible use of electro-stimulation for other maladies - leads to the conclusion that the widespread use electronic brain interface technology is a long term possibility. This talk will summarize the various technical challenges and approaches that have been developed to wirelessly communicate with the brain, including technology constraints, dc power limits, compression and data rate issues.

  3. Integrating gastrocnemius force-length properties, in vivo activation and operating lengths reveals how Anolis deal with ecological challenges.

    PubMed

    Foster, Kathleen L; Higham, Timothy E

    2017-03-01

    A central question in biology is how animals successfully behave under complex natural conditions. Although changes in locomotor behaviour, motor control and force production in relation to incline are commonly examined, a wide range of other factors, including a range of perch diameters, pervades arboreal habitats. Moving on different substrate diameters requires considerable alteration of body and limb posture, probably causing significant shifts in the lengths of the muscle-tendon units powering locomotion. Thus, how substrate shape impacts in vivo muscle function remains an important but neglected question in ecophysiology. Here, we used high-speed videography, electromyography, in situ contractile experiments and morphology to examine gastrocnemius muscle function during arboreal locomotion in the Cuban knight anole, Anolis equestris The gastrocnemius contributes more to the propulsive effort on broad surfaces than on narrow surfaces. Surprisingly, substrate inclination affected the relationship between the maximum potential force and fibre recruitment; the trade-off that was present between these variables on horizontal surfaces became a positive relationship on inclined surfaces. Finally, the biarticular nature of the gastrocnemius allows it to generate force isometrically, regardless of substrate diameter and incline, despite the fact that the tendons are incapable of stretching during cyclical locomotion. Our results emphasize the importance of considering ecology and muscle function together, and the necessity of examining both mechanical and physiological properties of muscles to understand how animals move in their environment. © 2017. Published by The Company of Biologists Ltd.

  4. Early pelvic floor muscle training after obstetrical anal sphincter injuries for the reduction of anal incontinence.

    PubMed

    Mathé, Mélodie; Valancogne, Guy; Atallah, Anthony; Sciard, Clémentine; Doret, Muriel; Gaucherand, Pascal; Beaufils, Etienne

    2016-04-01

    Between 0.5 and 5% of vaginal deliveries involve obstetrical anal sphincter injuries (OASIS). Thirty to forty percent of patients with OASIS will suffer from anal incontinence in the subacute postpartum period. The aim of the present study was to assess the effectiveness of early pelvic floor muscle training (PFMT) combined with standard rehabilitation on anal incontinence after vaginal deliveries complicated by OASIS. The present work was a retrospective quantitative study performed in a tertiary-level maternity hospital. Women with 3rd or 4th degree obstetric tears were included. Women who gave birth between January 1st, 2011 and December 31st, 2012 underwent standard pelvic-perineal rehabilitation within 6-8 weeks postpartum. Women who gave birth between January 1st, 2013 and July 1st, 2014 had early rehabilitation (within 30 days after delivery) followed by the same standard rehabilitation received by the other group. Rehabilitation was performed by physiotherapists specialized in perineology. No electrostimulation was done in early rehabilitation. An in-house-validated modification of the Jorge and Wexner questionnaire was sent by mail to the patients to assess symptoms. The main judgment criterion was anal incontinence to gas, loose stools and/or solid stool. Two hundred and thirty patients were diagnosed with OASIS. Nineteen women (8.3%) were lost to follow-up. The intention-to-treat analysis included 211 patients, 109 of whom underwent standard rehabilitation and 102 early rehabilitation plus standard rehabilitation. The two groups were comparable in terms of parity, birth weight, assisted delivery, epidural anesthesia and rates of mediolateral episiotomy. Multivariate analyses adjusted for type of perineal lesion were performed. Early rehabilitation significantly reduced gas leakage: OR 0.51 [0.29-0.90] (p=0.02), liquid stool leakage: OR 0.22 [0.08-0.58] (p=0.02) and urinary stress incontinence: OR 0.43 [0.24-0.77] (p=0.004). We recommend early (during the first month postpartum) PFMT after vaginal deliveries associated with OASIS. Rehabilitation should be carried out by a physiotherapist specialized in perineology in order to prevent medium-term functional consequences. A longer follow-up may be necessary to confirm the stability of results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. High-tone external muscle stimulation in end-stage renal disease: effects on symptomatic diabetic and uremic peripheral neuropathy.

    PubMed

    Klassen, A; Di Iorio, B; Guastaferro, P; Bahner, U; Heidland, A; De Santo, N

    2008-01-01

    Pain and peripheral neuropathy are frequent complications of end-stage renal disease (ESRD). Because drug treatment is associated with numerous side effects and is largely ineffective in many maintenance hemodialysis (MHD) patients, nonpharmacologic strategies such as electrotherapy are a potential recourse. Among various forms of electrostimulation, high-tone external muscle stimulation (HTEMS) is a promising alternative treatment for symptomatic diabetic peripheral polyneuropathy (PPN), as demonstrated in a short-term study. Based on these novel findings, we performed a prospective, nonrandomized, pilot trial in MHD patients to determine (1) whether HTEMS is also effective in treating diabetic PPN in the uremic state, and (2) whether uremic PPN is similarly modulated. In total, 40 MHD patients diagnosed with symptomatic PPN (25 with diabetic and 15 with uremic PPN) were enrolled. Both lower extremities were treated intradialytically with HTEMS for 1 hour, three times a week. Initially, a subgroup of 12 patients was followed for 4 weeks, and a further 28 patients for 12 weeks. The patients' degree of neuropathy was graded at baseline before HTEMS and after 1 and 3 months, respectively. Five neuropathic symptoms (tingling, burning, pain, numbness, and numbness in painful areas) as well as sleep disturbances were measured, using the 10-point Neuropathic Pain Scale of Galer and Jensen (Neurology 48:332-338, 1997). A positive response was defined as the improvement of one symptom or more, by at least 3 points. Other parameters included blood pressure, heart rate, dry body weight, and a routine laboratory investigation. The HTEMS led to a significant improvement in all five neuropathic symptoms, and to a significant reduction in sleep disturbances for both diabetic and uremic PPN. The response was independent of the patient's age, with a responder rate of 73%. The improvement of neuropathy was time-dependent, with the best results achieved after 3 months of treatment. The HTEMS was well-tolerated by nearly all patients. This pilot study shows for the first time that HTEMS can ameliorate the discomfort and pain associated with both diabetic and uremic PPN in MHD patients, and could be a valuable supplement in the treatment of pain and neuropathic discomfort in patients who do not respond to, or are unable to participate in, exercise programs during hemodialysis treatment.

  6. Intra-dialytic electrostimulation of leg extensors may improve exercise tolerance and quality of life in hemodialyzed patients.

    PubMed

    Dobsak, Petr; Homolka, Pavel; Svojanovsky, Jan; Reichertova, Anna; Soucek, Miroslav; Novakova, Marie; Dusek, Ladislav; Vasku, Jaromir; Eicher, Jean-Christophe; Siegelova, Jarmila

    2012-01-01

    Hemodialyzed (HD) patients with end-stage renal disease (ESRD) exhibit lower fitness as a consequence of chronic uremic changes that trigger various structural, metabolic, and functional abnormalities in skeletal muscles. The aim of this randomized study was to compare the effect of rehabilitation (RHB) training on a bicycle ergometer and electromyostimulation (EMS) of leg extensors in HD patients with ESRD. Thirty-two HD patients (18 men/14 women; mean age 61.1 ± 8.8 years) were randomized into three groups: (i) exercise training (ET; n = 11) on bicycle ergometer 2 × 20 min; (ii) EMS (n = 11) where stimulation (10 Hz) of leg extensors was applied for 60 min; and (iii) controls (CON; n = 10) without exercise. Exercising was performed between the 2nd and the 3rd hour of HD, three times a week, 20 weeks in total. Ergometric test was performed in order to evaluate peak workload (W(peak)), 6-min corridor walking test (CWT) to evaluate the distance walked, and dynamometry of leg extensors to assess muscle power (F(max)). Urea clearance was monitored and expressed as standard parameters: spKt/V, spKt/V equilibrated (spKt/V-e), and the urea removal ratio (URR). Quality of life (QoL) was assessed by the questionnaire SF-36. A significant increase of F(max) (P = 0.040 in group ET; P = 0.032 in group EMS), of 6-min CWT (P < 0.001 in ET group; P = 0.042 in EMS group), and of W(peak) (P = 0.041 in ET group) was observed. In both exercising groups, significant increase of spKt/V, spKt/V-e, and URR was found as compared with initial values (P < 0.05). In both exercising groups, highly significant changes in summarized mental functions were found (P = 0.001); in summarized physical components, significant improvement was observed in the ET group (P = 0.006). Intradialytic RHB showed comparable positive effects on functional parameters, urea clearance, and QoL. Intradialytic EMS might represent wide therapeutic possibility in the near future. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  7. Topographic Anatomy of the Anal Sphincter Complex and Levator Ani Muscle as It Relates to Intersphincteric Resection for Very Low Rectal Disease.

    PubMed

    Tsukada, Yuichiro; Ito, Masaaki; Watanabe, Kentaro; Yamaguchi, Kumiko; Kojima, Motohiro; Hayashi, Ryuichi; Akita, Keiichi; Saito, Norio

    2016-05-01

    Intersphincteric resection has become a widely used treatment for patients with rectal cancer. However, the detailed anatomy of the anal canal related to this procedure has remained unclear. The purpose of this study was to clarify the detailed anatomy of the anal canal. This is a descriptive study. Histologic evaluations of paraffin-embedded tissue specimens were conducted at a tertiary referral hospital. Tissue specimens were obtained from cadavers of 5 adults and from 13 patients who underwent abdominoperineal resection for rectal cancer. Sagittal sections from 9 circumferential portions of the cadaveric anal canal (histologic staining) and 3 circumferential portions from patients were studied (immunohistochemistry for smooth and skeletal muscle fibers). Longitudinal fibers between the internal and external anal sphincters consisted primarily of smooth muscle fibers that continued from the longitudinal muscle of the rectum. The levator ani muscle attached directly to the lateral surface of the longitudinal smooth muscle of the rectum. The length of the attachment was longer in the anterolateral portion and shorter in the posterior portion of the anal canal. In the lateral and posterior portions, the levator ani muscle partially overlapped the external anal sphincter; however, there was less overlap in the anterolateral portion. In the posterior portion, thick smooth muscle was present on the surface of the levator ani muscle and it continued to the longitudinal muscle of the rectum. We observed only limited portions in some surgical specimens because of obstruction by tumors. The levator ani muscle attaches directly to the longitudinal muscle of the rectum. The spatial relationship between the smooth and skeletal muscles differed in different portions of the anal canal. For intersphincteric resection, dissection must be performed between the longitudinal muscle of the rectum and the levator ani muscle/external anal sphincter, and the appropriate surgical lines must be selected based on the specific structural characteristics of each portion.

  8. Postural threat influences vestibular-evoked muscular responses.

    PubMed

    Lim, Shannon B; Cleworth, Taylor W; Horslen, Brian C; Blouin, Jean-Sébastien; Inglis, J Timothy; Carpenter, Mark G

    2017-02-01

    Standing balance is significantly influenced by postural threat. While this effect has been well established, the underlying mechanisms of the effect are less understood. The involvement of the vestibular system is under current debate, and recent studies that investigated the effects of height-induced postural threat on vestibular-evoked responses provide conflicting results based on kinetic (Horslen BC, Dakin CJ, Inglis JT, Blouin JS, Carpenter MG. J Physiol 592: 3671-3685, 2014) and kinematic (Osler CJ, Tersteeg MC, Reynolds RF, Loram ID. Eur J Neurosci 38: 3239-3247, 2013) data. We examined the effect of threat of perturbation, a different form of postural threat, on coupling (cross-correlation, coherence, and gain) of the vestibulo-muscular relationship in 25 participants who maintained standing balance. In the "No-Threat" conditions, participants stood quietly on a stable surface. In the "Threat" condition, participants' balance was threatened with unpredictable mediolateral support surface tilts. Quiet standing immediately before the surface tilts was compared to an equivalent time from the No-Threat conditions. Surface EMG was recorded from bilateral trunk, hip, and leg muscles. Hip and leg muscles exhibited significant increases in peak cross-correlation amplitudes, coherence, and gain (1.23-2.66×) in the Threat condition compared with No-Threat conditions, and significant correlations were observed between threat-related changes in physiological arousal and medium-latency peak cross-correlation amplitude in medial gastrocnemius (r = 0.408) muscles. These findings show a clear threat effect on vestibular-evoked responses in muscles in the lower body, with less robust effects of threat on trunk muscles. Combined with previous work, the present results can provide insight into observed changes during balance control in threatening situations. This is the first study to show increases in vestibular-evoked responses of the lower body muscles under conditions of increased threat of postural perturbation. While robust findings were observed in hip and leg muscles, less consistent results were found in muscles of the trunk. The present findings provide further support in the ongoing debate for arguments that vestibular-evoked balance responses are influenced by fear and anxiety and explain previous threat-related changes in balance. Copyright © 2017 the American Physiological Society.

  9. Both anticipatory and compensatory postural adjustments are adapted while catching a ball in unstable standing posture.

    PubMed

    Scariot, Vanessa; Rios, Jaqueline L; Claudino, Renato; Dos Santos, Eloá C; Angulski, Hanna B B; Dos Santos, Marcio J

    2016-01-01

    The main objective of this study was to analyze the role of balance exercises on anticipatory (APA) and compensatory (CPA) postural adjustments in different conditions of postural stability. Sixteen subjects were required to catch a ball while standing on rigid floor, trampoline and foam cushion surfaces. Electromyographic activities (EMG) of postural muscles were analyzed during time windows typical for APAs and CPAs. Overall there were a reciprocal activation of the muscles around the ankle and co-activations between ventral and dorsal muscles of the thigh and trunk during the catching a ball task. Compared to the rigid floor, the tibialis anterior activation was greater during the trampoline condition (CPA: p = 0.006) and the soleus muscle inhibition was higher during foam cushion condition (APA: p = 0.001; CPA: p = 0.007). Thigh and trunk muscle activities were similar across the conditions. These results advance the knowledge in postural control during body perturbations standing on unstable surfaces. Published by Elsevier Ltd.

  10. A screen of cell-surface molecules identifies leucine-rich repeat proteins as key mediators of synaptic target selection in the Drosophila neuromuscular system

    PubMed Central

    Kurusu, Mitsuhiko; Cording, Amy; Taniguchi, Misako; Menon, Kaushiki; Suzuki, Emiko; Zinn, Kai

    2008-01-01

    Summary In Drosophila embryos and larvae, a small number of identified motor neurons innervate body wall muscles in a highly stereotyped pattern. Although genetic screens have identified many proteins that are required for axon guidance and synaptogenesis in this system, little is known about the mechanisms by which muscle fibers are defined as targets for specific motor axons. To identify potential target labels, we screened 410 genes encoding cell-surface and secreted proteins, searching for those whose overexpression on all muscle fibers causes motor axons to make targeting errors. Thirty such genes were identified, and a number of these were members of a large gene family encoding proteins whose extracellular domains contain leucine-rich repeat (LRR) sequences, which are protein interaction modules. By manipulating gene expression in muscle 12, we showed that four LRR proteins participate in the selection of this muscle as the appropriate synaptic target for the RP5 motor neuron. PMID:18817735

  11. Fine tuning cellular recognition: The function of the leucine rich repeat (LRR) trans-membrane protein, LRT, in muscle targeting to tendon cells.

    PubMed

    Gilsohn, Eli; Volk, Talila

    2010-01-01

    The formation of complex tissues during embryonic development is often accompanied by directed cellular migration towards a target tissue. Specific mutual recognition between the migrating cell and its target tissue leads to the arrest of the cell migratory behavior and subsequent contact formation between the two interacting cell types. Recent studies implicated a novel family of surface proteins containing a trans-membrane domain and single leucine-rich repeat (LRR) domain in inter-cellular recognition and the arrest of cell migration. Here, we describe the involvement of a novel LRR surface protein, LRT, in targeting migrating muscles towards their corresponding tendon cells in the Drosophila embryo. LRT is specifically expressed by the target tendon cells and is essential for arresting the migratory behavior of the muscle cells. Additional studies in Drosophila S2 cultured cells suggest that LRT forms a protein complex with the Roundabout (Robo) receptor, essential for guiding muscles towards their tendon partners. Genetic analysis supports a model in which LRT performs its activity non-autonomously through its interaction with the Robo receptors expressed on the muscle surfaces. These results suggest a novel mechanism of intercellular recognition through interactions between LRR family members and Robo receptors.

  12. Three-Dimensional Innervation Zone Imaging from Multi-Channel Surface EMG Recordings.

    PubMed

    Liu, Yang; Ning, Yong; Li, Sheng; Zhou, Ping; Rymer, William Z; Zhang, Yingchun

    2015-09-01

    There is an unmet need to accurately identify the locations of innervation zones (IZs) of spastic muscles, so as to guide botulinum toxin (BTX) injections for the best clinical outcome. A novel 3D IZ imaging (3DIZI) approach was developed by combining the bioelectrical source imaging and surface electromyogram (EMG) decomposition methods to image the 3D distribution of IZs in the target muscles. Surface IZ locations of motor units (MUs), identified from the bipolar map of their MU action potentials (MUAPs) were employed as a prior knowledge in the 3DIZI approach to improve its imaging accuracy. The performance of the 3DIZI approach was first optimized and evaluated via a series of designed computer simulations, and then validated with the intramuscular EMG data, together with simultaneously recorded 128-channel surface EMG data from the biceps of two subjects. Both simulation and experimental validation results demonstrate the high performance of the 3DIZI approach in accurately reconstructing the distributions of IZs and the dynamic propagation of internal muscle activities in the biceps from high-density surface EMG recordings.

  13. THREE-DIMENSIONAL INNERVATION ZONE IMAGING FROM MULTI-CHANNEL SURFACE EMG RECORDINGS

    PubMed Central

    LIU, YANG; NING, YONG; LI, SHENG; ZHOU, PING; RYMER, WILLIAM Z.; ZHANG, YINGCHUN

    2017-01-01

    There is an unmet need to accurately identify the locations of innervation zones (IZs) of spastic muscles, so as to guide botulinum toxin (BTX) injections for the best clinical outcome. A novel 3-dimensional IZ imaging (3DIZI) approach was developed by combining the bioelectrical source imaging and surface electromyogram (EMG) decomposition methods to image the 3D distribution of IZs in the target muscles. Surface IZ locations of motor units (MUs), identified from the bipolar map of their motor unit action potentials (MUAPs) were employed as a prior knowledge in the 3DIZI approach to improve its imaging accuracy. The performance of the 3DIZI approach was first optimized and evaluated via a series of designed computer simulations, and then validated with the intramuscular EMG data, together with simultaneously recorded 128-channel surface EMG data from the biceps of two subjects. Both simulation and experimental validation results demonstrate the high performance of the 3DIZI approach in accurately reconstructing the distributions of IZs and the dynamic propagation of internal muscle activities in the biceps from high-density surface EMG recordings. PMID:26160432

  14. Effect of mandibular mobilization on electromyographic signals in muscles of mastication and static balance in individuals with temporomandibular disorder: study protocol for a randomized controlled trial

    PubMed Central

    2013-01-01

    Background The stomatognathic system and dysfunction in this system may be related to postural control. The proposal of the present study is to assess the effect of mandibular mobilization in individuals with temporomandibular disorder using surface electromyography of the muscles of mastication and stabilometric variables. Methods/Design A randomized, controlled, blind, clinical trial will be carried out, with the participants divided into three groups: 1) facial massage therapy (control group), 2) nonspecific mandibular mobilization and 3) specific mandibular mobilization. All groups will be assessed before and after treatment using the Research Diagnostic Criteria for Temporomandibular Disorders, surface electromyography of the masseter and temporal muscles and stabilometry. This study is registered with the Brazilian Registry of Clinical Trials (RBR9x8ssz). Discussion A large number of studies have employed surface electromyography to investigate the function/dysfunction of the muscles of mastication and associations with signs and symptoms of temporomandibular disorders. However, it has not yet been determined whether stabilometric variables offer adequate reliability in patients with this disorder. The results of the proposed study will help determine whether specific and/or nonspecific mandibular mobilization exerts an effect on the muscles of mastication and postural control. Moreover, if an effect is detected, the methodology defined in the proposed study will allow identifying whether the effect is local (found only in the muscles of mastication), global (found only in postural control) or generalized. PMID:24083628

  15. Conduction velocity of action potentials measured from unidimensional latency-topography in human and frog skeletal muscle fibers.

    PubMed

    Homma, S; Nakajima, Y; Hayashi, K; Toma, S

    1986-01-01

    Conduction of an action potential along skeletal muscle fibers was graphically displayed by unidimensional latency-topography, UDLT. Since the slopes of the equipotential line were linear and the width of the line was constant, it was possible to calculate conduction velocity from the slope. To determine conduction direction of the muscle action potential elicited by electric stimulation applied directly to the muscle, surface recording electrodes were placed on a two-dimensional plane over a human muscle. Thus a bi-dimensional topography was obtained. Then, twelve or sixteen surface electrodes were placed linearly along the longitudinal direction of the action potential conduction which was disclosed by the bi-dimensional topography. Thus conduction velocity of muscle action potential in man, calculated from the slope, was for m. brachioradialis, 3.9 +/- 0.4 m/s; for m. biceps brachii, 3.6 +/- 0.2 m/s; for m. sternocleidomastoideus, 3.6 +/- 0.4 m/s. By using a tungsten microelectrode to stimulate the motor axons, a convex-like equipotential line of an action potential in UDLT was obtained from human muscle fibers. Since a similar pattern of UDLT was obtained from experiments on isolated frog muscles, in which the muscle action potential was elicited by stimulating the motor axon, it was assumed that the maximum of the curve corresponds to the end-plate region, and that the slopes on both sides indicate bi-directional conduction of the action potential.

  16. Abdominal muscle activity during a standing long jump.

    PubMed

    Okubo, Yu; Kaneoka, Koji; Shiina, Itsuo; Tatsumura, Masaki; Miyakawa, Shumpei

    2013-08-01

    Experimental laboratory study. To measure the activation patterns (onset and magnitude) of the abdominal muscles during a standing long jump using wire and surface electromyography. Activation patterns of the abdominal muscles, especially the deep muscles such as the transversus abdominis (TrA), have yet to be examined during full-body movements such as jumping. Thirteen healthy men participated. Wire electrodes were inserted into the TrA with the guidance of ultrasonography, and surface electrodes were attached to the skin overlying the rectus abdominis (RA) and external oblique (EO). Electromyographic signals and video images were recorded while each subject performed a standing long jump. The jump task was divided into 3 phases: preparation, push-off, and float. For each muscle, activation onset relative to the onset of the RA and normalized muscle activation levels (percent maximum voluntary contraction) were analyzed during each phase. Comparisons between muscles and phases were assessed using 2-way analyses of variance. The onset times of the TrA and EO relative to the onset of the RA were -0.13 ? 0.17 seconds and -0.02 ? 0.07 seconds, respectively. Onset of TrA activation was earlier than that of the EO. The activation levels of all 3 muscles were significantly greater during the push-off phase than during the preparation and float phases. Consistent with previously published trunk-perturbation studies in healthy persons, the TrA was activated prior to the RA and EO. Additionally, the highest muscle activation levels were observed during the push-off phase.

  17. Muscular Activity and Fatigue in Lower-Limb and Trunk Muscles during Different Sit-To-Stand Tests.

    PubMed

    Roldán-Jiménez, Cristina; Bennett, Paul; Cuesta-Vargas, Antonio I

    2015-01-01

    Sit-to-stand (STS) tests measure the ability to get up from a chair, reproducing an important component of daily living activity. As this functional task is essential for human independence, STS performance has been studied in the past decades using several methods, including electromyography. The aim of this study was to measure muscular activity and fatigue during different repetitions and speeds of STS tasks using surface electromyography in lower-limb and trunk muscles. This cross-sectional study recruited 30 healthy young adults. Average muscle activation, percentage of maximum voluntary contraction, muscle involvement in motion and fatigue were measured using surface electrodes placed on the medial gastrocnemius (MG), biceps femoris (BF), vastus medialis of the quadriceps (QM), the abdominal rectus (AR), erector spinae (ES), rectus femoris (RF), soleus (SO) and the tibialis anterior (TA). Five-repetition STS, 10-repetition STS and 30-second STS variants were performed. MG, BF, QM, ES and RF muscles showed differences in muscle activation, while QM, AR and ES muscles showed significant differences in MVC percentage. Also, significant differences in fatigue were found in QM muscle between different STS tests. There was no statistically significant fatigue in the BF, MG and SO muscles of the leg although there appeared to be a trend of increasing fatigue. These results could be useful in describing the functional movements of the STS test used in rehabilitation programs, notwithstanding that they were measured in healthy young subjects.

  18. Insulin-induced redistribution of GLUT4 glucose carriers in the muscle fiber. In search of GLUT4 trafficking pathways.

    PubMed

    Zorzano, A; Muñoz, P; Camps, M; Mora, C; Testar, X; Palacín, M

    1996-01-01

    Insulin rapidly stimulates glucose transport in muscle fiber. This process controls the utilization of glucose in skeletal muscle, and it is deficient in various insulin-resistant states, such as non-insulin-dependent diabetes mellitus. The effect of insulin on muscle glucose transport is mainly due to the recruitment of GLUT4 glucose carriers to the cell surface of the muscle fiber. There is increasing evidence that the recruitment of GLUT4 carriers triggered by insulin affects selective domains of sarcolemma and transverse tubules. In contrast, GLUT1 is located mainly in sarcolemma and is absent in transverse tubules, and insulin does not alter its cellular distribution in muscle fiber. The differential distribution of GLUT1 and GLUT4 in the cell surface raises new questions regarding the precise endocytic and exocytic pathways that are functional in the muscle fiber. The current view of insulin-induced GLUT4 translocation is based mainly on studies performed in adipocytes. These studies have proposed the existence of intracellular compartments of GLUT4 that respond to insulin in a highly homogeneous manner. However, studies performed in skeletal muscle have identified insulin-sensitive as well as insulin-insensitive intracellular GLUT4-containing membranes. These data open a new perspective on the dynamics of intracellular GLUT4 compartments in insulin-sensitive cells.

  19. Polyurethane acrylates as effective substrates for sustained in vitro culture of human myotubes.

    PubMed

    Andriani, Yosephine; Chua, Jason Min-Wen; Chua, Benjamin Yan-Jiang; Phang, In Yee; Shyh-Chang, Ng; Tan, Wui Siew

    2017-07-15

    Muscular disease has debilitating effects with severe damage leading to death. Our knowledge of muscle biology, disease and treatment is largely derived from non-human cell models, even though non-human cells are known to differ from human cells in their biochemical responses. Attempts to develop highly sought after in vitro human cell models have been plagued by early cell delamination and difficulties in achieving human myotube culture in vitro. In this work, we developed polyurethane acrylate (PUA) materials to support long-term in vitro culture of human skeletal muscle tissue. Using a constant base with modulated crosslink density we were able to vary the material modulus while keeping surface chemistry and roughness constant. While previous studies have focused on materials that mimic soft muscle tissue with stiffness ca. 12kPa, we investigated materials with tendon-like surface moduli in the higher 150MPa to 2.4GPa range, which has remained unexplored. We found that PUA of an optimal modulus within this range can support human myoblast proliferation, terminal differentiation and sustenance beyond 35days, without use of any extracellular protein coating. Results show that PUA materials can serve as effective substrates for successful development of human skeletal muscle cell models and are suitable for long-term in vitro studies. We developed polyurethane acrylates (PUA) to modulate the human skeletal muscle cell growth and maturation in vitro by controlling surface chemistry, morphology and tuning material's stiffness. PUA was able to maintain muscle cell viability for over a month without any detectable signs of material degradation. The best performing PUA prevented premature cell detachment from the substrate which often hampered long-term muscle cell studies. It also supported muscle cell maturation up to the late stages of differentiation. The significance of these findings lies in the possibility to advance studies on muscle cell biology, disease and therapy by using human muscle cells instead of relying on the widely used animal-based in vitro models. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Laughing: a demanding exercise for trunk muscles.

    PubMed

    Wagner, Heiko; Rehmes, Ulrich; Kohle, Daniel; Puta, Christian

    2014-01-01

    Social, psychological, and physiological studies have provided evidence indicating that laughter imposes an increased demand on trunk muscles. It was the aim of this study to quantify the activation of trunk muscles during laughter yoga in comparison with crunch and back lifting exercises regarding the mean trunk muscle activity. Muscular activity during laughter yoga exercises was measured by surface electromyography of 5 trunk muscles. The activation level of internal oblique muscle during laughter yoga is higher compared to the traditional exercises. The multifidus, erector spinae, and rectus abdominis muscles were nearly half activated during laughter yoga, while the activation of the external oblique muscle was comparable with the crunch and back lifting exercises. Our results indicate that laughter yoga has a positive effect on trunk muscle activation. Thus, laughter seems to be a good activator of trunk muscles, but further research is required whether laughter yoga is a good exercise to improve neuromuscular recruitment patterns for spine stability.

  1. [Lifetime achievements of Milan H. Djordjević. 1933-1993].

    PubMed

    Pavlović, Sinisa U

    2002-09-01

    Professor Dr. Sci. Milan Djordjevitsh was an excellent cardiovascular surgeon and results of his professional and research work were well known to professional public in the country and over the world. He was born in Smederevska Palanka in 1933. He finished the University Schfool of Medicine in Belgrade in 1961 and specialized general surgery at the II Department of Surgery in Belgrade. His teacher, prof. dr. Vojislav Stojanovitsh, recognized his special interest for clinical and research work from the beginning. His doctor's thesis (1976) was "The Role of Veinous Valvula in Aortocoronographic Bypass During Increased Coronary Flow". In 1981 he formed a Bypass Centre of the Republic of Serbia which became later the Yugoslav European Reference Centre for pacemaker therapy. The same year (1981) he was rewarded "The October Award of the City of Belgrade" for science. He was the first to implant an implantable cardioverter defibrillator. This technique was carried out in Serbia only two months after the implantation of a similar system in Europe. Professor Djordjevitsh gave many lectures over the world: Detroit (1975), Huston (1975), Budapest (1978), Warsaw (1980), Stockholm (1982), Aman (1984), New-York (1988), Berlin (1987), Vienna (1998), Stockholm (1989), Moscow (1990). The professional and research work of professor Djordjevitsh in the field of electrostimulation of the heart was characterised by original ideas and permanent search for new possibilities, especially in the multidisciplinary field. Therefore, professor Djordjevitsh is considered to be the founder of modern clinical pacemaker therapy. He also practiced artistic and scientific photography. Since 1984 professor Djordjevitsh was member of the Nucleus of the European working group for heart electrostimulation and electrophysiology, and was elected in the presidency of the Nucleus; later he was its president. His interest was directed to the maturation of endocardial stimulation threshold; use of non-atrial sensors in the frequent adaptation of a permanent artificial conductor of cardiac rhythm-pacemaker to load; use of continuous electrostimulation of spinal cord in patients in terminal state of vasospastic and occlusive vascular diseases; study of the effort of electromagnetic fields on pacemaker inhibition and senzation; study of biologic-synthetic grafts. As a man of high standing, professor Djordjevitsh was expert for cardiovascular diseases and modern technology in the World Health Organization since 1988. On the basis of his great professional reputation in the country and abroad, professor Djordjevitsh was elected a corresponding member of the Serbian Academy of Science and Arts. After a few scientific meetings excellently organized by professor Djordjevitsh in the country (Dubrovnik, 1988 and in 1990 under the auspices of NASPE), professor Djordjevitsh had to organize a European congress on Pacemaker Therapy and Electrophysiology in Belgrade in 1993. Unfortunately, political events and early death of professor Djordjevitsh were the reasons why the congress was not held as planned. Professor Djordjevic died in Paris, but was buried in Belgrade in January 1993.

  2. Standardised surface electromyography allows effective submental muscles assessment.

    PubMed

    Musto, Federica; Rosati, Riccardo; Sforza, Chiarella; Toma, Marilisa; Dellavia, Claudia

    2017-06-01

    The aims of this pilot study were to evaluate: (i) the reproducibility and variability of an electromyographical protocol developed for the assessment of submental muscles (SM) (ii) to apply the new protocol to maximal teeth clenching, a simple and largely studied static task in order to quantify the relative contribution of submental muscles. In 20 healthy subjects, aged 19-35years, surface electromyography of SM, masseter (MM) and anterior temporalis (TA) muscles was performed during maximal voluntary clenching (MVC) with and without cotton rolls and the pushing of the tongue against the palate. Clenching on cotton rolls and pushing the tongue against the palate were used to standardise respectively MM and TA, and SM muscular potentials. The exercises were repeated in two appointments (T1-T2); submental muscles standardisation was also repeated twice (A-B) in each session to assess repeatability. Symmetry and activity were calculated for each couple of muscles. A two-way analysis of variance was computed for SM: no Factor 1 (T1 vs T2) or Factor 2 (A vs B) or F1×F2 significant effects were found. SM recruitment was 31% of the maximal activity, with symmetry values larger than 80%. In conclusion, standardised electromyography allows a reliable assessment of Submental muscles activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Measurement of Young’s Modulus and Internal Damping of Pork Muscle in Dynamic Mode

    NASA Astrophysics Data System (ADS)

    Chakroun, Moez; Ghozlen, Med Hédi Ben

    2016-09-01

    Automotive shocks involve various tiers’ speed for different human body tissues. Knowing the behavior of these tissues, including muscles, in different vibration frequency is therefore necessary. The muscle has viscoelatic properties. Dynamically, this material has variable mechanical properties depending on the vibration frequency. A novel technique is being employed to examine the variation of the mechanical impedance of pork muscle as a function of frequency. A force is imposed on the lower surface of the sample and acceleration is measured on its upper surface. These two parameters are measured using sensors. The sample is modeled by Kelvin-Voigt model. These measures allow deducing the change in the mechanical impedance modulus (/Zexp/ = /Force: Acceleration/) of pork muscle as a function of vibration frequency. The measured impedance has a resonance of approximately 60Hz. Best-fit parameters of theoretical impedance can be deduced by superposition with the experiment result. The variation of Young’s modulus and internal damping of pig’s muscle as a function of frequency are determined. The results obtained between 5Hz and 30Hz are the same as determined by Aimedieu and al in 2003, therefore validating our technique. The Young’s modulus of muscle increases with the frequency, on the other hand, we note a rating decrease of internal damping.

  4. A comparison of capillary hydraulic conductivities in postural and locomotor muscle.

    PubMed

    McDonagh, P F; Gore, R W

    1982-09-01

    In a comparative skeletal muscle study Folkow and Halicka (Microvasc. Res. 1: 1-14, 1968) reported that the capillary filtration coefficient (CFC) of postural (red) muscle was two times the CFC of locomotor (white) muscle. It was concluded that the twofold difference in CFC was due solely to a difference in the perfused capillary surface areas (Sf) of red vs. white muscle. However, CFC is the product of capillary hydraulic conductivity (LP) and Sf. Hence their conclusion assumed that the average LP of red muscle capillaries is exactly equal to the average LP of white muscle capillaries. The following study was undertaken to test the validity of this assumption. The microocclusion procedures and analytical model described by Lee et al. (Circ. Res. 28: 358-370, 1971) and Gore [Am. J. Physiol. 242 (Heart Circ. Physiol. 11): H268-H287, 1982] were used to determine LP. Independent measurements of LP were recorded from single capillaries in red, anterior latissimus dorsi (ALD) and white, posterior latissimus dorsi (PLD) muscles of chickens anesthetized with L.A. Thesia. We found that the mean capillary hydraulic conductivity in postural muscle [(LP)ALD = 0.20 +/- 0.06 (SE) micrometers . s-1 . cmH2O-1 (n = 11)] was significantly different from the mean capillary hydraulic conductivity in locomotor muscle [(LP)PLD = 0.061 +/- 0.01 micrometers . s-1 . cmH2O-1 (n = 14)] (P less than 0.05). These results provide direct evidence that observed differences in red vs. white muscle CFC's may not be due solely to different perfused capillary surface areas but may also be due to differences in capillary hydraulic conductivity.

  5. High Throughput Screening for Compounds That Alter Muscle Cell Glycosylation Identifies New Role for N-Glycans in Regulating Sarcolemmal Protein Abundance and Laminin Binding*

    PubMed Central

    Cabrera, Paula V.; Pang, Mabel; Marshall, Jamie L.; Kung, Raymond; Nelson, Stanley F.; Stalnaker, Stephanie H.; Wells, Lance; Crosbie-Watson, Rachelle H.; Baum, Linda G.

    2012-01-01

    Duchenne muscular dystrophy is an X-linked disorder characterized by loss of dystrophin, a cytoskeletal protein that connects the actin cytoskeleton in skeletal muscle cells to extracellular matrix. Dystrophin binds to the cytoplasmic domain of the transmembrane glycoprotein β-dystroglycan (β-DG), which associates with cell surface α-dystroglycan (α-DG) that binds laminin in the extracellular matrix. β-DG can also associate with utrophin, and this differential association correlates with specific glycosylation changes on α-DG. Genetic modification of α-DG glycosylation can promote utrophin binding and rescue dystrophic phenotypes in mouse dystrophy models. We used high throughput screening with the plant lectin Wisteria floribunda agglutinin (WFA) to identify compounds that altered muscle cell surface glycosylation, with the goal of finding compounds that increase abundance of α-DG and associated sarcolemmal glycoproteins, increase utrophin usage, and increase laminin binding. We identified one compound, lobeline, from the Prestwick library of Food and Drug Administration-approved compounds that fulfilled these criteria, increasing WFA binding to C2C12 cells and to primary muscle cells from wild type and mdx mice. WFA binding and enhancement by lobeline required complex N-glycans but not O-mannose glycans that bind laminin. However, inhibiting complex N-glycan processing reduced laminin binding to muscle cell glycoproteins, although O-mannosylation was intact. Glycan analysis demonstrated a general increase in N-glycans on lobeline-treated cells rather than specific alterations in cell surface glycosylation, consistent with increased abundance of multiple sarcolemmal glycoproteins. This demonstrates the feasibility of high throughput screening with plant lectins to identify compounds that alter muscle cell glycosylation and identifies a novel role for N-glycans in regulating muscle cell function. PMID:22570487

  6. SURFACE ELECTROMYOGRAPHY OF MASSETER AND TEMPORAL MUSCLES WITH USE PERCENTAGE WHILE CHEWING ON CANDIDATES FOR GASTROPLASTY

    PubMed Central

    dos SANTOS, Andréa Cavalcante; da SILVA, Carlos Antonio Bruno

    2016-01-01

    ABSTRACT Background: Surface electromyography identifies changes in the electrical potential of the muscles during each contraction. The percentage of use is a way to treat values enabling comparison between groups. Aim: To analyze the electrical activity and the percentage of use of masseter and temporal muscles during chewing in candidates for gastric bypass. Methods: It was used Surface Electromyography Miotool 200,400 (Miotec (r), Porto Alegre/RS, Brazil) integrated with Miograph 2.0 software, involving patients between 20-40 years old. Were included data on electrical activity simultaneously and in pairs of temporal muscle groups and masseter at rest, maximum intercuspation and during the chewing of food previously classified. Results: Were enrolled 39 patients (59 women), mean age 27.1+/-5.7. The percentage of use focused on temporal muscle, in a range of 11-20, female literacy (n=11; 47.82) on the left side and 15 (65.21) on the right-hand side. In the male, nine (56.25) at left and 12 (75.00) on the right-hand side. In masseter, also in the range of 11 to 20, female literacy (n=10; 43.48) on the left side and 11 (47.83) on the right-hand side. In the male, nine (56.25) at left and eight (50.00) on the right-hand side. Conclusion: 40-50% of the sample showed electrical activity in muscles (masseter and temporal) with variable values, and after processing into percentage value, facilitating the comparison of load of used electrical activity between the group, as well as usage percentage was obtained of muscle fibers 11-20% values involving, representing a range that is considered as a reference to the group studied. The gender was not a variable. PMID:27683776

  7. Accuracy assessment of a surface electromyogram decomposition system in human first dorsal interosseus muscle

    NASA Astrophysics Data System (ADS)

    Hu, Xiaogang; Rymer, William Z.; Suresh, Nina L.

    2014-04-01

    Objective. The aim of this study is to assess the accuracy of a surface electromyogram (sEMG) motor unit (MU) decomposition algorithm during low levels of muscle contraction. Approach. A two-source method was used to verify the accuracy of the sEMG decomposition system, by utilizing simultaneous intramuscular and surface EMG recordings from the human first dorsal interosseous muscle recorded during isometric trapezoidal force contractions. Spike trains from each recording type were decomposed independently utilizing two different algorithms, EMGlab and dEMG decomposition algorithms. The degree of agreement of the decomposed spike timings was assessed for three different segments of the EMG signals, corresponding to specified regions in the force task. A regression analysis was performed to examine whether certain properties of the sEMG and force signal can predict the decomposition accuracy. Main results. The average accuracy of successful decomposition among the 119 MUs that were common to both intramuscular and surface records was approximately 95%, and the accuracy was comparable between the different segments of the sEMG signals (i.e., force ramp-up versus steady state force versus combined). The regression function between the accuracy and properties of sEMG and force signals revealed that the signal-to-noise ratio of the action potential and stability in the action potential records were significant predictors of the surface decomposition accuracy. Significance. The outcomes of our study confirm the accuracy of the sEMG decomposition algorithm during low muscle contraction levels and provide confidence in the overall validity of the surface dEMG decomposition algorithm.

  8. A pilot study on the influence of exercising on unstable training machine on balance control and trunk muscles activity.

    PubMed

    Domeika, Aurelijus; Aleknaite-Dambrauskiene, Ieva; Poskaitis, Vytautas; Zaveckas, Vidmantas; Grigas, Vytautas; Zvironiene, Ausra

    2018-05-16

    The main position of the working population is becoming sitting. Immobile prolonged sedentary time may cause negative effects including reduced intervertebral discs nutrition. Main ways of mitigating them are regular position changes and exercising. To evaluate influence of the short term training on unstable training machine on balance control and trunk muscles activity in patients with lower back pain. Participants (n=16) experiencing lower back pain were trained on an unstable sculling machine "Rehabili". Their balance tested by (Biodex Balance System) and rectus abdominis, externus oblique, transverse abdominis, multifidus and erector spine muscles activity (measured by surface electromyography) while sitting and standing with usual and aligned body postures both before and after six weeks of training (three 15 minutes sessions per week) were compared in between. Balance control improved after the training program. Besides, more symmetrical activation of both sides rectus and transversus abdominis muscles, as well as increased transversus abdominis muscle activation of 19% (p< 0.05), were observed. Six weeks short sessions training on unstable training machine improved balance control and increased trunk muscles activity especially in aligned body posture when standing or sitting on unstable surface.

  9. Electromyography assessment in zygomaticomaxillary complex fractures.

    PubMed

    Waheed El-Anwar, Mohammad; Elsheikh, Ezzeddin; Sweed, Ahmed Hassan; Ezzeldin, Nillie

    2015-12-01

    The aim of this study was to assess the activity of the masseter and temporalis muscles using surface electromyography (EMG) in patients with zygomaticomaxillary complex (ZMC) fractures. This prospective study was carried out on 25 patients who had ZMC fractures. Fifteen patients were managed by open reduction and rigid fixation (ORIF) using titanium miniplates. This study, using surface electromyography, analyzed the activity of the masseter and temporalis muscles of 25 patients with ZMC fractures; 15 of them were surgically treated under general anesthesia (GA). Evaluations were made before surgery and 6 weeks after surgery by recording the mean of muscle contraction of 20 motor unit action potential (MUAP) against resistance, and statistical analyses were performed. A significant EMG difference between the normal and ZMC fracture sides was found (P < 0.0001) for both masseter and temporalis muscles and was significantly improved after ORIF. However, postoperative EMV values of the repaired side was significantly less than measured postoperatively in the normal side (P < 0.0001) for both muscles. ZMC fractures significantly diminish muscular activity of the masseter and temporalis and even though significant recovery of muscle activity was revealed after 6 weeks, it is still less than normal activity, highlighting the importance of postoperative rehabilitation.

  10. [Electrocoagulation on a fragment of anterior abdominal rectal muscle for the control of presacral bleeding during rectal resection].

    PubMed

    Casal Núñez, José Enrique; Martínez, María Teresa García; Poblador, Alejandro Ruano

    2012-03-01

    Presacral venous haemorrhage during rectal movement is low, but is often massive, and even fatal. Our objective is the "in vitro" determination of the results of electrocoagulation applied to a fragment of muscle on the sacral bone surface during rectal resection due to a malignant neoplasm of the rectum. Single-pole coagulation was applied "in vitro" with the selector at maximum power on a 2×2 cms muscle fragment, applied to the anterior side of the IV sacral vertebra until reaching boiling point. The method was used on 6 patients with bleeding of the presacral venous plexus. In the "in vitro" study, boiling point was reached in 90 seconds from applying the single-pole current on the muscle fragment. Electrocoagulation was applied to a 2×2 cm rectal muscle fragment in 6 patients with presacral venous haemorrhage, using pressure on the surface of the presacral bone, with the stopping of the bleeding being achieved in all cases. The use of indirect electrocoagulation on a fragment of the rectus abdominis muscle is a straightforward and highly effective technique for controlling presacral venous haemorrhage. Copyright © 2011 AEC. Published by Elsevier Espana. All rights reserved.

  11. Assessing altered motor unit recruitment patterns in paretic muscles of stroke survivors using surface electromyography.

    PubMed

    Hu, Xiaogang; Suresh, Aneesha K; Rymer, William Z; Suresh, Nina L

    2015-12-01

    The advancement of surface electromyogram (sEMG) recording and signal processing techniques has allowed us to characterize the recruitment properties of a substantial population of motor units (MUs) non-invasively. Here we seek to determine whether MU recruitment properties are modified in paretic muscles of hemispheric stroke survivors. Using an advanced EMG sensor array, we recorded sEMG during isometric contractions of the first dorsal interosseous muscle over a range of contraction levels, from 20% to 60% of maximum, in both paretic and contralateral muscles of stroke survivors. Using MU decomposition techniques, MU action potential amplitudes and recruitment thresholds were derived for simultaneously activated MUs in each isometric contraction. Our results show a significant disruption of recruitment organization in paretic muscles, in that the size principle describing recruitment rank order was materially distorted. MUs were recruited over a very narrow force range with increasing force output, generating a strong clustering effect, when referenced to recruitment force magnitude. Such disturbances in MU properties also correlated well with the impairment of voluntary force generation. Our findings provide direct evidence regarding MU recruitment modifications in paretic muscles of stroke survivors, and suggest that these modifications may contribute to weakness for voluntary contractions.

  12. Numerical calculations for effects of structure of skeletal muscle on frequency-dependence of its electrical admittance and impedance

    NASA Astrophysics Data System (ADS)

    Sekine, Katsuhisa; Yamada, Ayumi; Kageyama, Hitomi; Igarashi, Takahiro; Yamamoto, Nana; Asami, Koji

    2015-06-01

    Numerical calculations were carried out by the finite difference method using three-dimensional models to examine effects of the structure of skeletal muscle on the frequency-dependence of its electrical admittance Y and impedance Z in transversal and longitudinal directions. In the models, the muscle cell was represented by a rectangular solid surrounded by a smooth surface membrane, and the cells were assumed to be distributed periodically. The width of the cross section of the cell, thickness of the intercellular medium, and the relative permittivities and the conductivities of the cell interior, the intercellular medium and the surface membrane were changed. Based on the results of the calculations, reported changes in Y and Z of the muscles from 1 kHz to 1 MHz were analyzed. The analyses revealed that a decreased cell radius was reasonable to explain the Y and Z of the muscles of immature rats, rats subjected to sciatic nerve crush at chronic stage and the amyotrophic lateral sclerosis (ALS) mice. Changes in Y and Z due to the sciatic nerve crush at acute stage were attributable to the decreased cell radius, the increased space between the cells, the increased permittivity of the surface membrane and the increased conductivity of the cell interior. The changes in Z due to contraction were explained by the changes in the cell radius, and the conductivities of the cell interior and the intercellular medium. The changes in Z of meat due to aging were compared with the effects of the increase in the conductivity of the surface membrane.

  13. A systematic review of surface electromyography analyses of the bench press movement task

    PubMed Central

    Gołaś, Artur; Blazek, Dusan; Maszczyk, Adam; Wilk, Michał; Pietraszewski, Przemysław; Petr, Miroslav; Uhlir, Petr; Zając, Adam

    2017-01-01

    Background The bench press exercise (BP) plays an important role in recreational and professional training, in which muscle activity is an important multifactorial phenomenon. The objective of this paper is to systematically review electromyography (EMG) studies performed on the barbell BP exercise to answer the following research questions: Which muscles show the greatest activity during the flat BP? Which changes in muscle activity are related to specific conditions under which the BP movement is performed? Strategy PubMed, Scopus, Web of Science and Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library were searched through June 10, 2016. A combination of the following search terms was used: bench press, chest press, board press, test, measure, assessment, dynamometer, kinematics and biomechanics. Only original, full-text articles were considered. Results The search process resulted in 14 relevant studies that were included in the discussion. The triceps brachii (TB) and pectoralis major (PM) muscles were found to have similar activity during the BP, which was significantly higher than the activity of the anterior deltoid. During the BP movement, muscle activity changes with exercise intensity, velocity of movement, fatigue, mental focus, movement phase and stability conditions, such as bar vibration or unstable surfaces. Under these circumstances, TB is the most common object of activity change. Conclusions PM and TB EMG activity is more dominant and shows greater EMG amplitude than anterior deltoid during the BP. There are six factors that can influence muscle activity during the BP; however, the most important factor is exercise intensity, which interacts with all other factors. The research on muscle activity in the BP has several unresolved areas, such as clearly and strongly defined guidelines to perform EMG measurements (e.g., how to elaborate with surface EMG limits) or guidelines for the use of exact muscle models. PMID:28170449

  14. A new approach to the human muscle model.

    PubMed

    Baildon, R W; Chapman, A E

    1983-01-01

    Hill's (1938) two component muscle model is used as basis for digital computer simulation of human muscular contraction by means of an iterative process. The contractile (CC) and series elastic (SEC) components are lumped components of structures which produce and transmit torque to the external environment. The CC is described in angular terms along four dimensions as a series of non-planar torque-angle-angular velocity surfaces stacked on top of each other, each surface being appropriate to a given level of muscular activation. The SEC is described similarly along dimensions of torque, angular stretch, overall muscle angular displacement and activation. The iterative process introduces negligible error and allows the mechanical outcome of a variety of normal muscular contractions to be evaluated parsimoniously. The model allows analysis of many aspects of muscle behaviour as well as optimization studies. Definition of relevant relations should also allow reproduction and prediction of the outcome of contractions in individuals.

  15. Optical NIR monitoring of skeletal muscle contraction

    NASA Astrophysics Data System (ADS)

    Lago, Paolo; Gelmetti, Andrea; Pavesi, Roberta; Zambarbieri, Daniela

    1996-12-01

    NIR spectroscopy allows monitoring of muscle oxygenation and perfusion during contraction. The knowledge of modifications of blood characteristics in body tissues has relevant clinical interest. A compact and reliable device, which makes use of two laser diodes at 750 and 810 nm coupled with the skin surface through optical fibers, was tested. NIR and surface EMG signals during isometric contractions both in normal and ischaemic conditions were analyzed. A set of parameters from the 750/810 spectroscopic curve was analyzed. Two different categories depending on the recovery rate from maximal voluntary contraction to basal oxygenation conditions were found. This behavior can give information about metabolic modifications during muscle fatigue. Interesting results in testing isokinetic rehabilitation training were also obtained.

  16. Muscle networks: Connectivity analysis of EMG activity during postural control

    NASA Astrophysics Data System (ADS)

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-12-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.

  17. Identification and functional characterization of muscle satellite cells in Drosophila

    PubMed Central

    Reichert, Heinrich

    2017-01-01

    Work on genetic model systems such as Drosophila and mouse has shown that the fundamental mechanisms of myogenesis are remarkably similar in vertebrates and invertebrates. Strikingly, however, satellite cells, the adult muscle stem cells that are essential for the regeneration of damaged muscles in vertebrates, have not been reported in invertebrates. In this study, we show that lineal descendants of muscle stem cells are present in adult muscle of Drosophila as small, unfused cells observed at the surface and in close proximity to the mature muscle fibers. Normally quiescent, following muscle fiber injury, we show that these cells express Zfh1 and engage in Notch-Delta-dependent proliferative activity and generate lineal descendant populations, which fuse with the injured muscle fiber. In view of strikingly similar morphological and functional features, we consider these novel cells to be the Drosophila equivalent of vertebrate muscle satellite cells. PMID:29072161

  18. [Nasolabial muscle finite-element study and clinical application].

    PubMed

    Yin, Ningbei; Wu, Jiajun; Chen, Bo; Wang, Yongqian; Song, Tao; Ma, Hengyuan

    2015-05-01

    To investigate the nasolabial muscle anatomy and biomechanical characteristics. Micro-computed tomography scan was performed in 8 cases of spontaneous abortion fetus lip nasal specimens to construct a three-dimensional model. The nasolabial muscle structure was analyzed using Mimics software. The three-dimensional configuration model of nasolabial muscle was established based on local anatomy and tissue section, and compared with tissue section. Three dimensional finite element analysis was performed on lip nasal muscle related biomechanics and surface deformation in Application verification was carried out in 263 cases of microform cleft lip surgery. There was close relationship between nasolabial muscle. The nasolabial muscle tension system was constituted, based on which a new cleft lip repair surgery was designed and satisfied results were achieved. There is close relationship among nasolabial muscle in anatomy, histology and biomechanics. To obtain better effect, cleft lip repair should be performed on the basis of recovering muscle tension system.

  19. Electrical stimulation site influences the spatial distribution of motor units recruited in tibialis anterior.

    PubMed

    Okuma, Yoshino; Bergquist, Austin J; Hong, Mandy; Chan, K Ming; Collins, David F

    2013-11-01

    To compare the spatial distribution of motor units recruited in tibialis anterior (TA) when electrical stimulation is applied over the TA muscle belly versus the common peroneal nerve trunk. Electromyography (EMG) was recorded from the surface and from fine wires in superficial and deep regions of TA. Separate M-wave recruitment curves were constructed for muscle belly and nerve trunk stimulation. During muscle belly stimulation, significantly more current was required to generate M-waves that were 5% of the maximal M-wave (M max; M5%max), 50% M max (M 50%max) and 95% M max (M 95%max) at the deep versus the superficial recording site. In contrast, during nerve trunk stimulation, there were no differences in the current required to reach M5%max, M 50%max or M 95%max between deep and superficial recording sites. Surface EMG reflected activity in both superficial and deep muscle regions. Stimulation over the muscle belly recruited motor units from superficial to deep with increasing stimulation amplitude. Stimulation over the nerve trunk recruited superficial and deep motor units equally, regardless of stimulation amplitude. These results support the idea that where electrical stimulation is applied markedly affects how contractions are produced and have implications for the interpretation of surface EMG data. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. A Novel Method for Differentiation of Human Mesenchymal Stem Cells into Smooth Muscle-Like Cells on Clinically Deliverable Thermally Induced Phase Separation Microspheres

    PubMed Central

    Parmar, Nina; Ahmadi, Raheleh

    2015-01-01

    Muscle degeneration is a prevalent disease, particularly in aging societies where it has a huge impact on quality of life and incurs colossal health costs. Suitable donor sources of smooth muscle cells are limited and minimally invasive therapeutic approaches are sought that will augment muscle volume by delivering cells to damaged or degenerated areas of muscle. For the first time, we report the use of highly porous microcarriers produced using thermally induced phase separation (TIPS) to expand and differentiate adipose-derived mesenchymal stem cells (AdMSCs) into smooth muscle-like cells in a format that requires minimal manipulation before clinical delivery. AdMSCs readily attached to the surface of TIPS microcarriers and proliferated while maintained in suspension culture for 12 days. Switching the incubation medium to a differentiation medium containing 2 ng/mL transforming growth factor beta-1 resulted in a significant increase in both the mRNA and protein expression of cell contractile apparatus components caldesmon, calponin, and myosin heavy chains, indicative of a smooth muscle cell-like phenotype. Growth of smooth muscle cells on the surface of the microcarriers caused no change to the integrity of the polymer microspheres making them suitable for a cell-delivery vehicle. Our results indicate that TIPS microspheres provide an ideal substrate for the expansion and differentiation of AdMSCs into smooth muscle-like cells as well as a microcarrier delivery vehicle for the attached cells ready for therapeutic applications. PMID:25205072

  1. Physiological response to submaximal isometric contractions of the paravertebral muscles

    NASA Technical Reports Server (NTRS)

    Jensen, B. R.; Jorgensen, K.; Hargens, A. R.; Nielsen, P. K.; Nicolaisen, T.

    1999-01-01

    STUDY DESIGN: Brief (30-second) isometric trunk extensions at 5%, 20%, 40%, 60%, and 80% of maximal voluntary contraction (MVC) and 3 minutes of prolonged trunk extension (20% MVC) in erect position were studied in nine healthy male subjects. OBJECTIVES: To investigate the intercorrelation between intramuscular pressure and tissue oxygenation of the paravertebral muscles during submaximal isometric contractions and further, to evaluate paravertebral electromyogram and intramuscular pressure as indicators of force development. SUMMARY OF BACKGROUND DATA: Local physiologic responses to muscle contraction are incompletely understood. METHODS: Relative oxygenation was monitored with noninvasive near-infrared spectroscopy, intramuscular pressure was measured with a transducer-tipped catheter, and surface electromyogram was monitored at three recording sites. RESULTS: The root mean square amplitudes of the paravertebral electromyogram (L4, left and right; T12, right) and intramuscular pressure measured in the lumbar multifidus muscle at L4 increased with greater force development in a curvilinear manner. A significant decrease in the oxygenation of the lumbar paravertebral muscle in response to muscle contraction was found at an initial contraction level of 20% MVC. This corresponded to a paravertebral intramuscular pressure of 30-40 mm Hg. However, during prolonged trunk extension, no further decrease in tissue oxygenation was found compared with the tissue oxygenation level at the end of the brief contractions, indicating that homeostatic adjustments (mean blood pressure and heart rate) over time were sufficient to maintain paravertebral muscle oxygen levels. CONCLUSION: At a threshold intramuscular pressure of 30-40 mm Hg during muscle contraction, oxygenation in the paravertebral muscles is significantly reduced. The effect of further increase in intramuscular pressure on tissue oxygenation over time may be compensated for by an increase in blood pressure and heart rate. Surface electromyogram amplitudes and intramuscular pressure can be used as indicators of paravertebral muscle force.

  2. An evaluation of upper-body muscle activation during coupled and uncoupled instability resistance training.

    PubMed

    Campbell, Brian M; Kutz, Matt R; Morgan, Amy L; Fullenkamp, Adam M; Ballenger, Ryan

    2014-07-01

    Recently, there has been a growth in the popularity of resistance exercises performed on unstable surfaces. However, the relationship between unstable surface training and load coupling on muscle activation is unclear. The purpose of this study was to evaluate changes in muscle activation during a barbell (BB) (coupled) and dumbbell (DB) (uncoupled) chest press exercise performed on an unstable surface. The 3 specific chest press conditions included 50% 1 repetition maximum (RM) with BB (50% BB), 50% 1RM with DBs (50% DB), and 25% 1RM with DBs (25% DB). Ten male subjects participated in the study (age, 23.9 ± 2.6 years; body weight, 82.8 ± 10.2 kg). During testing, mean electromyographic activity was assessed for pectoralis major (PM), triceps brachii, anterior deltoid (AD), and rectus abdominis (RA) and was presented as a percent change across the lifting conditions. It was observed that muscle activation increased by 15% in both the PM and RA from the 50% BB condition to the 50% DB condition. Also, the greatest percent difference in muscle activation between the 50 and 25% DB conditions occurred for PM and AD (+54% during 50% DB). These results suggest that demands on the core musculature to provide stability are increased with the use of DBs (uncoupled) as opposed to a BB (coupled). Where instability training provides a sufficient hypertrophy stimulus in prime mover muscle groups, there may be the added benefit of core stability training. Specifically, this type of training may benefit both untrained persons and those engaged in active rehabilitation.

  3. Surface Electromyographic Activity of the Abdominal Muscles During Pelvic-Tilt and Abdominal-Hollowing Exercises

    PubMed Central

    Drysdale, Cheri L.; Earl, Jennifer E.

    2004-01-01

    Objective: To investigate surface electromyographic (EMG) activity of the rectus abdominus and external oblique abdominus muscles during pelvic-tilt and abdominal-hollowing exercises performed in different positions. Design and Setting: 2 × 3 (exercise by position) within-subjects design with repeated measures on both factors. All testing was performed in a university laboratory. Subjects: Twenty-six healthy, active young adult females. Measurements: Surface EMG activity was recorded from the left and right rectus abdominus and external oblique muscles while the 2 exercises (pelvic tilt and abdominal hollowing) were performed in different positions (standard, legs supported, and legs unsupported). The standard position was supine in the crook-lying position, the supported position was with hips and knees flexed to 90° and legs supported on a platform, and the unsupported position was with hips and knees flexed to 90° without external support. Peak EMG activity was normalized to a maximum voluntary isometric contraction for each muscle. Results: For the rectus abdominus, there was an interaction between position and activity. Abdominal hollowing produced significantly less activity than the pelvic tilt in all positions. The difference between the 2 exercises with the legs unsupported was of a greater magnitude than the other 2 positions. For the external obliques, there was significantly lower activity during the abdominal hollowing compared with the pelvic tilting. The greatest muscle activity occurred with the legs-unsupported position during both exercises. Conclusions: Abdominal-hollowing exercises produced less rectus abdominus and external oblique activity than pelvic-tilting exercises. Abdominal hollowing may be performed with minimal activation of the large global abdominal muscles. PMID:15085209

  4. Surface Electromyographic Activity of the Abdominal Muscles During Pelvic-Tilt and Abdominal-Hollowing Exercises.

    PubMed

    Drysdale, Cheri L.; Earl, Jennifer E.; Hertel, Jay

    2004-03-01

    OBJECTIVE: To investigate surface electromyographic (EMG) activity of the rectus abdominus and external oblique abdominus muscles during pelvic-tilt and abdominal-hollowing exercises performed in different positions. DESIGN AND SETTING: 2 x 3 (exercise by position) within-subjects design with repeated measures on both factors. All testing was performed in a university laboratory. SUBJECTS: Twenty-six healthy, active young adult females. MEASUREMENTS: Surface EMG activity was recorded from the left and right rectus abdominus and external oblique muscles while the 2 exercises (pelvic tilt and abdominal hollowing) were performed in different positions (standard, legs supported, and legs unsupported). The standard position was supine in the crook-lying position, the supported position was with hips and knees flexed to 90 degrees and legs supported on a platform, and the unsupported position was with hips and knees flexed to 90 degrees without external support. Peak EMG activity was normalized to a maximum voluntary isometric contraction for each muscle. RESULTS: For the rectus abdominus, there was an interaction between position and activity. Abdominal hollowing produced significantly less activity than the pelvic tilt in all positions. The difference between the 2 exercises with the legs unsupported was of a greater magnitude than the other 2 positions. For the external obliques, there was significantly lower activity during the abdominal hollowing compared with the pelvic tilting. The greatest muscle activity occurred with the legs-unsupported position during both exercises. CONCLUSIONS: Abdominal-hollowing exercises produced less rectus abdominus and external oblique activity than pelvic-tilting exercises. Abdominal hollowing may be performed with minimal activation of the large global abdominal muscles.

  5. Lower Arm Muscle Activation during Indirect-Localized Vibration: The Influence of Skill Levels When Applying Different Acceleration Loads.

    PubMed

    Padulo, Johnny; Di Giminiani, Riccardo; Dello Iacono, Antonio; Zagatto, Alessandro M; Migliaccio, Gian M; Grgantov, Zoran; Ardigò, Luca P

    2016-01-01

    We investigated the electromyographic response to synchronous indirect-localized vibration interventions in international and national table tennis players. Twenty-six male table tennis players, in a standing position, underwent firstly an upper arms maximal voluntary contraction and thereafter two different 30-s vibration interventions in random order: high acceleration load (peak acceleration = 12.8 g, frequency = 40 Hz; peak-to-peak displacement = 4.0 mm), and low acceleration load (peak acceleration = 7.2 g, frequency = 30 Hz, peak-to-peak displacement = 4.0 mm). Surface electromyography root mean square from brachioradialis, extensor digitorum, flexor carpi radialis, and flexor digitorum superficialis recorded during the two vibration interventions was normalized to the maximal voluntary contraction recording. Normalized surface electromyography root mean square was higher in international table tennis players with respect to national ones in all the interactions between muscles and vibration conditions (P < 0.05), with the exception of flexor carpi radialis (at low acceleration load, P > 0.05). The difference in normalized surface electromyography root mean square between international table tennis players and national ones increased in all the muscles with high acceleration load (P < 0.05), with the exception of flexor digitorum superficialis (P > 0.05). The muscle activation during indirect-localized vibration seems to be both skill level and muscle dependent. These results can optimize the training intervention in table tennis players when applying indirect-localized vibration to lower arm muscles. Future investigations should discriminate between middle- and long-term adaptations in response to specific vibration loads.

  6. Lower Arm Muscle Activation during Indirect-Localized Vibration: The Influence of Skill Levels When Applying Different Acceleration Loads

    PubMed Central

    Padulo, Johnny; Di Giminiani, Riccardo; Dello Iacono, Antonio; Zagatto, Alessandro M.; Migliaccio, Gian M.; Grgantov, Zoran; Ardigò, Luca P.

    2016-01-01

    We investigated the electromyographic response to synchronous indirect-localized vibration interventions in international and national table tennis players. Twenty-six male table tennis players, in a standing position, underwent firstly an upper arms maximal voluntary contraction and thereafter two different 30-s vibration interventions in random order: high acceleration load (peak acceleration = 12.8 g, frequency = 40 Hz; peak-to-peak displacement = 4.0 mm), and low acceleration load (peak acceleration = 7.2 g, frequency = 30 Hz, peak-to-peak displacement = 4.0 mm). Surface electromyography root mean square from brachioradialis, extensor digitorum, flexor carpi radialis, and flexor digitorum superficialis recorded during the two vibration interventions was normalized to the maximal voluntary contraction recording. Normalized surface electromyography root mean square was higher in international table tennis players with respect to national ones in all the interactions between muscles and vibration conditions (P < 0.05), with the exception of flexor carpi radialis (at low acceleration load, P > 0.05). The difference in normalized surface electromyography root mean square between international table tennis players and national ones increased in all the muscles with high acceleration load (P < 0.05), with the exception of flexor digitorum superficialis (P > 0.05). The muscle activation during indirect-localized vibration seems to be both skill level and muscle dependent. These results can optimize the training intervention in table tennis players when applying indirect-localized vibration to lower arm muscles. Future investigations should discriminate between middle- and long-term adaptations in response to specific vibration loads. PMID:27378948

  7. Muscle coordination in cycling: effect of surface incline and posture.

    PubMed

    Li, L; Caldwell, G E

    1998-09-01

    The purpose of the present study was to examine the neuromuscular modifications of cyclists to changes in grade and posture. Eight subjects were tested on a computerized ergometer under three conditions with the same work rate (250 W): pedaling on the level while seated, 8% uphill while seated, and 8% uphill while standing (ST). High-speed video was taken in conjunction with surface electromyography (EMG) of six lower extremity muscles. Results showed that rectus femoris, gluteus maximus (GM), and tibialis anterior had greater EMG magnitude in the ST condition. GM, rectus femoris, and the vastus lateralis demonstrated activity over a greater portion of the crank cycle in the ST condition. The muscle activities of gastrocnemius and biceps femoris did not exhibit profound differences among conditions. Overall, the change of cycling grade alone from 0 to 8% did not induce a significant change in neuromuscular coordination. However, the postural change from seated to ST pedaling at 8% uphill grade was accompanied by increased and/or prolonged muscle activity of hip and knee extensors. The observed EMG activity patterns were discussed with respect to lower extremity joint moments. Monoarticular extensor muscles (GM, vastus lateralis) demonstrated greater modifications in activity patterns with the change in posture compared with their biarticular counterparts. Furthermore, muscle coordination among antagonist pairs of mono- and biarticular muscles was altered in the ST condition; this finding provides support for the notion that muscles within these antagonist pairs have different functions.

  8. Preferential distribution of nociceptive input to motoneurons with muscle units in the cranial portion of the upper trapezius muscle.

    PubMed

    Dideriksen, Jakob L; Holobar, Ales; Falla, Deborah

    2016-08-01

    Pain is associated with changes in the neural drive to muscles. For the upper trapezius muscle, surface electromyography (EMG) recordings have indicated that acute noxious stimulation in either the cranial or the caudal region of the muscle leads to a relative decrease in muscle activity in the cranial region. It is, however, not known if this adaption reflects different recruitment thresholds of the upper trapezius motor units in the cranial and caudal region or a nonuniform nociceptive input to the motor units of both regions. This study investigated these potential mechanisms by direct motor unit identification. Motor unit activity was investigated with high-density surface EMG signals recorded from the upper trapezius muscle of 12 healthy volunteers during baseline, control (intramuscular injection of isotonic saline), and painful (hypertonic saline) conditions. The EMG was decomposed into individual motor unit spike trains. Motor unit discharge rates decreased significantly from control to pain conditions by 4.0 ± 3.6 pulses/s (pps) in the cranial region but not in the caudal region (1.4 ± 2.8 pps; not significant). These changes were compatible with variations in the synaptic input to the motoneurons of the two regions. These adjustments were observed, irrespective of the location of noxious stimulation. These results strongly indicate that the nociceptive synaptic input is distributed in a nonuniform way across regions of the upper trapezius muscle. Copyright © 2016 the American Physiological Society.

  9. Preferential distribution of nociceptive input to motoneurons with muscle units in the cranial portion of the upper trapezius muscle

    PubMed Central

    Dideriksen, Jakob L.; Holobar, Ales

    2016-01-01

    Pain is associated with changes in the neural drive to muscles. For the upper trapezius muscle, surface electromyography (EMG) recordings have indicated that acute noxious stimulation in either the cranial or the caudal region of the muscle leads to a relative decrease in muscle activity in the cranial region. It is, however, not known if this adaption reflects different recruitment thresholds of the upper trapezius motor units in the cranial and caudal region or a nonuniform nociceptive input to the motor units of both regions. This study investigated these potential mechanisms by direct motor unit identification. Motor unit activity was investigated with high-density surface EMG signals recorded from the upper trapezius muscle of 12 healthy volunteers during baseline, control (intramuscular injection of isotonic saline), and painful (hypertonic saline) conditions. The EMG was decomposed into individual motor unit spike trains. Motor unit discharge rates decreased significantly from control to pain conditions by 4.0 ± 3.6 pulses/s (pps) in the cranial region but not in the caudal region (1.4 ± 2.8 pps; not significant). These changes were compatible with variations in the synaptic input to the motoneurons of the two regions. These adjustments were observed, irrespective of the location of noxious stimulation. These results strongly indicate that the nociceptive synaptic input is distributed in a nonuniform way across regions of the upper trapezius muscle. PMID:27226455

  10. Effect of rubber flooring on dairy cattle stepping behavior and muscle activity.

    PubMed

    Rajapaksha, Eranda; Winkler, Christoph; Tucker, Cassandra B

    2015-04-01

    Use of compressible flooring, such as rubber, has increased on dairy farms. Rubber improves locomotion and is well used by cattle in preference experiments that combine walking and standing. Previous work has found that rubber is particularly beneficial for lame animals, perhaps because a softer material is particularly useful when a single hoof is compromised. The goal of this work was to evaluate the effect of flooring while standing, because cattle in freestall housing spend 40 to 50% of their time engaged in this behavior. In a 2 × 2 design, cows (n = 16) were evaluated on 4 standing surfaces that varied in terms of both floor type (concrete or rubber) and presentation [same floor under all 4 legs (all 4 legs on either concrete or rubber) or a rough surface under only one hind leg and the other 3 legs on concrete or rubber] in a crossover design. Surface electromyograms were used to evaluate muscle fatigue, total activity, and movement of muscle activity between legs during 1 h of standing. Muscle fatigue was evaluated in 2 contexts: (1) static contractions when cows continuously transferred weight to each hind leg, before and after 1 h of standing, and (2) dynamic contractions associated with steps during 1 h on treatment surfaces. In addition, stepping rate, time between each consecutive step, and the latency to lie down after testing were measured. No interaction between floor type and presentation was found. Presentation had a significant effect; when one hind leg was on a rough surface, cattle took 1.7 times more steps with this leg and the non-rough hind leg had 1.2 times more muscle activity, compared with when all 4 legs were on the same surface. These changes are consistent with movement away from concrete with protrusions. When standing on rubber, muscle-activity movements among legs remained stable (0.6-0.7 movements per min) over 1 h but increased on concrete (0.6-0.9 movements per min), indicating that, like humans, cattle may sway to counteract effects of standing. However, additional work, including measurements of blood flow in the leg, is needed to fully understand the biological implications of these changes. Overall, the rubber flooring tested had little effect on standing behavior. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Electromyographic Analysis of the Lower Limb Muscles in Low- and High-Handicap Golfers

    ERIC Educational Resources Information Center

    Marta, Sérgio; Silva, Luís; Vaz, João R.; Castro, Maria António; Reinaldo, Gustavo; Pezarat-Correia, Pedro

    2016-01-01

    Purpose: The aim of this study was to compare the electromyographic patterns of the lower limb muscles during a golf swing performed by low- and high-handicap golfers. Method: Ten golfers (5 low- and 5 high-handicap) performed 8 swings using a 7-iron. Surface electromyography (EMG) was recorded for the following lower limb muscles on both sides:…

  12. Determination of the motor unit behavior of lumbar erector spinae muscles through surface EMG decomposition technology in healthy female subjects.

    PubMed

    Silva, Mariana Felipe; Dias, Josilainne Marcelino; Pereira, Ligia Maxwell; Mazuquin, Bruno Fles; Lindley, Steven; Richards, Jim; Cardoso, Jefferson Rosa

    2017-01-01

    The aims of this study were to determine the motor unit behavior of the erector spinae muscles and to assess whether differences exist between the dominant/nondominant sides of the back muscles. Nine healthy women, aged 21.7 years (SD = 0.7), performed a back extension test. Surface electromyographic decomposition data were collected from both sides of the erector spinae and decomposed into individual motor unit action potential trains. The mean firing rate for each motor unit was calculated, and a regression analysis was performed against the corresponding recruitment thresholds. The mean firing rate ranged from 15.9 to 23.9 pps and 15.8 to 20.6 pps on the dominant and nondominant sides, respectively. However, the early motor unit potentials of the nondominant lumbar erector spinae muscles were recruited at a lower firing rate. This technique may further our understanding of individuals with back pain and other underlying neuromuscular diseases. Muscle Nerve 55: 28-34, 2017. © 2016 Wiley Periodicals, Inc.

  13. Assessment of bioelectrical activity of synergistic muscles during pelvic floor muscles activation in postmenopausal women with and without stress urinary incontinence: a preliminary observational study

    PubMed Central

    Ptaszkowski, Kuba; Paprocka-Borowicz, Małgorzata; Słupska, Lucyna; Bartnicki, Janusz; Dymarek, Robert; Rosińczuk, Joanna; Heimrath, Jerzy; Dembowski, Janusz; Zdrojowy, Romuald

    2015-01-01

    Objective Muscles such as adductor magnus (AM), gluteus maximus (GM), rectus abdominis (RA), and abdominal external and internal oblique muscles are considered to play an important role in the treatment of stress urinary incontinence (SUI), and the relationship between contraction of these muscles and pelvic floor muscles (PFM) has been established in previous studies. Synergistic muscle activation intensifies a woman’s ability to contract the PFM. In some cases, even for continent women, it is not possible to fully contract their PFM without involving the synergistic muscles. The primary aim of this study was to assess the surface electromyographic activity of synergistic muscles to PFM (SPFM) during resting and functional PFM activation in postmenopausal women with and without SUI. Materials and methods This study was a preliminary, prospective, cross-sectional observational study and included volunteers and patients who visited the Department and Clinic of Urology, University Hospital in Wroclaw, Poland. Forty-two patients participated in the study and were screened for eligibility criteria. Thirty participants satisfied the criteria and were categorized into two groups: women with SUI (n=16) and continent women (n=14). The bioelectrical activity of PFM and SPFM (AM, RA, GM) was recorded with a surface electromyographic instrument in a standing position during resting and functional PFM activity. Results Bioelectrical activity of RA was significantly higher in the incontinent group than in the continent group. These results concern the RA activity during resting and functional PFM activity. The results for other muscles showed no significant difference in bioelectrical activity between groups. Conclusion In women with SUI, during the isolated activation of PFM, an increased synergistic activity of RA muscle was observed; however, this activity was not observed in asymptomatic women. This may indicate the important accessory contribution of these muscles in the mechanism of continence. PMID:26445533

  14. Automated muscle wrapping using finite element contact detection.

    PubMed

    Favre, Philippe; Gerber, Christian; Snedeker, Jess G

    2010-07-20

    Realistic muscle path representation is essential to musculoskeletal modeling of joint function. Algorithms predicting these muscle paths typically rely on a labor intensive predefinition of via points or underlying geometries to guide wrapping for given joint positions. While muscle wrapping using anatomically precise three-dimensional (3D) finite element (FE) models of bone and muscle has been achieved, computational expense and pre-processing associated with this approach exclude its use in applications such as subject-specific modeling. With the intention of combining advantageous features of both approaches, an intermediate technique relying on contact detection capabilities of commercial FE packages is presented. We applied the approach to the glenohumeral joint, and validated the method by comparison against existing experimental data. Individual muscles were modeled as a straight series of deformable beam elements and bones as anatomically precise 3D rigid bodies. Only the attachment locations and a default orientation of the undeformed muscle segment were pre-defined. The joint was then oriented in a static position of interest. The muscle segment free end was then moved along the shortest Euclidean path to its origin on the scapula, wrapping the muscle along bone surfaces by relying on software contact detection. After wrapping for a given position, the resulting moment arm was computed as the perpendicular distance from the line of action vector to the humeral head center of rotation. This approach reasonably predicted muscle length and moment arm for 27 muscle segments when compared to experimental measurements over a wide range of shoulder motion. Artificial via points or underlying contact geometries were avoided, contact detection and multiobject wrapping on the bone surfaces were automatic, and low computational cost permitted wrapping of individual muscles within seconds on a standard desktop PC. These advantages may be valuable for both general and subject-specific musculoskeletal modeling. 2010 Elsevier Ltd. All rights reserved.

  15. Assessment of bioelectrical activity of synergistic muscles during pelvic floor muscles activation in postmenopausal women with and without stress urinary incontinence: a preliminary observational study.

    PubMed

    Ptaszkowski, Kuba; Paprocka-Borowicz, Małgorzata; Słupska, Lucyna; Bartnicki, Janusz; Dymarek, Robert; Rosińczuk, Joanna; Heimrath, Jerzy; Dembowski, Janusz; Zdrojowy, Romuald

    2015-01-01

    Muscles such as adductor magnus (AM), gluteus maximus (GM), rectus abdominis (RA), and abdominal external and internal oblique muscles are considered to play an important role in the treatment of stress urinary incontinence (SUI), and the relationship between contraction of these muscles and pelvic floor muscles (PFM) has been established in previous studies. Synergistic muscle activation intensifies a woman's ability to contract the PFM. In some cases, even for continent women, it is not possible to fully contract their PFM without involving the synergistic muscles. The primary aim of this study was to assess the surface electromyographic activity of synergistic muscles to PFM (SPFM) during resting and functional PFM activation in postmenopausal women with and without SUI. This study was a preliminary, prospective, cross-sectional observational study and included volunteers and patients who visited the Department and Clinic of Urology, University Hospital in Wroclaw, Poland. Forty-two patients participated in the study and were screened for eligibility criteria. Thirty participants satisfied the criteria and were categorized into two groups: women with SUI (n=16) and continent women (n=14). The bioelectrical activity of PFM and SPFM (AM, RA, GM) was recorded with a surface electromyographic instrument in a standing position during resting and functional PFM activity. Bioelectrical activity of RA was significantly higher in the incontinent group than in the continent group. These results concern the RA activity during resting and functional PFM activity. The results for other muscles showed no significant difference in bioelectrical activity between groups. In women with SUI, during the isolated activation of PFM, an increased synergistic activity of RA muscle was observed; however, this activity was not observed in asymptomatic women. This may indicate the important accessory contribution of these muscles in the mechanism of continence.

  16. Improving respiration in patients with tetraplegia by functional electrical stimulation: an anatomical perspective.

    PubMed

    Bell, Sarah; Shaw-Dunn, John; Gollee, Henrik; Allan, David B; Fraser, Matthew H; McLean, Alan N

    2007-08-01

    Patients with tetraplegia often have respiratory complications because of paralysis of the abdominal and intercostal muscles. Functional electrical stimulation (FES) has been used to improve breathing in these patients by applying surface stimulation to the abdominal muscles. We aimed to find the best nerves to stimulate directly to increase tidal volume and make cough more effective. Surface electrodes were placed on a patient's abdominal wall to find the optimum points for surface stimulation. These positions were plotted on a transparent sheet. The abdomino-intercostal nerves were dissected in five male dissecting room cadavers matched for size with the patient. The plastic sheet was then superimposed over each of the dissections to clarify the relationship between optimum surface stimulation points and the underlying nerves. Results show that the optimum surface stimulation points overlie the course of abdomino-intercostal nerves T9, 10, and 11. The success with selecting stimulation points associated with T9, 10, and 11 is probably because of the large mass of abdominal muscle supplied by these nerves. The constant position of the nerves below the ribs makes the intercostal space a possible site for direct stimulation of the abdomino-intercostal nerves.

  17. Continuous visual field motion impacts the postural responses of older and younger women during and after support surface tilt

    PubMed Central

    Lauer, Richard T.; Keshner, Emily A.

    2011-01-01

    The effect of continuous visual flow on the ability to regain and maintain postural orientation was examined. Fourteen young (20–39 years old) and 14 older women (60–79 years old) stood quietly during 3° (30°/s) dorsiflexion tilt of the support surface combined with 30° and 45°/s upward or downward pitch rotations of the visual field. The support surface was held tilted for 30 s and then returned to neutral over a 30-s period while the visual field continued to rotate. Segmental displacement and bilateral tibialis anterior and gastrocnemius muscle EMG responses were recorded. Continuous wavelet transforms were calculated for each muscle EMG response. An instantaneous mean frequency curve (IMNF) of muscle activity, center of mass (COM), center of pressure (COP), and angular excursion at the hip and ankle were used in a functional principal component analysis (fPCA). Functional component weights were calculated and compared with mixed model repeated measures ANOVAs. The fPCA revealed greatest mathematical differences in COM and COP responses between groups or conditions during the period that the platform transitioned from the sustained tilt to a return to neutral position. Muscle EMG responses differed most in the period following support surface tilt indicating that muscle activity increased to support stabilization against the visual flow. Older women exhibited significantly larger COM and COP responses in the direction of visual field motion and less muscle modulation when the platform returned to neutral than younger women. Results on a Rod and Frame test indicated that older women were significantly more visually dependent than the younger women. We concluded that a stiffer body combined with heightened visual sensitivity in older women critically interferes with their ability to counteract posturally destabilizing environments. PMID:21479659

  18. [Effects of chronic experimental stress and endogenous opioids on histophysiological parameters of the thyroid gland].

    PubMed

    Krasnoperov, R A; Glumova, V A; Riashchikov, S N; Proshutina, N E

    1992-01-01

    In adult rabbits stress was modelled by electrostimulation of the hypothalamus ventromedial nucleus (15-hour-long session during 30 days) and medulla's raphe big nucleus which is one of the central places of the opioid peptides synthesis was irritated. It is revealed, that under stress thyroid gland responds by serum T3 increase in comparison with control animals with statistically significant variability of the T4 profile. Chronicity of the emotional agitation involves destructive changes in the thyroid parenchyma the hurting effect of the negative emotional factor is expressed less during opioid peptides complex activation. It is suggested that there are its own stress-limiting mechanisms in thyroid gland.

  19. Use of surface electromyography in phonation studies: an integrative review

    PubMed Central

    Balata, Patricia Maria Mendes; Silva, Hilton Justino da; Moraes, Kyvia Juliana Rocha de; Pernambuco, Leandro de Araújo; Moraes, Sílvia Regina Arruda de

    2013-01-01

    Summary Introduction: Surface electromyography has been used to assess the extrinsic laryngeal muscles during chewing and swallowing, but there have been few studies assessing these muscles during phonation. Objective: To investigate the current state of knowledge regarding the use of surface electromyography for evaluation of the electrical activity of the extrinsic muscles of the larynx during phonation by means of an integrative review. Method: We searched for articles and other papers in the PubMed, Medline/Bireme, and Scielo databases that were published between 1980 and 2012, by using the following descriptors: surface electromyography and voice, surface electromyography and phonation, and surface electromyography and dysphonia. The articles were selectedon the basis ofinclusion and exclusion criteria. Data Synthesis: This was carried out with a cross critical matrix. We selected 27 papers,i.e., 24 articles and 3 theses. The studies differed methodologically with regards to sample size and investigation techniques, making it difficult to compare them, but showed differences in electrical activity between the studied groups (dysphonicsubjects, non-dysphonicsubjects, singers, and others). Conclusion: Electromyography has clinical applicability when technical precautions with respect to application and analysis are obeyed. However, it is necessary to adopt a universal system of assessment tasks and related measurement techniques to allow comparisons between studies. PMID:25992030

  20. The use of surface electromyography as a tool in differentiating temporomandibular disorders from neck disorders.

    PubMed

    Ferrario, Virgilio F; Tartaglia, Gianluca M; Luraghi, Francesca E; Sforza, Chiarella

    2007-11-01

    The aim of this study was to assess the electromyographic characteristics of the masticatory muscles (masseter and temporalis) of patients with either "temporomandibular joint disorder" or "neck pain". Surface electromyography of the right and left masseter and temporalis muscles was performed during maximum teeth clenching in 38 patients aged 21-67 years who had either (a) temporomandibular joint disorder (24 patients); (b) "neck pain" (13 patients). Ninety-five control, healthy subjects were also examined. During clenching, standardized total muscle activities (electromyographic potentials over time) were significantly different in the three groups: 75 microV/microVs% in the temporomandibular joint disorder patients, 124 microV/microVs% in the neck pain patients, and 95 microV/microVs% in the control subjects (analysis of variance, P<0.001). The temporomandibular joint disorder patients also had significantly (P<0.001) more asymmetric muscle potentials (78%) than either neck pain patients (87%) or control subjects (92%). A linear discriminant function analysis allowed a significant separation between the two patient groups, with a single patient error of 18.2%. Surface electromyographic analysis during clenching allowed to differentiate between patients with a temporomandibular joint disorder and patients with a neck pain problem.

  1. Sand training: Exercise-induced muscle damage and inflammatory responses to matched-intensity exercise.

    PubMed

    Brown, Henry; Dawson, Brian; Binnie, Martyn J; Pinnington, Hugh; Sim, Marc; Clemons, Tristan D; Peeling, Peter

    2017-07-01

    This study compared markers of muscle damage and inflammation elevated by a matched-intensity interval running session on soft sand and grass surfaces. In a counterbalanced, repeated-measures and crossover design, 10 well-trained female athletes completed 2 interval-based running sessions 1 week apart on either a grass or a sand surface. Exercise heart rate (HR) was fixed at 83-88% of HR maximum. Venous blood samples were collected pre-, post- and 24 h post-exercise, and analysed for myoglobin (Mb) and C-reactive protein (CRP). Perceptual ratings of exertion (RPE) and muscle soreness (DOMS) were recorded immediately post- and 24 h post-exercise. A significant time effect showed that Mb increased from pre- to post-exercise on grass (p = .008) but not on sand (p = .611). Furthermore, there was a greater relative increase in Mb on grass compared with that on sand (p = .026). No differences in CRP were reported between surfaces (p > .05). The HR, RPE and DOMS scores were not significantly different between conditions (p  >  .05). These results suggest that in response to a matched-intensity exercise bout, markers of post-exercise muscle damage may be reduced by running on softer ground surfaces. Such training strategy may be used to minimize musculoskeletal strain while still incurring an equivalent cardiovascular training stimulus.

  2. Real time estimation of generation, extinction and flow of muscle fibre action potentials in high density surface EMG.

    PubMed

    Mesin, Luca

    2015-02-01

    Developing a real time method to estimate generation, extinction and propagation of muscle fibre action potentials from bi-dimensional and high density surface electromyogram (EMG). A multi-frame generalization of an optical flow technique including a source term is considered. A model describing generation, extinction and propagation of action potentials is fit to epochs of surface EMG. The algorithm is tested on simulations of high density surface EMG (inter-electrode distance equal to 5mm) from finite length fibres generated using a multi-layer volume conductor model. The flow and source term estimated from interference EMG reflect the anatomy of the muscle, i.e. the direction of the fibres (2° of average estimation error) and the positions of innervation zone and tendons under the electrode grid (mean errors of about 1 and 2mm, respectively). The global conduction velocity of the action potentials from motor units under the detection system is also obtained from the estimated flow. The processing time is about 1 ms per channel for an epoch of EMG of duration 150 ms. A new real time image processing algorithm is proposed to investigate muscle anatomy and activity. Potential applications are proposed in prosthesis control, automatic detection of optimal channels for EMG index extraction and biofeedback. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Dynamic pushing on three frictional surfaces: maximum acceptable forces, cardiopulmonary and calf muscle metabolic responses in healthy men.

    PubMed

    Maikala, Rammohan V; Dempsey, Patrick G; Ciriello, Vincent M; O'Brien, Niall V

    2009-06-01

    Pushing is an important materials handling activity in many occupations; however, pushing-related physiological investigations are still in infancy. The purpose was to evaluate maximum acceptable forces and physiological responses while pushing on: treadmill (TREAD); plywood floor (PLY); and Teflon floor (TEF). Acceptable forces, cardiopulmonary and calf muscle oxygenation and blood volume responses were collected simultaneously while 12 men (age 39 +/- 13 years; height 178 +/- 6 cm; and body mass 91.5 +/- 16 kg) pushed for 2 h on each surface at their psychophysical workload. Participants selected higher forces on the PLY, resulting in higher pulmonary oxygen uptake compared to that of TEF (by approximately 9%) and TREAD (by approximately 18%). Pushing on the TEF demonstrated 50-56% lower blood volume changes and 1.5-1.8 times more oxygenation-force ratio than that for other surfaces. It is concluded that, to avoid a potential slip, participants were conservative in selecting acceptable forces to push on the slippery TEF. Part of this compensatory strategy on the TEF resulted in less muscle activity and, therefore, less demand for oxygen delivery to the calf muscle than for other surfaces. The present findings of significant force- and physiological-related differences in treadmill vs. high inertia pushcart clearly demonstrate that pushing experiments are essential to evaluate functional abilities of the workers.

  4. Conduction velocity of antigravity muscle action potentials.

    PubMed

    Christova, L; Kosarov, D; Christova, P

    1992-01-01

    The conduction velocity of the impulses along the muscle fibers is one of the parameters of the extraterritorial potentials of the motor units allowing for the evaluation of the functional state of the muscles. There are no data about the conduction velocities of antigravity muscleaction potentials. In this paper we offer a method for measuring conduction velocity of potentials of single MUs and the averaged potentials of the interference electromiogram (IEMG) lead-off by surface electrodes from mm. sternocleidomastoideus, trapezius, deltoideus (caput laterale) and vastus medialis. The measured mean values of the conduction velocity of antigravity muscles potentials can be used for testing the functional state of the muscles.

  5. Analysis of proximal and distal muscle activity during handwriting tasks.

    PubMed

    Naider-Steinhart, Shoshana; Katz-Leurer, Michal

    2007-01-01

    In this study we sought to describe upper-extremity proximal and distal muscle activity in typically developing children during a handwriting task and to explore the relationship between muscle activity and speed and quality of writing. We evaluated 35 third- and fourth-grade Israeli children using the Alef-Alef Ktav Yad Hebrew Handwriting Test. Simultaneously, we recorded the participants' upper trapezius and thumb muscle activity by surface electromyography. Using the coefficient of variation (standard deviation divided by mean amplitude) as a measure of variability within each muscle, we analyzed differences in muscle activity variability within and between muscles. The proximal muscle displayed significantly less variability than the distal muscles. Decreased variability in proximal muscle activity was associated with decreased variability in distal muscle activity, and decreased variability in the distal muscles was significantly associated with faster speed of writing. The lower amount of variability exhibited in the proximal muscle compared with the distal muscles seems to indicate that the proximal muscle functions as a stabilizer during a handwriting task. In addition, decreased variability in both proximal and distal muscle activity appears to be more economical and is related to faster writing speed. Knowledge of the type of proximal and distal muscle activity used during handwriting can help occupational therapists plan treatment for children with handwriting disabilities.

  6. Testing of motor unit synchronization model for localized muscle fatigue.

    PubMed

    Naik, Ganesh R; Kumar, Dinesh K; Yadav, Vivek; Wheeler, Katherine; Arjunan, Sridhar

    2009-01-01

    Spectral compression of surface electromyogram (sEMG) is associated with onset of localized muscle fatigue. The spectral compression has been explained based on motor unit synchronization theory. According to this theory, motor units are pseudo randomly excited during muscle contraction, and with the onset of muscle fatigue the recruitment pattern changes such that motor unit firings become more synchronized. While this is widely accepted, there is little experimental proof of this phenomenon. This paper has used source dependence measures developed in research related to independent component analysis (ICA) to test this theory.

  7. Immediate effect of laryngeal surface electrical stimulation on swallowing performance.

    PubMed

    Takahashi, Keizo; Hori, Kazuhiro; Hayashi, Hirokazu; Fujiu-Kurachi, Masako; Ono, Takahiro; Tsujimura, Takanori; Magara, Jin; Inoue, Makoto

    2018-01-01

    Surface electrical stimulation of the laryngeal region is used to improve swallowing in dysphagic patients. However, little is known about how electrical stimulation affects tongue movements and related functions. We investigated the effect of electrical stimulation on tongue pressure and hyoid movement, as well as suprahyoid and infrahyoid muscle activity, in 18 healthy young participants. Electrical stimulation (0.2-ms duration, 80 Hz, 80% of each participant's maximal tolerance) of the laryngeal region was applied. Each subject swallowed 5 ml of barium sulfate liquid 36 times at 10-s intervals. During the middle 2 min, electrical stimulation was delivered. Tongue pressure, electromyographic activity of the suprahyoid and infrahyoid muscles, and videofluorographic images were simultaneously recorded. Tongue pressure during stimulation was significantly lower than before or after stimulation and was significantly greater after stimulation than at baseline. Suprahyoid activity after stimulation was larger than at baseline, while infrahyoid muscle activity did not change. During stimulation, the position of the hyoid at rest was descended, the highest hyoid position was significantly inferior, and the vertical movement was greater than before or after stimulation. After stimulation, the positions of the hyoid at rest and at the maximum elevation were more superior than before stimulation. The deviation of the highest positions of the hyoid before and after stimulation corresponded to the differences in tongue pressures at those times. These results suggest that surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. NEW & NOTEWORTHY Surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. Tongue muscles may contribute to overshot recovery more than hyoid muscles.

  8. Mapping disease-related missense mutations in the immunoglobulin-like fold domain of lamin A/C reveals novel genotype-phenotype associations for laminopathies.

    PubMed

    Scharner, Juergen; Lu, Hui-Chun; Fraternali, Franca; Ellis, Juliet A; Zammit, Peter S

    2014-06-01

    Mutations in A-type nuclear lamins cause laminopathies. However, genotype-phenotype correlations using the 340 missense mutations within the LMNA gene are unclear: partially due to the limited availability of three-dimensional structure. The immunoglobulin (Ig)-like fold domain has been solved, and using bioinformatics tools (including Polyphen-2, Fold X, Parameter OPtimized Surfaces, and PocketPicker) we characterized 56 missense mutations for position, surface exposure, change in charge and effect on Ig-like fold stability. We find that 21 of the 27 mutations associated with a skeletal muscle phenotype are distributed throughout the Ig-like fold, are nonsurface exposed and predicted to disrupt overall stability of the Ig-like fold domain. Intriguingly, the remaining 6 mutations clustered, had higher surface exposure, and did not affect stability. The majority of 9 lipodystrophy or 10 premature aging syndrome mutations also did not disrupt Ig-like fold domain stability and were surface exposed and clustered in distinct regions that overlap predicted binding pockets. Although buried, the 10 cardiac mutations had no other consistent properties. Finally, most lipodystrophy and premature aging mutations resulted in a -1 net charge change, whereas skeletal muscle mutations caused no consistent net charge changes. Since premature aging, lipodystrophy and the subset of 6 skeletal muscle mutations cluster tightly in distinct, charged regions, they likely affect lamin A/C -protein/DNA/RNA interactions: providing a consistent genotype-phenotype relationship for mutations in this domain. Thus, this subgroup of skeletal muscle laminopathies that we term the 'Skeletal muscle cluster', may have a distinct pathological mechanism. These novel associations refine the ability to predict clinical features caused by certain LMNA missense mutations. © 2013 Wiley Periodicals, Inc.

  9. Physiological Strain During Load Carrying: Effects of Mass and Type of Backpack

    DTIC Science & Technology

    2001-05-01

    load did not significantly increase the EMG signal of the trapezius shoulder muscle (pars descenders). While walking, load carrying significantly...descending part of the right trapezius muscle was measured with two surface silver-silver chloride electrodes (PPG, Hellige), positioned on the distal...values using a previously determined RMS versus force relationship. This calibration curve between RMS of the EMG of the trapezius muscle and the force

  10. Comparison of erector spinae and hamstring muscle activities and lumbar motion during standing knee flexion in subjects with and without lumbar extension rotation syndrome.

    PubMed

    Kim, Si-hyun; Kwon, Oh-yun; Park, Kyue-nam; Kim, Moon-Hwan

    2013-12-01

    The aim of this study was to compare the activity of the erector spinae (ES) and hamstring muscles and the amount and onset of lumbar motion during standing knee flexion between individuals with and without lumbar extension rotation syndrome. Sixteen subjects with lumbar extension rotation syndrome (10 males, 6 females) and 14 healthy subjects (8 males, 6 females) participated in this study. During the standing knee flexion, surface electromyography (EMG) was used to measure muscle activity, and surface EMG electrodes were attached to both the ES and hamstring (medial and lateral) muscles. A three-dimensional motion analysis system was used to measure kinematic data of the lumbar spine. An independent-t test was conducted for the statistical analysis. The group suffering from lumbar extension rotation syndrome exhibited asymmetric muscle activation of the ES and decreased hamstring activity. Additionally, the group with lumbar extension rotation syndrome showed greater and earlier lumbar extension and rotation during standing knee flexion compared to the control group. These data suggest that asymmetric ES muscle activation and a greater amount of and earlier lumbar motion in the sagittal and transverse plane during standing knee flexion may be an important factor contributing to low back pain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Spatial characterization of innervation zones under electrically elicited M-wave.

    PubMed

    Zhang, C; Peng, Y; Li, S; Zhou, P; Munoz, A; Tang, D; Zhang, Y

    2016-08-01

    The three dimensional (3D) innervation zone (IZ) imaging approach (3DIZI) has been developed in our group to localize the IZ of a particular motor unit (MU) from its motor unit action potentials decomposed from high-density surface electromyography (EMG) recordings. In this study, the developed 3DIZI approach was combined with electrical stimulation to investigate global distributions of IZs in muscles from electrically elicited M-wave recordings. Electrical stimulations were applied to the musculocutaneous nerve to activate supramaximal muscle response of the biceps brachii in one healthy subject, and high-density (128 channels) surface EMG signals of the biceps brachii muscles were recorded. The 3DIZI approach was then employed to image the IZ distribution of IZs in the 3D space of the biceps brachii. The performance of the M-wave based 3DIZI approach was evaluated with different stimulation intensities. Results show that the reconstructed IZs under supramaximal stimulation are spatially distributed in the center region of muscle belly which is consistent with previous studies. With sub-maximal stimulation intensity, the imaged IZ centers became more proximally and deeply located. The proposed M-wave based 3DIZI approach demonstrated its capability of imaging global distribution of IZs in muscles, which provide valuable information for clinical applications such as guiding botulinum toxin injection in treating muscle spasticity.

  12. Comparison of Muscle Onset Activation Sequences between a Golf or Tennis Swing and Common Training Exercises Using Surface Electromyography: A Pilot Study.

    PubMed

    Vasudevan, John M; Logan, Andrew; Shultz, Rebecca; Koval, Jeffrey J; Roh, Eugene Y; Fredericson, Michael

    2016-01-01

    Aim. The purpose of this pilot study is to use surface electromyography to determine an individual athlete's typical muscle onset activation sequence when performing a golf or tennis forward swing and to use the method to assess to what degree the sequence is reproduced with common conditioning exercises and a machine designed for this purpose. Methods. Data for 18 healthy male subjects were collected for 15 muscles of the trunk and lower extremities. Data were filtered and processed to determine the average onset of muscle activation for each motion. A Spearman correlation estimated congruence of activation order between the swing and each exercise. Correlations of each group were pooled with 95% confidence intervals using a random effects meta-analytic strategy. Results. The averaged sequences differed among each athlete tested, but pooled correlations demonstrated a positive association between each exercise and the participants' natural muscle onset activation sequence. Conclusion. The selected training exercises and Turning Point™ device all partially reproduced our athletes' averaged muscle onset activation sequences for both sports. The results support consideration of a larger, adequately powered study using this method to quantify to what degree each of the selected exercises is appropriate for use in both golf and tennis.

  13. Comparison of Muscle Onset Activation Sequences between a Golf or Tennis Swing and Common Training Exercises Using Surface Electromyography: A Pilot Study

    PubMed Central

    Shultz, Rebecca; Fredericson, Michael

    2016-01-01

    Aim. The purpose of this pilot study is to use surface electromyography to determine an individual athlete's typical muscle onset activation sequence when performing a golf or tennis forward swing and to use the method to assess to what degree the sequence is reproduced with common conditioning exercises and a machine designed for this purpose. Methods. Data for 18 healthy male subjects were collected for 15 muscles of the trunk and lower extremities. Data were filtered and processed to determine the average onset of muscle activation for each motion. A Spearman correlation estimated congruence of activation order between the swing and each exercise. Correlations of each group were pooled with 95% confidence intervals using a random effects meta-analytic strategy. Results. The averaged sequences differed among each athlete tested, but pooled correlations demonstrated a positive association between each exercise and the participants' natural muscle onset activation sequence. Conclusion. The selected training exercises and Turning Point™ device all partially reproduced our athletes' averaged muscle onset activation sequences for both sports. The results support consideration of a larger, adequately powered study using this method to quantify to what degree each of the selected exercises is appropriate for use in both golf and tennis. PMID:27403454

  14. Alternating activation is related to fatigue in lumbar muscles during sustained sitting.

    PubMed

    Ringheim, Inge; Indahl, Aage; Roeleveld, Karin

    2014-06-01

    The aim of this study was to investigate the relation between variability in muscle activity and fatigue during a sustained low level contraction in the lumbar muscles. Twenty-five healthy participants (13 men 12 women) performed a 30min sitting task with 5 degrees inclination of the trunk. Surface electromyographic (EMG) signals were recorded bilaterally from the lumbar muscles with 2 high density surface EMG grids of 9×14 electrodes. Median frequency (MDF) decrease, amplitude (RMS) increase and the rating of perceived exertion (RPE) were used as fatigue indices. Alternating activation and spatial and temporal variability were computed and relations with the fatigue indices were explored. During sitting, the mono- and bipolar RMS slightly increased while the MDF remained unchanged indicating no systematic muscle fatigue, although the average RPE increased from 6 to 13 on a scale ranging between 6 and 20. Higher frequency of alternating activation between the left and right side was associated with increased RPE (p=0.03) and decreased MDF (p=0.05). A tendency in the same direction was seen between increased spatial and temporal variation within the grids and increased RPE and decreased MDF. Present findings provide evidence for a relationship between variability in muscle activity and fatigue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Assessing altered motor unit recruitment patterns in paretic muscles of stroke survivors using surface electromyography

    NASA Astrophysics Data System (ADS)

    Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.

    2015-12-01

    Objective. The advancement of surface electromyogram (sEMG) recording and signal processing techniques has allowed us to characterize the recruitment properties of a substantial population of motor units (MUs) non-invasively. Here we seek to determine whether MU recruitment properties are modified in paretic muscles of hemispheric stroke survivors. Approach. Using an advanced EMG sensor array, we recorded sEMG during isometric contractions of the first dorsal interosseous muscle over a range of contraction levels, from 20% to 60% of maximum, in both paretic and contralateral muscles of stroke survivors. Using MU decomposition techniques, MU action potential amplitudes and recruitment thresholds were derived for simultaneously activated MUs in each isometric contraction. Main results. Our results show a significant disruption of recruitment organization in paretic muscles, in that the size principle describing recruitment rank order was materially distorted. MUs were recruited over a very narrow force range with increasing force output, generating a strong clustering effect, when referenced to recruitment force magnitude. Such disturbances in MU properties also correlated well with the impairment of voluntary force generation. Significance. Our findings provide direct evidence regarding MU recruitment modifications in paretic muscles of stroke survivors, and suggest that these modifications may contribute to weakness for voluntary contractions.

  16. Assessing altered motor unit recruitment patterns in paretic muscles of stroke survivors using surface electromyography

    PubMed Central

    Hu, Xiaogang; Suresh, Aneesha K; Rymer, William Z; Suresh, Nina L

    2017-01-01

    Objective The advancement of surface electromyogram (sEMG) recording and signal processing techniques has allowed us to characterize the recruitment properties of a substantial population of motor units (MUs) non-invasively. Here we seek to determine whether MU recruitment properties are modified in paretic muscles of hemispheric stroke survivors. Approach Using an advanced EMG sensor array, we recorded sEMG during isometric contractions of the first dorsal interosseous muscle over a range of contraction levels, from 20% to 60% of maximum, in both paretic and contralateral muscles of stroke survivors. Using MU decomposition techniques, MU action potential amplitudes and recruitment thresholds were derived for simultaneously activated MUs in each isometric contraction. Main results Our results show a significant disruption of recruitment organization in paretic muscles, in that the size principle describing recruitment rank order was materially distorted. MUs were recruited over a very narrow force range with increasing force output, generating a strong clustering effect, when referenced to recruitment force magnitude. Such disturbances in MU properties also correlated well with the impairment of voluntary force generation. Significance Our findings provide direct evidence regarding MU recruitment modifications in paretic muscles of stroke survivors, and suggest that these modifications may contribute to weakness for voluntary contractions. PMID:26402920

  17. Electrophoretic deposition of ligand-free platinum nanoparticles on neural electrodes affects their impedance in vitro and in vivo with no negative effect on reactive gliosis.

    PubMed

    Angelov, Svilen D; Koenen, Sven; Jakobi, Jurij; Heissler, Hans E; Alam, Mesbah; Schwabe, Kerstin; Barcikowski, Stephan; Krauss, Joachim K

    2016-01-12

    Electrodes for neural stimulation and recording are used for the treatment of neurological disorders. Their features critically depend on impedance and interaction with brain tissue. The effect of surface modification on electrode impedance was examined in vitro and in vivo after intracranial implantation in rats. Electrodes coated by electrophoretic deposition with platinum nanoparticles (NP; <10 and 50 nm) as well as uncoated references were implanted into the rat's subthalamic nucleus. After postoperative recovery, rats were electrostimulated for 3 weeks. Impedance was measured before implantation, after recovery and then weekly during stimulation. Finally, local field potential was recorded and tissue-to-implant reaction was immunohistochemically studied. Coating with NP significantly increased electrode's impedance in vitro. Postoperatively, the impedance of all electrodes was temporarily further increased. This effect was lowest for the electrodes coated with particles <10 nm, which also showed the most stable impedance dynamics during stimulation for 3 weeks and the lowest total power of local field potential during neuronal activity recording. Histological analysis revealed that NP-coating did not affect glial reactions or neural cell-count. Coating with NP <10 nm may improve electrode's impedance stability without affecting biocompatibility. Increased impedance after NP-coating may improve neural recording due to better signal-to-noise ratio.

  18. The relationship between RMS electromyography and thickness change in the skeletal muscles.

    PubMed

    Kian-Bostanabad, Sharareh; Azghani, Mahmood-Reza

    2017-05-01

    The knowledge of muscle function may affect prescribing medications and physical treatments. Recently, ultrasound and electromyography (EMG) have been used to assess the skeletal muscles activity. The relationship between these methods has been reported in numerous articles qualitatively. In this paper, the relationship between EMG root-mean-square (RMS) and ultrasound data of muscle thickness has been investigated using Response Surface Methodology in the muscles separately and together and predictive models reported. Results show that to assess the relationship between the changes of thickness and activity (EMG) in muscles, we can use quadratic model for the rectus femoris, tibialis anterior, transverse abdominal, biceps brachii and brachialis muscles (R 2 =0.624-0.891) and linear model for the internal and external oblique abdominal, lumbar multifidus and deep cervical flexor muscles (R 2 =0.348-0.767). Due to the high correlation coefficient for the equations in the bulky muscles, it seems that the correlation between EMG RMS and ultrasound data of muscle thickness on the bulky muscles is higher than the flat muscles. This relationship may depend more on the type of activity than the type of muscle. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Three-dimensional interactive and stereotactic atlas of head muscles and glands correlated with cranial nerves and surface and sectional neuroanatomy.

    PubMed

    Nowinski, Wieslaw L; Chua, Beng Choon; Johnson, Aleksandra; Qian, Guoyu; Poh, Lan Eng; Yi, Su Hnin Wut; Bivi, Aminah; Nowinska, Natalia G

    2013-04-30

    Three-dimensional (3D) relationships between head muscles and cranial nerves innervating them are complicated. Existing sources present these relationships in illustrations, radiologic scans, or autopsy photographs, which are limited for learning and use. Developed electronic atlases are limited in content, quality, functionality, and/or presentation. We create a truly 3D interactive, stereotactic and high quality atlas, which provides spatial relationships among head muscles, glands and cranial nerves, and correlates them to surface and sectional neuroanatomy. The head muscles and glands were created from a 3T scan by contouring them and generating 3D models. They were named and structured according to Terminologia anatomica. The muscles were divided into: extra-ocular, facial, masticatory and other muscles, and glands into mouth and other glands. The muscles, glands (and also head) were placed in a stereotactic coordinate system. This content was integrated with cranial nerves and neuroanatomy created earlier. To explore this complex content, a scalable user interface was designed with 12 modules including central nervous system (cerebrum, cerebellum, brainstem, spinal cord), cranial nerves, muscles, glands, arterial system, venous system, tracts, deep gray nuclei, ventricles, white matter, visual system, head. Anatomy exploration operations include compositing/decompositing, individual/group selection, 3D view-index mapping, 3D labeling, highlighting, distance measuring, 3D brain cutting, and axial/coronal/sagittal triplanar display. To our best knowledge, this is the first truly 3D, stereotactic, interactive, fairly complete atlas of head muscles, and the first attempt to create a 3D stereotactic atlas of glands. Its use ranges from education of students and patients to research to potential clinical applications. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  20. The different role of each head of the triceps brachii muscle in elbow extension.

    PubMed

    Kholinne, Erica; Zulkarnain, Rizki Fajar; Sun, Yu Cheng; Lim, SungJoon; Chun, Jae-Myeung; Jeon, In-Ho

    2018-03-01

    The aim of this study was to investigate the functional role of each head of the triceps brachii muscle, depending on the angle of shoulder elevation, and to compare each muscle force and activity by using a virtual biomechanical simulator and surface electromyography. Ten healthy participants (8 males and 2 females) were included in this study. The mean age was 29.2 years (23-45). Each participant performed elbow extension tasks in five different degrees (0, 45, 90, 135, and 180°) of shoulder elevation with three repetitions. Kinematics data and surface electromyography signal of each head of the triceps brachii were recorded. Recorded kinematics data were then applied to an inverse kinematics musculoskeletal modeling software function (OpenSim) to analyze the triceps brachii's muscle force. Correlation between muscle force, muscle activity, elbow extension, and shoulder elevation angle were compared and analyzed for each head of triceps brachii. At 0° shoulder elevation, the long head of the triceps brachii generates a significantly higher muscle force and muscle activation than the lateral and medial heads (p < 0.05). While at 90°, 135° and 180° shoulder elevation, the medial head of the triceps brachii showed a significantly higher muscle force than the long and the lateral heads (p < 0.05). Each head of the triceps brachii has a different pattern of force and activity during different shoulder elevations. The long head contributes to elbow extension more at shoulder elevation and the medial head takes over at 90° and above of shoulder elevation. This study provides further understanding of triceps brachii's for clinicians and health trainers who need to investigate the functional role of the triceps brachii in detail. Copyright © 2018. Production and hosting by Elsevier B.V.

  1. One-Channel Surface Electromyography Decomposition for Muscle Force Estimation.

    PubMed

    Sun, Wentao; Zhu, Jinying; Jiang, Yinlai; Yokoi, Hiroshi; Huang, Qiang

    2018-01-01

    Estimating muscle force by surface electromyography (sEMG) is a non-invasive and flexible way to diagnose biomechanical diseases and control assistive devices such as prosthetic hands. To estimate muscle force using sEMG, a supervised method is commonly adopted. This requires simultaneous recording of sEMG signals and muscle force measured by additional devices to tune the variables involved. However, recording the muscle force of the lost limb of an amputee is challenging, and the supervised method has limitations in this regard. Although the unsupervised method does not require muscle force recording, it suffers from low accuracy due to a lack of reference data. To achieve accurate and easy estimation of muscle force by the unsupervised method, we propose a decomposition of one-channel sEMG signals into constituent motor unit action potentials (MUAPs) in two steps: (1) learning an orthogonal basis of sEMG signals through reconstruction independent component analysis; (2) extracting spike-like MUAPs from the basis vectors. Nine healthy subjects were recruited to evaluate the accuracy of the proposed approach in estimating muscle force of the biceps brachii. The results demonstrated that the proposed approach based on decomposed MUAPs explains more than 80% of the muscle force variability recorded at an arbitrary force level, while the conventional amplitude-based approach explains only 62.3% of this variability. With the proposed approach, we were also able to achieve grip force control of a prosthetic hand, which is one of the most important clinical applications of the unsupervised method. Experiments on two trans-radial amputees indicated that the proposed approach improves the performance of the prosthetic hand in grasping everyday objects.

  2. Evaluation of blood flow in human exercising muscle by diffuse correlation spectroscopy: a phantom model study

    NASA Astrophysics Data System (ADS)

    Nakabayashi, Mikie; Ono, Yumie; Ichinose, Masashi

    2018-02-01

    Diffuse correlation spectroscopy (DCS) has a potential to noninvasively and quantitatively measure the blood flow in the exercising muscle that could contribute to the fields of sports physiology and medicine. However, the blood flow index (BFI) measured from skin surface by DCS reflects hemodynamic signals from both superficial tissue and muscle layer. Thus, an appropriate calibration technology is required to quantify the absolute blood flow in the muscle layer. We therefore fabricated a realistic two-layer phantom model consisted of a static silicon layer imitating superficial tissue and a dynamic flow layer imitating the muscle blood flow and investigated the relationship between the simulated blood flow rate in the muscle layer and the BFI measured from the surface of the phantom. The absorption coefficient and the reduced scattering coefficient of the forearm were measured from 25 healthy young adults using a time-resolved nearinfrared spectroscopy. The depths of the superficial and muscle layers of forearm were also determined by ultrasound tomography images from 25 healthy young adults. The phantoms were fabricated to satisfy these optical coefficients and anatomical constraints. The simulated blood flow rate were set from 0 mL/ min to 68.7 mL/ min in ten steps, which is considered to cover a physiological range of mean blood flow of the forearm between per 100g of muscle tissue at rest to heavy dynamic handgrip exercise. We found a proportional relationship between the flow rates and BFIs with significant correlation coefficient of R = 0.986. Our results suggest that the absolute exercising muscle blood flow could be estimated by DCS with optimal calibration using phantom models.

  3. Co-expression in CHO cells of two muscle proteins involved in excitation-contraction coupling.

    PubMed

    Takekura, H; Takeshima, H; Nishimura, S; Takahashi, M; Tanabe, T; Flockerzi, V; Hofmann, F; Franzini-Armstrong, C

    1995-10-01

    Ryanodine receptors and dihydropyridine receptors are located opposite each other at the junctions between sarcoplasmic reticulum and either the surface membrane or the transverse tubules in skeletal muscle. Ryanodine receptors are the calcium release channels of the sarcoplasmic reticulum and their cytoplasmic domains form the feet, connecting sarcoplasmic reticulum to transverse tubules. Dihydropyridine receptors are L-type calcium channels that act as the voltage sensors of excitation-contraction coupling: they sense surface membrane and transverse tubule depolarization and induce opening of the sarcoplasmic reticulum release channels. In skeletal muscle, ryanodine receptors are arranged in extensive arrays and dihydropyridine receptors are grouped into tetrads, which in turn are associated with the four subunits of ryanodine receptors. The disposition allows for a direct interaction between the two sets of molecules. CHO cells were stably transformed with plasmids for skeletal muscle ryanodine receptors and either the skeletal dihydropyridine receptor, or a skeletal-cardiac dihydropyridine receptor chimera (CSk3) which can functionally substitute for the skeletal dihydropyridine receptor, in addition to plasmids for the alpha 2, beta and gamma subunits. RNA blot hybridization gave positive results for all components. Immunoblots, ryanodine binding, electron microscopy and exposure to caffeine show that the expressed ryanodine receptors forms functional tetrameric channels, which are correctly inserted into the endoplasmic reticulum membrane, and form extensive arrays with the same spacings as in skeletal muscle. Since formation of arrays does not require coexpression of dihydropyridine receptors, we conclude that self-aggregation is an independent property of ryanodine receptors. All dihydropyridine receptor-expressing clones show high affinity binding for dihydropyridine and immunolabelling with antibodies against dihydropyridine receptor. The presence of calcium currents with fast kinetics and immunolabelling for dihydropyridine receptors in the surface membrane of CSk3 clones indicate that CSk3-dihydropyridine receptors are appropriately targeted to the cell's plasmalemma. The expressed skeletal-type dihydropyridine receptors, however, remain mostly located within perinuclear membranes. In cells coexpressing functional dihydropyridine receptors and ryanodine receptors, no junctions between feet-bearing endoplasmic reticulum elements and surface membrane are formed, and dihydropyridine receptors do not assemble into tetrads. A separation between dihydropyridine receptors and ryanodine receptors is not unique to CHO cells, but is found also in cardiac muscle, in muscles of invertebrates and, under certain conditions, in skeletal muscle. We suggest that failure to form junctions in co-transfected CHO cell may be due to lack of an essential protein necessary either for the initial docking of the endoplasmic reticulum to the surface membrane or for maintaining the interaction between dihydropyridine receptors and ryanodine receptors. We also conclude that formation of tetrads requires a close interaction between dihydropyridine receptors and ryanodine receptors.

  4. Distensibility and Strength of the Pelvic Floor Muscles of Women in the Third Trimester of Pregnancy

    PubMed Central

    Petricelli, Carla Dellabarba; Resende, Ana Paula Magalhães; Elito Júnior, Julio; Araujo Júnior, Edward; Alexandre, Sandra Maria; Zanetti, Miriam Raquel Diniz; Nakamura, Mary Uchiyama

    2014-01-01

    Objective. The objective of this study was to compare the role of the pelvic floor muscles between nulliparous and multiparous women in the third trimester of pregnancy, by analyzing the relationship between electrical activity (surface electromyography—EMG), vaginal palpation (modified Oxford scale), and perineal distensibility (Epi-no). Methods. This was an observational cross-sectional study on a sample of 60 healthy pregnant women with no cervical dilation, single fetus, gestational age between 35 and 40 weeks, and maternal age ranging from 15 to 40 years. The methods used were bidigital palpation (modified Oxford scale, graded 0–5), surface EMG (electrical activity during maximal voluntary contraction), and perineal distensibility (Epi-no device). The Pearson correlation coefficient (r) was used to analyze the Epi-no values and the surface EMG findings. The Kruskal-Wallis test was used to compare the median values from surface EMG and Epi-no, using the modified Oxford scale scores. Results. Among the 60 patients included in this study, 30 were nulliparous and 30 multiparous. The average maternal age and gestational age were 26.06 (±5.58) and 36.56 (±1.23), respectively. It was observed that nulliparous women had both higher perineal muscle strength (2.53 ± 0.57 versus 2.06 ± 0.64; P = 0.005) and higher electrical activity (45.35 ± 12.24 μV versus 35.79 ± 11.66 μV; P = 0.003), while among the multiparous women, distensibility was higher (19.39 ± 1.92 versus 18.05 ± 2.14; P = 0.013). We observed that there was no correlation between perineal distensibility and electrical activity during maximal voluntary contraction (r = − 0.193; P = 0.140). However, we found a positive relationship between vaginal palpation and surface electromyography (P = 0.008), but none between Epi-no values (P = 0.785). Conclusion. The electrical activity and muscle strength of the pelvic floor muscles of the multiparous women were damaged, in relation to the nulliparous women, while the perineal distensibility was lower in the latter group. There was a positive relationship between surface EMG and the modified Oxford scale. PMID:24877094

  5. Muscle fatigue in the temporal and masseter muscles in patients with temporomandibular dysfunction.

    PubMed

    Woźniak, Krzysztof; Lipski, Mariusz; Lichota, Damian; Szyszka-Sommerfeld, Liliana

    2015-01-01

    The aim of this study is to evaluate muscle fatigue in the temporal and masseter muscles in patients with temporomandibular dysfunction (TMD). Two hundred volunteers aged 19.3 to 27.8 years (mean 21.50, SD 0.97) participated in this study. Electromyographical (EMG) recordings were performed using a DAB-Bluetooth Instrument (Zebris Medical GmbH, Germany). Muscle fatigue was evaluated on the basis of a maximum effort test. The test was performed during a 10-second maximum isometric contraction (MVC) of the jaws. An analysis of changes in the mean power frequency of the two pairs of temporal and masseter muscles (MPF%) revealed significant differences in the groups of patients with varying degrees of temporomandibular disorders according to Di (P < 0.0000). The study showed an increase in the muscle fatigue of the temporal and masseter muscles correlated with the intensity of temporomandibular dysfunction symptoms in patients. The use of surface electromyography in assessing muscle fatigue is an excellent diagnostic tool for identifying patients with temporomandibular dysfunction.

  6. Muscle Fatigue in the Temporal and Masseter Muscles in Patients with Temporomandibular Dysfunction

    PubMed Central

    Woźniak, Krzysztof; Lipski, Mariusz; Lichota, Damian

    2015-01-01

    The aim of this study is to evaluate muscle fatigue in the temporal and masseter muscles in patients with temporomandibular dysfunction (TMD). Two hundred volunteers aged 19.3 to 27.8 years (mean 21.50, SD 0.97) participated in this study. Electromyographical (EMG) recordings were performed using a DAB-Bluetooth Instrument (Zebris Medical GmbH, Germany). Muscle fatigue was evaluated on the basis of a maximum effort test. The test was performed during a 10-second maximum isometric contraction (MVC) of the jaws. An analysis of changes in the mean power frequency of the two pairs of temporal and masseter muscles (MPF%) revealed significant differences in the groups of patients with varying degrees of temporomandibular disorders according to Di (P < 0.0000). The study showed an increase in the muscle fatigue of the temporal and masseter muscles correlated with the intensity of temporomandibular dysfunction symptoms in patients. The use of surface electromyography in assessing muscle fatigue is an excellent diagnostic tool for identifying patients with temporomandibular dysfunction. PMID:25883949

  7. Effect of modified bridge exercise on trunk muscle activity in healthy adults: a cross sectional study.

    PubMed

    Yoon, Jeong-Oh; Kang, Min-Hyeok; Kim, Jun-Seok; Oh, Jae-Seop

    This is a cross-sectional study. University research laboratory. Fifteen healthy adults (mean age: 27.47 years) volunteered for this study. The individuals performed standard bridge exercise and modified bridge exercises with right leg-lift (single-leg-lift bridge exercise, single-leg-lift bridge exercise on an unstable surface, and single-leg-lift hip abduction bridge exercise). During the bridge exercises, electromyography of the rectus abdominis, internal oblique, erector spinae, and multifidus muscles was recorded using a wireless surface electromyography system. Two-way repeated-measures analysis of variance (exercise by side) with post hoc pairwise comparisons using Bonferroni correction was used to compare the electromyography data collected from each muscle. Bilateral internal oblique muscle activities showed significantly greater during single-leg-lift bridge exercise (95% confidence interval: right internal oblique=-8.99 to -1.08, left internal oblique=-6.84 to -0.10), single-leg-lift bridge exercise on an unstable surface (95% confidence interval: right internal oblique=-7.32 to -1.78, left internal oblique=-5.34 to -0.99), and single-leg-lift hip abduction bridge exercise (95% confidence interval: right internal oblique=-17.13 to -0.89, left internal oblique=-8.56 to -0.60) compared with standard bridge exercise. Bilateral rectus abdominis showed greater electromyography activity during single-leg-lift bridge exercise on an unstable surface (95% confidence interval: right rectus abdominis=-9.33 to -1.13, left rectus abdominis=-4.80 to -0.64) and single-leg-lift hip abduction bridge exercise (95% confidence interval: right rectus abdominis=-14.12 to -1.84, left rectus abdominis=-6.68 to -0.16) compared with standard bridge exercise. In addition, the right rectus abdominis muscle activity was greater during single-leg-lift hip abduction bridge exercise compared with single-leg-lift bridge exercise on an unstable surface (95% confidence interval=-7.51 to -0.89). For erector spinae, muscle activity was greater in right side compared with left side during all exercises (95% confidence interval: standard bridge exercise=0.19-4.53, single-leg-lift bridge exercise=0.24-10.49, single-leg-lift bridge exercise on an unstable surface=0.74-8.55, single-leg-lift hip abduction bridge exercise=0.47-11.43). There was no significant interaction and main effect for multifidus. Adding hip abduction and unstable conditions to bridge exercises may be useful strategy to facilitate the co-activation of trunk muscles. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  8. Deletion of Rab GAP AS160 modifies glucose uptake and GLUT4 translocation in primary skeletal muscles and adipocytes and impairs glucose homeostasis.

    PubMed

    Lansey, Melissa N; Walker, Natalie N; Hargett, Stefan R; Stevens, Joseph R; Keller, Susanna R

    2012-11-15

    Tight control of glucose uptake in skeletal muscles and adipocytes is crucial to glucose homeostasis and is mediated by regulating glucose transporter GLUT4 subcellular distribution. In cultured cells, Rab GAP AS160 controls GLUT4 intracellular retention and release to the cell surface and consequently regulates glucose uptake into cells. To determine AS160 function in GLUT4 trafficking in primary skeletal muscles and adipocytes and investigate its role in glucose homeostasis, we characterized AS160 knockout (AS160(-/-)) mice. We observed increased and normal basal glucose uptake in isolated AS160(-/-) adipocytes and soleus, respectively, while insulin-stimulated glucose uptake was impaired and GLUT4 expression decreased in both. No such abnormalities were found in isolated AS160(-/-) extensor digitorum longus muscles. In plasma membranes isolated from AS160(-/-) adipose tissue and gastrocnemius/quadriceps, relative GLUT4 levels were increased under basal conditions and remained the same after insulin treatment. Concomitantly, relative levels of cell surface-exposed GLUT4, determined with a glucose transporter photoaffinity label, were increased in AS160(-/-) adipocytes and normal in AS160(-/-) soleus under basal conditions. Insulin augmented cell surface-exposed GLUT4 in both. These observations suggest that AS160 is essential for GLUT4 intracellular retention and regulation of glucose uptake in adipocytes and skeletal muscles in which it is normally expressed. In vivo studies revealed impaired insulin tolerance in the presence of normal (male) and impaired (female) glucose tolerance. Concurrently, insulin-elicited increases in glucose disposal were abolished in all AS160(-/-) skeletal muscles and liver but not in AS160(-/-) adipose tissues. This suggests AS160 as a target for differential manipulation of glucose homeostasis.

  9. Motor modules during adaptation to walking in a powered ankle exoskeleton.

    PubMed

    Jacobs, Daniel A; Koller, Jeffrey R; Steele, Katherine M; Ferris, Daniel P

    2018-01-03

    Modules of muscle recruitment can be extracted from electromyography (EMG) during motions, such as walking, running, and swimming, to identify key features of muscle coordination. These features may provide insight into gait adaptation as a result of powered assistance. The aim of this study was to investigate the changes (module size, module timing and weighting patterns) of surface EMG data during assisted and unassisted walking in an powered, myoelectric, ankle-foot orthosis (ankle exoskeleton). Eight healthy subjects wore bilateral ankle exoskeletons and walked at 1.2 m/s on a treadmill. In three training sessions, subjects walked for 40 min in two conditions: unpowered (10 min) and powered (30 min). During each session, we extracted modules of muscle recruitment via nonnegative matrix factorization (NNMF) from the surface EMG signals of ten muscles in the lower limb. We evaluated reconstruction quality for each muscle individually using R 2 and normalized root mean squared error (NRMSE). We hypothesized that the number of modules needed to reconstruct muscle data would be the same between conditions and that there would be greater similarity in module timings than weightings. Across subjects, we found that six modules were sufficient to reconstruct the muscle data for both conditions, suggesting that the number of modules was preserved. The similarity of module timings and weightings between conditions was greater then random chance, indicating that muscle coordination was also preserved. Motor adaptation during walking in the exoskeleton was dominated by changes in the module timings rather than module weightings. The segment number and the session number were significant fixed effects in a linear mixed-effect model for the increase in R 2 with time. Our results show that subjects walking in a exoskeleton preserved the number of modules and the coordination of muscles within the modules across conditions. Training (motor adaptation within the session and motor skill consolidation across sessions) led to improved consistency of the muscle patterns. Subjects adapted primarily by changing the timing of their muscle patterns rather than the weightings of muscles in the modules. The results of this study give new insight into strategies for muscle recruitment during adaptation to a powered ankle exoskeleton.

  10. Finite Element Modeling Used to Study Stress Distribution on the Foot

    NASA Technical Reports Server (NTRS)

    Morales, Nelson; Davis, Brian; Tajaddini, Azita

    2004-01-01

    A method to study the stress distribution inside the forefoot during walking was developed at the Cleveland Clinic Foundation by a researcher from the NASA Glenn Research Center. In this method, a semiautomated process was outlined to create a three-dimensional, patient-specific, finite element model (FEM) of the forefoot using magnetic resonance images (MRI). The images were processed in Matlab using the k-nearest neighbor (k-NN) classification algorithm and Sobel edge detection to separate the different tissue types: bone, skin, fat, and muscle. This information was used to create curves and surfaces that were exported to an FEM preprocessor known as Truegrid. In Truegrid, eight-noded or brick elements were created by using surface mapping. The FEM was processed and postprocessed in Abaqus. Material properties of the models were obtained from past experiments such as fat pad confined compression, skin axial and biaxial tests, muscle in vivo compressive tests, and reference literature (bone properties). Nonlinear (hyperelastic) material models were used for the skin (epidermis and dermis), fat, and muscles; and a linear elastic model was used for the bones. Muscle activation during walking yielded uncertainties in the muscle material model since contracted muscles are stiffer than relaxed muscles. These uncertainties were resolved by performing a sensitivity analysis of the muscle material properties. The original properties were multiplied by arbitrary factors of 2, 3, 0.5, and 0.33. The strain and stress distributions, as well as the locations of peak values, were similar in all cases. The peak contact pressure P obtained for each case varied with respect to the applied factor f as follows:

  11. Muscle-tendon units localization and activation level analysis based on high-density surface EMG array and NMF algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Zhang, Xu

    2016-12-01

    Objective. Some skeletal muscles can be subdivided into smaller segments called muscle-tendon units (MTUs). The purpose of this paper is to propose a framework to locate the active region of the corresponding MTUs within a single skeletal muscle and to analyze the activation level varieties of different MTUs during a dynamic motion task. Approach. Biceps brachii and gastrocnemius were selected as targeted muscles and three dynamic motion tasks were designed and studied. Eight healthy male subjects participated in the data collection experiments, and 128-channel surface electromyographic (sEMG) signals were collected with a high-density sEMG electrode grid (a grid consists of 8 rows and 16 columns). Then the sEMG envelopes matrix was factorized into a matrix of weighting vectors and a matrix of time-varying coefficients by nonnegative matrix factorization algorithm. Main results. The experimental results demonstrated that the weightings vectors, which represent invariant pattern of muscle activity across all channels, could be used to estimate the location of MTUs and the time-varying coefficients could be used to depict the variation of MTUs activation level during dynamic motion task. Significance. The proposed method provides one way to analyze in-depth the functional state of MTUs during dynamic tasks and thus can be employed on multiple noteworthy sEMG-based applications such as muscle force estimation, muscle fatigue research and the control of myoelectric prostheses. This work was supported by the National Nature Science Foundation of China under Grant 61431017 and 61271138.

  12. Electroacupuncture to alleviate postoperative pain after a laparoscopic appendectomy: study protocol for a three-arm, randomised, controlled trial.

    PubMed

    Lee, Seunghoon; Nam, Dongwoo; Kwon, Minsoo; Park, Won Seo; Park, Sun Jin

    2017-08-04

    The purpose of this study is to evaluate the efficacy and safety of electroacupuncture (EA) for postoperative pain after laparoscopic appendectomy compared with sham electroacupuncture (SEA) and no acupuncture treatment. This study is a protocol for a three-arm, randomised, patient-assessor-blinded (to the type of acupuncture treatment), controlled, parallel trial. 138 participants diagnosed with appendicitis and scheduled for laparoscopic appendectomy will be randomly assigned to the EA group (n=46), SEA group (n=46) or control group (n=46). The EA group will receive acupuncture treatment at both regional and distal acupuncture points with electrostimulation. The SEA group will receive sham acupuncture treatment with mock electrostimulation. Both EA and SEA groups will receive a total of four treatments 1 hour preoperative, 1 hour postoperative and during the morning and afternoon the day after surgery with the same routine postoperative pain control. The control group will receive only routine postoperative pain control. The primary outcome is the 11-point Pain Intensity Numerical Rating Scale (PI-NRS) at 24 hours after surgery. The secondary outcomes are the PI-NRS, analgesic consumption, opioid-related side effects, time to first passing flatus, quality of life and adverse events evaluated 6, 12, 24 and 36 hours and 7 days after surgery. The study was planned in accordance with the Helsinki Declaration and the Korean Good Clinical Practice Guidelines to protect the participants and was approved by the institutional review board (IRB) of Kyung Hee University Medical Center (KMC IRB-1427-02). The results will be disseminated in peer-reviewed journals and presented at international conferences. Clinical Research Information Service (KCT0001328). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Impact of systemically active neurohumoral factors on the erectile response of the rat.

    PubMed

    MacKenzie, Lindsay D; Heaton, Jeremy P W; Adams, Michael A

    2011-09-01

    Mean arterial pressure (MAP) and specific regulation of penile blood flow are the primary determinants of an erection. While this concept is well recognized, the differential relationship between systemically acting vasoactive factors on arterial pressure and erectile responses is not well described. The aim of this study was to determine how the modification of systemic levels of neurohumoral factors impacts on the magnitude and efficiency of the erectile response. The main outcome measures for this study are changes in MAP and intracavernosal pressure (ICP) following electrostimulation of the cavernous nerve. Anesthetized adult, male Sprague-Dawley rats were catheterized for measuring MAP (carotid), ICP, and drug administration (vena cava). Erections were induced via cavernous nerve electrostimulation. Vasoactive drug infusions were used to produce changes in MAP levels including: hexamethonium, angiotensin II (ANGII)±hexamethonium, methoxamine±hexamethonium, losartan, MAHMA NONOate, and terbutaline. In general, ICP and MAP were linearly correlated regardless of treatment. Hexamethonium markedly dropped MAP and proportionately decreased the magnitude of the erectile response. ANGII or methoxamine given to hexamethonium-pretreated or untreated rats increased MAP similarly, but produced contrasting effects on erectile responses. ANGII-induced pressor responses were associated with increased erectile responses whereas all methoxamine treatments markedly decreased erectile responses. Depressor changes with losartan or terbutaline, but not MAHMA NONOate, also impacted negatively on the efficiency of the erectile responses at lower arterial pressures. In general, the magnitude of the erectile responses was found to be dependent upon the level of MAP, although the mechanism by which arterial pressure was changed impacted substantially on the characteristics of the relationship. The major finding was that circulation-wide α-adrenoceptor stimulation was extremely deleterious to erectile responses whereas global stimulation of ANG II receptors was actually proerectile. Overall, the results indicate that neurohumoral specificity in systemic hemodynamic control is also critical in establishing the optimal erectile environment in rats. © 2011 International Society for Sexual Medicine.

  14. Rehabilitation of arm function after stroke. Literature review.

    PubMed

    Oujamaa, L; Relave, I; Froger, J; Mottet, D; Pelissier, J-Y

    2009-04-01

    In the recent literature we can find many articles dealing with upper extremity rehabilitation in stroke patients. New techniques, still under evaluation, are becoming the practical applications for the concept of post-stroke brain plasticity. This literature review focuses on controlled randomized studies, reviews and meta-analyses published in the English language from 2004 to 2008. The research was conducted in MEDLINE with the following keywords: "upper limb", "stroke", "rehabilitation". We reviewed 66 studies. The main therapeutic strategies are: activation of the ipsilesional motor cortex, inhibition of the contralesional motor cortex and modulation of the sensory afferents. Keeping a cortical representation of the upper limb distal extremity could prevent the learned non-use phenomenon. The modulation of sensory afferents is then proposed: distal cutaneous electrostimulation, anesthesia of the healthy limb, mirror therapy, virtual reality. Intensifying the rehabilitation care means increasing the total hours of rehabilitation dedicated to the paretic limb (proprioceptive stimulation and repetitive movements). This specific rehabilitation is facilitated by robot-aided therapy in the active-assisted mode, neuromuscular electrostimulation and bilateral task training. Intensifying the rehabilitation training program significantly improves the arm function outcome when performed during subacute stroke rehabilitation (< six months). Ipsilesional neurostimulation as well as mental practice optimize the effect of repetitive gestures for slight motor impairments. Contralesional neurostimulation or anesthesia of the healthy hand both improve the paretic hand's dexterity via a decrease of the transcallosal inhibition. This pathophysiological mechanism could also explain the positive impact of constraint-induced movement therapy (CI therapy) in an environmental setting for chronic stroke patients. To ensure a positive functional outcome, stroke rehabilitation programs are based on task-oriented repetitive training. This literature review shows that exercising the hemiparetic hand and wrist is essential in all stages of a stroke rehabilitation program. New data stemming from neurosciences suggest that ipsilesional corticospinal excitability should be a priority.

  15. Deletion of the Rab GAP Tbc1d1 modifies glucose, lipid, and energy homeostasis in mice.

    PubMed

    Hargett, Stefan R; Walker, Natalie N; Hussain, Syed S; Hoehn, Kyle L; Keller, Susanna R

    2015-08-01

    Tbc1d1 is a Rab GTPase-activating protein (GAP) implicated in regulating intracellular retention and cell surface localization of the glucose transporter GLUT4 and thus glucose uptake in a phosphorylation-dependent manner. Tbc1d1 is most abundant in skeletal muscle but is expressed at varying levels among different skeletal muscles. Previous studies with male Tbc1d1-deficient (Tbc1d1(-/-)) mice on standard and high-fat diets established a role for Tbc1d1 in glucose, lipid, and energy homeostasis. Here we describe similar, but also additional abnormalities in male and female Tbc1d1(-/-) mice. We corroborate that Tbc1d1 loss leads to skeletal muscle-specific and skeletal muscle type-dependent abnormalities in GLUT4 expression and glucose uptake in female and male mice. Using subcellular fractionation, we show that Tbc1d1 controls basal intracellular GLUT4 retention in large skeletal muscles. However, cell surface labeling of extensor digitorum longus muscle indicates that Tbc1d1 does not regulate basal GLUT4 cell surface exposure as previously suggested. Consistent with earlier observations, female and male Tbc1d1(-/-) mice demonstrate increased energy expenditure and skeletal muscle fatty acid oxidation. Interestingly, we observe sex-dependent differences in in vivo phenotypes. Female, but not male, Tbc1d1(-/-) mice have decreased body weight and impaired glucose and insulin tolerance, but only male Tbc1d1(-/-) mice show increased lipid clearance after oil gavage. We surmise that similar changes at the tissue level cause differences in whole-body metabolism between male and female Tbc1d1(-/-) mice and between male Tbc1d1(-/-) mice in different studies due to variations in body composition and nutrient handling. Copyright © 2015 the American Physiological Society.

  16. Selectivity of conventional electrodes for recording motor evoked potentials: An investigation with high-density surface electromyography.

    PubMed

    Gallina, Alessio; Peters, Sue; Neva, Jason L; Boyd, Lara A; Garland, S Jayne

    2017-06-01

    The objective of this study was to determine whether motor evoked potentials (MEPs) elicited with transcranial magnetic stimulation and measured with conventional bipolar electromyography (EMG) are influenced by crosstalk from non-target muscles. MEPs were recorded in healthy participants using conventional EMG electrodes placed over the extensor carpi radialis muscle (ECR) and high-density surface EMG (HDsEMG). Fifty MEPs at 120% resting and active motor threshold were recorded. To determine the contribution of ECR to the MEPs, the amplitude distribution across HDsEMG channels was correlated with EMG activity recorded during a wrist extension task. Whereas the conventional EMG identified MEPs from ECR in >90% of the stimulations, HDsEMG revealed that spatial amplitude distribution representative of ECR activation was observed less frequently at rest than while holding a contraction (P < 0.001). MEPs recorded with conventional EMG may contain crosstalk from non-target muscles, especially when the stimulation is applied at rest. Muscle Nerve 55: 828-834, 2017. © 2016 Wiley Periodicals, Inc.

  17. ECG artifact cancellation in surface EMG signals by fractional order calculus application.

    PubMed

    Miljković, Nadica; Popović, Nenad; Djordjević, Olivera; Konstantinović, Ljubica; Šekara, Tomislav B

    2017-03-01

    New aspects for automatic electrocardiography artifact removal from surface electromyography signals by application of fractional order calculus in combination with linear and nonlinear moving window filters are explored. Surface electromyography recordings of skeletal trunk muscles are commonly contaminated with spike shaped artifacts. This artifact originates from electrical heart activity, recorded by electrocardiography, commonly present in the surface electromyography signals recorded in heart proximity. For appropriate assessment of neuromuscular changes by means of surface electromyography, application of a proper filtering technique of electrocardiography artifact is crucial. A novel method for automatic artifact cancellation in surface electromyography signals by applying fractional order calculus and nonlinear median filter is introduced. The proposed method is compared with the linear moving average filter, with and without prior application of fractional order calculus. 3D graphs for assessment of window lengths of the filters, crest factors, root mean square differences, and fractional calculus orders (called WFC and WRC graphs) have been introduced. For an appropriate quantitative filtering evaluation, the synthetic electrocardiography signal and analogous semi-synthetic dataset have been generated. The examples of noise removal in 10 able-bodied subjects and in one patient with muscle dystrophy are presented for qualitative analysis. The crest factors, correlation coefficients, and root mean square differences of the recorded and semi-synthetic electromyography datasets showed that the most successful method was the median filter in combination with fractional order calculus of the order 0.9. Statistically more significant (p < 0.001) ECG peak reduction was obtained by the median filter application compared to the moving average filter in the cases of low level amplitude of muscle contraction compared to ECG spikes. The presented results suggest that the novel method combining a median filter and fractional order calculus can be used for automatic filtering of electrocardiography artifacts in the surface electromyography signal envelopes recorded in trunk muscles. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  18. Muscle activity of leg muscles during unipedal stance on therapy devices with different stability properties.

    PubMed

    Wolburg, Thomas; Rapp, Walter; Rieger, Jochen; Horstmann, Thomas

    2016-01-01

    To test the hypotheses that less stable therapy devices require greater muscle activity and that lower leg muscles will have greater increases in muscle activity with less stable therapy devices than upper leg muscles. Cross-sectional laboratory study. Laboratory setting. Twenty-five healthy subjects. Electromyographic activity of four lower (gastrocnemius medialis, soleus, tibialis anterior, peroneus longus) and four upper leg muscles (vastus medialis and lateralis, biceps femoris, semitendinosus) during unipedal quiet barefoot stance on the dominant leg on a flat rigid surface and on five therapy devices with varying stability properties. Muscle activity during unipedal stance differed significantly between therapy devices (P < 0.001). The order from lowest to highest relative muscle activity matched the order from most to least stable therapy device. There was no significant interaction between muscle location (lower versus upper leg) and therapy device (P = 0.985). Magnitudes of additional relative muscle activity for the respective therapy devices differed substantially among lower extremity muscles. The therapy devices offer a progressive increase in training intensity, and thus may be useful for incremental training programs in physiotherapeutic practice and sports training programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Bioelectrical activity of the pelvic floor muscles after 6-week biofeedback training in nulliparous continent women.

    PubMed

    Chmielewska, Daria; Stania, Magdalena; Smykla, Agnieszka; Kwaśna, Krystyna; Błaszczak, Edward; Sobota, Grzegorz; Skrzypulec-Plinta, Violetta

    2016-01-01

    The aim of the study was to evaluate the effects of a 6-week sEMG-biofeedback-assisted pelvic floor muscle training program on pelvic floor muscle activity in young continent women. Pelvic floor muscle activity was recorded using a vaginal probe during five experimental trials. Biofeedback training was continued for 6 weeks, 3 times a week. Muscle strenghtening and endurance exercises were performed alternately. SEMG (surface electromyography) measurements were recorded on four different occasions: before training started, after the third week of training, after the sixth week of training, and one month after training ended. A 6-week sEMG-biofeedback-assisted pelvic floor muscle training program significantly decreased the resting activity of the pelvic floor muscles in supine lying and standing. The ability to relax the pelvic floor muscles after a sustained 60-second contraction improved significantly after the 6-week training in both positions. SEMG-biofeedback training program did not seem to affect the activity of the pelvic floor muscles or muscle fatigue during voluntary pelvic floor muscle contractions. SEMG-biofeedback-assisted pelvic floor muscle training might be recommended for physiotherapists to improve the effectiveness of their relaxation techniques.

  20. Muscle fibre recruitment can respond to the mechanics of the muscle contraction.

    PubMed

    Wakeling, James M; Uehli, Katrin; Rozitis, Antra I

    2006-08-22

    This study investigates the motor unit recruitment patterns between and within muscles of the triceps surae during cycling on a stationary ergometer at a range of pedal speeds and resistances. Muscle activity was measured from the soleus (SOL), medial gastrocnemius (MG) and lateral gastrocnemius (LG) using surface electromyography (EMG) and quantified using wavelet and principal component analysis. Muscle fascicle strain rates were quantified using ultrasonography, and the muscle-tendon unit lengths were calculated from the segmental kinematics. The EMG intensities showed that the body uses the SOL relatively more for the higher-force, lower-velocity contractions than the MG and LG. The EMG spectra showed a shift to higher frequencies at faster muscle fascicle strain rates for MG: these shifts were independent of the level of muscle activity, the locomotor load and the muscle fascicle strain. These results indicated that a selective recruitment of the faster motor units occurred within the MG muscle in response to the increasing muscle fascicle strain rates. This preferential recruitment of the faster fibres for the faster tasks indicates that in some circumstances motor unit recruitment during locomotion can match the contractile properties of the muscle fibres to the mechanical demands of the contraction.

  1. Muscle Activation Differs between Three Different Knee Joint-Angle Positions during a Maximal Isometric Back Squat Exercise

    PubMed Central

    Jarbas da Silva, Josinaldo; Jon Schoenfeld, Brad; Nardi, Priscyla Silva Monteiro; Pecoraro, Silvio Luis; D'Andréa Greve, Julia Maria; Hartigan, Erin

    2016-01-01

    The purpose of this study was to compare muscle activation of the lower limb muscles when performing a maximal isometric back squat exercise over three different positions. Fifteen young, healthy, resistance-trained men performed an isometric back squat at three knee joint angles (20°, 90°, and 140°) in a randomized, counterbalanced fashion. Surface electromyography was used to measure muscle activation of the vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), biceps femoris (BF), semitendinosus (ST), and gluteus maximus (GM). In general, muscle activity was the highest at 90° for the three quadriceps muscles, yet differences in muscle activation between knee angles were muscle specific. Activity of the GM was significantly greater at 20° and 90° compared to 140°. The BF and ST displayed similar activation at all joint angles. In conclusion, knee position alters muscles activation of the quadriceps and gluteus maximus muscles. An isometric back squat at 90° generates the highest overall muscle activation, yet an isometric back squat at 140° generates the lowest overall muscle activation of the VL and GM only. PMID:27504484

  2. Accuracy of the surface electromyography RMS processing for the diagnosis of myogenous temporomandibular disorder.

    PubMed

    Berni, Kelly Cristina dos Santos; Dibai-Filho, Almir Vieira; Pires, Paulo Fernandes; Rodrigues-Bigaton, Delaine

    2015-08-01

    Due to the multifactor etiology of temporomandibular disorder (TMD), the precise diagnosis remains a matter of debate and validated diagnostic tools are needed. The aim was to determine the accuracy of surface electromyography (sEMG) activity, assessed in the amplitude domain by the root mean square (RMS), in the diagnosis of TMD. One hundred twenty-three volunteers were evaluated using the Research Diagnostic Criteria for Temporomandibular Disorders and distributed into two groups: women with myogenous TMD (n=80) and women without TMD (n=43). The volunteers were then submitted to sEMG evaluation of the anterior temporalis, masseter and suprahyoid muscles at rest and during maximum voluntary teeth clenching (MVC) on parafilm. The accuracy, sensitivity and specificity of the muscle activity were analyzed. Differences between groups were found in all muscles analyzed at rest as well as in the masseter and suprahyoid muscles during MVC on parafilm. Moderate accuracy (AUC: 0.74-0.84) of the RMS sEMG was found in all muscles regarding the diagnosis of TMD at rest and in the suprahyoid muscles during MVC on parafilm. Moreover, sensitivity ranging from 71.3% to 80% and specificity from 60.5% to 76.6%. In contrast, RMS sEMG did not exhibit acceptable degrees of accuracy in the other masticatory muscles during MVC on parafilm. It was concluded that the RMS sEMG is a complementary tool for clinical diagnosis of the myogenous TMD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The Use of Thermal Imaging in the Evaluation of the Symmetry of Muscle Activity in Various Types of Exercises (Symmetrical and Asymmetrical)

    PubMed Central

    Chudecka, Monika; Lubkowska, Anna; Leźnicka, Katarzyna; Krupecki, Krzysztof

    2015-01-01

    In order to achieve higher efficiency of training and thus better athletic performance, new research and diagnostic methods are constantly being developed, particularly those that are non-invasive. One such a method is thermography, suitable for quantitative and therefore objective evaluation of variables, such as changes in the temperature of the skin covering working muscles. The aim of this study was to use a thermal imaging infrared camera to evaluate temperature changes of symmetric body surfaces over symmetrically working muscles of male scullers after exercising on a two-oared rowing ergometer and compare these to asymmetrically working muscles of handball players after an endurance training session containing elements of an actual game. In the scullers, the mean temperature of body surfaces was always lower post than pre exercise, with no significant differences in an average temperature drop between the opposite sides, indicating that the work of the muscles involved in the physical exertion on the rowing ergometer was symmetrical. In contrast, in the handball players, skin temperatures in symmetric areas over the asymmetrically working muscles showed statistically significant differences between sides, which was associated with the functional asymmetry of training. This study indicates that thermal imaging may be useful for coaches in the evaluation of technical preparations in sports in which equal involvement of symmetric muscles is a condition of success, e.g. in scullers. PMID:26839614

  4. Emg Amplitude Estimators Based on Probability Distribution for Muscle-Computer Interface

    NASA Astrophysics Data System (ADS)

    Phinyomark, Angkoon; Quaine, Franck; Laurillau, Yann; Thongpanja, Sirinee; Limsakul, Chusak; Phukpattaranont, Pornchai

    To develop an advanced muscle-computer interface (MCI) based on surface electromyography (EMG) signal, the amplitude estimations of muscle activities, i.e., root mean square (RMS) and mean absolute value (MAV) are widely used as a convenient and accurate input for a recognition system. Their classification performance is comparable to advanced and high computational time-scale methods, i.e., the wavelet transform. However, the signal-to-noise-ratio (SNR) performance of RMS and MAV depends on a probability density function (PDF) of EMG signals, i.e., Gaussian or Laplacian. The PDF of upper-limb motions associated with EMG signals is still not clear, especially for dynamic muscle contraction. In this paper, the EMG PDF is investigated based on surface EMG recorded during finger, hand, wrist and forearm motions. The results show that on average the experimental EMG PDF is closer to a Laplacian density, particularly for male subject and flexor muscle. For the amplitude estimation, MAV has a higher SNR, defined as the mean feature divided by its fluctuation, than RMS. Due to a same discrimination of RMS and MAV in feature space, MAV is recommended to be used as a suitable EMG amplitude estimator for EMG-based MCIs.

  5. A threshold-based approach for muscle contraction detection from surface EMG signals

    NASA Astrophysics Data System (ADS)

    Morantes, Gaudi; Fernández, Gerardo; Altuve, Miguel

    2013-11-01

    Surface electromyographic (SEMG) signals are commonly used as control signals in prosthetic and orthotic devices. Super cial electrodes are placed on the skin of the subject to acquire its muscular activity through this signal. The muscle contraction episode is then in charge of activating and deactivating these devices. Nevertheless, there is no gold standard" to detect muscle contraction, leading to delayed responses and false and missed detections. This fact motivated us to propose a new approach that compares a smoothed version of the SEMG signal with a xed threshold, in order to detect muscle contraction episodes. After preprocessing the SEMG signal, the smoothed version is obtained using a moving average lter, where three di erent window lengths has been evaluated. The detector was tuned by maximizing sensitivity and speci city and evaluated using SEMG signals obtained from the anterior tibial and gastrocnemius muscles, taken during the walking of ve subjects. Compared with traditional detection methods, we obtain a reduction of 3 ms in the detection delay, an increase of 8% in sensitivity but a decrease of 15% in speci city. Future work is directed to the inclusion of a temporal threshold (a double-threshold approach) to minimize false detections and reduce detection delays.

  6. Sodium Chloride Diffusion during Muscle Salting Evidenced by Energy-Dispersive X-ray Spectroscopy Imaging.

    PubMed

    Filgueras, Rénata; Peyrin, Frédéric; Vénien, Annie; Hénot, Jean Marc; Astruc, Thierry

    2016-01-27

    To better understand the relationship between the muscle structure and NaCl transfers in meat, we used energy-dispersive X-ray spectroscopy (EDS) coupled with scanning electron microscopy (SEM) to analyze brined and dry-salted rat muscles. The muscles were freeze-dried to avoid the delocalization of soluble ions that happens in regular dehydration through a graded series of ethanol. Na and Cl maps were superimposed on SEM images to combine the muscle structure and NaCl diffusion. Brining causes rapid diffusion of NaCl through the tissue. Most brine diffuses in a linear front from the muscle surface, but a small proportion enters through the perimysium network. The muscle area penetrated by brine shows heterogeneous patterns of NaCl retention, with some connective tissue islets containing more NaCl than other parts of perimysium. NaCl penetration is considerably slower after dry salting than after brining.

  7. CHOLINESTERASE IN DENERVATED END PLATES AND MUSCLE FIBRES

    PubMed Central

    Brzin, Miro; Majcen-Tkačev, Živa

    1963-01-01

    Parallel studies were made of cholinesterase activities and localizations in denervated rat and rabbit gastrocnemius muscle. Koelle's histochemical reaction was used for demonstrating the localization of cholinesterases. Enzyme activities in whole sliced muscle were measured by electrometric titration. The Cartesian ampulla-diver technique was used for cholinesterase activity determinations in end plate regions or in small pieces of the muscle fibre itself. No changes in the activity of cholinesterases (ChE) were found in the whole denervated muscle which would account for its chemical supersensitivity. The ChE distribution pattern was changed so that the end plate region became less active in the denervated muscle than in the normal one. The decrease in ChE activity in the end plates seems to be largely compensated for by an increase of this enzyme elsewhere in the muscle. A possible connection between the spatial spread of cholinesterase activity and the enlargement of the acetylcholine-sensitive surface is discussed. PMID:14086761

  8. ELECTROMYOGRAPHIC ACTIVITY OF STERNOCLEIDOMASTOID AND MASTICATORY MUSCLES IN PATIENTS WITH VESTIBULAR LESIONS

    PubMed Central

    Tartaglia, Gianluca M.; Barozzi, Stefania; Marin, Federico; Cesarani, Antonio; Ferrario, Virgilio F.

    2008-01-01

    This study evaluated the electromyographic characteristics of masticatory and neck muscles in subjects with vestibular lesions. Surface electromyography of the masseter, temporalis and sternocleidomastoid muscles was performed in 19 patients with Ménière's disease, 12 patients with an acute peripheral vestibular lesion, and 19 control subjects matched for sex and age. During maximum voluntary clenching, patients with peripheral vestibular lesions had the highest co-contraction of the sternocleidomastoid muscle (analysis of covariance, p=0.02), the control subjects had the smallest values, and the patients with Ménière's disease had intermediate values. The control subjects had larger standardized muscle activities than the other patient groups (p=0.001). In conclusion, during maximum voluntary tooth clenching, patients with vestibular alterations have both more active neck muscles, and less active masticatory muscles than normal controls. Results underline the importance of a more inclusive craniocervical assessment of patients with vestibular lesions. PMID:19082397

  9. The effect of high-top and low-top shoes on ankle inversion kinematics and muscle activation in landing on a tilted surface.

    PubMed

    Fu, Weijie; Fang, Ying; Liu, Yu; Hou, Jianfu

    2014-02-18

    There is still uncertainty concerning the beneficial effects of shoe collar height for ankle sprain prevention and very few data are available in the literature regarding the effect of high-top and low-top shoes on muscle responses during landing. The purpose of this study was to quantify the effect of high-top and low-top shoes on ankle inversion kinematics and pre-landing EMG activation of ankle evertor muscles during landing on a tilted surface. Thirteen physical education students landed on four types of surfaces wearing either high-top shoes (HS) or low-top shoes (LS). The four conditions were 15° inversion, 30° inversion, combined 25° inversion + 10° plantar flexion, and combined 25° inversion + 20° plantar flexion. Ankle inversion kinematics and EMG data of the tibialis anterior (TA), peroneus longus (PL), and peroneus brevis (PB) muscles were measured simultaneously. A 2 × 4 (shoe × surface) repeated measures ANOVA was performed to examine the effect of shoe and landing surfaces on ankle inversion and EMG responses. No significant differences were observed between the various types of shoes in the maximum ankle inversion angle, the ankle inversion range of motion, and the maximum ankle inversion angular velocity after foot contact for all conditions. However, the onset time of TA and PB muscles was significantly later wearing HS compared to LS for the 15° inversion condition. Meanwhile, the mean amplitude of the integrated EMG from the 50 ms prior to contact (aEMGpre) of TA was significantly lower with HS compared to LS for the 15° inversion condition and the combined 25° inversion + 20° plantarflexion condition. Similarly, the aEMGpre when wearing HS compared to LS also showed a 37.2% decrease in PL and a 31.0% decrease in PB for the combined 25° inversion + 20° plantarflexion condition and the 15° inversion condition, respectively. These findings provide preliminary evidence suggesting that wearing high-top shoes can, in certain conditions, induce a delayed pre-activation timing and decreased amplitude of evertor muscle activity, and may therefore have a detrimental effect on establishing and maintaining functional ankle joint stability.

  10. Variety of transversus thoracis muscle in relation to the internal thoracic artery: an autopsy study of 120 subjects

    PubMed Central

    2011-01-01

    Background The transversus thoracis muscle is a thin muscular layer on the inner surface of the anterior thoracic wall that is always in concern during harvesting of the internal thoracic artery. Because the muscle is poorly described in the surgical literature, the aim of the present study is to examine in details its variations. Methods The data was obtained at standard autopsies of 120 Caucasian subjects (Bulgarians) of both sexes (97 males and 23 females), ranging in age from 18 to 91 years (mean age 52.8 ± 17.8 years). The transversus thoracis morphology was thoroughly examined on the inner surface of the chest plates collected after routine incisions. Results An overall examination revealed that in majority of cases the transversus thoracis slips formed a complete muscular layer (left - 75.8%, right - 83.3%) or some of the slips (left - 22.5%, right - 15%) or all of them (left - 1.7%, right - 1.7%) were quite separated. Rarely (left - 3.3%, right - 5.8%), some fibrous slips of the transversus thoracis were noted. In 55.8% of the cases there was left/right muscle symmetry; 44.2% of the muscles were asymmetrical. Most commonly, the highest muscle attachment was to the second (left - 53.3%, right - 37.5%) or third rib (left - 29.2%, right - 46.7%). The sixth rib was the most common lowest attachment (left - 94.2%, right - 89.2%). Most frequently, the muscle was composed of four (left - 31.7%, right - 44.2%) or fifth slips (left - 53.3%, right - 40.8%). Conclusions This study provides detailed basic information on the variety of the transversus thoracic muscle. It also defines the range of the clearly visible, uncovered by the muscle part of the internal thoracic artery and the completeness of the muscular layer over it. The knowledge of these peculiar muscle-arterial relations would definitely be beneficial to cardiac surgeon in performing fast and safe arterial harvesting. PMID:21272314

  11. A Finite Element Model Approach to Determine the Influence of Electrode Design and Muscle Architecture on Myoelectric Signal Properties

    PubMed Central

    Teklemariam, A.; Hodson-Tole, E. F.; Reeves, N. D.; Costen, N. P.; Cooper, G.

    2016-01-01

    Introduction Surface electromyography (sEMG) is the measurement of the electrical activity of the skeletal muscle tissue detected at the skin’s surface. Typically, a bipolar electrode configuration is used. Most muscles have pennate and/or curved fibres, meaning it is not always feasible to align the bipolar electrodes along the fibres direction. Hence, there is a need to explore how different electrode designs can affect sEMG measurements. Method A three layer finite element (skin, fat, muscle) muscle model was used to explore different electrode designs. The implemented model used as source signal an experimentally recorded intramuscular EMG taken from the biceps brachii muscle of one healthy male. A wavelet based intensity analysis of the simulated sEMG signal was performed to analyze the power of the signal in the time and frequency domain. Results The model showed muscle tissue causing a bandwidth reduction (to 20-92- Hz). The inter-electrode distance (IED) and the electrode orientation relative to the fibres affected the total power but not the frequency filtering response. The effect of significant misalignment between the electrodes and the fibres (60°- 90°) could be reduced by increasing the IED (25–30 mm), which attenuates signal cancellation. When modelling pennated fibres, the muscle tissue started to act as a low pass filter. The effect of different IED seems to be enhanced in the pennated model, while the filtering response is changed considerably only when the electrodes are close to the signal termination within the model. For pennation angle greater than 20°, more than 50% of the source signal was attenuated, which can be compensated by increasing the IED to 25 mm. Conclusion Differences in tissue filtering properties, shown in our model, indicates that different electrode designs should be considered for muscle with different geometric properties (i.e. pennated muscles). PMID:26886908

  12. A Finite Element Model Approach to Determine the Influence of Electrode Design and Muscle Architecture on Myoelectric Signal Properties.

    PubMed

    Teklemariam, A; Hodson-Tole, E F; Reeves, N D; Costen, N P; Cooper, G

    2016-01-01

    Surface electromyography (sEMG) is the measurement of the electrical activity of the skeletal muscle tissue detected at the skin's surface. Typically, a bipolar electrode configuration is used. Most muscles have pennate and/or curved fibres, meaning it is not always feasible to align the bipolar electrodes along the fibres direction. Hence, there is a need to explore how different electrode designs can affect sEMG measurements. A three layer finite element (skin, fat, muscle) muscle model was used to explore different electrode designs. The implemented model used as source signal an experimentally recorded intramuscular EMG taken from the biceps brachii muscle of one healthy male. A wavelet based intensity analysis of the simulated sEMG signal was performed to analyze the power of the signal in the time and frequency domain. The model showed muscle tissue causing a bandwidth reduction (to 20-92- Hz). The inter-electrode distance (IED) and the electrode orientation relative to the fibres affected the total power but not the frequency filtering response. The effect of significant misalignment between the electrodes and the fibres (60°-90°) could be reduced by increasing the IED (25-30 mm), which attenuates signal cancellation. When modelling pennated fibres, the muscle tissue started to act as a low pass filter. The effect of different IED seems to be enhanced in the pennated model, while the filtering response is changed considerably only when the electrodes are close to the signal termination within the model. For pennation angle greater than 20°, more than 50% of the source signal was attenuated, which can be compensated by increasing the IED to 25 mm. Differences in tissue filtering properties, shown in our model, indicates that different electrode designs should be considered for muscle with different geometric properties (i.e. pennated muscles).

  13. Influence of pressure changes on recruitment pattern and neck muscle activities during Cranio-Cervical Flexion Tests (CCFTs).

    PubMed

    Park, Junhyung; Hur, Jingang; Ko, Taesung

    2015-01-01

    The muscle activity of the deep cervical flexors is emphasized more than that of the superficial cervical flexors, and it has been reported that functional disorders of the longuscolli are found in patients who experience neck pain. The objective of this study was to analyze the recruitment patterns and muscle activities of the cervical flexors during Cranio-Cervical Flexion Tests (CCFTs) through real-time ultrasonography and surface electromyography with a view to presenting appropriate pressure levels for deep cervical flexor exercise protocols based on the results of the analysis. The twenty subjects without neck pain were trained until they became accustomed to CCFTs, and the pressure level was increased gradually from 20 mmHg to 40 mmHg by increasing the pressure level 5 mmHg at a time. Real-time ultrasonography images of the longuscolli and the sternocleidomastoid were taken to measure the amounts of changes in the thicknesses of these muscles, and surface electromyography was implemented to observe the muscle activity of the sternocleidomastoid. The measured value is RMS. According to the results of the ultrasonography, the muscle thicknesses of both the longuscolli and the sternocleidomastoid showed significant increases, as the pressure increased up to 40 mmHg (p< 0.05). The differences in the muscle thicknesses at all individual pressure levels showed significant increases (p< 0.05). According to the results of the electromyography, the muscle activity of the sternocleidomastoid gradually increased as the pressure increased up to 40 mmHg, the increases were significant between 20 mmHg and 25 mmHg, between 30 mmHg and 35 mmHg (p< 0.05). The pressure levels of exercise methods at which the muscle activity of the deep cervical flexors is maximally increased and the muscle activity of the superficial cervical flexors is minimally increased are 25 mmHg-30 mmHg.

  14. Heterotopic bone formation around sintered porous-surfaced Ti-6Al-4V implants coated with native bone morphogenetic proteins.

    PubMed

    Simon, Ziv; Deporter, Douglas A; Pilliar, Robert M; Clokie, Cameron M

    2006-09-01

    Coating endosseous dental implants with growth factors such as bone morphogenetic proteins (BMPs) may be one way to accelerate and/or enhance the quality of osseointegration. The purpose of this study was to investigate in the murine muscle pouch model whether sintered porous-surfaced titanium alloy implants coated with BMPs would lead to heterotopic bone formation around and within the implant surface geometry. Porous-surfaced dental implants were coated with partially purified native human BMPs, with or without a carrier of Poloxamer 407 (BASF Corp., Parsippany, NJ), placed in gelatin capsules and implanted into the hindquarter muscles of mice. Mice were euthanized after 28 days. Sections of retrieved specimens were subsequently prepared for morphometric analysis of bone formation using backscatter electron microscopic images. Human BMPs, either with or without the carrier of Poloxamer 407, led to bone formation within and outside of the sintered porous implant surface. When the sintered implant surface region was subdivided into inner and outer halves, similar levels of bone ingrowth and contact were seen in the 2 halves. Evidence of bone formation to the depth of the solid implant core (i.e., the deepest level possible) also was seen. Sintered porous-surfaced dental implants can be used as substrate for partially purified BMPs in the murine muscle pouch model. With the addition of these osteoinductive factors, the porous implant surface supported bone formation within the surface porosity provided, in some instances, all the way to the solid implant core. The addition of growth factors to a sintered porous surface may be an efficient method for altering locally the healing sequence and quality of bone associated with osseointegration of bone-interfacing implants.

  15. Muscle Activity Map Reconstruction from High Density Surface EMG Signals With Missing Channels Using Image Inpainting and Surface Reconstruction Methods.

    PubMed

    Ghaderi, Parviz; Marateb, Hamid R

    2017-07-01

    The aim of this study was to reconstruct low-quality High-density surface EMG (HDsEMG) signals, recorded with 2-D electrode arrays, using image inpainting and surface reconstruction methods. It is common that some fraction of the electrodes may provide low-quality signals. We used variety of image inpainting methods, based on partial differential equations (PDEs), and surface reconstruction methods to reconstruct the time-averaged or instantaneous muscle activity maps of those outlier channels. Two novel reconstruction algorithms were also proposed. HDsEMG signals were recorded from the biceps femoris and brachial biceps muscles during low-to-moderate-level isometric contractions, and some of the channels (5-25%) were randomly marked as outliers. The root-mean-square error (RMSE) between the original and reconstructed maps was then calculated. Overall, the proposed Poisson and wave PDE outperformed the other methods (average RMSE 8.7 μV rms ± 6.1 μV rms and 7.5 μV rms ± 5.9 μV rms ) for the time-averaged single-differential and monopolar map reconstruction, respectively. Biharmonic Spline, the discrete cosine transform, and the Poisson PDE outperformed the other methods for the instantaneous map reconstruction. The running time of the proposed Poisson and wave PDE methods, implemented using a Vectorization package, was 4.6 ± 5.7 ms and 0.6 ± 0.5 ms, respectively, for each signal epoch or time sample in each channel. The proposed reconstruction algorithms could be promising new tools for reconstructing muscle activity maps in real-time applications. Proper reconstruction methods could recover the information of low-quality recorded channels in HDsEMG signals.

  16. The caveolin-cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle.

    PubMed

    Lo, Harriet P; Nixon, Susan J; Hall, Thomas E; Cowling, Belinda S; Ferguson, Charles; Morgan, Garry P; Schieber, Nicole L; Fernandez-Rojo, Manuel A; Bastiani, Michele; Floetenmeyer, Matthias; Martel, Nick; Laporte, Jocelyn; Pilch, Paul F; Parton, Robert G

    2015-08-31

    Dysfunction of caveolae is involved in human muscle disease, although the underlying molecular mechanisms remain unclear. In this paper, we have functionally characterized mouse and zebrafish models of caveolae-associated muscle disease. Using electron tomography, we quantitatively defined the unique three-dimensional membrane architecture of the mature muscle surface. Caveolae occupied around 50% of the sarcolemmal area predominantly assembled into multilobed rosettes. These rosettes were preferentially disassembled in response to increased membrane tension. Caveola-deficient cavin-1(-/-) muscle fibers showed a striking loss of sarcolemmal organization, aberrant T-tubule structures, and increased sensitivity to membrane tension, which was rescued by muscle-specific Cavin-1 reexpression. In vivo imaging of live zebrafish embryos revealed that loss of muscle-specific Cavin-1 or expression of a dystrophy-associated Caveolin-3 mutant both led to sarcolemmal damage but only in response to vigorous muscle activity. Our findings define a conserved and critical role in mechanoprotection for the unique membrane architecture generated by the caveolin-cavin system. © 2015 Lo et al.

  17. The caveolin–cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle

    PubMed Central

    Lo, Harriet P.; Nixon, Susan J.; Hall, Thomas E.; Cowling, Belinda S.; Ferguson, Charles; Morgan, Garry P.; Schieber, Nicole L.; Fernandez-Rojo, Manuel A.; Bastiani, Michele; Floetenmeyer, Matthias; Martel, Nick; Laporte, Jocelyn; Pilch, Paul F.

    2015-01-01

    Dysfunction of caveolae is involved in human muscle disease, although the underlying molecular mechanisms remain unclear. In this paper, we have functionally characterized mouse and zebrafish models of caveolae-associated muscle disease. Using electron tomography, we quantitatively defined the unique three-dimensional membrane architecture of the mature muscle surface. Caveolae occupied around 50% of the sarcolemmal area predominantly assembled into multilobed rosettes. These rosettes were preferentially disassembled in response to increased membrane tension. Caveola-deficient cavin-1−/− muscle fibers showed a striking loss of sarcolemmal organization, aberrant T-tubule structures, and increased sensitivity to membrane tension, which was rescued by muscle-specific Cavin-1 reexpression. In vivo imaging of live zebrafish embryos revealed that loss of muscle-specific Cavin-1 or expression of a dystrophy-associated Caveolin-3 mutant both led to sarcolemmal damage but only in response to vigorous muscle activity. Our findings define a conserved and critical role in mechanoprotection for the unique membrane architecture generated by the caveolin–cavin system. PMID:26323694

  18. Activation of respiratory muscles during respiratory muscle training.

    PubMed

    Walterspacher, Stephan; Pietsch, Fabian; Walker, David Johannes; Röcker, Kai; Kabitz, Hans-Joachim

    2018-01-01

    It is unknown which respiratory muscles are mainly activated by respiratory muscle training. This study evaluated Inspiratory Pressure Threshold Loading (IPTL), Inspiratory Flow Resistive Loading (IFRL) and Voluntary Isocapnic Hyperpnea (VIH) with regard to electromyographic (EMG) activation of the sternocleidomastoid muscle (SCM), parasternal muscles (PARA) and the diaphragm (DIA) in randomized order. Surface EMG were analyzed at the end of each training session and normalized using the peak EMG recorded during maximum inspiratory maneuvers (Sniff nasal pressure: SnPna, maximal inspiratory mouth occlusion pressure: PImax). 41 healthy participants were included. Maximal activation was achieved for SCM by SnPna; the PImax activated predominantly PARA and DIA. Activations of SCM and PARA were higher in IPTL and VIH than for IFRL (p<0.05). DIA was higher applying IPTL compared to IFRL or VIH (p<0.05). IPTL, IFRL and VIH differ in activation of inspiratory respiratory muscles. Whereas all methods mainly stimulate accessory respiratory muscles, diaphragm activation was predominant in IPTL. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Inter- and Intrasubject Similarity of Muscle Synergies During Bench Press With Slow and Fast Velocity.

    PubMed

    Samani, Afshin; Kristiansen, Mathias

    2018-01-01

    We investigated the effect of low and high bar velocity on inter- and intrasubject similarity of muscle synergies during bench press. A total of 13 trained male subjects underwent two exercise conditions: a slow- and a fast-velocity bench press. Surface electromyography was recorded from 13 muscles, and muscle synergies were extracted using a nonnegative matrix factorization algorithm. The intrasubject similarity across conditions and intersubject similarity within conditions were computed for muscle synergy vectors and activation coefficients. Two muscle synergies were sufficient to describe the dataset variability. For the second synergy activation coefficient, the intersubject similarity within the fast-velocity condition was greater than the intrasubject similarity of the activation coefficient across the conditions. An opposite pattern was observed for the first muscle synergy vector. We concluded that the activation coefficients are robust within conditions, indicating a robust temporal pattern of muscular activity across individuals, but the muscle synergy vector seemed to be individually assigned.

  20. Lower limb estimation from sparse landmarks using an articulated shape model.

    PubMed

    Zhang, Ju; Fernandez, Justin; Hislop-Jambrich, Jacqui; Besier, Thor F

    2016-12-08

    Rapid generation of lower limb musculoskeletal models is essential for clinically applicable patient-specific gait modeling. Estimation of muscle and joint contact forces requires accurate representation of bone geometry and pose, as well as their muscle attachment sites, which define muscle moment arms. Motion-capture is a routine part of gait assessment but contains relatively sparse geometric information. Standard methods for creating customized models from motion-capture data scale a reference model without considering natural shape variations. We present an articulated statistical shape model of the left lower limb with embedded anatomical landmarks and muscle attachment regions. This model is used in an automatic workflow, implemented in an easy-to-use software application, that robustly and accurately estimates realistic lower limb bone geometry, pose, and muscle attachment regions from seven commonly used motion-capture landmarks. Estimated bone models were validated on noise-free marker positions to have a lower (p=0.001) surface-to-surface root-mean-squared error of 4.28mm, compared to 5.22mm using standard isotropic scaling. Errors at a variety of anatomical landmarks were also lower (8.6mm versus 10.8mm, p=0.001). We improve upon standard lower limb model scaling methods with shape model-constrained realistic bone geometries, regional muscle attachment sites, and higher accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. [Anatomical study of muscular latissimus dorsi surface vascularized by the transverse branch of thoraco-dorsal artery].

    PubMed

    Boucher, F; Pinatel, B; Shipkov, H; Mertens, P; Rouviere, O; Braye, F; Mojallal, A

    2014-10-01

    The latissimus dorsi muscle flap is a type V according to Mathes and Nahai. It is vascularized by a proximal main pedicle represented by the thoraco-dorsal pedicle and pedicle distal accessory represented by the dorsal branches of the posterior intercostal arteries. The main thoraco-dorsal pedicle has a descending branch and a transverse branch. This anatomical study clarifies the muscular territory vascularized by the transverse branch of thoraco-dorsal artery for a secondary use after harvesting a thoraco-dorsal artery perforator flap or a muscle-sparing latissimus dorsi flap. Our study focused on ten dissections latissimus dorsi muscle taken from five fresh cadavers chest, carried out within the University Department of Anatomy. The descending branch of thoraco-dorsal artery was ligated, the transverse branch was cannulated and injected with a mixture of barium sulfate/gelatin. After freezing, a static angiotomodensitometry (3D) of each flap was performed. The average muscular surface vascularized by the transverse branch is measured at 80% (77% minimum value, maximum value 83%) of the complete latissimus dorsi muscle. Intermuscular connections between the two branches of thoraco-dorsal pedicle were shown. The use of a ipsilateral latissimus dorsi muscle is a therapeutic option after harvesting a thoraco-dorsal artery perforator flap (TAP) or a muscle-sparing latissimus dorsi flap (MSLD-flap). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Muscle fatigue in fibromyalgia is in the brain, not in the muscles: a case-control study of perceived versus objective muscle fatigue.

    PubMed

    Bandak, Elisabeth; Amris, Kirstine; Bliddal, Henning; Danneskiold-Samsøe, Bente; Henriksen, Marius

    2013-06-01

    To investigate relationships between perceived and objectively measured muscle fatigue during exhausting muscle contractions in women with fibromyalgia (FM) compared with healthy controls (HC). Women with FM and HC completed an isometric muscle exhaustion task at 90° shoulder abduction. Surface electromyographic (EMG) activity in the deltoid muscle was recorded together with self-reported level of muscle fatigue. 25 participants with FM and 23 HC were included. Average time to exhaustion was 254 s shorter in participants with FM than in HC. Participants with FM did not exhibit the same level of objective signs of muscle fatigue, seen as fewer changes in the EMG activity, as the HC during the exhaustion task. The task did not provoke pain in the HC, while participants with FM reported a doubling of pain. Women with FM had shorter exhaustion times and showed fewer objective signs of muscle fatigue during an exhausting isometric shoulder abduction compared with younger HC. This indicates that perceived muscle fatigue may be of central origin and supports the notion of central nervous dysfunction as basic pathological changes in FM.

  3. Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation.

    PubMed

    Klinke, R; Kral, A; Heid, S; Tillein, J; Hartmann, R

    1999-09-10

    In congenitally deaf cats, the central auditory system is deprived of acoustic input because of degeneration of the organ of Corti before the onset of hearing. Primary auditory afferents survive and can be stimulated electrically. By means of an intracochlear implant and an accompanying sound processor, congenitally deaf kittens were exposed to sounds and conditioned to respond to tones. After months of exposure to meaningful stimuli, the cortical activity in chronically implanted cats produced field potentials of higher amplitudes, expanded in area, developed long latency responses indicative of intracortical information processing, and showed more synaptic efficacy than in naïve, unstimulated deaf cats. The activity established by auditory experience resembles activity in hearing animals.

  4. A current affair: electrotherapy in wound healing

    PubMed Central

    Hunckler, Jerome; de Mel, Achala

    2017-01-01

    New developments in accelerating wound healing can have immense beneficial socioeconomic impact. The wound healing process is a highly orchestrated series of mechanisms where a multitude of cells and biological cascades are involved. The skin battery and current of injury mechanisms have become topics of interest for their influence in chronic wounds. Electrostimulation therapy of wounds has shown to be a promising treatment option with no-device-related adverse effects. This review presents an overview of the understanding and use of applied electrical current in various aspects of wound healing. Rapid clinical translation of the evolving understanding of biomolecular mechanisms underlying the effects of electrical simulation on wound healing would positively impact upon enhancing patient’s quality of life. PMID:28461755

  5. An Electromyograph Comparison of an Isokenetic Bench Press at Three Speeds.

    ERIC Educational Resources Information Center

    Ridgeway, M.; And Others

    The muscle action potentials (MAP) of the anterior deltoid, pectoralis major, biceps brachii, and the triceps muscle were studied by quantitative electromyography (emg) during a bench press exercise at three controlled speeds. Bipolar surface electrodes with standard placement were employed throughout the study. Eleven volunteer college women…

  6. High-speed cinematography of muscle contraction.

    PubMed

    HAUPT, R E; WALL, D M

    1962-07-13

    Motion pictures of the "twitch" of an excised frog gastrocnemius muscle taken at rates of 6000 frames per second provide a means of very accurately timing the phases. The extreme "slow motion" reveals surface phenomena not observable by other techniques. Evidence of "active relaxation" is suggested by results of frame-by-frame analysis.

  7. Identification of the Slow Wave of Small Bowel Myoelectrical Activity by Surface Recording

    DTIC Science & Technology

    2001-10-25

    recording of myoelectrical activity (Fig. 1), which underlies intestinal smooth muscle contraction . In effect, the relation between intestinal mechanical...Martínez-de-Juan, J. Saiz, M. Meseguer, J.L. Ponce “Small bowel motility: relationship between smooth muscle contraction and electroenterogram signal”, Med

  8. New insights into dinosaur jaw muscle anatomy.

    PubMed

    Holliday, Casey M

    2009-09-01

    Jaw muscles are key components of the head and critical to testing hypotheses of soft-tissue homology, skull function, and evolution. Dinosaurs evolved an extraordinary diversity of cranial forms adapted to a variety of feeding behaviors. However, disparate evolutionary transformations in head shape and function among dinosaurs and their living relatives, birds and crocodylians, impair straightforward reconstructions of muscles, and other important cephalic soft tissues. This study presents the osteological correlates and inferred soft tissue anatomy of the jaw muscles and relevant neurovasculature in the temporal region of the dinosaur head. Hypotheses of jaw muscle homology were tested across a broad range archosaur and sauropsid taxa to more accurately infer muscle attachments in the adductor chambers of non-avian dinosaurs. Many dinosaurs likely possessed m. levator pterygoideus, a trait shared with lepidosaurs but not extant archosaurs. Several major clades of dinosaurs (e.g., Ornithopoda, Ceratopsidae, Sauropoda) eliminated the epipterygoid, thus impacting interpretations of m. pseudotemporalis profundus. M. pseudotemporalis superficialis most likely attached to the caudoventral surface of the laterosphenoid, a trait shared with extant archosaurs. Although mm. adductor mandibulae externus profundus and medialis likely attached to the caudal half of the dorsotemporal fossa and coronoid process, clear osteological correlates separating the individual bellies are rare. Most dinosaur clades possess osteological correlates indicative of a pterygoideus ventralis muscle that attaches to the lateral surface of the mandible, although the muscle may have extended as far as the jugal in some taxa (e.g., hadrosaurs, tyrannosaurs). The cranial and mandibular attachments of mm adductor mandibulae externus superficialis and adductor mandibulae posterior were consistent across all taxa studied. These new data greatly increase the interpretive resolution of head anatomy in dinosaurs and provide the anatomical foundation necessary for future analyses of skull function and evolution in an important vertebrate clade. (c) 2009 Wiley-Liss, Inc.

  9. Tensor veli palatini electromyography for monitoring Eustachian tube rehabilitation in otitis media.

    PubMed

    Picciotti, P M; Della Marca, G; D'Alatri, L; Lucidi, D; Rigante, M; Scarano, E

    2017-05-01

    The pathogenesis of otitis media is related to Eustachian tube dysfunction. The tensor veli palatini muscle actively opens the Eustachian tube and promotes middle-ear ventilation. This study describes a technique for paratubal electromyography that uses a surface, non-invasive electrode able to record tensor veli palatini muscle activity during swallowing. Twenty otitis media patients and 10 healthy patients underwent tensor veli palatini electromyography. Activity of this muscle before and after Eustachian tube rehabilitation was also assessed. In 78.5 per cent of patients, the electromyography duration phase and/or amplitude were reduced in the affected side. The muscle action potential was impaired in all patients who underwent Eustachian tube rehabilitation. This study confirmed that Eustachian tube muscle dysfunction has a role in otitis media pathogenesis and showed that muscle activity increases after Eustachian tube rehabilitation therapy.

  10. Muscle length changes during swimming in scup: sonomicrometry verifies the anatomical high-speed cine technique.

    PubMed

    Coughlin, D J; Valdes, L; Rome, L C

    1996-02-01

    Recent attempts to determine how fish muscles are used to power swimming have employed the work loop technique (driving isolated muscles using their in vivo strain and stimulation pattern). These muscle strains have in turn been determined from the anatomical high-speed cine technique. In this study, we used an independent technique, sonomicrometry, to attempt to verify these strain measurements and the conclusions based on them. We found that the strain records measured from sonomicrometry and the anatomical-cine techniques were very similar. The ratio of the strain measured from sonomicrometry to that from the anatomical-cine technique was remarkably close to unity (1.046 +/- 0.013, mean +/- S.E.M., N = 15, for transducers placed on the muscle surface and corrected for muscle depth, and 0.921 +/- 0.028, N = 8, in cases where the transducers were inserted to the average depth of the red muscle). These measurements also showed that red muscle shortening occurs simultaneously with local backbone curvature, unlike previous results which suggested that white muscle shortening during the escape response occurs prior to the change in local backbone curvature.

  11. Electromyographic and neuromuscular analysis in patients with post-polio syndrome.

    PubMed

    Corrêa, J C F; Rocco, C Chiusoli de Miranda; de Andrade, D Ventura; Peres, J Augusto; Corrêa, F Ishida

    2008-01-01

    Proceed to a comparative analysis of the electromyographic (EMG) activity of the muscles rectus femoris, vastus medialis and vastus lateralis, and to assess muscle strength and fatigue after maximal isometric contraction during knee extension. Eighteen patients with post-polio syndrome, age and weight matched, were utilized in this study. The signal acquisition system utilized consisted of three pairs of surface electrodes positioned on the motor point of the analyzed muscles. It was possible to observe with the results of this study a decreased endurance on initial muscle contraction and during contraction after 15 minutes of the initial maximal voluntary contraction, along with a muscle fatigue that was assessed through linear regression executed with Pearson's test. There were significant differences among the comparative analysis of EMG activity of the muscles rectus femoris, vastus medialis and vastus lateralis after maximal isometric contraction during knee extension. Initial muscle contraction and contraction after a 15 minute-rest from initial contraction decreased considerably, indicating a decreased endurance on muscle contraction, concluding that a lower limb muscle fatigue was present on the analyzed PPS patients.

  12. Chronic vardenafil treatment improves erectile function via structural maintenance of penile corpora cavernosa in rats with acute arteriogenic erectile dysfunction.

    PubMed

    Hotta, Yuji; Hattori, Mayuko; Kataoka, Tomoya; Ohno, Risa; Mikumo, Mayumi; Maeda, Yasuhiro; Kimura, Kazunori

    2011-03-01

    Chronic phosphodiesterase type 5 inhibitor treatment may be useful in reversing erectile dysfunction (ED). However, the mechanisms of this improvement remain unknown. The aim of this article was to determine the mechanisms of the improvement by chronic vardenafil treatment for acute arteriogenic ED in rats. Eight-week-old male Wistar-ST rats were divided into four groups: sham-operated rats (Control group) and rats with acute arteriogenic ED induced by ligating bilateral internal iliac arteries (Ligation group), subsequently treated with low-dose (0.4 mg/kg/day; VL group) or high-dose (4.0 mg/kg/day; VH group) vardenafil for 20 days from 1 week after ligature. Erectile function was assessed based on changes of intracavernous pressure (ICP) followed by electrostimulation of the cavernous nerves and was evaluated by the area under the curve of ICP/area under the curve of mean arterial pressure (area of ICP/MAP). Transforming growth factor (TGF)-β(1), vascular endothelial growth factor-A, endothelial nitric oxide synthase (eNOS), inducible NOS, and neuronal NOS mRNA expression levels in penile corpus cavernosum were determined by real-time PCR. Western blotting for TGF-β(1) protein levels and Masson trichrome staining of penile tissues were performed in each at group 4 weeks after surgery. In the VH group, area of ICP/MAP was significantly improved when compared with the Ligation group (P < 0.01). The smooth muscle (SM)/collagen ratio in the VH group was significantly higher than in the Ligation group (P < 0.05), and was comparable with that in the Control group. TGF-β(1) mRNA and protein levels in the VH group were significantly lower when compared with the Ligation group (P < 0.05). Chronic vardenafil administration ameliorates impairment of penile hemodynamics and maintains normal SM to collagen ratio in cavernous tissues after acute arterial injury in rats. © 2010 International Society for Sexual Medicine.

  13. Thick-to-Thin Filament Surface Distance Modulates Cross-Bridge Kinetics in Drosophila Flight Muscle

    PubMed Central

    Tanner, Bertrand C.W.; Farman, Gerrie P.; Irving, Thomas C.; Maughan, David W.; Palmer, Bradley M.; Miller, Mark S.

    2012-01-01

    The demembranated (skinned) muscle fiber preparation is widely used to investigate muscle contraction because the intracellular ionic conditions can be precisely controlled. However, plasma membrane removal results in a loss of osmotic regulation, causing abnormal hydration of the myofilament lattice and its proteins. We investigated the structural and functional consequences of varied myofilament lattice spacing and protein hydration on cross-bridge rates of force development and detachment in Drosophila melanogaster indirect flight muscle, using x-ray diffraction to compare the lattice spacing of dissected, osmotically compressed skinned fibers to native muscle fibers in living flies. Osmolytes of different sizes and exclusion properties (Dextran T-500 and T-10) were used to differentially alter lattice spacing and protein hydration. At in vivo lattice spacing, cross-bridge attachment time (ton) increased with higher osmotic pressures, consistent with a reduced cross-bridge detachment rate as myofilament protein hydration decreased. In contrast, in the swollen lattice, ton decreased with higher osmotic pressures. These divergent responses were reconciled using a structural model that predicts ton varies inversely with thick-to-thin filament surface distance, suggesting that cross-bridge rates of force development and detachment are modulated more by myofilament lattice geometry than protein hydration. Generalizing these findings, our results suggest that cross-bridge cycling rates slow as thick-to-thin filament surface distance decreases with sarcomere lengthening, and likewise, cross-bridge cycling rates increase during sarcomere shortening. Together, these structural changes may provide a mechanism for altering cross-bridge performance throughout a contraction-relaxation cycle. PMID:22995500

  14. Thick-to-Thin Filament Surface Distance Modulates Cross-Bridge Kinetics in Drosophila Flight Muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanner, Bertrand C.W.; Farman, Gerrie P.; Irving, Thomas C.

    2012-09-19

    The demembranated (skinned) muscle fiber preparation is widely used to investigate muscle contraction because the intracellular ionic conditions can be precisely controlled. However, plasma membrane removal results in a loss of osmotic regulation, causing abnormal hydration of the myofilament lattice and its proteins. We investigated the structural and functional consequences of varied myofilament lattice spacing and protein hydration on cross-bridge rates of force development and detachment in Drosophila melanogaster indirect flight muscle, using x-ray diffraction to compare the lattice spacing of dissected, osmotically compressed skinned fibers to native muscle fibers in living flies. Osmolytes of different sizes and exclusion propertiesmore » (Dextran T-500 and T-10) were used to differentially alter lattice spacing and protein hydration. At in vivo lattice spacing, cross-bridge attachment time (t{sub on}) increased with higher osmotic pressures, consistent with a reduced cross-bridge detachment rate as myofilament protein hydration decreased. In contrast, in the swollen lattice, t{sub on} decreased with higher osmotic pressures. These divergent responses were reconciled using a structural model that predicts t{sub on} varies inversely with thick-to-thin filament surface distance, suggesting that cross-bridge rates of force development and detachment are modulated more by myofilament lattice geometry than protein hydration. Generalizing these findings, our results suggest that cross-bridge cycling rates slow as thick-to-thin filament surface distance decreases with sarcomere lengthening, and likewise, cross-bridge cycling rates increase during sarcomere shortening. Together, these structural changes may provide a mechanism for altering cross-bridge performance throughout a contraction-relaxation cycle.« less

  15. Glucagon-Like Peptide 1 Recruits Muscle Microvasculature and Improves Insulin’s Metabolic Action in the Presence of Insulin Resistance

    PubMed Central

    Chai, Weidong; Zhang, Xingxing; Barrett, Eugene J.

    2014-01-01

    Glucagon-like peptide 1 (GLP-1) acutely recruits muscle microvasculature, increases muscle delivery of insulin, and enhances muscle use of glucose, independent of its effect on insulin secretion. To examine whether GLP-1 modulates muscle microvascular and metabolic insulin responses in the setting of insulin resistance, we assessed muscle microvascular blood volume (MBV), flow velocity, and blood flow in control insulin-sensitive rats and rats made insulin-resistant acutely (systemic lipid infusion) or chronically (high-fat diet [HFD]) before and after a euglycemic-hyperinsulinemic clamp (3 mU/kg/min) with or without superimposed systemic GLP-1 infusion. Insulin significantly recruited muscle microvasculature and addition of GLP-1 further expanded muscle MBV and increased insulin-mediated glucose disposal. GLP-1 infusion potently recruited muscle microvasculature in the presence of either acute or chronic insulin resistance by increasing muscle MBV. This was associated with an increased muscle delivery of insulin and muscle interstitial oxygen saturation. Muscle insulin sensitivity was completely restored in the presence of systemic lipid infusion and significantly improved in rats fed an HFD. We conclude that GLP-1 infusion potently expands muscle microvascular surface area and improves insulin’s metabolic action in the insulin-resistant states. This may contribute to improved glycemic control seen in diabetic patients receiving incretin-based therapy. PMID:24658303

  16. Activity of thoracic and lumbar epaxial extensors during postural responses in the cat

    NASA Technical Reports Server (NTRS)

    Macpherson, J. M.; Fung, J.; Peterson, B. W. (Principal Investigator)

    1998-01-01

    This study examined the role of trunk extensor muscles in the thoracic and lumbar regions during postural adjustments in the freely standing cat. The epaxial extensor muscles participate in the rapid postural responses evoked by horizontal translation of the support surface. The muscles segregate into two regional groups separated by a short transition zone, according to the spatial pattern of the electromyographic (EMG) responses. The upper thoracic muscles (T5-9) respond best to posteriorly directed translations, whereas the lumbar muscles (T13 to L7) respond best to anterior translations. The transition group muscles (T10-12) respond to almost all translations. Muscles group according to vertebral level rather than muscle species. The upper thoracic muscles change little in their response with changes in stance distance (fore-hindpaw separation) and may act to stabilize the intervertebral angles of the thoracic curvature. Activity in the lumbar muscles increases along with upward rotation of the pelvis (iliac crest) as stance distance decreases. Lumbar muscles appear to stabilize the pelvis with respect to the lumbar vertebrae (L7-sacral joint). The transition zone muscles display a change in spatial tuning with stance distance, responding to many directions of translation at short distances and focusing to respond best to contralateral translations at the long stance distance.

  17. Muscle fatigue evaluation of astronaut upper limb based on sEMG and subjective assessment

    NASA Astrophysics Data System (ADS)

    Zu, Xiaoqi; Zhou, Qianxiang; Li, Yun

    2012-07-01

    All movements are driven by muscle contraction, and it is easy to cause muscle fatigue. Evaluation of muscle fatigue is a hot topic in the area of astronaut life support training and rehabilitation. If muscle gets into fatigue condition, it may reduce work efficiency and has an impact on psychological performance. Therefore it is necessary to develop an accurate and usable method on muscle fatigue evaluation of astronaut upper limb. In this study, we developed a method based on surface electromyography (sEMG) and subjective assessment (Borg scale) to evaluate local muscle fatigue. Fifteen healthy young male subjects participated in the experiment. They performed isometric muscle contractions of the upper limb. sEMG of the biceps brachii were recorded during the entire process of isotonic muscle contraction and Borg scales of muscle fatigue were collected in certain times. sEMG were divided into several parts, and then mean energy of each parts were calculated by the one-twelfth band octave method. Equations were derived based on the relationship between the mean energy of sEMG and Borg scale. The results showed that cubic curve could describe the degree of local muscle fatigue, and could be used to evaluate and monitor local muscle fatigue during the entire process.

  18. Direct dynamics simulation of the impact phase in heel-toe running.

    PubMed

    Gerritsen, K G; van den Bogert, A J; Nigg, B M

    1995-06-01

    The influence of muscle activation, position and velocities of body segments at touchdown and surface properties on impact forces during heel-toe running was investigated using a direct dynamics simulation technique. The runner was represented by a two-dimensional four- (rigid body) segment musculo-skeletal model. Incorporated into the muscle model were activation dynamics, force-length and force-velocity characteristics of seven major muscle groups of the lower extremities: mm. glutei, hamstrings, m. rectus femoris, mm. vasti, m. gastrocnemius, m. soleus and m. tibialis anterior. The vertical force-deformation characteristics of heel, shoe and ground were modeled by a non-linear visco-elastic element. The maximum of a typical simulated impact force was 1.6 times body weight. The influence of muscle activation was examined by generating muscle stimulation combinations which produce the same (experimentally determined) resultant joint moments at heelstrike. Simulated impact peak forces with these different combinations of muscle stimulation levels varied less than 10%. Without this restriction on initial joint moments, muscle activation had potentially a much larger effect on impact force. Impact peak force was to a great extent influenced by plantar flexion (85 N per degree of change in foot angle) and vertical velocity of the heel (212 N per 0.1 m s-1 change in velocity) at touchdown. Initial knee flexion (68 N per degree of change in leg angle) also played a role in the absorption of impact. Increased surface stiffness resulted in higher impact peak forces (60 N mm-1 decrease in deformation).(ABSTRACT TRUNCATED AT 250 WORDS)

  19. An electromyographic study on the sequential recruitment of bilateral sternocleidomastoid and masseter muscle activity during gum chewing.

    PubMed

    Guo, S-X; Li, B-Y; Zhang, Y; Zhou, L-J; Liu, L; Widmalm, S-E; Wang, M-Q

    2017-08-01

    Mandibular functions are associated with electromyographic activity of the jaw muscles and also the sternocleidomastoid muscle (SCM). The precise spatiotemporal relation of SCM and masticatory muscles activities during chewing is worthy of investigation. To analyse the sequential recruitment of SCM and masseter activities during chewing as indicated by the spatiotemporal locations of their activity peaks. Jaw movements and bilateral surface electromyographic activity of SCM and masseter were recorded during gum chewing in 20 healthy subjects. The timing order was decided by comparing the length of time from the time when the opening started to the time when the surface electromyographic activity reached its peak value. Spatial order was analysed by locating the peak electromyographic activity onto a standard chewing cycle which was created based on 15 unilateral chewing cycles. Paired t-test, one-way ANOVA and Student-Newman-Keuls post-test were used for comparisons. Although the Time to Peak for the balancing side SCM appeared shorter than for the other three tested muscles, most often it did not reach a level of significance. However, the location of the balancing side SCM's peak activity was further from the terminal chewing position (TCP) than the working side SCM and bilateral masseters (P < 0·05). The balancing side SCM activity reached its peak significantly further away from TCP than the other three tested muscles during chewing. Further studies with spatiotemporal variables included should be helpful to understand the roles of the head, neck and jaw muscles in orofacial and cervical dysfunctional problems. © 2017 John Wiley & Sons Ltd.

  20. A Translational Pathway Toward a Clinical Trial Using the Second-Generation AAV Micro-Dystrophin Vector

    DTIC Science & Technology

    2016-09-01

    minidystrophin gene (a gift from Dr Jeffrey Chamberlain at the University of Washington, Seattle, WA) and the bovine growth hormone polyadenylation...full-length micro-dystrophin protein. Dys-2 is a short peptide in the wild-type full-length dystrophin. It can be recognized by the Dys-2...muscle. In one approach, a muscle homing peptide is inserted on the surface of the capsid to facilitate the entry of AAV into muscle cells. In the

  1. Activities of the Vastus Lateralis and Vastus Medialis Oblique Muscles during Squats on Different Surfaces.

    PubMed

    Hyong, In Hyouk; Kang, Jong Ho

    2013-08-01

    [Purpose] The purpose of the present study was to examine the effects of squat exercises performed on different surfaces on the activity of the quadriceps femoris muscle in order to provide information on support surfaces for effective squat exercises. [Subjects and Method] Fourteen healthy subjects performed squat exercises for five seconds each on three different support surfaces: hard plates, foam, and rubber air discs. Their performance was measured using electromyography. As the subjects performed the squat exercises on each surface, data on the activity of the vastus medialis oblique and the vastus lateralis, and the vastus medials oblique/vastus lateralis ratio, were collected. [Results] The activity of the vastus medialis oblique and the vastus medialis oblique/vastus lateralis ratio were found to be statistically significantly higher on rubber air discs than when the squats were performed on hard plates or foam. [Conclusion] To activate the vastus medialis obilique, and to enhance the vastus medialis oblique/vastus lateralis ratio, unstable surfaces that are highly unstable should be selected.

  2. Changes in muscle activity determine progression of clinical symptoms in patients with chronic spine-related muscle pain. A complex clinical and neurophysiological approach

    PubMed Central

    Wytra̦żek, Marcin; Huber, Juliusz; Lisiński, Przemysław

    Summary Spine-related muscle pain can affect muscle strength and motor unit activity. This study was undertaken to investigate whether surface electromyographic (sEMG) recordings performed during relaxation and maximal contraction reveal differences in the activity of muscles with or without trigger points (TRPs). We also analyzed the possible coexistence of characteristic spontaneous activity in needle electromyographic (eEMG) recordings with the presence of TRPs. Thirty patients with non-specific cervical and back pain were evaluated using clinical, neuroimaging and electroneurographic examinations. Muscle pain was measured using a visual analog scale (VAS), and strength using Lovett’s scale; trigger points were detected by palpation. EMG was used to examine motor unit activity. Trigger points were found mainly in the trapezius muscles in thirteen patients. Their presence was accompanied by increased pain intensity, decreased muscle strength, increased resting sEMG amplitude, and decreased sEMG amplitude during muscle contraction. eEMG revealed characteristic asynchronous discharges in TRPs. The results of EMG examinations point to a complexity of muscle pain that depends on progression of the myofascial syndrome PMID:22152435

  3. Short-duration therapeutic massage reduces postural upper trapezius muscle activity.

    PubMed

    Domingo, Antoinette R; Diek, Melissa; Goble, Kathleen M; Maluf, Katrina S; Goble, Daniel J; Baweja, Harsimran S

    2017-01-18

    Massage therapy has historically been used as a therapeutic treatment to help reduce pain and promote relaxation. The aim of this study was to investigate the effect of therapeutic massage on the upper trapezius muscles, which are commonly associated with increased muscle tension. This was a randomized crossover study. Seventeen healthy individuals (nine women; 24.5±4.0 years) participated in the study. All individuals participated in two sessions that were held 24 h apart. In one of the sessions, the participants received a moderate pressure massage applied to the shoulders and neck. In the other session, participants sat quietly. The order of the sessions was counterbalanced across participants. Muscle activity, as measured by surface electromyography, of the upper trapezius muscles was recorded. The amount of muscle activity change following massage was compared with the change in muscle activity following quiet sitting. Muscle activity of the upper trapezius reduced significantly (19.3%; P=0.004) following massage compared with muscle activity following quiet sitting (1.0%). Our findings suggest that short-duration moderate pressure massage leads to a reduction in upper trapezius muscle activity. This result has potential implications for clinical populations such as those with chronic neck pain.

  4. Investigation on electromechanical properties of a muscle-like linear actuator fabricated by bi-film ionic polymer metal composites

    NASA Astrophysics Data System (ADS)

    Sun, Zhuangzhi; Zhao, Gang; Qiao, Dongpan; Song, Wenlong

    2017-12-01

    Artificial muscles have attracted great attention for their potentials in intelligent robots, biomimetic devices, and micro-electromechanical system. However, there are many performance bottlenecks restricting the development of artificial muscles in engineering applications, e.g., the little blocking force and short working life. Focused on the larger requirements of the output force and the lack characteristics of the linear motion, an innovative muscle-like linear actuator based on two segmented IPMC strips was developed to imitate linear motion of artificial muscles. The structures of the segmented IPMC strip of muscle-like linear actuator were developed and the established mathematical model was to determine the appropriate segmented proportion as 1:2:1. The muscle-like linear actuator with two segmented IPMC strips assemble by two supporting link blocks was manufactured for the study of electromechanical properties. Electromechanical properties of muscle-like linear actuator under the different technological factors were obtained to experiment, and the corresponding changing rules of muscle-like linear actuators were presented to research. Results showed that factors of redistributed resistance and surface strain on both end-sides were two main reasons affecting the emergence of different electromechanical properties of muscle-like linear actuators.

  5. Evaluation of muscle hyperactivity of the grimacing muscles by unilateral tight eyelid closure and stapedius muscle tone.

    PubMed

    Shiba, Masato; Matsuo, Kiyoshi; Ban, Ryokuya; Nagai, Fumio

    2012-10-01

    Muscle hyperactivity of grimacing muscles, including the orbicularis oculi and corrugator supercilii muscles that cause crow's feet and a glabellar frown line with ageing, cannot be accurately evaluated by surface observation. In 71 subjects, this study investigated the extent to which grimacing muscles are innervated by the bilateral motor cortices, whether the corticofacial projection to the grimacing muscles affects the facially innervated stapedius muscle tone by measuring static compliance of the tympanic membrane, and whether unilateral tight eyelid closure with contraction of the grimacing muscles changes static compliance. Unilateral tight eyelid closure and its subsequent change in the contralateral vertical medial eyebrow position revealed that motor neurons of the orbicularis oculi and corrugator supercilii muscles were innervated by the bilateral motor cortices with weak-to-strong contralateral dominance. The orbicularis oculi, corrugator supercilii, and stapedius muscles innervated by the bilateral motor cortices had increased muscle hyperactivity, which lowered the vertical medial eyebrow position and decreased the static compliance of the tympanic membrane more than those innervated by the unilateral motor cortex. Unilateral enhanced tight eyelid closure with contraction of the grimacing muscles in certain subjects ipsilaterally decreased the static compliance with increased contraction of the stapedius muscle, which probably occurs to immobilise the tympanic membrane and protect the inner ear from loud sound. Evaluation of unilateral tight eyelid closure and the subsequent change in the contralateral vertical medial eyebrow position as well as a measurement of the static compliance for the stapedius muscle tone has revealed muscle hyperactivity of grimacing muscles.

  6. Task-level feedback can explain temporal recruitment of spatially fixed muscle synergies throughout postural perturbations

    PubMed Central

    Safavynia, Seyed A.

    2012-01-01

    Recent evidence suggests that complex spatiotemporal patterns of muscle activity can be explained with a low-dimensional set of muscle synergies or M-modes. While it is clear that both spatial and temporal aspects of muscle coordination may be low dimensional, constraints on spatial versus temporal features of muscle coordination likely involve different neural control mechanisms. We hypothesized that the low-dimensional spatial and temporal features of muscle coordination are independent of each other. We further hypothesized that in reactive feedback tasks, spatially fixed muscle coordination patterns—or muscle synergies—are hierarchically recruited via time-varying neural commands based on delayed task-level feedback. We explicitly compared the ability of spatially fixed (SF) versus temporally fixed (TF) muscle synergies to reconstruct the entire time course of muscle activity during postural responses to anterior-posterior support-surface translations. While both SF and TF muscle synergies could account for EMG variability in a postural task, SF muscle synergies produced more consistent and physiologically interpretable results than TF muscle synergies during postural responses to perturbations. Moreover, a majority of SF muscle synergies were consistent in structure when extracted from epochs throughout postural responses. Temporal patterns of SF muscle synergy recruitment were well-reconstructed by delayed feedback of center of mass (CoM) kinematics and reproduced EMG activity of multiple muscles. Consistent with the idea that independent and hierarchical low-dimensional neural control structures define spatial and temporal patterns of muscle activity, our results suggest that CoM kinematics are a task variable used to recruit SF muscle synergies for feedback control of balance. PMID:21957219

  7. The role of haptic cues from rough and slippery surfaces in human postural control

    NASA Technical Reports Server (NTRS)

    Jeka, J. J.; Lackner, J. R.

    1995-01-01

    Haptic information is critically important in complex sensory-motor tasks such as manipulating objects. Its comparable importance in spatial orientation is only beginning to be recognized. We have shown that postural sway in humans is significantly reduced by lightly touching a stable surface with a fingertip at contact force levels far below those physically necessary to stabilize the body. To investigate further the functional relationship between contact forces at the hand and postural equilibrium, we had subjects stand in the tandem Romberg stance while being allowed physically supportive (force contact) and non-physically supportive (touch contact) amounts of index fingertip force on surfaces with different frictional characteristics. Mean sway amplitude (MSA) was reduced by over 50% with both touch and force contact of the fingertip, compared to standing without fingertip contact. No differences in MSA were observed when touching rough or slippery surfaces. The amplitude of EMG activity in the peroneal muscles and the timing relationships between fingertip forces, body sway and EMG activity suggested that with touch contact of the finger or with force contact on a slippery surface long-loop "reflexes" involving postural muscles were stabilizing sway. With force contact of the fingertip on a rough surface, MSA reduction was achieved primarily through physical support of the body. This pattern of results indicates that light touch contact cues from the fingertip in conjunction with proprioceptive signals about arm configuration are providing information about body sway that can be used to reduce MSA through postural muscle activation.

  8. Electromyographic Control of a Hands-Free Electrolarynx Using Neck Strap Muscles

    ERIC Educational Resources Information Center

    Kubert, Heather L.; Stepp, Cara E.; Zeitels, Steven M.; Gooey, John E.; Walsh, Michael J.; Prakash, S. R.; Hillman, Robert E.; Heaton, James T.

    2009-01-01

    Three individuals with total laryngectomy were studied for their ability to control a hands-free electrolarynx (EL) using neck surface electromyography (EMG) for on/off and pitch modulation. The laryngectomy surgery of participants was modified to preserve neck strap musculature for EMG-based EL control (EMG-EL), with muscles on one side…

  9. A Comparison of the Effects of Electrode Implantation and Targeting on Pattern Classification Accuracy for Prosthesis Control

    PubMed Central

    Farrell, Todd R.; Weir, Richard F. ff.

    2011-01-01

    The use of surface versus intramuscular electrodes as well as the effect of electrode targeting on pattern-recognition-based multifunctional prosthesis control was explored. Surface electrodes are touted for their ability to record activity from relatively large portions of muscle tissue. Intramuscular electromyograms (EMGs) can provide focal recordings from deep muscles of the forearm and independent signals relatively free of crosstalk. However, little work has been done to compare the two. Additionally, while previous investigations have either targeted electrodes to specific muscles or used untargeted (symmetric) electrode arrays, no work has compared these approaches to determine if one is superior. The classification accuracies of pattern-recognition-based classifiers utilizing surface and intramuscular as well as targeted and untargeted electrodes were compared across 11 subjects. A repeated-measures analysis of variance revealed that when only EMG amplitude information was used from all available EMG channels, the targeted surface, targeted intramuscular, and untargeted surface electrodes produced similar classification accuracies while the untargeted intramuscular electrodes produced significantly lower accuracies. However, no statistical differences were observed between any of the electrode conditions when additional features were extracted from the EMG signal. It was concluded that the choice of electrode should be driven by clinical factors, such as signal robustness/stability, cost, etc., instead of by classification accuracy. PMID:18713689

  10. Label-free screening of niche-to-niche variation in satellite stem cells using functionalized pores

    NASA Astrophysics Data System (ADS)

    Chapman, Matthew R.; Balakrishnan, Karthik; Conboy, Michael J.; Mohanty, Swomitra; Jabart, Eric; Huang, Haiyan; Hack, James; Conboy, Irina M.; Sohn, Lydia L.

    2012-02-01

    Combinations of surface markers are currently used to identify muscle satellite cells. Using pores functionalized with specific antibodies and measuring the transit time of cells passing through these pores, we discovered remarkable heterogeneity in the expression of these markers in muscle (satellite) stem cells that reside in different single myofibers. Microniche-specific variation in stem cells of the same organ has not been previously described, as bulk analysis does not discriminate between separate myofibers or even separate hind-leg muscle groups. We found a significant population of Sca-1+ satellite cells that form myotubes, thereby demonstrating the myogenic potential of Sca-1+ cells, which are currently excluded in bulk sorting. Finally, using our label-free pore screening technique, we have been able to quantify directly surface expression of Notch1 without activation of the Notch pathway. We show for the first time Notch1-expression heterogeneity in unactivated satellite cells. The discovery of fiber-to-fiber variations prompts new research into the reasons for such diversity in muscle stem cells.

  11. Electromechanical delay of abdominal muscles is modified by low back pain prevention exercise.

    PubMed

    Szpala, Agnieszka; Rutkowska-Kucharska, Alicja; Drapala, Jaroslaw

    2014-01-01

    The objective of the research was to assess the effect of a 4-week-long training program on selected parameters: electromechanical delay (EMD) and amplitude of electromyographic signal (EMG). Fourteen female students of the University School of Physical Education participated in the study. Torques and surface electromyography were evaluated under static conditions. Surface electrodes were glued to both sides of the rectus abdominis (RA), external oblique (EO), and erector spinae (ES) muscles. The 4-week-long program was aimed at strengthening the abdominal muscles and resulted in increased EMD during maximum torque production by flexors of the trunk, increased amplitudes of the signals of the erector spinae ( p = 0.005), and increased EMG amplitude asymmetry of the lower ( p = 0.013) and upper part ( p = 0.006) of the rectus abdominis muscle. In a training program composed of a large number of repetitions of strength exercises, in which the training person uses their own weight as the load (like in exercises such as curl-ups), the process of recruitment of motor units is similar to that found during fatiguing exercises and plyometric training.

  12. Control of FES thumb force using slip information obtained from the cutaneous electroneurogram in quadriplegic man.

    PubMed

    Haugland, M; Lickel, A; Haase, J; Sinkjaer, T

    1999-06-01

    A tetraplegic volunteer was implanted with percutaneous intramuscular electrodes in hand and forearm muscles. Furthermore, a sensory nerve cuff electrode was implanted on the volar digital nerve to the radial side of the index finger branching off the median nerve. In laboratory experiments a stimulation system was used to produce a lateral grasp (key grip) while the neural activity was recorded with the cuff electrode. The nerve signal contained information that could be used to detect the occurrence of slips and further to increase stimulation intensity to the thumb flexor/adductor muscles to stop the slip. Thereby the system provided a grasp that could catch an object if it started to slip due to, e.g., decreasing muscle force or changes in load forces tangential to the surface of the object. This method enabled an automatic adjustment of the stimulation intensity to the lowest possible level without loosing the grip and without any prior knowledge about the strength of the muscles and the weight and surface texture of the object.

  13. Role of the Z band in the mechanical properties of the heart.

    PubMed

    Goldstein, M A; Schroeter, J P; Michael, L H

    1991-05-01

    In striated muscle the mechanism of contraction involves the cooperative movement of contractile and elastic components. This review emphasizes a structural approach that describes the cellular and extracellular components with known anatomical, biochemical, and physical properties that make them candidates for these contractile and elastic components. Classical models of contractile and elastic elements and their underlying assumptions are presented. Mechanical properties of cardiac and skeletal muscle are compared and contrasted and then related to ultrastructure. Information from these approaches leads to the conclusion that the Z band is essential for muscle contraction. Our review of Z band structure shows the Z band at the interface where extracellular components meet the cell surface. The Z band is also the interface from cell surface to myofibril, from extra-myofibrillar to myofibril, and finally from sarcomere to sarcomere. Our studies of Z band in defined physiologic states show that this lattice is an integral part of the contractile elements and can function as an elastic component. The Z band is a complex dynamic lattice uniquely suited to play several roles in muscle contraction.

  14. Improving surface EMG burst detection in infrahyoid muscles during swallowing using digital filters and discrete wavelet analysis.

    PubMed

    Restrepo-Agudelo, Sebastian; Roldan-Vasco, Sebastian; Ramirez-Arbelaez, Lina; Cadavid-Arboleda, Santiago; Perez-Giraldo, Estefania; Orozco-Duque, Andres

    2017-08-01

    The visual inspection is a widely used method for evaluating the surface electromyographic signal (sEMG) during deglutition, a process highly dependent of the examiners expertise. It is desirable to have a less subjective and automated technique to improve the onset detection in swallowing related muscles, which have a low signal-to-noise ratio. In this work, we acquired sEMG measured in infrahyoid muscles with high baseline noise of ten healthy adults during water swallowing tasks. Two methods were applied to find the combination of cutoff frequencies that achieve the most accurate onset detection: discrete wavelet decomposition based method and fixed steps variations of low and high cutoff frequencies of a digital bandpass filter. Teager-Kaiser Energy operator, root mean square and simple threshold method were applied for both techniques. Results show a narrowing of the effective bandwidth vs. the literature recommended parameters for sEMG acquisition. Both level 3 decomposition with mother wavelet db4 and bandpass filter with cutoff frequencies between 130 and 180Hz were optimal for onset detection in infrahyoid muscles. The proposed methodologies recognized the onset time with predictive power above 0.95, that is similar to previous findings but in larger and more superficial muscles in limbs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Changes in muscle activation patterns in response to enhanced sensory input during treadmill stepping in infants born with myelomeningocele.

    PubMed

    Pantall, Annette; Teulier, Caroline; Ulrich, Beverly D

    2012-12-01

    Infants with myelomeningocele (MMC) increase step frequency in response to modifications to the treadmill surface. The aim was to investigate how these modifications impacted the electromyographic (EMG) patterns. We analyzed EMG from 19 infants aged 2-10 months, with MMC at the lumbosacral level. We supported infants upright on the treadmill for 12 trials, each 30 seconds long. Modifications included visual flow, unloading, weights, Velcro and lcriction. Surface electrodes recorded EMG from tibialis anterior, lateral gastrocnemius, rectus femoris and biceps femoris. We determined muscle bursts for each stride cycle and from these calculated various parameters. Results indicated that each of the five sensory conditions generated different motor patterns. Visual flow and friction which we previously reported increased step frequency impacted lateral gastrocnemius most. Weights, which significantly decreased step frequency increased burst duration and co-activity of the proximal muscles. We also observed an age effect, with all conditions increasing muscle activity in younger infants whereas in older infants visual flow and unloading stimulated most activity. In conclusion, we have demonstrated that infants with myelomeningocele at levels which impact the myotomes of major locomotor muscles find ways to respond and adapt their motor output to changes in sensory input. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Changes in muscle activation patterns in response to enhanced sensory input during treadmill stepping in infants born with myelomeningocele

    PubMed Central

    Pantall, Annette; Teulier, Caroline; Ulrich, Beverly D.

    2013-01-01

    Infants with myelomeningocele (MMC) increase step frequency in response to modifications to the treadmill surface. The aim was to investigate how these modifications impacted the electromyographic (EMG) patterns. We analyzed EMG from 19 infants aged 2–10 months, with MMC at the lumbosacral level. We supported infants upright on the treadmill for 12 trials, each 30 seconds long. Modifications included visual flow, unloading, weights, Velcro and lcriction. Surface electrodes recorded EMG from tibialis anterior, lateral gastrocnemius, rectus femoris and biceps femoris. We determined muscle bursts for each stride cycle and from these calculated various parameters. Results indicated that each of the five sensory conditions generated different motor patterns. Visual flow and friction which we previously reported increased step frequency impacted lateral gastrocnemius most. Weights, which significantly decreased step frequency increased burst duration and co-activity of the proximal muscles. We also observed an age effect, with all conditions increasing muscle activity in younger infants whereas in older infants visual flow and unloading stimulated most activity. In conclusion, we have demonstrated that infants with myelomeningocele at levels which impact the myotomes of major locomotor muscles find ways to respond and adapt their motor output to changes in sensory input. PMID:23158017

  17. Estimating the progression of muscle fatigue based on dependence between motor units using high density surface electromyogram.

    PubMed

    Bingham, Adrian; Arjunan, Sridhar P; Kumar, Dinesh K

    2016-08-01

    In this study we have tested the hypothesis regarding the increase in synchronization with the onset of muscle fatigue. For this aim, we have investigated the difference in the synchronicity between high density surface electromyogram (sEMG) channels of the rested muscles and when at the limit of endurance. Synchronization was measured by computing and normalizing the mutual information between the sEMG signals recorded from the high-density array electrode locations. Ten volunteers (Age range: 21 and 35 years; Mean age = 26 years; Male = 6, Female = 4) participated in our experiment. The participants performed isometric dorsiflexion of their dominate foot at two levels of contraction; 40% and 80% of their maximum voluntary contraction (MVC) until task failure. During the experiment an array of 64 electrodes (16 by 4) placed over the TA parallel to the muscle fiber was used to record the HD-sEMG. Normalized Mutual Information (NMI) between electrodes was calculated using the HD-sEMG data and then analyzed. The results show that that the average NMI of the TA significantly increased during fatigue at both levels of contraction. There was a statistically significant difference between NMI of the rested muscle compared with it being at the point of task failure.

  18. Unanticipated ankle inversions are significantly different from anticipated ankle inversions during drop landings: overcoming anticipation bias.

    PubMed

    Dicus, Jeremy R; Seegmiller, Jeff G

    2012-05-01

    Few ankle inversion studies have taken anticipation bias into account or collected data with an experimental design that mimics actual injury mechanisms. Twenty-three participants performed randomized single-leg vertical drop landings from 20 cm. Subjects were blinded to the landing surface (a flat force plate or 30° inversion wedge on the force plate). After each trial, participants reported whether they anticipated the landing surface. Participant responses were validated with EMG data. The protocol was repeated until four anticipated and four unanticipated landings onto the inversion wedge were recorded. Results revealed a significant main effect for landing condition. Normalized vertical ground reaction force (% body weights), maximum ankle inversion (degrees), inversion velocity (degrees/second), and time from contact to peak muscle activation (seconds) were significantly greater in unanticipated landings, and the time from peak muscle activation to maximum VGRF (second) was shorter. Unanticipated landings presented different muscle activation patterns than landings onto anticipated surfaces, which calls into question the usefulness of clinical studies that have not controlled for anticipation bias.

  19. A model for generating Surface EMG signal of m. Tibialis Anterior.

    PubMed

    Siddiqi, Ariba; Kumar, Dinesh; Arjunan, Sridhar P

    2014-01-01

    A model that simulates surface electromyogram (sEMG) signal of m. Tibialis Anterior has been developed and tested. This has a firing rate equation that is based on experimental findings. It also has a recruitment threshold that is based on observed statistical distribution. Importantly, it has considered both, slow and fast type which has been distinguished based on their conduction velocity. This model has assumed that the deeper unipennate half of the muscle does not contribute significantly to the potential induced on the surface of the muscle and has approximated the muscle to have parallel structure. The model was validated by comparing the simulated and the experimental sEMG signal recordings. Experiments were conducted on eight subjects who performed isometric dorsiflexion at 10, 20, 30, 50, 75, and 100% maximal voluntary contraction. Normalized root mean square and median frequency of the experimental and simulated EMG signal were computed and the slopes of the linearity with the force were statistically analyzed. The gradients were found to be similar (p>0.05) for both experimental and simulated sEMG signal, validating the proposed model.

  20. Mapping of the human upper arm muscle activity with an electrode matrix.

    PubMed

    Côté, J; Mathieu, P A

    2000-06-01

    Surface electrode matrices allow measurement of muscle activity while avoiding certain hazardous risks and inconvenience associated with invasive techniques. Major challenges of such equipment involve optimizing spatial resolution, and designing simple acquisition systems able to record simultaneously many potentials over large anatomical areas. We present a surface electromyography acquisition system comprising of 3 x 8 Ag-AgCl electrodes mounted onto an elastic band, which can be adjusted to fit an entire human upper limb segment. Using this equipment, we acquired a simultaneous representation of muscular activity from a segment of the upper limb surface of 6 healthy subjects during isometric contractions at various intensities. We found that the location of regions of highest activity depended on elbow torque direction but also varied among subjects. Signals obtained with such equipment can be used to solve the inverse problem and help optimize the electrode configuration in volume conduction studies. The efficacy of decision algorithms of multi-functional myoelectric prostheses can be tested with the global muscle activity patterns gathered. The electrode cuff could also be used in the investigation of fatigue and injury mechanisms during occupational activities.

  1. Antibiotic bonding to polytetrafluoroethylene with tridodecylmethylammonium chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, R.A.; Alcid, D.V.; Greco, R.S.

    Polytetrafluoroethylene (PTFE) treated with the cationic surfactant, triodecylmethylammonium chloride (TDMAC), binds /sup 14/C-penicillin (1.5 to 2 mg antibiotic/cm graft), whereas untreated PTFE or PTFE treated with anionic detergents shows little binding of antibiotic. TDMAC-treated PTFE concomitantly binds penicillin and heparin, generating a surface that potentially can resist both infection and thrombosis. The retention of these biologically active molecules is not due to passive entrapment in the PTFE but reflects an ionic interaction between the anionic ligands and surface-bound TDMAC. Penicillin bound to PTFE is not removed by exhaustive washing in aqueous buffers but is slowly released in the presence ofmore » plasma or when the PTFE is placed in a muscle pouch in the rat. Muscle tissue adjacent to the treated PTFE shows elevated levels of antibiotic following implantation. PTFE treated with TDMAC and placed in a muscle pouch binds /sup 14/C-penicillin when it is locally irrigated with antibiotic or when penicillin is administered intravenously. Thus, the TDMAC surface treated either in vitro or in vivo with penicillin provides an effective in situ source for the timed release of antibiotic.« less

  2. Extracellular matrix components direct porcine muscle stem cell behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilschut, Karlijn J.; Haagsman, Henk P.; Roelen, Bernard A.J., E-mail: b.a.j.roelen@uu.nl

    2010-02-01

    In muscle tissue, extracellular matrix proteins, together with the vasculature system, muscle-residence cells and muscle fibers, create the niche for muscle stem cells. The niche is important in controlling proliferation and directing differentiation of muscle stem cells to sustain muscle tissue. Mimicking the extracellular muscle environment improves tools exploring the behavior of primary muscle cells. Optimizing cell culture conditions to maintain muscle commitment is important in stem cell-based studies concerning toxicology screening, ex vivo skeletal muscle tissue engineering and in the enhancement of clinical efficiency. We used the muscle extracellular matrix proteins collagen type I, fibronectin, laminin, and also gelatinmore » and Matrigel as surface coatings of tissue culture plastic to resemble the muscle extracellular matrix. Several important factors that determine myogenic commitment of the primary muscle cells were characterized by quantitative real-time RT-PCR and immunofluorescence. Adhesion of high PAX7 expressing satellite cells was improved if the cells were cultured on fibronectin or laminin coatings. Cells cultured on Matrigel and laminin coatings showed dominant integrin expression levels and exhibited an activated Wnt pathway. Under these conditions both stem cell proliferation and myogenic differentiation capacity were superior if compared to cells cultured on collagen type I, fibronectin and gelatin. In conclusion, Matrigel and laminin are the preferred coatings to sustain the proliferation and myogenic differentiation capacity of the primary porcine muscle stem cells, when cells are removed from their natural environment for in vitro culture.« less

  3. Muscle development and differentiation in the urodele Ambystoma mexicanum.

    PubMed

    Banfi, Serena; Monti, Laura; Acquati, Francesco; Tettamanti, Gianluca; de Eguileor, Magda; Grimaldi, Annalisa

    2012-05-01

    Muscle differentiation has been widely described in zebrafish and Xenopus, but nothing is known about this process in amphibian urodeles. Both anatomical features and locomotor activity in urodeles are known to show intermediate features between fish and anurans. Therefore, a better understanding of myogenesis in urodeles could be useful to clarify the evolutionary changes that led to the formation of skeletal muscle in the trunk of land vertebrates. We report here a detailed morphological and molecular investigation on several embryonic stages of Ambystoma mexicanum and show that the first differentiating muscle fibers are the slow ones, originating from a myoblast population initially localized close to the notochord that forms a superficial layer on the somitic surface afterwards. Subsequently, fast fibers differentiation ensues. We also identified and cloned A. mexicanum Myf5 as a muscle-specific transcriptional factor likely involved in urodele muscle differentiation. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  4. [Altered hip muscle activation in patients with chronic non-specific low back pain].

    PubMed

    Nötzel, D; Puta, C; Wagner, H; Anders, C; Petrovich, A; Gabriel, H H W

    2011-04-01

    The aim of this study was to examine postural control in patients with chronic non-specific low back pain (CNRS). Furthermore the influence of visual information (eyes open versus eyes closed) was analyzed. A total of 8 patients with CNRS and 12 healthy control subjects were examined. Surface electromyography (SEMG) recordings were made from 5 trunk and 5 lower limb muscles as well as one hip muscle during application of distal lateral perturbation. Healthy controls (mean ± standard deviation: 96.42±64.77 µV) showed a significantly higher maximum amplitude of the gluteus medius muscle in comparison to patients with CNRS (56.29±39.63 µV). Furthermore activation of several lower limb muscles was found to be dependent on visual information. Patients showed an altered reflex response of the gluteus medius muscle which could be associated with reduced hip stability. © Deutsche Gesellschaft zum Studium des Schmerzes

  5. Myomaker is a membrane activator of myoblast fusion and muscle formation.

    PubMed

    Millay, Douglas P; O'Rourke, Jason R; Sutherland, Lillian B; Bezprozvannaya, Svetlana; Shelton, John M; Bassel-Duby, Rhonda; Olson, Eric N

    2013-07-18

    Fusion of myoblasts is essential for the formation of multi-nucleated muscle fibres. However, the identity of muscle-specific proteins that directly govern this fusion process in mammals has remained elusive. Here we identify a muscle-specific membrane protein, named myomaker, that controls myoblast fusion. Myomaker is expressed on the cell surface of myoblasts during fusion and is downregulated thereafter. Overexpression of myomaker in myoblasts markedly enhances fusion, and genetic disruption of myomaker in mice causes perinatal death due to an absence of multi-nucleated muscle fibres. Remarkably, forced expression of myomaker in fibroblasts promotes fusion with myoblasts, demonstrating the direct participation of this protein in the fusion process. Pharmacological perturbation of the actin cytoskeleton abolishes the activity of myomaker, consistent with previous studies implicating actin dynamics in myoblast fusion. These findings reveal a long-sought myogenic fusion protein that controls mammalian myoblast fusion and provide new insights into the molecular underpinnings of muscle formation.

  6. Development of new muscle contraction sensor to replace sEMG for using in muscles analysis fields.

    PubMed

    Zhang, D; Matsuoka, Y; Kong, W; Imtiaz, U; Bartolomeo, L; Cosentino, S; Zecca, M; Sessa, S; Ishii, H; Takanishi, A

    2014-01-01

    Nowadays, the technologies for detecting, processing and interpreting bioelectrical signals have improved tremendously. In particular, surface electromyography (sEMG) has gained momentum in a wide range of applications in various fields. However, sEMG sensing has several shortcomings, the most important being: measurements are heavily sensible to individual differences, sensors are difficult to position and very expensive. In this paper, the authors will present an innovative muscle contraction sensing device (MC sensor), aiming to replace sEMG sensing in the field of muscle movement analysis. Compared with sEMG, this sensor is easier to position, setup and use, less dependent from individual differences, and less expensive. Preliminary experiments, described in this paper, confirm that MC sensing is suitable for muscle contraction analysis, and compare the results of sEMG and MC sensor for the measurement of forearm muscle contraction.

  7. Neck muscle function in violinists/violists with and without neck pain.

    PubMed

    Steinmetz, Anke; Claus, Andrew; Hodges, Paul W; Jull, Gwendolen A

    2016-04-01

    Neck pain is associated with changes in neuromuscular control of cervical muscles. Violin and viola playing requires good function of the flexor muscles to stabilize the instrument. This study investigated the flexor muscle behaviour in violin/viola players with and without neck pain using the craniocervical flexion test (CCFT). In total, 12 violin/viola players with neck pain, 21 violin/viola players without neck pain in the preceding 12 weeks and 21 pain-free non-musicians were included. Activity of the sternocleidomastoid muscles (SCM) was measured with surface electromyography (EMG) during the CCFT. Violin/viola players with neck pain displayed greater normalised SCM EMG amplitudes during CCFT than the pain-free musicians and non-musicians (P < 0.05). Playing-related neck pain in violinists/violists is associated with altered behaviour of the superficial neck flexor muscles consistent with neck pain, despite the specific use of the deep and superficial neck flexors during violin playing.

  8. Comparing trapezius muscle activity in the different planes of shoulder elevation.

    PubMed

    Ishigaki, Tomonobu; Ishida, Tomoya; Samukawa, Mina; Saito, Hiroshi; Hirokawa, Motoki; Ezawa, Yuya; Sugawara, Makoto; Tohyama, Harukazu; Yamanaka, Masanori

    2015-05-01

    [Purpose] The purpose of this study was to compare the upper, middle, and lower trapezius muscles' activity in the different planes of shoulder elevation. [Subjects] Twenty male subjects volunteered for this study. [Methods] Surface electromyographic (EMG) activity for each of the three regions of the trapezius muscles in the three different planes of elevation were collected while the participants maintained 30, 60, and 90 degrees of elevation in each plane. The EMG data were normalized with maximum voluntary isometric contraction (%MVIC), and compared among the planes at each angle of elevation. [Results] There were significantly different muscle activities among the elevation planes at each angle. [Conclusion] This study found that the three regions of the trapezius muscles changed their activity depending on the planes of shoulder elevation. These changes in the trapezius muscles could induce appropriate scapular motion to face the glenoid cavity in the correct directions in different planes of shoulder elevation.

  9. Effects of deep breathing on internal oblique and multifidus muscle activity in three sitting postures

    PubMed Central

    Ko, Min-Joo; Jung, Eun-Joo; Kim, Moon-Hwan; Oh, Jae-Seop

    2018-01-01

    [Purpose] This study was to investigate differences in the level of activity of the external oblique (EO), internal oblique (IO), and multifidus (MF) muscles with deep breathing in three sitting postures. [Subjects and Methods] Sixteen healthy women were recruited. The muscle activity (EO, IO, MF) of all subjects was measured in three sitting postures (slumped, thoracic upright, and lumbo-pelvic upright sitting postures) using surface electromyography. The activity of the same muscles was then remeasured in the three sitting postures during deep breathing. [Results] Deep breathing significantly increased activity in the EO, IO, and MF compared with normal breathing. Comparing postures, the activity of the MF and IO muscles was highest in the lumbo-pelvic upright sitting posture. [Conclusion] An lumbo-pelvic upright sitting posture with deep breathing could increase IO and MF muscle activity, thus improving lumbo-pelvic region stability. PMID:29706695

  10. Spectral analysis of skeletal muscle changes resulting from 59 days of weightlessness in Skylab 2

    NASA Technical Reports Server (NTRS)

    Lafevers, E. V.; Nicogossian, A. E.; Hoffler, G. W.; Hursta, W.; Baker, J.

    1975-01-01

    During stressful exercise of the m. gastrocnemius, preflight and postflight surface electromyograms (EMG) were taken from each of the Skylab II astronauts. Measurements on the muscle were made once 5 days before launch, and four times postflight on recovery day, 4 days after recovery, 16 days after recovery and 29 days after recovery. It was hypothesized that the disused gastrocnemius would exhibit dysfunction characteristics similar to those found in laboratory studies on disuse and of pathologically astrophied muscle, and that physical stress would be associated with heightened fatigability in the muscle. Both hypotheses were sustained. The results showed significant shifts of the predominant frequency of the gastrocnemius into higher than normal bands which suggests a relationship between muscle disuse characteristics and pathologic dysfunction characteristics. It was concluded that the spectrally analyzed EMG is a sensitive measure of muscle dsyfunction that is associated with disuse. Antigravity muscles exhibit heightened susceptibility to fatigue when subjected to lengthy weightlessness.

  11. The peroneus quartus muscle: clinical correlation with evolutionary importance.

    PubMed

    Athavale, Sunita Arvind; Gupta, Vanita; Kotgirwar, Sheetal; Singh, Vikrant

    2012-06-01

    The peroneus quartus (PQ) is an accessory muscle of the peroneal/lateral compartment of the leg. The muscle has often been implicated as a cause of pain in the lateral ankle region, and subluxation or attrition of the peroneal tendons. The present study was aimed at observing the prevalence and morphology of this muscle in human cadavers. Ninety-two embalmed lower limbs were dissected for this study. The PQ muscle was found in 21% of the limbs. In all these limbs it originated from the lower part of the lateral surface of the fibula, the undersurface of peroneus brevis and the posterior intermuscular septum. In the majority of limbs, insertion was on the retrotrochlear eminence of the calcaneus. Taking into account the possibility of this muscle being a cause of lateral ankle pathology, the present study attempts to correlate the findings with the anatomy of the surrounding region. The frequent occurrence of this muscle in humans is suggestive of a progressive evolutionary change to evert the foot in order to assume a bipedal gait.

  12. Dose response effect of cement dust on respiratory muscles competence in cement mill workers.

    PubMed

    Meo, Sultan A; Azeem, Muhammad A; Qureshi, Aijaz A; Ghori, G Moinudin; Al-Drees, Abdul Majeed; Feisal Subhan, Mirza Muhammad

    2006-12-01

    Electromyography (EMG) of respiratory muscles is a reliable method of assessing the ventilatory muscle function, but still its use has not been fully utilized to determine the occupational and environmental hazards on respiratory muscles. Therefore, EMG of intercostal muscles was performed to determine the dose response effect of cement dust on respiratory muscles competence. Matched cross-sectional study of EMG in 50 non-smoking cement mill workers with an age range of 20 - 60 years, who worked without the benefit of cement dust control ventilation or respiratory protective devices. EMG was performed by using surface electrodes and chart recorder. Significant reduction was observed in number of peaks (p < 0.0005), maximum peak amplitude (p < 0.0005), peak-to-peak amplitude (p < 0.0005) and duration of response (p < 0.0005) in cement mill workers compared to their matched control. Cement dust impairs the intercostal muscle competence and stratification of results shows a dose-effect of years of exposure in cement mill.

  13. Bioreactors for guiding muscle tissue growth and development.

    PubMed

    Dennis, R G; Smith, B; Philp, A; Donnelly, K; Baar, K

    2009-01-01

    Muscle tissue bioreactors are devices which are employed to guide and monitor the development of engineered muscle tissue. These devices have a modern history that can be traced back more than a century, because the key elements of muscle tissue bioreactors have been studied for a very long time. These include barrier isolation and culture of cells, tissues and organs after isolation from a host organism; the provision of various stimuli intended to promote growth and maintain the muscle, such as electrical and mechanical stimulation; and the provision of a perfusate such as culture media or blood derived substances. An accurate appraisal of our current progress in the development of muscle bioreactors can only be made in the context of the history of this endeavor. Modern efforts tend to focus more upon the use of computer control and the application of mechanical strain as a stimulus, as well as substrate surface modifications to induce cellular organization at the early stages of culture of isolated muscle cells.

  14. Effects of ambient temperature on mechanomyography of resting quadriceps muscle.

    PubMed

    McKay, William P; Vargo, Michael; Chilibeck, Philip D; Daku, Brian L

    2013-03-01

    It has been speculated that resting muscle mechanical activity, also known as minor tremor, microvibration, and thermoregulatory tonus, has evolved to maintain core temperature in homeotherms, and may play a role in nonshivering thermogenesis. This experiment was done to determine whether resting muscle mechanical activity increases with decreasing ambient temperature. We cooled 20 healthy, human, resting, supine subjects from an ambient temperature of 40° to 12 °C over 65 min. Core temperature, midquadriceps mechanomyography, surface electromyography, and oxygen consumption (VO2) were recorded. Resting muscle mechanical and electrical activity in the absence of shivering increased significantly at temperatures below 21.5 °C. Women defended core temperature more effectively than men, and showed increased resting muscle activity earlier than men. Metabolism measured by VO2 correlated with resting muscle mechanical activity (R = 0.65; p = 0.01). Resting muscle mechanical activity may have evolved, in part, to maintain core temperature in the face of mild cooling.

  15. The study of muscle remodeling in Drosophila metamorphosis using in vivo microscopy and bioimage informatics

    PubMed Central

    2012-01-01

    Background Metamorphosis in insects transforms the larval into an adult body plan and comprises the destruction and remodeling of larval and the generation of adult tissues. The remodeling of larval into adult muscles promises to be a genetic model for human atrophy since it is associated with dramatic alteration in cell size. Furthermore, muscle development is amenable to 3D in vivo microscopy at high cellular resolution. However, multi-dimensional image acquisition leads to sizeable amounts of data that demand novel approaches in image processing and analysis. Results To handle, visualize and quantify time-lapse datasets recorded in multiple locations, we designed a workflow comprising three major modules. First, the previously introduced TLM-converter concatenates stacks of single time-points. The second module, TLM-2D-Explorer, creates maximum intensity projections for rapid inspection and allows the temporal alignment of multiple datasets. The transition between prepupal and pupal stage serves as reference point to compare datasets of different genotypes or treatments. We demonstrate how the temporal alignment can reveal novel insights into the east gene which is involved in muscle remodeling. The third module, TLM-3D-Segmenter, performs semi-automated segmentation of selected muscle fibers over multiple frames. 3D image segmentation consists of 3 stages. First, the user places a seed into a muscle of a key frame and performs surface detection based on level-set evolution. Second, the surface is propagated to subsequent frames. Third, automated segmentation detects nuclei inside the muscle fiber. The detected surfaces can be used to visualize and quantify the dynamics of cellular remodeling. To estimate the accuracy of our segmentation method, we performed a comparison with a manually created ground truth. Key and predicted frames achieved a performance of 84% and 80%, respectively. Conclusions We describe an analysis pipeline for the efficient handling and analysis of time-series microscopy data that enhances productivity and facilitates the phenotypic characterization of genetic perturbations. Our methodology can easily be scaled up for genome-wide genetic screens using readily available resources for RNAi based gene silencing in Drosophila and other animal models. PMID:23282138

  16. Surface EMG of shoulder and back muscles and posture analysis in secretaries typing at visual display units.

    PubMed

    Kleine, B U; Schumann, N P; Bradl, I; Grieshaber, R; Scholle, H C

    1999-09-01

    A study was carried out to investigate temporal changes of activation of shoulder and back muscles in workers at visual display units by means of surface EMG. Moreover, postural parameters were recorded to distinguish fatigue-related from posture-related changes of the myoelectrical activity. Nine healthy female office workers typed texts spoken from tape during three 1-h-long sessions. After the first and again after the second hour there was a break of 15 min. Sixteen-channel surface EMG was bipolarly recorded from the erector spinae, trapezius, deltoid and sternocleidomastoid muscles. Root mean square (RMS) and power spectrum median frequency of the EMG were calculated. Sitting posture was assessed using an eight-channel movement analysis system with ultrasound markers. The position of the seventh cervical spinous process and the left and the right acromion were analysed synchronously with the EMG characteristics using regression analysis. The normalised RMS of the left and right trapezius muscle increased, while the median frequency did not change. The increase of the normalised RMS was significantly lower when the linear influence of posture was excluded. On average, the distance between C7 and the left and right acromion decreased within each working an hour. C7 became lower on average by 5.5 mm within an hour, whereas the acromions became lower by only 1.7 mm (left) and 3.3 mm (right). The increase in trapezius muscle activity was partly related to a lifting of the shoulders to compensate a slight slumping of the back. Another part of the EMG activity increase has to be attributed to fatigue, to attention-related activity or to the combination of both. Therefore, training of the back muscles and a varied organisation of work might have a preventive effect with respect to musculoskeletal complaints in VDU workers.

  17. Development and evaluation of a soft wearable weight support device for reducing muscle fatigue on shoulder

    PubMed Central

    Cho, Kyu-Jin

    2017-01-01

    Compensating the weight of human limbs is important in reducing muscle fatigue experienced by manual laborers. In this study, a compact and lightweight soft wearable weight support device was developed and evaluated. The device supports gravitational force on the shoulder at any arm posture, although there are some limitations in its assistive performance. The device actuator consists of a cam-rod structure, a tendon-driven mechanism, and a rubber band. The desired assistive torque is translated to the shoulder joint along a tendon routing structure. Device performance was evaluated by measuring muscle activation in with-assist and without-assist conditions. Muscle activation on the deltoid was measured by surface electromyography. An experimental protocol consisting of a series of exercises was executed with six healthy subjects. The subjects raised and lowered their arm from 0 to 100 degrees for 30 times under eight conditions, which were combined with-assist and without-assist conditions, and holding the horizontal angle of the arm at 0, 30, 60, or 90 degrees against the sagittal plane. Surface electromyography data were pre-processed and analyzed using a root mean square method. When muscle fatigue occurs, the root mean square of the surface electromyography increases nonlinearly. This was calculated using the standard deviation of the root mean square. Three of six subjects showed decreased variation of the root mean square between the exercises in the with-assist condition. One subject’s result was significantly reduced (by about 57.6%) in the with-assist condition. In contrast, two subjects did not show significant difference between measurements taken in the with-assist and without-assist conditions. One subject was dropped from the experiment because the device did not fit the subject’s body. In conclusion, the effectiveness of the soft wearable weight support device in supporting shoulder movements was verified through the decreased variation of muscle activation. PMID:28291825

  18. Development and evaluation of a soft wearable weight support device for reducing muscle fatigue on shoulder.

    PubMed

    Park, Daegeun; Cho, Kyu-Jin

    2017-01-01

    Compensating the weight of human limbs is important in reducing muscle fatigue experienced by manual laborers. In this study, a compact and lightweight soft wearable weight support device was developed and evaluated. The device supports gravitational force on the shoulder at any arm posture, although there are some limitations in its assistive performance. The device actuator consists of a cam-rod structure, a tendon-driven mechanism, and a rubber band. The desired assistive torque is translated to the shoulder joint along a tendon routing structure. Device performance was evaluated by measuring muscle activation in with-assist and without-assist conditions. Muscle activation on the deltoid was measured by surface electromyography. An experimental protocol consisting of a series of exercises was executed with six healthy subjects. The subjects raised and lowered their arm from 0 to 100 degrees for 30 times under eight conditions, which were combined with-assist and without-assist conditions, and holding the horizontal angle of the arm at 0, 30, 60, or 90 degrees against the sagittal plane. Surface electromyography data were pre-processed and analyzed using a root mean square method. When muscle fatigue occurs, the root mean square of the surface electromyography increases nonlinearly. This was calculated using the standard deviation of the root mean square. Three of six subjects showed decreased variation of the root mean square between the exercises in the with-assist condition. One subject's result was significantly reduced (by about 57.6%) in the with-assist condition. In contrast, two subjects did not show significant difference between measurements taken in the with-assist and without-assist conditions. One subject was dropped from the experiment because the device did not fit the subject's body. In conclusion, the effectiveness of the soft wearable weight support device in supporting shoulder movements was verified through the decreased variation of muscle activation.

  19. Paradigm shift in lead design.

    PubMed

    Irnich, W

    1999-09-01

    During the past 30 years there has been a tremendous development in electrode technology from bulky (90 mm2) to pin-sized (1.0 mm2) electrodes. Simultaneously, impedance has increased from 110 Ohms to >1 kOhms, which has been termed a "paradigm shift" in lead design. If current is responsible for stimulation, why is its impedance a key factor in saving energy? Further, what mechanism is behind this development based on experimental findings and what conclusion can be drawn from it to optimize electrode size? If it is assumed that there is always a layer of nonexcitable tissue between the electrode surface and excitable myocardium and that the electric field (potential gradient) produced by the electrode at this boundary is reaching threshold level, then a formula can be derived for the voltage threshold that completely describes the electrophysiology and electrophysics of a hemispherical electrode. Assuming that the mean chronic threshold for porous steroid-eluting electrodes is 0.6 V with 0.5-ms pulse duration, thickness of nonexcitable tissue can be estimated to be 1.5 mm. Taking into account this measure and the relationship between chronaxie and electrode area, voltage threshold, impedance, and energy as a function of surface area can be calculated. The lowest voltage for 0.5-ms pulse duration is reached with r(o) = 0.5 d, yielding a surface area of 4 mm2 and a voltage threshold of 0.62 V, an impedance of 1 kOhms, and an energy level of 197 nJ. It can be deduced from our findings that a further reduction of surface areas below 1.6 mm2 will not diminish energy threshold substantially, if pulse duration remains at 0.5 ms. Lowest energy is reached with t = chronaxie, yielding an energy level <100 nJ with surface areas < or =1.5 mm2. It is striking to see how well the theoretically derived results correspond to the experimental findings. It is also surprising that the hemispheric model so accurately approximates experimental results with differently shaped electrodes that it can be concluded that electrode shape seems to play a minor role in electrode efficiency. Further energy reduction can only be achieved by reducing the pulse duration to chronaxie. A real paradigm shift will occur only if the fundamentals of electrostimulation in combination with electrophysics are accepted by the pacing community.

  20. Modern Theories of Pelvic Floor Support : A Topical Review of Modern Studies on Structural and Functional Pelvic Floor Support from Medical Imaging, Computational Modeling, and Electromyographic Perspectives.

    PubMed

    Peng, Yun; Miller, Brandi D; Boone, Timothy B; Zhang, Yingchun

    2018-02-12

    Weakened pelvic floor support is believed to be the main cause of various pelvic floor disorders. Modern theories of pelvic floor support stress on the structural and functional integrity of multiple structures and their interplay to maintain normal pelvic floor functions. Connective tissues provide passive pelvic floor support while pelvic floor muscles provide active support through voluntary contraction. Advanced modern medical technologies allow us to comprehensively and thoroughly evaluate the interaction of supporting structures and assess both active and passive support functions. The pathophysiology of various pelvic floor disorders associated with pelvic floor weakness is now under scrutiny from the combination of (1) morphological, (2) dynamic (through computational modeling), and (3) neurophysiological perspectives. This topical review aims to update newly emerged studies assessing pelvic floor support function among these three categories. A literature search was performed with emphasis on (1) medical imaging studies that assess pelvic floor muscle architecture, (2) subject-specific computational modeling studies that address new topics such as modeling muscle contractions, and (3) pelvic floor neurophysiology studies that report novel devices or findings such as high-density surface electromyography techniques. We found that recent computational modeling studies are featured with more realistic soft tissue constitutive models (e.g., active muscle contraction) as well as an increasing interest in simulating surgical interventions (e.g., artificial sphincter). Diffusion tensor imaging provides a useful non-invasive tool to characterize pelvic floor muscles at the microstructural level, which can be potentially used to improve the accuracy of the simulation of muscle contraction. Studies using high-density surface electromyography anal and vaginal probes on large patient cohorts have been recently reported. Influences of vaginal delivery on the distribution of innervation zones of pelvic floor muscles are clarified, providing useful guidance for a better protection of women during delivery. We are now in a period of transition to advanced diagnostic and predictive pelvic floor medicine. Our findings highlight the application of diffusion tensor imaging, computational models with consideration of active pelvic floor muscle contraction, high-density surface electromyography, and their potential integration, as tools to push the boundary of our knowledge in pelvic floor support and better shape current clinical practice.

  1. The effects of Kinesio Taping on the trajectory of the forelimb and the muscle activity of the Musculus brachiocephalicus and the Musculus extensor carpi radialis in horses

    PubMed Central

    Zellner, Antonia; Bockstahler, Barbara; Peham, Christian

    2017-01-01

    Background information The present study aimed to investigate the effects of Kinesio Taping on the trajectory of the forelimb and the muscle activity of the M. brachiocephalicus and the M. extensor carpi radialis in horses. 19 horses and ponies of different breeds (body weight: 496±117 kg), gender (8 mares, 10 geldings and 3 stallions) and ages (14.9±6.9 years old) were analysed without Kinesio Tape (“no tape”), with Kinesio Tape (muscle facilitation application on both muscles of both sides, “with tape”) and immediately after Kinesio Taping (“post tape”) through kinematic motion analysis and surface electromyography on a treadmill at the walk (speed: 1.5±0.1 m/s) and trot (speed: 3.1±0.3 m/s). Results The results of the surface electromyography (maximum muscle activity at the walk and trot) and the kinematic motion analysis (maximum stride length and maximum height of the forelimbs flight arc at the walk and trot) showed that there were no significant differences between "no tape", "with tape" and "post tape". Conclusion To sum up, Kinesio Taping on the M. brachiocephalicus and the M. extensor carpi radialis does not affect (in a positive or negative manner) the trajectory of the forelimb or the muscle activity of the M. brachiocephalicus and the M. extensor carpi radialis in horses. PMID:29166657

  2. Prediction of maximal surface electromyographically based voluntary contractions of erector spinae muscles from sonographic measurements during isometric contractions.

    PubMed

    Cuesta-Vargas, Antonio I; González-Sánchez, Manuel

    2014-03-01

    Currently, there are no studies combining electromyography (EMG) and sonography to estimate the absolute and relative strength values of erector spinae (ES) muscles in healthy individuals. The purpose of this study was to establish whether the maximum voluntary contraction (MVC) of the ES during isometric contractions could be predicted from the changes in surface EMG as well as in fiber pennation and thickness as measured by sonography. Thirty healthy adults performed 3 isometric extensions at 45° from the vertical to calculate the MVC force. Contractions at 33% and 100% of the MVC force were then used during sonographic and EMG recordings. These measurements were used to observe the architecture and function of the muscles during contraction. Statistical analysis was performed using bivariate regression and regression equations. The slope for each regression equation was statistically significant (P < .001) with R(2) values of 0.837 and 0.986 for the right and left ES, respectively. The standard error estimate between the sonographic measurements and the regression-estimated pennation angles for the right and left ES were 0.10 and 0.02, respectively. Erector spinae muscle activation can be predicted from the changes in fiber pennation during isometric contractions at 33% and 100% of the MVC force. These findings could be essential for developing a regression equation that could estimate the level of muscle activation from changes in the muscle architecture.

  3. Neuromuscular coordination of masticatory muscles in subjects with two types of implant-supported prostheses.

    PubMed

    Ferrario, Virgilio F; Tartaglia, Gianluca M; Maglione, Michele; Simion, Massimo; Sforza, Chiarella

    2004-04-01

    To compare the electromyographic (EMG) characteristics of masticatory muscles in patients with fixed implant-supported prostheses and implant overdentures. Nineteen subjects aged 45-79 years were examined. Fourteen were edentulous and had been successfully rehabilitated with (a) maxillary and mandibular implant-supported fixed prostheses (seven patients); (b) mandibular implant overdentures and maxillary complete dentures (seven patients). Five control subjects had natural dentition or single/partial (no more than two teeth) tooth or implant fixed dentures. Surface EMG of the masseter and temporal muscles was performed during unilateral gum chewing and during maximum teeth clenching. To reduce biological and instrumental noise, all values were standardized as percentage of a maximum clenching on cotton rolls. During clenching, temporal muscle symmetry was larger in control subjects and fixed implant-supported prosthesis patients than in overdenture patients (analysis of variance, P=0.005). No differences were found in masseter muscle symmetry or in muscular torque. Muscle activities (integrated areas of the EMG potentials over time) were significantly larger in control subjects than in implant-supported prosthesis patients (P=0.014). In both patient groups, a poor neuromuscular coordination during chewing, with altered muscular patterns, and a smaller left-right symmetry than in control subjects were found (P=0.05). No differences in masticatory frequency were found. Surface EMG analysis of clenching and chewing showed that fixed implant-supported prostheses and implant overdentures were functionally equivalent. Neuromuscular coordination during chewing was inferior to that found in subjects with natural dentition.

  4. Evolution of a Novel Muscle Design in Sea Urchins (Echinodermata: Echinoidea)

    PubMed Central

    Ziegler, Alexander; Schröder, Leif; Ogurreck, Malte; Faber, Cornelius; Stach, Thomas

    2012-01-01

    The sea urchin (Echinodermata: Echinoidea) masticatory apparatus, or Aristotle's lantern, is a complex structure composed of numerous hard and soft components. The lantern is powered by various paired and unpaired muscle groups. We describe how one set of these muscles, the lantern protractor muscles, has evolved a specialized morphology. This morphology is characterized by the formation of adaxially-facing lobes perpendicular to the main orientation of the muscle, giving the protractor a frilled aspect in horizontal section. Histological and ultrastructural analyses show that the microstructure of frilled muscles is largely identical to that of conventional, flat muscles. Measurements of muscle dimensions in equally-sized specimens demonstrate that the frilled muscle design, in comparison to that of the flat muscle type, considerably increases muscle volume as well as the muscle's surface directed towards the interradial cavity, a compartment of the peripharyngeal coelom. Scanning electron microscopical observations reveal that the insertions of frilled and flat protractor muscles result in characteristic muscle scars on the stereom, reflecting the shapes of individual muscles. Our comparative study of 49 derived “regular” echinoid species using magnetic resonance imaging (MRI) shows that frilled protractor muscles are found only in taxa belonging to the families Toxopneustidae, Echinometridae, and Strongylocentrotidae. The onset of lobe formation during ontogenesis varies between species of these three families. Because frilled protractor muscles are best observed in situ, the application of a non-invasive imaging technique was crucial for the unequivocal identification of this morphological character on a large scale. Although it is currently possible only to speculate on the functional advantages which the frilled muscle morphology might confer, our study forms the anatomical and evolutionary framework for future analyses of this unusual muscle design among sea urchins. PMID:22624043

  5. Are muscle activation patterns altered during shod and barefoot running with a forefoot footfall pattern?

    PubMed

    Ervilha, Ulysses Fernandes; Mochizuki, Luis; Figueira, Aylton; Hamill, Joseph

    2017-09-01

    This study aimed to investigate the activation of lower limb muscles during barefoot and shod running with forefoot or rearfoot footfall patterns. Nine habitually shod runners were asked to run straight for 20 m at self-selected speed. Ground reaction forces and thigh and shank muscle surface electromyographic (EMG) were recorded. EMG outcomes (EMG intensity [iEMG], latency between muscle activation and ground reaction force, latency between muscle pairs and co-activation index between muscle pairs) were compared across condition (shod and barefoot), running cycle epochs (pre-strike, strike, propulsion) and footfall (rearfoot and forefoot) by ANOVA. Condition affected iEMG at pre-strike epoch. Forefoot and rearfoot strike patterns induced different EMG activation time patterns affecting co-activation index for pairs of thigh and shank muscles. All these timing changes suggest that wearing shoes or not is less important for muscle activation than the way runners strike the foot on the ground. In conclusion, the guidance for changing external forces applied on lower limbs should be pointed to the question of rearfoot or forefoot footfall patterns.

  6. Effect of Expiratory Resistive Loading in Expiratory Muscle Strength Training on Orbicularis Oris Muscle Activity

    PubMed Central

    Yanagisawa, Yukio; Matsuo, Yoshimi; Shuntoh, Hisato; Horiuchi, Noriaki

    2014-01-01

    [Purpose] The purpose of this study was to elucidate the effect of expiratory resistive loading on orbicularis oris muscle activity. [Subjects] Subjects were 23 healthy individuals (11 males, mean age 25.5±4.3 years; 12 females, mean age 25.0±3.0 years). [Methods] Surface electromyography was performed to measure the activity of the orbicularis oris muscle during maximum lip closure and resistive loading at different expiratory pressures. Measurement was performed at 10%, 30%, 50%, and 100% of maximum expiratory pressure (MEP) for all subjects. The t-test was used to compare muscle activity between maximum lip closure and 100% MEP, and analysis of variance followed by multiple comparisons was used to compare the muscle activities observed at different expiratory pressures. [Results] No significant difference in muscle activity was observed between maximum lip closure and 100% MEP. Analysis of variance with multiple comparisons revealed significant differences among the different expiratory pressures. [Conclusion] Orbicularis oris muscle activity increased with increasing expiratory resistive loading. PMID:24648644

  7. Activation of the hip adductor muscles varies during a simulated weight-bearing task.

    PubMed

    Hides, Julie A; Beall, Paula; Franettovich Smith, Melinda M; Stanton, Warren; Miokovic, Tanja; Richardson, Carolyn

    2016-01-01

    To investigate the pattern of muscle activation of the individual hip adductor muscles using a standardised simulated unilateral weight-bearing task. A repeated measures design. Laboratory. 20 healthy individuals (11 females, 9 males) participated in the study. Age ranged from 20 to 25 years. Surface electromyography recordings from adductor magnus and adductor longus muscles were taken at levels representing 10-50% of body weight during a simulated weight-bearing task. Electromyography (EMG) data were normalised to maximal voluntary isometric contraction. The adductor magnus was recruited at significantly higher levels than the adductor longus muscle during a simulated weight-bearing task performed across 10-50% of body weight (p < 0.01). Adductor magnus and adductor longus muscles are recruited to different extents during a simulated weight-bearing task. This information should be considered when selecting exercises for management and prevention of groin strains. Closed chain exercises with weight-bearing through the lower limb are more likely to recruit the adductor magnus muscle over the adductor longus muscle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Comparison of the effects of an eight-week push-up program using stable versus unstable surfaces.

    PubMed

    Chulvi-Medrano, Iván; Martínez-Ballester, Esteban; Masiá-Tortosa, Laura

    2012-12-01

    Recently, the trend among physical training and rehabilitation professionals is the use of resistance exercise on unstable equipment in order to increase the effort of the agonist and stabilizing muscles. It is unknown if performing exercises on unstable surfaces provides a greater training stimulus as compared to training on a stable training surface. Therefore, the purpose of this research was to compare the effect that push-up training on stable and unstable surfaces had on strength performance in healthy young men. Thirty subjects with experience in resistance training participated in push-up training two days per week for eight weeks on one of three different surfaces: the floor (Tp), the T-Bow® (TBp) or the BOSU® (Bp). Strength, as measured by one repetition maximum (1-RM) and muscle endurance, as measured by number of pushups performed did not improve significantly (p>0.05) for any of the intervention groups. The addition of unstable surfaces in push-up training does not provide greater improvement in muscular strength and endurance than push up training performed on a stable surface in young men. 3b.

  9. Kinetics of a single cross-bridge in familial hypertrophic cardiomyopathy heart muscle measured by reverse Kretschmann fluorescence

    PubMed Central

    Mettikolla, Prasad; Calander, Nils; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Borejdo, Julian

    2010-01-01

    Familial hypertrophic cardiomyopathy (FHC) is a serious heart disease that often leads to a sudden cardiac death of young athletes. It is believed that the alteration of the kinetics of interaction between actin and myosin causes FHC by making the heart to pump blood inefficiently. We set out to check this hypothesis ex vivo. During contraction of heart muscle, a myosin cross-bridge imparts periodic force impulses to actin. The impulses are analyzed by fluorescence correlation spectroscopy (FCS) of fluorescently labeled actin. To minimize observation volume and background fluorescence, we carry out FCS measurements in surface plasmon coupled emission mode in a reverse Kretschmann configuration. Fluorescence is a result of near-field coupling of fluorophores excited in the vicinity of the metal-coated surface of a coverslip with the surface plasmons propagating in the metal. Surface plasmons decouple on opposite sides of the metal film and emit in a directional manner as far-field p-polarized radiation. We show that the rate of changes of orientation is significantly faster in contracting cardiac myofibrils of transgenic mice than wild type. These results are consistent with the fact that mutated heart muscle myosin translates actin faster in in vitro motility assays. PMID:20210485

  10. Application of Pilates principles increases paraspinal muscle activation.

    PubMed

    Andrade, Letícia Souza; Mochizuki, Luís; Pires, Flávio Oliveira; da Silva, Renato André Sousa; Mota, Yomara Lima

    2015-01-01

    To analyze the effect of Pilates principles on the EMG activity of abdominal and paraspinal muscles on stable and unstable surfaces. Surface EMG data about the rectus abdominis (RA), iliocostalis (IL) and lumbar multifidus (MU) of 19 participants were collected while performing three repetitions of a crunch exercise in the following conditions: 1) with no Pilates technique and stable surface (nP + S); 2) with no Pilates technique and unstable surface (nP + U); 3) with Pilates technique and stable surface (P + S); 4) with Pilates and unstable surface (P + U). The EMG Fanalysis was conducted using a custom-made Matlab(®) 10. There was no condition effect in the RA iEMG with stable and unstable surfaces (F(1,290) = 0 p = 0.98) and with and without principles (F(1,290) = 1.2 p = 0.27). IL iEMG was higher for the stable surface condition (F(1,290) = 32.3 p < 0.001) with Pilates principles (F(1,290) = 21.9 p < 0.001). The MU iEMG was higher for the stable surface condition with and without Pilates principles (F(1,290) = 84.9 p < 0.001). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Neuromuscular strategies for the transitions between level and hill surfaces during walking

    PubMed Central

    Gottschall, Jinger S.; Nichols, T. Richard

    2011-01-01

    Despite continual fluctuations in walking surface properties, humans and animals smoothly transition between terrains in their natural surroundings. Walking transitions have the potential to influence dynamic balance in both the anterior–posterior and medial–lateral directions, thereby increasing fall risk and decreasing mobility. The goal of the current manuscript is to provide a review of the literature that pertains to the topic of surface slope transitions between level and hill surfaces, as well as report the recent findings of two experiments that focus on the neuromuscular strategies of surface slope transitions. Our results indicate that in anticipation of a change in surface slope, neuromuscular patterns during level walking prior to a hill are significantly different from the patterns during level walking without the future change in surface. Typically, the changes in muscle activity were due to co-contraction of opposing muscle groups and these changes correspond to modifications in head pitch. In addition, further experiments revealed that the neck proprioceptors may be an initial source of feedback for upcoming surface slope transitions. Together, these results illustrate that in order to safely traverse varying surfaces, transitions strides are functionally distinct from either level walking or hill walking independently. PMID:21502127

  12. Hip and trunk muscles activity during nordic hamstring exercise.

    PubMed

    Narouei, Shideh; Imai, Atsushi; Akuzawa, Hiroshi; Hasebe, Kiyotaka; Kaneoka, Koji

    2018-04-01

    The nordic hamstring exercise (NHE) is a dynamic lengthening hamstring exercise that requires trunk and hip muscles activation. Thigh muscles activation, specifically hamstring/quadriceps contractions has been previously examined during NHE. Trunk and hip muscles activity have not been enough studied. The aim of this study was to analyze of hip and trunk muscles activity during NHE. Surface electromyography (EMG) and kinematic data were collected during NHE. Ten healthy men with the age range of 21-36 years performed two sets of two repetitions with downward and upward motions each of NHE. EMG activity of fifteen trunk and hip muscles and knee kinematic data were collected. Muscle activity levels were calculated through repeated measure analysis of variance in downward and upward motions, through Paired t -test between downward and upward motions and gluteus maximus to erector spine activity ratio (Gmax/ES ratio) using Pearson correlation analyses were evaluated. Semitendinosus and biceps femoris muscles activity levels were the greatest in both motions and back extensors and internal oblique muscles activity were greater than other muscles ( P <0.05). The decreased Gmax/ES ratio was significantly related to peak knee extension angle in downward ( r =0.687) and upward motions ( r =0.753) ( P <0.05). These findings indicate the importance of synergistic muscles and trunk muscles coactivation in eccentric and concentric hamstrings contractions. It could be important for early assessment of subjects with hamstring injury risk.

  13. Functional aspects of cross-legged sitting with special attention to piriformis muscles and sacroiliac joints.

    PubMed

    Snijders, Chris J; Hermans, Paul F G; Kleinrensink, Gerrit Jan

    2006-02-01

    Transversely oriented pelvic muscles such as the internal abdominal oblique, transversus abdominis, piriformis and pelvic floor muscles may contribute to sacroiliac joint stability by pressing the sacrum between the hipbones. Surface electromyographic measurements showed that leg crossing lowers the activity of the internal oblique abdominal muscle significantly. This suggests that leg crossing is a substitute for abdominal muscle activity. No previous studies addressed piriformis muscle and related pelvic structures in cross-legged sitting. Angles of pelvis and femur were measured in healthy subjects in standing, normal sitting and cross-legged sitting, and were used to simulate these postures on embalmed pelvises and measure piriformis muscle elongation. Deformations of pelvic ring and iliolumbar ligament caused by piriformis muscle force were measured on embalmed pelvises. Cross-legged sitting resulted in a relative elongation of the piriformis muscle of 11.7% compared to normal sitting and even 21.4% compared to standing. Application of piriformis muscle force resulted in inward deformation of the pelvic ring and compression of the sacroiliac joints and the dorsal side of the pubic symphysis. Cross-legged sitting is common. We believe that it contributes to sacroiliac joint stability. This study demonstrates the influence of the piriformis muscle on sacroiliac joint compression. The elongation of the piriformis muscle bilaterally by crossing the legs may be functional in the build-up of active or passive tension between sacrum and femur.

  14. Hip and trunk muscles activity during nordic hamstring exercise

    PubMed Central

    Narouei, Shideh; Imai, Atsushi; Akuzawa, Hiroshi; Hasebe, Kiyotaka; Kaneoka, Koji

    2018-01-01

    The nordic hamstring exercise (NHE) is a dynamic lengthening hamstring exercise that requires trunk and hip muscles activation. Thigh muscles activation, specifically hamstring/quadriceps contractions has been previously examined during NHE. Trunk and hip muscles activity have not been enough studied. The aim of this study was to analyze of hip and trunk muscles activity during NHE. Surface electromyography (EMG) and kinematic data were collected during NHE. Ten healthy men with the age range of 21–36 years performed two sets of two repetitions with downward and upward motions each of NHE. EMG activity of fifteen trunk and hip muscles and knee kinematic data were collected. Muscle activity levels were calculated through repeated measure analysis of variance in downward and upward motions, through Paired t-test between downward and upward motions and gluteus maximus to erector spine activity ratio (Gmax/ES ratio) using Pearson correlation analyses were evaluated. Semitendinosus and biceps femoris muscles activity levels were the greatest in both motions and back extensors and internal oblique muscles activity were greater than other muscles (P<0.05). The decreased Gmax/ES ratio was significantly related to peak knee extension angle in downward (r=0.687) and upward motions (r=0.753) (P<0.05). These findings indicate the importance of synergistic muscles and trunk muscles coactivation in eccentric and concentric hamstrings contractions. It could be important for early assessment of subjects with hamstring injury risk. PMID:29740557

  15. Effects of breathing maneuver and sitting posture on muscle activity in inspiratory accessory muscles in patients with chronic obstructive pulmonary disease

    PubMed Central

    2012-01-01

    Background To determine the influence of breathing maneuver and sitting posture on tidal volume (TV), respiratory rate (RR), and muscle activity of the inspiratory accessory muscles in patients with chronic obstructive pulmonary disease (COPD). Methods Twelve men with COPD participated in the study. Inductive respiratory plethysmography and surface electromyography were used to simultaneously measure TV, RR, and muscle activity of the inspiratory accessory muscles [the scalenus (SM), sternocleidomastoid (SCM), and pectoralis major (PM) muscles] during quiet natural breathing (QB) and pursed-lips breathing (PLB) in three sitting postures: neutral position (NP), with armm support (WAS), and with arm and head support (WAHS). Results Two-way repeated-measures analysis of variance was employed. In a comparison of breathing patterns, PLB significantly increased TV and decreased RR compared to QB. Muscle activity in the SM and SCM increased significantly in PLB compared to QB. In a comparison of sitting postures, the muscle activity of the SM, SCM, and PM increased in the forward-leaning position. Conclusions The results suggest that in COPD, PLB induced a favorable breathing pattern (increased TV and reduced RR) compared to QB. Additionally, WAS and WAHS positions increased muscle activity of the inspiratory accessory muscles during inspiration versus NP. Differential involvement of accessory respiratory muscles can be readily studied in COPD patients, allowing monitoring of respiratory load during pulmonary rehabilitation. PMID:22958459

  16. Evoked Electromyographically Controlled Electrical Stimulation

    PubMed Central

    Hayashibe, Mitsuhiro

    2016-01-01

    Time-variant muscle responses under electrical stimulation (ES) are often problematic for all the applications of neuroprosthetic muscle control. This situation limits the range of ES usage in relevant areas, mainly due to muscle fatigue and also to changes in stimulation electrode contact conditions, especially in transcutaneous ES. Surface electrodes are still the most widely used in noninvasive applications. Electrical field variations caused by changes in the stimulation contact condition markedly affect the resulting total muscle activation levels. Fatigue phenomena under functional electrical stimulation (FES) are also well known source of time-varying characteristics coming from muscle response under ES. Therefore, it is essential to monitor the actual muscle state and assess the expected muscle response by ES so as to improve the current ES system in favor of adaptive muscle-response-aware FES control. To deal with this issue, we have been studying a novel control technique using evoked electromyography (eEMG) signals to compensate for these muscle time-variances under ES for stable neuroprosthetic muscle control. In this perspective article, I overview the background of this topic and highlight important points to be aware of when using ES to induce the desired muscle activation regardless of the time-variance. I also demonstrate how to deal with the common critical problem of ES to move toward robust neuroprosthetic muscle control with the Evoked Electromyographically Controlled Electrical Stimulation paradigm. PMID:27471448

  17. TLEM 2.0 - a comprehensive musculoskeletal geometry dataset for subject-specific modeling of lower extremity.

    PubMed

    Carbone, V; Fluit, R; Pellikaan, P; van der Krogt, M M; Janssen, D; Damsgaard, M; Vigneron, L; Feilkas, T; Koopman, H F J M; Verdonschot, N

    2015-03-18

    When analyzing complex biomechanical problems such as predicting the effects of orthopedic surgery, subject-specific musculoskeletal models are essential to achieve reliable predictions. The aim of this paper is to present the Twente Lower Extremity Model 2.0, a new comprehensive dataset of the musculoskeletal geometry of the lower extremity, which is based on medical imaging data and dissection performed on the right lower extremity of a fresh male cadaver. Bone, muscle and subcutaneous fat (including skin) volumes were segmented from computed tomography and magnetic resonance images scans. Inertial parameters were estimated from the image-based segmented volumes. A complete cadaver dissection was performed, in which bony landmarks, attachments sites and lines-of-action of 55 muscle actuators and 12 ligaments, bony wrapping surfaces, and joint geometry were measured. The obtained musculoskeletal geometry dataset was finally implemented in the AnyBody Modeling System (AnyBody Technology A/S, Aalborg, Denmark), resulting in a model consisting of 12 segments, 11 joints and 21 degrees of freedom, and including 166 muscle-tendon elements for each leg. The new TLEM 2.0 dataset was purposely built to be easily combined with novel image-based scaling techniques, such as bone surface morphing, muscle volume registration and muscle-tendon path identification, in order to obtain subject-specific musculoskeletal models in a quick and accurate way. The complete dataset, including CT and MRI scans and segmented volume and surfaces, is made available at http://www.utwente.nl/ctw/bw/research/projects/TLEMsafe for the biomechanical community, in order to accelerate the development and adoption of subject-specific models on large scale. TLEM 2.0 is freely shared for non-commercial use only, under acceptance of the TLEMsafe Research License Agreement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Intraoperative monitoring of motor symptoms using surface electromyography during stereotactic surgery for movement disorders.

    PubMed

    Liu, Xuguang; Aziz, Tipu Z; Bain, Peter G

    2005-06-01

    The authors present practical evidence for the usefulness of intraoperative monitoring with surface electromyograms (sEMGs) from the affected muscles to assist electrode implantation and lesioning in patients with movement disorders. In 22 consecutive patients with various movement disorders, sEMGs were monitored in selected muscles during stereotactic surgery that involved either lesioning or electrode implantation. The electromyograms related to major motor symptoms such as tremor, rigidity, myoclonus, dystonia, and chorea were monitored and characterized on-line by both amplitude and frequency. Major motor symptoms were revealed by sEMGs recorded from the affected muscles. Tremor manifested as highly rhythmic bursts with a narrow frequency band; dyskinesias and chorea appeared as irregularly repeated bursts within a broad frequency range of 1 to 5 Hz; and rigidity and dystonia appeared as sustained high-frequency activity and co-contraction between antagonist muscles. The results suggest that intraoperative monitoring of sEMGs could help to functionally refine and confirm target localization. Surface EMGs could be used (1) as reference signals of the motor symptoms so that other signals, such as the oscillatory local field potentials simultaneously recorded via the implanted electrodes, could be correlated with the sEMGs and used to fine-tune or confirm the target localization; (2) to quantify the effects of acute electrical stimulation on the motor symptoms; and (3) to sensitively detect unwanted capsular responses induced by direct stimulation of the internal capsule. The authors conclude that intraoperative monitoring of sEMGs of the affected muscles of patients with movement disorders during stereotactic surgery provides sensitive and quantitative information that can contribute to improved electrode or lesion placement.

  19. MYONEURAL JUNCTIONS OF TWO ULTRASTRUCTURALLY DISTINCT TYPES IN EARTHWORM BODY WALL MUSCLE

    PubMed Central

    Rosenbluth, Jack

    1972-01-01

    The longitudinal muscle of the earthworm body wall is innervated by nerve bundles containing axons of two types which form two corresponding types of myoneural junction with the muscle fibers Type I junctions resemble cholinergic neuromuscular junctions of vertebrate skeletal muscle and are characterized by three features: (a) The nerve terminals contain large numbers of spherical, clear, ∼500 A vesicles plus a small number of larger dense-cored vesicles (b) The junctional gap is relatively wide (∼900 A), and it contains a basement membrane-like material, (c) The postjunctional membrane, although not folded, displays prominent specializations on both its external and internal surfaces The cytoplasmic surface is covered by a dense matrix ∼200 A thick which appears to be the site of insertion of fine obliquely oriented cytoplasmic filaments The external surface exhibits rows of projections ∼200 A long whose bases consist of hexagonally arrayed granules seated in the outer dense layer of the plasma membrane The concentration of these hexagonally disposed elements corresponds to the estimated concentration of both receptor sites and acetylcholinesterase sites at cholinergic junctions elsewhere. Type II junctions resemble the adrenergic junctions in vertebrate smooth muscle and exhibit the following structural characteristics: (a) The nerve fibers contain predominantly dense-cored vesicles ∼1000 A in diameter (b) The junctional gap is relatively narrow (∼150 A) and contains no basement membrane-like material, (c) Postjunctional membrane specialization is minimal. It is proposed that the structural differences between the two types of myoneural junction reflect differences in the respective transmitters and corresponding differences in the mechanisms of transmitter action and/or inactivation. PMID:5044759

  20. Muscle activity, time to fatigue, and maximum task duration at different levels of production standard time

    PubMed Central

    Nur, Nurhayati Mohd; Dawal, Siti Zawiah Md; Dahari, Mahidzal; Sanusi, Junedah

    2015-01-01

    [Purpose] This study investigated the variations in muscle fatigue, time to fatigue, and maximum task duration at different levels of production standard time. [Methods] Twenty subjects performed repetitive tasks at three different levels of production standard time corresponding to “normal”, “hard” and “very hard”. Surface electromyography was used to measure the muscle activity. [Results] The results showed that muscle activity was significantly affected by the production standard time level. Muscle activity increased twice in percentage as the production standard time shifted from hard to very hard (6.9% vs. 12.9%). The muscle activity increased over time, indicating muscle fatigue. The muscle fatigue rate increased for the harder production standard time (Hard: 0.105; Very hard: 0.115), which indicated the associated higher risk of work-related musculoskeletal disorders. Muscle fatigue was also found to occur earlier for hard and very hard production standard times. [Conclusion] It is recommended that the maximum task duration should not exceed 5.6, 2.9, and 2.2 hours for normal, hard, and very hard production standard times, respectively, in order to maintain work performance and minimize the risk of work-related musculoskeletal disorders. PMID:26311974

  1. Determination of chewing efficiency using muscle work.

    PubMed

    Paphangkorakit, Jarin; Chaiyapanya, Nayiga; Sriladlao, Penprapa; Pimsupa, Sutasinee

    2008-06-01

    A new method was proposed to evaluate 'true' chewing efficiency in which the 'cost' of chewing was accounted for. Twenty-three subjects were asked to chew an almond for 5 cycles, after which the chewed particles were air-dried and passed through a 1.4-mm aperture sieve. The activity of both superficial masseter muscles was simultaneously recorded with surface EMG. Integrated EMG (IEMG) was used to calculate burst amplitude, burst duration and maximum voluntary contraction (MVC). The percentage weight of particles passing the sieve was used to represent the conventional chewing efficiency (or masticatory performance). Muscle work (integral of IEMG bursts), muscle effort (muscle work normalized to maximum work) and masticatory effectiveness (the ratio between masticatory performance and muscle work) were also calculated. The results showed that (1) masticatory performance was significantly correlated with muscle work (R=0.45; p<0.005), MVC (R=0.31; p=0.04), but not correlated with muscle effort; (2) masticatory effectiveness was significantly correlated with MVC (R=0.58, p<0.001), but not correlated with masticatory performance. Persons with good masticatory performance were not necessarily effective (or efficient) chewers. They seemed to have larger MVCs and use more muscle work during the chewing task.

  2. An analysis of the activity and muscle fatigue of the muscles around the neck under the three most frequent postures while using a smartphone.

    PubMed

    Choi, Jung-Hyun; Jung, Min-Ho; Yoo, Kyung-Tae

    2016-05-01

    [Purpose] The purpose of this study was to identify changes in the activity and fatigue of the splenius capitis and upper trapezius muscles, which are agonists to the muscles supporting the head, under the three postures most frequently adopted while using a smartphone. [Subjects and Methods] The subjects were 15 college students in their 20s. They formed a single group and had to adopt three different postures (maximum bending, middle bending, and neutral). While the 15 subjects maintained the postures, muscle activity and fatigue were measured using surface electromyography. [Results] Comparison of the muscle fatigue caused by each posture showed statistically significant differences for the right splenius capitis, left splenius capitis, and left upper trapezius muscles. In addition, maintaining the maximum bending posture while using a smartphone resulted in higher levels of fatigue in the right splenius capitis, left splenius capitis, and left upper trapezius muscles compared with those for the middle bending posture. [Conclusion] Therefore, this study suggests that individuals should bend their neck slightly when using a smartphone, rather than bending it too much, or keep their neck straight to reduce fatigue of the cervical erector muscles.

  3. Comparison of muscles activity of abled bodied and amputee subjects for around shoulder movement.

    PubMed

    Kaur, Amanpreet; Agarwal, Ravinder; Kumar, Amod

    2016-05-12

    Worldwide, about 56% of the amputees are upper limb amputees. This research deals a method with two-channel surface electromyogram (SEMG) signal recorded from around shoulder to estimate the changes in muscle activity in non-amputee and the residual limb of trans humeral amputees with different movements of arm. Identification of different muscles activity of near shoulder amputee and non-amputee persons. SEMG signal were acquired during three distinct exercises from three-selected muscles location around shoulder. The participants were asked to move their dominant arm from an assigned position to record their muscles activity recorded with change in position. Results shows the muscles activity in scalene is more than the other muscles like pectoralis and infraspinatus with the same shoulder motion. In addition, STFT (Short-Time Fourier Transform) spectrogram with window length of 256 samples at maximum of 512 frequency bins using hamming window has used to identify the signal for the maximum muscles activity with best resolution in spectrum plot. The results suggest that one can use this analysis for making a suitable device for around shoulder prosthetic users based on muscles activation of amputee persons.

  4. Entropic Analysis of Electromyography Time Series

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Sung, Paul

    2005-03-01

    We are in the process of assessing the effectiveness of fractal and entropic measures for the diagnostic of low back pain from surface electromyography (EMG) time series. Surface electromyography (EMG) is used to assess patients with low back pain. In a typical EMG measurement, the voltage is measured every millisecond. We observed back muscle fatiguing during one minute, which results in a time series with 60,000 entries. We characterize the complexity of time series by computing the Shannon entropy time dependence. The analysis of the time series from different relevant muscles from healthy and low back pain (LBP) individuals provides evidence that the level of variability of back muscle activities is much larger for healthy individuals than for individuals with LBP. In general the time dependence of the entropy shows a crossover from a diffusive regime to a regime characterized by long time correlations (self organization) at about 0.01s.

  5. Identification of Control Parameters for Brass Player’s Embouchure by Measuring Contact Pressure on the Teeth Buccal Surface

    NASA Astrophysics Data System (ADS)

    Kourakata, Itaru; Moriyama, Kozo; Hara, Toshiaki

    For the technical improvement for brass instrument players it is important to obtain the detailed control parameters for embouchure building. While many investigators have reported the preliminary data on the muscle behavior, the precise aspects are unrevealed so far. The purpose of the present paper is to study dynamic perioral muscle behavior of French horn players and to investigate their lip valve function by measuring the contact pressure on teeth buccal surface during playing. It was shown from the experimental results that the advanced players contracted depressor angulioris and levator angulioris especially for high tone playing. It is considered that the combined contraction by these muscles contributes to forming smaller lip aperture being suitable to produce higher tones. Inversely a strong contraction of m. buccinator, which is widely believed to work to give hard tension to player’s lip, was observed insignificantly in the advanced players.

  6. Succinate dehydrogenase activity and soma size of motoneurons innervating different portions of the rat tibialis anterior

    NASA Technical Reports Server (NTRS)

    Ishihara, A.; Roy, R. R.; Edgerton, V. R.

    1995-01-01

    The spatial distribution, soma size and oxidative enzyme activity of gamma and alpha motoneurons innervating muscle fibres in the deep (away from the surface of the muscle) and superficial (close to the surface of the muscle) portions of the tibialis anterior in normal rats were determined. The deep portion had a higher percentage of high oxidative fibres than the superficial portion of the muscle. Motoneurons were labelled by retrograde neuronal transport of fluorescent tracers: Fast Blue and Nuclear Yellow were injected into the deep portion and Nuclear Yellow into the superficial portion of the muscle. Therefore, motoneurons innervating the deep portion were identified by both a blue fluorescent cytoplasm and a golden-yellow fluorescent nucleus, while motoneurons innervating the superficial portion were identified by only a golden-yellow fluorescent nucleus. After staining for succinate dehydrogenase activity on the same section used for the identification of the motoneurons, soma size and succinate dehydrogenase activity of the motoneurons were measured. The gamma and alpha motoneurons innervating both the deep and superficial portions were located primarily at L4 and were intermingled within the same region of the dorsolateral portion of the ventral horn in the spinal cord. Mean soma size was similar for either gamma or alpha motoneurons in the two portions of the muscle. The alpha motoneurons innervating the superficial portion had a lower mean succinate dehydrogenase activity than those innervating the deep portion of the muscle. An inverse relationship between soma size and succinate dehydrogenase activity of alpha, but not gamma, motoneurons innervating both the deep and superficial portions was observed. Based on three-dimensional reconstructions within the spinal cord, there were no apparent differences in the spatial distribution of the motoneurons, either gamma or alpha, associated with the deep and superficial compartments of the muscle. The data provide evidence for an interdependence in the oxidative capacity between a motoneuron and its target muscle fibres in two subpopulations of motoneurons from the same motor pool, i.e. the same muscle.

  7. Impact of divergent selection for ultimate pH of pectoralis major muscle on biochemical, histological, and sensorial attributes of broiler meat.

    PubMed

    Alnahhas, N; Le Bihan-Duval, E; Baéza, E; Chabault, M; Chartrin, P; Bordeau, T; Cailleau-Audouin, E; Meteau, K; Berri, C

    2015-09-01

    The impact of divergent selection based on the ultimate pH (pHu) of pectoralis major (P. major) muscle on the chemical, biochemical, and histological profiles of the muscle and sensorial quality of meat was investigated in broiler chickens. The protein, lipid, DM, glycogen and lactate content, glycolytic potential, proteolysis, lipid and protein oxidation index, muscle fiber cross-sectional area, capillary density, and collagen surface were determined on the breast P. major muscle of 6-wk-old broilers issued from the high-pHu (pHu+) and low-pHu (pHu-) lines. Sensory attributes were also evaluated on the breast (roasted or grilled) and thigh (roasted) meat of the 2 lines. Protein, lipid, and DM content of P. major muscle were not affected by selection ( > 0.05). However, the P. major muscle of the pHu+ line was characterized by lower residual glycogen (-16%; ≤ 0.001) and lactate (-14%; ≤ 0.001) content and lower glycolytic potential (-14%; ≤ 0.001) compared with the pHu- line. Although the average cross-sectional area of muscle fibers and surface occupied by collagen were similar ( > 0.05) in both lines, fewer capillaries per fiber (-15%; ≤ 0.05) were observed in the pHu+ line. The pHu+ line was also characterized by lower lipid oxidation (thiobarbituric acid reactive substance index: -23%; ≤ 0.05) but protein oxidation and proteolysis index were not different ( > 0.05) between the 2 lines. At the sensory level, selection on breast muscle pHu mainly affected the texture of grilled and roast breast meat, which was judged significantly more tender ( ≤ 0.001) in the pHu+ line, and the acid taste, which was less pronounced in the roasted breast meat of the pHu+ line ( ≤ 0.002). This study highlighted that selection based on pHu does not affect the chemical composition and structure of breast meat. However, by modifying muscle blood supply and glycogen turnover, it affects meat acidity and oxidant status, both of which are likely to contribute to the large differences in texture observed between the 2 lines.

  8. A statistical model for predicting muscle performance

    NASA Astrophysics Data System (ADS)

    Byerly, Diane Leslie De Caix

    The objective of these studies was to develop a capability for predicting muscle performance and fatigue to be utilized for both space- and ground-based applications. To develop this predictive model, healthy test subjects performed a defined, repetitive dynamic exercise to failure using a Lordex spinal machine. Throughout the exercise, surface electromyography (SEMG) data were collected from the erector spinae using a Mega Electronics ME3000 muscle tester and surface electrodes placed on both sides of the back muscle. These data were analyzed using a 5th order Autoregressive (AR) model and statistical regression analysis. It was determined that an AR derived parameter, the mean average magnitude of AR poles, significantly correlated with the maximum number of repetitions (designated Rmax) that a test subject was able to perform. Using the mean average magnitude of AR poles, a test subject's performance to failure could be predicted as early as the sixth repetition of the exercise. This predictive model has the potential to provide a basis for improving post-space flight recovery, monitoring muscle atrophy in astronauts and assessing the effectiveness of countermeasures, monitoring astronaut performance and fatigue during Extravehicular Activity (EVA) operations, providing pre-flight assessment of the ability of an EVA crewmember to perform a given task, improving the design of training protocols and simulations for strenuous International Space Station assembly EVA, and enabling EVA work task sequences to be planned enhancing astronaut performance and safety. Potential ground-based, medical applications of the predictive model include monitoring muscle deterioration and performance resulting from illness, establishing safety guidelines in the industry for repetitive tasks, monitoring the stages of rehabilitation for muscle-related injuries sustained in sports and accidents, and enhancing athletic performance through improved training protocols while reducing injury.

  9. Low-frequency electrical dosimetry: research agenda of the IEEE International Committee on Electromagnetic Safety.

    PubMed

    Reilly, J Patrick; Hirata, Akimasa

    2016-06-21

    This article treats unsettled issues in the use of numerical models of electrical dosimetry as applied to international limits on human exposure to low-frequency (typically  <  100 kHz) electromagnetic fields and contact current. The perspective in this publication is that of Subcommittee 6 of IEEE-ICES (International Committee on Electromagnetic Safety) Technical Committee 95. The paper discusses 25 issues needing attention, fitting into three general categories: induction models; electrostimulation models; and human exposure limits. Of these, 9 were voted as 'high priority' by members of Subcommittee 6. The list is presented as a research agenda for refinements in numerical modeling with applications to human exposure limits. It is likely that such issues are also important in medical and electrical product safety design applications.

  10. Delivery outcome among physiotherapists in Sweden: is non-ionizing radiation a fetal hazard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallen, B.; Malmquist, G.; Moritz, U.

    1982-03-01

    A cohort study was made on 2,043 infants born to 2,018 females registered as physiotherapists at the time of pregnancy during 1973 to 1978. The incidence of perinatal death, serious malformation, short gestational duration, and low birth weight was slightly below the expected with consideration given to maternal age and parity distribution. Information on occupational exposure (use of shortwave, microwave, and ultrasonic equipment, X-ray exposure, use of electrostimulator or hexachlorophene-containing soaps) was obtained in a case-control study within the cohort from mail questionnaires with a 93% response rate. The only positive finding was a higher incidence of shortwave equipment usemore » among the females with a dead or malformed infant than among controls. Various explanations for this finding are discussed.« less

  11. [Transcranial magneto- and electrostimulation in patients with obesity and erectile dysfunction].

    PubMed

    Ponomarenko, G N; Bin'iash, T G; Raĭgorodskiĭ, Iu M; Guliaev, A S; Shul'diakov, V A; Kiriliuk, A M; Vartanova, L Iu

    2009-01-01

    The objective of the present study was to evaluate therapeutic efficiency of transcranial magnetotherapy (TcMT) and electric stimulation (ES) included in the combined treatment of 143 patients with erectile dysfunction (ED) and abdominal obesity. The majority of the patients had waist circumference over 102 cm. An AMO-ATOS complex was used to stimulate the hypothalamic region and other brain structures. Transdermal myostimulation of the abdominal and femoral regions was achieved with a Miovolna device. It was shown that both TcM and ES improved lipid metabolism and erectile function; moreover, they exerted hypotensive and sedative action. Specifically, the testosterone level in the patients increased by a mean of 27% compared with the pre-treatment values while the number of patients complaining of erectile dysfunction decreased by 31%.

  12. Mechanomyography-Based Wearable Monitor of Quasi-Isometric Muscle Fatigue for Motor Neural Prostheses.

    PubMed

    Krueger, Eddy; Popović-Maneski, Lana; Nohama, Percy

    2018-02-01

    A motor neural prosthesis based on surface functional electrical stimulation (sFES) can restore functional movement (e.g., standing, walking) in patients with a spinal cord injury (SCI). sFES generates muscle contractions in antigravity muscles and allows balance-assisted standing. This induced standing has several benefits, such as improved cardiovascular function, decreased incidence of urinary infections, reduced joint contractures, and muscle atrophy. The duration of sFES assisted standing is limited due to the quick onset of muscle fatigue. Currently, there is no method available to reliably estimate real-time muscle fatigue during sFES. Simply monitoring the M-wave changes is not suitable due to the high signal disturbances that arise during multi-channel electrical stimulation. Mechanomyography (MMG) is immune to electrical stimulation artifacts and can be used to detect subtle vibrations on the surface of the skin related to activation of the underlying muscle's motor units (MU). The aim of this study was to develop a method for detecting muscle fatigue brought on by sFES. The method was tested in three different heads of the quadriceps muscle in SCI patients during electrically elicited quasi-isometric contraction. Six spinal cord-injured male volunteers, with no voluntary control of the quadriceps muscle participated in the study. Electrical bursts of voltage-controlled monophasic square pulses at frequencies of 1 kHz (50% duty cycle) at 50 Hz (15% duty cycle) were used to generate thigh muscle contractions that controlled the knee joint in the sagittal plane. The pulse amplitudes were set to position the knee joint at a 5° angle from the horizontal plane and when the knee angle dropped to 20° (e.g., the quadriceps were unable to hold the lower leg in the desired position), the test was terminated. Two data segments lasting 10 s each, at the beginning and end of each test, were analyzed. The muscle contraction was assessed by MMG sensors positioned on the rectus femoris, vastus lateralis, and vastus medialis muscles. Data segments were decomposed into 11 frequency bands using a Cauchy wavelet transform. In the initial time interval (non-fatigued muscle), the power peak was concentrated in the 11.31 Hz frequency band. In the final interval (muscle fatigued) this peak shifted to lower frequencies (2 and 6 Hz frequency bands). The decreased frequency was most prominent during the last 4 s of the recordings. It was shown that MMG could be used as a real-time indicator of muscle fatigue during FES-induced isometric contraction of quadriceps; hence, MMG could be used in closed-loop control as a fatigue detector. Subsequent studies for non-isometric contractions could possibly lead to prediction of muscle fatigue before contractile failure during functional use of the muscle. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. A comparison of muscle activity in using touchscreen smartphone among young people with and without chronic neck-shoulder pain.

    PubMed

    Xie, Yanfei; Szeto, Grace P Y; Dai, Jie; Madeleine, Pascal

    2016-01-01

    This study aimed to examine differences in muscle activity between young people with and without neck-shoulder pain (n = 20 in each group), when they performed texting on a smartphone. Texting was compared between using both hands ('bilateral texting') and with only one hand ('unilateral texting'). Texting tasks were also compared with computer typing. Surface electromyography from three proximal postural muscles and four distal hand/thumb muscles on the right side was recorded. Compared with healthy controls, young people with neck-shoulder pain showed altered motor control consisting of higher muscle activity in the cervical erector spinae and upper trapezius when performing texting and typing tasks. Generally, unilateral texting was associated with higher muscle loading compared with bilateral texting especially in the forearm muscles. Compared with computer typing, smartphone texting was associated with higher activity in neck extensor and thumb muscles but lower activity in upper and lower trapezius as well as wrist extensors. This study demonstrated that symptomatic individuals had increased muscle activity in the neck–shoulder region when texting on a smartphone. Contemporary ergonomic guidelines should include advice on how to interact with handheld electronic devices to achieve a relaxed posture and reduced muscle load in order to reduce the risk of musculoskeletal disorders.

  14. Anatomical study of the opossum (Didelphis albiventris) extraocular muscles.

    PubMed Central

    Matheus, S M; Soares, J C; da Silva, A M; Seullner, G

    1995-01-01

    The anatomy of the extraocular muscles was studied in 10 adult opossums (Didelphis albiventris) of both sexes. Eight extraocular muscles were identified: 4 rectus muscles, 2 oblique muscles, the levator palpebrae superioris and the retractor ocular bulbi. The rectus muscles originate very close one to another between the orbital surfaces of the presphenoid and palatine bones. These muscles diverge on the way to their insertion which occurs at about 2 mm from the limbus. The levator palpebrae superioris originates with the dorsal rectus and is positioned dorsally in relation to it. The retractor ocular bulbi forms a cone which embraces the optic nerve and is located internally in relation to the rectus muscles. The dorsal oblique originates on the presphenoid bone and after a tendinous trajectory through a trochlea on the medial wall of the orbit, inserts into the ocular bulb. The only muscle arising from the anterior orbital floor is the ventral oblique. The main nerve supply for these muscles is the oculomotor, except for the dorsal oblique which is innervated by the trochlear nerve, and the lateral rectus which is innervated by the abducens nerve. The retractor ocular bulbi receives branches from the inferior division of the oculomotor nerve and some branches from the abducens nerve. Images Fig. 1 Fig. 2 Fig. 3 PMID:7649843

  15. Effects of visibility and types of the ground surface on the muscle activities of the vastus medialis oblique and vastus lateralis

    PubMed Central

    Park, Jeong-ki; Lee, Dong-yeop; Kim, Jin-Seop; Hong, Ji-Heon; You, Jae-Ho; Park, In-mo

    2015-01-01

    [Purpose] The purpose of this study was to compare the effects of visibility and types of ground surface (stable and unstable) during the performance of squats on the muscle activities of the vastus medialis oblique (VMO) and vastus lateralis (VL). [Subjects and Methods] The subjects were 25 healthy adults in their 20s. They performed squats under four conditions: stable ground surface (SGS) with vision-allowed; unstable ground surface (UGS) with vision-allowed; SGS with vision-blocked; and UGS with vision-blocked. The different conditions were performed on different days. Surface electromyogram (EMG) values were recorded. [Results] The most significant difference in the activity of the VMO and VL was observed when the subjects performed squats on the UGS, with their vision blocked. [Conclusion] For the selective activation of the VMO, performing squats on an UGS was effective, and it was more effective when subjects’ vision was blocked. PMID:26356407

  16. Effect of spatial filtering on crosstalk reduction in surface EMG recordings.

    PubMed

    Mesin, Luca; Smith, Stuart; Hugo, Suzanne; Viljoen, Suretha; Hanekom, Tania

    2009-04-01

    Increasing the selectivity of the detection system in surface electromyography (EMG) is beneficial in the collection of information of a specific portion of the investigated muscle and to reduce the contribution of undesired components, such as non-propagating components (due to generation or end-of-fibre effects) or crosstalk from nearby muscles. A comparison of the ability of different spatial filters to reduce the amount of crosstalk in surface EMG measurements was conducted in this paper using simulated signals. It focused on the influence of different properties of the muscle anatomy (changing subcutaneous layer thickness, skin conductivity, fibre length) and detection system (single, double and normal double differential, with two inter-electrode distances - IED) on the amount of crosstalk present in the measurements. A cylindrical multilayer (skin, subcutaneous tissue, muscle, bone) analytical model was used to simulate single fibre action potentials (SFAPs). Fibres were grouped together in motor units (MUs) and motor unit action potentials (MUAPs) were obtained by adding the SFAPs of the corresponding fibres. Interference surface EMG signals were obtained, modelling the recruitment of MUs and rate coding. The average rectified value (ARV) and mean frequency (MNF) content of the EMG signals were studied and used as a basis for determining the selectivity of each spatial filter. From these results it was found that the selectivity of each spatial filter varies depending on the transversal location of the measurement electrodes and on the anatomy. An increase in skin conductivity favourably affects the selectivity of normal double differential filters as does an increase in subcutaneous layer thickness. An increase in IED decreases the selectivity of all the analysed filters.

  17. Determinants in the β and δ subunit cytoplasmic loop regulate Golgi trafficking and surface expression of the muscle acetylcholine receptor.

    PubMed

    Rudell, Jolene Chang; Borges, Lucia S; Rudell, John B; Beck, Kenneth A; Ferns, Michael J

    2014-01-03

    The molecular determinants that govern nicotinic acetylcholine receptor (AChR) assembly and trafficking are poorly defined, and those identified operate largely during initial receptor biogenesis in the endoplasmic reticulum. To identify determinants that regulate later trafficking steps, we performed an unbiased screen using chimeric proteins consisting of CD4 fused to the muscle AChR subunit cytoplasmic loops. In C2 mouse muscle cells, we found that CD4-β and δ subunit loops were expressed at very low levels on the cell surface, whereas the other subunit loops were robustly expressed on the plasma membrane. The low surface expression of CD4-β and δ loops was due to their pronounced retention in the Golgi apparatus and also to their rapid internalization from the plasma membrane. Both retention and recovery were mediated by the proximal 25-28 amino acids in each loop and were dependent on an ordered sequence of charged and hydrophobic residues. Indeed, βK353L and δK351L mutations increased surface trafficking of the CD4-subunit loops by >6-fold and also decreased their internalization from the plasma membrane. Similarly, combined βK353L and δK351L mutations increased the surface levels of assembled AChR expressed in HEK cells to 138% of wild-type levels. This was due to increased trafficking to the plasma membrane and not decreased AChR turnover. These findings identify novel Golgi retention signals in the β and δ subunit loops that regulate surface trafficking of assembled AChR and may help prevent surface expression of unassembled subunits. Together, these results define molecular determinants that govern a Golgi-based regulatory step in nicotinic AChR trafficking.

  18. EMG-Torque Relation in Chronic Stroke: A Novel EMG Complexity Representation With a Linear Electrode Array.

    PubMed

    Zhang, Xu; Wang, Dongqing; Yu, Zaiyang; Chen, Xiang; Li, Sheng; Zhou, Ping

    2017-11-01

    This study examines the electromyogram (EMG)-torque relation for chronic stroke survivors using a novel EMG complexity representation. Ten stroke subjects performed a series of submaximal isometric elbow flexion tasks using their affected and contralateral arms, respectively, while a 20-channel linear electrode array was used to record surface EMG from the biceps brachii muscles. The sample entropy (SampEn) of surface EMG signals was calculated with both global and local tolerance schemes. A regression analysis was performed between SampEn of each channel's surface EMG and elbow flexion torque. It was found that a linear regression can be used to well describe the relation between surface EMG SampEn and the torque. Each channel's root mean square (RMS) amplitude of surface EMG signal in the different torque level was computed to determine the channel with the highest EMG amplitude. The slope of the regression (observed from the channel with the highest EMG amplitude) was smaller on the impaired side than on the nonimpaired side in 8 of the 10 subjects, regardless of the tolerance scheme (global or local) and the range of torques (full or matched range) used for comparison. The surface EMG signals from the channels above the estimated muscle innervation zones demonstrated significantly lower levels of complexity compared with other channels between innervation zones and muscle tendons. The study provides a novel point of view of the EMG-torque relation in the complexity domain, and reveals its alterations post stroke, which are associated with complex neural and muscular changes post stroke. The slope difference between channels with regard to innervation zones also confirms the relevance of electrode position in surface EMG analysis.

  19. Cytocompatibility of polyethylene grafted with triethylenetetramine functionalized carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Žáková, Pavlína; Slepičková Kasálková, Nikola; Slepička, Petr; Kolská, Zdeňka; Karpíšková, Jana; Stibor, Ivan; Švorčík, Václav

    2017-11-01

    Various carbon nanostructures are widely researched as scaffolds for tissue engineering. We evaluated the surface properties and cell-substrate interactions of carbon nanoparticles functionalized with triethylenetetramine (CNPs) grafted polymer film. Two forms of polyethylene (HDPE, LDPE) were treated in an inert argon plasma discharge and, subsequently, grafted with CNPs. The surface properties were studied using multiple methods, including Raman spectroscopy, goniometry, atomic force microscopy, X-ray photoelectron spectroscopy and electrokinetic analysis. Cell-substrate interactions were determined in vitro by studying adhesion, proliferation and viability of vascular smooth muscle cells (VSMCs) from the aorta of a rat. Cell-substrate interactions on pristine and modified substrates were compared to standard tissue culture polystyrene. Our results show that CNPs affect surface morphology and wettability and therefore adhesion, proliferation and viability of cultured muscle cells.

  20. Isolation and characterization of distinct domains of sarcolemma and T-tubules from rat skeletal muscle.

    PubMed

    Muñoz, P; Rosemblatt, M; Testar, X; Palacín, M; Zorzano, A

    1995-04-01

    1. Several cell-surface domains of sarcolemma and T-tubule from skeletal-muscle fibre were isolated and characterized. 2. A protocol of subcellular fractionation was set up that involved the sequential low- and high-speed homogenization of rat skeletal muscle followed by KCl washing, Ca2+ loading and sucrose-density-gradient centrifugation. This protocol led to the separation of cell-surface membranes from membranes enriched in sarcoplasmic reticulum and intracellular GLUT4-containing vesicles. 3. Agglutination of cell-surface membranes using wheat-germ agglutinin allowed the isolation of three distinct cell-surface membrane domains: sarcolemmal fraction 1 (SM1), sarcolemmal fraction 2 (SM2) and a T-tubule fraction enriched in protein tt28 and the alpha 2-component of dihydropyridine receptor. 4. Fractions SM1 and SM2 represented distinct sarcolemmal subcompartments based on different compositions of biochemical markers: SM2 was characterized by high levels of beta 1-integrin and dystrophin, and SM1 was enriched in beta 1-integrin but lacked dystrophin. 5. The caveolae-associated molecule caveolin was very abundant in SM1, SM2 and T-tubules, suggesting the presence of caveolae or caveolin-rich domains in these cell-surface membrane domains. In contrast, clathrin heavy chain was abundant in SM1 and T-tubules, but only trace levels were detected in SM2. 6. Immunoadsorption of T-tubule vesicles with antibodies against protein tt28 and against GLUT4 revealed the presence of GLUT4 in T-tubules under basal conditions and it also allowed the identification of two distinct pools of T-tubules showing different contents of tt28 and dihydropyridine receptors. 7. Our data on distribution of clathrin and dystrophin reveal the existence of subcompartments in sarcolemma from muscle fibre, featuring selective mutually exclusive components. T-tubules contain caveolin and clathrin suggesting that they contain caveolin- and clathrin-rich domains. Furthermore, evidence for the heterogeneous distribution of membrane proteins in T-tubules is also presented.

  1. Strength and fatigability of selected muscles in upper limb: assessing muscle imbalance relevant to tennis elbow.

    PubMed

    Alizadehkhaiyat, O; Fisher, A C; Kemp, G J; Frostick, S P

    2007-08-01

    The aetiology of tennis elbow has remained uncertain for more than a century. To examine muscle imbalance as a possible pathophysiological factor requires a reliable method of assessment. This paper describes the development of such a method and its performance in healthy subjects. We propose a combination of surface and fine-wire EMG of shoulder and forearm muscles and wrist strength measurements as a reliable tool for assessing muscle imbalance relevant to the pathophysiology of tennis elbow. Six healthy volunteers participated. EMG data were acquired at 50% maximal voluntary isometric contraction from five forearm muscles during grip and three shoulder muscles during external rotation and abduction, and analysed using normalized median frequency slope as a fatigue index. Wrist extension/flexion strength was measured using a purpose-built dynamometer. Significant negative slope of median frequency was found for all muscles, with good reproducibility, and no significant difference in slope between the different muscles of the shoulder and the wrist. (Amplitude slope showed high variability and was therefore unsuitable for this purpose.) Wrist flexion was 27+/-8% stronger than extension (mean+/-SEM, p=0.006). This is a reliable method for measuring muscle fatigue in forearm and shoulder. EMG and wrist strength studies together can be used for assessing and identifying the muscle balance in the wrist-forearm-shoulder chain.

  2. Female PFP patients present alterations in eccentric muscle activity but not the temporal order of activation of the vastus lateralis muscle during the single leg triple hop test.

    PubMed

    Kalytczak, Marcelo Martins; Lucareli, Paulo Roberto Garcia; Dos Reis, Amir Curcio; Bley, André Serra; Biasotto-Gonzalez, Daniela Aparecida; Correa, João Carlos Ferrari; Politti, Fabiano

    2018-04-07

    This study aimed to compare the concentric and eccentric activity and the temporal order of peak activity of the hip and knee muscles between women with patellofemoral pain (PFP) and healthy women during the single leg triple hop test (SLTHT). Electromyographic (EMG) and Kinematic data were collected from 14 healthy women (CG) and 14 women diagnosed with PFP (PFG) during a single session of the single leg triple hop test. Integral surface electromyography (iEMG) data of the hip and knee muscles in eccentric and concentric phases and the length of time that each muscle needed to reach the maximal peak of muscle activity were calculated. The iEMG in the eccentric phase was significantly higher (p < 0.05) than the concentric phase, for the gluteus maximus and gluteus medius muscles (CG and PFG) and for the vastus lateralis muscle (PFG). The vastus lateralis muscle was the first muscle to reach the highest peak of activity in the PFG, and the third to reach this peak in the CG. In the present study, the activity of the vastus lateralis muscle during the eccentric phase of the jump was greater than concentric phase, as a temporal anticipation of its peak in activity among women with PFP. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Young, Healthy Subjects Can Reduce the Activity of Calf Muscles When Provided with EMG Biofeedback in Upright Stance

    PubMed Central

    Vieira, Taian M.; Baudry, Stéphane; Botter, Alberto

    2016-01-01

    Recent evidence suggests the minimization of muscular effort rather than of the size of bodily sway may be the primary, nervous system goal when regulating the human, standing posture. Different programs have been proposed for balance training; none however has been focused on the activation of postural muscles during standing. In this study we investigated the possibility of minimizing the activation of the calf muscles during standing through biofeedback. By providing subjects with an audio signal that varied in amplitude and frequency with the amplitude of surface electromyograms (EMG) recorded from different regions of the gastrocnemius and soleus muscles, we expected them to be able to minimize the level of muscle activation during standing without increasing the excursion of the center of pressure (CoP). CoP data and surface EMG from gastrocnemii, soleus and tibialis anterior muscles were obtained from 10 healthy participants while standing at ease and while standing with EMG biofeedback. Four sensitivities were used to test subjects' responsiveness to the EMG biofeedback. Compared with standing at ease, the two most sensitive feedback conditions induced a decrease in plantar flexor activity (~15%; P < 0.05) and an increase in tibialis anterior EMG (~10%; P < 0.05). Furthermore, CoP mean position significantly shifted backward (~30 mm). In contrast, the use of less sensitive EMG biofeedback resulted in a significant decrease in EMG activity of ankle plantar flexors with a marginal increase in TA activity compared with standing at ease. These changes were not accompanied by greater CoP displacements or significant changes in mean CoP position. Key results revealed subjects were able to keep standing stability while reducing the activity of gastrocnemius and soleus without loading their tibialis anterior muscle when standing with EMG biofeedback. These results may therefore posit the basis for the development of training protocols aimed at assisting subjects in more efficiently controlling leg muscle activity during standing. PMID:27199773

  4. Expression of heat shock protein 70 in transport-stressed broiler pectoralis major muscle and its relationship with meat quality.

    PubMed

    Xing, T; Wang, M F; Han, M Y; Zhu, X S; Xu, X L; Zhou, G H

    2017-09-01

    Omics research has indicated that heat shock protein 70 (HSP70) is a potential biomarker of meat quality. However, the specific changes and the potential role of HSP70 in postmortem meat quality development need to be further defined. In this study, Arbor Acres broiler chickens (n=126) were randomly categorized into three treatment groups of unstressed control (C), 0.5-h transport (T) and subsequent water shower spray following transport (T/W). Each treatment consisted of six replicates with seven birds each. The birds were transported according to a designed protocol. The pectoralis major (PM) muscles of the transport-stressed broilers were categorized as normal and pale, soft and exudative (PSE)-like muscle samples according to L* and pH24 h values to test the expression and location of HSP70. Results revealed that the activities of plasma creatine kinase and lactate dehydrogenase increased significantly (P<0.05) in normal and PSE-like muscle samples after transportation. The mRNA expression of HSP70 in normal muscle samples increased significantly (P<0.05) compared with that in the controls after stress. The protein expression of HSP70 increased significantly in normal muscle samples and decreased significantly (P<0.05) in PSE-like muscles. Immuno-fluorescence showed that HSP70 was present in the cytoplasm and on surface membranes of PM muscle cells in the normal samples following stress. Meanwhile, HSP70 was present on the surface membranes and extracellular matrix but was barely visible in the cytoplasm of the PSE-like samples. Principal component analysis showed high correlations between HSP70 and meat quality and stress indicators. In conclusion, this research suggests that the variation in HSP70 expression may provide a novel insight into the pathways underlying meat quality development.

  5. An isometric muscle force estimation framework based on a high-density surface EMG array and an NMF algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Qiu, Bensheng; Zhang, Xu

    2017-08-01

    Objective. To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. Approach. Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. Main results. Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. Significance. The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.

  6. Chronic pain and difficulty in relaxing postural muscles in patients with fibromyalgia and chronic whiplash associated disorders.

    PubMed

    Elert, J; Kendall, S A; Larsson, B; Månsson, B; Gerdle, B

    2001-06-01

    To investigate if muscle tension according to the surface electromyogram (EMG) of the shoulder flexors is increased in consecutive patients with fibromyalgia (FM) or chronic whiplash associated disorders (WAD). A total of 59 consecutive patients with FM (n = 36) or chronic WAD (n = 23) performed 100 maximal isokinetic contractions combined with surface electromyography of the trapezius and infraspinatus. A randomized group of pain-free female (n = 27) subjects served as control group. Peak torque initially (Pti) and absolute and relative peak torque at endurance level (PTe, PTer) were registered as output variables, together with the EMG level of unnecessary muscle tension, i.e., the signal amplitude ratio (SAR). The patient groups had a higher level of unnecessary tension initially and at the endurance level. The patients had lower absolute output (PTi and PTe), but the relative levels (PTer) did not differ comparing all 3 groups. Subjects with FM had significantly higher body mass index (BMI) than the other groups. BMI did not influence the SAR but correlated positively with PTi. The results confirmed earlier findings that groups of patients with chronic pain have increased muscle tension and decreased output during dynamic activity compared to pain-free controls. However, the results indicated there is heterogeneity within groups of patients with the same chronic pain disorder and that not all patients with chronic pain have increased muscle tension.

  7. Psoas muscle area is not representative of total skeletal muscle area in the assessment of sarcopenia in ovarian cancer.

    PubMed

    Rutten, Iris J G; Ubachs, Jorne; Kruitwagen, Roy F P M; Beets-Tan, Regina G H; Olde Damink, Steven W M; Van Gorp, Toon

    2017-08-01

    Computed tomography measurements of total skeletal muscle area can detect changes and predict overall survival (OS) in patients with advanced ovarian cancer. This study investigates whether assessment of psoas muscle area reflects total muscle area and can be used to assess sarcopenia in ovarian cancer patients. Ovarian cancer patients (n = 150) treated with induction chemotherapy and interval debulking were enrolled retrospectively in this longitudinal study. Muscle was measured cross sectionally with computed tomography in three ways: (i) software quantification of total skeletal muscle area (SMA); (ii) software quantification of psoas muscle area (PA); and (iii) manual measurement of length and width of the psoas muscle to derive the psoas surface area (PLW). Pearson correlation between the different methods was studied. Patients were divided into two groups based on the extent of change in muscle area, and agreement was measured with kappa coefficients. Cox-regression was used to test predictors for OS. Correlation between SMA and both psoas muscle area measurements was poor (r = 0.52 and 0.39 for PA and PLW, respectively). After categorizing patients into muscle loss or gain, kappa agreement was also poor for all comparisons (all κ < 0.40). In regression analysis, SMA loss was predictive of poor OS (hazard ratio 1.698 (95%CI 1.038-2.778), P = 0.035). No relationship with OS was seen for PA or PLW loss. Change in psoas muscle area is not representative of total muscle area change and should not be used to substitute total skeletal muscle to predict survival in patients with ovarian cancer. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  8. Shifting gears: dynamic muscle shape changes and force-velocity behavior in the medial gastrocnemius.

    PubMed

    Dick, Taylor J M; Wakeling, James M

    2017-12-01

    When muscles contract, they bulge in thickness or in width to maintain a (nearly) constant volume. These dynamic shape changes are tightly linked to the internal constraints placed on individual muscle fibers and play a key functional role in modulating the mechanical performance of skeletal muscle by increasing its range of operating velocities. Yet to date we have a limited understanding of the nature and functional implications of in vivo dynamic muscle shape change under submaximal conditions. This study determined how the in vivo changes in medial gastrocnemius (MG) fascicle velocity, pennation angle, muscle thickness, and subsequent muscle gearing varied as a function of force and velocity. To do this, we obtained recordings of MG tendon length, fascicle length, pennation angle, and thickness using B-mode ultrasound and muscle activation using surface electromyography during cycling at a range of cadences and loads. We found that that increases in contractile force were accompanied by reduced bulging in muscle thickness, reduced increases in pennation angle, and faster fascicle shortening. Although the force and velocity of a muscle contraction are inversely related due to the force-velocity effect, this study has shown how dynamic muscle shape changes are influenced by force and not influenced by velocity. NEW & NOTEWORTHY During movement, skeletal muscles contract and bulge in thickness or width. These shape changes play a key role in modulating the performance of skeletal muscle by increasing its range of operating velocities. Yet to date the underlying mechanisms associated with muscle shape change remain largely unexplored. This study identified muscle force, and not velocity, as the mechanistic driving factor to allow for muscle gearing to vary depending on the contractile conditions during human cycling. Copyright © 2017 the American Physiological Society.

  9. Activities of the Vastus Lateralis and Vastus Medialis Oblique Muscles during Squats on Different Surfaces

    PubMed Central

    Hyong, In Hyouk; Kang, Jong Ho

    2013-01-01

    [Purpose] The purpose of the present study was to examine the effects of squat exercises performed on different surfaces on the activity of the quadriceps femoris muscle in order to provide information on support surfaces for effective squat exercises. [Subjects and Method] Fourteen healthy subjects performed squat exercises for five seconds each on three different support surfaces: hard plates, foam, and rubber air discs. Their performance was measured using electromyography. As the subjects performed the squat exercises on each surface, data on the activity of the vastus medialis oblique and the vastus lateralis, and the vastus medials oblique/vastus lateralis ratio, were collected. [Results] The activity of the vastus medialis oblique and the vastus medialis oblique/vastus lateralis ratio were found to be statistically significantly higher on rubber air discs than when the squats were performed on hard plates or foam. [Conclusion] To activate the vastus medialis obilique, and to enhance the vastus medialis oblique/vastus lateralis ratio, unstable surfaces that are highly unstable should be selected. PMID:24259884

  10. Synchronous monitoring of muscle dynamics and electromyogram

    NASA Astrophysics Data System (ADS)

    Zakir Hossain, M.; Grill, Wolfgang

    2011-04-01

    A non-intrusive novel detection scheme has been implemented to detect the lateral muscle extension, force of the skeletal muscle and the motor action potential (EMG) synchronously. This allows the comparison of muscle dynamics and EMG signals as a basis for modeling and further studies to determine which architectural parameters are most sensitive to changes in muscle activity. For this purpose the transmission time for ultrasonic chirp signal in the frequency range of 100 kHz to 2.5 MHz passing through the muscle under observation and respective motor action potentials are recorded synchronously to monitor and quantify biomechanical parameters related to muscle performance. Additionally an ultrasonic force sensor has been employed for monitoring. Ultrasonic traducers are placed on the skin to monitor muscle expansion. Surface electrodes are placed suitably to pick up the potential for activation of the monitored muscle. Isometric contraction of the monitored muscle is ensured by restricting the joint motion with the ultrasonic force sensor. Synchronous monitoring was initiated by a software activated audio beep starting at zero time of the subsequent data acquisition interval. Computer controlled electronics are used to generate and detect the ultrasonic signals and monitor the EMG signals. Custom developed software and data analysis is employed to analyze and quantify the monitored data. Reaction time, nerve conduction speed, latent period between the on-set of EMG signals and muscle response, degree of muscle activation and muscle fatigue development, rate of energy expenditure and motor neuron recruitment rate in isometric contraction, and other relevant parameters relating to muscle performance have been quantified with high spatial and temporal resolution.

  11. Endurance and fatigue characteristics in the neck muscles during sub-maximal isometric test in patients with cervical radiculopathy.

    PubMed

    Halvorsen, Marie; Abbott, Allan; Peolsson, Anneli; Dedering, Åsa

    2014-03-01

    The aim of the study was to compare myoelectric manifestation in neck muscle endurance and fatigue characteristics during sub-maximal isometric endurance test in patients with cervical radiculopathy and asymptomatic subjects. An additional aim was to explore associations between primary neck muscle endurance, myoelectric fatigability, and self-rated levels of fatigue, pain and subjective health measurements in patients with cervical radiculopathy. Muscle fatigue in the ventral and dorsal neck muscles was assessed in patients with cervical radiculopathy and in an asymptomatic group during an isometric neck muscle endurance test in prone and supine. 46 patients and 34 asymptomatic subjects participated. Surface electromyography signals were recorded from the sternocleidomastoid, cervical paraspinal muscles and upper and middle trapezius bilaterally during the endurance test. Subjective health measurements were assessed with questionnaires. The results showed altered neck muscle endurance in several of the muscles investigated with greater negative median frequency slope, greater variability, side imbalance, lower endurance time and higher experience of fatigue among the cervical radiculopathy patients compared with healthy subjects. Endurance times were significantly lower in both prone and in supine positions between the patients compared to asymptomatic subjects. During the neck muscle endurance test, fatigues in the upper trapezius muscles during the prone test and in the sternocleidomastoid muscles during the supine test were of more importance than self-perceived pain, fatigue, disability and kinesiophobia in predicting neck muscle endurance (NME). NME testing in the primary neck muscles seems to be an important factor to take into consideration in rehabilitation.

  12. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages.

    PubMed

    Arsic, Nikola; Mamaeva, Daria; Lamb, Ned J; Fernandez, Anne

    2008-04-01

    Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal beta III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders.

  13. Strain in the Braincase and Its Sutures During Function

    PubMed Central

    Herring, Susan W.; Teng, Shengyi

    2010-01-01

    The skull is distinguished from other parts of the skeleton by its composite construction. The sutures between bony elements provide for interstitial growth of the cranium, but at the same time they alter the transmission of stress and strain through the skull. Strain gages were bonded to the frontal and parietal bones of miniature pigs and across the interfrontal, interparietal and coronal sutures. Strains were recorded 1) during natural mastication in conjunction with electromyographic activity from the jaw muscles and 2) during stimulation of various cranial muscles in anesthetized animals. Vault sutures exhibited vastly higher strains than did the adjoining bones. Further, bone strain primarily reflected torsion of the braincase set up by asymmetrical muscle contraction; the tensile axis alternated between +45° and −45° depending on which diagonal masseter/temporalis pair was most active. However, suture strains were not related to overall torsion but instead were responses to local muscle actions. Only the coronal suture showed significant strain (tension) during jaw opening; this was caused by the contraction of neck muscles. All sutures showed strain during jaw closing, but polarity depended on the pattern of muscle usage. For example, masseter contraction tensed the coronal suture and the anterior part of the interfrontal suture, whereas the temporalis caused compression in these locations. Peak tensile strains were larger than peak compressive strains. Histology suggested that the skull is bent at the sutures, with the ectocranial surface tensed and the endocranial surface predominantly compressed. Collectively, these results indicate that skulls with patent sutures should be analyzed as complexes of independent parts rather than solid structures. PMID:10918130

  14. Surface electromyography and ultrasound evaluation of pelvic floor muscles in hyperandrogenic women.

    PubMed

    Vassimon, Flávia Ignácio Antonio; Ferreira, Cristine Homsi Jorge; Martins, Wellington Paula; Ferriani, Rui Alberto; Batista, Roberta Leopoldino de Andrade; Bo, Kari

    2016-04-01

    High levels of androgens increase muscle mass. Due to the characteristics of hyperandrogenism in polycystic ovary syndrome (PCOS), it is plausible that women with PCOS may have increased pelvic floor muscle (PFM) thickness and neuromuscular activity levels compared with controls. The aim of this study was to assess PFM thickness and neuromuscular activity among hyperandrogenic women with PCOS and controls. This was an observational, cross-sectional, case-control study evaluating PFM by ultrasound (US) and surface electromyography (sEMG) in nonobese women with and without PCOS. Seventy-two women were divided into two groups: PCOS (n = 33) and controls (n = 39). PFM thickness during contraction was assessed by US (Vingmed CFM 800). Pelvic floor muscle activity was assessed by sEMG (MyoTrac Infinit) during contractions at different time lengths: quick, and 8 and 60 s. Descriptive analysis, analysis of variance (ANOVA), and Student's t test were used for statistical analyses. There were no significant differences in PFM sEMG activity between PCOS and controls in any of the contractions: quick contraction (73.23 mV/ 71.56 mV; p = 0.62), 8 s (55.77 mV/ 54.17 mV; p = 0.74), and 60 s (49.26 mV/ 47.32 mV; p = 0.68), respectively. There was no difference in PFM thickness during contractions evaluated by US between PCOS and controls (12.78 mm/ 13.43 mm; p =  .48). This study did not find statistically significant differences in pelvic floor muscle thickness or in muscle activity between PCOS women and controls.

  15. Effect of Transducer Orientation on Errors in Ultrasound Image-Based Measurements of Human Medial Gastrocnemius Muscle Fascicle Length and Pennation

    PubMed Central

    Gandevia, Simon C.; Herbert, Robert D.

    2016-01-01

    Ultrasound imaging is often used to measure muscle fascicle lengths and pennation angles in human muscles in vivo. Theoretically the most accurate measurements are made when the transducer is oriented so that the image plane aligns with muscle fascicles and, for measurements of pennation, when the image plane also intersects the aponeuroses perpendicularly. However this orientation is difficult to achieve and usually there is some degree of misalignment. Here, we used simulated ultrasound images based on three-dimensional models of the human medial gastrocnemius, derived from magnetic resonance and diffusion tensor images, to describe the relationship between transducer orientation and measurement errors. With the transducer oriented perpendicular to the surface of the leg, the error in measurement of fascicle lengths was about 0.4 mm per degree of misalignment of the ultrasound image with the muscle fascicles. If the transducer is then tipped by 20°, the error increases to 1.1 mm per degree of misalignment. For a given degree of misalignment of muscle fascicles with the image plane, the smallest absolute error in fascicle length measurements occurs when the transducer is held perpendicular to the surface of the leg. Misalignment of the transducer with the fascicles may cause fascicle length measurements to be underestimated or overestimated. Contrary to widely held beliefs, it is shown that pennation angles are always overestimated if the image is not perpendicular to the aponeurosis, even when the image is perfectly aligned with the fascicles. An analytical explanation is provided for this finding. PMID:27294280

  16. Effect of Transducer Orientation on Errors in Ultrasound Image-Based Measurements of Human Medial Gastrocnemius Muscle Fascicle Length and Pennation.

    PubMed

    Bolsterlee, Bart; Gandevia, Simon C; Herbert, Robert D

    2016-01-01

    Ultrasound imaging is often used to measure muscle fascicle lengths and pennation angles in human muscles in vivo. Theoretically the most accurate measurements are made when the transducer is oriented so that the image plane aligns with muscle fascicles and, for measurements of pennation, when the image plane also intersects the aponeuroses perpendicularly. However this orientation is difficult to achieve and usually there is some degree of misalignment. Here, we used simulated ultrasound images based on three-dimensional models of the human medial gastrocnemius, derived from magnetic resonance and diffusion tensor images, to describe the relationship between transducer orientation and measurement errors. With the transducer oriented perpendicular to the surface of the leg, the error in measurement of fascicle lengths was about 0.4 mm per degree of misalignment of the ultrasound image with the muscle fascicles. If the transducer is then tipped by 20°, the error increases to 1.1 mm per degree of misalignment. For a given degree of misalignment of muscle fascicles with the image plane, the smallest absolute error in fascicle length measurements occurs when the transducer is held perpendicular to the surface of the leg. Misalignment of the transducer with the fascicles may cause fascicle length measurements to be underestimated or overestimated. Contrary to widely held beliefs, it is shown that pennation angles are always overestimated if the image is not perpendicular to the aponeurosis, even when the image is perfectly aligned with the fascicles. An analytical explanation is provided for this finding.

  17. Preferential reduction of quadriceps over respiratory muscle strength and bulk after lung transplantation for cystic fibrosis.

    PubMed

    Pinet, C; Scillia, P; Cassart, M; Lamotte, M; Knoop, C; Mélot, C; Estenne, M

    2004-09-01

    In the absence of complications, recipients of lung transplants for cystic fibrosis have normal pulmonary function but the impact of the procedure on the strength and bulk of respiratory and limb muscles has not been studied. Twelve stable patients who had undergone lung transplantation for cystic fibrosis 48 months earlier (range 8-95) and 12 normal subjects matched for age, height, and sex were studied. The following parameters were measured: standard lung function, peak oxygen uptake by cycle ergometry, diaphragm surface area by computed tomographic (CT) scanning, diaphragm and abdominal muscle thickness by ultrasonography, twitch transdiaphragmatic and gastric pressures, quadriceps isokinetic strength, and quadriceps cross section by CT scanning, and lean body mass. Diaphragm mass was computed from diaphragm surface area and thickness. Twitch transdiaphragmatic and gastric pressures, diaphragm mass, and abdominal muscle thickness were similar in the two groups but quadriceps strength and cross section were decreased by nearly 30% in the patients. Patients had preserved quadriceps strength per unit cross section but reduced quadriceps cross section per unit lean body mass. The cumulative dose of corticosteroids was an independent predictor of quadriceps atrophy. Peak oxygen uptake showed positive correlations with quadriceps strength and cross section in the two groups, but peak oxygen uptake per unit quadriceps strength or cross section was reduced in the patient group. The diaphragm and abdominal muscles have preserved strength and bulk in patients transplanted for cystic fibrosis but the quadriceps is weak due to muscle atrophy. This atrophy is caused in part by corticosteroid therapy and correlates with the reduction in exercise capacity.

  18. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration.

    PubMed

    Siu, Ho Chit; Arenas, Ana M; Sun, Tingxiao; Stirling, Leia A

    2018-02-05

    Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG), but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue.

  19. Synergic co-activation of muscles in elbow flexion via fractional Brownian motion.

    PubMed

    Chang, Shyang; Hsyu, Ming-Chun; Cheng, Hsiu-Yao; Hsieh, Sheng-Hwu

    2008-12-31

    In reflex and volitional actions, co-activations of agonist and antagonist muscles are believed to be present. Recent studies indicate that such co-activations can be either synergic or dyssynergic. The aim of this paper is to investigate if the co-activations of biceps brachii, brachialis, and triceps brachii during volitional elbow flexion are in the synergic or dyssynergic state. In this study, two groups with each containing six healthy male volunteers participated. Each person of the first group performed 30 trials of volitional elbow flexion while each of the second group performed 30 trials of passive elbow flexion as control experiments. Based on the model of fractional Brownian motion, the intensity and frequency information of the surface electromyograms (EMGs) could be extracted simultaneously. No statistically significant changes were found in the control group. As to the other group, results indicated that the surface EMGs of all five muscle groups were temporally synchronized in frequencies with persistent intensities during each elbow flexion. In addition, the mean values of fractal dimensions for rest and volitional flexion states revealed significant differences with P < 0.01. The obtained positive results suggest that these muscle groups work together synergically to facilitate elbow flexion during the co-activations.

  20. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration

    PubMed Central

    Arenas, Ana M.; Sun, Tingxiao

    2018-01-01

    Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive, and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches, force/torque sensors, and surface electromyography (sEMG), but these systems are usually reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able to provide anticipatory control, since they interface directly with muscle signals, but typically require expert placement of sensors on muscle bodies. We present an implementation of an adaptive sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired system state during interaction with a user, generating a personalized sEMG feature classifier to allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to complete a book-placement task. This learning-from-demonstration system for exoskeleton control allows for very short training times, as well as the potential for improvement in intent recognition over time, and adaptation to physiological changes in the user, such as those due to fatigue. PMID:29401754

Top