Concentration of Nitrate near the Surface of Frozen Salt Solutions
NASA Astrophysics Data System (ADS)
Michelsen, R. R. H.; Marrocco, H. A.
2017-12-01
The photolysis of nitrate near the surface of snow and ice in Earth's environment results in the emission of nitrogen oxides (NO, NO2 and, in acidic snow, HONO) and OH radicals. As a result, nitrate photolysis affects the composition and oxidative capacity of the overlying atmosphere. Photolysis yields depend in part on how much nitrate is close enough to the surface to be photolyzed. These concentrations are assumed to be higher than the concentrations of nitrate that are measured in melted snow and ice samples. However, near-surface concentrations of nitrate have not been directly measured. In this work, laboratory studies of the concentration of nitrate in frozen aqueous solutions are described. Individual aqueous solutions of nitric acid, sodium nitrate, and magnesium nitrate were mixed. Attenuated total reflection infrared spectroscopy was utilized to measure the nitrate and liquid water signals within 200 - 400 nm of the lower surface of frozen samples. Temperature was varied from -18°C to -2°C. In addition to the amount of nitrate observed, changes to the frozen samples' morphology with annealing are discussed. Nitrate concentrations near the lower surface of these frozen solutions are high: close to 1 M at warmer temperatures and almost 4 M at the coldest temperature. Known freezing point depression data describe the observed concentrations better than ideal solution thermodynamics, which overestimate concentration significantly at colder temperatures. The implications for modeling the chemistry of snow are discussed. Extending and relating this work to the interaction of gas-phase nitric acid with the surfaces of vapor-deposited ice will also be explored.
The preservation of long-range transported nitrate in snow at Summit, Greenland (Invited)
NASA Astrophysics Data System (ADS)
Hastings, M. G.
2013-12-01
Nitrate is one of the major anions found in polar and alpine snow, both today and in the past. Deposition of nitrate to snow surfaces results from reactions of nitrogen oxides (NOx) with oxidants in the atmosphere, resulting in the production of HNO3 that is incorporated into precipitation or reacts on the surface of particles. Several factors motivate studying nitrate concentration in ice cores including reconstructing past levels of NOx, tropospheric oxidant concentrations and natural variability in NOx sources. The link between the atmospheric concentration of NOx and nitrate concentration in ice core records is problematic because post-depositional processing, such as photolysis and evaporation, can impact the concentration of nitrate in snow. Recent work has shown that the isotopic ratios of nitrate (15N/14N, 18O/16O, 17O/16O) can be a powerful tool for tracing post-depositional loss of nitrate from surface snow. The isotopic composition of nitrate has been shown to contain information about the source of the nitrate (i.e, NOx sources) and the oxidation processes that convert NOx to nitrate in the atmosphere prior to deposition. Results from a number of studies at Summit, Greenland reveal limited loss of nitrate from surface snow during highly photoactive periods, and the oxygen isotopic signatures in snow nitrate appear to be representative of atmospheric deposition of nitrate from outside of Summit. Higher than expected oxygen isotope ratios (18O/16O, 17O/16O) found in Summit summertime nitrate were expected to be dependent upon local photochemistry in which nitrate in the snow is photolyzed to NOx that is then oxidized above the snow by BrO to reform nitrate (i.e., BrONO2). However, the oxygen isotopic composition of nitrate collected at high time resolution in surface snow does not show any link to local gas phase concentrations of a number of species, including BrO. Furthermore, the combination of nitrogen and oxygen isotope data reveals interesting insights into the contributions of nitrate sources to Summit. There are several important implications of this work including that nitrate at Summit appears to be largely preserved in surface snow during photoactive periods, and that nitrate in snow at Summit also appears to be representative of long-range transported nitrate/NOx. The surface snow work is further substantiated by relationships found between and among seasonally-resolved ice core measurements of the isotopic composition of nitrate, nitrate concentration and a suite of chemical and elemental tracers. The seasonality observed in 15N/14N ratios in an ice core representing accumulation since 1760 C.E. cannot be explained by diffusion or other processes occurring in the firn over time. A marked negative trend in 15N/14N since industrialization, parallels a nearly three-fold increase in nitrate concentration as well as pronounced increases in tracers such as excess lead and non-sea-salt sulfur. This, along with independent estimates of oil burning and transport studies, indicate that North American oil combustion is the primary driver of the modern negative trend in 15N/14N of nitrate. The high, positive 15N/14N ratios found in pre-industrial ice link to biomass burning based upon concentrations of black carbon and ammonium.
Wang, Hong; Gao, Jian-en; Li, Xing-hua; Zhang, Shao-long; Wang, Hong-jie
2015-01-01
To evaluate the process of nitrate accumulation and leaching in surface and ground water, we conducted simulated rainfall experiments. The experiments were performed in areas of 5.3 m2 with bare slopes of 3° that were treated with two nitrogen fertilizer inputs, high (22.5 g/m2 NH4NO3) and control (no fertilizer), and subjected to 2 hours of rainfall, with. From the 1st to the 7th experiments, the same content of fertilizer mixed with soil was uniformly applied to the soil surface at 10 minutes before rainfall, and no fertilizer was applied for the 8th through 12th experiments. Initially, the time-series nitrate concentration in the surface flow quickly increased, and then it rapidly decreased and gradually stabilized at a low level during the fertilizer experiments. The nitrogen loss in the surface flow primarily occurred during the first 18.6 minutes of rainfall. For the continuous fertilizer experiments, the mean nitrate concentrations in the groundwater flow remained at less than 10 mg/L before the 5th experiment, and after the 7th experiment, these nitrate concentrations were greater than 10 mg/L throughout the process. The time-series process of the changing concentration in the groundwater flow exhibited the same parabolic trend for each fertilizer experiment. However, the time at which the nitrate concentration began to change lagged behind the start time of groundwater flow by approximately 0.94 hours on average. The experiments were also performed with no fertilizer. In these experiments, the mean nitrate concentration of groundwater initially increased continuously, and then, the process exhibited the same parabolic trend as the results of the fertilization experiments. The nitrate concentration decreased in the subsequent experiments. Eight days after the 12 rainfall experiments, 50.53% of the total nitrate applied remained in the experimental soil. Nitrate residues mainly existed at the surface and in the bottom soil layers, which represents a potentially more dangerous pollution scenario for surface and ground water. The surface and subsurface flow would enter into and contaminate water bodies, thus threatening the water environment. PMID:26291616
Wang, Hong; Gao, Jian-en; Li, Xing-hua; Zhang, Shao-long; Wang, Hong-jie
2015-01-01
To evaluate the process of nitrate accumulation and leaching in surface and ground water, we conducted simulated rainfall experiments. The experiments were performed in areas of 5.3 m2 with bare slopes of 3° that were treated with two nitrogen fertilizer inputs, high (22.5 g/m2 NH4NO3) and control (no fertilizer), and subjected to 2 hours of rainfall, with. From the 1st to the 7th experiments, the same content of fertilizer mixed with soil was uniformly applied to the soil surface at 10 minutes before rainfall, and no fertilizer was applied for the 8th through 12th experiments. Initially, the time-series nitrate concentration in the surface flow quickly increased, and then it rapidly decreased and gradually stabilized at a low level during the fertilizer experiments. The nitrogen loss in the surface flow primarily occurred during the first 18.6 minutes of rainfall. For the continuous fertilizer experiments, the mean nitrate concentrations in the groundwater flow remained at less than 10 mg/L before the 5th experiment, and after the 7th experiment, these nitrate concentrations were greater than 10 mg/L throughout the process. The time-series process of the changing concentration in the groundwater flow exhibited the same parabolic trend for each fertilizer experiment. However, the time at which the nitrate concentration began to change lagged behind the start time of groundwater flow by approximately 0.94 hours on average. The experiments were also performed with no fertilizer. In these experiments, the mean nitrate concentration of groundwater initially increased continuously, and then, the process exhibited the same parabolic trend as the results of the fertilization experiments. The nitrate concentration decreased in the subsequent experiments. Eight days after the 12 rainfall experiments, 50.53% of the total nitrate applied remained in the experimental soil. Nitrate residues mainly existed at the surface and in the bottom soil layers, which represents a potentially more dangerous pollution scenario for surface and ground water. The surface and subsurface flow would enter into and contaminate water bodies, thus threatening the water environment.
Estimating soil solution nitrate concentration from dielectric spectra using PLS analysis
USDA-ARS?s Scientific Manuscript database
Fast and reliable methods for in situ monitoring of soil nitrate-nitrogen concentration are vital for reducing nitrate-nitrogen losses to ground and surface waters from agricultural systems. While several studies have been done to indirectly estimate nitrate-nitrogen concentration from time domain s...
Yen, Steven T.; Liu, Shiping; Kolpin, Dana W.
1996-01-01
A nonnormal and heteroscedastic Tobit model is used to determine the primary factors that affect nitrate concentrations in near-surface aquifers, using data from the U.S. Geological Survey collected in 1991. Both normality and homoscedasticity of errors are rejected, justifying the use of a nonnormal and heteroscedastic model. The following factors are found to have significant impacts on nitrate concentrations in groundwater: well screen interval, depth to top of aquifers, percentages of urban residential, forest land, and pasture within 3.2 km, dissolved oxygen concentration level, and presence of a chemical facility and feedlot. The effects of explanatory variables on nitrate concentration are explored further by calculating elasticities. Dissolved oxygen concentration level has more notable effects on nitrate concentrations in groundwater than other variables.
Recycled iron fuels new production in the eastern equatorial Pacific Ocean.
Rafter, Patrick A; Sigman, Daniel M; Mackey, Katherine R M
2017-10-24
Nitrate persists in eastern equatorial Pacific surface waters because phytoplankton growth fueled by nitrate (new production) is limited by iron. Nitrate isotope measurements provide a new constraint on the controls of surface nitrate concentration in this region and allow us to quantify the degree and temporal variability of nitrate consumption. Here we show that nitrate consumption in these waters cannot be fueled solely by the external supply of iron to these waters, which occurs by upwelling and dust deposition. Rather, a substantial fraction of nitrate consumption must be supported by the recycling of iron within surface waters. Given plausible iron recycling rates, seasonal variability in nitrate concentration on and off the equator can be explained by upwelling rate, with slower upwelling allowing for more cycles of iron regeneration and uptake. The efficiency of iron recycling in the equatorial Pacific implies the evolution of ecosystem-level mechanisms for retaining iron in surface ocean settings where it limits productivity.
Detecting changes in the spatial distribution of nitrate contamination in ground water
Liu, Z.-J.; Hallberg, G.R.; Zimmerman, D.L.; Libra, R.D.
1997-01-01
Many studies of ground water pollution in general and nitrate contamination in particular have often relied on a one-time investigation, tracking of individual wells, or aggregate summaries. Studies of changes in spatial distribution of contaminants over time are lacking. This paper presents a method to compare spatial distributions for possible changes over time. The large-scale spatial distribution at a given time can be considered as a surface over the area (a trend surface). The changes in spatial distribution from period to period can be revealed by the differences in the shape and/or height of surfaces. If such a surface is described by a polynomial function, changes in surfaces can be detected by testing statistically for differences in their corresponding polynomial functions. This method was applied to nitrate concentration in a population of wells in an agricultural drainage basin in Iowa, sampled in three different years. For the period of 1981-1992, the large-scale spatial distribution of nitrate concentration did not show significant change in the shape of spatial surfaces; while the magnitude of nitrate concentration in the basin, or height of the computed surfaces showed significant fluctuations. The change in magnitude of nitrate concentration is closely related to climatic variations, especially in precipitation. The lack of change in the shape of spatial surfaces means that either the influence of land use/nitrogen management was overshadowed by climatic influence, or the changes in land use/management occurred in a random fashion.
Spahr, Norman E.; Dubrovsky, Neil M.; Gronberg, JoAnn M.; Franke, O. Lehn; Wolock, David M.
2010-01-01
Hydrograph separation was used to determine the base-flow component of streamflow for 148 sites sampled as part of the National Water-Quality Assessment program. Sites in the Southwest and the Northwest tend to have base-flow index values greater than 0.5. Sites in the Midwest and the eastern portion of the Southern Plains generally have values less than 0.5. Base-flow index values for sites in the Southeast and Northeast are mixed with values less than and greater than 0.5. Hypothesized flow paths based on relative scaling of soil and bedrock permeability explain some of the differences found in base-flow index. Sites in areas with impermeable soils and bedrock (areas where overland flow may be the primary hydrologic flow path) tend to have lower base-flow index values than sites in areas with either permeable bedrock or permeable soils (areas where deep groundwater flow paths or shallow groundwater flow paths may occur). The percentage of nitrate load contributed by base flow was determined using total flow and base flow nitrate load models. These regression-based models were calibrated using available nitrate samples and total streamflow or base-flow nitrate samples and the base-flow component of total streamflow. Many streams in the country have a large proportion of nitrate load contributed by base flow: 40 percent of sites have more than 50 percent of the total nitrate load contributed by base flow. Sites in the Midwest and eastern portion of the Southern Plains generally have less than 50 percent of the total nitrate load contributed by base flow. Sites in the Northern Plains and Northwest have nitrate load ratios that generally are greater than 50 percent. Nitrate load ratios for sites in the Southeast and Northeast are mixed with values less than and greater than 50 percent. Significantly lower contributions of nitrate from base flow were found at sites in areas with impermeable soils and impermeable bedrock. These areas could be most responsive to nutrient management practices designed to reduce nutrient transport to streams by runoff. Conversely, sites with potential for shallow or deep groundwater contribution (some combination of permeable soils or permeable bedrock) had significantly greater contributions of nitrate from base flow. Effective nutrient management strategies would consider groundwater nitrate contributions in these areas. Mean annual base-flow nitrate concentrations were compared to shallow-groundwater nitrate concentrations for 27 sites. Concentrations in groundwater tended to be greater than base-flow concentrations for this group of sites. Sites where groundwater concentrations were much greater than base-flow concentrations were found in areas of high infiltration and oxic groundwater conditions. The lack of correspondingly high concentrations in the base flow of the paired surface-water sites may have multiple causes. In some settings, there has not been sufficient time for enough high-nitrate shallow groundwater to migrate to the nearby stream. In these cases, the stream nitrate concentrations lag behind those in the shallow groundwater, and concentrations may increase in the future as more high-nitrate groundwater reaches the stream. Alternatively, some of these sites may have processes that rapidly remove nitrate as water moves from the aquifer into the stream channel. Partitioning streamflow and nitrate load between the quick-flow and base-flow portions of the hydrograph coupled with relative scales of soil permeability can infer the importance of surface water compared to groundwater nitrate sources. Study of the relation of nitrate concentrations to base-flow index and the comparison of groundwater nitrate concentrations to stream nitrate concentrations during times when base-flow index is high can provide evidence of potential nitrate transport mechanisms. Accounting for the surface-water and groundwater contributions of nitrate is crucial to effective management and remediat
NASA Astrophysics Data System (ADS)
Wang, Xingchen Tony; Sigman, Daniel M.; Prokopenko, Maria G.; Adkins, Jess F.; Robinson, Laura F.; Hines, Sophia K.; Chai, Junyi; Studer, Anja S.; Martínez-García, Alfredo; Chen, Tianyu; Haug, Gerald H.
2017-03-01
The Southern Ocean regulates the ocean’s biological sequestration of CO2 and is widely suspected to underpin much of the ice age decline in atmospheric CO2 concentration, but the specific changes in the region are debated. Although more complete drawdown of surface nutrients by phytoplankton during the ice ages is supported by some sediment core-based measurements, the use of different proxies in different regions has precluded a unified view of Southern Ocean biogeochemical change. Here, we report measurements of the 15N/14N of fossil-bound organic matter in the stony deep-sea coral Desmophyllum dianthus, a tool for reconstructing surface ocean nutrient conditions. The central robust observation is of higher 15N/14N across the Southern Ocean during the Last Glacial Maximum (LGM), 18-25 thousand years ago. These data suggest a reduced summer surface nitrate concentration in both the Antarctic and Subantarctic Zones during the LGM, with little surface nitrate transport between them. After the ice age, the increase in Antarctic surface nitrate occurred through the deglaciation and continued in the Holocene. The rise in Subantarctic surface nitrate appears to have had both early deglacial and late deglacial/Holocene components, preliminarily attributed to the end of Subantarctic iron fertilization and increasing nitrate input from the surface Antarctic Zone, respectively.
Sigman, Daniel M.; Prokopenko, Maria G.; Adkins, Jess F.; Robinson, Laura F.; Hines, Sophia K.; Chai, Junyi; Studer, Anja S.; Martínez-García, Alfredo; Chen, Tianyu; Haug, Gerald H.
2017-01-01
The Southern Ocean regulates the ocean’s biological sequestration of CO2 and is widely suspected to underpin much of the ice age decline in atmospheric CO2 concentration, but the specific changes in the region are debated. Although more complete drawdown of surface nutrients by phytoplankton during the ice ages is supported by some sediment core-based measurements, the use of different proxies in different regions has precluded a unified view of Southern Ocean biogeochemical change. Here, we report measurements of the 15N/14N of fossil-bound organic matter in the stony deep-sea coral Desmophyllum dianthus, a tool for reconstructing surface ocean nutrient conditions. The central robust observation is of higher 15N/14N across the Southern Ocean during the Last Glacial Maximum (LGM), 18–25 thousand years ago. These data suggest a reduced summer surface nitrate concentration in both the Antarctic and Subantarctic Zones during the LGM, with little surface nitrate transport between them. After the ice age, the increase in Antarctic surface nitrate occurred through the deglaciation and continued in the Holocene. The rise in Subantarctic surface nitrate appears to have had both early deglacial and late deglacial/Holocene components, preliminarily attributed to the end of Subantarctic iron fertilization and increasing nitrate input from the surface Antarctic Zone, respectively. PMID:28298529
Nutrients in ground water and surface water of the United States; an analysis of data through 1992
Mueller, D.K.; Hamilton, P.A.; Helsel, D.R.; Hitt, K.J.; Ruddy, B.C.
1995-01-01
Historical data on nutrient (nitrogen and phosphorus species) concentrations in ground-and surface-water samples were compiled from 20 study units of the National Water-Quality Assessment (NAWQA) Program and 5 supplemental study areas. The resultant national retrospective data sets contained analyses of about 12,000 Found-water and more than 22,000 surface-water samples. These data were interpreted on regional and national scales by relating the distributions of nutrient concentrations to ancillary data, such as land use, soil characteristics, and hydrogeology, provided by local study-unit personnel. The information provided in this report on environmental factors that affect nutrient concentrations in ground and surface water can be used to identify areas of the Nation where the vulnerability to nutrient contamination is greatest. Nitrate was the nutrient of greatest concern in the historical ground-water data. It is the only nutrient that is regulated by a national drinking-water standard. Nitrate concentrations were significantly different in ground water affected by various land uses. Concentrations in about 16 percent of the samples collected in agricultural areas exceeded the drinking-water standard. However, the standard was exceeded in only about 1 percent of samples collected from public-supply wells. A variety of ancillary factors had significant relations to nitrate concentrations in ground water beneath agricultural areas. Concentrations generally were highest within 100 feet of the land surface. They were also higher in areas where soil and geologic characteristics promoted rapid movement of water to the aquifer. Elevated concentrations commonly occurred in areas underlain by permeable materials, such as carbonate bedrock or unconsolidated sand and gravel, and where soils are generally well drained. In areas where water movement is impeded, denitrification might lead to low concentrations of nitrate in the ground water. Low concentrations were also related to interspersion of pasture and woodland with cropland in agricultural areas. Elevated nitrate concentrations in areas of more homogeneous cropland probably were a result of intensive nitrogen fertilizer application on large tracts of land. Certain regions of the United States seemed more vulnerable to nitrate contamination of ground water in agricultural areas. Regions of greater vulnerability included parts of the Northeast, Midwest, and West Coast. The well-drained soils, typical in these regions, have little capacity to hold water and nutrients; therefore, these soils receive some of the largest applications of fertilizer and irrigation in the Nation. The agricultural land is intensively cultivated for row crops, with little interspersion of pasture and woodland. Nutrient concentrations in surface water also were generally related to land use. Nitrate concentrations were highest in samples from sites downstream from agricultural or urban areas. However, concentrations were not as high as in ground water and rarely exceeded the drinking-water standard. Elevated concentrations of nitrate in surface water of the Northeastern United States might be related to large amounts of atmospheric deposition (acid rain). High concentrations in parts of the Midwest might be related to tile drainage of agricultural fields. Ammonia and phosphorus concentrations were highest downstream from urban areas. These concentrations generally were high enough to warrant concerns about toxicity to fish and accelerated eutrophication. Recent improvements in wastewater treatment have decreased ammonia concentrations downstream from some urban areas, but the result has been an increase in nitrate concentrations. Information on environmental factors that affect water quality is useful to identify drainage basins throughout the Nation with the greatest vulnerability for nutrient contamination and to delineate areas where ground-water or surface-water contamination is most likely to oc
Water-quality characteristics in runoff for three discovery farms in North Dakota, 2008-12
Nustad, Rochelle A.; Rowland, Kathleen M.; Wiederholt, Ronald
2015-01-01
Consistent patterns in water quality emerged at each individual farm, but similarities among farms also were observed. Suspended sediment, total phosphorus, and ammonia concentrations generally decreased downstream from feeding areas, and were primarily affected by surface runoff processes such as dilution, settling out of sediment, or vegetative uptake. Because surface runoff affects these constituents, increased annual surface runoff volume tended to result in increased loads and yields. No significant change in nitrate plus nitrite concentration were observed downstream from feeding areas because additional processes such as high solubility, nitrification, denitrification, and surface-groundwater interaction affect nitrate plus nitrite. For nitrate plus nitrite, increases in annual runoff volume did not consistently relate to increases in annual loads and yields. It seems that temporal distribution of precipitation and surface-groundwater interaction affected nitrate plus nitrite loads and yields. For surface drainage sites, the primary form of nitrogen was organic nitrogen whereas for subsurface drainage sites, the primary form of nitrogen was nitrate plus nitrite nitrogen.
Schumann, Thomas L.; Pletsch, Bruce A.
2006-01-01
Nitrate concentrations exceeding the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter have been reported in ground water near the City of Trenton, Ohio, in the southern part of the Elk Creek watershed. A study of nitrate concentrations and sources in surface and ground water within the Elk Creek watershed was conducted during 2003 and 2004. Nitrate concentrations in the Elk Creek watershed range from less than 0.06 to 11 milligrams per liter. The likely sources of elevated nitrate in the ground water near the City of Trenton appear to be soil organic matter and ammonia fertilizer. Land use is predominantly (93 percent) agricultural, with no identified point sources of nitrate. Likely sources of nitrate in the surface water appear to be manure and septic system effluent, soil organic matter, and ammonia fertilizer. Water-quality constituents, including nitrate, were sampled in water from 38 wells and at 6 surface-water sites. The wells were all shallow (less than 105 feet deep), with open intervals in aquifers of glacial origin, that include tills, outwash, and alluvium. Nitrate concentrations (median of 0.06 milligrams per liter) in the ground water of the upper section of the watershed were lower than those in the lower section of the watershed (median of 4.2 milligrams per liter). Nitrate was analyzed for nitrogen and oxygen isotope values. The d15N and d18O range from -22.36 to +32.29 per mil, and -6.27 to +17.72 per mil, respectively. A positive correlation of d15N and d18O enrichment indicates that denitrification is a prevalent process within the watershed.
NASA Astrophysics Data System (ADS)
Lansdown, Katrina; Heppell, Kate; Ullah, Sami; Heathwaite, A. Louise; Trimmer, Mark; Binley, Andrew; Heaton, Tim; Zhang, Hao
2010-05-01
The dynamics of groundwater and surface water mixing and associated nitrogen transformations in the hyporheic zone have been investigated within a gaining reach of a groundwater-fed river (River Leith, Cumbria, UK). The regional aquifer consists of Permo-Triassic sandstone, which is overlain by varying depths of glaciofluvial sediments (~15 to 50 cm) to form the river bed. The reach investigated (~250m long) consists of a series of riffle and pool sequences (Käser et al. 2009), with other geomorphic features such as vegetated islands and marginal bars also present. A network of 17 piezometers, each with six depth-distributed pore water samplers based on the design of Rivett et al. (2008), was installed in the river bed in June 2009. An additional 18 piezometers with a single pore water sampler were installed in the riparian zone along the study reach. Water samples were collected from the pore water samplers on three occasions during summer 2009, a period of low flow. The zone of groundwater-surface water mixing within the river bed sediments was inferred from depth profiles (0 to 100 cm) of conservative chemical species and isotopes of water with the collected samples. Sediment cores collected during piezometer installation also enabled characterisation of grain size within the hyporheic zone. A multi-component mixing model was developed to quantify the relative contributions of different water sources (surface water, groundwater and bank exfiltration) to the hyporheic zone. Depth profiles of ‘predicted' nitrate concentration were constructed using the relative contribution of each water source to the hyporheic and the nitrate concentration of the end members. This approach assumes that the mixing of different sources of water is the only factor controlling the nitrate concentration of pore water in the river bed sediments. Comparison of predicted nitrate concentrations (which assume only mixing of waters with different nitrate concentrations) with actual nitrate concentrations (measured from samples collected in the field) then allows patches of biogeochemical activity to be identified. The depth of the groundwater-surface water mixing zone was not uniform along the study reach or over the three sampling periods, varying from <10 to 50 cm in depth. The influence of factors such as the strength of groundwater upwelling, channel geomorphology, substrate composition (permeability) and river discharge on the extent of groundwater-surface mixing have been investigated. During the three field campaigns conducted, groundwater nitrate concentrations (100 cm) were higher than surface water nitrate concentrations (3.7 ± 0.4 mg N/L versus 2.0 ± 0.03 mg N/L; p < 0.001; n = 27), indicating that throughout the reach investigated groundwater will supply nitrate to the overlying water column unless nitrate attenuation occurs along the upwelling flow path. Actual (measured) pore water nitrate concentrations often differed from concentrations predicted using the mixing model, which suggests that biogeochemical transformations also affected nitrate concentrations in the hyporheic zone. The initial field data suggested that there were regions of both nitrate production and nitrate consumption in the subsurface sediments, and that these zones may extend beyond the depths commonly associated with the hyporheic zone. This research demonstrates that a multi-component mixing model can be used to identify possible hotspots of nitrate production or consumption in the bed of a groundwater-fed river. Käser, DH, Binley, A, Heathwaite, AL and Krause, S (2009) Spatio-temporal variations of hyporheic flow in a riffle-pool sequence. Hydrological Processes 23: 2138 - 2149. Rivett, MO, Ellis, PA, Greswell, RB, Ward, RS, Roche, RS, Cleverly, MG, Walker, C, Conran, D, Fitzgerald, PJ, Willcox, T and Dowle, J (2008) Cost-effective mini drive-point piezometers and multilevel samplers for monitoring the hyporheic zone. Quarterly Journal of Engineering Geology and Hydrogeology 41: 49 - 60.
Warner, Kelly L.; Arnold, Terri L.
2010-01-01
Nitrate in private wells in the glacial aquifer system is a concern for an estimated 17 million people using private wells because of the proximity of many private wells to nitrogen sources. Yet, less than 5 percent of private wells sampled in this study contained nitrate in concentrations that exceeded the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) of 10 mg/L (milligrams per liter) as N (nitrogen). However, this small group with nitrate concentrations above the USEPA MCL includes some of the highest nitrate concentrations detected in groundwater from private wells (77 mg/L). Median nitrate concentration measured in groundwater from private wells in the glacial aquifer system (0.11 mg/L as N) is lower than that in water from other unconsolidated aquifers and is not strongly related to surface sources of nitrate. Background concentration of nitrate is less than 1 mg/L as N. Although overall nitrate concentration in private wells was low relative to the MCL, concentrations were highly variable over short distances and at various depths below land surface. Groundwater from wells in the glacial aquifer system at all depths was a mixture of old and young water. Oxidation and reduction potential changes with depth and groundwater age were important influences on nitrate concentrations in private wells. A series of 10 logistic regression models was developed to estimate the probability of nitrate concentration above various thresholds. The threshold concentration (1 to 10 mg/L) affected the number of variables in the model. Fewer explanatory variables are needed to predict nitrate at higher threshold concentrations. The variables that were identified as significant predictors for nitrate concentration above 4 mg/L as N included well characteristics such as open-interval diameter, open-interval length, and depth to top of open interval. Environmental variables in the models were mean percent silt in soil, soil type, and mean depth to saturated soil. The 10-year mean (1992-2001) application rate of nitrogen fertilizer applied to farms was included as the potential source variable. A linear regression model also was developed to predict mean nitrate concentrations in well networks. The model is based on network averages because nitrate concentrations are highly variable over short distances. Using values for each of the predictor variables averaged by network (network mean value) from the logistic regression models, the linear regression model developed in this study predicted the mean nitrate concentration in well networks with a 95 percent confidence in predictions.
Impacts of Agriculture on Nitrates in Soil and Groundwater in the Southeastern Coastal Plain
USDA-ARS?s Scientific Manuscript database
Nitrogen (N) contamination of surface and groundwater is a health concern for both humans and animals. Excess N in surface water bodies may contribute to eutrophication. Elevated nitrate (NO3-N) concentrations in drinking water have caused infant death from the disease methemoglobinemia. Nitrates...
Sayama, Mikio
2001-01-01
Nitrate flux between sediment and water, nitrate concentration profile at the sediment-water interface, and in situ sediment denitrification activity were measured seasonally at the innermost part of Tokyo Bay, Japan. For the determination of sediment nitrate concentration, undisturbed sediment cores were sectioned into 5-mm depth intervals and each segment was stored frozen at −30°C. The nitrate concentration was determined for the supernatants after centrifuging the frozen and thawed sediments. Nitrate in the uppermost sediment showed a remarkable seasonal change, and its seasonal maximum of up to 400 μM was found in October. The directions of the diffusive nitrate fluxes predicted from the interfacial concentration gradients were out of the sediment throughout the year. In contrast, the directions of the total nitrate fluxes measured by the whole-core incubation were into the sediment at all seasons. This contradiction between directions indicates that a large part of the nitrate pool extracted from the frozen surface sediments is not a pore water constituent, and preliminary examinations demonstrated that the nitrate was contained in the intracellular vacuoles of filamentous sulfur bacteria dwelling on or in the surface sediment. Based on the comparison between in situ sediment denitrification activity and total nitrate flux, it is suggested that intracellular nitrate cannot be directly utilized by sediment denitrification, and the probable fate of the intracellular nitrate is hypothesized to be dissimilatory reduction to ammonium. The presence of nitrate-accumulating sulfur bacteria therefore may lower nature's self-purification capacity (denitrification) and exacerbate eutrophication in shallow coastal marine environments. PMID:11472923
Nitrate retention in a sand plains stream and the importance of groundwater discharge
Robert S. Stelzer; Damion R. Drover; Susan L. Eggert; Maureen A. Muldoon
2011-01-01
We measured net nitrate retention by mass balance in a 700-m upwelling reach of a third-order sand plains stream, Emmons Creek, from January 2007 to November 2008. Surface water and ground-water fluxes of nitrate were determined from continuous records of discharge and from nitrate concentrations based on weekly and biweekly sampling at three surface water stations and...
Real-time continuous nitrate monitoring in Illinois in 2013
Warner, Kelly L.; Terrio, Paul J.; Straub, Timothy D.; Roseboom, Donald; Johnson, Gary P.
2013-01-01
Many sources contribute to the nitrogen found in surface water in Illinois. Illinois is located in the most productive agricultural area in the country, and nitrogen fertilizer is commonly used to maximize corn production in this area. Additionally, septic/wastewater systems, industrial emissions, and lawn fertilizer are common sources of nitrogen in urban areas of Illinois. In agricultural areas, the use of fertilizer has increased grain production to meet the needs of a growing population, but also has resulted in increases in nitrogen concentrations in many streams and aquifers (Dubrovsky and others, 2010). The urban sources can increase nitrogen concentrations, too. The Federal limit for nitrate nitrogen in water that is safe to drink is 10 milligrams per liter (mg/L) (http://water.epa.gov/drink/contaminants/basicinformation/nitrate.cfm, accessed on May 24, 2013). In addition to the concern with nitrate nitrogen in drinking water, nitrogen, along with phosphorus, is an aquatic concern because it feeds the intensive growth of algae that are responsible for the hypoxic zone in the Gulf of Mexico. The largest nitrogen flux to the waters feeding the Gulf of Mexico is from Illinois (Alexander and others, 2008). Most studies of nitrogen in surface water and groundwater include samples for nitrate nitrogen collected weekly or monthly, but nitrate concentrations can change rapidly and these discrete samples may not capture rapid changes in nitrate concentrations that can affect human and aquatic health. Continuous monitoring for nitrate could inform scientists and water-resource managers of these changes and provide information on the transport of nitrate in surface water and groundwater.
Baker, Ronald J.; Chepiga, Mary M.; Cauller, Stephen J.
2015-01-01
The Kaplan-Meier method of estimating summary statistics from left-censored data was applied in order to include nondetects (left-censored data) in median nitrate-concentration calculations. Median concentrations also were determined using three alternative methods of handling nondetects. Treatment of the 23 percent of samples that were nondetects had little effect on estimated median nitrate concentrations because method detection limits were mostly less than median values.
Modeling nitrate removal in a denitrification bed
USDA-ARS?s Scientific Manuscript database
Denitrification beds are being promoted to reduce nitrate concentrations in agricultural drainage water to alleviate the adverse environmental effects associated with nitrate pollution in surface water. In this system, water flows through a trench filled with a carbon media where nitrate is transfor...
NASA Astrophysics Data System (ADS)
Miller, M. P.; Tesoriero, A. J.; Hood, K.; Terziotti, S.; Wolock, D.
2017-12-01
The myriad hydrologic and biogeochemical processes taking place in watersheds occurring across space and time are integrated and reflected in the quantity and quality of water in streams and rivers. Collection of high-frequency water quality data with sensors in surface waters provides new opportunities to disentangle these processes and quantify sources and transport of water and solutes in the coupled groundwater-surface water system. A new approach for separating the streamflow hydrograph into three components was developed and coupled with high-frequency specific conductance and nitrate data to estimate time-variable watershed-scale nitrate loading from three end-member pathways - dilute quickflow, concentrated quickflow, and slowflow groundwater - to two streams in central Wisconsin. Time-variable nitrate loads from the three pathways were estimated for periods of up to two years in a groundwater-dominated and a quickflow-dominated stream, using only streamflow and in-stream water quality data. The dilute and concentrated quickflow end-members were distinguished using high-frequency specific conductance data. Results indicate that dilute quickflow contributed less than 5% of the nitrate load at both sites, whereas 89±5% of the nitrate load at the groundwater-dominated stream was from slowflow groundwater, and 84±13% of the nitrate load at the quickflow-dominated stream was from concentrated quickflow. Concentrated quickflow nitrate concentrations varied seasonally at both sites, with peak concentrations in the winter that were 2-3 times greater than minimum concentrations during the growing season. Application of this approach provides an opportunity to assess stream vulnerability to non-point source nitrate loading and expected stream responses to current or changing conditions and practices in watersheds.
Electrolytic decontamination of conductive materials for hazardous waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wedman, D.E.; Martinez, H.E.; Nelson, T.O.
1996-12-31
Electrolytic removal of plutonium and americium from stainless steel and uranium surfaces has been demonstrated. Preliminary experiments were performed on the electrochemically based decontamination of type 304L stainless steel in sodium nitrate solutions to better understand the metal removal effects of varying cur-rent density, pH, and nitrate concentration parameters. Material removal rates and changes in surface morphology under these varying conditions are reported. Experimental results indicate that an electropolishing step before contamination removes surface roughness, thereby simplifying later electrolytic decontamination. Sodium nitrate based electrolytic decontamination produced the most uniform stripping of material at low to intermediate pH and at sodiummore » nitrate concentrations of 200 g L{sup -1} and higher. Stirring was also observed to increase the uniformity of the stripping process.« less
Drivers of inverse DOC-nitrate loss patterns in forest soils and streams
NASA Astrophysics Data System (ADS)
Goodale, C. L.
2013-12-01
Nitrate loss from forested catchments varies greatly across sites and over time, with few reliable correlates. One of the few recurring patterns, however, is the negative nonlinear relationship that occurs regularly between surface water nitrate and dissolved organic carbon (DOC) concentrations: that is, nitrate declines sharply as DOC concentrations increase, and high nitrate levels occur only at low DOC concentrations. Several hypotheses have been proposed to explain this pattern, but its cause has remained speculative. It is likely to be driven by C- or N-limitation of biological processes such as assimilation or denitrification, but the identity of which biological process or the main landscape position of their activity are not known. We examined whether DOC and nitrate are both driven by soil C content, at scales of both soil blocks and across catchments, by measuring soil, soil extract, and surface water chemistry across nine catchments selected from long-term monitoring networks in the Catskill and Adirondack Mountains. We measured soil C and N status and solution nitrate, DOC, bioavailable DOC (bDOC), and isotopic composition (13C-DOC, 15N- and 18O-NO3) to examine whether variation in stocks of soil C partly controls DOC and nitrate loss from forested catchments in New York State. These measurements showed that surface soil C and C:N ratio together determine soil production of DOC and nitrate, reflecting assimilative demand for N by heterotrophic microbes. Yet, they also show that these processes do not produce the inverse DOC-NO3 curve observed at the catchment scale. Rather, catchment-scale DOC-nitrate patterns are more likely to be governed by the balance between excess nitrate production and its bDOC-mediated loss to denitrification.
Rees, Terry F.; Bright, Daniel J.; Fay, Ronald G.; Christensen, Allen H.; Anders, Robert; Baharie, Brian S.; Land, Michael T.
1995-01-01
The U.S. Geological Survey, in cooperation with the Eastern Municipal Water District, the Metropolitan Water District of Southern California, and the Orange County Water District, has completed a detailed study of the Hemet groundwater basin. The quantity of ground water stored in the basin in August 1992 is estimated to be 327,000 acre-feet. Dissolved-solids concentration ranged from 380 to 700 mg/L (milligrams per liter), except in small areas where the concentration exceeded 1,000 mg/L. Nitrate concentrations exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) of 10 mg/L nitrate (as nitrogen) in the southeastern part of the basin, in the Domenigoni Valley area, and beneath a dairy in the Diamond Valley area. Seven sites representing selected land uses-- residential, turf grass irrigated with reclaimed water, citrus grove, irrigated farm, poultry farm, and dairy (two sites)--were selected for detailed study of nitrogen geochemistry in the unsaturated zone. For all land uses, nitrate was the dominant nitrogen species in the unsaturated zone.Although nitrate was seasonally present in the shallow unsaturated zone beneath the residential site, it was absent at moderate depths, suggesting negligible migration of nitrate from the surface at this time. Microbial denitrification probably is occurring in the shallow unsaturated zone. High nitrate concentrations in the deep unsaturated zone (greater than 100 ft) suggest either significantly higher nitrate loading at some time in the past, or lateral movement of nitrate at depth. Nitrate also is seasonally present in the shallow unsaturated zone beneath the reclaimed-water site, and (in contrast with the residential site), nitrate is perennially present in the deeper unsaturated zone. Microbial denitrification in the unsaturated zone and in the capillary fringe above the water table decreases the concentrations of nitrate in pore water to below the MCL before reaching the water table.Pore water in the unsaturated zone beneath the citrus grove site contains very high concentrations of nitrate. Even though there are zones of microbial denitrification, nitrate seems to be migrating downward to the water table. The presence of a shallow perched-water zone beneath the irrigated-farm site prevents the vertical movement of nitrate from the surface to the regional water table. Above the perched zone, nitrate concentrations in the unsaturated zone are variable, ranging from below the MCL to four times the MCL. Periodically, nitrate is flushed from the shallow unsaturated zone to the perched-water zone. The unsaturated zone pore-moisture quality could not be adequately addressed because of the very dry conditions in the unsaturated zone beneath the poultry-farm site. Surficial clay deposits prevent water from percolating downward.At the two dairy sites, nitrate loading in pore water at the surface was very high, as great as 7,000 mg/L. Microbial denitrification in the unsaturated zone causes such concentrations to decrease rapidly with depth. At a depth of 20 ft, nitrate concentration was less than 100 mg/L. In areas where the depth to water is less than 20 ft, nitrate loading to ground water can be very high, whereas in areas where depth to water is greater than 100 ft, most of the nitrate is microbially removed before reaching the water table.
NASA Astrophysics Data System (ADS)
Miller, Matthew P.; Tesoriero, Anthony J.; Hood, Krista; Terziotti, Silvia; Wolock, David M.
2017-12-01
The myriad hydrologic and biogeochemical processes taking place in watersheds occurring across space and time are integrated and reflected in the quantity and quality of water in streams and rivers. Collection of high-frequency water quality data with sensors in surface waters provides new opportunities to disentangle these processes and quantify sources and transport of water and solutes in the coupled groundwater-surface water system. A new approach for separating the streamflow hydrograph into three components was developed and coupled with high-frequency nitrate data to estimate time-variable nitrate loads from chemically dilute quick flow, chemically concentrated quick flow, and slowflow groundwater end-member pathways for periods of up to 2 years in a groundwater-dominated and a quick-flow-dominated stream in central Wisconsin, using only streamflow and in-stream water quality data. The dilute and concentrated quick flow end-members were distinguished using high-frequency specific conductance data. Results indicate that dilute quick flow contributed less than 5% of the nitrate load at both sites, whereas 89 ± 8% of the nitrate load at the groundwater-dominated stream was from slowflow groundwater, and 84 ± 25% of the nitrate load at the quick-flow-dominated stream was from concentrated quick flow. Concentrated quick flow nitrate concentrations varied seasonally at both sites, with peak concentrations in the winter that were 2-3 times greater than minimum concentrations during the growing season. Application of this approach provides an opportunity to assess stream vulnerability to nonpoint source nitrate loading and expected stream responses to current or changing conditions and practices in watersheds.
Effects of groundwater-flow paths on nitrate concentrations across two riparian forest corridors
Speiran, Gary K.
2010-01-01
Groundwater levels, apparent age, and chemistry from field sites and groundwater-flow modeling of hypothetical aquifers collectively indicate that groundwater-flow paths contribute to differences in nitrate concentrations across riparian corridors. At sites in Virginia (one coastal and one Piedmont), lowland forested wetlands separate upland fields from nearby surface waters (an estuary and a stream). At the coastal site, nitrate concentrations near the water table decreased from more than 10 mg/L beneath fields to 2 mg/L beneath a riparian forest buffer because recharge through the buffer forced water with concentrations greater than 5 mg/L to flow deeper beneath the buffer. Diurnal changes in groundwater levels up to 0.25 meters at the coastal site reflect flow from the water table into unsaturated soil where roots remove water and nitrate dissolved in it. Decreases in aquifer thickness caused by declines in the water table and decreases in horizontal hydraulic gradients from the uplands to the wetlands indicate that more than 95% of the groundwater discharged to the wetlands. Such discharge through organic soil can reduce nitrate concentrations by denitrification. Model simulations are consistent with field results, showing downward flow approaching toe slopes and surface waters to which groundwater discharges. These effects show the importance of buffer placement over use of fixed-width, streamside buffers to control nitrate concentrations.
Clune, John W.; Denver, Judith M.
2012-01-01
Nitrate is a common contaminant in groundwater and surface water throughout the Nation, and water-resource managers need more detailed small-scale watershed research to guide conservation efforts aimed at improving water quality. Concentrations of nitrate in Bucks Branch are among the highest in the state of Delaware and a scientific investigation was performed to provide water-quality information to assist with the management of agriculture and water resources. A combination of major-ion chemistry, nitrogen isotopic composition and age-dating techniques was used to estimate the residence time and provide a chemical and isotopic analysis of nitrate in the groundwater in the surficial aquifer of the Bucks Branch watershed in Sussex County, Delaware. The land use was more than 90 percent agricultural and most nitrogen inputs were from manure and fertilizer. The apparent median age of sampled groundwater is 18 years and the estimated residence time of groundwater contributing to the streamflow for the entire Bucks Branch watershed at the outlet is approximately 19 years. Concentrations of nitrate exceeded the U.S. Environmental Protection Agency drinking-water standard of 10 milligrams per liter (as nitrogen) in 60 percent of groundwater samples and 42 percent of surface-water samples. The overall geochemistry in the Bucks Branch watershed indicates that agriculture is the predominant source of nitrate contamination and the observed patterns in major-ion chemistry are similar to those observed in other studies on the Mid-Atlantic Coastal Plain. The pattern of enrichment in nitrogen and oxygen isotopes (δ15N and δ18O) of nitrate in groundwater and surface water indicates there is some loss of nitrate through denitrification, but this process is not sufficient to remove all of the nitrate from groundwater discharging to streams, and concentrations of nitrate in streams remain elevated.
The relationship of nitrate concentrations in streams to row crop land use in Iowa
Schilling, K.E.; Libra, R.D.
2000-01-01
The relationship between row crop land use and nitrate N concentrations in surface water was evaluated for 15 Iowa watersheds ranging from 1002 to 2774 km2 and 10 smaller watersheds ranging from 47 to 775 km2 for the period 1996 to 1998. The percentage of land in row crop varied from 24 to >87% in the 15 large watersheds, and mean annual NO3-N concentrations ranged from 0.5 to 10.8 mg/L. In the small watersheds, row crop percentage varied from 28 to 87% and mean annual NO3-N concentrations ranged from 3.0 to 10.5 mg/L. In both cases, nitrate N concentrations were directly related to the percentage of row crop in the watershed (p 87% in the 15 large watersheds, and mean annual NO3-N concentrations ranged from 0.5 to 10.8 mg/L. In the small watersheds, row crop percentage varied from 28 to 87% and mean annual NO3-N concentrations ranged from 3.0 to 10.5 mg/L. In both cases, nitrate N concentrations were directly related to the percentage of row crop in the watershed (p<0.0003). Linear regression showed similar slope for both sets of watersheds (0.11) suggesting that average annual surface water nitrate concentrations in Iowa, and possibly similar agricultural areas in the midwestern USA, can be approximated by multiplying a watershed's row crop percentage by 0.1. Comparing the Iowa watershed data with similar data collected at a subwatershed scale in Iowa (0.1 to 8.1 km2) and a larger midcontinent scale (7300 to 237 100 km2) suggests that watershed scale affects the relationship of nitrate concentration and land use. The slope of nitrate concentration versus row crop percentage decreases with increasing watershed size.Mean nitrate concentrations and row crop land use were summarized for 15 larger and ten smaller watersheds in Iowa, and the relationship between NO3 concentration and land use was examined. Linear regression of mean NO3 concentration and percent row crop was highly significant for both sets of watershed data, but a stronger correlation was noted in the small-watershed data. Both data sets suggested that mean annual surface-water NO3 concentrations in the state could be approximated by multiplying the watershed's percent row crop by 0.1. The slope of NO3 concentration versus row crop percentage appeared to decrease with increasing watershed size.
Hwang, Yuhoon; Kim, Dogun; Shin, Hang-Sik
2015-01-01
Nanoscale zero-valent iron (NZVI) has been considered as a possible material to treat water and wastewater. However, it is necessary to verify the effect of the matrix components in different types of target water. In this study, different effects depending on the sodium chloride (NaCl) concentration on reductions of nitrates and on the characteristics of NZVI were investigated. Although NaCl is known as a promoter of iron corrosion, a high concentration of NaCl (>3 g/L) has a significant inhibition effect on the degree of NZVI reactivity towards nitrate. The experimental results were interpreted by a Langmuir-Hinshelwood-Hougen-Watson reaction in terms of inhibition, and the decreased NZVI reactivity could be explained by the increase in the inhibition constant. As a result of a chloride concentration analysis, it was verified that 7.7-26.5% of chloride was adsorbed onto the surface of NZVI. Moreover, the change of the iron corrosion product under different NaCl concentrations was investigated by a surface analysis of spent NZVI. Magnetite was the main product, with a low NaCl concentration (0.5 g/L), whereas amorphous iron hydroxide was observed at a high concentration (12 g/L). Though the surface was changed to permeable iron hydroxide, the Fe(0) in the core was not completely oxidized. Therefore, the inhibition effect of NaCl could be explained as the competitive adsorption of chloride and nitrate.
Hamilton, P.A.; Denver, J.M.; Phillips, P.J.; Shedlock, R.J.
1993-01-01
Agricultural applications of inorganic fertilizers and manure have changed the natural chemical com- position of water in the surficial aquifer through- out the Delmarva Peninsula. Nitrate, derived from nitrification of ammonia in inorganic fertilizers and manure, is the dominant anion in agricultural areas. Concentrations of nitrate in 185 water samples collected in agricultural areas ranged from 0.4 to 48 mg/L as nitrogen, with a median concen- tration of 8.2 mg/L as nitrogen. Nitrate concen- trations exceeded the U.S. Environmental Protection Agency's maximum contaminant level for drinking water of 10 mg/L as nitrogen in about 33% of the 185 water samples. Groundwater affected by agricultural activities contains significantly higher concentrations of dissolved constituents than does natural groundwater. Concentrations of calcium and magnesium are higher because of liming of soils, and concentrations of potassium and chloride are higher because of applications of potash, a supple- ment to the nitrogen-based fertilizers. Alkalinity concentrations commonly are decreased because the bicarbonate ion is consumed in buffering reactions with acid that is produced during nitrification. Effects of agricultural activities on groundwater quality are not limited to the near-surface parts of the aquifer underlying farm fields. Elevated concentrations are common in aerobic water at or near the base of the aquifer, 80 to 100 ft below land surface. The median concentration of nitrate in water beneath agricultural areas collected from 24 wells deeper than 80 ft below land surface was 8.5 mg/L as nitrogen, and concentrations in 9 of these water samples exceeded the maximum contaminant level. Regional variations in concentrations of nitrate and other agriculture related constituents in the surficial aquifer in the Delmarva Peninsula depend on a number of factors that include geomorphology, geology, soils, land use, and groundwater-flow patterns. (USGS)
Feng, Zhujing; Schilling, Keith E; Chan, Kung-Sik
2013-06-01
Nitrate-nitrogen concentrations in rivers represent challenges for water supplies that use surface water sources. Nitrate concentrations are often modeled using time-series approaches, but previous efforts have typically relied on monthly time steps. In this study, we developed a dynamic regression model of daily nitrate concentrations in the Raccoon River, Iowa, that incorporated contemporaneous and lags of precipitation and discharge occurring at several locations around the basin. Results suggested that 95 % of the variation in daily nitrate concentrations measured at the outlet of a large agricultural watershed can be explained by time-series patterns of precipitation and discharge occurring in the basin. Discharge was found to be a more important regression variable than precipitation in our model but both regression parameters were strongly correlated with nitrate concentrations. The time-series model was consistent with known patterns of nitrate behavior in the watershed, successfully identifying contemporaneous dilution mechanisms from higher relief and urban areas of the basin while incorporating the delayed contribution of nitrate from tile-drained regions in a lagged response. The first difference of the model errors were modeled as an AR(16) process and suggest that daily nitrate concentration changes remain temporally correlated for more than 2 weeks although temporal correlation was stronger in the first few days before tapering off. Consequently, daily nitrate concentrations are non-stationary, i.e. of strong memory. Using time-series models to reliably forecast daily nitrate concentrations in a river based on patterns of precipitation and discharge occurring in its basin may be of great interest to water suppliers.
Long-term electrical resistivity monitoring of recharge-induced contaminant plume behavior.
Gasperikova, Erika; Hubbard, Susan S; Watson, David B; Baker, Gregory S; Peterson, John E; Kowalsky, Michael B; Smith, Meagan; Brooks, Scott
2012-11-01
Geophysical measurements, and electrical resistivity tomography (ERT) data in particular, are sensitive to properties that are related (directly or indirectly) to hydrological processes. The challenge is in extracting information from geophysical data at a relevant scale that can be used to gain insight about subsurface behavior and to parameterize or validate flow and transport models. Here, we consider the use of ERT data for examining the impact of recharge on subsurface contamination at the S-3 ponds of the Oak Ridge Integrated Field Research Challenge (IFRC) site in Tennessee. A large dataset of time-lapse cross-well and surface ERT data, collected at the site over a period of 12 months, is used to study time variations in resistivity due to changes in total dissolved solids (primarily nitrate). The electrical resistivity distributions recovered from cross-well and surface ERT data agrees well, and both of these datasets can be used to interpret spatiotemporal variations in subsurface nitrate concentrations due to rainfall, although the sensitivity of the electrical resistivity response to dilution varies with nitrate concentration. Using the time-lapse surface ERT data interpreted in terms of nitrate concentrations, we find that the subsurface nitrate concentration at this site varies as a function of spatial position, episodic heavy rainstorms (versus seasonal and annual fluctuations), and antecedent rainfall history. These results suggest that the surface ERT monitoring approach is potentially useful for examining subsurface plume responses to recharge over field-relevant scales. Published by Elsevier B.V.
Nitrate in groundwater of the United States, 1991-2003
Burow, Karen R.; Nolan, Bernard T.; Rupert, Michael G.; Dubrovsky, Neil M.
2010-01-01
An assessment of nitrate concentrations in groundwater in the United States indicates that concentrations are highest in shallow, oxic groundwater beneath areas with high N inputs. During 1991-2003, 5101 wells were sampled in 51 study areas throughout the U.S. as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program. The well networks reflect the existing used resource represented by domestic wells in major aquifers (major aquifer studies), and recently recharged groundwater beneath dominant land-surface activities (land-use studies). Nitrate concentrations were highest in shallow groundwater beneath agricultural land use in areas with well-drained soils and oxic geochemical conditions. Nitrate concentrations were lowest in deep groundwater where groundwater is reduced, or where groundwater is older and hence concentrations reflect historically low N application rates. Classification and regression tree analysis was used to identify the relative importance of N inputs, biogeochemical processes, and physical aquifer properties in explaining nitrate concentrations in groundwater. Factors ranked by reduction in sum of squares indicate that dissolved iron concentrations explained most of the variation in groundwater nitrate concentration, followed by manganese, calcium, farm N fertilizer inputs, percent well-drained soils, and dissolved oxygen. Overall, nitrate concentrations in groundwater are most significantly affected by redox conditions, followed by nonpoint-source N inputs. Other water-quality indicators and physical variables had a secondary influence on nitrate concentrations.
Hopkins, Candice B.; Bartolino, James R.
2013-01-01
Residents and resource managers of the Wood River Valley of south-central Idaho are concerned about the effects that population growth might have on the quality of groundwater and surface water. As part of a multi-phase assessment of the groundwater resources in the study area, the U.S. Geological Survey evaluated the quality of water at 45 groundwater and 5 surface-water sites throughout the Wood River Valley during July and August 2012. Water samples were analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and alkalinity), major ions, boron, iron, manganese, nutrients, and Escherichia coli (E.coli) and total coliform bacteria. This study was conducted to determine baseline water quality throughout the Wood River Valley, with special emphasis on nutrient concentrations. Water quality in most samples collected did not exceed U.S. Environmental Protection Agency standards for drinking water. E. coli bacteria, used as indicators of water quality, were detected in all five surface-water samples and in two groundwater samples collected. Some analytes have aesthetic-based recommended drinking water standards; one groundwater sample exceeded recommended iron concentrations. Nitrate plus nitrite concentrations varied, but tended to be higher near population centers and in agricultural areas than in tributaries and less populated areas. These higher nitrate plus nitrite concentrations were not correlated with boron concentrations or the presence of bacteria, common indicators of sources of nutrients to water. None of the samples collected exceeded drinking-water standards for nitrate or nitrite. The concentration of total dissolved solids varied considerably in the waters sampled; however a calcium-magnesium-bicarbonate water type was dominant (43 out of 50 samples) in both the groundwater and surface water. Three constituents that may be influenced by anthropogenic activity (chloride, boron, and nitrate plus nitrite) deviate from this pattern and show a wide distribution of concentrations in the unconfined aquifer, indicating possible anthropogenic influence. Time-series plots of historical water-quality data indicated that nitrate does not seem to be increasing or decreasing in groundwater over time; however, time-series plots of chloride concentrations indicate that chloride may be increasing in some wells. The small amount of temporal variability in nitrate concentrations indicates a lack of major temporal changes to groundwater inputs.
Jacox, Michael G.; Hazen, Elliott L.; Bograd, Steven J.
2016-01-01
In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998–1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change. PMID:27278260
NASA Technical Reports Server (NTRS)
Halpern, David; Feldman, Gene C.
1994-01-01
The following variables along the Pacific equator from 145 deg E to 95 deg W were employed: surface layer phytoplankton pigment concentrations derived from Nimbus 7 coastal zone color scanner (CZCS) measurements of ocean color radiances; vertical velocities simulated at the 90-m bottom of the euphotic layer from a wind-driven ocean general circulation model; and nitrate concentrations estimated from model-simulated temperature. The upward flux of nitrate into the euphotic layer was calculated from the simulated vertical motion and nitrate concentration. The CZCS-derived phytoplankton pigment concentration was uniform from 175 deg to 95 deg W. Longitudinal profiles of upwelling, phytoplankton biomass, and 90-m nitrate flux were of different shapes. The small annual cycles of the phytoplankton pigment and nitrate flux were in phase: increased phytoplankton biomass was associated with increased upward nitrate flux, but the phase was not consistent with the annual cycles of the easterly wind or of the upwelling intensity. Variation of phytoplankton pigment concentration was greater during El Nino than during the annual cycle. The substantially reduced phytoplankton pigment concentration observed during El Nino was associated with smaller upward nitrate flux. Phytoplankton biomass during non-El Nino conditions was not related to nitrate flux into the euphotic layer.
NASA Astrophysics Data System (ADS)
Muthuramu, K.; Shepson, P. B.; Bottenheim, J. W.; Jobson, B. T.; Niki, H.; Anlauf, K. G.
1994-12-01
Concurrent measurements of total reactive odd nitrogen species (i.e., NOy) and its major components, including organic nitrates, were carried out during 1992 Polar Sunrise Experiment (PSE92) at Alert, Northwest Territories, Canada, to investigate the episodic depletion of surface level ozone following polar sunrise. A series of C3-C7 alkyl nitrates formed from the atmospheric oxidation of hydrocarbons was measured daily during the 13-week study period (January 22 to April 22). In addition, a large number of gas chromatography/electron capture detector (GC/ECD) peaks with retention times greater than those of the hexyl nitrates were also identified as species containing -ONO2 group(s), using a nitrogen specific detector. The total concentrations of these organic nitrates ranged from 34 to 128 parts per trillion by volume and the distribution in the dark period was found to be similar to that found for rural lower-latitude air masses. In contrast to observations made at lower latitudes where alkyl nitrates make a relatively small contribution to NOy, the organic nitrates at Alert were found to contribute between 7 and 20% of the total odd nitrogen species. After polar sunrise the total concentrations of these organic nitrates decreased steadily, due primarily to the consumption of larger (>C4) alkyl nitrates. The C3 alkyl nitrate concentrations showed little variation during this study. During ozone depletion episodes in April there was a positive correlation between the concentration of the larger organic nitrates and ozone. Most surprisingly, the ratio of concentrations of isomeric alkyl nitrates with carbon numbers ≥5, and in particular those involving the C5 isomers, was found to show substantial variations coinciding with the O3 depletion events. This change in the isomeric alkyl nitrate ratios implies a substantial chemical processing of the air masses exhibiting ozone depletion. The possible mechanisms, which must involve consumption of the organic nitrates by either OH radicals or Cl atoms, are discussed in the context of the chemical and meteorological observations conducted at Alert during these ozone depletion events.
Silva, S.R.; Ging, P.B.; Lee, R.W.; Ebbert, J.C.; Tesoriero, A.J.; Inkpen, E.L.
2002-01-01
Ground and surface waters in urban areas are susceptible to nitrate contamination from septic systems, leaking sewer lines, and fertilizer applications. Source identification is a primary step toward a successful remediation plan in affected areas. In this respect, nitrogen and oxygen isotope ratios of nitrate, in conjunction with hydrologic data and water chemistry, have proven valuable in urban studies from Austin, Texas, and Tacoma, Washington. In Austin, stream water was sampled during stremflow and baseflow conditions to assess surface and subsurface sources of nitrate, respectively. In Tacoma, well waters were sampled in adjacent sewered and un-sewered areas to determine if locally high nitrate concentrations were caused by septic systems in the un-sewered areas. In both studies, sewage was identified as a nitrate source and mixing between sewage and other sources of nitrate was apparent. In addition to source identification, combined nitrogen and oxygen isotopes were important in determining the significance of denitrification, which can complicate source assessment by reducing nitrate concentrations and increasing ??15N values. The two studies illustrate the value of nitrogen and oxygen isotopes of nitrate for forensic applications in urban areas. ?? Published by Elsevier Science Ltd. on behalf of AEHS.
Oliver, Robin G; Wallace, Derek F; Earll, Mark
2013-01-01
It is important to understand the degradation of organic molecules in surface waters to ensure that risk assessments, intended to prevent adverse effects on human health and the environment, are robust. One important degradation mechanism in surface waters is photodegradation. This process is generally studied in laboratory test systems, and the significance of the results is then extrapolated to the field. The aim of this work was to assess how fluctuations in the composition of surface water influence the photodegradation rate of chlorotoluron. Photodegradation DT(50) values in the lake (mean = 26.0 days) and pond (mean = 26.0 days) were significantly slower than in the river (mean = 6.8 days) and stream (mean = 7.3 days) samples. The DT(50) values in the pond and lake samples were similar to the direct photolysis value (mean = 28.6 days). Photodegradation was significantly faster in the stream and river samples, suggesting that indirect photolysis was significant in those waters. Principal component analysis indicated a strong inverse correlation between nitrate concentration and degradation rate. Nitrate concentration had a strong influence on the rate of photodegradation, with increasing nitrate concentrations sharply reducing the DT(50) . However, this effect was restricted to a narrow concentration range and levelled off quite quickly, such that further increases in the nitrate concentration had no significant effect on the rate of degradation. Extrapolating photodegradation rates of chlorotoluron from the laboratory to the field should be relatively straightforward, provided the nitrate concentrations in the waters are known. Copyright © 2012 Society of Chemical Industry.
Denitrification and mixing in a stream-aquifer system: Effects on nitrate loading to surface water
McMahon, P.B.; Böhlke, J.K.
1996-01-01
Ground water in terrace deposits of the South Platte River alluvial aquifer near Greeley, Colorado, USA, had a median nitrate concentration of 1857 ??mol l-1. Median nitrate concentrations in ground water from adjacent floodplain deposits (468 ??mol l-1) and riverbed sediments (461 ??mol l-1), both of which are downgradient from the terrace deposits, were lower than the median concentration in the terrace deposits. The concentrations and ??15N values of nitrate and N2 in ground water indicated that denitrifying activity in the floodplain deposits and riverbed sediments accounted for 15- 30% of the difference in nitrate concentrations. Concentrations of Cl- and SiO2 indicated that mixing between river water and ground water in the floodplain deposits and riverbed sediments accounted for the remainder of the difference in nitrate concentrations. River flux measurements indicated that ground-water discharge in a 7.5 km segment of river had a nitrate load of 1718 kg N day-1 and accounted for about 18% of the total nitrate load in the river at the downstream end of that segment. This nitrate load was 70% less than the load predicted on the basis of the median nitrate concentration in the terrace deposits and assuming no denitrification or mixing in the aquifer. Water exchange between the river and aquifer caused ground water that originally discharged to the river to reenter denitrifying sediments in the riverbed and floodplain, thereby further decreasing the nitrate load in this stream-aquifer system. Results from this study indicated that denitrification and mixing within alluvial aquifer sediments may substantially decrease the nitrate load added to rivers by discharging ground water.
Denitrification using a monopolar electrocoagulation/flotation (ECF) process.
Emamjomeh, Mohammad M; Sivakumar, Muttucumaru
2009-01-01
Nitrate levels are limited due to health concerns in potable water. Nitrate is a common contaminant in water supplies, and especially prevalent in surface water supplies and shallow wells. Nitrate is a stable and highly soluble ion with low potential for precipitation or adsorption. These properties make it difficult to remove using conventional water treatment methods. A laboratory batch electrocoagulation/flotation (ECF) reactor was designed to investigate the effects of different parameters such as electrolysis time, electrolyte pH, initial nitrate concentration, and current rate on the nitrate removal efficiency. The optimum nitrate removal was observed at a pH range of between 9 and 11. It appeared that the nitrate removal rate was 93% when the initial nitrate concentration and electrolysis time respectively were 100 mg L(-1)-NO(3)(-) and 40 min. The results showed a linear relationship between the electrolysis time for total nitrate removal and the initial nitrate concentration. It is concluded that the electrocoagulation technology for denitrification can be an effective preliminary process when the ammonia byproduct must be effectively removed by the treatment facilities.
Controls on Mixing-Dependent Denitrification in Hyporheic Zones
NASA Astrophysics Data System (ADS)
Hester, E. T.; Young, K. I.; Widdowson, M. A.
2013-12-01
Interaction of surface water and groundwater in hyporheic sediments of river systems is known to create unique biogeochemical conditions that can attenuate contaminants flowing downstream. Oxygen, carbon, and the contaminants themselves (e.g., excess nitrate) often advect together through the hyporheic zone from sources in surface water. However, the ability of the hyporheic zone to attenuate contaminants in upwelling groundwater plumes as they exit to rivers is less known. Such reactions may be more dependent on mixing of carbon and oxygen sources from surface water with contaminants from deeper groundwater. We simulated hyporheic flow cells and upwelling groundwater together with mixing-dependent denitrification of an upwelling nitrate plume in shallow riverbed sediments using MODFLOW and SEAM3D. For our first set of model scenarios, we set biogeochemical boundary conditions to be consistent with situations where only mixing-dependent denitrification occurred within the model domain. This occurred where dissolved organic carbon (DOC) advecting from surface water through hyporheic flow cells meets nitrate upwelling from deeper groundwater. This would be common where groundwater is affected by septic systems which contribute nitrate that upwells into streams that do not have significant nitrate sources from upstream. We conducted a sensitivity analysis that showed that mixing-dependent denitrification increased with parameters that increase mixing itself, such as the degree of heterogeneity of sediment hydraulic conductivity (K). Mixing-dependent denitrification also increased with certain biogeochemical boundary concentrations such as increasing DOC or decreasing dissolved oxygen (DO) advecting from surface water. For our second set of model scenarios, we set biogeochemical boundary conditions to be consistent with common situations where non-mixing-dependent denitrification also occurred within the model domain. For example, when nitrate concentrations are substantial in water advecting from surface water, non-mixing-dependent denitrification can occur within the hyporheic flow cells. This would be common where surface water and groundwater have high nitrate concentrations in agricultural areas. We conducted a sensitivity analysis for this set of model scenarios as well, to evaluate controls on the relative balance of mixing-dependent and non-mixing-dependent denitrification. We found that non-mixing-dependent denitrification often has higher potential to consume nitrate than mixing-dependent denitrification. This is because non-mixing-dependent denitrification is not confined to the relatively small mixing zone between upwelling groundwater and hyporheic flow cells, and hence often has longer residence times available for consumption of existing oxygen followed by consumption of nitrate. Nevertheless, the potential for hyporheic zones to attenuate upwelling nitrate plumes appears to be substantial, yet is variable depending on geomorphic, hydraulic, and biogeochemical conditions.
NASA Astrophysics Data System (ADS)
Prabhakar, Gouri; Parworth, Caroline L.; Zhang, Xiaolu; Kim, Hwajin; Young, Dominique E.; Beyersdorf, Andreas J.; Ziemba, Luke D.; Nowak, John B.; Bertram, Timothy H.; Faloona, Ian C.; Zhang, Qi; Cappa, Christopher D.
2017-12-01
This study discusses an analysis of combined airborne and ground observations of particulate nitrate (NO3-(p)) concentrations made during the wintertime DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically resolved observations relevant to Air Quality) study at one of the most polluted cities in the United States - Fresno, CA - in the San Joaquin Valley (SJV) and focuses on developing an understanding of the various processes that impact surface nitrate concentrations during pollution events. The results provide an explicit case-study illustration of how nighttime chemistry can influence daytime surface-level NO3-(p) concentrations, complementing previous studies in the SJV. The observations exemplify the critical role that nocturnal chemical production of NO3-(p) aloft in the residual layer (RL) can play in determining daytime surface-level NO3-(p) concentrations. Further, they indicate that nocturnal production of NO3-(p) in the RL, along with daytime photochemical production, can contribute substantially to the buildup and sustaining of severe pollution episodes. The exceptionally shallow nocturnal boundary layer (NBL) heights characteristic of wintertime pollution events in the SJV intensify the importance of nocturnal production aloft in the residual layer to daytime surface concentrations. The observations also demonstrate that dynamics within the RL can influence the early-morning vertical distribution of NO3-(p), despite low wintertime wind speeds. This overnight reshaping of the vertical distribution above the city plays an important role in determining the net impact of nocturnal chemical production on local and regional surface-level NO3-(p) concentrations. Entrainment of clean free-tropospheric (FT) air into the boundary layer in the afternoon is identified as an important process that reduces surface-level NO3-(p) and limits buildup during pollution episodes. The influence of dry deposition of HNO3 gas to the surface on daytime particulate nitrate concentrations is important but limited by an excess of ammonia in the region, which leads to only a small fraction of nitrate existing in the gas phase even during the warmer daytime. However, in the late afternoon, when diminishing solar heating leads to a rapid fall in the mixed boundary layer height (BLH), the impact of surface deposition is temporarily enhanced and can lead to a substantial decline in surface-level particulate nitrate concentrations; this enhanced deposition is quickly arrested by a decrease in surface temperature, which drops the gas-phase fraction to near zero. The overall importance of enhanced late-afternoon gas-phase loss to the multiday buildup of pollution events is limited by the very shallow nocturnal boundary layer. The case study here demonstrates that mixing down of NO3-(p) from the RL can contribute a majority of the surface-level NO3-(p) in the morning (here, ˜ 80 %), and a strong influence can persist into the afternoon even when photochemical production is maximum. The particular day-to-day contribution of aloft nocturnal NO3-(p) production to surface concentrations will depend on prevailing chemical and meteorological conditions. Although specific to the SJV, the observations and conceptual framework further developed here provide general insights into the evolution of pollution episodes in wintertime environments.
Groundwater-surface water interaction in the riparian zone of an incised channel, Walnut Creek, Iowa
Schilling, K.E.; Li, Z.; Zhang, Y.-K.
2006-01-01
Riparian zones of many incised channels in agricultural regions are cropped to the channel edge leaving them unvegetated for large portions of the year. In this study we evaluated surface and groundwater interaction in the riparian zone of an incised stream during a spring high flow period using detailed stream stage and hydraulic head data from six wells, and water quality sampling to determine whether the riparian zone can be a source of nitrate pollution to streams. Study results indicated that bank storage of stream water from Walnut Creek during a large storm water runoff event was limited to a narrow 1.6 m zone immediately adjacent to the channel. Nitrate concentrations in riparian groundwater were highest near the incised stream where the unsaturated zone was thickest. Nitrate and dissolved oxygen concentrations and nitrate-chloride ratios increased during a spring recharge period then decreased in the latter portion of the study. We used MODFLOW and MT3DMS to evaluate dilution and denitrification processes that would contribute to decreasing nitrate concentrations in riparian groundwater over time. MT3DMS model simulations were improved with a denitrification rate of 0.02 1/d assigned to the floodplain sediments implying that denitrification plays an important role in reducing nitrate concentrations in groundwater. We conclude that riparian zones of incised channels can potentially be a source of nitrate to streams during spring recharge periods when the near-stream riparian zone is largely unvegetated. ?? 2005 Elsevier B.V. All rights reserved.
The Effect of Restored and Native Oxbows on Hydraulic Loads ...
The use of oxbow wetlands has been identified as a potential strategy to reduce nutrient transport from agricultural drainage tiles to streams in Iowa. In 2013 and 2014, a study was conducted in north central Iowa in a native oxbow in the Lyons Creek watershed and two reconstructed oxbows in the Prairie Creek watershed (Smeltzer west and Smeltzer east) to assess their effectiveness at reducing nitrogen and phosphorus loads. The tile line inlets carrying agricultural runoff to the oxbows, the outfall from the oxbows and the surface waters in the streams receiving the outfall water were monitored for discharge and nutrients from February 2013 to September 2015. Smeltzer west and east also had four monitoring wells each, two in the upland and two between the oxbow and Prairie Creek to monitor surface water groundwater interaction. The Smeltzer west and east oxbow sites also were instrumented to continuously measure the nitrate concentration. Rainfall was measured at one Lyons Creek and one Smeltzer site. Daily mean nitrate-N concentrations in Lyons Creek in 2013 ranged from 41 mg/L to 11.8 mg/L, the median daily mean nitrate-N concentration was 33 mg/L. Daily mean nitrate-N concentrations in Prairie Creek in 2013 ranged from 15.0 mg/L to 32 mg/L in June. The median daily mean nitrate-N concentration for the sampled period was 11.2 mg/L. In 2014, daily mean nitrate-N concentrations in Prairie Creek ranged from 0.17 mg/L to 26.7 mg/L in July; the daily mean
Carpenter, Kurt D.; Snyder, Daniel T.; Duff, John H.; Triska, Frank J.; Lee, Karl K.; Avanzino, Ronald J.; Sobieszczyk, Steven
2009-01-01
Restoring previously drained wetlands is a strategy currently being used to improve water quality and decrease nutrient loading into Upper Klamath Lake, Oregon. In this 2003-05 study, ground- and surface-water quality and hydrologic conditions were characterized in the Wood River Wetland. Nitrogen and phosphorus levels, primarily as dissolved organic nitrogen and ammonium (NH4) and soluble reactive phosphorus (SRP), were high in surface waters. Dissolved organic carbon concentrations also were elevated in surface water, with median concentrations of 44 and 99 milligrams of carbon per liter (mg-C/L) in the North and South Units of the Wood River Wetland, respectively, reaching a maximum of 270 mg-C/L in the South Unit in late autumn. Artesian well water produced NH4 and SRP concentrations of about 6,000 micrograms per liter (ug/L), and concentrations of 36,500 ug-N/L NH4 and 4,110 ug-P/L SRP in one 26-28 ft deep piezometer well. Despite the high ammonium concentrations, the nitrate levels were moderate to low in wetland surface and ground waters. The surface-water concentrations of NH4 and SRP increased in spring and summer, outpacing those for chloride (a conservative tracer), indicative of evapoconcentration. In-situ chamber experiments conducted in June and August 2005 indicated a positive flux of NH4 and SRP from the wetland sediments. Potential sources of NH4 and SRP include diffusion of nutrients from decomposed peat, decomposing aquatic vegetation, or upwelling ground water. In addition to these inputs, evapoconcentration raised surface-water solute concentrations to exceedingly high values by the end of summer. The increase was most pronounced in the South Unit, where specific conductance reached 2,500 uS/cm and median concentrations of total nitrogen and total phosphorus reached 18,000-36,500 ug-N/L and about 18,000-26,000 ug-P/L, respectively. Water-column SRP and total phosphorus levels decreased during autumn and winter following inputs of irrigation water and precipitation, which have lower nutrient concentrations. The SRP concentrations, however, decreased faster than the dilution rate alone, possibly due to precipitation of phosphorus with iron, manganese, or calcium. The high concentrations of dissolved nitrogen and phosphorus during the growing season give rise to a rich plant community in the wetland consisting of emergent and submergent macrophytes and algae including phytoplankton and benthic and epiphytic algae that have pronounced effects on dissolved oxygen (DO) and pH. Midday readings of surface-water DO during summer often were supersaturated (as much as 310 percent saturation) with elevated pH (as much as 9.2 units), indicative of high rates of photosynthesis. Minimum DO concentrations in the shallow ground-water piezometer wells were 0.4 mg/L in the North Unit and 0.8 mg/L in the South Unit during summer, which is probably low enough to support microbial denitrification. Denitrification was confirmed during in-situ experiments conducted at the sediment-water interface, but rates were low due to low background nitrate (NO3). Nevertheless, denitrification (and plant uptake) likely contribute to low nitrate levels. Another possible cause of low nitrate levels is dissimilatory nitrate reduction to ammonia (DNRA), a microbial process that converts and decreases nitrate to ammonia. DNRA explains the excess ammonia production measured in the chambers treated with nitrate. Surface-water levels and standing surface-water volume in the Wood River Wetland reached a maximum in early spring, inundating 80-90 percent of the wetland. Surface-water levels and standing volume then declined reaching a minimum in August through November, when the South Unit was only 10 percent inundated and the North Unit was nearly dry. The shallow ground-water levels followed a trend similar to surface-water levels and indicated a strong upward gradient. A monthly water budget was developed individually for the North
Opsahl, Stephen P.; Musgrove, MaryLynn; Slattery, Richard N.
2017-01-01
Understanding nitrate dynamics in groundwater systems as a function of climatic conditions, especially during contrasting patterns of drought and wet cycles, is limited by a lack of temporal and spatial data. Nitrate sensors have the capability for making accurate, high-frequency measurements of nitrate in situ, but have not yet been evaluated for long-term use in groundwater wells. We measured in situ nitrate continuously in two groundwater monitoring wells —one rural and one urban—located in the recharge zone of a productive karst aquifer in central Texas in order to resolve changes that occur over both short-term (hourly to daily) and long-term (monthly to yearly) periods. Nitrate concentrations, measured as nitrate-nitrogen in milligrams per liter (mg/L), during drought conditions showed little or no temporal change as groundwater levels declined. During aquifer recharge, extremely rapid changes in concentration occurred at both wells as documented by hourly data. At both sites, nitrate concentrations were affected by recharging surface water as evidenced by nitrate concentrations in groundwater recharge (0.8–1.3 mg/L) that were similar to previously reported values for regional recharging streams. Groundwater nitrate concentrations responded differently at urban and rural sites during groundwater recharge. Concentrations at the rural well (approximately 1.0 mg/L) increased as a result of higher nitrate concentrations in groundwater recharge relative to ambient nitrate concentrations in groundwater, whereas concentrations at the urban well (approximately 2.7 mg/L) decreased as a result of the dilution of higher ambient nitrate concentrations relative to those in groundwater recharge. Notably, nitrate concentrations decreased to as low as 0.8 mg/L at the urban site during recharge but postrecharge concentrations exceeded 3.0 mg/L. A return to higher nitrate concentrations postrecharge indicates mobilization of a localized source of elevated nitrate within the urbanized area of the aquifer. Changes in specific conductance were observed at both sites during groundwater recharge, and a significant correlation between specific conductance and nitrate (correlation coefficient [R] = 0.455) was evident at the urban site where large (3-fold) changes in nitrate occurred. Nitrate concentrations and specific conductance measured during a depth profile indicated that the water column was generally homogeneous as expected for this karst environment, but changes were observed in the most productive zone of the aquifer that might indicate some heterogeneity within the complex network of flow paths. Resolving the timing and magnitude of changes and characterizing fine-scale vertical differences would not be possible using conventional sampling techniques. The patterns observed in situ provided new insight into the dynamic nature of nitrate in a karst groundwater system.
Barlow, Jeannie R.; Coupe, Richard H.
2012-01-01
During April 2007 through September 2008, the USGS collected hydrogeologic and water-quality data from a site on the Bogue Phalia to evaluate the role of groundwater and surface-water interaction on the transport of nitrate to the shallow sand and gravel aquifer underlying the Mississippi Alluvial Plain in northwestern Mississippi. A two-dimensional groundwater/surface-water exchange model was developed using temperature and head data and VS2DH, a variably saturated flow and energy transport model. Results from this model showed that groundwater/surface-water exchange at the site occurred regularly and recharge was laterally extensive into the alluvial aquifer. Nitrate was consistently reported in surface-water samples (n = 52, median concentration = 39.8 μmol/L) although never detected in samples collected from in-stream piezometers or shallow monitoring wells adjacent to the stream (n = 46). These two facts, consistent detections of nitrate in surface water and no detections of nitrate in groundwater, coupled with model results that indicate large amounts of surface water moving through an anoxic streambed, support the case for denitrification and nitrate loss through the streambed.
Vystavna, Y; Diadin, D; Grynenko, V; Yakovlev, V; Vergeles, Y; Huneau, F; Rossi, P M; Hejzlar, J; Knöller, K
2017-09-18
Nitrate contamination of surface water and shallow groundwater was studied in transboundary (Russia/Ukraine) catchment with heterogeneous land use. Dominant sources of nitrate contamination were determined by applying a dual δ 15 N-NO 3 and δ 18 O-NO 3 isotope approach, multivariate statistics, and land use analysis. Nitrate concentration was highly variable from 0.25 to 22 mg L -1 in surface water and from 0.5 to 100 mg L -1 in groundwater. The applied method indicated that sewage to surface water and sewage and manure to groundwater were dominant sources of nitrate contamination. Nitrate/chloride molar ratio was added to support the dual isotope signature and indicated the contribution of fertilizers to the nitrate content in groundwater. Groundwater temperature was found to be an additional indicator of manure and sewerage leaks in the shallow aquifer which has limited protection and is vulnerable to groundwater pollution.
Estimating the Probability of Elevated Nitrate Concentrations in Ground Water in Washington State
Frans, Lonna M.
2008-01-01
Logistic regression was used to relate anthropogenic (manmade) and natural variables to the occurrence of elevated nitrate concentrations in ground water in Washington State. Variables that were analyzed included well depth, ground-water recharge rate, precipitation, population density, fertilizer application amounts, soil characteristics, hydrogeomorphic regions, and land-use types. Two models were developed: one with and one without the hydrogeomorphic regions variable. The variables in both models that best explained the occurrence of elevated nitrate concentrations (defined as concentrations of nitrite plus nitrate as nitrogen greater than 2 milligrams per liter) were the percentage of agricultural land use in a 4-kilometer radius of a well, population density, precipitation, soil drainage class, and well depth. Based on the relations between these variables and measured nitrate concentrations, logistic regression models were developed to estimate the probability of nitrate concentrations in ground water exceeding 2 milligrams per liter. Maps of Washington State were produced that illustrate these estimated probabilities for wells drilled to 145 feet below land surface (median well depth) and the estimated depth to which wells would need to be drilled to have a 90-percent probability of drawing water with a nitrate concentration less than 2 milligrams per liter. Maps showing the estimated probability of elevated nitrate concentrations indicated that the agricultural regions are most at risk followed by urban areas. The estimated depths to which wells would need to be drilled to have a 90-percent probability of obtaining water with nitrate concentrations less than 2 milligrams per liter exceeded 1,000 feet in the agricultural regions; whereas, wells in urban areas generally would need to be drilled to depths in excess of 400 feet.
Kauffman, Leon J.; Baehr, Arthur L.; Ayers, Mark A.; Stackelberg, Paul E.
2001-01-01
Residents of the southern New Jersey Coastal Plain are increasingly reliant on the unconfined Kirkwood-Cohansey aquifer system for public water supply as a result of increasing population and restrictions on withdrawals from the deeper, confined aquifers. Elevated nitrate concentrations above background levels have been found in wells in the surficial aquifer system in agricultural and urban parts of this area. A three-dimensional steady-state ground-water-flow model of a 400-square-mile study area near Glassboro, New Jersey, was used in conjunction with particle tracking to examine the effects of land use and travel time on the distribution of nitrate in ground and surface water in southern New Jersey. Contributing areas and ground-water ages, or travel times, of water at ground-water discharge points (streams and wells) in the study area were simulated. Concentrations of nitrate were computed by linking land use and age-dependent nitrate concentrations in recharge to the discharge points. Median concentrations of nitrate in water samples collected during 1996 from shallow monitoring wells in different land-use areas were used to represent the concentration of nitrate in aquifer recharge since 1990. On the basis of upward trends in the use of nitrogen fertilizer, the concentrations of nitrate in aquifer recharge in agricultural and urban areas were assumed to have increased linearly from the background value in 1940 (0.07 mg/L as N) to the 1990 (2.5-14 mg/L as N) concentrations. Model performance was evaluated by comparing the simulation results to measured nitrate concentrations and apparent ground-water ages. Apparent ground-water ages at 32 monitoring wells in the study area determined from tritium/helium-3 ratios and sulfur hexafluoride concentrations favorably matched simulated travel times to these wells. Simulated nitrate concentrations were comparable to concentrations measured in 27 water-supply wells in the study area. A time series (1987-98) of nitrate concentrations at base-flow conditions in three streams that drain basins of various sizes and with various land uses was compared to simulated concentrations in these streams. In all three of the streams, a reasonable fit to the measured concentrations was achieved by multiplying the simulated concentration by 0.6. Because nitrate appeared to move conservatively (not degraded or adsorbed) in ground water to wells, the apparent non-conservative behavior in streams indicates that about 40 percent of the nitrate in aquifer recharge is removed by denitrification in the aquifer near the streams and (or) by in-stream processes. The model was used to evaluate the effects of various nitrate management options on the concentration of nitrate in streams and water-supply wells. Nitrate concentrations were simulated under the following management alternatives: an immediate ban on nitrate input, reduction of input at a constant rate, and fixed input at the current (2000) level. The time required for water to move through the aquifer results in a time lag between the reduction of nitrate input in recharge and the reduction of nitrate concentration in streams and wells. In the gradual-reduction alternative, nitrate concentrations in streams and wells continued to increase for several years after the reduction was enacted. In both the immediate-ban and gradual-reduction alternatives, nitrate concentrations remained elevated above background concentrations long after nitrate input ceased. In the fixed-use alternative, concentrations in streams and wells continued to increase for 30 to 40 years before reaching a constant level. The spatial distributions of simulated nitrate concentrations in streams in 2000 and 2050 were examined with the assumption of no change in land use, nitrate concentration in recharge, or ground-water withdrawals. As expected, nitrate concentrations were highest in agricultural areas and lowest in largely undeveloped areas. Changes in concentration
NASA Astrophysics Data System (ADS)
Johnson, K. S.; Plant, J. N.; Sakamoto, C.; Coletti, L. J.; Sarmiento, J. L.; Riser, S.; Talley, L. D.
2016-12-01
Sixty profiling floats with ISUS and SUNA nitrate sensors have been deployed in the Southern Ocean (south of 30 degrees S) as part of the SOCCOM (Southern Ocean Carbon and Climate Observations and Modeling) program and earlier efforts. These floats have produced detailed records of the annual cycle of nitrate concentration throughout the region from the surface to depths near 2000 m. In surface waters, there are clear cycles in nitrate concentration that result from uptake of nitrate during austral spring and summer. These changes in nitrate concentration were used to compute the annual net community production over this region. NCP was computed using a simplified version of the approach detailed by Plant et al. (2016, Global Biogeochemical Cycles, 30, 859-879, DOI: 10.1002/2015GB005349). At the time the abstract was written 41 complete annual cycles were available from floats deployed before the austral summer of 2015/2016. After filtering the data to remove floats that crossed distinct frontal boundaries, floats with other anomalies, and floats in sub-tropical waters, 23 cycles were available. A preliminary assessment of the data yields an NCP of 2.8 +/- 0.95 (1 SD) mol C/m2/y after integrating to 100 m depth and converting nitrate uptake to carbon using the Redfield ratio. This preliminary assessment ignores vertical transport across the nitracline and is, therefore, a minimum estimate. The number of cycles available for analysis will increase rapidly, as 32 of the floats were deployed in the austral summer of 2015/2016 and have not yet been analyzed.
Geologic controls on the chemical behaviour of nitrate in riverside alluvial aquifers, Korea
NASA Astrophysics Data System (ADS)
Min, Joong-Hyuk; Yun, Seong-Taek; Kim, Kangjoo; Kim, Hyoung-Soo; Kim, Dong-Ju
2003-04-01
To investigate the origin and behaviour of nitrate in alluvial aquifers adjacent to Nakdong River, Korea, we chose two representative sites (Wolha and Yongdang) having similar land-use characteristics but different geology. A total of 96 shallow groundwater samples were collected from irrigation and domestic wells tapping alluvial aquifers.About 63% of the samples analysed had nitrate concentrations that exceeded the Korean drinking water limit (44·3 mg l-1 NO3-), and about 35% of the samples had nitrate concentrations that exceeded the Korean groundwater quality standard for agricultural use (88·6 mg l-1 NO3-). Based on nitrogen isotope analysis, two major nitrate sources were identified: synthetic fertilizer (about 4 15N) applied to farmland, and animal manure and sewage (15-20 15N) originating from upstream residential areas. Shallow groundwater in the farmland generally had higher nitrate concentrations than those in residential areas, due to the influence of synthetic fertilizer. Nitrate concentrations at both study sites were highest near the water table and then progressively decreased with depth. Nitrate concentrations are also closely related to the geologic characteristics of the aquifer. In Yongdang, denitrification is important in regulating nitrate chemistry because of the availability of organic carbon from a silt layer (about 20 m thick) below a thin, sandy surface aquifer. In Wolha, however, conservative mixing between farmland-recharged water and water coming from a village is suggested as the dominant process. Mixing ratios estimated based on the nitrate concentrations and the 15N values indicate that water originating from the village affects the nitrate chemistry of the shallow groundwater underneath the farmland to a large extent.
The unintended energy impacts of increased nitrate contamination from biofuels production.
Twomey, Kelly M; Stillwell, Ashlynn S; Webber, Michael E
2010-01-01
Increases in corn cultivation for biofuels production, due to the Energy Independence and Security Act of 2007, are likely to lead to increases in nitrate concentrations in both surface and groundwater resources in the United States. These increases might trigger the requirement for additional energy consumption for water treatment to remove the nitrates. While these increasing concentrations of nitrate might pose a human health concern, most water resources were found to be within current maximum contaminant level (MCL) limits of 10 mg L(-1) NO(3)-N. When water resources exceed this MCL, energy-intensive drinking water treatment is required to reduce nitrate levels below 10 mg L(-1). Based on prior estimates of water supplies currently exceeding the nitrate MCL, we calculate that advanced drinking water treatment might require an additional 2360 million kWh annually (for nitrate affected areas only)--a 2100% increase in energy requirements for water treatment in those same areas--to mitigate nitrate contamination and meet the MCL requirement. We predict that projected increases in nitrate contamination in water may impact the energy consumed in the water treatment sector, because of the convergence of several related trends: (1) increasing cornstarch-based ethanol production, (2) increasing nutrient loading in surface water and groundwater resources as a consequence of increased corn-based ethanol production, (3) additional drinking water sources that exceed the MCL for nitrate, and (4) potentially more stringent drinking water standards for nitrate.
NASA Astrophysics Data System (ADS)
Deppe, Marianna; Well, Reinhard; Giesemann, Anette; Kücke, Martin; Flessa, Heinz
2013-04-01
N2O emitted from soil originates either from denitrification of nitrate and/or nitrification of ammonium. N fertilization can have an important impact on N2O emission rates. Injection of nitrate-free ammonium-N fertilizer, in Germany also known as CULTAN (Controlled Uptake Long-Term Ammonium Nutrition), results in fertilizer depots with ammonium concentrations of up to 10 mg N g-1 soil-1. High concentrations of ammonium are known to inhibit nitrification. However, it has not yet been clarified how N2O fluxes are affected by CULTAN. In a field experiment, two application methods of nitrogen fertilizer were used at a loamy sand site: Ammonium sulphate was applied either by point injection or by surface application. 15N-ammonium sulphate was used to distinguish between N2O originating from either fertilizer-N or soil-N. Unfertilized plots and plots fertilized with unlabeled ammonium sulphate served as control. N2O emissions were measured using static chambers, nitrate and ammonium concentrations were determined in soil extracts. Stable isotope analysis of 15N in N2O, nitrate and ammonium was used to calculate the contribution of fertilizer N to N2O emissions and the fertilizer turnover in soil. 15N analysis clearly indicated that fertilizer derived N2O fluxes were higher from surface application plots. For the period of the growing season, about 24% of the flux measured in surface application treatment and less than 10% from injection treatment plots originated from the fertilizer. In addition, a lab experiment was conducted to gain insight into processes leading to N2O emission from fertilizer depots. One aim was to examine whether the ratio of N2O to nitrate formation differs depending on the ammonium concentration. Loamy sand soil was incubated in microcosms continuously flushed with air under conditions favouring nitrification. 15N-labeled nitrate was used to differentiate between nitrification and denitrification. Stable isotope analyses of 15N were performed on N2O in the gas phase and on ammonium and nitrate extracted from soil samples.
Weldon, Mark B.; Hornbuckle, Keri C.
2009-01-01
Concentrated animal feeding operations (CAFO) and fertilizer application to row crops may contribute to poor water quality in surface waters. To test this hypothesis, we evaluated nutrient concentrations and fluxes in four Eastern Iowa watersheds sampled between 1996-2004. We found that these watersheds contribute nearly 10% of annual nitrate flux entering the Gulf of Mexico, while representing only 1.5% of the contributing drainage basin. Mass budget analysis shows stream flow to be a major loss of nitrogen (18% of total N output), second only to crop harvest (63%). The major watershed inputs of nitrogen include applied fertilizer for corn (54% of total N input) and nitrogen fixation by soybeans (26%). Despite the relatively small input from animal manure (~5%), the results of spatial analysis indicate that row crop and CAFO densities are significantly and independently correlated to higher nitrate concentration in streams. Pearson correlation coefficients of 0.59 and 0.89 were found between nitrate concentration and row crop and CAFO density, respectively. Multiple linear regression analysis produced a correlation for nitrate concentration with an R2 value of 85%. High spatial density of row crops and CAFOs are linked to the highest river nitrate concentrations (up to 15 mg/l normalized over five years). PMID:16749677
NASA Technical Reports Server (NTRS)
Wiggert, J. D.; Jones, B. H.; Dickey, T. D.; Brink, K. H.; Weller, R. A.; Marra, J.; Codispoti, L. A.
2000-01-01
In the northern Arabian Sea, atmospheric conditions during the Northeast (winter) Monsoon lead to deep convective mixing. Due to the proximity of the permanent pyncnocline to the sea surface, this mixing does not penetrate below 125 m. However, a strong nitracline is also present and the deep convection results in significant nitrate flux into the surface waters. This leads to nitrate concentrations over the upper 100 m that exceed 4 micrometers toward the end of the Monsoon. During the 1994/1995 US JGOFS/Arabian Sea expedition, the mean areal gross primary production over two successive Northeast Monsoons was determined to be 1.35gC/sq m/d. Thus, despite the deep penetrative convection, high rates of primary productivity were maintained. An interdisciplinary model was developed to elucidate the biogeochemical processes involved in supporting the elevated productivity. This model consists of a 1-D mixed-layer model coupled to a set of equations that tracked phytoplankton growth and the concentration of the two major nutrients (nitrate and ammonium). Zooplankton grazing was parameterized by rate constant determined by shipboard experiments. Model boundary conditions consist of meteorological time-series measured from the surface buoy that was part of the ONR Arabian Sea Experiment's central mooring. Our numerical experiments show that elevated surface evaporation, and the associated salinization of the mixed layer, strongly contributes to the frequency and penetration depth of the observed convective mixing. Cooler surface temperatures, increased nitrate entrainment, reduced water column stratification, and lower near-surface chlorophyll a concentrations all result from this enhanced mixing. The model also captured a dependence on regenerated nitrogen observed in nutrient uptake experiments performed during the Northeast Monsoon. Our numerical experiments also indicate that variability in mean pycnocline depth causes up to a 25% reduction in areal chlorophyll a concentration. We hypothesize that such shifts in pycnocline depth may contribute to the interannual variations in primary production and surface chlorophyll a concentration that have been previously observed in this region.
Long-term changes in nitrate conditions over the 20th century in two Midwestern Corn Belt streams
Kelly, Valerie J.; Stets, Edward G.; Crawford, Charles G.
2015-01-01
Long-term changes in nitrate concentration and flux between the middle of the 20th century and the first decade of the 21st century were estimated for the Des Moines River and the Middle Illinois River, two Midwestern Corn Belt streams, using a novel weighted regression approach that is able to detect subtle changes in solute transport behavior over time. The results show that the largest changes in flow-normalized concentration and flux occurred between 1960 and 1980 in both streams, with smaller or negligible changes between 1980 and 2004. Contrasting patterns were observed between (1) nitrate export linked to non-point sources, explicitly runoff of synthetic fertilizer or other surface sources and (2) nitrate export presumably associated with point sources such as urban wastewater or confined livestock feeding facilities, with each of these modes of transport important under different domains of streamflow. Surface runoff was estimated to be consistently most important under high-flow conditions during the spring in both rivers. Nitrate export may also have been considerable in the Des Moines River even under some conditions during the winter when flows are generally lower, suggesting the influence of point sources during this time. Similar results were shown for the Middle Illinois River, which is subject to significant influence of wastewater from the Chicago area, where elevated nitrate concentrations were associated with at the lowest flows during the winter and fall. By modeling concentration directly, this study highlights the complex relationship between concentration and streamflow that has evolved in these two basins over the last 50 years. This approach provides insights about changing conditions that only become observable when stationarity in the relationship between concentration and streamflow is not assumed.
Komor, Stephen C.; Magner, Joseph A.
1996-01-01
This study evaluates processes that affect nitrate concentrations in groundwater beneath riparian zones in an agricultural watershed. Nitrate pathways in the upper 2 m of groundwater were investigated beneath wooded and grass-shrub riparian zones next to cultivated fields. Because trees can be important components of the overall nitrate pathway in wooded riparian zones, water sources used by riparian trees and possible effects of trees on nitrate concentrations in groundwater were also investigated. Average nitrate concentrations in shallow groundwater beneath the cultivated fields were 5.5 mg/L upgradient of the wooded riparian zone and 3.5 mg/L upgradient of the grass-shrub zone. Shallow groundwater beneath the fields passed through the riparian zones and discharged into streams that had average nitrate concentrations of 8.5 mg/L (as N). Lateral variations of δD values in groundwater showed that mixing among different water sources occurred beneath the riparian zones. In the wooded riparian zone, nitrate concentrations in shallow groundwater were diluted by upwelling, nitrate-poor, deep groundwater. Upwelling deep groundwater contained ammonium with a δ15N of 5‰ that upon nitrification and mixing with nitrate in shallow groundwater caused nitrate δ15N values in shallow groundwater to decrease by as much as 19.5‰. Stream water penetrated laterally beneath the wooded riparian zone as far as 19 m from the stream's edge and beneath the grass-shrub zone as far as 27 m from the stream's edge. Nitrate concentrations in shallow groundwater immediately upgradient of where it mixed with stream water averaged 0.4 mg/L in the wooded riparian zone and 0.8 mg/L near the grass-shrub riparian zone. Nitrate concentrations increased toward the streams because of mixing with nitrate-rich stream water. Because nitrate concentrations were larger in stream water than shallow groundwater, concentrated nitrate in the streams cannot have come from shallow groundwater at these sites. Water sources of riparian trees were identified by comparing δD values of sap water, soil water, groundwater, and stream water. Soil water was the main water source for trees in the outer 4 to 6 m of one part of the wooded riparian zone and outer 10 m of another part. Groundwater was a significant water source for trees closer to the streams where the water table was less than about 2.1 to 2.7 m below the surface. No evidence was found in the nitrate concentration profiles that trees close to the streams that took up groundwater through their roots also took up nitrate from groundwater. The lack of such evidence is attributed to the nitrate concentration profiles being insufficiently sensitive indicators of nitrate removal by trees.
The origin of high-nitrate ground waters in the Australian arid zone
NASA Astrophysics Data System (ADS)
Barnes, C. J.; Jacobson, G.; Smith, G. D.
1992-08-01
Nitrate concentrations beyond the drinking-water limit of 10 mg1 -1 NO 3-N, are common in Australian arid-zone ground waters and are often associated with otherwise potable waters. In some aquifers nitrate-N concentrations of up to 80 mg1 -1 have been found, and this is a severe constraint on water supply development for small settlements. Water-bore data indicate a correlation of high-nitrate ground waters with shallow unconfined aquifers. Aguifer hydrochemistry indicats that these ground waters were emplaced by episodic Holocene recharge events in an otherwise arid climate regime. Nitrate has been flushed through the unsaturated zone which apparently lacks denitrification activity. The nitrate originates by near-surface biological fixation and contributing organisms include cyanobacteria in soil crusts and bacteria in termite mounds with the highest soil nitrate concentrations found in the outer skin of termite mounds. Bacteria associated with the termites appear to fix nitrogen, which eventually appears in an inorganic form, principally as ammonia. Nitrate is produced by bacterial oxidation of the ammonia, and is leached to the outside of the termite mound by capillary action. Diffuse recharge from extreme rainfall events then flushes this nitrate to the water table.
Stamos, Christina L.; Martin, Peter; Everett, Rhett; Izbicki, John A.
2013-01-01
Between the late 1940s and 1994, groundwater levels in the Warren subbasin, California, declined by as much as 300 feet because pumping exceeded sparse natural recharge. In response, the local water district, Hi-Desert Water District, implemented an artificial-recharge program in early 1995 using imported water from the California State Water Project. Subsequently, the water table rose by as much as 250 feet; however, a study done by the U.S. Geological Survey found that the rising water table entrained high-nitrate septic effluent, which caused nitrate (as nitrogen) concentrations in some wells to increase to more than the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter.. A new artificial-recharge site (site 3) was constructed in 2006 and this study, which started in 2004, was done to address concerns about the possible migration of nitrates in the unsaturated zone. The objectives of this study were to: (1) characterize the hydraulic, chemical, and microbiological properties of the unsaturated zone; (2) monitor changes in water levels and water quality in response to the artificial-recharge program at site 3; (3) determine if nitrates from septic effluent infiltrated through the unsaturated zone to the water table; (4) determine the potential for nitrates within the unsaturated zone to mobilize and contaminate the groundwater as the water table rises in response to artificial recharge; and (5) determine the presence and amount of dissolved organic carbon because of its potential to react with disinfection byproducts during the treatment of water for public use. Two monitoring sites were installed and instrumented with heat-dissipation probes, advanced tensiometers, suction-cup lysimeters, and wells so that the arrival and effects of recharging water from the State Water Project through the 250 to 425 foot-thick unsaturated zone and groundwater system could be closely observed. Monitoring site YVUZ-1 was located between two recharge ponds in the middle of site 3, and YVUZ-2 was located approximately 1,200 feet down-gradient and to the southeast in an area where septic systems have been in use since about 1960. Site YVUZ-3 only went to a depth of 42 feet and was used to sample the upper part of the unsaturated zone near a golf course. Prior to the start of artificial recharge at site 3, nitrate concentrations reported as nitrogen from the soil leachate below YVUZ-1 did not exceed 1.58 milligrams per kilogram. Nitrate-reducing bacteria concentrations of 4,300 most probable number were found at about 220 feet below land surface and at the top of the water table at YVUZ-1. Nitrate concentrations at YVUZ-2 reached a maximum concentration of about 25 milligrams per kilogram between about 100 and 121 feet below land surface; concentrations of nitrate-reducing or denitrifying bacteria were as high as 21,000 most probable number at 36 feet below land surface but did not exceed 40 most probable number below about 150 feet below land surface. Between June 2006 and September 2009, more than 9,800 acre feet of water from the State Water Project was released to site 3 ponds. The infiltration of the recharge water was predominantly vertical with limited lateral spreading to a depth of about 200 feet below land surface at YVUZ-1. Lateral spreading of the recharge water with depth was caused by geologic heterogeneities within the unsaturated zone, and resulted in varied arrival times of the recharge water to the instruments and slower rates of vertical movement with depth. No abrupt changes in soil moisture were observed at YVUZ-2, indicating that the recharge water had not reached that site by September 2009. Water levels from the monitoring wells at both sites and from five production wells nearby showed that the water table rose at a mean rate of about 0.08 feet per day between June 2006 and January 2009. The arrival of the water from the State Water Project caused relatively rapid changes in the stable-isotopic ratios from the lysimeters at YVUZ-1. The estimated average rate of infiltration of the recharge water through the unsaturated zone ranged from 3.7 to 25 feet per day. The recharge water arrived at the monitoring well below the recharge ponds between August 2007 and March 2008; the rate of vertical movement to the monitoring well was between 0.6 and 0.9 feet per day. By September 2008, a production well located 375 feet west of site 3 was producing almost 100 percent infiltrated recharge water. By contrast, the stable-isotope data from the lysimeters at YVUZ-2 showed that the recharge water had not reached this site by September 2009, but that septic effluent in the unsaturated zone likely had mixed with the native pore water to at least 154 feet below land surface. Assuming vertical infiltration, the minimum rate of infiltration of septic effluent since 1960 was about 3 feet per year. The isotopic data from the lysimeters at YVUZ-3 indicated two different sources of water to the upper 43 feet–irrigation-return flow and precipitation. Nitrate concentrations of the water from the State Water Project did not exceed 1 milligram per liter. Prior to artificial recharge, nitrate concentrations of the pore water at YVUZ-1 ranged between 6 to 18.2 milligrams per liter. After the arrival of the recharge water, the nitrate concentrations from the lysimeters and well at YVUZ-1 decreased to less than 1 milligram per liter, with the exception of samples collected at 205.5 feet, which did not exceed 4.12 milligrams per liter. The decrease in nitrate concentrations after artificial recharge indicated that the rising water table did not result in an increase of nitrates below YVUZ-1. At YVUZ-2, nitrate concentrations ranged between 12 to 479 milligrams per liter. The highest nitrate concentrations were at 92 feet below land surface and were almost seven times that of samples collected from a nearby septic tank. Nitrate concentrations from the lysimeter at 273 feet below land surface increased from 6 to almost 58 milligrams per liter after it was saturated by the rising water table in December 2007. These increases could be the result of the mobilization of high-nitrate water from regional sources of septic effluent after saturation, or the result of high-nitrate water present at the top of the water table that may be diluted deeper in the aquifer. Nitrate concentrations in groundwater from five nearby production wells and from both monitoring wells were less than 5 milligrams per liter before artificial recharge started. Nitrate concentrations decreased to less than 3 milligrams per liter in three of the production wells and the monitoring well below the recharge ponds after artificial recharge. Dissolved organic carbon concentrations were measured in the recharge water and groundwater because of the potential for dissolved organic carbon to react with chlorine to form trihalomethanes during the water-treatment process. The dissolved organic carbon concentrations of the recharge water were 3.1 milligrams per liter or less, and dissolved organic carbon concentrations of the groundwater were less than 1 milligram per liter. Even though recharge water was present in some of the wells by September 2008, the concentrations of both dissolved organic carbon and trihalomethane formation potential in the groundwater did not increase. Interpretation of these data suggests that the dissolved organic carbon from the recharge water is altered or metabolized in the unsaturated zone, either by absorption to the grain particles in the soil or by microbiological processes.
Nitrate removal in deep sediments of a nitrogen-rich river network: A test of a conceptual model
Stelzer, Robert S.; Bartsch, Lynn
2012-01-01
Many estimates of nitrogen removal in streams and watersheds do not include or account for nitrate removal in deep sediments, particularly in gaining streams. We developed and tested a conceptual model for nitrate removal in deep sediments in a nitrogen-rich river network. The model predicts that oxic, nitrate-rich groundwater will become depleted in nitrate as groundwater upwelling through sediments encounters a zone that contains buried particulate organic carbon, which promotes redox conditions favorable for nitrate removal. We tested the model at eight sites in upwelling reaches of lotic ecosystems in the Waupaca River Watershed that varied by three orders of magnitude in groundwater nitrate concentration. We measured denitrification potential in sediment core sections to 30 cm and developed vertical nitrate profiles to a depth of about 1 m with peepers and piezometer nests. Denitrification potential was higher, on average, in shallower core sections. However, core sections deeper than 5 cm accounted for 70%, on average, of the depth-integrated denitrification potential. Denitrification potential increased linearly with groundwater nitrate concentration up to 2 mg NO3-N/L but the relationship broke down at higher concentrations (> 5 mg NO3-N/L), a pattern that suggests nitrate saturation. At most sites groundwater nitrate declined from high concentrations at depth to much lower concentrations prior to discharge into the surface water. The profiles suggested that nitrate removal occurred at sediment depths between 20 and 40 cm. Dissolved oxygen concentrations were much higher in deep sediments than in pore water at 5 cm sediment depth at most locations. The substantial denitrification potential in deep sediments coupled with the declines in nitrate and dissolved oxygen concentrations in upwelling groundwater suggest that our conceptual model for nitrate removal in deep sediments is applicable to this river network. Our results suggest that nitrate removal rates can be high in deep sediments of upwelling stream reaches, which may have implications for efforts to understand and quantify nitrogen transport and removal at larger scales.
Duncan, C; Dougall, H; Johnston, P; Green, S; Brogan, R; Leifert, C; Smith, L; Golden, M; Benjamin, N
1995-06-01
High concentrations of nitrite present in saliva (derived from dietary nitrate) may, upon acidification, generate nitrogen oxides in the stomach in sufficient amounts to provide protection from swallowed pathogens. We now show that, in the rat, reduction of nitrate to nitrite is confined to a specialized area on the posterior surface of the tongue, which is heavily colonized by bacteria, and that nitrate reduction is absent in germ-free rats. We also show that in humans increased salivary nitrite production resulting from nitrate intake enhances oral nitric oxide production. We propose that the salivary generation of nitrite is accomplished by a symbiotic relationship involving nitrate-reducing bacteria on the tongue surface, which is designed to provide host defence against microbial pathogens in the mouth and lower gut. These results provide further evidence for beneficial effects of dietary nitrate.
NASA Technical Reports Server (NTRS)
Zhang, Yang; Sunwoo, Young; Kotamarthi, Veerabhadra; Carmichael, Gregory R.
1994-01-01
The influence of dust on the tropospheric photochemical oxidant cycle is studied through the use of a detailed coupled aerosol and gas-phase chemistry model. Dust is a significant component of the troposphere throughout Asia and provides a surface for a variety of heterogeneous reactions. Dust is found to be an important surface for particulate nitrate formation. For dust loading and ambient concentrations representative of conditions in East Asia, particulate nitrate levels of 1.5-11.5 micrograms/cubic meter are predicted, consistent with measured levels in this region. Dust is also found to reduce NO(x) levels by up to 50%, HO2 concentrations by 20%-80%, and ozone production rates by up to 25%. The magnitude of the influence of dust is sensitive to mass concentration of the aerosol, relative humidity, and the value of the accommodation coefficient.
Cowdery, Timothy K.
1997-01-01
Land-use factors that increased nitrate and herbicide concentrations were greater tilled area, chemical application, irrigation, and cropland contiguity. Hydrogeological factors that increased these concentrations were a deeper watertable (higher oxygen concentration and less organic carbon), larger grain-size and degree of sorting of aquifer material (shorter time in the soil zone and aquifer), and fewer sulfur-containing minerals (lignite and pyrite) composing the aquifer. High rainfall, just before sampling of the Sheyenne Delta aquifer, contributed to the relatively low nitrate and pesticide concentrations in the shallow ground water of this aquifer by raising the water table higher into the soil zone, increasing ponded water (increasing biodegradation), preventing some chemical application (flooded fields), and leaching and then displacing nitrate-rich water downward, beneath new recharge. The shallow ground-water quality measured beneath cropland in these land-use study areas covers a large range. The land-use, hydrogeological, and rainfall factors controlling this quality also control shallow ground-water quality in other surficial aquifers in the Red River of the North Basin. Although not used for drinking water, 43% of the shallow ground water from the Otter Tail outwash aquifer was above the U.S. Environmental Protection Agency's nitrate maximum contaminant level of 10 mg/L-N, reducing its potential uses. These high nitrate concentrations do not threaten the Otter Tail outwash aquifer's surface-water bodies with eutrophication however, because significant denitrification occurs beneath riparian wetlands before ground water discharges to surface waters.
Sensitivities of NOx transformation and the effects on surface ozone and nitrate
NASA Astrophysics Data System (ADS)
Lei, H.; Wang, J. X. L.
2013-08-01
As precursors for tropospheric ozone and nitrate aerosols, Nitrogen oxides (NOx) in present atmosphere and its transformation in responding to emission and climate perturbations are studied by CAM-Chem model and air quality measurements including National Emission Inventory (NEI), Clean Air Status and Trends Network (CASTNET) and Environmental Protection Agency Air Quality System (EPA AQS). It is found that not only the surface ozone formation but also the nitrate formation is associated with the relative emissions of NOx and volatile organic compounds (VOC). Due to the availability of VOC and associated NOx titration, ozone productions in industrial regions increase in warmer conditions and slightly decrease against NOx emission increase, which is converse to the response in farming region. The decrease or small increase in ozone concentrations over industrial regions result in the responded nitrate increasing rate staying above the increasing rate of NOx emissions. It is indicated that ozone concentration change is more directly affected by changes in climate and precursor emissions, while nitrate concentration change is also affected by local ozone production types and their seasonal transfer. The sensitivity to temperature perturbations shows that warmer climate accelerates the decomposition of odd nitrogen (NOy) during the night. As a result, the transformation rate of NOx to nitrate decreases. Examinations on the historical emission and air quality records on typical pollution areas further confirm the conclusion drawn from modeling experiments.
Use of a dynamic simulation model to understand nitrogen cycling in the middle Rio Grande, NM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meixner, Tom; Tidwell, Vincent Carroll; Oelsner, Gretchen
2008-08-01
Water quality often limits the potential uses of scarce water resources in semiarid and arid regions. To best manage water quality one must understand the sources and sinks of both solutes and water to the river system. Nutrient concentration patterns can identify source and sink locations, but cannot always determine biotic processes that affect nutrient concentrations. Modeling tools can provide insight into these large-scale processes. To address questions about large-scale nitrogen removal in the Middle Rio Grande, NM, we created a system dynamics nitrate model using an existing integrated surface water--groundwater model of the region to evaluate our conceptual modelsmore » of uptake and denitrification as potential nitrate removal mechanisms. We modeled denitrification in groundwater as a first-order process dependent only on concentration and used a 5% denitrification rate. Uptake was assumed to be proportional to transpiration and was modeled as a percentage of the evapotranspiration calculated within the model multiplied by the nitrate concentration in the water being transpired. We modeled riparian uptake as 90% and agricultural uptake as 50% of the respective evapotranspiration rates. Using these removal rates, our model results suggest that riparian uptake, agricultural uptake and denitrification in groundwater are all needed to produce the observed nitrate concentrations in the groundwater, conveyance channels, and river as well as the seasonal concentration patterns. The model results indicate that a total of 497 metric tons of nitrate-N are removed from the Middle Rio Grande annually. Where river nitrate concentrations are low and there are no large nitrate sources, nitrate behaves nearly conservatively and riparian and agricultural uptake are the most important removal mechanisms. Downstream of a large wastewater nitrate source, denitrification and agricultural uptake were responsible for approximately 90% of the nitrogen removal.« less
USDA-ARS?s Scientific Manuscript database
Enrichment of surface water with nitrate-nitrogen is a significant problem throughout the world. In support of developing a method for removing nitrate from water using denitrification, this project characterized runoff events at two nurseries in South Florida to provide information needed for desi...
Techniques for Measurement of Nitrate Movement in Soils
NASA Technical Reports Server (NTRS)
Broadbent, F. E.
1971-01-01
Contamination of surface and ground waters with nitrate usually involves leaching through soil of nitrate produced by mineralization of soil organic matter, decomposition of animal wastes or plant residues, or derived from fertilizers. Nitrate concentrations in the soil solution may be measured by several chemical procedures or by the nitrate electrode. since nitrate is produced throughout the soil mass it is difficult to identify a source of nitrate contamination by conventional means. This problem can be solved by use of N-15-enriched or N-15-depleted materials as tracers. The latter is particularly attractive because of the negligible possibility of the tracer hazardous to health.
Aquilina, L; Vergnaud-Ayraud, V; Labasque, T; Bour, O; Molénat, J; Ruiz, L; de Montety, V; De Ridder, J; Roques, C; Longuevergne, L
2012-10-01
Although nitrate export in agricultural catchments has been simulated using various types of models, the role of groundwater in nitrate dynamics has rarely been fully taken into account. We used groundwater dating methods (CFC analyses) to reconstruct the original nitrate concentrations in the groundwater recharge in Brittany (Western France) from 1950 to 2009. This revealed a sharp increase in nitrate concentrations from 1977 to 1990 followed by a slight decrease. The recharge concentration curve was then compared with past chronicles of groundwater concentration. Groundwater can be interpreted as resulting from the annual dilution of recharge water in an uncontaminated aquifer. Two aquifers were considered: the weathered aquifer and the deeper fractured aquifer. The nitrate concentrations observed in the upper part of the weathered aquifer implied an annual renewal rate of 27 to 33% of the reservoir volume while those in the lower part indicated an annual renewal rate of 2-3%. The concentrations in the deep fractured aquifer showed an annual renewal rate of 0.1%. The river concentration can be simulated by combining these various groundwater reservoirs with the recharge. Winter and summer waters contain i) recharge water, or water from the variably saturated zone with rapid transfer and high nitrate concentrations, and ii) a large contribution (from 35 to 80% in winter and summer, respectively) from the lower part of the aquifer (lower weathered aquifer and deep fractured aquifer). This induces not only a relatively rapid response of the catchment to variations in agricultural pressure, but also a potential inertia which has to be taken into account. Copyright © 2012 Elsevier B.V. All rights reserved.
Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine
Cravotta, C.A.
1998-01-01
Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (<5-m depth) from sludge-treated spoil (pH 5.9) were not elevated relative to untreated spoil (pH 4.4). In contrast, concentrations of nitrate were elevated in vadose water samples from sludge-treated spoil, frequently exceeding 10 mg/L. Downgradient decreases in nitrate to less than 3 mg/L and increases in sulfate concentrations in underlying ground water could result from oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.
Light-induced protein nitration and degradation with HONO emission
NASA Astrophysics Data System (ADS)
Meusel, Hannah; Elshorbany, Yasin; Kuhn, Uwe; Bartels-Rausch, Thorsten; Reinmuth-Selzle, Kathrin; Kampf, Christopher J.; Li, Guo; Wang, Xiaoxiang; Lelieveld, Jos; Pöschl, Ulrich; Hoffmann, Thorsten; Su, Hang; Ammann, Markus; Cheng, Yafang
2017-10-01
Proteins can be nitrated by air pollutants (NO2), enhancing their allergenic potential. This work provides insight into protein nitration and subsequent decomposition in the presence of solar radiation. We also investigated light-induced formation of nitrous acid (HONO) from protein surfaces that were nitrated either online with instantaneous gas-phase exposure to NO2 or offline by an efficient nitration agent (tetranitromethane, TNM). Bovine serum albumin (BSA) and ovalbumin (OVA) were used as model substances for proteins. Nitration degrees of about 1 % were derived applying NO2 concentrations of 100 ppb under VIS/UV illuminated conditions, while simultaneous decomposition of (nitrated) proteins was also found during long-term (20 h) irradiation exposure. Measurements of gas exchange on TNM-nitrated proteins revealed that HONO can be formed and released even without contribution of instantaneous heterogeneous NO2 conversion. NO2 exposure was found to increase HONO emissions substantially. In particular, a strong dependence of HONO emissions on light intensity, relative humidity, NO2 concentrations and the applied coating thickness was found. The 20 h long-term studies revealed sustained HONO formation, even when concentrations of the intact (nitrated) proteins were too low to be detected after the gas exchange measurements. A reaction mechanism for the NO2 conversion based on the Langmuir-Hinshelwood kinetics is proposed.
Tesoriero, Anthony J.; Spruill, Timothy B.; Mew, H.E.; Farrell, Kathleen M.; Harden, Stephen L.
2005-01-01
Nitrogen transport and groundwater-surface water interactions were examined in a coastal plain watershed in the southeastern United States. Groundwater age dates, calculated using chlorofluorocarbon and tritium concentrations, along with concentrations of nitrogen species and other redox-active constituents, were used to evaluate the fate and transport of nitrate. Nitrate is stable only in recently recharged (<10 years) water found in the upper few meters of saturated thickness in the upland portion of a surficial aquifer. Groundwater with a residence time between 10 and 30 years typically has low nitrate and elevated excess N2 concentrations, indications that denitrification has reduced nitrate concentrations. Groundwater older than 30 years also has low nitrate concentrations but contains little or no excess N2, suggesting that this water did not contain elevated concentrations of nitrate along its flow path. Nitrate transport to streams varies between first- and third-order streams. Hydrologic, lithologic, and chemical data suggest that the surficial aquifer is the dominant source of flow and nitrate to a first-order stream. Iron-reducing conditions occur in groundwater samples from the bed and banks of the first-order stream, suggesting that direct groundwater discharge is denitrified prior to entering the stream. However, nitrogen from the surficial aquifer is transported directly to the stream via a tile drain that bypasses these reduced zones. In the alluvial valley of a third-order stream the erosion of a confining layer creates a much thicker unconfined alluvial aquifer with larger zones of nitrate stability. Age dating and chemical information (SiO 2, Na/K ratios) suggest that water in the alluvial aquifer is derived from short flow paths through the riparian zone and/or from adjacent streams during high-discharge periods. Copyright 2005 by the American Geophysical Union.
Huffman, Raegan L.
2018-05-29
The U.S. Geological Survey, in cooperation with the lower Yakima River Basin Groundwater Management Area (GWMA) group, conducted an intensive groundwater sampling collection effort of collecting nitrate concentration data in drinking water to provide a baseline for future nitrate assessments within the GWMA. About every 6 weeks from April through December 2017, a total of 1,059 samples were collected from 156 wells and 24 surface-water drains. The domestic wells were selected based on known location, completion depth, ability to collect a sample prior to treatment on filtration, and distribution across the GWMA. The drains were pre-selected by the GWMA group, and further assessed based on ability to access sites and obtain a representative sample. More than 20 percent of samples from the domestic wells and 12.8 percent of drain samples had nitrate concentrations that exceeded the maximum contaminant level (MCL) of 10 milligrams per liter established by the U.S. Environmental Protection Agency. At least one nitrate concentration above the MCL was detected in 26 percent of wells and 33 percent of drains sampled. Nitrate was not detected in 13 percent of all samples collected.
Modeling nitrogen fluxes in Germany - where does the nitrogen go?
NASA Astrophysics Data System (ADS)
Klement, Laura; Bach, Martin; Breuer, Lutz
2016-04-01
According to the latest inventory of the EU Water Framework Directive, 26.3% of German groundwater bodies are in a poor chemical state regarding nitrate. Additionally, the EU initiated infringement proceedings against Germany for not meeting the quality standards of the EU Nitrate Directive. Agriculture has been determined as the main source of nitrate pollution due to over-fertilization and regionally high density of livestock farming. The nitrogen balance surplus is commonly used as an indicator characterizing the potential of nitrate leaching into groundwater bodies and thus also serves as a foundation to introduce legislative restrictions or to monitor the success of mitigation measures. Currently, there is an ongoing discussion which measures are suitable for reducing the risk of nitrate leaching and also to what extent. However, there is still uncertainty about just how much the nitrogen surplus has to be reduced to meet the groundwater quality standards nationwide. Therefore, the aims of our study were firstly to determine the level of the nitrogen surplus that would be acceptable at the utmost and secondly whether the currently discussed target value of 30 kg N per hectare agricultural land for the soil surface nitrogen balance would be sufficient. The models MONERIS (Modeling Nutrient Emissions in River System) and MoRE (Modelling of Regionalized Emissions), the latter based on the first, are commonly used for estimating nitrogen loads into the river system in Germany at the mesoscale, as well as the effect of mitigation measures in the context of the EU directive 2008/105/EC (Environmental quality standards applicable to surface water). We used MoRE to calculate nitrate concentration for 2759 analytical units in Germany. Main factors are the surplus of the soil surface nitrogen balance, the percolation rate and an exponent representing the denitrification in the vadose zone. The modeled groundwater nitrate concentrations did not correspond to the regional patterns of the groundwater bodies which fail the good WFD status, the N-surplus or the measured data. The parameters for denitrification and the percolation rate seemed to have a higher model sensitivity than the nitrogen surplus. MoRE was previously validated only for the total N load from groundwater into surface water but the modeling concept for nitrate concentration was seemingly never fitted to observed data and needs refinements. A literature research showed that no groundwater concentrations modeled with MoRE or MONERIS have been published for Germany until now. Instead, only the concentration in percolating water was shown - sometimes misleadingly labeled so that the reader could presume the map displayed groundwater concentrations. According to the MoRE approach, model parameters such as the percolation rate and denitrification intensity are more sensitive than the N surplus. The surplus can indicate only a potential leaching risk, while the actual threat varies substantially with regional soil and climate conditions. Consequently, the use of the nitrogen surplus as a sole indicator for nitrate leaching should be critically examined. For conception of nitrate reduction programs obviously the regionally varying site conditions cannot be disregarded.
Patton, Charles J.; Kryskalla, Jennifer R.
2011-01-01
In addition to operational details and performance benchmarks for these new DA-AtNaR2 nitrate + nitrite assays, this report also provides results of interference studies for common inorganic and organic matrix constituents at 1, 10, and 100 times their median concentrations in surface-water and groundwater samples submitted annually to the NWQL for nitrate + nitrite analyses. Paired t-test and Wilcoxon signed-rank statistical analyses of results determined by CFA-CdR methods and DA-AtNaR2 methods indicate that nitrate concentration differences between population means or sign ranks were either statistically equivalent to zero at the 95 percent confidence level (p ≥ 0.05) or analytically equivalent to zero-that is, when p < 0.05, concentration differences between population means or medians were less than MDLs.
Soucek, David J; Dickinson, Amy
2016-09-01
While it has been well established that increasing chloride concentration in water reduces the toxicity of nitrite to freshwater species, little work has been done to investigate the effect of chloride on nitrate toxicity. We conducted acute and chronic nitrate (as sodium nitrate) toxicity tests with the cladoceran Ceriodaphnia dubia and the amphipod Hyalella azteca (chronic tests only) over a range of chloride concentrations spanning natural chloride levels found in surface waters representative of watersheds of the Great Lakes Region. Chronic nitrate toxicity test results with both crustaceans were variable, with H. azteca appearing to be one of the more sensitive invertebrate species tested and C. dubia being less sensitive. While the variability in results for H. azteca were to an extent related to chloride concentration in test water that was distinctly not the case for C. dubia. We concluded that the chloride dependent toxicity of nitrate is not universal among freshwater crustaceans. An additional sodium chloride chronic toxicity test with the US Lab strain of H. azteca in the present study suggested that when present as predominantly sodium chloride and with relatively low concentrations of other ions, there is a narrow range of chloride concentrations over which this strain is most fit, and within which toxicity test data are reliable.
Mellor, Andrea F P; Cey, Edwin E
2015-11-01
The Abbotsford-Sumas aquifer (ASA) has a history of nitrate contamination from agricultural land use and manure application to soils, yet little is known about its microbial groundwater quality. The goal of this study was to investigate the spatiotemporal distribution of pathogen indicators (Escherichia coli [E. coli] and total coliform [TC]) and nitrate in groundwater, and their potential relation to hydrologic drivers. Sampling of 46 wells over an 11-month period confirmed elevated nitrate concentrations, with more than 50% of samples exceeding 10 mg-N/L. E. coli detections in groundwater were infrequent (4 of 385 total samples) and attributed mainly to surface water-groundwater connections along Fishtrap Creek, which tested positive for E. coli in every sampling event. TC was detected frequently in groundwater (70% of samples) across the ASA. Generalized additive mixed models (GAMMs) yielded valuable insights into relationships between TC or nitrate and a range of spatial, temporal, and hydrologic explanatory variables. Increased TC values over the wetter fall and winter period were most strongly related to groundwater temperatures and levels, while precipitation and well location were weaker (but still significant) predictors. In contrast, the moderate temporal variability in nitrate concentrations was not significantly related to hydrologic forcings. TC was relatively widespread across the ASA and spatial patterns could not be attributed solely to surface water connectivity. Varying nitrate concentrations across the ASA were significantly related to both well location and depth, likely due to spatially variable nitrogen loading and localized geochemical attenuation (i.e., denitrification). Vulnerability of the ASA to bacteria was clearly linked to hydrologic conditions, and was distinct from nitrate, such that a groundwater management strategy specifically for bacterial contaminants is warranted. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Levy, Yehuda; Shapira, Roi H.; Chefetz, Benny; Kurtzman, Daniel
2017-07-01
Contamination of groundwater resources by nitrate leaching under agricultural land is probably the most troublesome agriculture-related water contamination worldwide. Contaminated areas often show large spatial variability of nitrate concentration in wells. In this study, we tried to assess whether this spatial variability can be characterized on the basis of land use and standard agricultural practices. Deep soil sampling (10 m) was used to calibrate vertical flow and nitrogen-transport numerical models of the unsaturated zone under different agricultural land uses. Vegetable fields (potato and strawberry) and deciduous orchards (persimmon) in the Sharon area overlying the coastal aquifer of Israel were examined. Average nitrate-nitrogen fluxes below vegetable fields were 210-290 kg ha-1 yr-1 and under deciduous orchards were 110-140 kg ha-1 yr-1. The output water and nitrate-nitrogen fluxes of the unsaturated-zone models were used as input data for a three-dimensional flow and nitrate-transport model in the aquifer under an area of 13.3 km2 of agricultural land. The area was subdivided into four agricultural land uses: vegetables, deciduous orchards, citrus orchards, and non-cultivated. Fluxes of water and nitrate-nitrogen below citrus orchards were taken from a previous study in the area. The groundwater flow model was calibrated to well heads by changing the hydraulic conductivity. The nitrate-transport model, which was fed by the above-mentioned models of the unsaturated zone, succeeded in reconstructing the average nitrate concentration in the wells. However, this transport model failed in calculating the high concentrations in the most contaminated wells and the large spatial variability of nitrate concentrations in the aquifer. To reconstruct the spatial variability and enable predictions, nitrate fluxes from the unsaturated zone were multiplied by local multipliers. This action was rationalized by the fact that the high concentrations in some wells cannot be explained by regular agricultural activity and are probably due to malfunctions in the well area. Prediction of the nitrate concentration 40 years in the future with three nitrogen-fertilization scenarios showed that (i) under the business as usual
fertilization scenario, the nitrate concentration (as NO3-) will increase on average by 19 mg L-1; (ii) under a scenario of 25 % reduction of nitrogen fertilization, the nitrate concentration in the aquifer will stabilize; (iii) with a 50 % reduction of nitrogen fertilization, the nitrate concentration will decrease on average by 18 mg L-1.
Enhanced removal of nitrate from water using surface modification of adsorbents--a review.
Loganathan, Paripurnanda; Vigneswaran, Saravanamuthu; Kandasamy, Jaya
2013-12-15
Elevated concentration of nitrate results in eutrophication of natural water bodies affecting the aquatic environment and reduces the quality of drinking water. This in turn causes harm to people's health, especially that of infants and livestock. Adsorbents with the high capacity to selectively adsorb nitrate are required to effectively remove nitrate from water. Surface modifications of adsorbents have been reported to enhance their adsorption of nitrate. The major techniques of surface modification are: protonation, impregnation of metals and metal oxides, grafting of amine groups, organic compounds including surfactant coating of aluminosilicate minerals, and heat treatment. This paper reviews current information on these techniques, compares the enhanced nitrate adsorption capacities achieved by the modifications, and the mechanisms of adsorption, and presents advantages and drawbacks of the techniques. Most studies on this subject have been conducted in batch experiments. These studies need to include continuous mode column trials which have more relevance to real operating systems and pilot-plant trials. Reusability of adsorbents is important for economic reasons and practical treatment applications. However, only limited information is available on the regeneration of surface modified adsorbents. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nelson, Sheldon
2013-04-01
Nitrate Remediation of Soil and Groundwater Using Phytoremediation: Transfer of Nitrogen Containing Compounds from the Subsurface to Surface Vegetation Sheldon Nelson Chevron Energy Technology Company 6001 Bollinger Canyon Road San Ramon, California 94583 snne@chevron.com The basic concept of using a plant-based remedial approach (phytoremediation) for nitrogen containing compounds is the incorporation and transformation of the inorganic nitrogen from the soil and/or groundwater (nitrate, ammonium) into plant biomass, thereby removing the constituent from the subsurface. There is a general preference in many plants for the ammonium nitrogen form during the early growth stage, with the uptake and accumulation of nitrate often increasing as the plant matures. The synthesis process refers to the variety of biochemical mechanisms that use ammonium or nitrate compounds to primarily form plant proteins, and to a lesser extent other nitrogen containing organic compounds. The shallow soil at the former warehouse facility test site is impacted primarily by elevated concentrations of nitrate, with a minimal presence of ammonium. Dissolved nitrate (NO3-) is the primary dissolved nitrogen compound in on-site groundwater, historically reaching concentrations of 1000 mg/L. The initial phases of the project consisted of the installation of approximately 1750 trees, planted in 10-foot centers in the areas impacted by nitrate and ammonia in the shallow soil and groundwater. As of the most recent groundwater analytical data, dissolved nitrate reductions of 40% to 96% have been observed in monitor wells located both within, and immediately downgradient of the planted area. In summary, an evaluation of time series groundwater analytical data from the initial planted groves suggests that the trees are an effective means of transfering nitrogen compounds from the subsurface to overlying vegetation. The mechanism of concentration reduction may be the uptake of residual nitrate from the vadose zone, the direct uptake of dissolved constituent from the upper portion of the saturated zone/capillary fringe, or a combination of these two processes.
NASA Astrophysics Data System (ADS)
Gantt, B.; Kelly, J. T.; Bash, J. O.
2015-11-01
Sea spray aerosols (SSAs) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. Model evaluations of SSA emissions have mainly focused on the global scale, but regional-scale evaluations are also important due to the localized impact of SSAs on atmospheric chemistry near the coast. In this study, SSA emissions in the Community Multiscale Air Quality (CMAQ) model were updated to enhance the fine-mode size distribution, include sea surface temperature (SST) dependency, and reduce surf-enhanced emissions. Predictions from the updated CMAQ model and those of the previous release version, CMAQv5.0.2, were evaluated using several coastal and national observational data sets in the continental US. The updated emissions generally reduced model underestimates of sodium, chloride, and nitrate surface concentrations for coastal sites in the Bay Regional Atmospheric Chemistry Experiment (BRACE) near Tampa, Florida. Including SST dependency to the SSA emission parameterization led to increased sodium concentrations in the southeastern US and decreased concentrations along parts of the Pacific coast and northeastern US. The influence of sodium on the gas-particle partitioning of nitrate resulted in higher nitrate particle concentrations in many coastal urban areas due to increased condensation of nitric acid in the updated simulations, potentially affecting the predicted nitrogen deposition in sensitive ecosystems. Application of the updated SSA emissions to the California Research at the Nexus of Air Quality and Climate Change (CalNex) study period resulted in a modest improvement in the predicted surface concentration of sodium and nitrate at several central and southern California coastal sites. This update of SSA emissions enabled a more realistic simulation of the atmospheric chemistry in coastal environments where marine air mixes with urban pollution.
Hall, D.W.; Lietman, P.L.; Koerkle, E.J.
1997-01-01
The U.S. Geological Survey and the Pennsylvania Department of Environmental Protection conducted a study from 1984 to 1990 to determine theeffects of the implementation and practice of nutrient management [an agricultural best-management practice (BMP)] on the quality of surface runoff and ground water at a 55-acre crop and livestock farm in carbonate terrain nearEphrata, Pa. Implementation of nutrient management at Field-Site 2 resulted in application decreases of 33 percent for nitrogen and 29 percent for phosphorus. There wereno significant changes in nitrogen or phosphorusloads for a given amount of runoff from the pre-BMP to the post-BMP periods. However, less than 2 percent of the applied nutrients weredischarged with runoff throughout the study period.After the implementation of nutrient management, statistically significant decreases in concentrations of nitrate in ground-water samples occurred at threeof the four wells monitored throughout the pre- and post-BMP periods. The largest decreases in nitrate concentrations occurred at wells where samples hadthe largest nitrate concentrations prior to nutrient management. Changes in nitrogen applications to the contributing areas of five wells were correlated with nitrate concentrations of the well water. The correlations between the timing and amount of applied nitrogen and changes in ground-water quality met the four conditions that are characteristic of a cause-effect relation: an association, consistency, responsiveness, and a mechanism. Changes in ground-water nitrate concentrations lagged behind changes in loading of nitrogen fertilizers (primarily manure) by approximately 4 to 19 months.
McSwain, Kristen Bukowski; Young, Megan B.; Giorgino, Mary L.
2014-01-01
A preliminary assessment of nitrate sources was conducted in three creeks that feed nutrient impaired Falls and Jordan Lakes in the vicinity of Durham County, North Carolina, from July 2011 to June 2012. Cabin Branch, Ellerbe Creek, and Third Fork Creek were sampled monthly to determine if sources of nitrate in surface water could be identified on the basis of their stable isotopic compositions. Land use differs in the drainage basins of the investigated creeks—the predominant land use in Cabin Branch Basin is forest, and the Ellerbe and Third Fork Creek Basins are predominantly developed urban areas. Total nutrient concentrations were below 1 milligram per liter (mg/L). All measured nitrate plus nitrite concentrations were below the North Carolina standard of 10 mg/L as nitrogen with the highest concentration of 0.363 mg/L measured in Third Fork Creek. Concentrations of ammonia were generally less than 0.1 mg/L as nitrogen in all creek samples. More than 50 percent of the total nitrogen measured in the creeks was in the form of organic nitrogen. Total phosphorus and orthophosphate concentrations in all samples were generally less than 0.2 mg/L as phosphorus. The isotopic composition of surface water (δ2HH20 and δ18OH2O) is similar to that of modern-day precipitation. During July and August 2011 and May and June 2012, surface-water samples displayed a seasonal difference in isotopic composition, indicating fractionation of isotopes as a result of evaporation and, potentially, mixing with local and regional groundwater. The dominant source of nitrate to Cabin Branch, Ellerbe Creek, and Third Fork Creek was the nitrification of soil nitrogen. Two stormflow samples in Ellerbe Creek and Third Fork Creek had nitrate sources that were a mixture of the nitrification of soil nitrogen and an atmospheric source that had bypassed some soil contact through impermeable surfaces within the drainage basin. No influence of a septic or wastewater source was found in Cabin Branch. Results from this study suggest that it is possible to distinguish sources of nitrogen and biogeochemical processes on nitrate using stable isotopes of nitrogen and oxygen in small creeks of Durham County, North Carolina.
NASA Astrophysics Data System (ADS)
Shrestha, R. R.; Rode, M.
2008-12-01
Concentration of reactive chemicals has different chemical signatures in baseflow and surface runoff. Previous studies on nitrate export from a catchment indicate that the transport processes are driven by subsurface flow. Therefore nitrate signature can be used for understanding the event and pre-event contributions to streamflow and surface-subsurface flow interactions. The study uses flow and nitrate concentration time series data for understanding the relationship between these two variables. Unsupervised artificial neural network based learning method called self organizing map is used for the identification of clusters in the datasets. Based on the cluster results, five different pattern in the datasets are identified which correspond to (i) baseflow, (ii) subsurface flow increase, (iii) surface runoff increase, (iv) surface runoff recession, and (v) subsurface flow decrease regions. The cluster results in combination with a hydrologic model are used for discharge separation. For this purpose, a multi-objective optimization tool NSGA-II is used, where violation of cluster results is used as one of the objective functions. The results show that the use of cluster results as supplementary information for the calibration of a hydrologic model gives a plausible simulation of subsurface flow as well total runoff at the catchment outlet. The study is undertaken using data from the Weida catchment in the North-Eastern Germany, which is a sub-catchment of the Weisse Elster river in the Elbe river basin.
Legacy Nitrate Impacts on Groundwater and Streams
NASA Astrophysics Data System (ADS)
Tesoriero, A. J.; Juckem, P. F.; Miller, M. P.
2017-12-01
Decades of recharge of high-nitrate groundwater have created a legacy—a mass of high-nitrate groundwater—that has implications for future nitrate concentrations in groundwater and in streams. In the United States, inorganic nitrogen fertilizer applications to the land surface have increased ten-fold since 1950, resulting in sharp increases in nitrate concentrations in recharging groundwater, which pose a risk to deeper groundwater and streams. This study assesses the factors that control time lags and eventual concentrations of legacy nitrate in groundwater and streams. Results from the USGS National Water-Quality Assessment Project are presented which elucidate nitrate trends in recharging groundwater, delineate redox zones and assess groundwater and stream vulnerability to legacy nitrate sources on a regional scale. This study evaluated trends and transformations of agricultural chemicals based on groundwater age and water chemistry data along flow paths from recharge areas to streams at 20 study sites across the United States. Median nitrate recharge concentrations in these agricultural areas have increased markedly over the last 50 years, from 4 to 7.5 mg N/L. The effect that nitrate accumulation in shallow aquifers will have on drinking water quality and stream ecosystems is dependent on the redox zones encountered along flow paths and on the age distribution of nitrate discharging to supply wells and streams. Delineating redox zones on a regional scale is complicated by the spatial variability of reaction rates. To overcome this limitation, we applied logistic regression and machine learning techniques to predict the probability of a specific redox condition in groundwater in the Chesapeake Bay watershed and the Fox-Wolf-Peshtigo study area in Wisconsin. By relating redox-active constituent concentrations in groundwater samples to indicators of residence time and/or electron donor availability, we were able to delineate redox zones on a regional scale - an important indicator of groundwater vulnerability and the vulnerability of streams to legacy nitrate sources.
A caveat regarding diatom-inferred nitrogen concentrations in oligotrophic lakes
Arnett, Heather A.; Saros, Jasmine E.; Mast, M. Alisa
2012-01-01
Atmospheric deposition of reactive nitrogen (Nr) has enriched oligotrophic lakes with nitrogen (N) in many regions of the world and elicited dramatic changes in diatom community structure. The lakewater concentrations of nitrate that cause these community changes remain unclear, raising interest in the development of diatom-based transfer functions to infer nitrate. We developed a diatom calibration set using surface sediment samples from 46 high-elevation lakes across the Rocky Mountains of the western US, a region spanning an N deposition gradient from very low to moderate levels (<1 to 3.2 kg Nr ha−1 year−1 in wet deposition). Out of the fourteen measured environmental variables for these 46 lakes, ordination analysis identified that nitrate, specific conductance, total phosphorus, and hypolimnetic water temperature were related to diatom distributions. A transfer function was developed for nitrate and applied to a sedimentary diatom profile from Heart Lake in the central Rockies. The model coefficient of determination (bootstrapping validation) of 0.61 suggested potential for diatom-inferred reconstructions of lakewater nitrate concentrations over time, but a comparison of observed versus diatom-inferred nitrate values revealed the poor performance of this model at low nitrate concentrations. Resource physiology experiments revealed that nitrogen requirements of two key taxa were opposite to nitrate optima defined in the transfer function. Our data set reveals two underlying ecological constraints that impede the development of nitrate transfer functions in oligotrophic lakes: (1) even in lakes with nitrate concentrations below quantification (<1 μg L−1), diatom assemblages were already dominated by species indicative of moderate N enrichment; (2) N-limited oligotrophic lakes switch to P limitation after receiving only modest inputs of reactive N, shifting the controls on diatom species changes along the length of the nitrate gradient. These constraints suggest that quantitative inferences of nitrate from diatom assemblages will likely require experimental approaches.
Wieben, Christine M.; Baker, Ronald J.; Nicholson, Robert S.
2013-01-01
Five streams in the Barnegat Bay-Little Egg Harbor (BB-LEH) watershed in southern New Jersey were sampled for nutrient concentrations and stable isotope composition under base-flow and stormflow conditions, and during the growing and nongrowing seasons, to help quantify and identify sources of nutrient loading. Samples were analyzed for concentrations of total nitrogen, ammonia, nitrate plus nitrite, organic nitrogen, total phosphorus, and orthophosphate, and for nitrogen and oxygen stable isotope ratios. Concentrations of total nitrogen in the five streams appear to be related to land use, such that streams in subbasins characterized by extensive urban development (and historical agricultural land use)—North Branch Metedeconk and Toms Rivers—exhibited the highest total nitrogen concentrations (0.84–1.36 milligrams per liter (mg/L) in base flow). Base-flow total nitrogen concentrations in these two streams were dominated by nitrate; nitrate concentrations decreased during storm events as a result of dilution by storm runoff. The two streams in subbasins with the least development—Cedar Creek and Westecunk Creek—exhibited the lowest total nitrogen concentrations (0.16–0.26 mg/L in base flow), with organic nitrogen as the dominant species in both base flow and stormflow. A large proportion of these subbasins lies within forested parts of the Pinelands Area, indicating the likelihood of natural inputs of organic nitrogen to the streams that increase during periods of storm runoff. Base-flow total nitrogen concentrations in Mill Creek, in a moderately developed basin, were 0.43 to 0.62 mg/L and were dominated by ammonia, likely associated with leachate from a landfill located upstream. Total phosphorus and orthophosphate were not found at detectable concentrations in most of the surface-water samples, with the exception of samples collected from the North Branch Metedeconk River, where concentrations ranged from 0.02 to 0.09 mg/L for total phosphorus and 0.008 to 0.011 mg/L for orthophosphate. Measurements of nitrogen and oxygen stable isotope ratios of nitrate in surface-water samples revealed that a mixture of multiple subsurface sources, which may include some combination of animal and septic waste, soil nitrogen, and commercial fertilizers, likely contribute to the base-flow nitrogen load. The results also indicate that atmospheric deposition is not a predominant source of nitrogen transported to the BB-LEH estuary from the watershed, although the contribution of nitrate from the atmosphere increases during stormflow. Atmospheric deposition of nitrate has a greater influence in the less developed subbasins within the BB-LEH watershed, likely because few other major sources of nitrogen (animal and septic waste, fertilizers) are present in the less developed subbasins. Atmospheric sources appear to contribute proportionally less of the overall nitrate as development increases within the BB-LEH watershed. Groundwater samples collected from five wells located within the BB-LEH watershed and screened in the unconfined Kirkwood-Cohansey aquifer system were analyzed for nutrient and stable isotope composition. Concentrations of nitrate ranged from not detected to 3.63 mg/L, with the higher concentrations occurring in the highly developed northern portion of the watershed, indicating the likelihood of anthropogenic sources of nitrogen. Isotope data for the two wells with the highest nitrate concentrations are more consistent with fertilizer sources than with animal or septic waste. Total phosphorus was not detected in any of the wells sampled, and orthophosphate was either not detected or measured at very low concentrations (0.005–0.009 mg/L) in each of the wells sampled.
Effects of mineral dust on global atmospheric nitrate concentrations
NASA Astrophysics Data System (ADS)
Karydis, V. A.; Tsimpidi, A. P.; Pozzer, A.; Astitha, M.; Lelieveld, J.
2016-02-01
This study assesses the chemical composition and global aerosol load of the major inorganic aerosol components, focusing on mineral dust and aerosol nitrate. The mineral dust aerosol components (i.e., Ca2+, Mg2+, K+, Na+) and their emissions are included in the ECHAM5/MESSy Atmospheric Chemistry model (EMAC). Gas/aerosol partitioning is simulated using the ISORROPIA-II thermodynamic equilibrium model that considers K+, Ca2+, Mg2+, NH4+, Na+, SO42-, NO3-, Cl-, and H2O aerosol components. Emissions of mineral dust are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide. Presence of metallic ions can substantially affect the nitrate partitioning into the aerosol phase due to thermodynamic interactions. The model simulates highest fine aerosol nitrate concentration over urban and industrialized areas (1-3 µg m-3), while coarse aerosol nitrate is highest close to deserts (1-4 µg m-3). The influence of mineral dust on nitrate formation extends across southern Europe, western USA, and northeastern China. The tropospheric burden of aerosol nitrate increases by 44 % when considering interactions of nitrate with mineral dust. The calculated global average nitrate aerosol concentration near the surface increases by 36 %, while the coarse- and fine-mode concentrations of nitrate increase by 53 and 21 %, respectively. Other inorganic aerosol components are affected by reactive dust components as well (e.g., the tropospheric burden of chloride increases by 9 %, ammonium decreases by 41 %, and sulfate increases by 7 %). Sensitivity tests show that nitrate aerosol is most sensitive to the chemical composition of the emitted mineral dust, followed by the soil size distribution of dust particles, the magnitude of the mineral dust emissions, and the aerosol state assumption.
Stogner, Sr., Robert W.
2001-01-01
The first documented analysis of nitrate concentrations for ground water in the unconfined aquifer was done in 1936. This valleywide investigation indicated that nitrate concentrations were 0.3 milligram per liter or less in water-quality samples from 38 wells completed in the unconfined aquifer. A valleywide study conducted in the late 1940's documented the first occurrences of nitrate concentrations greater than 3 mg/L. Up to this time, soil fertility was maintained primarily through the use of cattle and (or) sheep manure and crop rotation. Subsequent valleywide studies have documented several occurrences of elevated nitrate concentrations in the unconfined aquifer in a localized, intensively cultivated area north of the Rio Grande. The nitrate concentrations in water appear to have changed in response to increasing use of commercial inorganic fertilizers after the mid-1940's. A 1993 valleywide study evaluated the potential health risk associated with elevated nitrate concentrations in domestic water supplies. Water-quality samples from 14 percent of the wells sampled contained nitrate concentrations greater than 10 milligrams per liter. Most of the samples that contained concentrations greater than 10 milligrams per liter were collected from wells located in the intensively cultivated area north of the Rio Grande. During the 1990's, several local, small-scale, and field-scale investigations were conducted in the intensively cultivated area north of the Rio Grande. These studies identified spatial and temporal variations in nitrate concentration and evaluated the effectiveness of using shallow monitoring wells to determine nitrate leaching. Variations in nitrate concentration were attributed, in part, to seasonal recharge of the aquifer by surface water with low nitrate concentrations. Shallow monitoring wells were effective for determining the amount of nitrate leached, but because of the amount of residual nitrate in the soil from previous seasons, were ineffective in evaluating variations in the amount of nitrate leaching associated with differences in application rates. It was concluded that irrigation practices have the greatest effect on leaching of nitrate to the aquifer. Management tools, such as irrigation scheduling, center-pivot sprinkler systems, soil and ground-water nitrogen credits, and cultivation of cover and winter crops, are being used to help maintain crop quality and yields while minimizing the potential of leaching and reducing residual nitrogen left in the soil. Review of available data from previous studies indicates that most of the sampled wells with elevated nitrate concentrations are located in the intensively cultivated area north of the Rio Grande. This area represents about 10 percent of the San Luis Valley and approximately 35 percent of the crop and pasture land in the valley. The area where nitrate concentrations exceed the U.S. Environmental Protection Agency drinking water maximum contaminant level represents about 150 square miles or 5 percent of the valley. Aquifer vulnerability to and contamination by pesticides was not evaluated until the 1990's. Risk analyses indicated that selected pesticides can pose a contamination threat to an unconfined aquifer in areas consisting primarily of sandy loam soil; sandy loam soils are common in the San Luis Valley. Water-quality samples collected from some wells during 1990 and 1993 indicated trace- to low-level pesticide contamination. The occurrence of pesticides was infrequent and isolated.
NASA Astrophysics Data System (ADS)
Hama-Aziz, Zanist; Hiscock, Kevin; Adams, Christopher; Reid, Brian
2016-04-01
Atmospheric nitrous oxide concentrations are increasing by 0.3% annually and a major source of this greenhouse gas is agriculture. Indirect emissions of nitrous oxide (e.g. from groundwater and surface water) account for about quarter of total nitrous oxide emissions. However, these indirect emissions are subject to uncertainty, mainly due to the range in reported emission factors. It's hypothesised in this study that cover cropping and implementing reduced (direct drill) cultivation in intensive arable systems will reduce dissolved nitrate concentration and subsequently indirect nitrous oxide emissions. To test the hypothesis, seven fields with a total area of 102 ha in the Wensum catchment in eastern England have been chosen for experimentation together with two fields (41 ha) under conventional cultivation (deep inversion ploughing) for comparison. Water samples from field under-drainage have been collected for nitrate and nitrous oxide measurement on a weekly basis from April 2013 for two years from both cultivation areas. A purge and trap preparation line connected to a Shimadzu GC-8A gas chromatograph fitted with an electron capture detector was used for dissolved nitrous oxide analysis. Results revealed that with an oilseed radish cover crop present, the mean concentration of nitrate, which is the predominant form of N, was significantly depleted from 13.9 mg N L-1 to 2.5 mg N L-1. However, slightly higher mean nitrous oxide concentrations under the cover crop of 2.61 μg N L-1 compared to bare fields of 2.23 μg N L-1 were observed. Different inversion intensity of soil tended to have no effect on nitrous oxide and nitrate concentrations. The predominant production mechanism for nitrous oxide was nitrification process and the significant reduction of nitrate was due to plant uptake rather than denitrification. It is concluded that although cover cropping might cause a slight increase of indirect nitrous oxide emission, it can be a highly effective mitigation measure in an agricultural area where high nitrate losses from fields into groundwater or surface water is excessively occurring.
Ransom, Katherine M.; Nolan, Bernard T.; Traum, Jonathan A.; Faunt, Claudia; Bell, Andrew M.; Gronberg, Jo Ann M.; Wheeler, David C.; Zamora, Celia; Jurgens, Bryant; Schwarz, Gregory E.; Belitz, Kenneth; Eberts, Sandra; Kourakos, George; Harter, Thomas
2017-01-01
Intense demand for water in the Central Valley of California and related increases in groundwater nitrate concentration threaten the sustainability of the groundwater resource. To assess contamination risk in the region, we developed a hybrid, non-linear, machine learning model within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500 m below ground surface. A database of 145 predictor variables representing well characteristics, historical and current field and landscape-scale nitrogen mass balances, historical and current land use, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The boosted regression tree (BRT) method was used to screen and rank variables to predict nitrate concentration at the depths of domestic and public well supplies. The novel approach included as predictor variables outputs from existing physically based models of the Central Valley. The top five most important predictor variables included two oxidation/reduction variables (probability of manganese concentration to exceed 50 ppb and probability of dissolved oxygen concentration to be below 0.5 ppm), field-scale adjusted unsaturated zone nitrogen input for the 1975 time period, average difference between precipitation and evapotranspiration during the years 1971–2000, and 1992 total landscape nitrogen input. Twenty-five variables were selected for the final model for log-transformed nitrate. In general, increasing probability of anoxic conditions and increasing precipitation relative to potential evapotranspiration had a corresponding decrease in nitrate concentration predictions. Conversely, increasing 1975 unsaturated zone nitrogen leaching flux and 1992 total landscape nitrogen input had an increasing relative impact on nitrate predictions. Three-dimensional visualization indicates that nitrate predictions depend on the probability of anoxic conditions and other factors, and that nitrate predictions generally decreased with increasing groundwater age.
Pfenning, K.S.; McMahon, P.B.
1997-01-01
A study conducted in 1994 as part of the US Geological Survey's National Water-Quality Assessment Program, South Platte River Basin investigation, examined the effect of certain environmental factors on potential denitrification rates in nitrate-rich riverbed sediments. The acetylene block technique was used to measure nitrous oxide (N2O) production rates in laboratory incubations of riverbed sediments to evaluate the effect of varying nitrate concentrations, organic carbon concentrations and type, and water temperature on potential denitrification rates. Sediment incubations amended with nitrate, at concentrations ranging from 357 to 2142 ??mol l-1 (as measured in the field), produced no significant increase (P > 0.05) in N2O production rates, indicating that the denitrification potential in these sediments was not nitrate limited. In contrast, incubations amended with acetate as a source of organic carbon, at concentrations ranging from 0 to 624 ??mol l-1, produced significant increases (P < 0.05) in N2O production rates with increased organic carbon concentration, indicating that the denitrification potential in these sediments was organic carbon limited. Furthermore, N2O production rates also were affected by the type of organic carbon available as an electron donor. Acetate and surface-water-derived fulvic acid supported higher N2O production rates than groundwater-derived fulvic acid or sedimentary organic carbon. Lowering incubation temperatures from 22 to 4??C resulted in about a 77% decrease in the N2O production rates. These results help to explain findings from previous studies indicating that only 15-30% of nitrate in groundwater was denitrified before discharging to the South Platte River and that nitrate concentrations in the river generally were higher in winter than in summer.
Tesoriero, A.J.; Duff, J.H.; Wolock, D.M.; Spahr, N.E.; Almendinger, J.E.
2009-01-01
Understanding nutrient pathways to streams will improve nutrient management strategies and estimates of the time lag between when changes in land use practices occur and when water quality effects that result from these changes are observed. Nitrate and orthophosphate (OP) concentrations in several environmental compartments were examined in watersheds having a range of base flow index (BFI) values across the continental United States to determine the dominant pathways for water and nutrient inputs to streams. Estimates of the proportion of stream nitrate that was derived from groundwater increased as BFI increased. Nitrate concentration gradients between groundwater and surface water further supported the groundwater source of nitrate in these high BFI streams. However, nitrate concentrations in stream-bed pore water in all settings were typically lower than stream or upland groundwater concentrations, suggesting that nitrate discharge to streams was not uniform through the bed. Rather, preferential pathways (e.g., springs, seeps) may allow high nitrate groundwater to bypass sites of high biogeochemical transformation. Rapid pathway compartments (e.g., overland flow, tile drains) had OP concentrations that were typically higher than in streams and were important OP conveyers in most of these watersheds. In contrast to nitrate, the proportion of stream OP that is derived from ground water did not systematically increase as BFI increased. While typically not the dominant source of OP, groundwater discharge was an important pathway of OP transport to streams when BFI values were very high and when geochemical conditions favored OP mobility in groundwater. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Nitrate consumption in sediments of the German Bight (North Sea)
NASA Astrophysics Data System (ADS)
Neumann, Andreas; van Beusekom, Justus E. E.; Holtappels, Moritz; Emeis, Kay-Christian
2017-09-01
Denitrification on continental margins and in coastal sediments is a major sink of reactive N in the present nitrogen cycle and a major ecosystem service of eutrophied coastal waters. We analyzed the nitrate removal in surface sediments of the Elbe estuary, Wadden Sea, and adjacent German Bight (SE North Sea) during two seasons (spring and summer) along a eutrophication gradient ranging from a high riverine nitrate concentrations at the Elbe Estuary to offshore areas with low nitrate concentrations. The gradient encompassed the full range of sediment types and organic carbon concentrations of the southern North Sea. Based on nitrate penetration depth and concentration gradient in the porewater we estimated benthic nitrate consumption rates assuming either diffusive transport in cohesive sediments or advective transport in permeable sediments. For the latter we derived a mechanistic model of porewater flow. During the peak nitrate discharge of the river Elbe in March, the highest rates of diffusive nitrate uptake were observed in muddy sediments (up to 2.8 mmol m- 2 d- 1). The highest advective uptake rate in that period was observed in permeable sediment and was tenfold higher (up to 32 mmol m- 2 d- 1). The intensity of both diffusive and advective nitrate consumption dropped with the nitrate availability and thus decreased from the Elbe estuary towards offshore stations, and were further decreased during late summer (minimum nitrate discharge) compared to late winter (maximum nitrate discharge). In summary, our rate measurements indicate that the permeable sediment accounts for up to 90% of the total benthic reactive nitrogen consumption in the study area due to the high efficiency of advective nitrate transport into permeable sediment. Extrapolating the averaged nitrate consumption of different sediment classes to the areas of Elbe Estuary, Wadden Sea and eastern German Bight amounts to an N-loss of 3.1 ∗ 106 mol N d- 1 from impermeable, diffusion-controlled sediment, and 5.2 ∗ 107 mol N d- 1 from permeable sediment with porewater advection.
Environmental land use conflicts in catchments: A major cause of amplified nitrate in river water.
Pacheco, F A L; Sanches Fernandes, L F
2016-04-01
Environmental land use conflicts are uses of the land that ignore soil capability. In this study, environmental land use conflicts were investigated in mainland Portugal, using Partial Least Squares (PLS) regression combined with GIS modeling and a group of 85 agricultural watersheds (with >50% occupation by agriculture) as work sample. The results indicate a dominance of conflicts in a region where vineyards systematically invaded steep hillsides (the River Douro basin), where forests would be the most appropriate use. As a consequence of the conflicts, nitrate concentrations in rivers and lakes from these areas have increased, sometimes beyond the legal limit of 50mg/L imposed by the European and Portuguese laws. Excessive nitrate concentrations were also observed along the Atlantic coast of continental Portugal, but associated to a combination of other factors: large population densities, and incomplete coverage by sewage systems and inadequate functioning of wastewater treatment plants. Before this study, environmental land use conflicts were never recognized as possible boost of nitrate concentrations in surface water. Bearing in mind the consequences of drinking water nitrate for human health, a number of land use change scenarios were investigated to forecast their impact on freshwater nitrate concentrations. It was seen that an aggravation of the conflicts would duplicate the number of watersheds with maximum nitrate concentrations above 50mg/L (from 11 to 20 watersheds), while the elimination of the conflicts would greatly reduce that number (to 3 watersheds). Copyright © 2016 Elsevier B.V. All rights reserved.
Mian, Ishaq A; Begum, Shaheen; Riaz, Muhammad; Ridealgh, Mike; McClean, Colin J; Cresser, Malcolm S
2010-01-15
Long-term spatial and temporal variations in nitrate-N concentrations along the River Derwent have been examined using Environment Agency data to investigate the relative importance of impacts of atmospheric N deposition, land use, and changes in management. Where moorland and rough grazing dominate upstream of Forge Valley and Malton, over the 20 years since 1988 mean nitrate-N concentrations were initially increasing significantly, but are now levelling off, with peaks at ca. 4.5 mg Nl(-1). As expected in a catchment in a nitrate vulnerable zone (NVZ), more agricultural land use increases mean nitrate concentrations and the occurrence of distinct winter maxima, though the latter have become markedly less pronounced since 2001. It is suggested that this improvement is a combined effect of imposition of NVZ designation in the lower reaches in 2002, animal number declines associated with the Foot & Mouth outbreak in the region in 2001, and the impact of farmers' responses to increasing fertilizer prices and to beneficial pollutant mineral N inputs from the atmosphere. Minima in nitrate-N concentrations in summer have become much less pronounced over the past decade and are typically ca. 60% higher in concentration than a decade earlier. This probably is attributable to the effects of pollutant-N leaching to depths in soil below the rooting zone when near surface biotic uptake is low in winter. The resultant N mineralization in summer enhances summer nitrate leaching. The Derwent is a relatively clean river; however, its entire catchment was designated justifiably as a NVZ in January 2009, apparently based upon a projected 95 percentile nitrate-N concentration >11.29 mg l(-1) for 2010 based upon forward projection of data from 1990 to 2004 for Derwent Bridge. A survey of water quality in March 2009 showed that some agricultural areas are still making a significant contribution to the total nitrate level well downstream, at the point responsible for implementation of NVZ status. At 3 of the 29 sites sampled, nitrate concentration exceeded 60 mg l(-1). Copyright 2009 Elsevier B.V. All rights reserved.
Identifying the Source of High-Nitrate Ground Water Related to Artificial Recharge in a Desert Basin
NASA Astrophysics Data System (ADS)
Densmore, J. N.; Nishikawa, T.; Bohlke, J. K.; Martin, P.
2002-12-01
Ground water has been the sole source of water supply for the community of Yucca Valley in the Mojave Desert, California. Domestic wastewater from the community is treated using septic tanks. An imbalance between ground-water recharge and pumpage caused ground-water levels in the ground-water basin to decline by as much as 300 feet from the late 1940s through 1994. In response to this decline, the local water district, Hi-Desert Water District, began an artificial recharge program in February 1995 to replenish the ground water in the basin using imported surface water. The artificial recharge program resulted in water-level recovery of about 250 feet between February 1995 and December 2001; however, nitrate concentrations in some wells also increased from a background concentration of 10 mg/L as NO3 to more than the U.S. Environmental Protection Agency maximum contaminant level of 45 mg/L as NO3, limiting water use for some wells. The largest increase in nitrate concentrations occurred adjacent to the artificial recharge sites where the largest increase in water levels occurred even though the recharge water had low nitrate concentrations. The source of high nitrate concentrations observed in ground water during aquifer recovery was identified by compiling historical water-quality data; monitoring changes in water quality since artificial recharge began; and analyzing selected samples for major-ion chemistry, stable isotopes of H,O, and N, caffeine, and pharmaceuticals. The major-ions and H and O stable-isotope data indicate that ground-water samples that had the highest nitrate concentrations were mixtures of imported water and native ground water. Nitrate-to-chloride ratios, N isotopes and caffeine and pharmaceutical data indicate septic-tank seepage (septage) is the primary source of increases in nitrate concentration. The rapid rise in water levels entrained the large volume of high-nitrate septage stored in the unsaturated zone, resulting in the rapid increase in nitrate concentrations. Results of this study indicate that the potential for ground-water contamination should be evaluated before beginning an artificial recharge program in an area that uses septic tanks.
Long-term record of atmospheric and snow surface nitrate from Dome C (Central Antarctica)
NASA Astrophysics Data System (ADS)
Traversi, Rita; Becagli, Silvia; Brogioni, Marco; Caiazzo, Laura; Ciardini, Virginia; Giardi, Fabio; Legrand, Michel; Macelloni, Giovanni; Petkov, Boyan; Preunkert, Suzanne; Scarchilli, Claudio; Severi, Mirko; Vitale, Vito; Udisti, Roberto
2017-04-01
Nitrate is the end product of the oxidation of atmospheric nitrogen oxides and one of the most abundant ions present in polar ice and snow, mainly as nitric acid in present-climate conditions. Nitrate stratigraphies from snow and ice layers have the potential to provide records of past changes in atmospheric composition, including atmospheric NOx cycling and oxidative capacity, as well as past solar activity or major variations in Earth's magnetic field. Nevertheless, in order to exploit such a potential, chemical concentrations in the air, snow, firn and ice core need to be correlated. Hence, the knowledge of the link between atmosphere and snow composition at the time of deposition is basic to reconstruct past climate and past atmospheric chemical composition. The extent of such knowledge depends on whether the species of interest are gaseous or in the condensed phase, and if they are reversible and/or irreversibly deposited to snow. In order to provide a contribution to their air-to-snow exchange in the Antarctic plateau, as well as to the understanding of dominant sources and sinks of nitrate, we present here nitrate records in atmospheric aerosol and surface snow sampled at high resolution, all year-round, at Dome C along 9 years (November 2004 - November 2013). This represents the longest and most highly resolved record from continental Antarctica, where continuous and long-term atmosphere and snow samplings are particularly difficult due to the extreme meteorological conditions and, at the same time, need of extra-care in avoiding contamination due to the low level of ion concentrations. Results confirm, on a larger statistical data set with respect to previous observations, nitrate seasonal pattern with summer maxima both for aerosol and surface snow, in-phase with UV solar irradiance. Such a temporal pattern is likely a combination of nitrate sources and post-depositional processes that enhance during summer. Moreover, a case study of synoptic analysis for a major nitrate event showed the occurrence of a stratosphere-troposphere exchange in the sampled days. The sampling of both matrices carried out at high resolution at the same time allowed detecting a recurring lag, about one-month long, of summer maxima in snow with respect to aerosol. Such a temporal shift can be explained only by taking into account deposition and post-deposition processes taking place at the atmosphere-snow interface, including likely both a net uptake of gaseous nitric acid and a replenishment of the uppermost surface layers driven by a larger temperature gradient in summer. Such a possibility was tested in a preliminary way by a comparison with measurements of surface layers temperature carried out in 2012-13 time period. A comparison with nitrate concentration in the gas phase and total nitrate obtained from Dome C (2012-13) showed the major role of gaseous HNO3 to total nitrate budget hinting to the need of further investigation of the gas-to-particle conversion processes.
This paper addresses the general problem of estimating at arbitrary locations the value of an unobserved quantity that varies over space, such as ozone concentration in air or nitrate concentrations in surface groundwater, on the basis of approximate measurements of the quantity ...
Role of nitrite in the photochemical formation of radicals in the snow.
Jacobi, Hans-Werner; Kleffmann, Jörg; Villena, Guillermo; Wiesen, Peter; King, Martin; France, James; Anastasio, Cort; Staebler, Ralf
2014-01-01
Photochemical reactions in snow can have an important impact on the composition of the atmosphere over snow-covered areas as well as on the composition of the snow itself. One of the major photochemical processes is the photolysis of nitrate leading to the formation of volatile nitrogen compounds. We report nitrite concentrations determined together with nitrate and hydrogen peroxide in surface snow collected at the coastal site of Barrow, Alaska. The results demonstrate that nitrite likely plays a significant role as a precursor for reactive hydroxyl radicals as well as volatile nitrogen oxides in the snow. Pollution events leading to high concentrations of nitrous acid in the atmosphere contributed to an observed increase in nitrite in the surface snow layer during nighttime. Observed daytime nitrite concentrations are much higher than values predicted from steady-state concentrations based on photolysis of nitrate and nitrite indicating that we do not fully understand the production of nitrite and nitrous acid in snow. The discrepancy between observed and expected nitrite concentrations is probably due to a combination of factors, including an incomplete understanding of the reactive environment and chemical processes in snow, and a lack of consideration of the vertical structure of snow.
NASA Astrophysics Data System (ADS)
Liu, W.; Youssef, M.; Birgand, F.; Chescheir, G. M.; Maxwell, B.; Tian, S.
2017-12-01
Agricultural drainage is a practice used to artificially enhance drainage characteristics of naturally poorly drained soils via subsurface drain tubing or open-ditch systems. Approximately 25% of the U.S. agricultural land requires improved drainage for economic crop production. However, drainage increases the transport of dissolved agricultural chemicals, particularly nitrates to downstream surface waters. Nutrient export from artificially drained agricultural landscapes has been identified as the leading source of elevated nutrient levels in major surface water bodies in the U.S. Controlled drainage has long been practiced to reduce nitrogen export from agricultural fields to downstream receiving waters. It has been hypothesized that controlled drainage reduces nitrogen losses by promoting denitrification, reducing drainage outflow from the field, and increasing plant uptake. The documented performance of the practice was widely variable as it depends on several site-specific factors. The goal of this research was to utilize high frequency measurements to investigate the effect of agricultural drainage and related management practices on nitrate fate and transport for an artificially drained agricultural field in eastern North Carolina. We deployed a field spectrophotometer to measure nitrate concentration every 45 minutes and measured drainage flow rate using a V-notch weir every 15 minutes. Furthermore, we measured groundwater level, precipitation, irrigation amount, temperature to characterize antecedent conditions for each event. Nitrate concentration-drainage flow (C-Q) relationships generated from the high frequency measurements illustrated anti-clockwise hysteresis loops and nitrate flushing mechanism in response to most precipitation and irrigation events. Statistical evaluation will be carried out for the C-Q relationships. The results of our analysis, combined with numerical modeling, will provide a better understanding of hydrological and biogeochemical processes controlling the fate and transport of nitrate in drained agricultural landscapes.
Akbariyeh, Simin; Bartelt-Hunt, Shannon; Snow, Daniel; Li, Xu; Tang, Zhenghong; Li, Yusong
2018-04-01
Contamination of groundwater from nitrogen fertilizers in agricultural lands is an important environmental and water quality management issue. It is well recognized that in agriculturally intensive areas, fertilizers and pesticides may leach through the vadose zone and eventually reach groundwater. While numerical models are commonly used to simulate fate and transport of agricultural contaminants, few models have considered a controlled field work to investigate the influence of soil heterogeneity and groundwater flow on nitrate-N distribution in both root zone and deep vadose zone. In this work, a numerical model was developed to simulate nitrate-N transport and transformation beneath a center pivot-irrigated corn field on Nebraska Management System Evaluation area over a three-year period. The model was based on a realistic three-dimensional sediment lithology, as well as carefully controlled irrigation and fertilizer application plans. In parallel, a homogeneous soil domain, containing the major sediment type of the site (i.e. sandy loam), was developed to conduct the same water flow and nitrate-N leaching simulations. Simulated nitrate-N concentrations were compared with the monitored nitrate-N concentrations in 10 multi-level sampling wells over a three-year period. Although soil heterogeneity was mainly observed from top soil to 3 m below the surface, heterogeneity controlled the spatial distribution of nitrate-N concentration. Soil heterogeneity, however, has minimal impact on the total mass of nitrate-N in the domain. In the deeper saturated zone, short-term variations of nitrate-N concentration correlated with the groundwater level fluctuations. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Akbariyeh, Simin; Bartelt-Hunt, Shannon; Snow, Daniel; Li, Xu; Tang, Zhenghong; Li, Yusong
2018-04-01
Contamination of groundwater from nitrogen fertilizers in agricultural lands is an important environmental and water quality management issue. It is well recognized that in agriculturally intensive areas, fertilizers and pesticides may leach through the vadose zone and eventually reach groundwater. While numerical models are commonly used to simulate fate and transport of agricultural contaminants, few models have considered a controlled field work to investigate the influence of soil heterogeneity and groundwater flow on nitrate-N distribution in both root zone and deep vadose zone. In this work, a numerical model was developed to simulate nitrate-N transport and transformation beneath a center pivot-irrigated corn field on Nebraska Management System Evaluation area over a three-year period. The model was based on a realistic three-dimensional sediment lithology, as well as carefully controlled irrigation and fertilizer application plans. In parallel, a homogeneous soil domain, containing the major sediment type of the site (i.e. sandy loam), was developed to conduct the same water flow and nitrate-N leaching simulations. Simulated nitrate-N concentrations were compared with the monitored nitrate-N concentrations in 10 multi-level sampling wells over a three-year period. Although soil heterogeneity was mainly observed from top soil to 3 m below the surface, heterogeneity controlled the spatial distribution of nitrate-N concentration. Soil heterogeneity, however, has minimal impact on the total mass of nitrate-N in the domain. In the deeper saturated zone, short-term variations of nitrate-N concentration correlated with the groundwater level fluctuations.
Lee, Kathy E.; Lorenz, David L.; Petersen, James C.; Greene, John B.
2012-01-01
The U.S. Geological Survey determined seasonal variability in nutrients, carbon, and algal biomass in 22 wadeable streams over a 1-year period during 2007 or 2008 within three geographically distinct areas in the United States. The three areas are the Upper Mississippi River Basin (UMIS) in Minnesota, the Ozark Plateaus (ORZK) in southern Missouri and northern Arkansas, and the Upper Snake River Basin (USNK) in southern Idaho. Seasonal patterns in some constituent concentrations and algal responses were distinct. Nitrate concentrations were greatest during the winter in all study areas potentially because of a reduction in denitrification rates and algal uptake during the winter, along with reduced surface runoff. Decreases in nitrate concentrations during the spring and summer at most stream sites coincided with increased streamflow during the snowmelt runoff or spring storms indicating dilution. The continued decrease in nitrate concentrations during summer potentially is because of a reduction in nitrate inputs (from decreased surface runoff) or increases in biological uptake. In contrast to nitrate concentrations, ammonia concentrations varied among study areas. Ammonia concentration trends were similar at UMIS and USNK sampling sites with winter peak concentrations and rapid decreases in ammonia concentrations by spring or early summer. In contrast, ammonia concentrations at OZRK sampling sites were more variable with peak concentrations later in the year. Ammonia may accumulate in stream water in the winter under ice and snow cover at the UMIS and USNK sites because of limited algal metabolism and increased mineralization of decaying organic matter under reducing conditions within stream bottom sediments. Phosphorus concentration patterns and the type of phosphorus present changes with changing hydrologic conditions and seasons and varied among study areas. Orthophosphate concentrations tended to be greater in the summer at UMIS sites, whereas total phosphorus concentrations at most UMIS and USNK sites peaked in the spring during runoff and then decreased through the remainder of the sampling period. Total phosphorus and orthophosphate concentrations in OZRK streams peaked during summer indicating a runoff-based source of both nutrients. Orthophosphate concentrations may increase in streams in the late summer when surface runoff composes less of total streamflow, and when groundwater containing orthophosphate becomes a more dominant source in streams during lower flows. Seston chlorophyll a concentrations were greatest early in the growing season (spring), whereas the spring runoff events coincided with reductions in benthic algal chlorophyll a biomass likely because of scour of benthic algae from the channel bottom that are entrained in the water column during that period. Nitrate, ammonia, and orthophosphate concentrations also decreased during that same period, indicating dilution in the spring during runoff events. The data from this study indicate that the source of water (surface runoff or groundwater) to a stream and the intensity of major runoff events are important factors controlling instream concentrations. Biological processes appear to affect nutrient concentrations during more stable lower flow periods in later summer, fall, and winter when residence time of water in a channel is longer, which allows more time for biological uptake and transformations. Management of nutrient conditions in streams is challenging and requires an understanding of multiple factors that affect in-stream nutrient concentrations and biological uptake and growth.
NASA Astrophysics Data System (ADS)
Gopalakrishnan, G.; Negri, C.
2011-12-01
There has been a significant increase in reactive nitrogen in the environment as a result of human activity. Reactive nitrogen of anthropogenic origin now equals that derived from natural terrestrial nitrogen fixation and is expected to exceed it by the end of the decade. Nitrogen is applied to crops as fertilizer and impacts the environment through water quality impairments (mostly as nitrate) and as greenhouse gas emissions (as nitrous oxide). Research on environmental impacts resulting from nitrogen application in the form of fertilizers has focused disproportionately on the degradation of water quality from agricultural non-point sources. The impacts of this degradation are registered both locally, with runoff and percolation of agrochemicals into local surface water and groundwater, and on a larger scale, such as the increase in the anoxic zone in the Gulf of Mexico attributed to nitrate from the Mississippi River. Impacts to the global climate from increased production of nitrous oxide as a result of increased fertilization are equally significant. Nitrous oxide is a greenhouse gas with a warming potential that is approximately 300 times greater than carbon dioxide. Direct emissions of nitrous oxide from the soil have been expressed as 1% of the applied nitrogen. Indirect emissions due to runoff, leaching and volatilization of the nitrogen from the field have been expressed as 0.75% of the applied nitrogen. Many studies have focused on processes governing nitrogen fluxes in the soil, surface water and groundwater systems. However, research on the biogeochemical processes regulating nitrogen fluxes in the unsaturated zone and consequent impacts on nitrate and nitrous oxide concentrations in groundwater are lacking. Our study explores the spatial and temporal variability of nitrate and nitrous oxide concentrations in the vadose zone at a 15 acre corn field in the US Midwest and links it to the concentrations found in the groundwater at the field site. Results indicated that nitrate concentrations in the vadose zone were an order of magnitude greater than in the groundwater. Nitrous oxide concentrations were significantly less in the vadose zone, suggesting that conditions for microbial degradation of the nitrate were not optimal. There was significant short-term variability in the nitrate concentrations as well as spatial variability over the field site. While the processes governing the linkage between nitrogen concentrations in the unsaturated and saturated zones are still unclear, our research suggests that current models may overestimate the indirect emissions of nitrous oxide produced in agricultural systems.
Katz, B.G.; Chelette, A.R.; Pratt, T.R.
2004-01-01
Concerns regarding ground-water contamination in the Woodville Karst Plain have arisen due to a steady increase in nitrate-N concentrations (0.25-0.90 mg/l) during the past 30 years in Wakulla Springs, a large regional discharge point for water (9.6 m3/s) from the Upper Floridan aquifer (UFA). Multiple isotopic and chemical tracers were used with geochemical and lumped-parameter models (exponential mixing (EM), dispersion, and combined exponential piston flow) to assess: (1) the sources and extent of nitrate contamination of ground water and springs, and (2) mean transit times (ages) of ground water. Delta 15N-NO3 values (1.7-13.8???) indicated that nitrate in ground water originated from localized sources of inorganic fertilizer and human/animal wastes. Nitrate in spring waters (??15N-NO3=5.3-8.9???) originated from both inorganic and organic N sources. Nitrate-N concentrations (1.0 mg/l) were associated with shallow wells (open intervals less than 15 m below land surface), elevated nitrate concentrations in deeper wells are consistent with mixtures of water from shallow and deep zones in the UFA as indicated from geochemical mixing models and the distribution of mean transit times (5-90 years) estimated using lumped-parameter flow models. Ground water with mean transit times of 10 years or less tended to have higher dissolved organic carbon concentrations, lower dissolved solids, and lower calcite saturation indices than older waters, indicating mixing with nearby surface water that directly recharges the aquifer through sinkholes. Significantly higher values of pH, magnesium, dolomite saturation index, and phosphate in springs and deep water (>45 m) relative to a shallow zone (<45 m) were associated with longer ground-water transit times (50-90 years). Chemical differences with depth in the aquifer result from deep regional flow of water recharged through low permeability sediments (clays and clayey sands of the Hawthorn Formation) that overlie the UFA upgradient from the karst plain.
Hua, Guanghui; Salo, Morgan W; Schmit, Christopher G; Hay, Christopher H
2016-10-01
Woodchip bioreactors have been increasingly used as an edge-of-field treatment technology to reduce the nitrate loadings to surface waters from agricultural subsurface drainage. Recent studies have shown that subsurface drainage can also contribute substantially to the loss of phosphate from agricultural soils. The objective of this study was to investigate nitrate and phosphate removal in subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters. The woodchip bioreactor demonstrated average nitrate removal efficiencies of 53.5-100% and removal rates of 10.1-21.6 g N/m(3)/d for an influent concentration of 20 mg N/L and hydraulic retention times (HRTs) of 6-24 h. When the influent nitrate concentration increased to 50 mg N/L, the bioreactor nitrate removal efficiency and rate averaged 75% and 18.9 g N/m(3)/d at an HRT of 24 h. Nitrate removal by the woodchips followed zero-order kinetics with rate constants of 1.42-1.80 mg N/L/h when nitrate was non-limiting. The steel byproduct filter effectively removed phosphate in the bioreactor effluent and the total phosphate adsorption capacity was 3.70 mg P/g under continuous flow conditions. Nitrite accumulation occurred in the woodchip bioreactor and the effluent nitrite concentrations increased with decreasing HRTs and increasing influent nitrate concentrations. The steel byproduct filter efficiently reduced the level of nitrite in the bioreactor effluent. Overall, the results of this study suggest that woodchip denitrification followed by steel byproduct filtration is an effective treatment technology for nitrate and phosphate removal in subsurface drainage. Published by Elsevier Ltd.
Frans, L.M.; Paulson, A.J.; Huffman, R.L.; Osbourne, S.N.
2006-01-01
Concentrations of nutrients, major ions, organic carbon, suspended sediment, and the nitrogen isotope ratio of nitrate (delta15N) were collected at surface-water sites in rivers and drainage basins discharging to the southern part of Hood Canal, Mason and Kitsap Counties, Washington. Base-flow samples were collected from sites on the Union, Tahuya, and Skokomish Rivers from June to August 2004. Concentrations of nutrients at all sites were low. Ammonia and orthophosphate were less than the detection limit for most samples, and nitrate plus nitrite concentrations ranged from less than the detection limit of 0.06 to 0.49 milligram per liter (mg/L). Nitrate plus nitrite concentrations were near the detection limit of 0.06 mg/L in the North Fork, South Fork, and mainstem of the Skokomish River. The concentration of nitrate plus nitrite in the Tahuya River system above Lake Tahuya was 0.17 mg/L, but decreased to 0.1 mg/L or less downstream of Lake Tahuya. Overall, the Union River contained the highest nitrate plus nitrite concentrations of the three large river systems, ranging from 0.12 to 0.28 mg/L. delta15N generally was within the range that encompasses most sources, providing little information on nitrate sources. Most nitrogen was in the dissolved inorganic form. Dissolved inorganic nitrogen in Lake Tahuya was converted into particulate and dissolved organic nitrogen. Dissolved organic carbon concentrations generally were less than 1 mg/L in the Tahuya and Skokomish Rivers and averaged 1.3 mg/L in the Union River. Dissolved organic carbon concentrations of 2.6 to 2.7 mg/L at sites just downstream of Lake Tahuya were highest for the three large river systems, and decreased to concentrations less than 1 mg/L, which was similar to concentrations in the Skokomish River. Total nitrogen concentrations near 0.5 mg/L were measured at two sites: Unnamed Creek at Purdy-Cutoff Road (site S2b) and downstream of Lake Devereaux (site SP5). Concentrations of nitrate plus nitrite were highest at site S2b (0.49 mg/L), and dissolved organic carbon concentrations (3.3 mg/L) were highest at the outlet of Lake Devereaux. However, the overall impact of these sites on the nutrient loading to Hood Canal probably is negligible because of the low streamflow and small loads. Springtime samples were collected from the Union River, Tahuya River, Mission Creek, and three smaller drainage basins in March 2004. Samples were collected during spring rain events to determine if increased runoff contributes larger amounts of sediment and nutrients from the land into the surface water. There was little difference in nutrient concentrations between samples collected in the spring and base-flow samples collected in the summer. This is likely due to the fact that the springtime samples were collected during a rain event and not necessarily during a peak in the hydrograph.
NASA Astrophysics Data System (ADS)
Ellwood, Michael J.; Bowie, Andrew R.; Baker, Alex; Gault-Ringold, Melanie; Hassler, Christel; Law, Cliff S.; Maher, William A.; Marriner, Andrew; Nodder, Scott; Sander, Sylvia; Stevens, Craig; Townsend, Ashley; van der Merwe, Pier; Woodward, E. Malcolm S.; Wuttig, Kathrin; Boyd, Philip W.
2018-02-01
Iron, phosphate, and nitrate are essential nutrients for phytoplankton growth, and hence, their supply into the surface ocean controls oceanic primary production. Here we present a GEOTRACES zonal section (GP13; 30-33°S, 153°E-150°W) extending eastward from Australia to the oligotrophic South Pacific Ocean gyre outlining the concentrations of these key nutrients. Surface dissolved iron concentrations are elevated at >0.4 nmol L-1 near continental Australia (west of 165°E) and decreased eastward to ≤0.2 nmol L-1 (170°W-150°W). The supply of dissolved iron into the upper ocean (<100 m) from the atmosphere and vertical diffusivity averaged 11 ± 10 nmol m-2 d-1. In the remote South Pacific Ocean (170°W-150°W), atmospherically sourced iron is a significant contributor to the surface dissolved iron pool with average supply contribution of 23 ± 17% (range 3% to 55%). Surface water nitrate concentrations averaged 5 ± 4 nmol L-1 between 170°W and 150°W, while surface water phosphate concentrations averaged 58 ± 30 nmol L-1. The supply of nitrogen into the upper ocean is primarily from deeper waters (24-1647 μmol m-2 d-1) with atmospheric deposition and nitrogen fixation contributing <1% to the overall flux along the eastern part of the transect. The deep water N:P ratio averaged 14.5 ± 0.5 but declined to <1 above the deep chlorophyll maximum (DCM) indicating a high N:P assimilation ratio by phytoplankton leading to almost quantitative removal of nitrate. The supply stoichiometry for iron and nitrogen relative to phosphate at and above the DCM declines eastward leading to two biogeographical provinces: one with diazotroph production and the other without diazotroph production.
Tracing the source and fate of nitrate in contemporary mixed land-use surface water systems
NASA Astrophysics Data System (ADS)
Stewart, S. D.; Young, M. B.; Horton, T. W.; Harding, J. S.
2011-12-01
Nitrogenous fertilizers increase agricultural productivity, ultimately feeding the planet. Yet, it is possible to have too much of a good thing, and nitrogen is no exception. When in excess nitrogen has been shown to accelerate eutrophication of water bodies, and act as a chronic toxin (e.g. methemoglobinemia). As land-use intensity continues to rise in response to increases in agricultural productivity, the risk of adverse effects of nitrogen loading on surface water bodies will also increase. Stable isotope proxies are potential tracers of nitrate, the most common nitrogenous phase in surface waters. Applying stable isotope proxies therefore presents an opportunity to identify and manage sources of excess nitrogen before aquatic systems are severely degraded. However, the heterogeneous nature of potential pollution sources themselves, and their distribution with a modified catchment network, make understanding this issue highly complex. The Banks Peninsula, an eroded late tertiary volcanic complex located on the east coast of the South Island New Zealand, presents a unique opportunity to study and understand the sources and fates of nitrate within streams in a contemporary mixed land-use setting. Within this small geographic area there a variety of agricultural activities are practiced, including: heavily fertilized golf courses; stands of regenerating native forest; and areas of fallow gorse (Ulex europaeus; a invasive N-fixing shrub). Each of these landuse classes has its own unique nitrogen budget. Multivariate analysis was used on stream nitrate concentrations to reveal that stream reaches dominated by gorse had significantly higher nitrate concentrations than other land-use classes. Nitrate δ15N & δ18O data from these sites show strong covariance, plotting along a distinct fractionation line (r2 = 0.96). This finding facilitates interpretation of what processes are controlling nitrate concentration within these systems. Further, complementary aquatic foodweb δ15N δ13C analyses of multiple species in various trophic positions allow for a unique, holistic insight in to the fate of gorse-derived nitrate at an ecosystem level. We present here physicochemical and stable isotopic data from a variety of aqueous and aquatic foodweb components. Data is generated using emerging and established analytical techniques, in order to explore links between foodweb ecology, ecosystem function, and fate and transport of excess nitrate along longitudinal gradients of mixed land-use catchments.
NASA Astrophysics Data System (ADS)
Levy, Yehuda; Chefetz, Benny; Shapira, Roi; Kurtzman, Daniel
2017-04-01
Contamination of groundwater resources by nitrate due to leaching under agricultural land is probably the most troublesome agriculture-related water contamination, worldwide. Deep soil sampling (10 m) were used for calibrating vertical flow and nitrogen-transport numerical models of the unsaturated zone, under different agricultural land uses. Vegetables fields (potato and strawberries) and deciduous (persimmon) orchards in the Sharon area overlaying the coastal aquifer of Israel, were examined. Average nitrate-nitrogen fluxes below vegetables fields were 210-290 kg ha-1 a-1 and under deciduous orchards were 110-140 kg ha-1 a-1. The output water and nitrate-nitrogen fluxes of the unsaturated zone models were used as input for a three dimensional flow and nitrate-transport model in the aquifer under an area of 13.3 square kilometers of agricultural land. The area was subdivided to 4 agricultural land-uses: vegetables, deciduous, citrus orchards and non-cultivated. Fluxes of water and nitrate-nitrogen below citrus orchards were taken from a previous study in this area (Kurtzman et al., 2013, j. Contam. Hydrol.). The groundwater flow model was calibrated to well heads only by changing the hydraulic conductivity while transient recharge fluxes were constraint to the bottom-fluxes of the unsaturated zone flow models. The nitrate-transport model in the aquifer, which was fed at the top by the nitrate fluxes of the unsaturated zone models, succeeded in reconstructing the average nitrate concentration in the wells. On the other hand, this transport model failed in calculating the high concentrations in the most contaminated wells and the large spatial variability of nitrate-concentrations in the aquifer. In order to reconstruct the spatial variability and enable predictions nitrate-fluxes from the unsaturated zone were multiplied by local multipliers. This action was rationalized by the fact that the high concentrations in some wells cannot be explained by regular agricultural activity, and are probably a result of some malfunction in the well area. Prediction of the nitrate concentration 40 years to the future with 3 nitrogen-fertilization scenarios showed the following: 1) under "business as usual" fertilization scenario, the NO3 concentration will increase in average by 19 mg l-1; 2) In reducing 25% of the nitrogen fertilization mass scenario, the nitrate concentration in the aquifer will stabilize; 3) In reducing 50% of the nitrogen fertilization mass scenario, the concentration will decrease in average by 18 mg l-1.
Mills, Taylor J.; Mast, M. Alisa; Thomas, Judith C.; Keith, Gabrielle L.
2016-01-01
Elevated selenium (Se) concentrations in surface water and groundwater have become a concern in areas of the Western United States due to the deleterious effects of Se on aquatic ecosystems. Elevated Se concentrations are most prevalent in irrigated alluvial valleys underlain by Se-bearing marine shales where Se can be leached from geologic materials into the shallow groundwater and surface water systems. This study presents groundwater chemistry and solid-phase geochemical data from the Uncompahgre River Basin in Western Colorado, an irrigated alluvial landscape underlain by Se-rich Cretaceous marine shale. We analyzed Se species, major and trace elements, and stable nitrogen and oxygen isotopes of nitrate in groundwater and aquifer sediments to examine processes governing selenium release and transport in the shallow groundwater system. Groundwater Se concentrations ranged from below detection limit (< 0.5 μg L− 1) to 4070 μg L− 1, and primarily are controlled by high groundwater nitrate concentrations that maintain oxidizing conditions in the aquifer despite low dissolved oxygen concentrations. High nitrate concentrations in non-irrigated soils and nitrate isotopes indicate nitrate is largely derived from natural sources in the Mancos Shale and alluvial material. Thus, in contrast to areas that receive substantial NO3 inputs through inorganic fertilizer application, Se mitigation efforts that involve limiting NO3 application might have little impact on groundwater Se concentrations in the study area. Soluble salts are the primary source of Se to the groundwater system in the study area at-present, but they constitute a small percentage of the total Se content of core material. Sequential extraction results indicate insoluble Se is likely composed of reduced Se in recalcitrant organic matter or discrete selenide phases. Oxidation of reduced Se species that constitute the majority of the Se pool in the study area could be a potential source of Se in the future as soluble salts are progressively depleted.
Mills, Taylor J; Mast, M Alisa; Thomas, Judith; Keith, Gabrielle
2016-10-01
Elevated selenium (Se) concentrations in surface water and groundwater have become a concern in areas of the Western United States due to the deleterious effects of Se on aquatic ecosystems. Elevated Se concentrations are most prevalent in irrigated alluvial valleys underlain by Se-bearing marine shales where Se can be leached from geologic materials into the shallow groundwater and surface water systems. This study presents groundwater chemistry and solid-phase geochemical data from the Uncompahgre River Basin in Western Colorado, an irrigated alluvial landscape underlain by Se-rich Cretaceous marine shale. We analyzed Se species, major and trace elements, and stable nitrogen and oxygen isotopes of nitrate in groundwater and aquifer sediments to examine processes governing selenium release and transport in the shallow groundwater system. Groundwater Se concentrations ranged from below detection limit (<0.5μgL(-1)) to 4070μgL(-1), and primarily are controlled by high groundwater nitrate concentrations that maintain oxidizing conditions in the aquifer despite low dissolved oxygen concentrations. High nitrate concentrations in non-irrigated soils and nitrate isotopes indicate nitrate is largely derived from natural sources in the Mancos Shale and alluvial material. Thus, in contrast to areas that receive substantial NO3 inputs through inorganic fertilizer application, Se mitigation efforts that involve limiting NO3 application might have little impact on groundwater Se concentrations in the study area. Soluble salts are the primary source of Se to the groundwater system in the study area at-present, but they constitute a small percentage of the total Se content of core material. Sequential extraction results indicate insoluble Se is likely composed of reduced Se in recalcitrant organic matter or discrete selenide phases. Oxidation of reduced Se species that constitute the majority of the Se pool in the study area could be a potential source of Se in the future as soluble salts are progressively depleted. Published by Elsevier B.V.
Stanton, Jennifer S.; Steele, Gregory V.; Vogel, Jason R.
2007-01-01
Agricultural chemicals applied at the land surface in northeast Nebraska can move downward, past the crop root zone, to ground water. Because agricultural chemicals applied at the land surface are more likely to be observed in the shallowest part of an aquifer, an assessment of shallow ground-water and unsaturated zone quality in the northeast Nebraska glacial till was completed between 2002 and 2004. Ground-water samples were collected at the first occurrence of ground water or just below the water table at 32 sites located in areas likely affected by agriculture. Four of the 32 sites were situated along a ground-water flow path with its downgradient end next to Maple Creek. Twenty-eight sites were installed immediately adjacent to agricultural fields throughout the glacial-till area. In addition to those 32 sites, two sites were installed in pastures to represent ground-water conditions in a non-cropland setting. Ground-water samples were analyzed for physical properties and concentrations of nitrogen and phosphorus compounds, selected pesticides and pesticide degradates, dissolved solids, major ions, trace elements, and dissolved organic carbon. Chlorofluorocarbons (CFCs) or sulfur hexafluoride (SF6) concentrations were analyzed at about 70 percent of the monitoring wells to estimate the residence time of ground water. Borehole-core samples were collected from 28 of the well boreholes. Sediment in the unsaturated zone was analyzed for nitrate, chloride, and ammonia concentrations. Analytical results indicated that the agricultural chemicals most often detected during this study were nitrates and herbicides. Nitrate as nitrogen (nitrate-N) concentrations (2003 median 9.53 milligrams per liter) indicated that human activity has affected the water quality of recently recharged ground water in approximately two-thirds of the wells near corn and soybean fields. The principal pesticide compounds that were detected reflect the most-used pesticides in the area and included parent or degradate compounds of acetochlor, alachlor, atrazine, and metolachlor. Overall, pesticide concentrations in ground-water samples collected in 2003 and 2004 were small and did not exceed public drinking-water standards where established. On average, more pesticides were detected in the flow-path wells than in the glacial-till network wells. The presence of a perennial stream within 1,640 feet of a well was correlated to smaller nitrate-N concentrations in the well water, and the presence of a road ditch within 164 feet of the well was correlated to the presence of detectable pesticides in the well water. All other variables tested showed no significant correlations to nitrate-N concentrations or pesticide detections. Unsaturated zone soil cores collected in 2002 from well boreholes indicated that nitrogen in the forms of nitrate-N and ammonia as nitrogen (ammonia-N) was available in the unsaturated zone for transport to ground water. Concentrations of nitrate-N and ammonia-N in these soil cores were inversely correlated to depth, and nitrate-N concentrations were correlated to chloride concentrations.
Brown, Steven G; Roberts, Paul T; McCarthy, Michael C; Lurmann, Frederick W; Hyslop, Nicole P
2006-09-01
Air quality monitoring was conducted at a rural site with a tower in the middle of California's San Joaquin Valley (SJV) and at elevated sites in the foothills and mountains surrounding the SJV for the California Regional PM10/ PM2.5 Air Quality Study. Measurements at the surface and n a tower at 90 m were collected in Angiola, CA, from December 2000 through February 2001 and included hourly black carbon (BC), particle counts from optical particle counters, nitric oxide, ozone, temperature, relative humidity, wind speed, and direction. Boundary site measurements were made primarily using 24-hr integrated particulate matter (PM) samples. These measurements were used to understand the vertical variations of PM and PM precursors, the effect of stratification in the winter on concentrations and chemistry aloft and at the surface, and the impact of aloft-versus-surface transport on PM concentrations. Vertical variations of concentrations differed among individual species. The stratification may be important to atmospheric chemistry processes, particularly nighttime nitrate formation aloft, because NO2 appeared to be oxidized by ozone in the stratified aloft layer. Additionally, increases in accumulation-mode particle concentrations in the aloft layer during a fine PM (PM2.5) episode corresponded with increases in aloft nitrate, demonstrating the likelihood of an aloft nighttime nitrate formation mechanism. Evidence of local transport at the surface and regional transport aloft was found; transport processes also varied among the species. The distribution of BC appeared to be regional, and BC was often uniformly mixed vertically. Overall, the combination of time-resolved tower and surface measurements provided important insight into PM stratification, formation, and transport.
Migeot, V; Albouy-Llaty, M; Carles, C; Limousi, F; Strezlec, S; Dupuis, A; Rabouan, S
2013-04-01
Groundwater, surface water and drinking water are contaminated by nitrates and atrazine, an herbicide. They are present as a mixture in drinking water and with their endocrine-disrupting activity, they may alter fetal growth. To study an association between drinking-water atrazine metabolites/nitrate mixture exposure and small-for-gestational-age(SGA). A historic cohort study based on birth records and drinking-water nitrate and pesticide measurements in Deux-Sèvres (France) between 2005 and 2009 was carried out. Exposure to drinking-water atrazine metabolites/nitrate mixture was divided into 6 classes according to the presence or absence of atrazine metabolites and to terciles of nitrate concentrations in each trimester of pregnancy. Regression analysis of SGA by mixture exposure at second trimester was subsequently conducted. We included 11,446 woman-neonate couples of whom 37.0% were exposed to pesticides, while 99.9% of the women were exposed to nitrates. Average nitrate concentration was from 0 to 63.30 mg/L. In the second trimester of pregnancy, the risk of SGA was different with mixture exposure when drinking-water atrazine metabolites, mainly 2 hydroxyatrazine and desethylatrazine, were present and nitrate dose exposure increased: compared to single first tercile of nitrate concentration exposure, single second tercile exposure OR was 1.74 CI 95% [1.10; 2.75] and atrazine metabolites presence in the third tercile of nitrate concentration exposure OR was 0.87 CI 95% [0.45;1.67]. It is possible that the association found at the second trimester of exposure with regard to birth weight may likewise be observed before birth, with regard to the estimated fetal weight, and that it might change in the event that the atrazine metabolites dose were higher or the nitrate dose lower. It would appear necessary to further explore the variability of effects. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tallec, G.; Bureau, C.; Peu, P.
2009-07-15
This study evaluates the impact of nitrate injection on a full scale landfill bioreactor through the monitoring of gaseous releases and particularly N{sub 2}O emissions. During several weeks, we monitored gas concentrations in the landfill gas collection system as well as surface gas releases with a series of seven static chambers. These devices were directly connected to a gas chromatograph coupled to a flame ionisation detector and an electron capture detector (GC-FID/ECD) placed directly on the field. Measurements were performed before, during and after recirculation of raw leachate and nitrate-enhanced leachate. Raw leachate recirculation did not have a significant effectmore » on the biogas concentrations (CO{sub 2}, CH{sub 4} and N{sub 2}O) in the gas extraction network. However, nitrate-enhanced leachate recirculation induced a marked increase of the N{sub 2}O concentrations in the gas collected from the recirculation trench (100-fold increase from 0.2 ppm to 23 ppm). In the common gas collection system however, this N{sub 2}O increase was no more detectable because of dilution by gas coming from other cells or ambient air intrusion. Surface releases through the temporary cover were characterized by a large spatial and temporal variability. One automated chamber gave limited standard errors over each experimental period for N{sub 2}O releases: 8.1 {+-} 0.16 mg m{sup -2} d{sup -1} (n = 384), 4.2 {+-} 0.14 mg m{sup -2} d{sup -1} (n = 132) and 1.9 {+-} 0.10 mg m{sup -2} d{sup -1} (n = 49), during, after raw leachate and nitrate-enhanced leachate recirculation, respectively. No clear correlation between N{sub 2}O gaseous surface releases and recirculation events were evidenced. Estimated N{sub 2}O fluxes remained in the lower range of what is reported in the literature for landfill covers, even after nitrate injection.« less
Sediment diffusion method improves wastewater nitrogen removal in the receiving lake sediments.
Aalto, Sanni L; Saarenheimo, Jatta; Ropponen, Janne; Juntunen, Janne; Rissanen, Antti J; Tiirola, Marja
2018-07-01
Sediment microbes have a great potential to transform reactive N to harmless N 2 , thus decreasing wastewater nitrogen load into aquatic ecosystems. Here, we examined if spatial allocation of the wastewater discharge by a specially constructed sediment diffuser pipe system enhanced the microbial nitrate reduction processes. Full-scale experiments were set on two Finnish lake sites, Keuruu and Petäjävesi, and effects on the nitrate removal processes were studied using the stable isotope pairing technique. All nitrate reduction rates followed nitrate concentrations, being highest at the wastewater-influenced sampling points. Complete denitrification with N 2 as an end-product was the main nitrate reduction process, indicating that the high nitrate and organic matter concentrations of wastewater did not promote nitrous oxide (N 2 O) production (truncated denitrification) or ammonification (dissimilatory nitrate reduction to ammonium; DNRA). Using 3D simulation, we demonstrated that the sediment diffusion method enhanced the contact time and amount of wastewater near the sediment surface especially in spring and in autumn, altering organic matter concentration and oxygen levels, and increasing the denitrification capacity of the sediment. We estimated that natural denitrification potentially removed 3-10% of discharged wastewater nitrate in the 33 ha study area of Keuruu, and the sediment diffusion method increased this areal denitrification capacity on average 45%. Overall, our results indicate that sediment diffusion method can supplement wastewater treatment plant (WWTP) nitrate removal without enhancing alternative harmful processes. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singleton, M J; Moran, J E; Esser, B K
2010-04-14
This study investigates nitrate contamination of a deep municipal drinking water production well in Ripon, CA to demonstrate the utility of natural groundwater tracers in constraining the sources and transport of nitrate to deep aquifers in the Central Valley. The goal of the study was to investigate the origin (source) of elevated nitrate and the potential for the deep aquifer to attenuate anthropogenic nitrate. The site is ideal for such an investigation. The production well is screened from 165-325 feet below ground surface and a number of nearby shallow and deep monitoring wells were available for sampling. Furthermore, potential sourcesmore » of nitrate contamination to the well had been identified, including a fertilizer supply plant located approximately 1000 feet to the east and local almond groves. A variety of natural isotopic and dissolved gas tracers including {sup 3}H-{sup 3}He groundwater age and the isotopic composition of nitrate are applied to identify nitrate sources and to characterize nitrate transport. An advanced method for sampling production wells is employed to help identify contaminant contributions from specific screen intervals. Nitrate transport: Groundwater nitrate at this field site is not being actively denitrified. Groundwater parameters indicate oxic conditions, the dissolved gas data shows no evidence for excess nitrogen as the result of denitrification, and nitrate-N and -O isotope compositions do not display patterns typical of denitrification. Contaminant nitrate source: The ambient nitrate concentration in shallow groundwater at the Ripon site ({approx}12 mg/L as nitrate) is typical of shallow groundwaters affected by recharge from agricultural and urban areas. Nitrate concentrations in Ripon City Well 12 (50-58 mg/L as nitrate) are significantly higher than these ambient concentrations, indicating an additional source of anthropogenic nitrate is affecting groundwater in the capture zone of this municipal drinking water well. This study provides two new pieces of evidence that the Ripon Farm Services Plant is the source of elevated nitrate in Ripon City Well 12. (1) Chemical mass balance calculations using nitrate concentration, nitrate isotopic composition, and initial tritium activity all indicate that that the source water for elevated nitrate to Ripon City Well 12 is a very small component of the water produced by City Well 12 and thus must have extremely high nitrate concentration. The high source water nitrate concentration ({approx}1500 mg/L as nitrate) required by these mass balance calculations precludes common sources of nitrate such as irrigated agriculture, dairy wastewater, and septic discharge. Shallow groundwater under the Ripon Farm Services RFS plant does contain extremely high concentrations of nitrate (>1700 mg/L as nitrate). (2) Nitrogen and oxygen isotope compositions of nitrate indicate that the additional anthropogenic nitrate source to Ripon City Well 12 is significantly enriched in {delta}{sup 18}O-NO{sub 3}, an isotopic signature consistent with synthetic nitrate fertilizer, and not with human or animal wastewater discharge (i.e. dairy operations, septic system discharge, or municipal wastewater discharge), or with organic fertilizer. Monitoring wells on and near the RFS plant also have high {delta}{sup 18}O-NO{sub 3}, and the plant has handled and stored synthetic nitrate fertilizer that will have this isotopic signature. The results described here highlight the complexity of attributing nitrate found in long screened, high capacity wells to specific sources. In this case, the presence of a very high concentration source near the well site combined with sampling using multiple isotopic tracer techniques and specialized depth-specific techniques allowed fingerprinting of the source in the mixed-age samples drawn from the production well.« less
Ahmad, Munir; Ahmad, Mahtab; Usman, Adel R A; Al-Faraj, Abdullah S; Abduljabbar, Adel S; Al-Wabel, Mohammad I
2017-09-18
Biochar (BC) was produced from date palm tree leaves and its composites were prepared with nano zerovalent iron (nZVI-BC) and hen eggshell powder (EP-BC). The produced BC and its composites were characterized by SEM, XRD, BET, and FTIR for surface structural, mineralogical, and chemical groups and tested for their efficiency for nitrate removal from aqueous solutions in the presence and absence of chloride ions. The incidence of graphene and nano zerovalent iron (Fe 0 ) in the nZVI-BC composite was confirmed by XRD. The nZVI-BC composite possessed highest surface area (220.92 m 2 g -1 ), carbon (80.55%), nitrogen (3.78%), and hydrogen (11.09%) contents compared to other materials. Nitrate sorption data was fitted well to the Langmuir (R 2 = 0.93-0.98) and Freundlich (R 2 = 0.90-0.99) isotherms. The sorption kinetics was adequately explained by the pseudo-second-order, power function, and Elovich models. The nZVI-BC composite showed highest Langmuir predicted sorption capacity (148.10 mg g -1 ) followed by EP-BC composite (72.77 mg g -1 ). In addition to the high surface area, the higher nitrate removal capacity of nZVI-BC composite could be attributed to the combination of two processes, i.e., chemisorption (outer-sphere complexation) and reduction of nitrate to ammonia or nitrogen by Fe 0 . The appearance of Fe-O stretching and N-H bonds in post-sorption FTIR spectra of nZVI-BC composite suggested the occurrence of redox reaction and formation of Fe compound with N, such as ferric nitrate (Fe(NO 3 ) 3 ·9H 2 O). Coexistence of chloride ions negatively influenced the nitrate sorption. The decrease in nitrate sorption with increasing chloride ion concentration was observed, which could be due to the competition of free active sites on the sorbents between nitrate and chloride ions. The nZVI-BC composite exhibited higher nitrate removal efficiency compared to other materials even in the presence of highest concentration (100 mg L -1 ) of coexisting chloride ion.
Multi-year record of atmospheric and snow surface nitrate in the central Antarctic plateau.
Traversi, R; Becagli, S; Brogioni, M; Caiazzo, L; Ciardini, V; Giardi, F; Legrand, M; Macelloni, G; Petkov, B; Preunkert, S; Scarchilli, C; Severi, M; Vitale, V; Udisti, R
2017-04-01
Continuous all year-round samplings of atmospheric aerosol and surface snow at high (daily to 4-day) resolution were carried out at Dome C since 2004-05 to 2013 and nitrate records are here presented. Basing on a larger statistical data set than previous studies, results confirm that nitrate seasonal pattern is characterized by maxima during austral summer for both aerosol and surface snow, occurring in-phase with solar UV irradiance. This temporal pattern is likely due to a combination of nitrate sources and post-depositional processes whose intensity usually enhances during the summer. Moreover, it should be noted that a case study of the synoptic conditions, which took place during a major nitrate event, showed the occurrence of a stratosphere-troposphere exchange. The sampling of both matrices at the same time with high resolution allowed the detection of a an about one-month long recurring lag of summer maxima in snow with respect to aerosol. This result can be explained by deposition and post-deposition processes occurring at the atmosphere-snow interface, such as a net uptake of gaseous nitric acid and a replenishment of the uppermost surface layers driven by a larger temperature gradient in summer. This hypothesis was preliminarily tested by a comparison with surface layers temperature data in the 2012-13 period. The analysis of the relationship between the nitrate concentration in the gas phase and total nitrate obtained at Dome C (2012-13) showed the major role of gaseous HNO 3 to the total nitrate budget suggesting the need to further investigate the gas-to-particle conversion processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, L; Butcher, A S; Stuart, M E; Gooddy, D C; Bloomfield, J P
2013-10-01
Nitrate pollution in groundwater, which is mainly from agricultural activities, remains an international problem. It threatens the environment, economics and human health. There is a rising trend in nitrate concentrations in many UK groundwater bodies. Research has shown it can take decades for leached nitrate from the soil to discharge into groundwater and surface water due to the 'store' of nitrate and its potentially long travel time in the unsaturated and saturated zones. However, this time lag is rarely considered in current water nitrate management and policy development. The aim of this study was to develop a catchment-scale integrated numerical method to investigate the nitrate lag time in the groundwater system, and the Eden Valley, UK, was selected as a case study area. The method involves three models, namely the nitrate time bomb-a process-based model to simulate the nitrate transport in the unsaturated zone (USZ), GISGroundwater--a GISGroundwater flow model, and N-FM--a model to simulate the nitrate transport in the saturated zone. This study answers the scientific questions of when the nitrate currently in the groundwater was loaded into the unsaturated zones and eventually reached the water table; is the rising groundwater nitrate concentration in the study area caused by historic nitrate load; what caused the uneven distribution of groundwater nitrate concentration in the study area; and whether the historic peak nitrate loading has reached the water table in the area. The groundwater nitrate in the area was mainly from the 1980s to 2000s, whilst the groundwater nitrate in most of the source protection zones leached into the system during 1940s-1970s; the large and spatially variable thickness of the USZ is one of the major reasons for unevenly distributed groundwater nitrate concentrations in the study area; the peak nitrate loading around 1983 has affected most of the study area. For areas around the Bowscar, Beacon Edge, Low Plains, Nord Vue, Dale Springs, Gamblesby, Bankwood Springs, and Cliburn, the peak nitrate loading will arrive at the water table in the next 34 years; statistical analysis shows that 8.7 % of the Penrith Sandstone and 7.3 % of the St Bees Sandstone have not been affected by peak nitrate. This research can improve the scientific understanding of nitrate processes in the groundwater system and support the effective management of groundwater nitrate pollution for the study area. With a limited number of parameters, the method and models developed in this study are readily transferable to other areas.
Zamora, Celia; Dahlgren, Randy A.; Kratzer, Charles R.; Downing, Bryan D.; Russell, Ann D.; Dileanis, Peter D.; Bergamaschi, Brian A.; Phillips, Steven P.
2013-01-01
The influence of groundwater on surface-water quality in the San Joaquin River, California, was examined for a 59-mile reach from the confluence with Salt Slough to Vernalis. The primary objective of this study was to quantify the rate of groundwater discharged to the lower San Joaquin River and the contribution of nitrate and dissolved organic carbon concentrations to the river. Multiple lines of evidence from four independent approaches were used to characterize groundwater contributions of nitrogen and dissolved organic carbon. Monitoring wells (in-stream and bank wells), streambed synoptic surveys (stream water and shallow groundwater), longitudinal profile surveys by boat (continuous water-quality parameters in the stream), and modeling (MODFLOW and VS2DH) provided a combination of temporal, spatial, quantitative, and qualitative evidence of groundwater contributions to the river and the associated quality. Monitoring wells in nested clusters in the streambed (in-stream wells) and on both banks (bank wells) along the river were monitored monthly from September 2006 to January 2009. Nitrate concentrations in the bank wells ranged from less than detection—that is, less than 0.01 milligrams per liter (mg/L) as nitrogen (N)—to approximately 13 mg/L as N. Nitrate was not detected at 17 of 26 monitoring wells during the study period. Dissolved organic carbon concentrations among monitoring wells were highly variable, but they generally ranged from 1 to 4 mg/L. In a previous study, 14 bank wells were sampled once in 1988 following their original installation. With few exceptions, specific conductivity and nitrate concentrations measured in this study were virtually identical to those measured 20 years ago. Streambed synoptic measurements were made by using a temporarily installed drive-point piezometer at 113 distinct transects across the stream during 4 sampling events. Nitrate concentrations exceeded the detection limit of 0.01 mg/L as N in 5 percent of groundwater samples collected from the in-stream wells as part of the synoptic surveys. Only 7 of the 113 cross-sectional transects had nitrate concentrations greater than 1 mg/L as N. In contrast, surface waters in the San Joaquin River tended to have nitrate concentrations in the 1–3 mg/L as N range. A zone of lower oxygen (less than 2 mg/L) in the streambed could limit nitrate contributions from regional groundwater flow because nitrate can be converted to nitrogen gas within this zone. Appreciable concentrations of ammonium (average concentration was 1.92 mg/L as N, and 95th percentile was 10.34 mg/L as N) in the shallow groundwater, believed to originate from anoxic mineralization of streambed sediments, could contribute nitrogen to the overlying stream as nitrate following in-stream nitrification, however. Dissolved organic carbon concentrations were highly variable in the shallow groundwater below the river (1 to 6 ft below streambed) and generally ranged between 1 and 5 mg/L, but had maximum concentrations in the 15–25 mg/L range. The longitudinal profile surveys were not particularly useful in identifying groundwater discharge areas. However, the longitudinal approach described in this report was useful as a baseline survey of measured water-quality parameters and for identifying tributary inflows that affect surface-water concentrations of nitrate. Results of the calibrated MODFLOW model indicated that the simulated groundwater discharge rate was approximately 1.0 cubic foot per second per mile (cfs/mi), and the predominant horizontal groundwater flow direction between the deep bank wells was westward beneath the river. The modeled (VS2DH) flux values (river gain versus river loss) were calculated for the irrigation and non-irrigation season, and these fluxes were an order of magnitude less than those from MODFLOW. During the irrigation season, the average river gain was 0.11 cfs/mi, and the average river loss was −0.05 cfs/mi. During the non-irrigation season, the average river gain was 0.10 cfs/mi, and the average river loss was -0.08 cfs/mi. Information on groundwater interactions and water quality collected for this study was used to estimate loads of nitrate and dissolved organic carbon from the groundwater to the San Joaquin River. Estimated loads of dissolved inorganic nitrogen and dissolved organic carbon were calculated by using concentrations measured during four streambed synoptic surveys and the estimated groundwater discharge rate to the San Joaquin River from MODFLOW of 1 cfs/mi. The estimated groundwater loads to the San Joaquin River for dissolved inorganic nitrogen and dissolved organic carbon were 300 and 350 kilograms per day, respectively. These loads represent 9 and 7 percent, respectively, of the estimated instantaneous surface-water loads for dissolved inorganic nitrogen and dissolved organic carbon at the most downstream site, Vernalis, measured during the four streambed synoptic surveys.
NASA Astrophysics Data System (ADS)
Kochhar, Savinder P.; Singh, Anirudh P.
2011-12-01
Glycine nitrate combustion method was used to synthesize Ce0.8Gd0.1Y0.1O1.9 powders. Soluble metal-glycine complexes, detected by infrared spectroscopy, were formed by atomic level mixing of metal cations with glycine. The concentration of glycine has been varied in order to change the fuel to oxidant ratio i.e. of glycine to nitrate (g/n) with the purpose to study the effect of concentration of glycine on the parameters of resulting CGYO powder. The ratio of glycine to nitrate per mole is 0.5, 0.7, 0.8, 0.9, 1.0, 1.2, and 1.4. Increasing the glycine increases the temperatures reached during combustion. Powders prepared from GNP method demonstrated that combustion synthesized powders have large surface area as shown by SEM.
Almendinger, J.E.; Mitton, G.B.
1995-01-01
Selected water-quality constituents were determined in water from 5 surface-water sites and 29 wells in Dakota County, Minnesota, to search for possible relations to selected physical factors, including waste-water discharge, agricultural land, Quaternary deposits, bedrock, soil-leaching potential, and water-table depth. All surface-water samples were from the Vermillion River Basin, whose hydrologic setting was studied to determine its relation to the ground-water flow in the surrounding surficial sand aquifer. Each site was sampled from 1 to 12 times during 1990- 91. A total of 198 samples were collected; selected samples were analyzed for major inorganic ions, nutrients, and triazine content. Physical factors within the area of land assumed to be contributing water to each sampling site were determined from existing mapped or digitized sources. Nitrate concentrations in ground water were related to agricultural land and soil-leaching potential. Nitrate concentrations were large (median 13.2 milligrams per liter as nitrogen) where the percentage of agricultural land in the contributing area was large (equal to or greater than 75 percent) and where the soils had a large soil-leaching potential. Nitrate concentrations were small (median 3.2 milligrams per liter as nitrogen) where the soils had a small soil-leaching potential, despite a large percentage of agricultural land. The statistical relation was not particularly strong, however: the null hypothesis that sites with different soil-leaching potentials had the same nitrate concentrations in ground water was rejected by the Kruskal-Wallis test at only the probability P = 0.15 level. Water-table depth was not an important factor in the relation between nitrate concentrations in ground water and agricultural land. Discharge from a waste-water treatment plant provided most of the downstream loading of nitrate into the Vermillion River mainstem. Triazines were found in small concentrations (less than 2 micrograms per liter) in the Vermillion River and its tributaries. No relation was apparent between selected water-quality constituents and either Quaternary deposits or bedrock.
USDA-ARS?s Scientific Manuscript database
Subsurface drainage, while an important and necessary agricultural production practice in the Midwest, contributes nitrate (NO3) and soluble phosphorus (P) to surface waters. Eutrophication (i.e., excessive enrichment of waters by NO3 and soluble P) supports harmful algal blooms (HABs) in receiving ...
Frans, Lonna M.
2000-01-01
Logistic regression was used to relate anthropogenic (man-made) and natural factors to the occurrence of elevated concentrations of nitrite plus nitrate as nitrogen in ground water in the Columbia Basin Ground Water Management Area, eastern Washington. Variables that were analyzed included well depth, depth of well casing, ground-water recharge rates, presence of canals, fertilizer application amounts, soils, surficial geology, and land-use types. The variables that best explain the occurrence of nitrate concentrations above 3 milligrams per liter in wells were the amount of fertilizer applied annually within a 2-kilometer radius of a well and the depth of the well casing; the variables that best explain the occurrence of nitrate above 10 milligrams per liter included the amount of fertilizer applied annually within a 3-kilometer radius of a well, the depth of the well casing, and the mean soil hydrologic group, which is a measure of soil infiltration rate. Based on the relations between these variables and elevated nitrate concentrations, models were developed using logistic regression that predict the probability that ground water will exceed a nitrate concentration of either 3 milligrams per liter or 10 milligrams per liter. Maps were produced that illustrate the predicted probability that ground-water nitrate concentrations will exceed 3 milligrams per liter or 10 milligrams per liter for wells cased to 78 feet below land surface (median casing depth) and the predicted depth to which wells would need to be cased in order to have an 80-percent probability of drawing water with a nitrate concentration below either 3 milligrams per liter or 10 milligrams per liter. Maps showing the predicted probability for the occurrence of elevated nitrate concentrations indicate that the irrigated agricultural regions are most at risk. The predicted depths to which wells need to be cased in order to have an 80-percent chance of obtaining low nitrate ground water exceed 600 feet in the irrigated agricultural regions, whereas wells in dryland agricultural areas generally need a casing in excess of 400 feet. The predicted depth to which wells need to be cased to have at least an 80-percent chance to draw water with a nitrate concentration less than 10 milligrams per liter generally did not exceed 800 feet, with a 200-foot casing depth typical of the majority of the area.
NASA Astrophysics Data System (ADS)
Fovet, Ophélie; Dupas, Rémi; Durand, Patrick; Gascuel-Odoux, Chantal; Gruau, Gérard; Hamon, Yannick; Petitjean, Patrice
2016-04-01
Despite widespread implementation of the nitrate directive in the European Union since the 1990s, the impact on nitrate concentration in rivers is limited (Bouraoui and Grizzetti, 2011). To assess whether this lack of response is due to the long time lags of nitrate transfer or to inadequate programs of measure, long term river and groundwater monitoring data are necessary. This study analyses 15 years of daily nitrate concentration data at the outlet of an intensively farmed catchment in Western France (Kervidy-Naizin, 5 km²) and quarterly nitrate concentration data in the groundwater of two hillslopes equipped with piezometers (Kerroland and Gueriniec) within the same catchment. In this catchment groundwater contribution to annual stream flow is dominant. The objectives of this study were to i) disentangle the influence of interannual climate variability and improvement of agricultural practices (i.e. reduction in N surplus) in the stream chemistry and ii) discuss the reasons for slow catchment recovery from nitrate pollution by comparing trends in groundwater and stream concentrations. Analysis of stream data showed that flow-weighted mean annual concentration at the outlet of the Kervidy-Naizin catchment has decreased by 1.2 mg NO3- l-1 yr-1 from 1999 to 2015. This decrease was slow but significant (p value < 0.01) even though interannual climate variability (i.e. annual cumulated runoff) added noise to the signal: i) deviation in the linear model of nitrate decrease with time was negatively correlated with annual runoff (r = -0.54, p < 0.01) and ii) local minimums in the nitrate time series were coincident with local maximums in the annual runoff. Thus high runoff during wet years led to dilution of the nitrate originating from groundwater, which added variability to the signal of linear decrease in stream concentration. Analysis of groundwater data showed a significant and sharp decrease in nitrate concentration in the Kerroland piezometer transect (4.0 mg NO3- l-1 yr-1) and no significant evolution in the Gueriniec piezometer transect, from 1999 to 2015. This contrasting evolution of groundwater nitrate concentration between the two transects was consistent with data on soil surface nitrogen surplus, with a balanced fertilisation in the Kerroland transect (N surplus close to 0 kg N ha-1 yr-1) and excessive fertilisation in the Gueriniec transect (N surplus > 100 kg N ha-1 yr-1). We conclude that, despite the lags due to pluri annual nitrate transfer through the unsaturated and satured zones in catchments of Western France, significant decrease in nitrate concentration in groundwater and streams should be visible within less than 10 years after implementation of an efficient program of measures. Spatial heterogeneity in the implementation of programs of measures (i.e. reduction of N surplus) is a likely cause of slow, sometimes undetectable, reduction in nitrate concentration. Bouraoui, F., and Grizzetti, B.: Long term change of nutrient concentrations of rivers discharging in European seas, The Science of the total environment, 409, 4899-4916, 10.1016/j.scitotenv.2011.08.015, 2011.
Logistic model of nitrate in streams of the upper-midwestern United States
Mueller, D.K.; Ruddy, B.C.; Battaglin, W.A.
1997-01-01
Nitrate in surface water can have adverse effects on aquatic life and, in drinking-water supplies, can be a risk to human health. As part of a regional study, nitrates as N (NO3-N) was analyzed in water samples collected from streams throughout 10 Midwestern states during synoptic surveys in 1989, 1990, and 1994. Data from the period immediately following crop planting at 124 sites were analyzed during logistic regression to relate discrete categories of NO3-N concentrations to characteristics of the basins upstream from the sites. The NO3-N data were divided into three categories representing probable background concentrations (10 mg L-1). Nitrate-N concentrations were positively correlated to streamflow, upstream area planted in corn (Zea mays L.), and upstream N- fertilizers application rates. Elevated NO3-N concentrations were associated with poorly drained soils and were weakly correlated with population density. Nitrate-N and streamflow data collected during 1989 and 1990 were used to calibrate the model, and data collected during 1994 were used for verification. The model correctly estimated NO3-N concentration categories for 79% of the samples in the calibration data set and 60% of the samples in the verification data set. The model was used to indicate where NO3-N concentrations might be elevated or exceed the NO3-N MCL in streams throughout the study area. The potential for elevated NO3-N concentrations was predicted to be greatest for streams in Illinois, Indiana, Iowa, and western Ohio.
Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre.
Johnson, Kenneth S; Riser, Stephen C; Karl, David M
2010-06-24
Concentrations of dissolved inorganic carbon (DIC) decrease in the surface mixed layers during spring and summer in most of the oligotrophic ocean. Mass balance calculations require that the missing DIC is converted into particulate carbon by photosynthesis. This DIC uptake represents one of the largest components of net community production in the world ocean. However, mixed-layer waters in these regions of the ocean typically contain negligible concentrations of plant nutrients such as nitrate and phosphate. Combined nutrient supply mechanisms including nitrogen fixation, diffusive transport and vertical entrainment are believed to be insufficient to supply the required nutrients for photosynthesis. The basin-scale potential for episodic nutrient transport by eddy events is unresolved. As a result, it is not understood how biologically mediated DIC uptake can be supported in the absence of nutrients. Here we report on high-resolution measurements of nitrate (NO(3)(-)) and oxygen (O(2)) concentration made over 21 months using a profiling float deployed near the Hawaii Ocean Time-series station in the North Pacific subtropical gyre. Our measurements demonstrate that as O(2) was produced and DIC was consumed over two annual cycles, a corresponding seasonal deficit in dissolved NO(3)(-) appeared in water at depths from 100 to 250 m. The deep-water deficit in NO(3)(-) was in near-stoichiometric balance with the fixed nitrogen exported to depth. Thus, when the water column from the surface to 250 m is considered as a whole, there is near equivalence between nutrient supply and demand. Short-lived transport events (<10 days) that connect deep stocks of nitrate to nutrient-poor surface waters were clearly present in 12 of the 127 vertical profiles.
Nitrate reduction in a simulated free-water surface wetland system.
Misiti, Teresa M; Hajaya, Malek G; Pavlostathis, Spyros G
2011-11-01
The feasibility of using a constructed wetland for treatment of nitrate-contaminated groundwater resulting from the land application of biosolids was investigated for a site in the southeastern United States. Biosolids degradation led to the release of ammonia, which upon oxidation resulted in nitrate concentrations in the upper aquifer in the range of 65-400 mg N/L. A laboratory-scale system was constructed in support of a pilot-scale project to investigate the effect of temperature, hydraulic retention time (HRT) and nitrate and carbon loading on denitrification using soil and groundwater from the biosolids application site. The maximum specific reduction rates (MSRR), measured in batch assays conducted with an open to the atmosphere reactor at four initial nitrate concentrations from 70 to 400 mg N/L, showed that the nitrate reduction rate was not affected by the initial nitrate concentration. The MSRR values at 22 °C for nitrate and nitrite were 1.2 ± 0.2 and 0.7 ± 0.1 mg N/mg VSS(COD)-day, respectively. MSRR values were also measured at 5, 10, 15 and 22 °C and the temperature coefficient for nitrate reduction was estimated at 1.13. Based on the performance of laboratory-scale continuous-flow reactors and model simulations, wetland performance can be maintained at high nitrogen removal efficiency (>90%) with an HRT of 3 days or higher and at temperature values as low as 5 °C, as long as there is sufficient biodegradable carbon available to achieve complete denitrification. The results of this study show that based on the climate in the southeastern United States, a constructed wetland can be used for the treatment of nitrate-contaminated groundwater to low, acceptable nitrate levels. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chan, Hoi Ga; Frey, Markus M.; King, Martin D.
2018-02-01
Emissions of nitrogen oxide (NOx = NO + NO2) from the photolysis of nitrate (NO3-) in snow affect the oxidising capacity of the lower troposphere especially in remote regions of high latitudes with little pollution. Current air-snow exchange models are limited by poor understanding of processes and often require unphysical tuning parameters. Here, two multiphase models were developed from physically based parameterisations to describe the interaction of nitrate between the surface layer of the snowpack and the overlying atmosphere. The first model is similar to previous approaches and assumes that below a threshold temperature, To, the air-snow grain interface is pure ice and above To a disordered interface (DI) emerges covering the entire grain surface. The second model assumes that air-ice interactions dominate over all temperatures below melting of ice and that any liquid present above the eutectic temperature is concentrated in micropockets. The models are used to predict the nitrate in surface snow constrained by year-round observations of mixing ratios of nitric acid in air at a cold site on the Antarctic Plateau (Dome C; 75°06' S, 123°33' E; 3233 m a.s.l.) and at a relatively warm site on the Antarctic coast (Halley; 75°35' S, 26°39' E; 35 m a.s.l). The first model agrees reasonably well with observations at Dome C (Cv(RMSE) = 1.34) but performs poorly at Halley (Cv(RMSE) = 89.28) while the second model reproduces with good agreement observations at both sites (Cv(RMSE) = 0.84 at both sites). It is therefore suggested that in winter air-snow interactions of nitrate are determined by non-equilibrium surface adsorption and co-condensation on ice coupled with solid-state diffusion inside the grain, similar to Bock et al. (2016). In summer, however, the air-snow exchange of nitrate is mainly driven by solvation into liquid micropockets following Henry's law with contributions to total surface snow NO3- concentrations of 75 and 80 % at Dome C and Halley, respectively. It is also found that the liquid volume of the snow grain and air-micropocket partitioning of HNO3 are sensitive to both the total solute concentration of mineral ions within the snow and pH of the snow. The second model provides an alternative method to predict nitrate concentration in the surface snow layer which is applicable over the entire range of environmental conditions typical for Antarctica and forms a basis for a future full 1-D snowpack model as well as parameterisations in regional or global atmospheric chemistry models.
Examining the impacts of increased corn production on ...
This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirectional and Environmental Policy Integrated Climate modeling system incorporates agricultural management practices and N exchange processes between the soil and atmosphere to estimate levels of N that may volatilize into the atmosphere, re-deposit, and seep or flow into surface and groundwater. Simulated values from this modeling system were used in a land-use regression model to examine associations between groundwater nitrate-N measurements and a suite of factors related to N fertilizer and groundwater nitrate contamination. Multi-variable modeling analysis revealed that the N-fertilizer rate (versus total) applied to irrigated (versus rainfed) grain corn (versus other crops) was the strongest N-related predictor variable of groundwater nitrate-N concentrations. Application of this multi-variable model considered groundwater nitrate-N concentration responses under two corn production scenarios. Findings suggest that increased corn production between 2002 and 2022 could result in 56% to 79% increase in areas vulnerable to groundwater nitrate-N concentrations ≥ 5 mg/L. These above-threshold areas occur on soils with a hydraulic conductivity 13% higher than the rest of the domain. Additio
NASA Astrophysics Data System (ADS)
Lipschultz, F.; Wofsy, S. C.; Ward, B. B.; Codispoti, L. A.; Friedrich, G.; Elkins, J. W.
1990-10-01
Rates of transformations of inorganic nitrogen were measured in the low oxygen, subsurface waters (50-450 m) of the Eastern Tropical South Pacific during February 1985, using 15N tracer techniques. Oxygen concentrations over the entire region were in a range (O 2 < 2.5 μM) that allowed both oxidation and reduction of nitrogen to occur. A wide range of rates was observed for the lowest oxygen levels, indicating that observed oxygen concentration was not a primary factor regulating nitrogen metabolism. High values for subsurface metabolic rates correspond with high levels for surface primary production, both apparently associated with mesoscale features observed in satellite imagery and with mesoscale features of the current field. Measured rates of nitrate reduction and estimated rates of denitrification were sufficient to respire nearly all of the surface primary production that might be transported into the oxygen deficient zone. These results imply that the supply of labile organic material, especially from the surface, was more important than oxygen concentration in modulating the rates of nitrogen transformations within the low oxygen water mass of the Eastern Tropical South Pacific. The pattern of nitrite oxidation and nitrite reduction activities in the oxygen minimum zone supports the hypothesis ( ANDERSONet al., 1982, Deep-Sea Research, 29, 1113-1140) that nitrite, produced from nitrate reduction, can be recycled by oxidation at the interface between low and high oxygen waters. Rates for denitrification, estimated from nitrate reduction rates, were in harmony with previous estimates based on electron transport system (ETS) measurements and analysis of the nitrate deficit and water residence times. Assimilation rates of NH 4+ were substantial, providing evidence for heterotrophic bacterial growth in low oxygen waters. Ambient concentrations of ammonium were maintained at low values primarily by assimilation; ammonium oxidation was an important mechanism at the surface boundary of the low oxygen zone.
Analysis of nutrients in the surface waters of the Georgia-Florida Coastal Plain study unit, 1970-91
Ham, L.K.; Hatzell, H.H.
1996-01-01
During the early phase of the Georgia-Florida National Water Quality Assessment study, existing information on nutrients was compiled and analyzed in order to evaluate the nutrient concentrations within the 61,545 square mile study unit. Evaluation of the nutrient concentrations collected at surface- water sites between October 1, 1970, and September 30,1991, utilized the environmental characteristics of land resource provinces, land use, and nonpoint and point-source discharges within the study unit. Long-term trends were investigated to determine the temporal distribution of nutrient concentrations. In order to determine a level of concern for nutrient concentrations, the U.S. Environmental Protection Agency (USEPA) guidelines were used-(1) for nitrate concentrations, the maximum contaminant level in public-drinking water supplies (10 mg/L); (2) for ammonia concentrations, the chronic exposure of aquatic organisms to un-ionized ammonia (2.1 mg/L); (3) for total-phosphorus concentrations, the recommended concentration in flowing water to discourage excessive growth of aquatic plants (0.1 mg/L); and (4) for kjeldahl concentrations, however, no guidelines were available. For sites within the 10 major river basins, median nutrient concentrations were generally below USEPA guidelines, except for total-phosphorus concentrations where 45 percent of the medians exceeded the guideline. The only median ammonia concentration that exceeded the guideline occurred at the Swift Creek site (3.4 mg/L), in the Suwannee River basin, perhaps due to wastewater discharges. For all sites within the Withlacoochee, Aucilla, and St. Marys River basins, median concentrations of nitrate, ammonia, and total phosphorus were below the USEPA guidelines. Nutrient data at each monitoring site within each major basin were aggregated for comparisons of median nutrient concentrations among major basins. The Ochlockonee and Hillsborough River basins had the highest median nutrient concentrations, the Aucilla River basin had the lowest. Median concentrations of nitrate and ammonia among all major basins were below USEPA guidelines. The median total-phosphorus concentrations for the following river basins exceeded the USEPA guideline-Hillsborough, St. Johns, Suwannee, Ochlockonee, Satilla, Altamaha, and Ogeechee. Although nutrient concentrations within the study unit were low, long-term increasing trends were found in all four nutrients. All 18 study-unit wide nitrate trends had increasing slopes ranging from less than 0.01 to 0.07 (mg/L)/yr. The range in slope for the 13 ammonia trends was -0.03 to 0.01 (mg/L)/yr with 6 increasing trends in the northern part of the study unit. Of the 17 total-phosphorus trends found in the study unit, 10 were found at sites where the median concentration exceeded the USEPA guideline. At these 10 sites, 4 sites had increasing trends with slopes ranging from less than 0.01 to 0.07 (mg/L)/yr, 5 sites had decreasing trends with slopes ranging from -0.01 to -0.24 (mg/L)/yr, and one site showed a seasonal concentration trend. Median nutrient concentrations were significantly different among the four land resource provinces-Southern Piedmont, Southern Coastal Plain, Coastal Flatwoods, and Central Florida Ridge. As a result, nutrient concentrations among basins with similar nutrient inputs but located within different land resource provinces are not expected to be the same due to differences in the combination of factors such as soil permeability, runoff rates, and stream channel slopes. This concept is an important consideration in designing a surface-water quality network within the study area. For the most part, the Coastal Flatwoods showed the lowest median nutrient concentrations and the Southern Coastal Plain had the highest median nutrient concentrations. Lower median nitrate concentrations in surface-water basins were associated with the forest/wetland land-use category and higher median concentrations of nitrate and ammonia with
Nitrate reduction and its effects on trichloroethylene degradation by granular iron.
Lu, Qiong; Jeen, Sung-Wook; Gui, Lai; Gillham, Robert W
2017-04-01
Laboratory column experiments and reactive transport modeling were performed to evaluate the reduction of nitrate and its effects on trichloroethylene (TCE) degradation by granular iron. In addition to determining degradation kinetics of TCE in the presence of nitrate, the columns used in this study were equipped with electrodes which allowed for in situ measurements of corrosion potentials of the iron material. Together with Raman spectroscopic measurements the mechanisms of decline in iron reactivity were examined. The experimental results showed that the presence of nitrate resulted in an increase in corrosion potential and the formation of thermodynamically stable passive films on the iron surface which impaired iron reactivity. The extent of the decline in iron reactivity was proportional to the nitrate concentration. Consequently, significant decreases in TCE and nitrate degradation rates and migration of degradation profiles for both compounds occurred. Furthermore, the TCE degradation kinetics deviated from the pseudo-first-order model. The results of reactive transport modeling, which related the amount of a passivating iron oxide, hematite (α-Fe 2 O 3 ), to the reactivity of iron, were generally consistent with the patterns of migration of TCE and nitrate profiles observed in the column experiments. More encouragingly, the simulations successfully demonstrated the differences in performances of three columns without changing model parameters other than concentrations of nitrate in the influent. This study could be valuable in the design of iron permeable reactive barriers (PRBs) or in the development of effective maintenance procedures for PRBs treating TCE-contaminated groundwater with elevated nitrate concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nitrate removal with lateral flow sulphur autotrophic denitrification reactor.
Lv, Xiaomei; Shao, Mingfei; Li, Ji; Xie, Chuanbo
2014-01-01
An innovative lateral flow sulphur autotrophic denitrification (LFSAD) reactor was developed in this study; the treatment performance was evaluated and compared with traditional sulphur/limestone autotrophic denitrification (SLAD) reactor. Results showed that nitrite accumulation in the LFSAD reactor was less than 1.0 mg/L during the whole operation. Denitrification rate increased with the increased initial alkalinity and was approaching saturation when initial alkalinity exceeded 2.5 times the theoretical value. Higher influent nitrate concentration could facilitate nitrate removal capacity. In addition, denitrification efficiency could be promoted under an appropriate reflux ratio, and the highest nitrate removal percentage was achieved under reflux ratio of 200%, increased by 23.8% than that without reflux. Running resistance was only about 1/9 of that in SLAD reactor with equal amount of nitrate removed, which was the prominent excellence of the new reactor. In short, this study indicated that the developed reactor was feasible for nitrate removal from waters with lower concentrations, including contaminated surface water, groundwater or secondary effluent of municipal wastewater treatment with fairly low running resistance. The innovation in reactor design in this study may bring forth new ideas of reactor development of sulphur autotrophic denitrification for nitrate-contaminated water treatment.
NASA Astrophysics Data System (ADS)
Hafich, Katya A.
High elevation ecosystems throughout the Colorado Front Range are undergoing changes in biogeochemical cycling due to an increase in nitrogen deposition in precipitation and a changing climate. While nitrate concentrations continue to rise in surface water of the Green Lakes Valley (GLV) by 0.27 umol L-1 per year, atmospheric deposition of inorganic nitrogen has recently curtailed due to drought, leaving a gap in our understanding of the source of the increased export of nitrate. Here, we employ a novel triple isotope method, using Delta 17O-NO3- for the first time in an alpine catchment to quantify the terrestrial and atmospheric contribution of nitrate to numerous water types in GLV. Results show that nitrate in surface waters, including talus, soil water and rock glacier melt, is more than 75% terrestrial, with the strongest atmospheric signals present during snowmelt. Results suggest that alpine catchment biogeochemistry in GLV has transitioned to a net nitrification system.
Pathways for nitrate release from an alpine watershed: Determination using δ15N and δ18O
Campbell, Donald H.; Kendall, Carol; Chang, Cecily C.Y.; Silva, Steven R.; Tonnessen, Kathy A.
2002-01-01
Snowpack, snowmelt, precipitation, surface water, and groundwater samples from the Loch Vale watershed in Colorado were analyzed for δ15N and δ18O of nitrate to determine the processes controlling the release of atmospherically deposited nitrogen from alpine and subalpine ecosystems. Although overlap was found between the δ15N(NO3) values for all water types (−4 to +6‰), the δ18O(NO3) values for surface water and groundwater (+10 to +30‰) were usually distinct from snowpack, snowmelt, and rainfall values (+40 to +70‰). During snowmelt, δ18O(NO3) indicated that about half of the nitrate in stream water was the product of microbial nitrification; at other times that amount was greater than half. Springs emerging from talus deposits had high nitrate concentrations and a seasonal pattern in δ18O(NO3) that was similar to the pattern in the streams, indicating that shallow groundwater in talus deposits is a likely source of stream water nitrate. Only a few samples of surface water and groundwater collected during early snowmelt and large summer rain events had isotopic compositions that indicated most of the nitrate came directly from atmospheric deposition with no biological assimilation and release. This study demonstrates the value of the nitrate double‐isotope technique for determining nitrogen‐cycling processes and sources of nitrate in small, undisturbed watersheds that are enriched with inorganic nitrogen.
NASA Astrophysics Data System (ADS)
Heikoop, J. M.; Newman, B. D.; Arendt, C. A.; Andresen, C. G.; Lara, M. J.; Wainwright, H. M.; Throckmorton, H.; Graham, D. E.; Wilson, C. J.; Wullschleger, S. D.; Romanovsky, V. E.; Bolton, W. R.; Wales, N. A.; Rowland, J. C.
2016-12-01
Studies conducted in the Barrow Environmental Observatory under the auspices of the United States Department of Energy Next Generation Ecosystem Experiment (NGEE) - Arctic have demonstrated measurable nitrate concentrations ranging from <1 to 17 mg/L in the unsaturated centers of high-centered polygons. Conversely, nitrate concentrations in saturated areas of polygonal terrain were generally below the limit of detection. Isotopic analysis of this nitrate demonstrates that it results from microbial nitrification. The study site currently comprises mostly saturated soils. Several factors, however, could lead to drying of soils on different time scales. These include 1) topographic inversion of polygonal terrain associated with ice-wedge degradation, 2) increased connectivity and drainage of polygon troughs, similarly related to the thawing and subsidence of ice-wedges, and 3) near-surface soil drainage associated with wide-spread permafrost thaw and active layer deepening. Using a GIS approach we will estimate the current inventory of nitrate in the NGEE intensive study site using soil moisture data and existing unsaturated zone nitrate concentration data and new concentration data collected in the summer of 2016 from high- and flat-centered polygons and the elevated rims of low-centered polygons. Using this baseline, we will present potential future inventories based on various scenarios of active layer thickening and landscape geomorphic reorganization associated with permafrost thaw. Predicted inventories will be based solely on active layer moisture changes, ignoring for now potential changes associated with mineralization and nitrification of previously frozen old organic matter and changes in vegetation communities. We wish to demonstrate that physical landscape changes alone could have a profound effect on future nitrate availability. Nitrate data from recent NGEE campaigns in the Seward Peninsula of Alaska will also be presented.
NASA Technical Reports Server (NTRS)
Dugdale, Richard C.; Wilkerson, Frances P.; Morel, Andre; Bricaud, Annick
1989-01-01
A method has been developed for estimating new production in upwelling systems from remotely sensed surface temperatures. A shift-up model predicts the rate of adaptation of nitrate uptake. The time base for the production cycle is obtained from a knowledge of surface heating rates and differences in temperature between the point of upwelling and each pixel. Nitrate concentrations are obtained from temperature-nitrate regression equations. The model was developed for the northwest Africa upwelling region, where shipboard measurements of new production were available. It can be employed in two modes, the first using only surface temperatures, and the second in which CZCS color data are incorporated. The major advance offered by this method is the capability to estimate new production on spatial and time scales inaccessible with shipboard approaches.
NASA Astrophysics Data System (ADS)
Okumura, Azusa; Hosono, Takahiro; Shimada, Jun
2017-04-01
An application of fertilizers and manure often caused an increase of nitrate concentration in groundwater in the agricultural area. The study area, Kumamoto, is the field facing this type of problem. Previous studies using nitrogen-oxygen isotope ratios in nitrate showed that accumulation of chemical fertilizers is the major factor for observed nitrate contamination. However, once it loaded nitrogen compounds may change its form and isotopic composition during transportation within unsaturation zone prior to reach the aquifer. However, such kind of knowledge is still rarely accumulated. To clarify the behavior and transportation manner of nitrogen in the unsaturated zone, we analyzed the nitrogen-oxygen isotope ratios of the extracted soil water of the unsaturated zone soils from the farmland having different fertilization logs. In addition, we attempted to verify the origin of nitrate in soil water by comparing with previous isotopic results. The plateaus-like topography of the study area is consists of the pyroclastic flow deposits. Land use is mainly farmland and this area is a major source of nitrogen load and transport route into the aquifer. Nitrate concentration in groundwater at terraces recharge area has been reported about 40 mg/L. Drilling survey carried out in the unsaturated zone soil on 4 farmlands with the different land use logs in such terraces. Drilling points S1 and S2 were treated by both slurry and chemical fertilizers, on the other hand, point C1 and C2 were applied chemical fertilizers only. The drilling depth was up to 14-15 m, and soil samples were kept on evacuated condition after sectioning into 10 cm interval. The soil water was extracted using a centrifuge machine. The extracted soil water was measured for the nitrogen-oxygen isotope ratios in nitrate and major ions concentrations. All cores showed high nitrate concentrations in the surface layer (260, 440, 172 and 244 mg/L for S1, S2, C1, and C2 respectively). The concentrations became lower downwards for all cores. However, the concentrations were still high even at the point of 10 m (about 100-200 mg/L) for all cores. In the S1 and S2 cores nitrogen and oxygen isotopic results indicated occurrence of volatilization and nitrification in the surface layer, but in the C1 and C2 cores this signature was not clearly shown. The isotope compositions become homogenized downwards to have specific values depending on fertilization logs. This result is consistent with the previous studies. In the presentation, we will present detailed discussions regarding the behaviors of the isotope ratios in nitrate.
NASA Astrophysics Data System (ADS)
Vieno, M.; Heal, M. R.; Hallsworth, S.; Famulari, D.; Doherty, R. M.; Dore, A. J.; Tang, Y. S.; Braban, C. F.; Leaver, D.; Sutton, M. A.; Reis, S.
2013-12-01
Surface concentrations of secondary inorganic particle components over the UK have been analysed for 2001-2010 using the EMEP4UK regional atmospheric chemistry transport model. In early 2003 an episode of substantially elevated surface concentrations of ammonium nitrate was measured across the UK by the AGANET network. The EMEP4UK model was able accurately to represent both the long-term decadal surface concentrations and the episode in 2003. The latter was identified as consisting of three separate episodes, each of less than 1 month duration, in February, March and April. The primary cause of the elevated nitrate levels across the UK was meteorological, a persistent high pressure system, but whose varying location impacted the relative importance of transboundary vs. domestic emissions. Whilst long-range transport dominated the elevated nitrate in February, in contrast it was domestic emissions that mainly contributed to the March episode, and for the April episode both domestic emissions and long-range transport contributed. A prolonged episode such as the one in early 2003 can have substantial impact on annual average concentrations. The episode led to annual concentration differences at the regional scale of similar magnitude to those driven by long-term changes in precursor emissions over the full decade investigated here. The results demonstrate that a substantial part of the UK, particularly the south and south-east, may be close to or actually exceeding annual mean limit values because of import of inorganic aerosol components from continental Europe under specific conditions. The results reinforce the importance of employing multiple year simulations in the assessment of emissions reduction scenarios on PM concentrations and the need for international agreements to address the transboundary component of air pollution.
Nutrients, organic compounds, and mercury in the Meduxnekeag River watershed, Maine, 2003
Schalk, Charles W.; Tornes, Lan
2005-01-01
In 2003, the U.S. Geological Survey, in cooperation with the Houlton Band of Maliseet Indians, sampled streambed sediments and surface water of the Meduxnekeag River watershed in northeastern Maine under various hydrologic conditions for nutrients, hydrophobic organic compounds, and mercury. Nutrients were sampled to address concerns related to summer algal blooms, and organic compounds and mercury were sampled to address concerns about regional depositional patterns and overall watershed quality. In most surface-water samples, phosphorus was not detected or was detected at concentrations below the minimum reporting limit. Nitrate and organic nitrogen were detected in every surface-water sample for which they were analyzed; the highest concentration of total nitrogen was 0.75 milligrams per liter during low flow. Instantaneous nitrogen loads and yields were calculated at four stations for two sampling events. These data indicate that the part of the watershed that includes Houlton, its wastewater-treatment plant, and four small urban brooks may have contributed high concentrations of nitrate to Meduxnekeag River during the high flows on April 23-24 and high concentrations of both organic and nitrate nitrogen on June 2-3. Mercury was detected in all three bed-sediment samples for which it was analyzed; concentrations were similar to those reported from regional studies. Notable organic compounds detected in bed sediments included p,p'-DDE and p,p'-DDT (pesticides of the DDT family) and several polycyclic aromatic hydrocarbons. Polychlorinated biphenyls (PCBs) and phthalates were not detected in any sample, whereas p-cresol was the only phenolic compound detected. Phosphorus was detected at concentrations below 700 milligrams per kilogram in each bed-sediment sample for which it was analyzed. Data were insufficient to establish whether the lack of large algal blooms in 2003 was related to low concentrations of phosphorus.
Nitrate photolysis in salty snow
NASA Astrophysics Data System (ADS)
Donaldson, D. J.; Morenz, K.; Shi, Q.; Murphy, J. G.
2016-12-01
Nitrate photolysis from snow can have a significant impact on the oxidative capacity of the local atmosphere, but the factors affecting the release of gas phase products are not well understood. Here, we report the first systematic study of the amounts of NO, NO2, and total nitrogen oxides (NOy) emitted from illuminated snow samples as a function of both nitrate and total salt (NaCl and Instant Ocean) concentration. We show that the release of nitrogen oxides to the gas phase is directly related to the expected nitrate concentration in the brine at the surface of the snow crystals, increasing to a plateau value with increasing nitrate, and generally decreasing with increasing NaCl or Instant Ocean (I.O.). In frozen mixed nitrate (25 mM) - salt (0-500 mM) solutions, there is an increase in gas phase NO2 seen at low added salt amounts: NO2 production is enhanced by 35% at low prefreezing [NaCl] and by 70% at similar prefreezing [I.O.]. Raman microscopy of frozen nitrate-salt solutions shows evidence of stronger nitrate exclusion to the air interface in the presence of I.O. than with added NaCl. The enhancement in nitrogen oxides emission in the presence of salts may prove to be important to the atmospheric oxidative capacity in polar regions.
NASA Astrophysics Data System (ADS)
Zhang, Songhe; Pang, Si; Wang, Peifang; Wang, Chao; Guo, Chuan; Addo, Felix Gyawu; Li, Yi
2016-10-01
Submerged macrophytes play important roles in constructed wetlands and natural water bodies, as these organisms remove nutrients and provide large surfaces for biofilms, which are beneficial for nitrogen removal, particularly from submerged macrophyte-dominated water columns. However, information on the responses of biofilms to submerged macrophytes and nitrogen molecules is limited. In the present study, bacterial community structure and denitrifiers were investigated in biofilms on the leaves of four submerged macrophytes and artificial plants exposed to two nitrate concentrations. The biofilm cells were evenly distributed on artificial plants but appeared in microcolonies on the surfaces of submerged macrophytes. Proteobacteria was the most abundant phylum in all samples, accounting for 27.3-64.8% of the high-quality bacterial reads, followed by Chloroflexi (3.7-25.4%), Firmicutes (3.0-20.1%), Acidobacteria (2.7-15.7%), Actinobacteria (2.2-8.7%), Bacteroidetes (0.5-9.7%), and Verrucomicrobia (2.4-5.2%). Cluster analysis showed that bacterial community structure can be significantly different on macrophytes versus from those on artificial plants. Redundancy analysis showed that electrical conductivity and nitrate concentration were positively correlated with Shannon index and operational taxonomic unit (OTU) richness (log10 transformed) but somewhat negatively correlated with microbial density. The relative abundances of five denitrifying genes were positively correlated with nitrate concentration and electrical conductivity but negatively correlated with dissolved oxygen.
Aguirre, Ana-Maria; Bassi, Amarjeet
2013-08-01
The microalgae Chlorella vulgaris produce lipids that after extraction from cells can be converted into biodiesel. However, these lipids cannot be efficiently extracted from cells due to the presence of the microalgae cell wall, which acts as a barrier for lipid removal when traditional extraction methods are employed. Therefore, a microalgae system with high lipid productivity and thinner cell walls could be more suitable for lipid production from microalgae. This study addresses the effect of culture conditions, specifically carbon dioxide and sodium nitrate concentrations, on biomass concentration and the ratio of lipid productivity/cellulose content. Optimization of culture conditions was done by response surface methodology. The empirical model for biomass concentration (R(2) = 96.0%) led to a predicted maximum of 1123.2 mg dw L(-1) when carbon dioxide and sodium nitrate concentrations were 2.33% (v/v) and 5.77 mM, respectively. For lipid productivity/cellulose content ratio (R(2) = 95.2%) the maximum predicted value was 0.46 (mg lipid L(-1) day(-1) )(mg cellulose mg biomass(-1) )(-1) when carbon dioxide concentration was 4.02% (v/v) and sodium nitrate concentration was 3.21 mM. A common optimum point for both variables (biomass concentration and lipid productivity/cellulose content ratio) was also found, predicting a biomass concentration of 1119.7 mg dw L(-1) and lipid productivity/cellulose content ratio of 0.44 (mg lipid L(-1) day(-1) )(mg cellulose mg biomass(-1) )(-1) for culture conditions of 3.77% (v/v) carbon dioxide and 4.01 mM sodium nitrate. The models were experimentally validated and results supported their accuracy. This study shows that it is possible to improve lipid productivity/cellulose content by manipulation of culture conditions, which may be applicable to any scale of bioreactors. Copyright © 2013 Wiley Periodicals, Inc.
Kishikawa, Hiroshi; Nishida, Jiro; Ichikawa, Hitoshi; Kaida, Shogo; Matsukubo, Takashi; Miura, Soichiro; Morishita, Tetsuo; Hibi, Toshifumi
2011-01-01
In the normal acid-secreting stomach, luminally generated nitric oxide, which contributes to carcinogenesis in the proximal stomach, is associated with the concentration of nitrate plus nitrite (nitrate/nitrite) in gastric juice. We investigated whether the serum nitrate/nitrite concentration is associated with that of gastric juice and whether it can be used as a serum marker. Serum and gastric juice nitrate/nitrite concentration, Helicobacter pylori antibody, and gastric pH were measured in 176 patients undergoing upper endoscopy. Multiple regression analysis revealed that serum nitrate/nitrite concentration was the best independent predictor of gastric juice nitrate/nitrite concentration. On single regression analysis, serum and gastric juice nitrate/nitrite concentration were significantly correlated, according to the following equation: gastric juice nitrate/nitrite concentration (μmol/l) = 3.93 - 0.54 × serum nitrate/nitrite concentration (μmol/l; correlation coefficient = 0.429, p < 0.001). In analyses confined to subjects with gastric pH less than 2.0, and in those with serum markers suggesting normal acid secretion (pepsinogen-I >30 ng/ml and negative H. pylori antibody), the serum nitrate/nitrite concentration was an independent predictor of the gastric juice nitrate/nitrite concentration (p < 0.001). Measuring the serum nitrate/nitrite concentration has potential in estimating the gastric juice nitrate/nitrite concentration. The serum nitrate/nitrite concentration could be useful as a marker for mutagenesis in the proximal stomach. Copyright © 2011 S. Karger AG, Basel.
Investigating a Sulphate-Nitrate Chemical Indirect Effect over Europe from 1980-2010
NASA Astrophysics Data System (ADS)
Pearce, H.; Mann, G. W.; Arnold, S.; O'Connor, F.; Conibear, L.; Turnock, S.; Rumbold, S.; Benduhn, F.
2017-12-01
Sulphur dioxide emission reductions have been successful in reducing surface sulphate concentrations over Europe between 1980 and 2010, with positive implications for air quality and human health. However the response of nitrate aerosol concentrations to declining NOx emissions has been non-linear. Previous studies have indicated that decreasing ammonium sulphate formation, as a result of SO2 emission reduction, may be partly responsible for this non-linearity by increasing the availability of ammonia and, hence, indirectly increasing ammonium nitrate aerosol formation. We use the UM-UKCA composition-climate model, including the GLOMAP interactive aerosol microphysics module and a recently developed `hybrid' dissolution solver (HyDis), to investigate the size-resolved partitioning of ammonia and nitric acid to the particle phase over Europe in the period 1980 to 2010. Anthropogenic emissions of SO2, NOx and NH3 are included from the MACCity inventory and change by approximately -79%, -33% and +30% respectively over Europe in this time. We evaluate the UM-UKCA simulated 1980-2010 variability in nitrate, ammonium and sulphate aerosol mass concentrations and aerosol pH, with comparison to EMEP observations, and isolate the indirect influence of reduced SO2 emissions on nitrate formation. Preliminary sensitivity tests indicate that simulated nitrate aerosol concentrations over Europe were 8% higher in 2009 than they would have been if SO2 emissions had not been reduced. The implications of this change for air quality, aerosol acidity and regional climate will be presented.
Garcia, Valerie; Cooter, Ellen; Crooks, James; Hinckley, Brian; Murphy, Mark; Xing, Xiangnan
2017-05-15
This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirectional and Environmental Policy Integrated Climate modeling system incorporates agricultural management practices and N exchange processes between the soil and atmosphere to estimate levels of N that may volatilize into the atmosphere, re-deposit, and seep or flow into surface and groundwater. Simulated values from this modeling system were used in a land-use regression model to examine associations between groundwater nitrate-N measurements and a suite of factors related to N fertilizer and groundwater nitrate contamination. Multi-variable modeling analysis revealed that the N-fertilizer rate (versus total) applied to irrigated (versus rainfed) grain corn (versus other crops) was the strongest N-related predictor variable of groundwater nitrate-N concentrations. Application of this multi-variable model considered groundwater nitrate-N concentration responses under two corn production scenarios. Findings suggest that increased corn production between 2002 and 2022 could result in 56% to 79% increase in areas vulnerable to groundwater nitrate-N concentrations ≥5mg/L. These above-threshold areas occur on soils with a hydraulic conductivity 13% higher than the rest of the domain. Additionally, the average number of animal feeding operations (AFOs) for these areas was nearly 5 times higher, and the mean N-fertilizer rate was 4 times higher. Finally, we found that areas prone to high groundwater nitrate-N concentrations attributable to the expansion scenario did not occur in new grid cells of irrigated grain-corn croplands, but were clustered around areas of existing corn crops. This application demonstrates the value of the coupled modeling system in developing spatially refined multi-variable models to provide information for geographic locations lacking complete observational data; and in projecting possible groundwater nitrate-N concentration outcomes under alternative future crop production scenarios. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Kim, Y.; Woo, N.
2003-04-01
The study area is a small catchment developed along a stream, Hwabong-chun, running toward north, with a length of about 4 km. Because of gentle slopes of the area, land is utilized for various agricultural activities in different scales including paddy fields, grape vineyards, and intensive livestock facilities of swine, cow and poultry. In this area, groundwater is the main source of domestic and agricultural water-supply, and appears to be under severe risk of contamination from various potential sources. Therefore, this study was initiated to identify the extent and sources of groundwater contamination by nitrate. A total of 49 groundwater and surface-water samples were collected in February and April 2002, and concentrations of dissolved constituents and nitrogen-isotope ratio of nitrate were analyzed. Little change of concentrations of dissolved ions in samples of Feb. and Apr. implies that spring discharge of groundwater might not occur yet. About 77% of groundwater samples have NO3-N concentrations of greater than 3 mg/L, indicating their origins from anthropogenic sources at surface. About 37% of samples detected NO3-N levels higher than 10 mg/L, Korean Drinking Water Guidelines. Although groundwater is being used for domestic uses during the winter season, nitrate levels show no significant changes between February and April. This implies that the sources would be large enough to continuously discharge nitrate into the groundwater system. Correlation matrix shows Na, Ca, Cl, NO3-N, SO4 moving together in the groundwater system. Results of Principal Component Analysis(PCA) indicate these constituents are the most dominant factor controlling groundwater quality in the area. Seepages from a swine farm and a poultry farm were analyzed and show significantly elevated concentrations of K, Na, Ca, Cl, NH4, PO4, SO4. Considering low mobility of K and PO4 and transformation of NH4 to NO3 in the shallow subsurface environments, those water-quality controlling constituents are supposed to be originated from seepages of the livestock facilities. About 59% of total groundwater samples have (del)15N-NO3 values greater than 8 ‰, indicating the influence of seepage from manures and septic tanks. Countours of (del)15N-NO3 match well with the distribution of nitrate concentrations in groundwater. However, a part of southern area without the livestock facilities also shows high concentrations of nitrate and high values of (del)15N in groundwater. Based on the landuse history of the area, we interpreted that the elevated nitrate concentrations were due to the abondoned facilities, which had been operated until 5-years ago. This further implies two important facts: 1) records of landuse history should be examined to identify contamination sources properly, and 2) nitrate contamination from seepages of livestock facilities could last for a while even after disclosure of facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganzha, V.D.; Konoplev, K.A.; Mashchetov, V.P.
1986-03-01
This study was carried out in connection with the preparation of the design for the PIK research reactor. The corrosion resistance of 0Kh18N10T steel in gadolinium nitrate solutions was tested in laboratory, ampule, and loop corrosion tests. At all stages of the tests, the authors investigated the effect produced on the corrosion processes by factors related to the technology of preparation of the equipment (mechanical working of the surfaces, welding, sensitizing, annealing, stressed state of the material, cracks, etc.). Ampule tests were conducted in order to determine the effect produced by reactor radiation and shutdown regimes on the corrosion resistancemore » of the steel. Special ampules made of 0Kh18N10T steel were filled with gadolinium nitrate solutions of various concentrations, sealed, and irradiated for a long period in the core of the VVR-M reactor at a temperature of 20-50 degrees C. The results of the tests are shown. The investigations showed that the corrosion of 0Kh18N10T steel in solutions of gadolinium nitrate is uniform, regardless of the state of the surface, the concentration of gadolinium nitrate, the duration of the tests, the action of the reactor radiation under static and dynamic conditions, and the presence of mechanical stresses.« less
Nitrate pollution and surface water chemistry in Shimabara, Nagasaki Prefecture, Japan
NASA Astrophysics Data System (ADS)
Nakagawa, K.; Amano, H.
2017-12-01
Shimabara city has been experiencing serious nitrate pollution in groundwater. To evaluate nitrate pollution and water chemistry in surface water, water samples were collected at 42 sampling points in 15 rivers in Shimabara including a part of Unzen city from January to February 2017. Firstly, spatial distribution of water chemistry was assessed by describing stiff and piper-trilinear diagrams using major ions concentrations. Most of the samples showed Ca-HCO3 or Ca-(NO3+SO4) water types. It corresponds to groundwater chemistry. Some samples were classified into characteristic water types such as Na-Cl, (Na+K)-HCO3, and Ca-Cl. These results indicate sea water mixing and anthropogenic pollution. At the upstream of Nishi-river, although water chemistry showed Ca-HCO3, ions concentrations were higher than that of the other rivers. It indicates that this site was affected by the peripheral anthropogenic activities. Secondly, nitrate-pollution assessment was performed by using NO3-, NO2-, coprostanol (5β(H)-Cholestan-3β-ol), and cholestanol (5α(H)-Cholestan-3β-ol). NO2-N was detected at the 2 sampling points and exceeded drinking standard 0.9 mg L-1 for bottle-fed infants (WHO, 2011). NO3-N + NO2-N concentrations exceeded Japanese drinking standard 10 mg L-1 at 18 sampling points. The highest concentration was 27.5 mg L-1. Higher NO3-N levels were observed in the rivers in the northern parts of the study area. Coprostanol has been used as a fecal contamination indicator, since it can be found in only feces of higher animals. Coprostanol concentrations at 8 sampling points exceeded 700 ng L-1 (Australian drinking water standard). Coprostanol has a potential to distinguish the nitrate pollution sources between chemical fertilizer or livestock wastes, since water samples with similar NO3-N + NO2-N concentration showed distinct coprostanol concentration. The sterols ratio (5β/ (5β+5α)) exceeded 0.5 at 18 sampling points. This reveals that fecal pollution has occurred.
NASA Astrophysics Data System (ADS)
Tavakoly, A. A.; Habets, F.; Saleh, F.; Yang, Z. L.
2017-12-01
Human activities such as the cultivation of N-fixing crops, burning of fossil fuels, discharging of industrial and domestic effluents, and extensive usage of fertilizers have recently accelerated the nitrogen loading to watersheds worldwide. Increasing nitrate concentration in surface water and groundwater is a major concern in watersheds with extensive agricultural activities. Nutrient enrichment is one of the major environmental problems in the French coastal zone. To understand and predict interactions between agriculture, surface water and groundwater nitrate contaminants, this study presents a modeling framework that couples the agronomic STICS model with Eau-Dyssée, a distributed hydrologic modeling system to simulate groundwater-surface water interaction. The coupled system is implemented on the Seine River Basin with an area of 88,000 km2 to compute daily nitrate contaminants. Representing a sophisticated hydrosystem with several aquifers and including the megalopolis of Paris, the Seine River Basin is well-known as one of the most productive agricultural areas in France. The STICS-EauDyssée framework is evaluated for a long-term simulation covering 39 years (1971-2010). Model results show that the simulated nitrate highly depends on the inflow produced by surface and subsurface waters. Daily simulation shows that the model captures the seasonal variation of observations and that the overall long-term simulation of nitrate contaminant is satisfactory at the regional scale.
NASA Astrophysics Data System (ADS)
Rozemeijer, J.; De Geus, D.; Ekkelenkamp, R.
2016-12-01
Sociological surveys suggest that farmers understand that agriculture contributes to nutrient pollution but the same surveys also indicate that in the absence of on-farm nitrate data, farmers assume someone else is causing the problem. This tendency to overestimate our own abilities is common to all of us and often described as "Lake Wobegon Syndrome" after the mythical town where "where all the women are strong, all the men are good-looking, and all the children are above average." We developed the Nitrate App for smartphones to enable farmers and citizens to collect and share nitrate concentration measurements. The app accurately reads and interprets nitrate test strips, directly displays the measured concentration, and gives the option to share the result. The shared results are immediately visualised in the online Delta Data Viewer. Within this viewer, user group specific combinations of background maps, monitoring data, and study area characteristics can be configured. Through the Nitrate App's mapping function project managers can more accurately target conservation practices to areas with the highest nitrate concentrations and loads. Furthermore, we expect that the actual on-farm data helps to overcome the "Lake Wobegon Effect" and will encourage farmers to talk to specialists about the right nutrient best management practices (BMP's) for their farm. After implementing these BMP's, the farmers can keep monitoring to evaluate the reduction in nitrate losses. In this presentation, we explain the Nitrate App technology and present the results of the first field applications in The Netherlands. We expect this free to download app to have wide transferability across watershed projects worldwide focusing on nitrate contamination of groundwater or surface water. Its simple design requires no special equipment outside of the nitrate test strips, a reference card, and a smartphone. The technology is also transferable to other relevant solutes for which test strips are available, like ammonium, phosphate, sulphate, chloride, and pH.
Concentrations and deposition of nitrogenous air pollutants in a ponderosa/Jeffrey pine canopy
Andrzej Bytnerowicz; Mark E. Fenn; Michael J. Arbaugh
1998-01-01
Nitrogenous (N) air pollutant concentrations and surface deposition of nitrate (NO3-) and ammonium (NH4+) to branches of ponderosa pine (Pinus ponderosa Dougl. ex. Laws.) seedlings were measured on a vertical transect in a mature ponderosa/Jeffrey (...
Rasiah, V; Armour, J D; Cogle, A L
2005-01-01
The impact of fertilised cropping on nitrate-N dynamics in groundwater (GW) was assessed in a catchment from piezometers installed: (i) to different depths, (ii) in different soil types, (iii) on different positions on landscape, and (iv) compared with the Australian and New Zealand Environmental and Conservation Council guideline values provided for different aquatic ecosystems. The GW and NO(3)-N concentration dynamics were monitored in 39 piezometer wells, installed to 5-90 m depth, under fertilized sugarcane (Saccharum officinarum-S) in the Johnstone River Catchment, Australia, from 1999 January through September 2002. The median nitrate-N concentration ranged from 14 to 1511 microg L(-1), and the 80th percentile from 0 to 1341 microg L(-1). In 34 out of the 39 piezometer wells the 80th percentile or 80% of the nitrate-N values were higher than 30 microg L(-1), which is the maximum trigger value provided in the ANZECC table for sustainable health of different aquatic ecosystems. Nitrate-N concentration decreased with increasing well depth, increasing depth of water in wells, and with decreasing relief on landscape. Nitrate-N was higher in alluvial soil profiles than on those formed in-situ. Nitrate-N increased with increasing rainfall at the beginning of the rainy season, fluctuated during the peak rainy period, and then decreased when the rain ceased. The rapid decrease in GW after the rains ceased suggested potential existed for nitrate-N to be discharged as lateral-flow into streams. This may contribute towards the deterioration in the health of down-stream aquatic ecosystems.
NASA Astrophysics Data System (ADS)
Sigler, W. Adam; Ewing, Stephanie A.; Jones, Clain A.; Payn, Robert A.; Brookshire, E. N. Jack; Klassen, Jane K.; Jackson-Smith, Douglas; Weissmann, Gary S.
2018-01-01
Elevated nitrate in shallow aquifers is common in agricultural areas and remediation requires an understanding of nitrogen (N) leaching at a variety of spatial scales. Characterization of the drivers of nitrate leaching at the mesoscale level (102-103 km2) is needed to bridge from field-scale observations to the landscape-scale context, allowing informed water resource management decisions. Here we explore patterns in nitrate leaching rates across a depositional landform in the northern Great Plains within the Upper Missouri Basin, where the predominant land use is non-irrigated small grain production, and nitrate-N concentrations above 10 mg L-1 are common. The shallow Moccasin terrace (260 km2) aquifer is bounded in vertical extent by underlying shale and is isolated from mountain front stream recharge, such that aquifer recharge is dominated by infiltration of precipitation through agricultural soils. This configuration presents a simple landform-scale water balance that we leveraged to estimate leaching rates using groundwater nitrate concentrations and surface water discharge, and quantify uncertainty using a Monte Carlo approach based on spatial variation in observations of groundwater nitrate concentrations. A participatory research approach allowed local farmer knowledge of the landscape to be incorporated into the study design, improved selection of and access to sample sites, and enhanced prospects for addressing nitrate leaching through collaborative understanding of system hydrology. Mean landform-scale nitrate-N leaching rates were 11 and 18 kg ha-1 yr-1 during the 2012-2014 study for the two largest catchments draining the terrace. Over a standard three-year crop rotation, these leaching rates represent 19-31% of typical fertilizer N application rates; however, leaching losses are likely derived not only from fertilizer but also from soil organic N mineralization, and are apparently higher during the post-fallow phase of the crop rotation. Groundwater apparent age is relatively young (0-5 yr) based on tritium-helium analysis, but whole-aquifer turnover time calculations are an order of magnitude longer (20-23 yr), suggesting changes in groundwater may lag behind changes in land management by years to decades.
Mark Fenn; Mark Poth; Thomas Meixner
2005-01-01
Recent studies in the transverse ranges (including Class I Wilderness areas) of southern California have emphasized the strong linkage between levels of air pollution-related atmospheric nitrogen (N) inputs into montane watersheds and levels of nitrate in surface and subsurface drainage waters (fig. 1). Nitrate concentrations in streamwater in southern California are...
Tracing nitrates and sulphates in river basins using isotope techniques.
Rock, L; Mayer, B
2006-01-01
The objective of this paper is to outline how stable isotope techniques can contribute to the elucidation of the sources and the fate of riverine nitrate and sulphate in watershed studies. The example used is the Oldman River Basin (OMRB), located in southern Alberta (Canada). Increasing sulphate concentrations and decreasing delta(34)S values along the flowpath of the Oldman River indicate that oxidation of pyrite in tills is a major source of riverine sulphate in the agriculturally used portion of the OMRB. Chemical and isotopic data showed that manure-derived nitrogen contributes significantly to the increase in nitrate concentrations in the Oldman River and its tributaries draining agricultural land. It is suggested that hydrological conditions control agricultural return flows to the surface water bodies in southern Alberta and impart significant seasonal variations on concentrations and isotopic compositions of riverine nitrate. Combining isotopic, chemical, and hydrometric data permitted us to estimate the relative contribution of major sources to the total solute fluxes. Hence, we submit that isotopic measurements can make an important contribution to the identification of nutrient and pollutant sources and to river basin management.
NASA Astrophysics Data System (ADS)
Murgulet, D.; Tick, G. R.
2008-12-01
Continued and extensive residential and agricultural development of near-shore areas in southern Baldwin County, Alabama has led to increased inputs of nitrogen (N) to groundwater and to the Gulf of Mexico. Nitrate (NO3-) concentrations in several groundwater wells exceeded the regulatory drinking water standards (10 mg/L nitrate-N). Groundwater and surface water samples were analyzed for nitrate, phosphate, salinity, chloride, and total dissolved solids concentrations to assess the extent of nitrate contamination. Nitrogen and oxygen isotopes of nitrate (e.g., δ15N and δ18O of nitrate) were used in conjunction with other isotopic data (e.g., 13C, and 14C, and hydrogen and oxygen isotopes of groundwater) and hydrogeochemical data to place constraints on potential sources of nitrate. The δ15N and δ18O of groundwater nitrate values ranged between +3.1 and +9.6‰ and +4.2 and +8.7‰, respectively. This range of values suggests that nitrate is primarily derived from nitrification of reduced N compounds (primarily ammonia) from fertilizer and manure or septic waste. However, an overwhelming number of samples show isotopic signatures which indicate that the predominant source of nitrate in these aguifers is the fertilizer and to some extent, for deeper wells with older groundwater, the atmospheric nitrate. The narrow range of δ18O values further confirms the primary nitrate sources. The δ15N and δ18O of nitrate data indicate that denitrification was not an important processes in these aquifers. This conclusion is also supported by the 114C data which revealed relatively young groundwaters with sufficiently high oxygen levels. In the absence of denitrification and the presence of a permanent source, it is expected that the elevated groundwater nitrate concentrations will not be readily attenuated posing a potential contamination and degradation problem of coastal discharge zones into the future. The δ13C and δ18O of groundwater data indicates that water in the aquifer system of the study area is most likely to have originated from precipitation and soil infiltration through relatively localized recharge.
NASA Astrophysics Data System (ADS)
Woodward, Simon James Roy; Wöhling, Thomas; Rode, Michael; Stenger, Roland
2017-09-01
The common practice of infrequent (e.g., monthly) stream water quality sampling for state of the environment monitoring may, when combined with high resolution stream flow data, provide sufficient information to accurately characterise the dominant nutrient transfer pathways and predict annual catchment yields. In the proposed approach, we use the spatially lumped catchment model StreamGEM to predict daily stream flow and nitrate concentration (mg L-1 NO3-N) in four contrasting mesoscale headwater catchments based on four years of daily rainfall, potential evapotranspiration, and stream flow measurements, and monthly or daily nitrate concentrations. Posterior model parameter distributions were estimated using the Markov Chain Monte Carlo sampling code DREAMZS and a log-likelihood function assuming heteroscedastic, t-distributed residuals. Despite high uncertainty in some model parameters, the flow and nitrate calibration data was well reproduced across all catchments (Nash-Sutcliffe efficiency against Log transformed data, NSL, in the range 0.62-0.83 for daily flow and 0.17-0.88 for nitrate concentration). The slight increase in the size of the residuals for a separate validation period was considered acceptable (NSL in the range 0.60-0.89 for daily flow and 0.10-0.74 for nitrate concentration, excluding one data set with limited validation data). Proportions of flow and nitrate discharge attributed to near-surface, fast seasonal groundwater and slow deeper groundwater were consistent with expectations based on catchment geology. The results for the Weida Stream in Thuringia, Germany, using monthly as opposed to daily nitrate data were, for all intents and purposes, identical, suggesting that four years of monthly nitrate sampling provides sufficient information for calibration of the StreamGEM model and prediction of catchment dynamics. This study highlights the remarkable effectiveness of process based, spatially lumped modelling with commonly available monthly stream sample data, to elucidate high resolution catchment function, when appropriate calibration methods are used that correctly handle the inherent uncertainties.
Eddy-Miller, Cheryl A.; Peterson, David A.; Wheeler, Jerrod D.; Leemon, Daniel J.
2010-01-01
Fish Creek, a tributary to the Snake River, is about 25 river kilometers long and is located in Teton County in western Wyoming near the town of Wilson. Public concern about nuisance growths of aquatic plants in Fish Creek have been increasing in recent years. To address this concern, the U.S. Geological Survey conducted a study in cooperation with the Teton Conservation District to characterize the water quality and biological communities in Fish Creek. Water-quality samples were collected for analyses of physical properties and water chemistry (nutrients, nitrate isotopes, and wastewater chemicals) between March 2007 and October 2008 from seven surface-water sites and three groundwater wells. During this same period, aquatic plant and macroinvertebrate samples were collected and habitat characteristics were measured at the surface-water sites. The main objectives of this study were to (1) evaluate nutrient concentrations (that influence biological indicators of eutrophication) and potential sources of nutrients by using stable isotope analysis and other indicator chemicals (such as caffeine and disinfectants) that could provide evidence of anthropogenic sources, such as wastewater or septic tank contamination in Fish Creek and adjacent groundwater, and (2) characterize the algal, macrophyte, and macroinvertebrate communities and habitat of Fish Creek. Nitrate was the dominant species of dissolved nitrogen present in all samples and was the only bioavailable species detected at concentrations greater than the laboratory reporting level in all surface-water samples. Average concentrations of dissolved nitrate in surface water were largest in samples collected from the two sites with seasonal flow near Teton Village and decreased downstream; the smallest concentration was at downstream site A-Wck. Concentrations of dissolved nitrate in groundwater were consistently greater than concentrations in corresponding surface-water sites during the same sampling event. Orthophosphate was the primary dissolved species of phosphorus present in all surface-water and groundwater samples. The average concentration of dissolved orthophosphate in surface water was largest in samples collected from near Teton Village; samples from all other sites had similar average concentrations. Concentrations of dissolved orthophosphate in groundwater also were typically greater than concentrations in corresponding surface-water sites during the same sampling event. The aquatic plant communities in Fish Creek typically were composed of a mixture of macrophytes, macroalgae, microalgae, and moss. The composition of the aquatic plant community in Fish Creek appeared to shift in the downstream direction in 2007. On average, the proportion of macrophytes ranged from about 1 percent at site A-R1U, the most upstream site, to 54 percent of the plant community at site A-R6D, the farthest downstream site sampled during 2007. The downstream increase in macrophytes was accompanied by a downstream decrease in microalgae. The average proportion of microalgae ranged from 80 percent at site A-R1U to 24 percent at site A-R6D. The proportion of the macroalgae Cladophora in the aquatic plant community was relatively high at sites A-Wck and A-R3D in both 2007 and 2008.
Relation of nitrate concentrations to baseflow in the Raccoon River, Iowa
Schilling, K.E.; Lutz, D.S.
2004-01-01
Excessive nitrate-nitrogen (nitrate) export from the Raccoon River in west central Iowa is an environmental concern to downstream receptors. The 1972 to 2000 record of daily streamflow and the results from 981 nitrate measurements were examined to describe the relation of nitrate to streamflow in the Raccoon River. No long term trends in streamflow and nitrate concentrations were noted in the 28-year record. Strong seasonal patterns were evident in nitrate concentrations, with higher concentrations occurring in spring and fall. Nitrate concentrations were linearly related to streamflow at daily, monthly, seasonal, and annual time scales. At all time scales evaluated, the relation was improved when baseflow was used as the discharge variable instead of total streamflow. Nitrate concentrations were found to be highly stratified according to flow, but there was little relation of nitrate to streamflow within each flow range. Simple linear regression models developed to predict monthly mean nitrate concentrations explained as much as 76 percent of the variability in the monthly nitrate concentration data for 2001. Extrapolation of current nitrate baseflow relations to historical conditions in the Raccoon River revealed that increasing baseflow over the 20th century could account for a measurable increase in nitrate concentrations.
NASA Astrophysics Data System (ADS)
Brion, N.; Elskens, M.; Dehairs, F.; Baeyens, W.
2003-04-01
The concentration-dependent uptakes of nitrate, ammonium and the effect of ammo-nium on the f-ratio were surveyed in surface waters of the NW Iberian shelf during June 1997, July 1998 and September 1999. Because relationships between rates and substrate concentrations were quite variable, ranging from linear to convex shaped curves, they were fitted to rational functions. Stepwize regression analysis yielded subsequent model equations with reasonable statistical properties which allowed describing all but all a few cases. Differentiating these equations with respect to the concentration gave the slope of the tangent to the curve, i.e., the variation in rate expected for a given perturbation of the ambient substrate concentration. The initial slope value was then used as an index to gauge the "affinity" of the plankton community for the nitrogen substrate utilization. In June 1997, the situation at the Iberian shelf showed no upwelling except near Cape Finistère. Overall, the phytoplankton community displayed a high "affinity" for both nitrate and ammonium and low f-ratio values, which is indicative of a re-generated production regime. High ammonium regeneration rates supported furthermore these observations. It was also demonstrated that the new production rates is only marginally sensitive to changes of the ambient nitrate and/or ammonium concentrations. This indicates that the production regime is rather stable throughout. Only at Cape Finistère, nitrate concentrations were high reflecting the onset of an upwelling event. In this zone, the phytoplankton community, taking advantage of its high affinity for nitrate enhanced both total N-uptake rate and f-ratio. In July 1998, the situation evolved towards an extension to the south of the upwelling event starting at Cape Finistère. In this southern zone of the upwelling the phytoplankton community displayed generally a lower affinity for nitrate (but not for ammonium) than in 1997. In spite of this lower affinity, nitrate uptake rate was dominant resulting in f-ratio values greater than 0.5, a characteristic of a new production regime. The new production rate is only marginally sensitive to increases of the ambient nitrate, but is drastically inhibited by small increases of the ambient ammonium. The situation of September 1999 was very close to that observed in July 1998, with higher nitrate concentrations in the coastal northern part of the sampling area dominated by upwelling.
Tindall, James A.; Lull, Kenneth J.; Gaggiani, Neville G.
1994-01-01
This study was undertaken to determine the effects of sewage-sludge disposal at the Lowry sewage-sludge-disposal area, near Denver, Colorado, on ground- and surface-water quality, to determine the fate of nitrates from sludge leachate, and to determine the source areas of leachate and the potential for additional leaching from the disposal area.Sewage-sludge disposal began in 1969. Two methods were used to apply the sludge: burial and plowing. Also, the sludge was applied both in liquid and cake forms. Data in this report represent the chemical composition of soil and streambed sediment from seven soil- and four streambed-sampling sites in 1986, chemical and bacterial composition of ground water from 28 wells from 1981 to 1987, and surface-water runoff from seven water-sampling sites from 1984 to 1987. Ground water samples were obtained from alluvial and bedrock aquifers. Samples of soil, streambed sediment, ground water and surface water were obtained for onsite measurement and chemical analysis. Measurements included determination of nitrogen compounds and major cations and anions, fecal-coliform and -streptococcus bacteria, specific conductance, and pH.Thirteen wells in the alluvial aquifer in Region 3 of the study area contain water that was probably affected by sewage-sludge leachate. The plots of concentration of nitrate with time show seasonal trends and trends caused by precipitation. In addition to yearly fluctuation, there were noticeable increases in ground-water concentrations of nitrate that coincided with increased precipitation. After 3 years of annual ground-water-quality monitoring and 4 years of a quarterly sampling program, it has been determined that leachate from the sewage-sludge-disposal area caused increased nitrite plus nitrate (as nitrogen) concentration in the alluvial ground water at the site. Soil analyses from the disposal area indicate that organic nitrogen was the dominant form of nitrogen in the soil.As a result of investigations at the research site, it has been determined that a potentially large source of contamination exists in the soils of the study area owing to increased concentrations of nitrogen, sodium, calcium, magnesium, sulfate, bicarbonate, and chloride because of sewage disposal. Continued monitoring of surface and ground water for nitrogen and the other ions previously mentioned is required to assess long-term effects of municipal sludge disposal on water quality.
NASA Astrophysics Data System (ADS)
Tindall, James A.; Lull, Kenneth J.; Gaggiani, Neville G.
1994-12-01
This study was undertaken to determine the effects of sewage-sludge disposal at the Lowry sewage-sludge-disposal area, near Denver, Colorado, on ground- and surface-water quality, to determine the fate of nitrates from sludge leachate, and to determine the source areas of leachate and the potential for additional leaching from the disposal area. Sewage-sludge disposal began in 1969. Two methods were used to apply the sludge: burial and plowing. Also, the sludge was applied both in liquid and cake forms. Data in this report represent the chemical composition of soil and streambed sediment from seven soil- and four streambed-sampling sites in 1986, chemical and bacterial composition of ground water from 28 wells from 1981 to 1987, and surface-water runoff from seven water-sampling sites from 1984 to 1987. Ground water samples were obtained from alluvial and bedrock aquifers. Samples of soil, streambed sediment, ground water and surface water were obtained for onsite measurement and chemical analysis. Measurements included determination of nitrogen compounds and major cations and anions, fecal-coliform and -streptococcus bacteria, specific conductance, and pH. Thirteen wells in the alluvial aquifer in Region 3 of the study area contain water that was probably affected by sewage-sludge leachate. The plots of concentration of nitrate with time show seasonal trends and trends caused by precipitation. In addition to yearly fluctuation, there were noticeable increases in ground-water concentrations of nitrate that coincided with increased precipitation. After 3 years of annual ground-water-quality monitoring and 4 years of a quarterly sampling program, it has been determined that leachate from the sewage-sludge-disposal area caused increased nitrite plus nitrate (as nitrogen) concentration in the alluvial ground water at the site. Soil analyses from the disposal area indicate that organic nitrogen was the dominant form of nitrogen in the soil. As a result of investigations at the research site, it has been determined that a potentially large source of contamination exists in the soils of the study area owing to increased concentrations of nitrogen, sodium, calcium, magnesium, sulfate, bicarbonate, and chloride because of sewage disposal. Continued monitoring of surface and ground water for nitrogen and the other ions previously mentioned is required to assess long-term effects of municipal sludge disposal on water quality.
Vowinkel, Eric F.; Tapper, Robert J.
1995-01-01
Previously collected and new water-quality data from shallow wells (screened interval less than 30 meters below the land surface) in predominantly agricultural areas of the New Jersey Coastal Plain were used to determine the relation of nitrate concentrations in shallow ground water to various hydrogeologic and land-use factors in the study area. Information on land use, well construction, hydrogeology, and water quality were used to predict the conditions under which concentrations of nitrate as nitrogen in water from domestic wells in predominantly agricultural areas are most likely to be equal to or larger than the U.S. Environmental Protection Agency maximum contaminant level (MCL) of 10 milligrams per liter. Results of the analyses of water-quality samples collected during 1980-89 from 230 shallow wells in the outcrop areas of the Kirkwood-Cohansey and Potomac-Raritan-Magothy aquifer systems were used to evaluate the regional effects of land use on shallow-ground-water quality. Results of statistical analysis indicate that concentrations of nitrate in shallow ground water are significantly different (p= 0.001) in agricultural areas than in undeveloped areas in both aquifer systems. Concentrations of nitrate nitrogen exceeded the MCL in water from more than 33 percent of the 60 shallow wells in agricultural areas. Concentrations of hitrate in water from shallow wells in agricultural areas increased as the percentage of agricultural land within an 800-meter-radius buffer zone of the wellhead increased (r= 0.81). Concentrations ofhitrate in water from domestic wells in agricultural areas were similar (p= 0.23) to those concentrations in water from irrigation wells. These results indicate that most of the nitrate in water from domestic wells in agricultural areas results from agricultural practices rather than other sources, such as septic systems. Water-quality samples collected from 12 shallow domestic wells in agricultural areas screened in the outcrop areas of the Kirkwood-Cohansey and Potomac-Raritan-Magothy aquifer systems were used to evaluate the local effects of hydrogeologic conditions and land-use activities on shallow-ground-water quality. Concentrations of water-quality constituents in these wells were similar among four sampling events over a l-year span. The concentration of hitrate in water from 6 of the 12 wells exceeded the MCL. Concentrations of nitrate greater than the MCL are associated with: values of specific conductance greater than 200 microsiemens per centimeter at 25 degrees Celsius, a screened interval whose top is less than 20 meters below land surface, concentrations of dissolved oxygen greater than 6 milligrams per liter, presence of pesticides in the ground water, a distance of less than 250 meters between the wellhead and the surfacewater divide, and presence of livestock near the wellhead. Ratios of stable isotopes of nitrogen in the water samples indicate that the source of hitrate in the ground water was predominantly chemical fertilizers rather than livestock wastes or effluent from septic systems.
Surface layer and bloom dynamics observed with the Prince William Sound Autonomous Profiler
NASA Astrophysics Data System (ADS)
Campbell, R. W.
2016-02-01
As part of a recent long term monitoring effort, deployments of a WETLabs Autonomous Moored Profiler (AMP) began Prince William Sound (PWS) in 2013. The PWS AMP consists of a positively buoyant instrument frame, with a winch and associated electronics that profiles the frame from a park depth (usually 55 m) to the surface by releasing and retrieving a thin UHMWPE tether; it generally conducts a daily cast and measures temperature, salinity, chlorophyll-a fluorescence, turbidity, and oxygen and nitrate concentrations. Upward and downward looking ADCPs are mounted on a float below the profiler, and an in situ plankton imager is in development and will be installed in 2016. Autonomous profilers are a relatively new technology, and early deployments experienced a number of failures from which valuable lessons may be learned. Nevertheless, an unprecedented time series of the seasonal biogeochemical procession in the surface waters coastal Gulf of Alaska was collected in 2014 and 2015. The northern Gulf of Alaska has experienced a widespread warm anomaly since early 2014, and surface layer temperature anomalies in PWS were strongly positive during winter 2014. The spring bloom observed by the profiler began 2-3 weeks earlier than average, with surface nitrate depleted by late April. Although surface temperatures were still above average in 2015, bloom timing was much later, with a short vigorous bloom in late April and a subsurface bloom in late May that coincided with significant nitrate drawdown. As well as the vernal blooms, wind-driven upwelling events lead to several small productivity pulses that were evident in changes in nitrate and oxygen concentrations, and chlorophyll-a fluorescence. As well as providing a mechanistic understanding of surface layer biogeochemistry, high frequency observations such as these put historical observations in context, and provide new insights into the scales of variability in the annual cycles of the surface ocean in the North Pacific.
McSwain, Kristen Bukowski; Bolich, Richard E.; Chapman, Melinda J.
2013-01-01
rom 2005 to 2007, the U.S. Geological Survey and the North Carolina Department of Environment and Natural Resources, Division of Water Quality, conducted a study to describe the geologic framework, measure groundwater quality, characterize the groundwater-flow system, and describe the groundwater/surface-water interaction at the 60-acre Raleigh hydrogeologic research station (RHRS) located at the Neuse River Waste Water Treatment Plant in eastern Wake County, North Carolina. Previous studies have shown that the local groundwater quality of the surficial and bedrock aquifers at the RHRS had been affected by high levels of nutrients. Geologic, hydrologic, and water-quality data were collected from 3 coreholes, 12 wells, and 4 piezometers at 3 well clusters, as well as from 2 surface-water sites, 2 multiport piezometers, and 80 discrete locations in the streambed of the Neuse River. Data collected were used to evaluate the three primary zones of the Piedmont aquifer (regolith, transition zone, and fractured bedrock) and characterize the interaction of groundwater and surface water as a mechanism of nutrient transport to the Neuse River. A conceptual hydrogeologic cross section across the RHRS was constructed using new and existing data. Two previously unmapped north striking, nearly vertical diabase dikes intrude the granite beneath the site. Groundwater within the diabase dike appeared to be hydraulically isolated from the surrounding granite bedrock and regolith. A correlation exists between foliation and fracture orientation, with most fractures striking parallel to foliation. Flowmeter logging in two of the bedrock wells indicated that not all of the water-bearing fractures labeled as water bearing were hydraulically active, even when stressed by pumping. Groundwater levels measured in wells at the RHRS displayed climatic and seasonal trends, with elevated groundwater levels occurring during the late spring and declining to a low in the late fall. Vertical gradients in the groundwater discharge area near the Neuse River were complex and were affected by fluctuations in river stage, with the exception of a well completed in a diabase dike. Water-quality data from the wells and surface-water sites at the RHRS were collected continuously as well as during periodic sampling events. Surface-water samples collected from a tributary were most similar in chemical composition to groundwater found in the regolith and transition zone. Nitrate (measured as nitrite plus nitrate, as nitrogen) concentrations in the sampled wells and tributary ranged from about 5 to more than 120 milligrams per liter as nitrogen. Waterborne continuous resistivity profiling conducted on the Neuse River in the area of the RHRS measured areas of low apparent resistivity that likely represent groundwater contaminated by high concentrations of nitrate. These areas were located on either side of a diabase dike and at the outfall of two unnamed tributaries. The diabase dike preferentially directed the discharge of groundwater to the Neuse River and may isolate groundwater movement laterally. Discrete temperature measurements made within the pore water beneath the Neuse River revealed seeps of colder groundwater discharging into warmer surface water near a diabase dike. Water-quality samples collected from the pore water beneath the Neuse River indicated that nitrate was present at concentrations as high as 80 milligrams per liter as nitrogen on the RHRS side of the river. The highest concentrations of nitrate were located within pore water collected from an area near a diabase dike that was identified as a suspected seepage area. Hydraulic head was measured and pore water samples were collected from two 140-centimeter-deep (55.1-inch-deep) multiport piezometers that were installed in bed sediments on opposite sides of a diabase dike. The concentration of nitrate in pore water at a suspected seepage area ranged from 42 to 82 milligrams per liter as nitrogen with a median concentration of 79 milligrams per liter as nitrogen. On the opposite side of the dike, concentrations of nitrate in pore water samples ranged from 3 to 91 milligrams per liter as nitrogen with a median concentration of 52 milligrams per liter. At one of the multiport piezometers the vertical gradient of hydraulic head between the Neuse River and the groundwater was too small to measure. At the multiport piezometer located in the suspected seepage area, an upward gradient of about 0.1 was present and explains the occurrence of higher concentrations of nitrate near the sediment/water interface. Horizontal seepage flux from the surficial aquifer to the edge of the Neuse River was estimated for 2006. Along a 130-foot flow path, the estimated seepage flux ranged from –0.52 to 0.2 foot per day with a median of 0.09 foot per day. The estimated advective horizontal mass flux of nitrate along a 300-foot reach of the Neuse River ranged from –10.9 to 5 pounds per day with a median of 2.2 pounds per day. The total horizontal mass flux of nitrate from the surficial aquifer to the Neuse River along the 130-foot flow path was estimated to be about 750 pounds for all of 2006. Seepage meters were deployed on the bed of the Neuse River in the areas of the multiport piezometers on either side of the diabase dike to estimate rates of vertical groundwater discharge and flux of nitrate. The average estimated daily seepage flux differed by two orders of magnitude between seepage areas. The potential vertical flux of nitrate from groundwater to the Neuse River was estimated at an average of 2.5 grams per day near one of the multiport piezometers and an average of 784 grams per day at the other. These approximations suggest that under some hydrologic conditions there is the potential for substantial quantities of nitrate to discharge from the groundwater to the Neuse River.
NASA Astrophysics Data System (ADS)
Chen, Ying; Cheng, Yafang; Ma, Nan; Wolke, Ralf; Nordmann, Stephan; Schüttauf, Stephanie; Ran, Liang; Wehner, Birgit; Birmili, Wolfram; Denier van der Gon, Hugo A. C.; Mu, Qing; Barthel, Stefan; Spindler, Gerald; Stieger, Bastian; Müller, Konrad; Zheng, Guang-Jie; Pöschl, Ulrich; Su, Hang; Wiedensohler, Alfred
2016-09-01
Sea salt aerosol (SSA) is one of the major components of primary aerosols and has significant impact on the formation of secondary inorganic particles mass on a global scale. In this study, the fully online coupled WRF-Chem model was utilized to evaluate the SSA emission scheme and its influence on the nitrate simulation in a case study in Europe during 10-20 September 2013. Meteorological conditions near the surface, wind pattern and thermal stratification structure were well reproduced by the model. Nonetheless, the coarse-mode (PM1 - 10) particle mass concentration was substantially overestimated due to the overestimation of SSA and nitrate. Compared to filter measurements at four EMEP stations (coastal stations: Bilthoven, Kollumerwaard and Vredepeel; inland station: Melpitz), the model overestimated SSA concentrations by a factor of 8-20. We found that this overestimation was mainly caused by overestimated SSA emissions over the North Sea during 16-20 September. Over the coastal regions, SSA was injected into the continental free troposphere through an "aloft bridge" (about 500 to 1000 m above the ground), a result of the different thermodynamic properties and planetary boundary layer (PBL) structure between continental and marine regions. The injected SSA was further transported inland and mixed downward to the surface through downdraft and PBL turbulence. This process extended the influence of SSA to a larger downwind region, leading, for example, to an overestimation of SSA at Melpitz, Germany, by a factor of ˜ 20. As a result, the nitrate partitioning fraction (ratio between particulate nitrate and the summation of particulate nitrate and gas-phase nitric acid) increased by about 20 % for the coarse-mode nitrate due to the overestimation of SSA at Melpitz. However, no significant difference in the partitioning fraction for the fine-mode nitrate was found. About 140 % overestimation of the coarse-mode nitrate resulted from the influence of SSA at Melpitz. In contrast, the overestimation of SSA inhibited the nitrate particle formation in the fine mode by about 20 % because of the increased consumption of precursor by coarse-mode nitrate formation.
Patton, Charles J.; Kryskalla, Jennifer R.
2003-01-01
Alkaline persulfate digestion was evaluated and validated as a more sensitive, accurate, and less toxic alternative to Kjeldahl digestion for routine determination of nitrogen and phosphorus in surface- and ground-water samples in a large-scale and geographically diverse study conducted by U.S. Geological Survey (USGS) between October 1, 2001, and September 30, 2002. Data for this study were obtained from about 2,100 surface- and ground-water samples that were analyzed for Kjeldahl nitrogen and Kjeldahl phosphorus in the course of routine operations at the USGS National Water Quality Laboratory (NWQL). These samples were analyzed independently for total nitrogen and total phosphorus using an alkaline persulfate digestion method developed by the NWQL Methods Research and Development Program. About half of these samples were collected during nominally high-flow (April-June) conditions and the other half were collected during nominally low-flow (August-September) conditions. The number of filtered and whole-water samples analyzed from each flow regime was about equal.By operational definition, Kjeldahl nitrogen (ammonium + organic nitrogen) and alkaline persulfate digestion total nitrogen (ammonium + nitrite + nitrate + organic nitrogen) are not equivalent. It was necessary, therefore, to reconcile this operational difference by subtracting nitrate + nitrite concentra-tions from alkaline persulfate dissolved and total nitrogen concentrations prior to graphical and statistical comparisons with dissolved and total Kjeldahl nitrogen concentrations. On the basis of two-population paired t-test statistics, the means of all nitrate-corrected alkaline persulfate nitrogen and Kjeldahl nitrogen concentrations (2,066 paired results) were significantly different from zero at the p = 0.05 level. Statistically, the means of Kjeldahl nitrogen concentrations were greater than those of nitrate-corrected alkaline persulfate nitrogen concentrations. Experimental evidence strongly suggests, however, that this apparent low bias resulted from nitrate interference in the Kjeldahl digestion method rather than low nitrogen recovery by the alkaline persulfate digestion method. Typically, differences between means of Kjeldahl nitrogen and nitrate-corrected alkaline persulfate nitrogen in low-nitrate concentration (< 0.1 milligram nitrate nitrogen per liter) subsets of filtered surface- and ground-water samples were statistically equivalent to zero at the p =level.Paired analytical results for dissolved and total phosphorus in Kjeldahl and alkaline persulfate digests were directly comparable because both digestion methods convert all forms of phosphorus in water samples to orthophosphate. On the basis of two-population paired t-test statistics, the means of all Kjeldahl phosphorus and alkaline persulfate phosphorus concentrations (2,093 paired results) were not significantly different from zero at the p = 0.05 level. For some subsets of these data, which were grouped according to water type and flow conditions at the time of sample collection, differences between means of Kjeldahl phosphorus and alkaline persulfate phosphorus concentrations were not equivalent to zero at the p = 0.05 level. Differences between means of these subsets, however, were less than the method detection limit for phosphorus (0.007 milligram phosphorus per liter) by the alkaline persulfate digestion method, and were therefore analytically insignificant.This report provides details of the alkaline persulfate digestion procedure, interference studies, recovery of various nitrogen- and phosphorus-containing compounds, and other analytical figures of merit. The automated air-segmented continuous flow methods developed to determine nitrate and orthophosphate in the alkaline persulfate digests also are described. About 125 microliters of digested sample are required to determine nitrogen and phosphorus in parallel at a rate of about 100 samples per hour with less than 1-percent sample in
The nitrate response of a lowland catchment and groundwater travel times
NASA Astrophysics Data System (ADS)
van der Velde, Ype; Rozemeijer, Joachim; de Rooij, Gerrit; van Geer, Frans
2010-05-01
Intensive agriculture in lowland catchments causes eutrophication of downstream waters. To determine effective measures to reduce the nutrient loads from upstream lowland catchments, we need to understand the origin of long-term and daily variations in surface water nutrient concentrations. Surface water concentrations are often linked to travel time distributions of water passing through the saturated and unsaturated soil of the contributing catchment. This distribution represents the contact time over which sorption, desorption and degradation takes place. However, travel time distributions are strongly influenced by processes like tube drain flow, overland flow and the dynamics of draining ditches and streams and therefore exhibit strong daily and seasonal variations. The study we will present is situated in the 6.6 km2 Hupsel brook catchment in The Netherlands. In this catchment nitrate and chloride concentrations have been intensively monitored for the past 26 years under steadily decreasing agricultural inputs. We described the complicated dynamics of subsurface water fluxes as streams, ditches and tube drains locally switch between active or passive depending on the ambient groundwater level by a groundwater model with high spatial and temporal resolutions. A transient particle tracking approach is used to derive a unique catchment-scale travel time distribution for each day during the 26 year model period. These transient travel time distributions are not smooth distributions, but distributions that are strongly spiked reflecting the contribution of past rainfall events to the current discharge. We will show that a catchment-scale mass response function approach that only describes catchment-scale mixing and degradation suffices to accurately reproduce observed chloride and nitrate surface water concentrations as long as the mass response functions include the dynamics of travel time distributions caused by the highly variable connectivity of the surface water network.
Simulation of nitrate, sulfate, and ammonium aerosols over the United States
NASA Astrophysics Data System (ADS)
Walker, J. M.; Philip, S.; Martin, R. V.; Seinfeld, J. H.
2012-11-01
Atmospheric concentrations of inorganic gases and aerosols (nitrate, sulfate, and ammonium) are simulated for 2009 over the United States using the chemical transport model GEOS-Chem. Predicted aerosol concentrations are compared with surface-level measurement data from the Interagency Monitoring of Protected Visual Environments (IMPROVE), the Clean Air Status and Trends Network (CASTNET), and the California Air Resources Board (CARB). Sulfate predictions nationwide are in reasonably good agreement with observations, while nitrate and ammonium are over-predicted in the East and Midwest, but under-predicted in California, where observed concentrations are the highest in the country. Over-prediction of nitrate in the East and Midwest is consistent with results of recent studies, which suggest that nighttime nitric acid formation by heterogeneous hydrolysis of N2O5 is over-predicted based on current values of the N2O5 uptake coefficient, γ, onto aerosols. After reducing the value of γ by a factor of 10, predicted nitrate levels in the US Midwest and East still remain higher than those measured, and over-prediction of nitrate in this region remains unexplained. Comparison of model predictions with satellite measurements of ammonia from the Tropospheric Emissions Spectrometer (TES) indicates that ammonia emissions in GEOS-Chem are underestimated in California and that the nationwide seasonality applied to ammonia emissions in GEOS-Chem does not represent California very well, particularly underestimating winter emissions. An ammonia sensitivity study indicates that GEOS-Chem simulation of nitrate is ammonia-limited in southern California and much of the state, suggesting that an underestimate of ammonia emissions is likely the main cause for the under-prediction of nitrate aerosol in many areas of California. An approximate doubling of ammonia emissions is needed to reproduce observed nitrate concentrations in southern California and in other ammonia sensitive areas of California. However, even a tenfold increase in ammonia emissions yields predicted nitrate concentrations that are still biased low in the central valley of California. The under-prediction of nitrate aerosol in the central valley of California may arise in part from an under-prediction of both ammonia and nitric acid in this region. Since nitrate aerosols are particularly sensitive to mixed layer depths, owing to the gas-particle equilibrium, the nitrate under-prediction could also arise in part from a potential regional overestimate of GEOS-5 mixed layer depths in the central valley due to unresolved topography in this region.
Paschke, S.S.; Schaffrath, K.R.; Mashbum, S.L.
2008-01-01
The lower South Platte River basin of Colorado and Nebraska is an area of intense agriculture supported by surface-water diversions from the river and ground-water pumping from a valley-fill alluvial aquifer. Two well networks consisting of 45 wells installed in the South Platte alluvial aquifer were sampled in the early 1990s and again in the early 2000s to examine near-decadal ground-water quality changes in irrigated agricultural areas. Ground-water age generally increases and dissolved-oxygen content decreases with distance along flow paths and with depdi below the water table, and denitrification is an important natural mitigation mechanism for nitrate in downgradient areas. Ground-water travel time from upland areas to the river ranges from 12 to 31 yr on the basis of apparent ground-water ages. Ground-water nitrate concentrations for agricultural land-use wells increased significantly for oxidized samples over the decade, and nitrogen isotope ratios for oxidized samples indicate synthetic fertilizer as the predominant nitrate source. Ground-water concentrations of atrazine, DEA, and prometon decreased significandy. The decrease in pesticide concentrations and a significant increase in the ratio of DEA to atrazine suggest decreases in pesticide concentrations are likely caused by local decreases in application rates and/or degradation processes and that atrazine degradation is promoted by oxidizing conditions. The difference between results for oxidizing and nitrate-reducing conditions indicates redox state is an important variable to consider when evaluating ground-water quality trends for redox-sensitive constituents such as nitrate and pesticides in the South Platte alluvial aquifer. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Stream denitrification across biomes and its response to anthropogenic nitrate loading
Mulholland, P.J.; Helton, A.M.; Poole, G.C.; Hall, R.O.; Hamilton, S.K.; Peterson, B.J.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Dodds, W.K.; Findlay, S.E.G.; Gregory, S.V.; Grimm, N. B.; Johnson, S.L.; McDowell, W.H.; Meyer, J.L.; Valett, H.M.; Webster, J.R.; Arango, C.P.; Beaulieu, J.J.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Johnson, L.T.; Niederlehner, B.R.; O'Brien, J. M.; Potter, J.D.; Sheibley, R.W.; Sobota, D.J.; Thomas, S.M.
2008-01-01
Anthropogenic addition of bioavailable nitrogen to the biosphere is increasing and terrestrial ecosystems are becoming increasingly nitrogen-saturated, causing more bioavailable nitrogen to enter groundwater and surface waters. Large-scale nitrogen budgets show that an average of about 20-25 per cent of the nitrogen added to the biosphere is exported from rivers to the ocean or inland basins, indicating that substantial sinks for nitrogen must exist in the landscape. Streams and rivers may themselves be important sinks for bioavailable nitrogen owing to their hydrological connections with terrestrial systems, high rates of biological activity, and streambed sediment environments that favour microbial denitrification. Here we present data from nitrogen stable isotope tracer experiments across 72 streams and 8 regions representing several biomes. We show that total biotic uptake and denitrification of nitrate increase with stream nitrate concentration, but that the efficiency of biotic uptake and denitrification declines as concentration increases, reducing the proportion of in-stream nitrate that is removed from transport. Our data suggest that the total uptake of nitrate is related to ecosystem photosynthesis and that denitrification is related to ecosystem respiration. In addition, we use a stream network model to demonstrate that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks. ??2008 Nature Publishing Group.
NASA Astrophysics Data System (ADS)
Tesoriero, A. J.; Terziotti, S.
2014-12-01
Nitrate trends in streams often do not match expectations based on recent nitrogen source loadings to the land surface. Groundwater discharge with long travel times has been suggested as the likely cause for these observations. The fate of nitrate in groundwater depends to a large extent on the occurrence of denitrification along flow paths. Because denitrification in groundwater is inhibited when dissolved oxygen (DO) concentrations are high, defining the oxic-suboxic interface has been critical in determining pathways for nitrate transport in groundwater and to streams at the local scale. Predicting redox conditions on a regional scale is complicated by the spatial variability of reaction rates. In this study, logistic regression and boosted classification tree analysis were used to predict the probability of oxic water in groundwater in the Chesapeake Bay watershed. The probability of oxic water (DO > 2 mg/L) was predicted by relating DO concentrations in over 3,000 groundwater samples to indicators of residence time and/or electron donor availability. Variables that describe position in the flow system (e.g., depth to top of the open interval), soil drainage and surficial geology were the most important predictors of oxic water. Logistic regression and boosted classification tree analysis correctly predicted the presence or absence of oxic conditions in over 75 % of the samples in both training and validation data sets. Predictions of the percentages of oxic wells in deciles of risk were very accurate (r2>0.9) in both the training and validation data sets. Depth to the bottom of the oxic layer was predicted and is being used to estimate the effect that groundwater denitrification has on stream nitrate concentrations and the time lag between the application of nitrogen at the land surface and its effect on streams.
Senior, Lisa A.
1996-01-01
The Red Clay Creek Basin in the Piedmont Physiographic Province of Pennsylvania and Delaware is a 54-square-mile area underlain by a structurally complex assemblage of fractured metamorphosed sedimentary and igneous rocks that form a water-table aquifer. Ground-water-flow systems generally are local, and ground water discharges to streams. Both ground water and surface water in the basin are used for drinking-water supply.Ground-water quality and the relation between ground-water quality and hydrogeologic and land-use factors were assessed in 1993 in bedrock aquifers of the basin. A total of 82 wells were sampled from July to November 1993 using a stratified random sampling scheme that included 8 hydrogeologic and 4 land-use categories to distribute the samples evenly over the area of the basin. The eight hydrogeologic units were determined by formation or lithology. The land-use categories were (1) forested, open, and undeveloped; (2) agricultural; (3) residential; and (4) industrial and commercial. Well-water samples were analyzed for major and minor ions, nutrients, volatile organic compounds (VOC's), pesticides, polychlorinated biphenyl compounds (PCB's), and radon-222.Concentrations of some constituents exceeded maximum contaminant levels (MCL) or secondary maximum contaminant levels (SMCL) established by the U.S. Environmental Protection Agency for drinking water. Concentrations of nitrate were greater than the MCL of 10 mg/L (milligrams per liter) as nitrogen (N) in water from 11 (13 percent) of 82 wells sampled; the maximum concentration was 38 mg/L as N. Water from only 1 of 82 wells sampled contained VOC's or pesticides that exceeded a MCL; water from that well contained 3 mg/L chlordane and 1 mg/L of PCB's. Constituents or properties of well-water samples that exceeded SMCL's included iron, manganese, dissolved solids, pH, and corrosivity. Water from 70 (85 percent) of the 82 wells sampled contained radon-222 activities greater than the proposed MCL of 300 pCi/L (picoCuries per liter).Differences in selected major and minor ion concentrations and radon-222 activities were statistically significant between some lithologies and are related to differences in mineralogy. Ground water from felsic gneiss and schist generally contained higher radon-222 activities than the other lithologies; activities as high as 10,000 pCi/L were measured in a water sample from the felsic gneiss.Differences in the concentrations of nitrate, sodium, and chloride, and the frequency of pesticide detections in ground water were statistically significant between samples from wells in some land-use categories. Concentrations of nitrate generally were greatest in agricultural and in industrial and commercial areas and can be attributed to the use of fertilizers on the land surface and other agricultural activities. Much of the industrial and commercial land use is in areas previously used for or related to mushroom production. Concentrations of chloride and sodium also were greatest in water from wells in agricultural and industrial and commercial areas, probably because of the use of fertilizer and road salt. Concentrations of nitrate, chloride, and sodium in water samples from wells in forested and residential land use did not differ statistically significantly from each other. The herbicides metolachlor and atrazine were the most frequently detected pesticides and were detected more frequently in agricultural areas than in areas with other land uses; their presence is related to their use in crop production. VOC's were detected infrequently and only in residential and industrial and commercial areas.The relation between ground-water quality and surface-water quality is assessed by comparing nitrate and chloride concentrations in the 1993 ground-water samples and 1993-94 base-flow samples. Base-flow samples were collected at eight stream sites in the headwaters of the West Branch of Red Clay Creek in 1994 and at two long-term stream-monitoing sites on the East and West Branches of the Red Clay Creek in 1993-94. The average concentrations of chloride and nitrate in ground-water samples from wells in areas above the headwater stream sites and two long-term stream-monitoring sites were similar to the concentrations of chloride and nitrate in base flow at those sites. An observed increase in nitrate concentration in base flow at the long-term monitoring site on the West Branch of Red Clay Creek from 1970 to 1995 may be related to an increase in nitrate concentrations in ground water in that area of the basin.
Photoinduced degradation of carbaryl in a wetland surface water.
Miller, Penney L; Chin, Yu-Ping
2002-11-06
The photoinduced degradation of carbaryl (1-naphthyl-N-methyl carbamate) was studied in a wetland's surface water to examine the photochemical processes influencing its transformation. For this particular wetland water, at high pH, it was difficult to delineate the photolytic contribution to the overall degradation of carbaryl. At lower pH values, the extent of the degradation attributable to indirect pathways, that is, in the presence of naturally occurring photosensitizers, increased significantly. Moreover, the photoenhanced degradation at the lower pH values was found to be seasonally and spatially dependent. Analysis of water samples revealed two primary constituents responsible for the observed indirect photolytic processes: nitrate and dissolved natural organic matter (NOM). Nitrate in the wetland appears at high concentrations (> or =1 mM) seasonally after the application of fertilizers in the watershed and promotes contaminant destruction through the photochemical production of the hydroxyl radical (HO*). The extent of the observed indirect photolysis pathway appears to be dependent upon the concentration of nitrates and the presence of HO* scavengers such as dissolved NOM and carbonate alkalinity. Paradoxically, during low-nitrate events (<50 microM), NOM becomes the principal photosensitizer through either the production of HO*, direct energy transfer from the excited triplet state, and/or production of an unidentified transient species.
Agricultural chemicals in near-surface aquifers in the mid-continental United States, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolpin, D.W.; Burkart, M.R.
The occurrence and distribution of selected herbicides, atrazine metabolites, and nitrate were determined for unconsolidated and bedrock aquifers within 50 feet of land surface (near-surface) in the corn and soybean producing region of the mid-continental US. At least one herbicide or atrazine metabolite was detected (reporting limit, 0.05 micrograms per liter) in 24 percent of 579 water samples collected during the spring and summer of 1991. No herbicide exceeded maximum contaminant levels or health advisories. Most frequently detected was desethylatrazine (18.1 percent) followed by atrazine (17.4 percent), deisopropylatrazine (5.7 percent) and prometon (5.0 percent). Metolachlor, alachlor, metribuzin, simazine, and cyanazinemore » were found in fewer than 3 percent of the samples. Excess nitrate (more than 3.0 mg/L) was found in 29 percent of the samples; 6 percent exceeded 10 mg/L. Few herbicide detections or excess nitrate concentrations occurred in the eastern part of the study region even though this area had an intense use of herbicides and nitrogen-fertilizer. The source of prometon, the second most frequently detected herbicide, may be associated with nonagricultural land use such as golf courses and residential areas. Significant seasonal differences between the spring and summer sampling periods were found in herbicide detections, but not in excess nitrate. The frequency of herbicide detections and excess nitrate were greater in near-surface unconsolidated aquifers than found in near-surface bedrock aquifers. Depth to the top of the aquifer was inversely related to the frequency of both herbicide detection and excess nitrate. The proximity of sampling sites to streams affected the frequency of herbicide detection.« less
NASA Astrophysics Data System (ADS)
Tremblay, J.-É.; Raimbault, P.; Garcia, N.; Lansard, B.; Babin, M.; Gagnon, J.
2014-09-01
The concentrations and elemental stoichiometry of particulate and dissolved pools of carbon (C), nitrogen (N), phosphorus (P) and silicon (Si) on the Canadian Beaufort Shelf during summer 2009 (MALINA program) were assessed and compared with those of surface waters provided by the Mackenzie river as well as by winter mixing and upwelling of upper halocline waters at the shelf break. Neritic surface waters showed a clear enrichment in dissolved and particulate organic carbon (DOC and POC, respectively), nitrate, total particulate nitrogen (TPN) and dissolved organic nitrogen (DON) originating from the river. Silicate as well as bulk DON and DOC declined in a near-conservative manner away from the delta's outlet, whereas nitrate dropped non-conservatively to very low background concentrations inside the brackish zone. By contrast, the excess of soluble reactive P (SRP) present in oceanic waters declined in a non-conservative manner toward the river outlet, where concentrations were very low and consistent with P shortage in the Mackenzie River. These opposite gradients imply that the admixture of Pacific-derived, SRP-rich water is necessary to allow phytoplankton to use river-derived nitrate and to a lesser extent DON. A coarse budget based on concurrent estimates of primary production shows that river N deliveries support a modest fraction of primary production when considering the entire shelf, due to the ability of phytoplankton to thrive in the subsurface chlorophyll maximum beneath the thin, nitrate-depleted river plume. Away from shallow coastal bays, local elevations in the concentration of primary production and dissolved organic constituents were consistent with upwelling at the shelf break. By contrast with shallow winter mixing, nutrient deliveries by North American rivers and upwelling relax surface communities from N limitation and permit a more extant utilization of the excess SRP entering through the Bering Strait. In this context, increased nitrogen supply by rivers and upwelling potentially alters the vertical distribution of the excess P exported into the North Atlantic.
Baltrusaitis, Jonas; Chen, Haihan; Rubasinghege, Gayan
2012-01-01
Heterogeneous chemistry of nitrogen dioxide with lead-containing particles is investigated to better understand lead metal mobilization in the environment. In particular, PbO particles, a model lead-containing compound due to its wide spread presence as a component of lead paint and as naturally occurring minerals, massicot and litharge, are exposed to nitrogen dioxide at different relative humidity. X-ray photoelectron spectroscopy (XPS) shows that upon exposure to nitrogen dioxide the surface of PbO particles react to form adsorbed nitrates and lead nitrate thin films with the extent of formation of nitrate relative humidity dependent. Surface adsorbed nitrate increases the amount of dissolved lead. These reacted particles are found to have an increase in the amount of lead that dissolves in aqueous suspensions at circumneutral pH compared to unreacted particles. These results point to the potential importance and impact that heterogeneous chemistry with trace atmospheric gases can have on increasing solubility and therefore the mobilization of heavy metals, such as lead, in the environment. This study also show that surface intermediates, such as adsorbed nitrates, that form can yield higher concentrations of lead in water systems. In the environment, these water systems can include drinking water, ground water, estuaries and lakes. PMID:23057678
Protonation of Different Goethite Surfaces - Unified Models for NaNO3 and NaCl Media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutzenkirchen, Johannes; Boily, Jean F.; Gunneriusson, Lars
2008-01-01
Acid-base titration data for two goethites samples in sodium nitrate and sodium chloride media are discussed. The data are modelled based on various surface complexation models in the framework of the MUlti SIte Complexation (MUSIC) model. Various assumptions with respect to the goethite morphology are considered in determining the site density of the surface functional groups. The results from the various model applications are not statistically significant in terms of goodness of fit. More importantly, various published assumptions with respect to the goethite morphology (i.e. the contributions of different crystal planes and their repercussions on the “overall” site densities ofmore » the various surface functional groups) do not significantly affect the final model parameters. The simultaneous fit of the chloride and nitrate data results in electrolyte binding constants, which are applicable over a wide range of electrolyte concentrations including mixtures of chloride and nitrate. Model parameters for the high surface area goethite sample are in excellent agreement with parameters that were independently obtained by another group on different goethite titration data sets.« less
Is Nitrogen Deposition Altering the Nitrogen Status of Northeastern Forests?
NASA Astrophysics Data System (ADS)
Aber, J. D.; Goodale, C. L.; Ollinger, S. V.; Smith, M.; Magill, A. H.; Martin, M. E.; Hallett, R. A.; Stoddard, J. L.; Participants, N.
2002-05-01
The nitrogen saturation hypothesis suggests that foliar and soil N concentration, nitrification rate, and nitrate leaching loss should all increase in response to increased N deposition. We tested this hypothesis with a major new synthesis of foliar (362 plots), soil (251 plots), and surface water (354 lakes and streams) chemistry from the northeastern U.S. Nitrogen deposition decreases across the Northeast from ~ 10-12 kg ha-1 yr-1 in the Mid-Atlantic region to ~ 4 kg ha-1 yr-1 in northern Maine. Foliar chemistry (%N and lignin:N ratio) of red spruce and sugar maple correlated more strongly with elevation than with N deposition, although these factors covary. Forest floor C:N ratio decreased with N deposition for both conifers and hardwoods although correlations were not strong (R2 < 0.20). Regardless of forest type or soil horizon, percent nitrification (as a fraction of N mineralization) increased as soil C:N decreased below ~25, and increased weakly with N deposition in hardwood stands. Across the Northeast, surface water seasonal nitrate concentrations and N export during the mid- to late-1990s increased with N deposition (R2 = 0.30-0.56), with two important patterns emerging: 1) nitrate rarely exceeded 1 μ mol/L in watersheds receiving <8-10 kg ha-1 yr-1; and 2) high nitrate concentrations occurred only in lakes and streams receiving relatively high N inputs. This pattern resembles that for European forests. Factors such as species composition, forest history, climate, and hydrology may affect foliar, soil, and stream chemistry at different spatial and temporal scales. Foliar and soil chemistry may be more strongly influenced by local heterogeneity, whereas surface water samples integrate over much larger areas. Using surface waters as the most comprehensive indicator of N saturation, it appears that N deposition is altering the N status of forests in the northeastern U.S.
Armenteros, Mónica; Aristoy, María-Concepción; Toldrá, Fidel
2012-07-01
Nitrate and nitrite are commonly added to dry-cured ham to provide protection against pathogen microorganisms, especially Clostridium botulinum. Both nitrate and nitrite were monitored with ion chromatography in dry-cured hams salted with different NaCl formulations (NaCl partially replaced by KCl and/or CaCl(2), and MgCl(2)). Nitrate, that is more stable than nitrite, diffuses into the ham and acts as a reservoir for nitrite generation. A correct nitrate and nitrite penetration was detected from the surface to the inner zones of the hams throughout its processing, independently of the salt formulation. Nitrate and nitrite achieved similar concentrations, around 37 and 2.2 ppm, respectively in the inner zones of the ham for the three assayed salt formulations at the end of the process, which are in compliance with European regulations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Katz, B.; Copeland, R.; Greenhalgh, T.; Ceryak, R.; Zwanka, W.
2005-01-01
Human health and ecological concerns have arisen due to a steady increase in nitrate-N concentrations during the past 40 years in Fannin Springs (0.3-4.7 mg/L), a regional discharge point with an average flow of >2.8 m3/second (>100 ft3/second) for water from the karstic Upper Floridan aquifer (UFA). Multiple chemical indicators (major dissolved species, 15N and 18O of nitrate, dissolved gases, 78 pesticides and degradates, and 67 organic compounds typically found in domestic and industrial wastewater) and transient tracers (3H/3He, chlorofluorocarbons [CFCs], sulfur hexafluoride [SF6]) were analyzed in water samples from nine wells along three transects and in spring water to assess groundwater age and potential contaminant sources. Land use is predominantly agricultural (52 percent) and forest (31 percent) in the 320 km2 (124 mi2) spring basin, which was delineated from a potentiometric-surface map of the UFA using high-resolution water-level data. Nitrate-N concentrations were highly variable in the oxic UFA and ranged from <0.02 to 4.7 mg/L. ?? 15N-NO3 values (3.4-9.9 per mil) indicated that nitrate contamination originated from inorganic sources (synthetic fertilizer) and organic sources (manure spreading or waste disposal). Higher nitrate concentrations and the younger age of spring water relative to water from upgradient wells indicate better communication with N sources at the surface. Apparent ages of groundwater correlated positively with well depth (P < 0.05) and were younger in water from wells nearer to the spring (<8 years) compared with other wells (10-50 years). Most transient tracer concentrations were consistent with binary mixing curves representing mixtures of water recharged during the past 10 years and older water (recharged before 1940). Young water mixing fractions ranged from 0.07 to 0.90. Trace levels of herbicides found in groundwater and spring water were indicative of applications for vegetative control in agricultural and other land-use types.
Smith, R.L.; Böhlke, J.K.; Repert, D.A.; Hart, C.P.
2009-01-01
The extent to which in-stream processes alter or remove nutrient loads in agriculturally impacted streams is critically important to watershed function and the delivery of those loads to coastal waters. In this study, patch-scale rates of in-stream benthic processes were determined using large volume, open-bottom benthic incubation chambers in a nitrate-rich, first to third order stream draining an area dominated by tile-drained row-crop fields. The chambers were fitted with sampling/mixing ports, a volume compensation bladder, and porewater samplers. Incubations were conducted with added tracers (NaBr and either 15N[NO3-], 15N[NO2-], or 15N[NH4+]) for 24-44 h intervals and reaction rates were determined from changes in concentrations and isotopic compositions of nitrate, nitrite, ammonium and nitrogen gas. Overall, nitrate loss rates (220-3,560 ??mol N m-2 h-1) greatly exceeded corresponding denitrification rates (34-212 ??mol N m-2 h-1) and both of these rates were correlated with nitrate concentrations (90-1,330 ??M), which could be readily manipulated with addition experiments. Chamber estimates closely matched whole-stream rates of denitrification and nitrate loss using 15N. Chamber incubations with acetylene indicated that coupled nitrification/denitrification was not a major source of N2 production at ambient nitrate concentrations (175 ??M), but acetylene was not effective for assessing denitrification at higher nitrate concentrations (1,330 ??M). Ammonium uptake rates greatly exceeded nitrification rates, which were relatively low even with added ammonium (3.5 ??mol N m-2 h-1), though incubations with nitrite demonstrated that oxidation to nitrate exceeded reduction to nitrogen gas in the surface sediments by fivefold to tenfold. The chamber results confirmed earlier studies that denitrification was a substantial nitrate sink in this stream, but they also indicated that dissolved inorganic nitrogen (DIN) turnover rates greatly exceeded the rates of permanent nitrogen removal via denitrification. ?? Springer Science+Business Media B.V. 2009.
Su, Yiming; Adeleye, Adeyemi S; Huang, Yuxiong; Sun, Xiaoya; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei; Keller, Arturo A
2014-10-15
Nanoscale zerovalent iron (nZVI) has demonstrated high efficacy for treating nitrate or cadmium (Cd) contamination, but its efficiency for simultaneous removal of nitrate and Cd has not been investigated. This study evaluated the reactivity of nZVI to the co-contaminants and by-product formation, employed different catalysts to reduce nitrite yield from nitrate, and examined the transformation of nZVI after reaction. Nitrate reduction resulted in high solution pH, negatively charged surface of nZVI, formation of Fe3O4 (a stable transformation of nZVI), and no release of ionic iron. Increased pH and negative charge contributed to significant increase in Cd(II) removal capacity (from 40 mg/g to 188 mg/g) with nitrate present. In addition, nitrate reduction by nZVI could be catalyzed by Cd(II): while 30% of nitrate was reduced by nZVI within 2 h in the absence of Cd(II), complete nitrate reduction was observed in the presence of 40 mg-Cd/L due to the formation of Cd islands (Cd(0) and CdO) on the nZVI particles. While nitrate was reduced mostly to ammonium when Cd(II) was not present or at Cd(II) concentrations ≥ 40 mg/L, up to 20% of the initial nitrate was reduced to nitrite at Cd(II) concentrations < 40 mg/L. Among nZVI particles doped with 1 wt. % Cu, Ag, or Au, nZVI deposited with 1 wt. % Au reduced nitrite yield to less than 3% of the initial nitrate, while maintaining a high Cd(II) removal capacity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ledoux, E; Gomez, E; Monget, J M; Viavattene, C; Viennot, P; Ducharne, A; Benoit, M; Mignolet, C; Schott, C; Mary, B
2007-04-01
A software package is presented here to predict the fate of nitrogen fertilizers and the transport of nitrate from the rooting zone of agricultural areas to surface water and groundwater in the Seine basin, taking into account the long residence times of water and nitrate in the unsaturated and aquifer systems. Information on pedological characteristics, land use and farming practices is used to determine the spatial units to be considered. These data are converted into input data for the crop model STICS which simulates the water and nitrogen balances in the soil-plant system with a daily time-step. A spatial application of STICS has been derived at the catchment scale which computes the water and nitrate fluxes at the bottom of the rooting zone. These fluxes are integrated into a surface and groundwater coupled model MODCOU which calculates the daily water balance in the hydrological system, the flow in the rivers and the piezometric variations in the aquifers, using standard climatic data (rainfall, PET). The transport of nitrate and the evolution of nitrate contamination in groundwater and to rivers is computed by the model NEWSAM. This modelling chain is a valuable tool to predict the evolution of crop productivity and nitrate contamination according to various scenarios modifying farming practices and/or climatic changes. Data for the period 1970-2000 are used to simulate the past evolution of nitrogen contamination. The method has been validated using available data bases of nitrate concentrations in the three main aquifers of the Paris basin (Oligocene, Eocene and chalk). The approach has then been used to predict the future evolution of nitrogen contamination up to 2015. A statistical approach allowed estimating the probability of transgression of different concentration thresholds in various areas in the basin. The model is also used to evaluate the cost of the damage resulting of the treatment of drinking water at the scale of a groundwater management unit in the Seine river basin.
Orozco-Durán, A; Daesslé, L W; Camacho-Ibar, V F; Ortiz-Campos, E; Barth, J A C
2015-04-15
A study on dissolved nitrate, ammonium, phosphate and silicate concentrations was carried out in various water compartments (rivers, drains, channels, springs, wetland, groundwater, tidal floodplains and ocean water) in the Mexicali Valley and the Colorado River delta between 2012 and 2013, to assess modern potential nutrient sources into the marine system after river damming. While nitrate and silicate appear to have a significant input into the coastal ocean, phosphate is rapidly transformed into a particulate phase. Nitrate is, in general, rapidly bio-consumed in the surface waters rich in micro algae, but its excess (up to 2.02 mg L(-1) of N from NO3 in winter) in the Santa Clara Wetland represents a potential average annual source to the coast of 59.4×10(3)kg N-NO3. Despite such localized inputs, continuous regional groundwater flow does not appear to be a source of nitrate to the estuary and coastal ocean. Silicate is associated with groundwaters that are also geothermally influenced. A silicate receiving agricultural drain adjacent to the tidal floodplain had maximum silicate concentrations of 16.1 mg L(-1) Si-SiO2. Seepage of drain water and/or mixing with seawater during high spring tides represents a potential source of dissolved silicate and nitrate into the Gulf of California. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nepomnyashchaya, Yana; Rezende, Julia; Hubert, Casey
2014-05-01
Hydrogen sulphide produced during metabolism of sulphate-reducing microorganisms (SRM) is toxic, corrosive and causes detrimental oil reservoir souring. During secondary oil recovery, injecting oil reservoirs with seawater that is rich in sulphate and that also cools high temperature formations provides favourable growth conditions for SRM. Nitrate addition can prevent metabolism of SRM by stimulating nitrate-reducing microorganisms (NRM). The investigations of thermophilic NRM are needed to develop mechanisms to control the metabolism of SRM in high temperature oil field ecosystems. We therefore established a model system consisting of enrichment cultures of cold surface marine sediments from the Baltic Sea (Aarhus Bay) that were incubated at 60°C. Enrichments contained 25 mM nitrate and 40 mM sulphate as potential electron acceptors, and a mixture of the organic substrates acetate, lactate, propionate, butyrate (5 mM each) and yeast extract (0.01%) as potential carbon sources and electron donors. Slurries were incubated at 60°C both with and without initial pasteurization at 80°C for 2 hours. In the enrichments containing both nitrate and sulphate, the concentration of nitrate decreased indicating metabolic activity of NRM. After a four-hour lag phase the rate of nitrate reduction increased and the concentration of nitrate dropped to zero after 10 hours of incubation. The concentration of nitrite increased as the reduction of nitrate progressed and reached 16.3 mM after 12 hours, before being consumed and falling to 4.4 mM after 19-day of incubation. No evidence for sulphate reduction was observed in these cultures during the 19-day incubation period. In contrast, the concentration of sulphate decreased up to 50% after one week incubation in controls containing only sulphate but no nitrate. Similar sulfate reduction rates were seen in the pasteurized controls suggesting the presence of heat resistant SRM, whereas nitrate reduction rates were lower in the pasteurized experiment, suggesting either different populations of NRM or a population of NRM that was not resistant to the 80°C pre-treatment. These results demonstrate that thermophilic NRM exist in cold marine sediments from Aarhus Bay and can be enriched under appropriate conditions. Effective microbial control of SRM activity at high temperature in our Aarhus Bay sediment model system depends on the addition of nitrate to stimulate this group of microorganisms.
Antarctic Ocean Nutrient Conditions During the Last Two Glacial Cycles
NASA Astrophysics Data System (ADS)
Studer, A.; Sigman, D. M.; Martinez-Garcia, A.; Benz, V.; Winckler, G.; Kuhn, G.; Esper, O.; Lamy, F.; Jaccard, S.; Wacker, L.; Oleynik, S.; Gersonde, R.; Haug, G. H.
2014-12-01
The high concentration of the major nutrients nitrate and phosphate in the Antarctic Zone of the Southern Ocean dictates the nature of Southern Ocean ecosystems and permits these nutrients to be carried from the deep ocean into the nutrient-limited low latitudes. Incomplete nutrient consumption in the Antarctic also allows the leakage of deeply sequestered carbon dioxide (CO2) back to the atmosphere, and changes in this leakage may have driven glacial/interglacial cycles in atmospheric CO2. In a sediment core from the Pacific sector of the Antarctic Ocean, we report diatom-bound N isotope (δ15Ndb) records for total recoverable diatoms and two assemblages of diatom species. These data indicate tight coupling between the degree of nitrate consumption and Antarctic climate across the last two glacial cycles, with δ15Ndb (and thus the degree of nitrate consumption) increasing at each major Antarctic cooling event. Measurements in the same sediment core indicate that export production was reduced during ice ages, pointing to an ice age reduction in the supply of deep ocean-sourced nitrate to the Antarctic Ocean surface. The reduced export production of peak ice ages also implies a weaker winter-to-summer decline (i.e. reduced seasonality) in mixed layer nitrate concentration, providing a plausible explanation for an observed reduction in the inter-assemblage δ15Ndb difference during these coldest times. Despite the weak summertime productivity, the reduction in wintertime nitrate supply from deep waters left the Antarctic mixed layer with a low nitrate concentration, and this wintertime change also would have reduced the outgassing of CO2. Relief of light limitation fails to explain the intermediate degree of nitrate consumption that characterizes early glacial conditions, as improved light limitation coincident with reduced nitrate supply would drive nitrate consumption to completion. Thus, the data favor iron availability as the dominant control on annual Antarctic Ocean export production over glacial cycles.
Crandall, Christy A.; Katz, Brian G.; Berndt, Marian P.
2013-01-01
Groundwater from the surficial aquifer system and Upper Floridan aquifer in the Dougherty Plain and Marianna Lowlands in southwestern Georgia, northwestern Florida, and southeastern Alabama is affected by elevated nitrate concentrations as a result of the vulnerability of the aquifer, irrigation water-supply development, and intensive agricultural land use. The region relies primarily on groundwater from the Upper Floridan aquifer for drinking-water and irrigation supply. Elevated nitrate concentrations in drinking water are a concern because infants under 6 months of age who drink water containing nitrate concentrations above the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter as nitrogen can become seriously ill with blue baby syndrome. In response to concerns about water quality in domestic wells and in springs in the lower Apalachicola–Chattahoochee–Flint River Basin, the Florida Department of Environmental Protection funded a study in cooperation with the U.S. Geological Survey to examine water quality in groundwater and springs that provide base flow to the Chipola River. A three-dimensional, steady-state, regional-scale groundwater-flow model and two local-scale models were used in conjunction with particle tracking to identify travel times and areas contributing recharge to six groundwater sites—three long-term monitor wells (CP-18A, CP-21A, and RF-41) and three springs (Jackson Blue Spring, Baltzell Springs Group, and Sandbag Spring) in the lower Apalachicola–Chattahoochee–Flint River Basin. Estimated nitrate input to groundwater at land surface, based on previous studies of nitrogen fertilizer sales and atmospheric nitrate deposition data, were used in the advective transport models for the period 2002 to 2050. Nitrate concentrations in groundwater samples collected from the six sites during 1993 to 2007 and groundwater age tracer data were used to calibrate the transport aspect of the simulations. Measured nitrate concentrations (as nitrogen) in wells and springs sampled during the study ranged from 0.37 to 12.73 milligrams per liter. Average apparent ages of groundwater calculated from measurements of chlorofluorocarbon, sulfur hexafluoride, and tritium from wells CP-18A, CP-21A,and RF-41 were about 23, 29, and 32 years, respectively. Average apparent ages of groundwater from Baltzell Springs Group, Sandbag Spring, and Jackson Blue Spring were about 16, 18, and 19 years, respectively. Simulated travel times of particles from the six selected sites ranged from less than 1 day to 511 years; both the minimum and maximum particle travel times were estimated for water from Jackson Blue Spring. Median simulated travel times of particles were about 30, 38, and 62 years for Jackson Blue Spring, Sandbag Spring, and Baltzell Springs Group, respectively. Study results indicated that travel times for approximately 50 percent of the particles from all spring sites were less than 50 years. The median simulated travel times of particles arriving at receptor wells CP-18A, CP-21A, and RF-41 were about 50, 35, and 36 years, respectively. All particle travel times were within the same order of magnitude as the tracer-derived average apparent ages for water, although slightly older than the measured ages. Travel time estimates were substantially greater than the measured age for groundwater reaching well CP-18A, as confirmed by the average apparent age of water determined from tracers. Local-scale particle-tracking models were used to predict nitrate concentrations in the three monitor wells and three springs from 2002 to 2050 for three nitrogen management scenarios: (1) fixed input of nitrate at the 2001 level, (2) reduction of nitrate inputs of 4 percent per year (from the previous year) from 2002 to 2050, and (3) elimination of nitrate input after 2001. Simulated nitrate concentrations in well CP-21A peaked at 7.82 milligrams per liter in 2030, and concentrations in background well RF-41 peaked at 1.10 milligrams per liter in 2020. The simulated particle travel times were longer than indicated by age dating analysis for groundwater in well CP-18A; to account for the poor calibration fit at this well, nitrate concentrations were shifted 21 years. With the shift, simulated nitrate concentrations in groundwater at CP-18A peaked at 13.76 milligrams per liter in 2026. For groundwater in Baltzell Springs Group, Jackson Blue Spring, and Sandbag Spring, simulated nitrate concentrations peaked at 3.77 milligrams per liter in 2006, 3.51 milligrams per liter in 2011, and 0.81 milligram per liter in 2018, respectively, under the three management scenarios. In management scenario 3 (elimination of nitrate input after 2001), simulated nitrate concentrations in Baltzell Springs Group decreased to less than background concentrations (0.10 milligram per liter) by 2033, and in Sandbag Spring concentrations decreased to less than background by 2041. Simulations using nitrate management scenarios 1 (fixed input of nitrate at 2001 levels) and 2 (reduction of 4.0 percent per year) indicate that nitrate concentrations in groundwater may remain above background concentrations through 2050 at all sites.
NASA Astrophysics Data System (ADS)
Vieno, M.; Heal, M. R.; Hallsworth, S.; Famulari, D.; Doherty, R. M.; Dore, A. J.; Tang, Y. S.; Braban, C. F.; Leaver, D.; Sutton, M. A.; Reis, S.
2014-08-01
Surface concentrations of secondary inorganic particle components over the UK have been analysed for 2001-2010 using the EMEP4UK regional atmospheric chemistry transport model and evaluated against measurements. Gas/particle partitioning in the EMEP4UK model simulations used a bulk approach, which may lead to uncertainties in simulated secondary inorganic aerosol. However, model simulations were able to accurately represent both the long-term decadal surface concentrations of particle sulfate and nitrate and an episode in early 2003 of substantially elevated nitrate measured across the UK by the AGANet network. The latter was identified as consisting of three separate episodes, each of less than 1 month duration, in February, March and April. The primary cause of the elevated nitrate levels across the UK was meteorological: a persistent high-pressure system, whose varying location impacted the relative importance of transboundary versus domestic emissions. Whilst long-range transport dominated the elevated nitrate in February, in contrast it was domestic emissions that mainly contributed to the March episode, and for the April episode both domestic emissions and long-range transport contributed. A prolonged episode such as the one in early 2003 can have substantial impact on annual average concentrations. The episode led to annual concentration differences at the regional scale of similar magnitude to those driven by long-term changes in precursor emissions over the full decade investigated here. The results demonstrate that a substantial part of the UK, particularly the south and southeast, may be close to or exceeding annual mean limit values because of import of inorganic aerosol components from continental Europe under specific conditions. The results reinforce the importance of employing multiple year simulations in the assessment of emissions reduction scenarios on particulate matter concentrations and the need for international agreements to address the transboundary component of air pollution.
Impact of switching crop type on water and solute fluxes in deep vadose zone
NASA Astrophysics Data System (ADS)
Turkeltaub, T.; Kurtzman, D.; Russak, E. E.; Dahan, O.
2015-12-01
Switching crop type and consequently changing irrigation and fertilization regimes lead to alterations in deep percolation and solute concentrations of pore water. Herein, observations from the deep vadose zone and model simulations demonstrate the changes in water, chloride, and nitrate fluxes under a commercial greenhouse following the change from tomato to lettuce cropping. The site, located above a phreatic aquifer, was monitored for 5 years. A vadose-zone monitoring system was implemented under the greenhouse and provided continuous data on both temporal variations in water content and chemical composition of the pore water at multiple depths in the deep vadose zone (up to 20 m). Following crop switching, a significant reduction in chloride concentration and dramatic increase in nitrate were observed across the unsaturated zone. The changes in chemical composition of the vadose-zone pore water appeared as sequential breakthroughs across the unsaturated zone, initiating at land surface and propagating down toward the water table. Today, 3 years after switching the crops, penetration of the impact exceeds 10 m depth. Variations in the isotopic composition of nitrate (18O and 15N) in water samples obtained from the entire vadose zone clearly support a fast leaching process and mobilization of solutes across the unsaturated zone following the change in crop type. Water flow and chloride transport models were calibrated to observations acquired during an enhanced infiltration experiment. Forward simulation runs were performed with the calibrated models, constrained to tomato and lettuce cultivation regimes as surface boundary conditions. Predicted chloride and nitrate concentrations were in agreement with the observed concentrations. The simulated water drainage and nitrogen leaching implied that the observed changes are an outcome of recommended agricultural management practices.
Ion exchange membrane textile bioreactor as a new alternative for drinking water denitrification.
Berdous, Dalila; Akretche, Djamal-Eddine; Abderahmani, Ahmed; Berdous, Sakina; Meknaci, Rima
2014-06-01
This work enters in the optics of the denitrification of a polluted water by two membrane techniques, the Donnan dialysis (DD) and the ion exchange membrane bioreactor (IEMB), using a conventional barrier, composed by an anion exchange membrane (AEM), and a hybrid barrier, where the AEM is combined to an anion exchange textile (AET). The effects of the hydrodynamic factor and the nature of the carbon source on the transfer and the reduction of nitrate ions were studied. The study results obtained through the DD showed the effectiveness of the hybrid barrier in the recovery and concentration of nitrate ions. This was also recorded during denitrification by the hybrid process, called the ion exchange membrane textile bioreactor (IEMTB), with a significant reduction of nitrates, compared to IEMB, due to the efficiency of the Pseudomonas aeruginosa biofilm formed at the surface of the AET. Here, the permselectivity of the membrane and the good bioreduction of the pollutants are no longer major conditions to the better performance of the process. The application of IEMTB in the denitrification of groundwater, having a nitrate concentration of 96.67 ppm, shows a total reduction of nitrate ions without changing the quality of the water. Indeed, the analysis of the recovered water, or yet the treated water, shows the absence of the bacterium by-products and concentrations in the nitrates and nitrites which are, respectively, equal to 0.02±0.01 ppm, and inferiors to the detection limit (<0.02 ppm).
NASA Astrophysics Data System (ADS)
Price, A.; Wollheim, W. M.; Mulukutla, G. K.; Carey, R. O.; McDowell, W. H.
2012-12-01
Understanding the aquatic biogeochemical impacts of land use change and climate variability will require improved understanding of nutrient variability over temporal scales ranging from storms to seasons. New in situ sensor technology offers the prospect of efficient nutrient measurements over multiple time scales. We quantified nutrient flux patterns in response to storm events across seasons using in situ nutrient sensors deployed in headwater streams draining three land use types (forest, suburban, and agriculture) within the Lamprey River watershed, New Hampshire, between April-December 2012. We utilized two sensor suites, each consisting of a Satlantic Submersible Ultraviolet Nitrate Analyzer (NO3-N), Turner Designs C6 Multi-Sensor Platform (CDOM, Turbidity, Chl), Hydrolab MS5 (Dissolved Oxygen, pH), WET Labs Cycle P (PO4-P), and Hobo Water Level & Conductivity meters. Preliminary spring/summer comparisons at the suburban site suggest increased baseflow nitrate concentrations and decreased diurnal nitrate variability (~0.05 vs. 0.035 mg/L daily fluctuation) following leaf emergence in spring. Nitrate concentrations were diluted during storms. Hysteresis was evident, suggesting groundwater nitrate sources attributable to septic systems were diluted by surface runoff during spring storms. The agricultural stream showed similar but more extreme patterns of increasing baseflow nitrate during the summer (~2.4 to 4.1 mg/L) and dilution during storms. The compilation of a high-frequency dataset for headwater streams across seasons and land-use types will provide valuable insight into complex land use/water quality relationships in urbanizing watersheds.
Spatial variability in groundwater N2 and N2O in the San Joaquin River
NASA Astrophysics Data System (ADS)
Hinshaw, S.; Dahlgren, R. A.
2010-12-01
The San Joaquin River is surrounded by nearly 2 million acres of irrigated agricultural land. Groundwater inputs from agricultural areas can have severe negative effects on water quality with high nitrate concentrations being a major concern. Riparian zones are important ecological habitats that mitigate nitrogen loading from groundwater discharging into rivers primarily by denitrification. Denitrification is a permanent removal of nitrate by anaerobic microbial communities via the reduction to NO, N2O and N2. However, previous studies have shown that these areas can be source of N2O emissions. Although removal of nitrate through denitrification is advantageous from a water quality perspective, N2O is a harmful greenhouse gas. This study aimed to investigate nitrogen dynamics and dissolved N gases in surface and groundwater of the riparian zones of the San Joaquin River. Excess N2 and N2O concentrations were measured in surface and groundwater at 4 locations along a 33 km reach of the river. Samples were collected within bank sediments and 5 transect points across the river at depth intervals between 2-3 cm and 150 cm. Dissolved N2 and Ar were measured by membrane inlet mass spectrometry and used to estimate excess dissolved N2 concentrations. Dissolved N2O concentrations were measured using the headspace equilibrium technique and analyzed with a gas chromatograph. Both N2 uptake and excess N2 were present, ranging from -3.40 to 8.65 N2 mg/L with a median concentration of 1.20 N2 mg/L. Significantly lower concentrations of N2O were present ranging from 0.0 to 0.12 N2O mg/L. Deeper groundwater sites had significantly higher N2 and N2O concentrations coinciding with decreased O2. The presence of excess N2 and low N2O concentrations documents the importance of denitrification in removing nitrate from groundwater. Further investigation will examine N2O emissions from riparian soils and benthic sediments using static chambers and focus on nitrogen pathways that contribute to high ammonium concentrations with increasing depth.
Smith, Shannon E.; Ruhl, James E.
1995-01-01
Lake water was sampled from 11 sites on Little Pine, Big Pine, Rush, and Otter Tail Lakes. Nitrate-nitrogen concentrations were all below the detection limit (0.05 mg/L). The concentration of triazine herbicide compounds, as determined by immunoassay, was at or below the detection limit (0.10 ug/L) at all 11 sites. Dissolved oxygen concentrations at the sites ranged from 7.3 to 10.1 mg/L at the water surface, and from 5.3 to 9.7 mg/L at depth. Secchi disk transparency readings ranged from 4.0 to 7.4 feet. Total phosphorus concentrations were generally near or below the detection limit (0.01 mg/L) except at one site where the water had a total phosphorus concentration of 0.06 mg/L.
Hüsler, B R.; Blum, J W.
2001-05-01
There is marked endogenous production of nitrate in young calves. Here we have studied the contribution of exogenous nitrate and nitrite to plasma concentrations and urinary excretion of nitrite and nitrate in milk-fed calves. In experiment 1, calves were fed 0 or 200 &mgr;mol nitrate or nitrite/kg(0.75) or 100 &mgr;mol nitrite plus 100 &mgr;mol nitrate/kg(0.75) with milk for 3 d. In experiment 2, calves were fed 400 &mgr;mol nitrate or nitrite/kg(0.75) with milk for 1 d. Plasma nitrate rapidly and comparably increased after feeding nitrite, nitrate or nitrite plus nitrate. The rise of plasma nitrate was greater if 400 than 200 &mgr;mol nitrate or nitrite/kg(0.75) were fed. Plasma nitrate decreased slowly after the 3-d administration of 200 &mgr;mol nitrate or nitrite/kg(0.75) and reached pre-experimental concentrations 4 d later. Urinary nitrate excretions nearly identically increased if nitrate, nitrite or nitrite plus nitrate were administered and excreted amounts were greater if 400 than 200 &mgr;mol nitrate or nitrite/kg(0.75) were fed. After nitrite ingestion plasma nitrite only transiently increased after 2 and 4 h and urinary excretion rates remained unchanged. Plasma nitrate concentration remained unchanged if milk was not supplemented with nitrite or nitrate. Nitrate concentrations were stable for 24 h after addition of nitrite to full blood in vitro, whereas nitrite concentrations decreased within 2 h. In conclusion, plasma nitrate concentrations and urinary nitrate excretions are enhanced dose-dependently by feeding low amounts of nitrate and nitrite, whereas after ingested nitrite only a transient and small rise of plasma nitrite is observed because of rapid conversion to nitrate.
Kovacevik, Biljana; Boev, Blazo; Panova, Vesna Zajkova; Mitrev, Sasa
2016-12-05
The aim of this study was to investigate the groundwater pollution from alluvial aquifers lying under surface agriculture activities in two geologically different areas: alluvial and prolluvial. The groundwater in investigated areas is neutral to alkaline (pH 7.05-8.45), and the major dissolved ions are bicarbonate and calcium. Groundwater samples from the alluvial area are characterized by nitrate concentration above the national maximum concentration limit (MCL) at 20.5% of samples [mean value (Me) 6.31 mg/L], arsenic concentrations greater than national MCL at 35.6% of investigated samples (Me 12.12 µg/L) and elevated concentrations of iron (Me 202.37 µg/L) and manganese (Me 355.22 µg/L) at 22.7% and 81% of investigated samples, respectively. Groundwater samples from the prolluvial area did not show significantly elevated concentrations of heavy metals, but the concentration of nitrate was considerably higher (Me 65.06 mg/L). Factor analysis positively correlates As with Mn and Fe, suggesting its natural origin. Nitrate was found in positive correlation with SO 4 2- and Ni but in negative with NH 4 + , suggesting its anthropogenic origin and the relationship of these ions in the process of denitrification. The t-test analysis showed a significant difference between nitrate pollution of groundwater from alluvial and prolluvial areas. According to the chemical composition of groundwater, the process of denitrification is considered to be the main reason for the reduced presence of nitrate in the groundwater lying under alluvial deposits represented by chalk and sandstones. Denitrification in groundwater lying under prolluvial deposits represented by magmatic and metamorphic rock formations was not observed.
Willoughby, T.C.; See, R.B.; Schroder, L.J.
1989-01-01
Three experiments were conducted to determine the stability of nitrate-ion concentrations in simulated deposition samples. In the four experiment-A solutions, nitric acid provided nitrate-ion concentrations ranging from 0.6 to 10.0 mg/L and that had pH values ranging from 3.8 to 5.0. In the five experiment-B solutions, sodium nitrate provided nitrate-ion concentrations ranging from 0.5 to 3.0 mg/L. The pH was adjusted to about 4.5 for each of the solutions by addition of sulfuric acid. In the four experiment-C solutions, nitric acid provided nitrate-ion concentrations ranging from 0.5 to 3.0 mg/L. Major cation and anion concentrations were added to each solution to simulate natural deposition. Aliquots were removed from the 13 original solutions and analyzed by ion chromatography about once a week for 100 days to determine if any changes occurred in nitrate-ion concentrations throughout the study period. No substantial changes were observed in the nitrate-ion concentrations in solutions that had initial concentrations below 4.0 mg/L in experiments A and B, although most of the measured nitrate-ion concentrations for the 100-day study were below the initial concentrations. In experiment C, changes in nitrate-ion concentrations were much more pronounced; the measured nitrate-ion concentrations for the study period were less than the initial concentrations for 62 of the 67 analyses. (USGS)
Alula, Melisew Tadele; Yang, Jyisy
2014-12-01
In this study, silver nanostructures decorated magnetic nanoparticles for surface-enhanced Raman scattering (SERS) measurements were prepared via photoreduction utilizing the catalytic activity of ZnO nanostructure. The ZnO/Fe3O4 composite was first prepared by dispersing pre-formed magnetic nanoparticles into alkaline zinc nitrate solutions. After annealing of the precipitates, the formed ZnO/Fe3O4 composites were successfully decorated with silver nanostructures by soaking the composites into silver nitrate/ethylene glycol solution following UV irradiations. To find the optimal condition when preparing Ag@ZnO/Fe3O4 composites for SERS measurements, factors such as the reaction conditions, photoreduction time, concentration of zinc nitrate and silver nitrate were studied. Results indicated that the photoreduction efficiency was significantly improved with the assistance of ZnO but the amount of ZnO in the composite is not critical. The concentration of silver nitrate and UV irradiation time affected the morphologies of the formed composites and optimal condition in preparation of the composites for SERS measurement was found using 20mM of silver nitrate with an irradiation time of 90 min. Under the optimized condition, the obtained SERS intensities were highly reproducible with a SERS enhancement factor in the order of 7. Quantitative analyses showed that a linear range up to 1 µM with a detection limit lower than 0.1 µM in the detection of creatinine in aqueous solution could be obtained. Successful applying of these prepared composites to determine creatinine in urine sample was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
Phosphorus and nitrate nitrogen in runoff following fertilizer application to turfgrass.
Shuman, L M
2002-01-01
Intensively managed golf courses are perceived by the public as possibly adding nutrients to surface waters via surface transport. An experiment was designed to determine the transport of nitrate N and phosphate P from simulated golf course fairways of 'Tifway' bermudagrass [Cynodon dactylon (L.) Pers.]. Fertilizer treatments were 10-10-10 granular at three rates and rainfall events were simulated at four intervals after treatment (hours after treatment, HAT). Runoff volume was directly related to simulated rainfall amounts and soil moisture at the time of the event and varied from 24.3 to 43.5% of that added for the 50-mm events and 3.1 to 27.4% for the 25-mm events. The highest concentration and mass of phosphorus in runoff was during the first simulated rainfall event at 4 HAT with a dramatic decrease at 24 HAT and subsequent events. Nitrate N concentrations were low in the runoff water (approximately 0.5 mg L-1) for the first three runoff events and highest (approximately 1-1.5 mg L-1) at 168 HAT due to the time elapsed for conversion of ammonia to nitrate. Nitrate N mass was highest at the 4 and 24 HAT events and stepwise increases with rate were evident at 24 HAT. Total P transported for all events was 15.6 and 13.8% of that added for the two non-zero rates, respectively. Total nitrate N transported was 1.5 and 0.9% of that added for the two rates, respectively. Results indicate that turfgrass management should include applying minimum amounts of irrigation after fertilizer application and avoiding application before intense rain or when soil is very moist.
Streamwater nitrate concentrations in six agricultural catchments in Scotland.
Hooda, P S; Moynagh, M; Svoboda, I F; Thurlow, M; Stewart, M; Thomson, M; Anderson, H A
1997-08-01
The concentrations of nitrate-N (NO3-N) in catchment inputs and outputs have been compared and contrasted between 6 farm catchments in Scotland, 3 in the West and 3 in the North-East. Forms of intensive animal farming ranging between beef and dairy cattle, sheep and poultry give different sources for potential NO3-N leakage from the systems. While stream reaches bordered by intensive cereal production give rise to the largest inputs to surface waters, climatic influences result in the more-efficient use of fertilizer- and farm waste-N in the West, and an enhanced potential for N-loss to waters in the cooler North-East, regardless of the N-inputs being considerably lower in the latter region. Although the EC Nitrate Directive limit of 11.3 mg NO3-N 1(-1) was not exceeded, peak values occurring during summer baseflows and autumn soil rewetting were commonly larger than the 'target' maximum concentration of 5.65 mg NO3-N 1-1.
Nishikawa, Tracy; Densmore, Jill N.; Martin, Peter; Matti, Jonathan
2003-01-01
Ground water historically has been the sole source of water supply for the Town of Yucca Valley in the Warren subbasin of the Morongo ground-water basin, California. An imbalance between ground-water recharge and pumpage caused ground-water levels in the subbasin to decline by as much as 300 feet from the late 1940s through 1994. In response, the local water district, Hi-Desert Water District, instituted an artificial recharge program in February 1995 using imported surface water to replenish the ground water. The artificial recharge program resulted in water-level recoveries of as much as 250 feet in the vicinity of the recharge ponds between February 1995 and December 2001; however, nitrate concentrations in some wells also increased from a background concentration of 10 milligrams per liter to more than the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 44 milligrams per liter (10 milligrams per liter as nitrogen). The objectives of this study were to: (1) evaluate the sources of the high-nitrate concentrations that occurred after the start of the artificial-recharge program, (2) develop a ground-water flow and solute-transport model to better understand the source and transport of nitrates in the aquifer system, and (3) utilize the calibrated models to evaluate the possible effect of a proposed conjunctive-use project. These objectives were accomplished by collecting water-level and water-quality data for the subbasin and assessing changes that have occurred since artificial recharge began. Collected data were used to calibrate the ground-water flow and solute-transport models. Data collected for this study indicate that the areal extent of the water-bearing deposits is much smaller (about 5.5 square miles versus 19 square miles) than that of the subbasin. These water-bearing deposits are referred to in this report as the Warren ground-water basin. Faults separate the ground-water basin into five hydrogeologic units: the west, the midwest, the mideast, the east and the northeast hydrogeologic units. Water-quality analyses indicate that septage from septic tanks is the primary source of the high-nitrate concentrations measured in the Warren ground-water basin. Water-quality and stable-isotope data, collected after the start of the artificial recharge program, indicate that mixing occurs between imported water and native ground water, with the highest recorded nitrate concentrations in the midwest and the mideast hydrogeologic units. In general, the timing of the increase in measured nitrate concentrations in the midwest hydrogeologic unit is directly related to the distance of the monitoring well from a recharge site, indicating that the increase in nitrate concentrations is related to the artificial recharge program. Nitrate-to-chloride and nitrogen-isotope data indicate that septage is the source of the measured increase in nitrate concentrations in the midwest and the mideast hydrogeologic units. Samples from four wells in the Warren ground-water basin were analyzed for caffeine and selected human pharmaceutical products; these analyses suggest that septage is reaching the water table. There are two possible conceptual models that explain how high-nitrate septage reaches the water table: (1) the continued downward migration of septage through the unsaturated zone to the water table and (2) rising water levels, a result of the artificial recharge program, entraining septage in the unsaturated zone. The observations that nitrate concentrations increase in ground-water samples from wells soon after the start of the artificial recharge program in 1995 and that the largest increase in nitrate concentrations occur in the midwest and mideast hydrogeologic units where the largest increase in water levels occur indicate the validity of the second conceptual model (rising water levels). The potential nitrate concentration resulting from a water-level rise in the midwest and
Yang, Ping-Heng; Yuan, Dao-Xian; Ren, You-Rong; Xie, Shi-You; He, Qiu-Fang; Hu, Xiao-Feng
2012-09-01
In order to investigate the nitrate storage and transport in the karst aquifer system, the hydrochemical dynamics of Qingmuguan underground river system was monitored online by achieving high-resolution data during storm events and monthly data in normal weather. The principal component analysis was employed to analyze the karst water geochemistry. Results showed that nitrate in Jiangjia spring did not share the same source with soluble iron, manganese and aluminum, and exhibited different geochemical behaviors. Nitrate was derived from land surface and infiltrated together with soil water, which was mainly stored in fissure, pore and solution crack of karst unsaturated zone, whereas soluble iron, manganese and aluminum were derived from soil erosion and directly recharged the underground river through sinkholes and shafts. Nitrate transport in the karst aquifer system could be ideally divided into three phases, including input storage, fast output and re-inputting storage. Under similar external conditions, the karstification intensity of vadose zone was the key factor to determine the dynamics of nitrate concentrations in the groundwater during storm events. Nitrate stored in the karst vadose zone was easily released, which would impair the aquatic ecosystem and pose seriously threats to the local health. Thus, to strengthen the management of ecological system, changing the land-use patterns and scientifically applying fertilizer could effectively make a contribution to controlling mass nutrient input from the surface.
Water table management reduces tile nitrate loss in continuous corn and in a soybean-corn rotation.
Drury, C F; Tan, C S; Gaynor, J D; Reynolds, W D; Welacky, T W; Oloya, T O
2001-10-25
Water table management systems can be designed to alleviate soil water excesses and deficits, as well as reduce nitrate leaching losses in tile discharge. With this in mind, a standard tile drainage (DR) system was compared over 8 years (1991 to 1999) to a controlled tile drainage/subirrigation (CDS) system on a low-slope (0.05 to 0.1%) Brookston clay loam soil (Typic Argiaquoll) in southwestern Ontario, Canada. In the CDS system, tile discharge was controlled to prevent excessive drainage, and water was pumped back up the tile lines (subirrigation) to replenish the crop root zone during water deficit periods. In the first phase of the study (1991 to 1994), continuous corn (Zea mays, L.) was grown with annual nitrogen (N) fertilizer inputs as per local soil test recommendations. In the second phase (1995 to 1999), a soybean (Glycine max L., Merr.)-corn rotation was used with N fertilizer added only during the two corn years. In Phase 1 when continuous corn was grown, CDS reduced total tile discharge by 26% and total nitrate loss in tile discharge by 55%, compared to DR. In addition, the 4-year flow weighted mean (FWM) nitrate concentration in tile discharge exceeded the Canadian drinking water guideline (10 mg N l(-1)) under DR (11.4 mg N l(-1)), but not under CDS (7.0 mg N l(-1)). In Phase 2 during the soybean-corn rotation, CDS reduced total tile discharge by 38% and total nitrate loss in tile discharge by 66%, relative to DR. The 4-year FWM nitrate concentration during Phase 2 in tile discharge was below the drinking water guideline for both DR (7.3 mg N l(-1)) and CDS (4.0 mg N l(-1)). During both phases of the experiment, the CDS treatment caused only minor increases in nitrate loss in surface runoff relative to DR. Hence CDS decreased FWM nitrate concentrations, total drainage water loss, and total nitrate loss in tile discharge relative to DR. In addition, soybean-corn rotation reduced FWM nitrate concentrations and total nitrate loss in tile discharge relative to continuous corn. CDS and crop rotations with reduced N fertilizer inputs can thus improve the quality of tile discharge water substantially.
NASA Astrophysics Data System (ADS)
Krasae, Nalinee; Wantala, Kitirote
2016-09-01
The aims of this work were to study the effect of Cu-nZVI with and without TiO2 on nitrate reduction and to study the pathway of nitrate reduction utilizing to nitrogen gas. The chemical and physical properties of Cu-nZVI and Cu-nZVI/TiO2 such as specific surface area, crystalline phase, oxidation state of Cu and Fe and morphology were determined by N2 adsorption-desorption Brunauer-Emmett-Teller (BET) analytical technique, X-ray diffraction (XRD), X-ray Absorption Near Edge Structure (XANES) technique and Transmittance Electron Microscopy (TEM). The full factorial design (FFD) was used in this experiment for the effect of Cu-nZVI with and without TiO2, where the initial solution pH was varied at 4, 5.5, and 7 and initial nitrate concentration was varied at 50, 75, and 100 ppm. Finally, the pathway of nitrate reduction was examined to calculate the nitrogen gas selectivity. The specific area of Cu-nZVI and Cu-nZVI/TiO2 was found to be about 4 and 36 m2/g, respectively. The XRD pattern of Fe0 in Cu-nZVI was found at 45° (2θ), whereas Cu-nZVI/TiO2 cannot be observed. TEM images can confirm the position of the core and the shell of nZVI for Fe0 and ferric oxide. Cu-nZVI/TiO2 proved to have higher activity in nitrogen reduction performance than that without TiO2 and nitrate can be completely degraded in both of solution pH of 4 and 7 in 75 ppm of initial nitrate concentration. It can be highlighted that the nitrogen gas selectivity of Cu-nZVI/TiO2 greater than 82% was found at an initial solution pH of 4 and 7. The main effects of Cu-nZVI with and without TiO2 and the initial nitrate concentration on nitrate reduction were significant. The interaction between solution pH and initial nitrate concentration and the interaction of all effects at a reaction time of 15 min on nitrate reduction were also significant.
NASA Astrophysics Data System (ADS)
Silver, Matthew; Schlögl, Johanna; Knöller, Kay; Schüth, Christoph
2017-04-01
The EU FP7 project MARSOL addresses water scarcity challenges in arid regions, where managed aquifer recharge (MAR) is an upcoming technology to recharge depleted aquifers using alternative water sources. However, a potential impact to water quality is increasing ammonium concentrations, which are known to be a problem resulting from bank filtration. In the context of MAR, increasing ammonium concentrations have received little attention so far. A soil column experiment was conducted to investigate transformations of nitrogen species when secondary treated wastewater (TWW) is infiltrated through a natural soil (organic matter content 5.6%) being considered for MAR. The TWW contains nitrate and dissolved organic nitrogen (DON), but typically very low (<0.2 mg/L) concentrations of nitrite and ammonium. In addition to the nitrate and DON in the inflow water, nitrogen in the soil organic matter is a third possible source for ammonium produced during infiltration. The experiment simulated MAR using a series of wetting-drying cycles. At the end of the wetting phases, pore water samples were collected from six depths. Results show that the largest decreases in nitrate concentration occur in the upper part of the soil, with on average 77% attenuated by 15 cm depth and 94% by 30 cm depth. Starting at 30 cm and continuing downward, ammonium concentrations increased, with concentrations reaching as high as 4 mg-N/L (the EU drinking water limit is 0.41 mg-N/L). Selected samples were also measured for stable nitrogen and oxygen isotopes. Nitrate became isotopically heavier (both N and O) with increasing depth (samples collected at 5 and 15 cm below the soil surface), with most results forming a linear trend for δ18O vs. δ15N. This pattern is consistent with denitrification, which is also supported by the fact that the ammonium concentration first increases at a depth below where most of the nitrate is consumed. However, the relationship between δ15N-NO3- and nitrate concentration is not clearly logarithmic, so processes other than denitrification are not ruled out for explaining the fate of nitrate. The δ15N of ammonium in the water samples and of nitrogen in the soil were also measured. With increasing depth and time, the δ15N-NH4+ (mean 4.3‰) decreases and approaches the δ15N of the pre-experimental soil of 2.4‰. This suggests that ammonium is formed at least in part from the soil organic matter, likely through a combination of leaching and microbial processes. Although most nitrate attenuates by 15 cm depth and very little ammonium is observed here, some nitrate (usually <0.5 mg-N/L) was observed at depths of 30 cm and below, especially early in the experiments. Starting at 30 cm depth, organic carbon concentrations and thereby also C:NO3-ratios become high (>10), which are conditions sometimes found to be favorable to dissimilatory nitrate reduction to ammonium. Rayleigh enrichment factors also suggest that nitrate may be the source of some of the ammonium. Measurements of additional samples and organic nitrogen isotopes are planned, in order to further evaluate the fate of nitrate and the source(s) of the ammonium.
Alighardashi, A; Gharibi, H R; Raygan, Sh; Akbarzadeh, A
2016-01-01
Red mud (RM) is the industrial waste of alumina production and causes serious environmental risks. In this paper, a novel activation procedure for RM (mechano-chemical processing) is proposed in order to improve the nitrate adsorption from water. High-energy milling and acidification were selected as mechanical and chemical activation methods, respectively. Synthesized samples of adsorbent were produced considering two parameters of activation: acid concentrations and acidification time in two selected milling times. Optimization of the activation process was based on nitrate removal from a stock solution. Experimental data were analyzed with two-way analysis of variance and Kruskal-Wallis methods to verify and discover the accuracy and probable errors. Best conditions (acceptable removal percentage > 75) were 17.6% w/w for acid concentrate and 19.9 minutes for acidification time in 8 hours for milling time. A direct relationship between increase in nitrate removal and increasing the acid concentration and acidification time was observed. The adsorption isotherms were studied and compared with other nitrate adsorbents. Characterization tests (X-ray fluorescence, X-ray diffraction, Fourier transform infrared spectrophotometry, dynamic light scattering, surface area analysis and scanning electron microscopy) were conducted for both raw and activated adsorbents. Results showed noticeable superiority in characteristics after activation: higher specific area and porosity, lower particle size and lower agglomeration in structure.
Contribution of wetlands to nitrate removal at the watershed scale
NASA Astrophysics Data System (ADS)
Hansen, Amy T.; Dolph, Christine L.; Foufoula-Georgiou, Efi; Finlay, Jacques C.
2018-02-01
Intensively managed row crop agriculture has fundamentally changed Earth surface processes within the Mississippi River basin through large-scale alterations of land cover, hydrology and reactive nitrogen availability. These changes have created leaky landscapes where excess agriculturally derived nitrate degrades riverine water quality at local, regional and continental scales. Individually, wetlands are known to remove nitrate but the conditions under which multiple wetlands meaningfully reduce riverine nitrate concentration have not been established. Only one region of the Mississippi River basin—the 44,000 km2 Minnesota River basin—still contains enough wetland cover within its intensively agriculturally managed watersheds to empirically address this question. Here we combine high-resolution land cover data for the Minnesota River basin with spatially extensive repeat water sampling data. By clearly isolating the effect of wetlands from crop cover, we show that, under moderate-high streamflow, wetlands are five times more efficient per unit area at reducing riverine nitrate concentration than the most effective land-based nitrogen mitigation strategies, which include cover crops and land retirement. Our results suggest that wetland restorations that account for the effects of spatial position in stream networks could provide a much greater benefit to water quality then previously assumed.
NASA Astrophysics Data System (ADS)
Lin, J.; Demissie, Y.; Yan, E.; Bohlke, J. K.; Sturchio, N. C.
2014-12-01
Measurements of nitrate concentrations and δ15N and δ18O values in 450 surface-water samples from the Upper Illinois River Basin (UIRB) were combined with SWAT (Soil and Water Assessment Tool) modeling to study the influence of land use on nitrate sources, mixing, and transformation within the watershed. The samples were collected from the Illinois River and its tributaries, including effluent from Chicago's largest wastewater treatment plant (WTP), October 2004 through October 2008. The isotopic and concentration measurements indicated that WTP effluent and agricultural drainage waters were the two principal nitrate endmembers within the UIRB. Isotopic compositions indicated the source of nitrate during the annual spring flushing event was mostly derived from agriculture. An apparent denitrification trend was identified from spring through fall in tributaries draining agricultural subbasins and those having mixed urban-agricultural land use. Mass balance indicated that the fraction of nitrate from the WTP effluent was as low as 5 % or less during the spring flush (March-May) and much larger during late summer and fall. A SWAT model was constructed to evaluate effects of land use, fertilizer applications, and WTP point source discharge by coupling hydrologic processes with nutrient cycling and plant growth. The UIRB SWAT model was calibrated and validated with flow and nitrate measurements: the Nash-Sutcliffe efficiency (NSE) ranged from 0.60 to 0.83 and the determination coefficient (R2) ranged from 0.59 to 0.87. To explore the influence of fertilizer input on basin nitrate transport, the calibrated model was used to evaluate impacts of spring and fall fertilizer applications on stream nitrate loads. Simulations with a -50% change in the total fertilizer application rate (kg N/ha) resulted in as much as -42% change in basin nitrate export (kg N/month), while causing only -9% or less change in corn yield (kg N/ha). Decreased fertilizer application also led to reductions of annual basin N percolation rate below the root zone (kg N/ha) and nitrate loading to surface runoff (kg N/ha), causing changes as much as -32.2% and -15.6% respectively. Combined modeling and isotopic studies can be useful for understanding nutrient mixing and transformation processes and for optimizing nutrient export reduction strategies.
Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff
Ranaivoson, Andry Z.; Feyereisen, Gary W.; Rosen, Carl J.; Moncrief, John F.
2016-01-01
Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both. PMID:27930684
Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff.
Ghane, Ehsan; Ranaivoson, Andry Z; Feyereisen, Gary W; Rosen, Carl J; Moncrief, John F
2016-01-01
Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both.
Zain, N Mat; Stapley, A G F; Shama, G
2014-11-04
Silver and copper nanoparticles were produced by chemical reduction of their respective nitrates by ascorbic acid in the presence of chitosan using microwave heating. Particle size was shown to increase by increasing the concentration of nitrate and reducing the chitosan concentration. Surface zeta potentials were positive for all nanoparticles produced and these varied from 27.8 to 33.8 mV. Antibacterial activities of Ag, Cu, mixtures of Ag and Cu, and Ag/Cu bimetallic nanoparticles were tested using Bacillus subtilis and Escherichia coli. Of the two, B. subtilis proved more susceptible under all conditions investigated. Silver nanoparticles displayed higher activity than copper nanoparticles and mixtures of nanoparticles of the same mean particle size. However when compared on an equal concentration basis Cu nanoparticles proved more lethal to the bacteria due to a higher surface area. The highest antibacterial activity was obtained with bimetallic Ag/Cu nanoparticles with minimum inhibitory concentrations (MIC) of 0.054 and 0.076 mg/L against B. subtilis and E. coli, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Adsorptive Removal of Nitrate from Aqueous Solution Using Nitrogen Doped Activated Carbon.
Machida, Motoi; Goto, Tatsuru; Amano, Yoshimasa; Iida, Tatsuya
2016-01-01
Activated carbon (AC) has been widely applied for adsorptive removal of organic contaminants from aqueous phase, but not for ionic pollutants. In this study, nitrogen doped AC was prepared to increase the adsorption capacity of nitrate from water. AC was oxidized with (NH 4 ) 2 S 2 O 8 solution to maximize oxygen content for the first step, and then NH 3 gas treatment was carried out at 950°C to aim at forming quaternary nitrogen (N-Q) species on AC surface (Ox-9.5AG). Influence of solution pH was examined so as to elucidate the relationship between surface charge and adsorption amounts of nitrate. The results showed that Ox-9.5AG exhibited about twice higher adsorption capacity than non-treatment AC at any initial nitrate concentration and any equilibrium solution pH (pH e ) investigated. The more decrease in pH e value, the more adsorption amount of negatively charged nitrate ion, because the surface charge of AC and Ox-9.5AG could become more positive in acidic solution. The oxidation and consecutive ammonia treatments lead to increase in nitrogen content from 0.35 to 6.4% and decrease in the pH of the point of zero charge (pH pzc ) from 7.1 to 4.0 implying that positively charged N-Q of a Lewis acid was created on the surface of Ox-9.5AG. Based on a Langmuir data analysis, maximum adsorption capacity attained 0.5-0.6 mmol/g of nitrate and adsorption affinity was 3.5-4.0 L/mmol at pH e 2.5 for Ox-9.5AG.
NASA Astrophysics Data System (ADS)
Oyarzun, Diego I.; Hemmatifar, Ali; Palko, James W.; Stadermann, Michael; Santiago, Juan G.; Stanford microfluidics lab Team; Lawrence Livermore National Lab Team
2017-11-01
Nitrate is an important pollutant in drinking water worldwide, and a number of methods exist for the removal of nitrate from water including ion exchange and reverse osmosis. However, these approaches suffer from a variety of disadvantages including the need for a regenerating brine supply and disposal of used brine for ion exchange and low water recovery ratio for reverse osmosis. We are researching and developing a form of capacitive deionization (CDI) for energy efficient desalination and selective removal of ionic toxins from water. In CDI an electrode is used to electrostatically trap ions in a pair of porous electrodes. Here, we demonstrate the use of high surface area activated carbon electrodes functionalized with ion exchange moieties for adsorption of nitrate from aqueous solution. Unlike a traditional ion exchanger, the functionalized surfaces can be repeatedly regenerated by the application of an electrostatic potential which displaces the bound NO3- while leaving an excess of electronic charge on the electrode. Trimethylammonium has an intrinsic selectivity, we are using this moiety to selectively remove nitrate over chloride. We performed adsorption/desorption cycles under several desorption voltages and ratios of concentrations.
Trace concentration - Huge impact: Nitrate in the calcite/Eu(III) system
NASA Astrophysics Data System (ADS)
Hofmann, Sascha; Voïtchovsky, Kislon; Schmidt, Moritz; Stumpf, Thorsten
2014-01-01
The interactions of trivalent lanthanides and actinides with secondary mineral phases such as calcite is of high importance for the safety assessment of deep geological repositories for high level nuclear waste (HLW). Due to similar ionic radii, calcium-bearing mineral phases are suitable host minerals for Ln(III) and An(III) ions. Especially calcite has been proven to retain these metal ions effectively by both surface complexation and bulk incorporation. Since anionic ligands (e.g., nitrate) are omnipresent in the geological environment and due to their coordinating properties, their influence on retentive processes should not be underestimated. Nitrate is a common contaminant in most HLW forms as a result of using nitric acid in fuel reprocessing. It is also formed by microbial activity under aerobic conditions. In this study, atomic force microscopy investigations revealed a major influence of nitrate upon the surface of calcite crystals. NaNO3 causes serious modifications even in trace amounts (<10-7 M) and forms a soft surface layer of low crystallinity on top of the calcite crystal. Time-resolved laser fluorescence spectroscopy of Eu(III) showed that, within this layer, Eu(III) ions are incorporated, while losing most of their hydration shell. The results show that solid solution modelling for actinides in calcite must take into account the presence of nitrate in pore and ground waters.
Biogeochemical toxicity and phytotoxicity of nitrogenous compounds in a variety of arctic soils.
Anaka, Alison; Wickstrom, Mark; Siciliano, Steven D
2008-08-01
Ammonium nitrate (NH(4)NO(3)) is a common water pollutant associated with many industrial and municipal activities. One solution to reduce exposure of sensitive aquatic systems to nitrogenous compounds is to atomize (atmospherically disperse in fine particles) contaminated water over the Arctic tundra, which will reduce nitrogen loading to surface water. The toxicity of ammonium nitrate to Arctic soils, however, is poorly understood. In the present study, we characterized the biogeochemical toxicity and phytotoxicity of ammonium nitrate solutions in four different Arctic soils and in a temperate soil. Soil was exposed to a range of ammonium nitrate concentrations over a 90-d period. Dose responses of carbon mineralization, nitrification, and phytotoxicity endpoints were estimated. In addition to direct toxicity, the effect of ammonium nitrate on ecosystem resilience was investigated by dosing nitrogen-impacted soils with boric acid. Ammonium nitrate had no effect on carbon mineralization activity and only affected nitrification in one soil, a polar desert soil from Cornwallis Island, Northwest Territories, Canada. In contrast, ammonium nitrate applications (43 mmol N/L soil water) significantly impaired seedling emergence, root length, and shoot length of northern wheatgrass (Elymus lanceolatus). Concentrations of ammonium nitrate in soil water that inhibited plant parameters by 20% varied between 43 and 280 mmol N/L soil water, which corresponds to 2,100 to 15,801 mg/L of ammonium nitrate in the application water. Arctic soils were more resistant to ammonium nitrate toxicity compared with the temperate soil under these study conditions. It is not clear, however, if this represents a general trend for all polar soils, and because nitrogen is an essential macronutrient, nitrogenous toxicity likely should be considered as a special case for soil toxicity.
Umari, A.M.; Martin, P.M.; Schroeder, R.A.; Duell, L.F.; Fay, R.G.
1993-01-01
Septic-tank wastewater disposed in 30-foot-deep seepage pits (dry wells) at 46,000 residences is estimated to equal 18 percent of the natural recharge to the sole-source aquifer in the rapidly developing upper Mojave River Basin (Victor Valley) in the high desert northeast of Los Angeles. Vertical rates of movement of the wastewater wetting front through the unsaturated zone at three newly occupied residences ranged from 0.07 to 1.0 foot per day. These rates translate to traveltimes of several months to several years for the wastewater wetting front to reach the water table and imply that wastewater from many disposal systems already has reached the water table, which averages about 150 feet below land surface in the Victor Valley. As wastewater percolates from seepage pits into the adjacent unsaturated zone, the nitrogen present in reduced form is rapidly converted to nitrate. Analyses on soil-core extracts and soil moisturefrom suction lysimeters installed beneath the seepage pits at eight residences showed that nitrate concentrations and nitrate/ chloride ratios generally become lower with increasing depth. The intervals of greatest decline seemed to coincide with finer soil texture or were near the water table. Nitrate-reducing bacteria were tested for and found to be present in soil cores from two residences. Sparse nitrogen-15 data from suction lysimeters at one of these residences, where thenitrate concentration decreased by about one-half at a depth of 200 feet, indicate that the nitrate decline was accompanied by nitrogen-15 enrichment in the residual nitrate with an isotope-separation factor of about -10 permil. Despite the potential input of abundant nitrogen with the domestic wastewater recharge, nitrate concentrations in the area's ground water are generally low. The absence of high nitrate concentrations in the ground water is consistent with the existence of denitrification, a microbial nitrogen-removal mechanism, as wastewater moves through the thick unsaturated zone and mixes with the ground water. The observed low nitrate concentrations also could be explained by a dilution by vertical mixing in the saturated zone and retention of the wastewater in the unsaturated zone. Results of a single-cell mixing model that allows nitrate from wastewater to be mixedinstantaneously with the underlying ground water suggest that measurable increases in nitrate concentration should be expected within 5 to 10 years after wastewater reaches the water table if the mixing depth is less than 100 feet. Although high fecal-coliform densities were measured in wastewater from septic tanks and seepage pits, removal of these enteric bacteria in the unsaturated zone is very effective, as was indicated by their absence in soil only a few feet from the seepage pits. In testing for organic priority pollutants in wastewater, 17 of 85 compounds were detected. Most compounds detected were present in low concentrations, except at one residence where the concentration of three compounds exceeded 100 micrograms per liter. These high concentrations may be a consequence of disposal practices unique to this residence. Extractable organic priority pollutants were not found in any soil cores taken adjacent to seepage pits and, therefore, are not of concern.
Nitrogen-isotope ratios of nitrate in ground water under fertilized fields, Long Island, New York
Flipse, W.J.; Bonner, F.T.
1985-01-01
Ground-water samples from two heavily fertilized sites in Suffolk County, New York, were collected through the 1978 growing season and analyzed for nitrate-N concentrations and nitrogen-isotope ratios. Six wells were at a potato farm; six were on a golf course. The purpose of this study was to determine whether the 15N/14N ratios (??15N values) of fertilizer are increased during transit from land surface to ground water to an extent which would preclude use of this ratio to distinguish agricultural from animal sources of nitrate in ground water. Ground water at both sites contained a greater proportion of 15N than the fertilizers being applied. At the potato farm, the average ??15N value of the fertilizers was 0.2???; the average ??15N value of the ground-water nitrate was 6.2???. At the golf course, the average ??15N value of the fertilizers was -5.9???, and that of ground-water nitrate was 6.5???. The higher ??15N values of ground-water nitrate are probably caused by isotopic fractionation during the volatile loss of ammonia from nitrogen applied in reduced forms (NH4+ and organic-N). The ??15N values of most ground-water samples from both areas were less than 10???, the upper limit of the range characteristic of agricultural sources of nitrate; these sources include both fertilizer nitrate and nitrate derived from increased mineralization of soil nitrogen through cultivation. Previous studies have shown that the ??15N values of nitrate derived from human or animal waste generally exceed 10???. The nitrogen-isotope ratios of fertilizer-derived nitrate were not altered to an extent that would make them indistinguishable from animal-waste-derived nitrates in ground water.Ground-water samples from two heavily fertilized sites in Suffolk County, New York, were collected through the 1978 growing season and analyzed for nitrate-N concentrations and nitrogen-isotope ratios. Six wells were at a potato farm; six were on a golf course. The purpose of this study was to determine whether the **1**5N/**1**4N ratios ( delta **1**5N values) of fertilizer are increased during transit from land surface to ground water to an extent which would preclude use of this ratio to distinguish agricultural from animal sources of nitrate in ground water. Ground water at both sites contained a greater proportion of **1**5N than the fertilizers being applied. The nitrogen-isotope ratios of fertilizer-derived nitrate were not altered to an extent that would make them indistinguishable from animal-waste-derived nitrates in ground water.
NASA Astrophysics Data System (ADS)
Howden, Nicholas J. K.; Burt, Tim P.; Worrall, Fred; Mathias, Simon; Whelan, Mick J.
2011-06-01
Widespread pollution of groundwater by nutrients due to 20th century agricultural intensification has been of major concern in the developed world for several decades. This paper considers the River Thames catchment (UK), where water-quality monitoring at Hampton (just upstream of London) has produced continuous records for nitrate for the last 140 years, the longest continuous record of water chemistry anywhere in the world. For the same period, data are available to characterize changes in both land use and land management at an annual scale. A modeling approach is used that combines two elements: an estimate of nitrate available for leaching due to land use and land management; and, an algorithm to route this leachable nitrate through to surface or groundwaters. Prior to agricultural intensification at the start of World War II, annual average inputs were around 50 kg ha-1, and river concentrations were stable at 1 to 2 mg l-1, suggesting in-stream denitrification capable of removing 35 (±15) kt N yr-1. Postintensification data suggest an accumulation of 100 (±40) kt N yr-1 in the catchment, most of which is stored in the aquifer. This build up of reactive N species within the catchments means that restoration of surface nitrate concentrations typical of the preintensification period would require massive basin-wide changes in land use and management that would compromise food security and take decades to be effective. Policy solutions need to embrace long-term management strategies as an urgent priority.
Analysis of tank 7 surface supernatant sample (FTF-7-15-26) in support of corrosion control program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oji, L. N
2015-10-01
This report provides the results of analyses on Savannah River Site Tank 7 surface supernatant liquid sample in support of the Corrosion Control Program (CCP). The measured nitrate, nitrite and free-hydroxide concentrations for the Tank 7 surface sample averaged, 3.74E-01 ± 1.88E-03, 4.17E-01 ± 9.01E-03 and 0.602 ± 0.005 M, respectively. The Tank 7 surface cesium-137, sodium and silicon concentrations were, respectively, 3.99E+08, ± 3.25E+06 dpm/mL, 2.78 M and <3.10 mg/L. The measured aluminum concentration in the Tank 7 surface sample averaged 0.11 M.
NASA Astrophysics Data System (ADS)
Green, Christopher; Bekins, Barbara; Kalkhoff, Stephen; Hirsch, Robert; Liao, Lixia; Barnes, Kimberlee
2015-04-01
Understanding how nitrogen fluxes respond to changes in agricultural practices and climatic variations is important for improving water quality in agricultural settings. In the central United States, intensification of corn cropping in support of ethanol production led to increases in N application rates in the 2000s during a period including both extreme dry and wet conditions. To examine the effect of these recent changes, a study was conducted on surface water quality in 10 major Iowa Rivers. Long term (~20 to 30 years) water quality and flow data were analyzed with Weighted Regression on Time, Discharge and Season (WRTDS), a statistical method that provides internally consistent estimates of the concentration history and reveals decadal trends that are independent of random variations of stream flow from seasonal averages. Trends of surface water quality showed constant or decreasing flow-normalized concentrations of nitrate+nitrite-N from 2000 to 2012 in all basins. To evaluate effects of annual discharge and N loading on these trends, multiple conceptual models were developed and calibrated to annual concentrations. The recent declining concentration trends can be attributed to both very high and very low streamflow discharge in the 2000's and to the long (e.g. 8-year) subsurface residence times in some basins. Dilution of surface water nitrate and depletion of stored nitrate may occur in years with very high discharge. Limited transport of N to streams and accumulation of stored N may occur in years with very low discharge. Central Iowa basins showed the greatest reduction in concentrations, likely because extensive tile-drains limit the effective volumes for storage of N and reduce residence times, and because the glacial sediments in these basins promote denitrification. Changes in nitrogen fluxes resulting from ethanol production and other factors will likely be delayed for years or decades in peripheral basins of Iowa, and may be obscured in the central basins where extreme flows strongly affect annual concentration trends.
NASA Astrophysics Data System (ADS)
Gilmore, Troy E.; Genereux, David P.; Solomon, D. Kip; Farrell, Kathleen M.; Mitasova, Helena
2016-11-01
Novel groundwater sampling (age, flux, and nitrate) carried out beneath a streambed and in wells was used to estimate (1) the current rate of change of nitrate storage, dSNO3/dt, in a contaminated unconfined aquifer, and (2) future [NO3-]FWM (the flow-weighted mean nitrate concentration in groundwater discharge) and fNO3 (the nitrate flux from aquifer to stream). Estimates of dSNO3/dt suggested that at the time of sampling (2013) the nitrate storage in the aquifer was decreasing at an annual rate (mean = -9 mmol/m2yr) equal to about one-tenth the rate of nitrate input by recharge. This is consistent with data showing a slow decrease in the [NO3-] of groundwater recharge in recent years. Regarding future [NO3-]FWM and fNO3, predictions based on well data show an immediate decrease that becomes more rapid after ˜5 years before leveling out in the early 2040s. Predictions based on streambed data generally show an increase in future [NO3-]FWM and fNO3 until the late 2020s, followed by a decrease before leveling out in the 2040s. Differences show the potential value of using information directly from the groundwater—surface water interface to quantify the future impact of groundwater nitrate on surface water quality. The choice of denitrification kinetics was similarly important; compared to zero-order kinetics, a first-order rate law levels out estimates of future [NO3-]FWM and fNO3 (lower peak, higher minimum) as legacy nitrate is flushed from the aquifer. Major fundamental questions about nonpoint-source aquifer contamination can be answered without a complex numerical model or long-term monitoring program.
Schilling, K.E.; Thompson, C.A.
2000-01-01
Land use and surface water data for nitrogen and pesticides (1995 to 1997) are reported for the Walnut Creek Watershed Monitoring Project, Jasper County Iowa. The Walnut Creek project was established in 1995 as a nonpoint source monitoring program in relation to watershed habitat restoration and agricultural management changes implemented at the Neal Smith National Wildlife Refuge by the U.S. Fish and Wildlife Service. The monitoring project utilizes a paired-watershed approach (Walnut and Squaw creeks) as well as upstream/downstream comparisons on Walnut for analysis and tracking of trends. From 1992 to 1997, 13.4 percent of the watershed was converted from row crop to native prairie in the Walnut Creek watershed. Including another 6 percent of watershed farmed on a cash-rent basis, land use changes have been implemented on 19.4 percent of the watershed by the USFWS. Nitrogen and pesticide applications were reduced an estimated 18 percent and 28 percent in the watershed from land use changes. Atrazine was detected most often in surface water with frequencies of detection ranging from 76-86 percent. No significant differences were noted in atrazine concentrations between Walnut and Squaw Creek. Nitrate-N concentrations measured in both watersheds were similar; both basins showed a similar pattern of detection and an overall reduction in nitrate-N concentrations from upstream to downstream monitoring sites. Water quality improvements are suggested by nitrate-N and chloride ratios less than one in the Walnut Creek watershed and low nitrate-N concentrations measured in the subbasin of Walnut Creek containing the greatest amount of land use changes. Atrazine and nitrate-N concentrations from the lower portion of the Walnut Creek watershed (including the prairie restoration area) may be decreasing in relation to the upstream untreated component of the watershed. The frequencies of pesticide detections and mean nitrate-N concentrations appear related to the percentage of row crop in the basins and subbasins. Although some results are encouraging, definitive water quality improvements have not been observed during the first three years of monitoring. Possible reasons include: (1) more time is needed to adequately detect changes; (2) the size of the watershed is too large to detect improvements; (3) land use changes are not located in the area of the watershed where they would have greatest effect; or (4) water quality improvements have occurred but have been missed by the project monitoring design. Longer-term monitoring will allow better evaluation of the impact of restoration activities on water quality.An overview is given on the Walnut Creek Watershed Monitoring Project established as a nonpoint source monitoring program in relation to watershed habitat restoration and agricultural management changes implemented at the Neal Smith National Wildlife Refuge by the U.S. Fish and Wildlife Services. Focus is on land use and surface water data for nitrogen and pesticides. Initial results obtained for the first three years of monitoring are discussed.
Electrosprayed Cerium Oxide Nanoparticles
NASA Astrophysics Data System (ADS)
Azar, Pedram Bagherzadeh; Tavanai, Hossein; Allafchian, Ali Reza
2018-04-01
Cerium oxide nanoparticles were fabricated via the calcination of electrosprayed polyvinyl alcohol (PVA)/cerium nitrate nanoparticles. The effect of material variables of PVA/cerium nitrate electrospraying solution, i.e. viscosity, surface tension and electrical conductivity, as well as important process variables like voltage, nozzle-collector distance and feed rate on cerium oxide nanoparticle size, are investigated. Scanning electron microscopy and Fourier-transform infrared (FTIR) spectroscopy analysis have also been carried out. The results showed that electrospraying of PVA/cerium nitrate (25% w/v) was only possible with PVA concentrations in the range of 5-8% w/v. With other conditions constant, decreasing PVA concentration, decreasing feed rate, increasing nozzle-collector distance and increasing voltage decreased the size of the final cerium oxide nanoparticles. The gross average size of all cerium oxide nanoparticles obtained in this work was about 80 nm. FTIR analysis proved the formation of cerium oxide after the calcination process.
The effect of restored and native oxbows on hydraulic loads of nutrients and stream water quality
Kalkhoff, Stephen J.; Hubbard, Laura E.; Joseph P.Schubauer-Berigan,
2016-01-01
The use of oxbow wetlands has been identified as a potential strategy to reduce nutrient transport from agricultural drainage tiles to streams in Iowa. In 2013 and 2014, a study was conducted in north-central Iowa in a native oxbow in the Lyons Creek watershed and two restored oxbow wetlands in the Prairie Creek watershed (Smeltzer west and Smeltzer east) to assess their effectiveness at reducing nitrogen and phosphorus loads. The tile line inlets carrying agricultural runoff to the oxbows, the outfall from the oxbows, and the surface waters in the streams receiving the outfall water were monitored for discharge and nutrients from February 2013 to September 2015. Smeltzer west and east also had four monitoring wells each, two in the upland and two between the oxbow and Prairie Creek to monitor surface water-groundwater interaction. The Smeltzer west and east oxbow sites also were instrumented to continuously measure the nitrate concentration. Rainfall was measured at one Lyons Creek and one Smeltzer site. Daily mean nitrate-N concentrations in Lyons Creek in 2013 ranged from 11.8 mg/L to 40.9 mg/L, the median daily mean nitrate-N concentration was 33.0 mg/L. Daily mean nitrate-N concentrations in Prairie Creek in 2013 ranged from 0.07 mg/L in August to 32.2 mg/L in June. In 2014, daily mean nitrate-N concentrations in Prairie Creek ranged from 0.17 mg/L in April to 26.7 mg/L in July; the daily mean nitrate-N concentration for the sampled period was 9.78 mg/L. Nutrient load reduction occurred in oxbow wetlands in Lyons and Prairie Creek watersheds in north-central Iowa but efficiency of reduction was variable. Little nutrient reduction occurred in the native Lyons Creek oxbow during 2013. Concentrations of all nutrient constituents were not significantly (P>0.05, Wilcoxon rank sum) different in water discharging from the tile line than in water leaving the Lyons Creek oxbow. A combination of physical features and flow conditions suggest that the residence time of water in the oxbow may not have been sufficient to allow for removal of substantial amounts of nutrients. Approximately 54 percent less nitrate-N was measured leaving the Smeltzer west oxbow than was measured entering from a small 6-inch field tile. The efficiency of nitrate-N removal in the oxbow was not able to be definitively quantified as other hydrologic factors such as overland and groundwater flow into and through the oxbow were not addressed and may provide alternative routes for nutrient transport. Damage to the Smeltzer east oxbow outfall weir prevented analysis of its nutrient load reduction capability. The study provides important information to managers and land owners looking for strategies to reduce nutrient transport from fields. Additional research is needed to understand how increased discharge from larger field tiles and drainage district mains may influence the efficiency of nutrient reduction in relation to the size, type, and landscape setting of a wetland.
Vulnerability of streams to legacy nitrate sources
Tesoriero, Anthony J.; Duff, John H.; Saad, David A.; Spahr, Norman E.; Wolock, David M.
2013-01-01
The influence of hydrogeologic setting on the susceptibility of streams to legacy nitrate was examined at seven study sites having a wide range of base flow index (BFI) values. BFI is the ratio of base flow to total streamflow volume. The portion of annual stream nitrate loads from base flow was strongly correlated with BFI. Furthermore, dissolved oxygen concentrations in streambed pore water were significantly higher in high BFI watersheds than in low BFI watersheds suggesting that geochemical conditions favor nitrate transport through the bed when BFI is high. Results from a groundwater-surface water interaction study at a high BFI watershed indicate that decades old nitrate-laden water is discharging to this stream. These findings indicate that high nitrate levels in this stream may be sustained for decades to come regardless of current practices. It is hypothesized that a first approximation of stream vulnerability to legacy nutrients may be made by geospatial analysis of watersheds with high nitrogen inputs and a strong connection to groundwater (e.g., high BFI).
Naranjo, Ramon C.; Welborn, Toby L.; Rosen, Michael R.
2013-01-01
The distribution of nitrate as nitrogen (referred to herein as nitrate-N) concentrations in groundwater was determined by collecting more than 200 samples from 8 land-use categories: single family residential, multifamily residential, rural (including land use for agriculture), vacant land, commercial, industrial, utilities, and unclassified. Nitrate-N concentrations ranged from below detection (less than 0.05 milligrams per liter) to 18 milligrams per liter. The results of nitrate-N concentrations that were sampled from three wells equalled or exceeded the maximum contaminant level of 10 milligrams per liter set by the U.S. Environmental Protection Agency. Nitrate-N concentrations in sampled wells showed a positive correlation between elevated nitrate-N concentrations and the percentage of single-family land use and septic-system density. Wells sampled in other land-use categories did not have any correlation to nitrate-N concentrations. In areas with greater than 50-percent single-family land use, nitrate-N concentrations were two times greater than in areas with less than 50 percent single-family land use. Nitrate-N concentrations in groundwater near septic systems that had been used more than 20 years were more than two times greater than in areas where septic systems had been used less than 20 years. Lower nitrate-N concentrations in the areas where septic systems were less than 20 years old probably result from temporary storage of nitrogen leaching from septic systems into the unsaturated zone. In areas where septic systems are abundant, nitrate-N concentrations were predicted to 2059 by using numerical models within the Ruhenstroth and Johnson Lane subdivisions in the Carson Valley. Model results indicated that nitrate-N concentrations will continue to increase and could exceed the maximum contaminant level over extended areas inside and outside the subdivisions. Two modeling scenarios were used to simulate future transport as a result of removal of septic systems (source of nitrate-N contamination) and the termination of domestic pumping of groundwater. The models showed the largest decrease in nitrate-N concentrations when septic systems were removed and wells continued to pump. Nitrate-N concentrations probably will continue to increase in areas that are dependent on septic systems for waste disposal either under current land-use conditions in the valley or with continued growth and change in land use in the valley.
NASA Astrophysics Data System (ADS)
Jing, W. X.; Shi, J. F.; Xu, Z. P.; Jiang, Z. D.; Wei, Z. Y.; Zhou, F.; Wu, Q.; Cui, Q. B.
2018-03-01
Batches of un-doped and Ag-doped ZnO nanowires (ZnONWs) were prepared hydrothermally on stainless steel wire sieves at varied Zn2+ concentrations of the growth solution and at different Ag+ concentrations of the silver nitrate solution. Methylene blue solution was degraded with these as-prepared ZnONWs in the presences of ultraviolet irradiation. It is found that both the processing parameters greatly affect the surface textures, wettability, and photo-activity of the ZnONWs. The latter synthesizing parameter is optimized only after the former one has been finely regulated. The un-doped and Ag-doped ZnONWs at Zn2+ concentration of 75 mM of the growth solution and at Ag+ concentration of3 mM of the silver nitrate solution both produce Gaussian rough surfaces and in each batch are most hydrophilic. Therefore, in the related batch the contacting surface area of the catalyst is the largest, the hydroxyl radicals attached on the top ends of corresponding ZnONWs the most, and the catalytic activity of these catalysts the optimal. Besides these, the latter synthesizing parameter affects the photo-activity of Ag-doped ZnONWs more significantly than the former one does that of un-doped ZnONWs.
Farrell, Mikella E; Holthoff, Ellen L; Pellegrino, Paul M
2014-01-01
The United States Army and the first responder community are increasingly focusing efforts on energetic materials detection and identification. Main hazards encountered in theater include homemade explosives and improvised explosive devices, in part fabricated from simple components like ammonium nitrate (AN). In order to accurately detect and identify these unknowns (energetic or benign), fielded detection systems must be accurately trained using well-understood universal testing substrates. These training substrates must contain target species at known concentrations and recognized polymorphic phases. Ammonium nitrate is an explosive precursor material that demonstrates several different polymorphic phases dependent upon how the material is deposited onto testing substrates. In this paper, known concentrations of AN were uniformly deposited onto commercially available surface-enhanced Raman scattering (SERS) substrates using a drop-on-demand inkjet printing system. The phase changes observed after the deposition of AN under several solvent conditions are investigated. Characteristics of the collected SERS spectra of AN are discussed, and it is demonstrated that an understanding of the exact nature of the AN samples deposited will result in an increased ability to accurately and reliably "train" hazard detection systems.
Hydrologic effects of impoundments in Sherburne National Wildlife Refuge, Minnesota
Brown, R.G.
1984-01-01
The hydrologic effects of proposed impoundments in Sherburne National Wildlife Refuge were found to be insignificant with respect to both ground- and surface-water flow patterns and water quality. Monitoring of water levels in 23 observation wells and of discharge in the St. Francis River during 1980 and 1981 has shown that ground water in the surf icial aquifer responds quickly to areal recharge and subsequently discharges to the St. Francis River. The impoundment of surface water in the refuge was not found to affect water levels in the refuge significantly. The impoundments may affect ground-water-flow systems beneath and adjacent to the impoundments. Quality of ground and surface water was found to be similar except ground water contained higher concentrations of dissolved nitrite plus nitrate nitrogen than surface water. Phytoplankton removed dissolved nitrite plus nitrate nitrogen from surface water. The effects of impoundments on water quality are expected to be minor.
NASA Astrophysics Data System (ADS)
Messié, Monique; Chavez, Francisco P.
2017-09-01
A simple combination of wind-driven nutrient upwelling, surface currents, and plankton growth/grazing equations generates zooplankton patchiness and hotspots in coastal upwelling regions. Starting with an initial input of nitrate from coastal upwelling, growth and grazing equations evolve phytoplankton and zooplankton over time and space following surface currents. The model simulates the transition from coastal (large phytoplankton, e.g., diatoms) to offshore (picophytoplankton and microzooplankton) communities, and in between generates a large zooplankton maximum. The method was applied to four major upwelling systems (California, Peru, Northwest Africa, and Benguela) using latitudinal estimates of wind-driven nitrate supply and satellite-based surface currents. The resulting zooplankton simulations are patchy in nature; areas of high concentrations coincide with previously documented copepod and krill hotspots. The exercise highlights the importance of the upwelling process and surface currents in shaping plankton communities.
Su, Jun Feng; Luo, Xian Xin; Wei, Li; Ma, Fang; Zheng, Sheng Chen; Shao, Si Cheng
2016-07-01
In this study, Mn(II) as electron donor was tested for the effects on denitrification in the MBBR under the conditions of initial nitrate concentration (10mgL(-1), 30mgL(-1), 50mgL(-1)), pH (5, 6, 7) and hydraulic retention time (HRT) (4h, 8h, 12h) which conducted by response surface methodology (RSM), the results demonstrated that the highest nitrate removal efficiency was occurred under the conditions of initial nitrate concentration of 47.64mgL(-1), HRT of 11.96h and pH 5.21. Analysis of SEM and flow cytometry suggested that microorganisms were immobilized on the Yu Long plastic carrier media successfully before the reactor began to operate. Furthermore, high-throughput sequencing was employed to characterize and compare the community compositions and structures of MBBR under the optimum conditions, the results showed that Pseudomonas sp. SZF15 was the dominant contributor for effective removal of nitrate in the MBBR. Copyright © 2016 Elsevier Ltd. All rights reserved.
Agrichemicals in surface water and birth defects in the United States
Winchester, Paul D; Huskins, Jordan; Ying, Jun
2009-01-01
Objectives: To investigate if live births conceived in months when surface water agrichemicals are highest are at greater risk for birth defects. Methods: Monthly concentrations during 1996–2002 of nitrates, atrazine and other pesticides were calculated using United States Geological Survey's National Water Quality Assessment data. Monthly United States birth defect rates were calculated for live births from 1996 to 2002 using United States Centers for Disease Control and Prevention natality data sets. Birth defect rates by month of last menstrual period (LMP) were then compared to pesticide/nitrate means using logistical regression models. Results: Mean concentrations of agrichemicals were highest in April–July. Total birth defects, and eleven of 22 birth defect subcategories, were more likely to occur in live births with LMPs between April and July. A significant association was found between the season of elevated agrichemicals and birth defects. Conclusion: Elevated concentrations of agrichemicals in surface water in April–July coincided with higher risk of birth defects in live births with LMPs April–July. While a causal link between agrichemicals and birth defects cannot be proven from this study an association might provide clues to common factors shared by both variables. PMID:19183116
Larson, Rebecca A; Safferman, Steven I
2012-01-01
Farmstead runoff poses significant environmental impacts to ground and surface waters. Three vegetated filter strips were assessed for the treatment of dairy farmstead runoff at the soil surface and subsurface at 0.3- or 0. 46-m and 0. 76-m depths for numerous storm events. A medium-sized Michigan dairy was retrofitted with two filter strips on sandy loam soil and a third filter strip was implemented on a small Michigan dairy with sandy soil to collect and treat runoff from feed storage, manure storage, and other impervious farmstead areas. All filter strips were able to eliminate surface runoff via infiltration for all storm events over the duration of the study, eliminating pollutant contributions to surface water. Subsurface effluent was monitored to determine the contributing groundwater concentrations of numerous pollutants including chemical oxygen demand (COD), metals, and nitrates. Subsurface samples have an average reduction of COD concentrations of 20, 11, and 85% for the medium dairy Filter Strip 1 (FS1), medium dairy Filter Strip 2 (FS2), and the small Michigan dairy respectively, resulting in average subsurface concentrations of 355, 3960, and 718 mg L COD. Similar reductions were noted for ammonia and total Kjeldahl nitrogen (TKN) in the subsurface effluent. The small Michigan dairy was able to reduce the pollutant leachate concentrations of COD, TKN, and ammonia over a range of influent concentrations. Increased influent concentrations in the medium Michigan dairy filter strips resulted in an increase in COD, TKN, and ammonia concentrations in the leachate. Manganese was leached from the native soils at all filter strips as evidenced by the increase in manganese concentrations in the leachate. Nitrate concentrations were above standard drinking water limits (10 mg L), averaging subsurface concentrations of 11, 45, and 25 mg L NO-N for FS1, FS2, and the small Michigan dairy, respectively. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Nutrient and Suspended-Sediment Trends in the Missouri River Basin, 1993-2003
Sprague, Lori A.; Clark, Melanie L.; Rus, David L.; Zelt, Ronald B.; Flynn, Jennifer L.; Davis, Jerri V.
2007-01-01
Trends in streamflow and concentration of total nitrogen, nitrite plus nitrate, ammonia, total phosphorus, orthophosphorus, and suspended sediment were determined for the period from 1993 to 2003 at selected stream sites in the Missouri River Basin. Flow-adjusted trends in concentration (the trends that would have occurred in the absence of natural changes in streamflow) and non-flow-adjusted trends in concentration (the overall trends resulting from natural and human factors) were determined. In the analysis of flow-adjusted trends, the removal of streamflow as a variable affecting concentration allowed trends caused by other factors such as implementation of best management practices to be identified. In the analysis of non-flow-adjusted trends, the inclusion of any and all factors affecting concentration allowed trends affecting aquatic ecosystems and the status of streams relative to water-quality standards to be identified. Relations between the flow-adjusted and non-flow-adjusted trends and changes in streamflow, nutrient sources, ground-water inputs, and implementation of management practices also were examined to determine the major factors affecting the trends. From 1993 to 2003, widespread downward trends in streamflow indicated that drought conditions from about 2000 to 2003 led to decreasing streamflow throughout much of the Missouri River Basin. Flow-adjusted trends in nitrite plus nitrate and ammonia concentrations were split nearly equally between nonsignificant and downward; at about one-half of the sites, management practices likely were contributing to measurable decreases in concentrations of nitrite plus nitrate and ammonia. Management practices had less of an effect on concentrations of total nitrogen; downward flow-adjusted trends in total nitrogen concentrations occurred at only 2 of 19 sites. The pattern of non-flow-adjusted trends in nitrite plus nitrate concentrations was similar to the pattern of flow-adjusted trends; non-flow-adjusted trends were split nearly equally between nonsignificant and downward. A substantial source of nitrite plus nitrate to these streams likely was ground water; because of the time required for ground water to travel to streams, there may have been a lag time between the implementation of some pollution-control strategies and improvement in stream quality, contributing to the nonsignificant trends in nitrite plus nitrate. There were more sites with downward non-flow-adjusted trends than flow-adjusted trends in both ammonia and total nitrogen concentrations, possibly a result of decreased surface runoff from nonpoint sources associated with the downward trends in streamflow. No strong relations between any of the nitrogen trends and changes in nutrient sources or landscape characteristics were identified. Although there were very few upward trends in nitrogen from 1993 to 2003, there were upward flow-adjusted trends in total phosphorus concentrations at nearly one-half of the sites. At these sites, not only were pollution-control strategies not contributing to measurable decreases in total phosphorus concentrations, there was likely an increase in phosphorus loading on the land surface. There were fewer upward non-flow-adjusted than flow-adjusted trends in total phosphorus concentrations; at the majority of sites, overall total phosphorus concentrations did not change significantly during this period. The preponderance of upward flow-adjusted trends and nonsignificant non-flow-adjusted trends indicates that in some areas of the Missouri River Basin, overall concentrations of total phosphorus would have been higher without the decrease in streamflow and the associated decrease in surface runoff during the study period. During the study period, phosphorus loads from fertilizer generally increased at over one-half of the sites in the basin. Upward flow-adjusted trends were related to increasing fertilizer use in the upstream drainage area, particularly in the 10 percent
NASA Astrophysics Data System (ADS)
Kaown, Dugin; Koh, Eunhee; Park, Byeong-Hak; Lee, Kang-Kun
2016-04-01
Hydrogeochemical data, stable isotopes, chlorofluorocarbon (CFCs) and 3H-3He in groundwater were applied to characterize residence time, recharge patterns and nitrate contamination of groundwater in a small agricultural area, Yangpyung, Korea. The study area is located around a river and the measured groundwater table ranges from 1.5 to 2.65 m during the year. Most residents in the study area practice agriculture and potato, strawberry, and cabbage are the typical vegetables grown. Vegetable fields are mostly located in the upgradient area of the study area while forest and residence areas are located in the downgradient area. A lot of chemical and organic fertilizers are applied in the upgradient area. The concentration of NO3-N in groundwater showed 9.8-83.7 mg/L in the upgradient area and 0.1-22.6 mg/L in the downgradient area in 2014. It is necessary to monitor groundwater recharge patterns and transport processes of nitrate to protect surface water around the study area. The values of δ18O and δD showed that groundwater is recharged mainly from summer precipitation. The apparent groundwater ages using 3H-3He and CFCs ranged from 13 to 27 years in the upgradient area and from 25 to 35 years in the downgradient area. The NO3-N in more recently recharged groundwater showed higher concentrations while the NO3-N in older groundwater showed low concentrations. Some shallow wells in the downgradient area showed similar apparent groundwater age with that of the river water indicating groundwater-surface water interactions. A conceptual model of groundwater-surface water interactions using stable isotopes, apparent 3H-3He and CFCs age in groundwater will be useful to understand the hydrological processes and nitrate contamination of the study area.
Highly variable nutrient concentrations in the Northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Cardona, Yuley; Bracco, Annalisa; Villareal, Tracy A.; Subramaniam, Ajit; Weber, Sarah C.; Montoya, Joseph P.
2016-07-01
The distribution of surface nutrients along the salinity gradient in the Mississippi-Atchafalaya River outflow region was examined during four cruises, including two simultaneous cruises, conducted in the northern Gulf during the summer of 2010 and 2011, and in late spring of 2012. The new, extensive data set covers the salinity gradient from 11 to 37 psu (practical salinity unit) in a year of extraordinarily high river discharge (2011), with few samples from a year of average (2010) and below average (2012) river outflow. The overall surface concentrations of nitrate+nitrite, orthophosphate and silicate are compared to those recorded in cruises spanning the 1985 - 2009 interval. Using Monte Carlo simulations to test the statistical significance, we found that surface orthophosphate and nitrate+nitrite concentrations are approximately three and two fold smaller, respectively, in the 2010-2012 period compared to the previous years. Changes in silicate concentrations were, in most cases, not significant, and their assessment complicated by different measurement techniques and potential preservation artifacts. The weighted river loading of these nutrients was, on the other hand, very high in the latest period when samples mostly covered 2011. The well-known negative correlation between nutrient concentrations and salinity at the ocean surface is confirmed in the most recent data. The area surrounding the Mississippi River mouth is characterized by inorganic N:P ratios greater than 30:1 that decrease to values typically less than 10:1 at about 100 km from of the mouth. Overall our analysis suggests that surface nutrient concentrations in the northern Gulf of Mexico cannot be described with any good accuracy by a linear model based on river discharge alone.
NASA Astrophysics Data System (ADS)
Wang, Wentao; Yu, Zhiming; Wu, Zaixing; Song, Shuqun; Song, Xiuxian; Yuan, Yongquan; Cao, Xihua
2018-07-01
Being supplied from both terrestrial inputs and internal regeneration, nitrate is usually in excess in the Changjiang River estuary (CRE) and adjacent waters (CREAW). As significant reactions in the nitrogen cycle, nitrate assimilation and nitrification rates were calculated by field incubation experiments following the isotope dilution method during June and November 2014. Besides this, distribution of other field parameters in the CREAW were also investigated. The results showed that the nitrate assimilation rates were higher in nearshore areas and lower in offshore areas. The nitrate assimilation rates were also higher during June, at 0.3-11.9 μmol L-1 d-1, whereas the rates were 0-3.2 μmol L-1 d-1 in November. The highest rate was observed in the surface water of the estuary, where the chlorophyll-a (chl-a) concentration reached 11.02 μg L-1. In addition, the phytoplankton community structure affected the nitrate assimilation rates, and dinoflagellates presented weaker nitrate assimilation abilities than those of diatoms. By contrast, the nitrification rates were higher in nearshore areas in June but higher in offshore areas in November. The nitrification rates were 0-4.1 μmol L-1 d-1 and 0-3.6 μmol L-1 d-1 in June and November, respectively. At most sites, the nitrification rates were positively correlated with the ammonium concentrations and were higher in November, which might be attributable to the higher temperature. Moreover, a theoretical calculation was used to study the regional nitrate flux throughout the vertical water column. The results showed that a gradual supplement from nitrification might replenish the nitrate consumed by assimilation far from the CRE. The overall result was that terrestrial input remained the primary source of estuarine nitrate; however, the role of internal nitrate regeneration, which would be effective for primary production in the CREAW, should also be highlighted as a source of nitrate, especially in offshore areas.
Domagalski, Joseph L.; Chao, L.; Xinquan, Z.
2001-01-01
Groundwater quality with respect to nitrate, major inorganic constituents, stable isotopes, and tritium was assessed in the agricultural Tangshan region in the Hai He River Basin of the People's Republic of China and compared with three regions in the U.S.: the Delmarva Peninsula of Delaware, Maryland, and Virginia; the San Joaquin Valley of California; and the Sacramento Valley of California. The China and U.S. regions are similar in size and land use, but have different climatic conditions and patterns of water use for irrigation. The Tangshan region has been in agricultural production for a much longer time, probably several centuries, than the three U.S. regions; however, the widespread use of synthetic fertilizers and other soil amendments probably started at a similar time in all four regions. In all four regions, median nitrate concentrations were generally below the U.S. drinking water standard of 10 mg/l of nitrate as nitrogen. However, higher concentrations and a greater range were evident for the Tangshan region. In the water samples collected from a shallow aquifer in the Tangshan region (over 25% of all samples), nitrate concentrations exceeded the Chinese standard of 20 mg/l, whereas few comparative samples (2.6%) collected in the U.S. exceeded 20 mg/l. In Tangshan, relatively low nitrate, which is indicative of uncontaminated background concentrations, was measured in older water of deeper wells. Recently recharged water was detected in wells drilled as deep as 150 m. Nitrate concentrations above background levels were also measured in water samples from these wells. In addition to nitrate, the agricultural area of the Tangshan region has been affected by elevated total dissolved solids and iron, the latter attributed to widespread application of animal wastes and sewage deposited on the land surface, which lead to oxygen depletion in the subsurface environment and dissolution of iron. The elevated total dissolved solids of the Tangshan study area could not be attributed to any one process.
Anderholm, S.K.; Radell, M.J.; Richey, S.F.
1995-01-01
This report contains a summary of data compiled from sources throughout the Rio Grande Valley study unit of the National Water-Quality Assessment program. Information presented includes the sources and types of water-quality data available, the utility of water-quality data for statistical analysis, and a description of recent water-quality conditions and trends and their relation to natural and human factors. Water-quality data are limited to concentrations of selected nutrient species in surface water and ground water, concentrations of suspended sediment and suspended solids in surface water, and pesticides in surface water, ground water, and biota.The Rio Grande Valley study unit includes about 45,900 square miles in Colorado, New Mexico, and Texas upstream from the streamflow-monitoring station Rio Grande at El Paso, Texas. The area also includes the San Luis Closed Basin and the surface-water closed basins east of the Continental Divide and north of the United States-Mexico international border. The Rio Grande drains about 29,300 square miles in these States; the remainder of the study unit area is in closed basins. Concentrations of all nutrients found in surface-water samples collected from the Rio Grande, with the exception of phosphorus, generally remained nearly constant from the northernmost station in the study unit to Rio Grande near Isleta, where concentrations were larger by an order of magnitude. Total nitrogen and total phosphorus loads increased downstream between Lobatos, Colorado, and Albuquerque, New Mexico. Nutrient concentrations remained elevated with slight variations until downstream from Elephant Butte Reservoir, where nutrient concentrations were lower. Nutrient concentrations then increased downstream from the reservoir, as evidenced by elevated concentrations at Rio Grande at El Paso, Texas.Suspended-sediment concentrations were similar at stations upstream from Otowi Bridge near San Ildefonso, New Mexico. The concentration and estimated load were nearly two orders of magnitude larger at this station relative to upstream stations. Cochiti Lake allows suspended sediment to settle, thus the resulting concentration is substantially lower downstream from the reservoir. Downstream from Cochiti Lake, concentrations again increased due to inflow from tributaries, other ephemeral streams and arroyos, and agricultural and urban areas. Two ephemeral tributaries (Rio Puerco and Rio Salado, which are south of Albuquerque) contribute substantial amounts of suspended sediment to the Rio Grande. Suspended-sediment concentrations in the Rio Grande just downstream from Elephant Butte Dam decreased by nearly three orders of magnitude due to settling in the reservoir. Concentrations then increased due to agricultural and urban impacts downstream from the reservoir.Nutrients in ground water in the study unit do not appear to be a widespread problem. However, localized areas that have elevated nitrate concentrations have been documented. The largest median nitrate concentration was found in water from wells located in the Basin and Range-mountains-urban data stratum (3.0 milligrams per liter) and the smallest median nitrate concentration was found in water from wells located in the Southern Rocky Mountainsmountains-forest data stratum (0.08 milligram per liter). Few (3 percent) nitrate concentrations in water from wells in all data strata were greater than 10 milligrams per liter, and most (82 percent) were less than 2 milligrams per liter. Comparison of nitrate concentrations in water from wells located in specific land-use settings across all hydrogeologic settings, with the exception of the Colorado Plateau, indicated that the largest median nitrate concentration was associated with rangeland land use and that larger nitrate concentrations were found in water from shallow wells. Water from wells located in areas of rangeland land use consistently had larger median nutrient concentrations than water from wells in areas of other land uses. The largest median ammonia concentration was in water from wells located in the Colorado Plateau-San Juan Basin-rangeland data stratum (0.27 milligram per liter). Most median ammonia concentrations were less than 0.03 milligram per liter, indicating that elevated ammonia concentrations are not a major issue in the study unit.The largest median orthophosphate concentration was found in water from wells located in the Southern Rocky Mountains-mountains-forest data stratum (0.15 milligram per liter) and the smallest was found in water from wells located in the Basin and Range-mountains-urban data stratum (0.02 milligram per liter). Most orthophosphate concentrations (85 percent) sampled were less than 0.2 milligram per liter, indicating that elevated orthophosphate concentrations are not a major issue in the study unit.Pesticide analyses were available for only 38 ground-water sampling sites in the Rio Grande Valley study unit. Diazinon, at a concentration of 0.01 microgram per liter, was the only pesticide detected and it was detected at only one site. More study is needed to determine if pesticides are affecting ground-water quality in the Rio Grande Valley study unit.Surface-water biological pesticide data were inadequate for in-depth analysis. The primary sources of data were the U.S. Fish and Wildlife Service and the U.S. Geological Survey. In the U.S. Fish and Wildlife Service study p,p'-DDE, a degradation product of DDT, was detected most frequently; highest concentrations were found at Stahman Farms in carp (6.3 micrograms per gram wet-weight) and at Hatch in Western kingbird (5.1 micrograms per gram wet-weight). In the U.S. Geological Survey study of Bosque del Apache National Wildlife Refuge no detectable organochlorine concentrations were found in plants, but detectable levels of p,p'-DDE were found in coot and carp, with a maximum concentration of 0.12 microgram per gram wet-weight found in coot.
Le Goff, Thierry; Braven, Jim; Ebdon, Les; Chilcottt, Neil P; Scholefield, David; Wood, John W
2002-04-01
A field evaluation of a novel nitrate-ion selective electrode (ISE) was undertaken by continuous immersion over a period of 5 months in agricultural drainage weirs. The nitrate sensor N,N,N-triallyl leucine betaine was covalently attached to polystyrene-block-polybutadiene-block-polystyrene (SBS) using a free radical initiated co-polymerisation, to produce a rubbery membrane which was incorporated into a commercially available electrode body. A measurement unit was constructed comprising the nitrate-ISEs, a reference electrode and a temperature probe connected through a pre-amplifier to a data-logger and battery supply. A temperature correction algorithm was developed to accomodate the temperature changes encountered in the drainage weirs. The nitrate results obtained with the ISEs at hourly intervals compared very favourably (R2 = 0.99) with those obtained with laboratory automated chemical determinations made on contemporaneous samples of drainage in a concentration range 0.47-16 ppm nitrate-N. The ISEs did not require re-calibration and no deterioration in performance or fouling of the membrane surface was observed over four months of deployment.
NASA Astrophysics Data System (ADS)
Ren, H. A.; Anderson, R.; Sigman, D. M.; Studer, A.; Winckler, G.; Haugh, G.; Serno, S.; Gersonde, R.
2017-12-01
Sedimentary nitrogen isotopes have been developed as a proxy to reconstruct the degree of nitrate utilization in the polar surface oceans. But its application could be compromised by 1) uncertainties on the biological production, transport, and preservation of the organic material in the sediments, and 2) potential changes in the isotopic composition of the nitrate source, that is remotely controlled by processes in other regions. In this study, we map and compare spatial patterns of three d15N recorders (bulk sedimentary nitrogen, the organic nitrogen within cleaned diatom frustules or diatom-bound N, and within planktonic foraminifera tests or foraminifera-bound N) from multicore surface sediments across the Subarctic North Pacific (SNP) and the Bering Sea between 60°N and 35°N. Diatom-bound d15N varies between 3.5 and 8.5‰. Its spatial variation is reversely correlated with changes in the surface nitrate concentration, and is consistent with the expected d15N change of the export production in a simple nitrate assimilation model. Similar to previous findings, diatom-bound d15N is generally 2 4‰ higher than the modeled d15N value of the export production, likely reflecting a biomass to frustual-bound N difference. However, the greater d15N elevation observed in the eastern open SNP may be best explained by lateral transport of residual surface nitrate enriched in 15N from the western SNP. The d15N of Neogloboquadrina pachyderma (sinistral) is similar to the diatom-bound d15N within 1‰. Bulk sedimentary d15N generally agrees with diatom-bound d15N, but is more variable. It is higher than diatom-bound d15N in the eastern and western transect close to the shelf area, likely reflecting a terrigenous source, while exceptionally low d15N values were found on the Bering Sea shelf, possibly due to contamination by mineral-associated inorganic N.
Dry deposition of reduced and reactive nitrogen: A surrogate surfaces approach
NASA Astrophysics Data System (ADS)
Shahin, Usama Mohammed
Nitrogen deposition constitutes an important component of acidic deposition to terrestrial surfaces. However, deposition flux and ambient concentration measurement methods and are still under development. A new sampler using water as a surrogate surface was developed in the Department of Environmental Engineering at Illinois Institute of Technology. This study investigated nitrate and ammonia dry deposition to the water surface sampler, a Nylasorb filter, a citric acid impregnated filter, and a greased strip on the dry deposition plate. The nitrogen containing species that may be responsible for nitrate dry deposition to the WSS include nitrogen monoxide (NO), nitrogen dioxide (NO2), peroxyacetyl nitrate (PAN), nitrous acid (HNO2), nitric acid (HNO3), and particulate nitrate. The experimental measurements showed that HNO3 and particulate nitrate are the major nitrate contributors to the WSS. Ammonia sources to the water surface are ammonia gas (NH3) and ammonium (NH4+). The experimental results showed that these two species are the sole sources to ammonium deposition. Comparison between the measured deposition velocity of SO2, and HNO3, shows that their dry deposition velocities are statistically the same at the 95% confidence level and NH3 deposition velocity and the water evaporation rate are also the same. It was also shown that the air side MTC of two different compounds were correlated to the square root of the inverse of the molecular weight for compounds. The measured MTC was tested by the application of two models, the resistance model and the water evaporation model. The resistance model prediction of the MTC was very close to the measured value but the evaporation model prediction was not. This result is compatible with the finding of Yi, (1997) who used the same WSS for measurements of SO2. The experimental data collected in this research project was used to develop an empirical model to measure the MTC that is [kl/over D] = 0.0426 ([lv/rho/over /mu])0.8([/mu/over /rho [ D
NASA Astrophysics Data System (ADS)
Arighi, L.; Haggerty, R.; Myrold, D. D.; Iverson, J.; Baham, J. E.; Madin, I. P.; Arendt, J.
2005-12-01
Low-permeability geologic units may offer significant chemical and hydraulic protection of adjacent aquifers, and are important for managing groundwater quality, especially in areas with significant non-point source contamination. Nitrate in the Willamette Valley is attenuated across the Willamette Silt, a semi-confining unit overlying a regionally important aquifer. To quantify the main mechanism responsible for nitrate attenuation, soil cores were taken at 19 locations, and profiles of nitrate concentrations were constructed for each site. In 7 locations a sharp, major geochemical transition - a "redoxcline" - is present near the base of the Willamette Silt; this redoxcline is characterized by a color change from red-brown to blue-gray, an increase in iron(II) concentration, a rise in pH, and the appearance of carbonate minerals. At all sites where a significant surface input of nitrate was detected, the nitrate signal was attenuated before reaching the base of the silt. Denitrifier Enzyme Activity assays from one site show no denitrification potential in the profile, suggesting that a non-biological mechanism is responsible. We suggest that iron(II) is reducing the nitrate abiotically to nitrite, and that the blue-gray reducing zone of Willamette Silt is indicative of the presence of sufficient iron(II) for the reaction to go forward. To increase the usefulness of this study to regional water management agencies, a thickness isopach map of the reduced zone was created both for the northern and southern Willamette Valley to help determine areas where nitrate is most likely to be attenuated.
Wang, L; Stuart, M E; Lewis, M A; Ward, R S; Skirvin, D; Naden, P S; Collins, A L; Ascott, M J
2016-01-15
Nitrate is necessary for agricultural productivity, but can cause considerable problems if released into aquatic systems. Agricultural land is the major source of nitrates in UK groundwater. Due to the long time-lag in the groundwater system, it could take decades for leached nitrate from the soil to discharge into freshwaters. However, this nitrate time-lag has rarely been considered in environmental water management. Against this background, this paper presents an approach to modelling groundwater nitrate at the national scale, to simulate the impacts of historical nitrate loading from agricultural land on the evolution of groundwater nitrate concentrations. An additional process-based component was constructed for the saturated zone of significant aquifers in England and Wales. This uses a simple flow model which requires modelled recharge values, together with published aquifer properties and thickness data. A spatially distributed and temporally variable nitrate input function was also introduced. The sensitivity of parameters was analysed using Monte Carlo simulations. The model was calibrated using national nitrate monitoring data. Time series of annual average nitrate concentrations along with annual spatially distributed nitrate concentration maps from 1925 to 2150 were generated for 28 selected aquifer zones. The results show that 16 aquifer zones have an increasing trend in nitrate concentration, while average nitrate concentrations in the remaining 12 are declining. The results are also indicative of the trend in the flux of groundwater nitrate entering rivers through baseflow. The model thus enables the magnitude and timescale of groundwater nitrate response to be factored into source apportionment tools and to be taken into account alongside current planning of land-management options for reducing nitrate losses. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamazaki, Atsuko; Watanabe, Tsuyoshi; Ogawa, Nanako O.; Ohkouchi, Naohiko; Shirai, Kotaro; Toratani, Mitsuhiro; Uematsu, Mitsuo
2011-12-01
To demonstrate the utility of coral skeletons as a recorder of nitrate dynamics in the surface ocean, we collected coral skeletons of Porites lobata and determined their nitrogen isotope composition (δ15Ncoral) from 2002 to 2006. Skeletons were collected at Okinotori Island in southwestern Japan, far from any sources of terrestrial nitrogen. Nitrogen isotope compositions along the growth direction were determined at 800 μm intervals (˜1 month resolution) and compared against the skeletal carbon isotope composition (δ13Ccoral-carb), barium/calcium ratio (Ba/Ca), and Chlorophyll-a concentration (Chl-a). From 2002 to 2004, ratios of the δ15Ncoral varied between +0.8 and +8.3‰ with inverse variation to SST (r = -0.53). Ba/Ca ratios and Chl-a concentrations were also observed to be high during seasons with low SST. These results suggested that the vertical mixing that occurs during periods of low SST carries nutrients from deeper water (δ15NDIN; +5˜+6‰) to the sea surface. In 2005 onward, δ15Ncoral and Ba/Ca ratios also had positive peaks even in high SST during periods of transient upwelling caused by frequent large typhoons (maximum wind speed 30 m/s). In addition, low δ15Ncoral (+0.8˜+2.0‰) four months after the last typhoon implied nitrogen fixation because of the lack of typhoon upwelling through the four years record of δ15Ncoral. Variations in the δ13Ccoral-carb and δ15Ncoral were synchronized, suggesting that nitrate concentration could control zooxanthellae photosynthesis. Our results suggested that δ15Ncoral holds promise as a proxy for reconstructing the transport dynamics of marine nitrate and thus also a tool for estimating nitrate origins in the tropical and subtropical oceans.
Structural modification in the formation of starch - silver nanocomposites
NASA Astrophysics Data System (ADS)
Begum, S. N. Suraiya; Aswal, V. K.; Ramasamy, Radha Perumal
2016-05-01
Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO3) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO3. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO3 concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.
Atmospheric deposition maps for the Rocky Mountains
Nanus, L.; Campbell, D.H.; Ingersoll, G.P.; Clow, D.W.; Mast, M.A.
2003-01-01
Variability in atmospheric deposition across the Rocky Mountains is influenced by elevation, slope, aspect, and precipitation amount and by regional and local sources of air pollution. To improve estimates of deposition in mountainous regions, maps of average annual atmospheric deposition loadings of nitrate, sulfate, and acidity were developed for the Rocky Mountains by using spatial statistics. A parameter-elevation regressions on independent slopes model (PRISM) was incorporated to account for variations in precipitation amount over mountainous regions. Chemical data were obtained from the National Atmospheric Deposition Program/National Trends Network and from annual snowpack surveys conducted by the US Geological Survey and National Park Service, in cooperation with other Federal, State and local agencies. Surface concentration maps were created by ordinary kriging in a geographic information system, using a local trend and mathematical model to estimate the spatial variance. Atmospheric-deposition maps were constructed at 1-km resolution by multiplying surface concentrations from the kriged grid and estimates of precipitation amount from the PRISM model. Maps indicate an increasing spatial trend in concentration and deposition of the modeled constituents, particularly nitrate and sulfate, from north to south throughout the Rocky Mountains and identify hot-spots of atmospheric deposition that result from combined local and regional sources of air pollution. Highest nitrate (2.5-3.0kg/ha N) and sulfate (10.0-12.0kg/ha SO4) deposition is found in northern Colorado.
Modeling nitrate at domestic and public-supply well depths in the Central Valley, California
Nolan, Bernard T.; Gronberg, JoAnn M.; Faunt, Claudia C.; Eberts, Sandra M.; Belitz, Ken
2014-01-01
Aquifer vulnerability models were developed to map groundwater nitrate concentration at domestic and public-supply well depths in the Central Valley, California. We compared three modeling methods for ability to predict nitrate concentration >4 mg/L: logistic regression (LR), random forest classification (RFC), and random forest regression (RFR). All three models indicated processes of nitrogen fertilizer input at the land surface, transmission through coarse-textured, well-drained soils, and transport in the aquifer to the well screen. The total percent correct predictions were similar among the three models (69–82%), but RFR had greater sensitivity (84% for shallow wells and 51% for deep wells). The results suggest that RFR can better identify areas with high nitrate concentration but that LR and RFC may better describe bulk conditions in the aquifer. A unique aspect of the modeling approach was inclusion of outputs from previous, physically based hydrologic and textural models as predictor variables, which were important to the models. Vertical water fluxes in the aquifer and percent coarse material above the well screen were ranked moderately high-to-high in the RFR models, and the average vertical water flux during the irrigation season was highly significant (p < 0.0001) in logistic regression.
NASA Astrophysics Data System (ADS)
Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, Wells D.; Lang, Megan W.; Sharifi, Amir
2018-01-01
Water quality problems in the Chesapeake Bay Watershed (CBW) are expected to be exacerbated by climate variability and change. However, climate impacts on agricultural lands and resultant nutrient loads into surface water resources are largely unknown. This study evaluated the impacts of climate variability and change on two adjacent watersheds in the Coastal Plain of the CBW, using the Soil and Water Assessment Tool (SWAT) model. We prepared six climate sensitivity scenarios to assess the individual impacts of variations in CO2 concentration (590 and 850 ppm), precipitation increase (11 and 21 %), and temperature increase (2.9 and 5.0 °C), based on regional general circulation model (GCM) projections. Further, we considered the ensemble of five GCM projections (2085-2098) under the Representative Concentration Pathway (RCP) 8.5 scenario to evaluate simultaneous changes in CO2, precipitation, and temperature. Using SWAT model simulations from 2001 to 2014 as a baseline scenario, predicted hydrologic outputs (water and nitrate budgets) and crop growth were analyzed. Compared to the baseline scenario, a precipitation increase of 21 % and elevated CO2 concentration of 850 ppm significantly increased streamflow and nitrate loads by 50 and 52 %, respectively, while a temperature increase of 5.0 °C reduced streamflow and nitrate loads by 12 and 13 %, respectively. Crop biomass increased with elevated CO2 concentrations due to enhanced radiation- and water-use efficiency, while it decreased with precipitation and temperature increases. Over the GCM ensemble mean, annual streamflow and nitrate loads showed an increase of ˜ 70 % relative to the baseline scenario, due to elevated CO2 concentrations and precipitation increase. Different hydrological responses to climate change were observed from the two watersheds, due to contrasting land use and soil characteristics. The watershed with a larger percent of croplands demonstrated a greater increased rate of 5.2 kg N ha-1 in nitrate yield relative to the watershed with a lower percent of croplands as a result of increased export of nitrate derived from fertilizer. The watershed dominated by poorly drained soils showed increased nitrate removal due do enhanced denitrification compared to the watershed dominated by well-drained soils. Our findings suggest that increased implementation of conservation practices would be necessary for this region to mitigate increased nitrate loads associated with predicted changes in future climate.
Turbidity and nitrate transfer in karstic aquifers in rural areas: the Brionne Basin case-study.
Nebbache, S; Feeny, V; Poudevigne, I; Alard, D
2001-08-01
The degradation of water quality in many groundwaters of Europe is a major source of concern. Rises in turbidity and nitrate concentrations represent present or potential threats for the quality of drinking water in rural areas. They are for the most part a consequence of agricultural intensification which has considerably affected land cover and land use in recent decades. In our case-study (a karstic catchment) the mechanisms which explain changes in water quality, as far as turbidity and nitrate are concerned, result from a strong continuity between surface and underground waters. The karstic system of the Brionne Basin can be considered as both the focus of rapid horizontal flows (runoff, a rapid process in which rainwater reaches the spring directly through sinkholes) and slow vertical flows (leaching, in which rainwater filters through the soil to the spring). A hierarchical approach to the water pollution problem of the basin suggests that turbidity or nitrate concentrations peak during heavy rain episodes and are short-term events. In terms of management, this implies that the solution to water pollution caused by such events is also short-term and can therefore be addressed at a local scale. The rise of nitrate concentrations during the past twenty years is the main concern. The solution can only be found at a global scale (all the catchment area must be taken in account: land plots and their spatial configuration), and by taking a long-term approach.
Changes in water and solute fluxes in the vadose zone after switching crops
NASA Astrophysics Data System (ADS)
Turkeltaub, Tuvia; Dahan, Ofer; Kurtzman, Daniel
2015-04-01
Switching crop type and therefore changing irrigation and fertilization regimes leads to alternation in deep percolation and concentrations of solutes in pore water. Changes of fluxes of water, chloride and nitrate under a commercial greenhouse due to a change from tomato to green spices were observed. The site, located above the a coastal aquifer, was monitored for the last four years. A vadose-zone monitoring system (VMS) was implemented under the greenhouse and provided continuous data on both the temporal variation in water content and the chemical composition of pore water at multiple depths in the deep vadose zone (~20 m). Chloride and nitrate profiles, before and after the crop type switching, indicate on a clear alternation in soil water solutes concentrations. Before the switching of the crop type, the average chloride profile ranged from ~130 to ~210, while after the switching, the average profile ranged from ~34 to ~203 mg L-1, 22% reduction in chloride mass. Counter trend was observed for the nitrate concentrations, the average nitrate profile before switching ranged from ~11 to ~44 mg L-1, and after switching, the average profile ranged from ~500 to ~75 mg L-1, 400% increase in nitrate mass. A one dimensional unsaturated water flow and chloride transport model was calibrated to transient deep vadose zone data. A comparison between the simulation results under each of the surface boundary conditions of the vegetables and spices cultivation regime, clearly show a distinct alternation in the quantity and quality of groundwater recharge.
Supporting palladium metal on gold nanoparticles improves its catalysis for nitrite reduction
NASA Astrophysics Data System (ADS)
Qian, Huifeng; Zhao, Zhun; Velazquez, Juan C.; Pretzer, Lori A.; Heck, Kimberly N.; Wong, Michael S.
2013-12-01
Nitrate (NO3-) and nitrite (NO2-) anions are often found in groundwater and surface water as contaminants globally, especially in agricultural areas due to nitrate-rich fertilizer use. One popular approach to studying the removal of nitrite/nitrate from water has been their degradation to dinitrogen via Pd-based reduction catalysis. However, little progress has been made towards understanding how the catalyst structure can improve activity. Focusing on the catalytic reduction of nitrite in this study, we report that Au NPs supporting Pd metal ("Pd-on-Au NPs") show catalytic activity that varies with volcano-shape dependence on Pd surface coverage. At room temperature, in CO2-buffered water, and under H2 headspace, the NPs were maximally active at a Pd surface coverage of 80%, with a first-order rate constant (kcat = 576 L gPd-1 min-1) that was 15x and 7.5x higher than monometallic Pd NPs (~4 nm; 40 L gPd-1 min-1) and Pd/Al2O3 (1 wt% Pd; 76 L gPd-1 min-1), respectively. Accounting only for surface Pd atoms, these NPs (576 L gsurface-Pd-1 min-1) were 3.6x and 1.6x higher than monometallic Pd NPs (160 L gsurface-Pd-1 min-1) and Pd/Al2O3 (361 L gsurface-Pd-1 min-1). These NPs retained ~98% of catalytic activity at a chloride concentration of 1 mM, whereas Pd/Al2O3 lost ~50%. The Pd-on-Au nanostructure is a promising approach to improve the catalytic reduction process for nitrite and, with further development, also for nitrate anions.Nitrate (NO3-) and nitrite (NO2-) anions are often found in groundwater and surface water as contaminants globally, especially in agricultural areas due to nitrate-rich fertilizer use. One popular approach to studying the removal of nitrite/nitrate from water has been their degradation to dinitrogen via Pd-based reduction catalysis. However, little progress has been made towards understanding how the catalyst structure can improve activity. Focusing on the catalytic reduction of nitrite in this study, we report that Au NPs supporting Pd metal ("Pd-on-Au NPs") show catalytic activity that varies with volcano-shape dependence on Pd surface coverage. At room temperature, in CO2-buffered water, and under H2 headspace, the NPs were maximally active at a Pd surface coverage of 80%, with a first-order rate constant (kcat = 576 L gPd-1 min-1) that was 15x and 7.5x higher than monometallic Pd NPs (~4 nm; 40 L gPd-1 min-1) and Pd/Al2O3 (1 wt% Pd; 76 L gPd-1 min-1), respectively. Accounting only for surface Pd atoms, these NPs (576 L gsurface-Pd-1 min-1) were 3.6x and 1.6x higher than monometallic Pd NPs (160 L gsurface-Pd-1 min-1) and Pd/Al2O3 (361 L gsurface-Pd-1 min-1). These NPs retained ~98% of catalytic activity at a chloride concentration of 1 mM, whereas Pd/Al2O3 lost ~50%. The Pd-on-Au nanostructure is a promising approach to improve the catalytic reduction process for nitrite and, with further development, also for nitrate anions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr04540d
Alkyl nitrate (C1-C3) depth profiles in the tropical Pacific Ocean
NASA Astrophysics Data System (ADS)
Dahl, E. E.; Yvon-Lewis, S. A.; Saltzman, E. S.
2007-01-01
This paper reports the first depth profile measurements of methyl, ethyl, isopropyl and n-propyl nitrates in the tropical Pacific Ocean. Depth profile measurements were made at 22 stations during the Project Halocarbon Air Sea Exchange cruise, in warm pool, equatorial, subequatorial, and gyre waters. The highest concentrations, up to several hundred pM of methyl nitrate, were observed in the central Pacific within 8 degrees of the equator. In general, alkyl nitrate levels were highest in the surface mixed layer, and decreased with depth below the mixed layer. The spatial distribution of the alkyl nitrates suggests that there is a strong source associated with biologically productive ocean regions, that is characterized by high ratios of methyl:ethyl nitrate. However, the data do not allow discrimination between direct biological emissions and photochemistry as production mechanisms. Alkyl nitrates were consistently detectable at several hundred meters depth. On the basis of the estimated chemical loss rate of these compounds, we conclude that deep water alkyl nitrates must be produced in situ. Possible sources include free radical processes initiated by radioactive decay or cosmic rays, enzymatically mediated reactions involving bacteria, or unidentified chemical mechanisms involving dissolved organic matter.
Decadal-scale changes of nitrate in ground water of the United States, 1988-2004
Rupert, Michael G.
2008-01-01
This study evaluated decadal-scale changes of nitrate concentrations in groundwater samples collected by the USGS National Water-Quality Assessment Program from 495 wells in 24 well networks across the USA in predominantly agricultural areas. Each well network was sampled once during 1988-1995 and resampled once during 2000-2004. Statistical tests of decadal-scale changes of nitrate concentrations in water from all 495 wells combined indicate there is a significant increase in nitrate concentrations in the data set as a whole. Eight out of the 24 well networks, or about 33%, had significant changes of nitrate concentrations. Of the eight well networks with significant decadal-scale changes of nitrate, all except one, the Willamette Valley of Oregon, had increasing nitrate concentrations. Median nitrate concentrations of three of those eight well networks increased above the USEPA maximum contaminant level of 10 mg L-1. Nitrate in water from wells with reduced conditions had significantly smaller decadal-scale changes in nitrate concentrations than oxidized and mixed waters. A subset of wells had data on ground water recharge date; nitrate concentrations increased in response to the increase of N fertilizer use since about 1950. Determining ground water recharge dates is an important component of a ground water trends investigation because recharge dates provide a link between changes in ground water quality and changes in land-use practices. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepinski, Dominique C.; Youker, Amanda J.; Krahn, Elizabeth O.
2017-03-01
Molybdenum-99 is a parent of the most widely used medical isotope technetium-99m. Proliferation concerns have prompted development of alternative Mo production methods utilizing low enriched uranium. Alumina and titania sorbents were evaluated for separation of Mo from concentrated uranyl nitrate solutions. System, mass transfer, and isotherm parameters were determined to enable design of Mo separation processes under a wide range of conditions. A model-based approach was utilized to design representative commercial-scale column processes. The designs and parameters were verified with bench-scale experiments. The results are essential for design of Mo separation processes from irradiated uranium solutions, selection of support materialmore » and process optimization. Mo uptake studies show that adsorption decreases with increasing concentration of uranyl nitrate; howeveL, examination of Mo adsorption as a function of nitrate ion concentration shows no dependency, indicating that uranium competes with Mo for adsorption sites. These results are consistent with reports indicating that Mo forms inner-sphere complexes with titania and alumina surface groups.« less
Davis, Jerri V.; Bell, Richard W.
1998-01-01
Nutrient, bacteria, organic carbon, and suspended- sediment samples were collected from 1993-95 at 43 surface-water-quality sampling sites within the Ozark Plateaus National Water- Quality Assessment Program study unit. Most surface-water-quality sites have small or medium drainage basins, near-homogenous land uses (primarily agricultural or forest), and are located predominantly in the Springfield and Salem Plateaus. The water-quality data were analyzed using selected descriptive and statistical methods to determine factors affecting occurrence in streams in the study unit. Nitrogen and phosphorus fertilizer use increased in the Ozark Plateaus study unit for the period 1965-85, but the application rates are well below the national median. Fertilizer use differed substantially among the major river basins and physiographic areas in the study unit. Livestock and poultry waste is a major source of nutrient loading in parts of the study unit. The quantity of nitrogen and phosphorus from livestock and poultry wastes differed substantially among the river basins of the study unit's sampling network. Eighty six municipal sewage-treatment plants in the study unit have effluents of 0.5 million gallons per day or more (for the years 1985-91). Statistically significant differences existed in surface-water quality that can be attributed to land use, physiography, and drainage basin size. Dissolved nitrite plus nitrate, total phosphorus, fecal coliform bacteria, and dissolved organic carbon concentrations generally were larger at sites associated with agricultural basins than at sites associated with forested basins. A large difference in dissolved nitrite plus nitrate concentrations occurred between streams draining basins with agricultural land use in the Springfield and Salem Plateaus. Streams draining both small and medium agricultural basins in the Springfield Plateau had much larger concentrations than their counterparts in the Salem Plateau. Drainage basin size was not a significant factor in affecting total phosphorus, fecal coliform bacteria, or dissolved organic carbon concentrations. Suspended-sediment concentrations generally were small and indicative of the clear water in streams in the Ozark Plateaus. A comparison of the dissolved nitrite plus nitrate, total phosphorus, and fecal coliform data collected at the fixed and synoptic sites indicates that generally the data for streams draining basins of similar physiography, land-use setting, and drainage basin size group together. Many of the variations are most likely the result of differences in percent agricultural land use between the sites being compared or are discharge related. The relation of dissolved nitrite plus nitrate, total phosphorus, and fecal coliform concentration to percent agricultural land use has a strong positive 2 Water-Quality Assessment-Nutrients, Bacteria, Organic Carbon, and Suspended Sediment in Surface Water, 1993-95 correlation, with percent agricultural land use accounting for between 42 and 60 percent of the variation in the observed concentrations.
Steele, G.V.; Cannia, J.C.; Sibray, S.S.; McGuire, V.L.
2005-01-01
Ground water is the source of drinking water for the residents of Pumpkin Creek Valley, western Nebraska. In this largely agricultural area, shallow aquifers potentially are susceptible to nitrate contamination. During the last 10 years, ground-water levels in the North Platte Natural Resources District have declined and contamination has become a major problem for the district. In 2000, the U.S. Geological Survey and the North Platte Natural Resources District began a cooperative study to determine the age and quality of the ground water and the sources of nitrogen in the aquifers in Pumpkin Creek Valley. Water samples were collected from 8 surface-water sites, 2 springs, and 88 ground-water sites during May, July, and August 2000. These samples were analyzed for physical properties, nutrients or nitrate, and hydrogen and oxygen isotopes. In addition, a subset of samples was analyzed for any combination of chlorofluorocarbons, tritium, tritium/helium, sulfur-hexafluoride, carbon-14, and nitrogen-15. The apparent age of ground water in the alluvial aquifer typically varied from about 1980 to modern, whereas ground water in the fractured Brule Formation had a median value in the 1970s. The Brule Formation typically contained ground water that ranged from the 1940s to the 1990s, but low-yield wells had apparent ages of 5,000 to 10,000 years before present. Data for oxygen-18 and deuterium indicated that lake-water samples showed the greatest effects from evaporation. Ground-water data showed no substantial evaporative effects and some ground water became isotopically heavier as the water moved downgradient. In addition, the physical and chemical ground-water data indicate that Pumpkin Creek is a gaining stream because little, if any, of its water is lost to the ground-water system. The water-quality type changed from a sodium calcium bicarbonate type near Pumpkin Creek's headwaters to a calcium sodium bicarbonate type near its mouth. Nitrate concentrations were largest in the alluvial system (median = 5 mg/L) and smallest in the surface-water system (median = 1 mg/L). Most nitrate concentrations exceeding the U.S. Environmental Protection Agency maximum contaminant level for drinking water of 10 mg/L as nitrogen were adjacent to irrigated fields and in areas where alluvial sediments are less than 50 ft thick. Sources of nitrogen in the ground water of the study area included naturally occurring nitrogen, commercial fertilizer, and animal waste. Based on nitrate concentration and delta nitrogen-15, the nitrogen in 65 percent of the water samples appears to have originated from a mixture of commercial fertilizers and animal waste. Some of the smallest nitrate concentrations in the ground-water samples contained some of the largest delta nitrogen-15 values (greater than 10 per mil), which suggests animal waste as the likely source. Commercial fertilizers were the likely source of most of the nitrogen in water samples with nitrate concentrations that exceeded 10 mg/L. The source of the nitrogen in water samples with nitrate concentrations exceeding 10 mg/L, but with delta nitrogen-15 values close to 10 per mil, could not be determined.
Ebrahimi, Shelir; Nguyen, Thi Hau; Roberts, Deborah J
2015-10-15
The sustainability of nitrate-contaminated water treatment using ion-exchange processes can be achieved by regenerating the exhausted resin several times. Our previous study shows that the use of multi-cycle bioregeneration of resin enclosed in membrane is an effective and innovative regeneration method. In this research, the effects of two independent factors (temperature and salt concentration) on the biological denitrification rate were studied. The results of this research along with the experimental results of the previous study on the effect of the same factors on nitrate desorption rate from the resin allow the optimization of the bioregeneration process. The results of nitrate denitrification rate study show that the biodegradation rate at different temperature and salt concentration is independent of the initial nitrate concentration. At each specific salt concentration, the nitrate removal rate increased with increasing temperature with the average value of 0.001110 ± 0.0000647 mg-nitrate/mg-VSS.h.°C. However, the effect of different salt concentrations was dependent on the temperature; there is a significant interaction between salt concentration and temperature; within each group of temperatures, the nitrate degradation rate decreased with increasing the salt concentration. The temperature affected the tolerance to salinity and culture was less tolerant to high concentration of salt at low temperature. Evidenced by the difference between the minimum and maximum nitrate degradation rate being greater at lower temperature. At 35 °C, a 32% reduction in the nitrate degradation rate was observed while at 12 °C this reduction was 69%. This is the first published study to examine the interaction of salt concentration and temperature during biological denitrification. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nitrate vulnerability projections from Bayesian inference of multiple groundwater age tracers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alikhani, Jamal; Deinhart, Amanda L.; Visser, Ate
Nitrate is a major source of contamination of groundwater in the United States and around the world. We tested the applicability of multiple groundwater age tracers ( 3H, 3He, 4He, 14C, 13C, and 85Kr) in projecting future trends of nitrate concentration in 9 long-screened, public drinking water wells in Turlock, California, where nitrate concentrations are increasing toward the regulatory limit. Very low 85Kr concentrations and apparent 3H/ 3He ages point to a relatively old modern fraction (40–50 years), diluted with pre-modern groundwater, corroborated by the onset and slope of increasing nitrate concentrations. An inverse Gaussian–Dirac model was chosen to representmore » the age distribution of the sampled groundwater at each well. Model parameters were estimated using a Bayesian inference, resulting in the posterior probability distribution – including the associated uncertainty – of the parameters and projected nitrate concentrations. Three scenarios were considered, including combined historic nitrate and age tracer data, the sole use of nitrate and the sole use of age tracer data. Each scenario was evaluated based on the ability of the model to reproduce the data and the level of reliability of the nitrate projections. The tracer-only scenario closely reproduced tracer concentrations, but not observed trends in the nitrate concentration. Both cases that included nitrate data resulted in good agreement with historical nitrate trends. Use of combined tracers and nitrate data resulted in a narrower range of projections of future nitrate levels. However, use of combined tracer and nitrate resulted in a larger discrepancy between modeled and measured tracers for some of the tracers. In conclusion, despite nitrate trend slopes between 0.56 and 1.73 mg/L/year in 7 of the 9 wells, the probability that concentrations will increase to levels above the MCL by 2040 are over 95% for only two of the wells, and below 15% in the other wells, due to a leveling off of reconstructed historical nitrate loadings to groundwater since about 1990.« less
Nitrate vulnerability projections from Bayesian inference of multiple groundwater age tracers
Alikhani, Jamal; Deinhart, Amanda L.; Visser, Ate; ...
2016-04-20
Nitrate is a major source of contamination of groundwater in the United States and around the world. We tested the applicability of multiple groundwater age tracers ( 3H, 3He, 4He, 14C, 13C, and 85Kr) in projecting future trends of nitrate concentration in 9 long-screened, public drinking water wells in Turlock, California, where nitrate concentrations are increasing toward the regulatory limit. Very low 85Kr concentrations and apparent 3H/ 3He ages point to a relatively old modern fraction (40–50 years), diluted with pre-modern groundwater, corroborated by the onset and slope of increasing nitrate concentrations. An inverse Gaussian–Dirac model was chosen to representmore » the age distribution of the sampled groundwater at each well. Model parameters were estimated using a Bayesian inference, resulting in the posterior probability distribution – including the associated uncertainty – of the parameters and projected nitrate concentrations. Three scenarios were considered, including combined historic nitrate and age tracer data, the sole use of nitrate and the sole use of age tracer data. Each scenario was evaluated based on the ability of the model to reproduce the data and the level of reliability of the nitrate projections. The tracer-only scenario closely reproduced tracer concentrations, but not observed trends in the nitrate concentration. Both cases that included nitrate data resulted in good agreement with historical nitrate trends. Use of combined tracers and nitrate data resulted in a narrower range of projections of future nitrate levels. However, use of combined tracer and nitrate resulted in a larger discrepancy between modeled and measured tracers for some of the tracers. In conclusion, despite nitrate trend slopes between 0.56 and 1.73 mg/L/year in 7 of the 9 wells, the probability that concentrations will increase to levels above the MCL by 2040 are over 95% for only two of the wells, and below 15% in the other wells, due to a leveling off of reconstructed historical nitrate loadings to groundwater since about 1990.« less
Breuer, Lutz; Hiery, Noreen; Kraft, Philipp; Bach, Martin; Aubert, Alice H.; Frede, Hans-Georg
2015-01-01
We organized a crowdsourcing experiment in the form of a snapshot sampling campaign to assess the spatial distribution of nitrogen solutes, namely, nitrate, ammonium and dissolved organic nitrogen (DON), in German surface waters. In particular, we investigated (i) whether crowdsourcing is a reasonable sampling method in hydrology and (ii) what the effects of population density, soil humus content and arable land were on actual nitrogen solute concentrations and surface water quality. The statistical analyses revealed a significant correlation between nitrate and arable land (0.46), as well as soil humus content (0.37) but a weak correlation with population density (0.12). DON correlations were weak but significant with humus content (0.14) and arable land (0.13). The mean contribution of DON to total dissolved nitrogen was 22%. Samples were classified as water quality class II or above, following the European Water Framework Directive for nitrate and ammonium (53% and 82%, respectively). Crowdsourcing turned out to be a useful method to assess the spatial distribution of stream solutes, as considerable amounts of samples were collected with comparatively little effort. PMID:26561200
Environmental biogeography of near-surface phytoplankton in the southeast Pacific Ocean
NASA Astrophysics Data System (ADS)
Hardy, John; Hanneman, Andrew; Behrenfeldt, Michael; Horner, Rita
1996-10-01
Biogeographic interpretation of large-scale phytoplankton distribution patterns in relation to surface hydrography is essential to understanding pelagic food web dynamics and biogeochemical processes influencing global climate. We examined the abundance and biomass of phytoplankton in relation to physical and chemical parameters in the southeast Pacific Ocean. Samples were collected along longitude 110°W, between 10°N and 60°S during late austral summer. Patterns of taxa abundance and hydrographic variables were interpreted by principal components analysis. Five distinct phytohydrographic regions were identified: (i) a north equatorial region of moderate productivity dominated by small flagellates, low nitrate and low-to-moderate pCO 2; (ii) a south equatorial region characterized by high primary productivity dominated by diatoms, high nutrient levels, and relatively high pCO 2; (iii) a central gyre region characterized by low productivity dominated by small flagellates, low nitrate, and high pCO 2; (iv) a sub-Antarctic region with moderate productivity dominated by coccolithophores, moderate nitrate concentrations, and low pCO 2; and (v) an Antarctic region with high productivity dominated by diatoms, very high nitrate, and low pCO 2. Productivity and average phytoplankton cell size were positively correlated with nitrate concentration. Total phytoplankton abundance was negatively correlated with pCO 2, photosynthetically active radiation, and ultraviolet-B radiation. The interaction between phytoplankton carbon assimilation, atmospheric CO2, and the inhibitory effect of ultraviolet radiation could have implications for the global climate. These data suggest that the effects would be greatest at southern mid-latitudes (40-50°S) where present phytoplankton production and predicted future increases in UV-B are both relatively high.
Nutrient interleaving below the mixed layer of the Kuroshio Extension Front
NASA Astrophysics Data System (ADS)
Nagai, Takeyoshi; Clayton, Sophie
2017-08-01
Nitrate interleaving structures were observed below the mixed layer during a cruise to the Kuroshio Extension in October 2009. In this paper, we investigate the formation mechanisms for these vertical nitrate anomalies, which may be an important source of nitrate to the oligotrphoc surface waters south of the Kuroshio Extension Front. We found that nitrate concentrations below the main stream of the Kuroshio Extension were elevated compared to the ambient water of the same density ( σ 𝜃 = 23.5-25). This appears to be analogous to the "nutrient stream" below the mixed layer, associated with the Gulf Stream. Strong turbulence was observed above the vertical nitrate anomaly, and we found that this can drive a large vertical turbulent nitrate flux >O (1 mmol N m-2 day-1). A realistic, high-resolution (2 km) numerical simulation reproduces the observed Kuroshio nutrient stream and nitrate interleaving structures, with similar lateral and vertical scales. The model results suggest that the nitrate interleaving structures are first generated at the western side of the meander crest on the south side of the Kuroshio Extension, where the southern tip of the mixed layer front is under frontogenesis. Lagrangian analyses reveal that the vertical shear of geostrophic and subinertial ageostrophic flow below the mixed layer tilts the existing along-isopycnal nitrate gradient of the Kuroshio nutrient stream to form nitrate interleaving structures. This study suggests that the multi-scale combination of (i) the lateral stirring of the Kuroshio nutrient stream by developed mixed layer fronts during fall to winter, (ii) the associated tilting of along-isopycnal nitrate gradient of the nutrient stream by subinertial shear, which forms vertical interleaving structures, and (iii) the strong turbulent diffusion above them, may provide a route to supply nutrients to oligotrophic surface waters on the south side of the Kuroshio Extension.
Anderholm, Scott K.
2002-01-01
As part of the National Water-Quality Assessment Program, surface-water and ground-water samples were collected in 1994 and 1995 for analysis of common constituents, nutrients, dissolved organic carbon, trace elements, radioactivity, volatile organic compounds, and pesticides to characterize surface- water quality and shallow ground-water quality and to determine factors affecting water quality in the Rincon Valley, south-central New Mexico. Samples of surface water were collected from three sites on the Rio Grande and from sites on three agricultural drains in the Rincon Valley in January 1994 and 1995, April 1994, and October 1994. Ground-water samples were collected in late April and early May 1994 from 30 shallow wells that were installed during the investigation. Dissolved-solids concentrations in surface water ranged from 434 to 1,510 milligrams per liter (mg/L). Dissolved-solids concentrations were smallest in water from the Rio Grande below Caballo Dam and largest in the drains. Nitrite plus nitrate concentrations ranged from less than 0.05 to 3.3 mg/L as nitrogen, and ammonia concentrations ranged from less than 0.015 to 0.33 mg/L as nitrogen in surface-water samples. Trace-element concentrations in surface water were significantly smaller than the acute-fisheries standards. One or more pesticides were detected in 34 of 37 surface-water samples. DCPA (dacthal) and metolachlor were the most commonly detected pesticides. No standards have been established for the pesticides analyzed for in this study. Dissolved-solids concentrations in shallow ground water ranged from 481 to 3,630 mg/L. All but 2 of 30 samples exceeded the secondary maximum contaminant level for dissolved solids of 500 mg/L. Water from about 73 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for sulfate, and water from about 7 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for chloride. Nitrite plus nitrate concentrations ranged from less than 0.05 to 33 mg/L as nitrogen in shallow ground water. Water from about 17 percent of the well samples exceeded the maximum contaminant level of 10 mg/L as nitrogen for nitrite plus nitrate. Trace-element concentrations in shallow ground water generally were small (1 to 10 micrograms per liter). The proposed maximum contaminant level of 20 micrograms per liter for uranium was exceeded in about 13 percent of the samples. The secondary maximum contaminant level of 300 micrograms per liter for iron was exceeded in about 17 percent of the samples and of 50 micrograms per liter for manganese was exceeded in about 83 percent of the samples. Samples from about 23 percent of the wells exceeded the maximum contaminant level of 15 picocuries per liter for gross alpha activity. One or more pesticides were detected in water from 12 of 30 wells sampled. The pesticides or pesticide metabolites diazinon, metolachlor, napropamide, p,p'-DDE, and prometon were detected in one or more samples. Metolachlor and prometon were the most commonly detected pesticides. Health advisories for the pesticides detected in shallow ground water (no maximum contaminant levels have been established for the pesticides detected) are 10 to 300 times larger than the concentrations detected. Infiltration, evaporation, and transpiration of irrigation water are important factors affecting the concentrations of common constituents in shallow ground water in the Rincon Valley. Dissolution and precipitation of minerals and mixing of shallow ground water and inflow of ground water from adjacent areas also affect the composition of shallow ground water and water in the drains. Relatively large nitrite plus nitrate concentrations in several shallow ground-water samples indicate leaching of fertilizers in some areas of th
NASA Astrophysics Data System (ADS)
Baran, Nicole; Petelet-Giraud, Emmanuelle; Saplairoles, Maritxu
2015-04-01
Groundwater quality is increasingly monitored in Europe where various levels of nitrate and pesticide and/or metabolite contamination have been demonstrated (Loos et al., 2010, Stuart et al., 2012). The Groundwater Daughter Directive (2006/118/EC) to Water Framework Directive (WFD) particularly requires measures to prevent or limit inputs of pollutants into groundwater and compliance with good chemical status criteria (based on EU standards of nitrate and pesticides). The WFD mentioned the need to protect groundwater but also to have a particular regard to its impact and interrelationship with associated surface waters and directly dependent terrestrial Ecosystems. The Ariège river basin (SW France - 538 km²) is an alluvial plain under high agricultural pressure leading to a contamination of the aquifer by several pesticides and metabolites (Amalric et al., 2013). The Crieu is an allochtone river, crossing the plain (~ 10 km length) before joining the Ariège River. The Crieu is often dry in its middle section suggesting water leakage from surface water towards groundwater. At the opposite, the permanent flow observed downstream suggests an input of groundwater into surface water. In May 2014, while the Crieu flow was continuous through the plain, 7 river samples were collected and analyzed for pesticides, major ions, strontium concentration and isotopes. In situ measurements of electric conductivity were also performed as well as flow gauging. Two groundwaters close to the river were also sampled. The flow gauging measurements show a decreasing river discharge in the central area of the Crieu River, suggesting surface water leakage towards groundwater. Nevertheless, the electric conductivity increases along the river flow as well as some pesticides and nitrates concentrations. This chemical evolution of the river water is thus inconsistent with a simple water infiltration and another source of dissolved solutes is required to explain the increased of concentration. Finally, downstream the quantified pesticides were different from those observed in the upper part of the Crieu but similar to those observed in groundwater. Sr isotopes together with major elements and Sr concentrations allow to identify 3 distinct end-members to explain the river quality evolution : 1) surface water, 2) groundwater and 3) sub-surface water. On this basis, we first demonstrate that the contribution of the different end-members to the river flow is highly variable from upstream to downstream. Secondly, we evidence water exchanges between the river and the groundwater compartment and vice-versa. The combination of the isotopic and geochemical approaches was essential to understand the complex relations and exchanges between surface and ground-waters occurring in few kilometers along the Crieu River. This understanding allows the comprehension of spatial variability of surface water quality. This is of primary importance when to help water managers to select relevant sampling points to be monitored in the framework of the WFD. Amalric L., et al. (2013). International Journal of Environmental Analytical Chemistry, 93: 1660-1675 Loos R. et al. (2010). Water Research, 44: 4115-4126 Stuart M. et al. (2012). Science of the Total Environment, 416: 1-21.
NASA Astrophysics Data System (ADS)
Lohse, K. A.; Sanderman, J.; Amundson, R. G.
2005-12-01
Patterns of precipitation and runoff in California are changing and likely to influence the structure and functioning of watersheds. Studies have demonstrated that hydrologic flushing during seasonal transitions in Mediterranean ecosystems can exert a strong control on nitrogen (N) export, yet few studies have examined the influence of different hydrological flow paths on rates and forms of nitrogen (N) losses. Here we illuminate the influence of variations in precipitation and hydrological pathways on the rate and form of N export along a toposequence of a well-characterized Mediterranean catchment in northern California. As a part of a larger study examining particulate and dissolved carbon loss, we analyzed seasonal patterns of dissolved organic nitrogen (DON), nitrate and ammonium concentrations in rainfall, throughfall, matrix and preferential flow, and stream samples over the course of one water year. We also analyzed seasonal soil N dynamics along this toposequence. During the transition to the winter rain season, but prior to any soil water displacement to the stream, DON and nitrate moved through near-surface soils as preferential flow. Once hillslope soils became saturated, saturated subsurface flow flushed nitrate from the hollow resulting in high stream nitrate/DON concentrations. Between storms, stream nitrate/DON concentrations were lower and appeared to reflect deep subsurface water flow chemistry. During the transition to the wet season, rates of soil nitrate production were high in the hollow relative to the hillslope soils. In the spring, these rates systematically declined as soil moisture decreased. Results from our study suggest seasonal fluctuations in soil moisture control soil N cycling and seasonal changes in the hydrological connection between hillslope soils and streams control the seasonal production and export of hydrologic N.
Tarrasón, D; Ojeda, G; Ortiz, O; Alcañiz, J M
2008-01-01
Anaerobically-digested sludge called fresh sludge (F), composted sludge (C) and thermally-drying sludge (T), all from the same batch, were applied to the surface of a calcareous Udic Calciustept with loamy texture. Dosage equivalent was 10 t ha(-1) of dry matter. The concentration of mineral nitrogen (ammonium and nitrate) in the soil was measured in order to estimate the effects of the post-treatments to which the different kinds of sewage sludge are subjected in relation to the availability of N in the surface layer of the soil. The most significant differences in NH(4)-N and NO(3)-N concentrations due to the transformation of the organic matter were observed during the first three weeks following soil amendment. Thermally-dried and composted sludge initially displayed higher concentrations of ammonium and nitrate in soil. Five months after the amendment, soil applied with fresh sludge showed the highest concentrations of NH(4)-N and NO(3)-N (6.1 and 36.6 mg kg(-1), respectively). It is clear that the processes of composting and thermal-drying influence the bioavailability of nitrogen from the different types of sewage sludge.
Nutrients in the Nation's Waters--Too Much of a Good Thing?
Mueller, David K.; Helsel, Dennis R.
1996-01-01
Historical data on nutrients (nitrogen and phosphorus) from about 12,000 ground-water and more than 22,000 stream samples have been compiled and related to possible sources. This existing information was collected by many agencies for a variety of purposes. Therefore, though it can be used to determine where concentrations differ, the exact percentages should not be taken as those for the Nation as a whole. Major findings include: (1) nutrient concentrations in water generally are related to land use in the area overlying ground-water aquifers or upstream from surface-water locations, (2) regional differences are related to differences in soil-drainage properties and agricultural practices, (3) nitrate concentrations in about 12 percent of domestic-supply wells in agricultural areas exceeded the U.S. Environmental Protection Agency's drinking-water standard (10 mg/L), and (4) nitrate concentrations in surface water rarely exceed the drinking-water standard. This information has helped identify locations across the Nation where ground water and streams are most likely to be vulnerable to nutrient contamination. Programs to manage and protect water resources can therefore be targeted to the most critical areas, providing the greatest protection for the least cost.
NASA Astrophysics Data System (ADS)
Chan, Hoi Ga; Frey, Markus M.; King, Martin D.
2017-04-01
Nitrogen oxides (NOx = NO + NO2) emissions from nitrate (NO3-) photolysis in snow affect the oxidising capacity of the lower troposphere especially in remote regions of the high latitudes with low pollution levels. The porous structure of snowpack allows the exchange of gases with the atmosphere driven by physicochemical processes, and hence, snow can act as both source and sink of atmospheric chemical trace gases. Current models are limited by poor process understanding and often require tuning parameters. Here, two multi-phase physical models were developed from first principles constrained by observed atmospheric nitrate, HNO3, to describe the air-snow interaction of nitrate. Similar to most of the previous approaches, the first model assumes that below a threshold temperature, To, the air-snow grain interface is pure ice and above To, a disordered interface (DI) emerges assumed to be covering the entire grain surface. The second model assumes that Air-Ice interactions dominate over the entire temperature range below melting and that only above the eutectic temperature, liquid is present in the form of micropockets in grooves. The models are validated with available year-round observations of nitrate in snow and air at a cold site on the Antarctica Plateau (Dome C, 75°06'S, 123°33'E, 3233 m a.s.l.) and at a relatively warm site on the Antarctica coast (Halley, 75°35'S, 26°39'E, 35 m a.s.l). The first model agrees reasonably well with observations at Dome C (Cv(RMSE) = 1.34), but performs poorly at Halley (Cv(RMSE) = 89.28) while the second model reproduces with good agreement observations at both sites without any tuning (Cv(RMSE) = 0.84 at both sites). It is therefore suggested that air-snow interactions of nitrate in the winter are determined by non-equilibrium surface adsorption and co-condensation on ice coupled with solid-state diffusion inside the grain. In summer, however, the air-snow exchange of nitrate is mainly driven by solvation into liquid micropockets following Henry's law with contributions to total NO3- concentrations of 75% and 80% at Dome C and Halley respectively. It is also found that liquid volume of the snow grain and air-micropocket partitioning of HNO3 are sensitive to total solute concentration and pH. In conclusion, the second model can be used to predict nitrate concentration in surface snow over the entire range of environ- mental conditions typical for Antarctica and forms a basis for parameterisations in regional or global atmospheric chemistry models.
Hippe, D.J.; Wangsness, D.J.; Frick, E.A.; Garrett, J.W.
1994-01-01
This report presents preliminary water-quality information from three studies that are part of the National Water-Quality Assessment (NAWQA) Program in the Apalachicola-Chattahoochee-Flint (ACF) River basin and the adjacent Ocmulgee River basin. During the period July 3-7, 1994, heavy rainfall from tropical storm Alberto caused record flooding on the Ocmulgee and Flint Rivers and several of their tributaries. Much of the nitrogen load transported during the flooding was as organic nitrogen generally derived from organic detritus, rather than nitrate derived from other sources, such as fertilizer. More than half the mean annual loads of total phosphorus and organic nitrogen were trans- ported in the Flint and Ocmulgee Rivers during the flood. Fourteen herbicides, five insecticides, and one fungicide were detected in floodwaters of the Ocmulgee, Flint, and Apalachicola Rivers. In a second study, water samples were collected at nearly weekly intervals from March 1993 through April 1994 from one urban and two agricultural watersheds in the ACF River basin, and analyzed for 84 commonly used pesticides. More pesticides were detected and at generally higher concentrations in water from the urban watershed than the agricultural water- sheds, and a greater number of pesticides were persistent throughout much of the year in the urban watershed. Simazine exceeded U.S. Environmental Protection Agency (EPA) drinking-water standards in one of 57 samples from the urban watershed. In a third study, 38 wells were installed in surficial aquifers adjacent to and downgradient of farm fields within agricultural areas in the southern ACF River basin. Even though regional aquifers are generally used for irrigation and domestic- and public-water supplies, degradation of water quality in the surficial aquifers serves as an early warning of potential contamination of regional aquifers. Nitrate concentrations were less than 3 mg/L as N (indicating minimal effect of human activities) in water from about two-thirds of the wells. Water from the remaining wells had elevated nitrate con- centrations, probably the result of human activity. Nitrate concentrations in two of these wells exceeded EPA drinking-water standards. Water samples from eight wells had pesticide concentrations above method detection limits. With the exception of two samples for shallow ground-water wells and one surface-water sample from the urban watershed, concentrations of nitrate nitrogen and detected pesticides were below EPA standards and guidelines for drinking water. However, concentrations of the insecticides chlorpyrifos, carbaryl, and diazinon in the surface-water samples approached or exceeded guidelines for protection of aquatic life.
Antibacterial Effect of Silver Diamine Fluoride on Cariogenic Organisms.
Lou, Yali; Darvell, Brain W; Botelho, Michael G
2018-05-01
To screen the possible antimicrobial activity of a range of clinically used, silver-based compounds on cariogenic organisms: silver diamine fluoride (SDF), silver fluoride, and silver nitrate. Preliminary screening disk-diffusion susceptibility tests were conducted on Mueller-Hinton agar plates inoculated with Streptococcus mutans, Lactobacillus acidophilus, and Actinomyces naeslundii, organisms known to be cariogenic. In order to identify which component of the silver compounds was responsible for any antibacterial (AB) effect, and to provide controls, the following were also investigated at high and low concentrations: sodium fluoride, ammonium fluoride, ammonium chloride, sodium fluoride, sodium chloride, and sodium nitrate, as well as deionized water as control. A volume of 10 pL of a test solution was dispensed onto a paper disk resting on the inoculated agar surface, and the plate incubated anaerobically at 37°C for 48 hours. The zones of inhibition were then measured. Silver diamine fluoride, silver fluoride, silver nitrate, and ammonium fluoride had significant AB effect (p < 0.05) on all three test organisms, although ammonium fluoride had no effect at low concentration; the remaining other compounds had no effect. Silver ions appear to be the principal AB agent at both high and low concentration; fluoride ions only have an AB effect at high concentration, while ammonium, nitrate, chloride and sodium ions have none. The anticaries effect of topical silver solutions appears restricted to that of the silver ions. Silver compounds, such as SDF, silver fluoride, and silver nitrate have AB effect against cariogenic organisms and these may have clinical impact in arresting or preventing dental decay. Sodium fluoride did not have AB effect under the conditions tested.
Totomatix: a novel automatic set-up to control diurnal, diel and long-term plant nitrate nutrition
Adamowicz, Stéphane; Le Bot, Jacques; Huanosto Magaña, Ruth; Fabre, José
2012-01-01
Background Stand-alone nutritional set-ups are useful tools to grow plants at defined nutrient availabilities and to measure nutrient uptake rates continuously, in particular that for nitrate. Their use is essential when the measurements are meant to cover long time periods. These complex systems have, however, important drawbacks, including poor long-term reliability and low precision at high nitrate concentration. This explains why the information dealing with diel dynamics of nitrate uptake rate is scarce and concerns mainly young plants grown at low nitrate concentration. Scope The novel system detailed in this paper has been developed to allow versatile use in growth rooms, greenhouses or open fields at nitrate concentrations ranging from a few micro- to several millimoles per litres. The system controls, at set frequencies, the solution nitrate concentration, pH and volumes. Nitrate concentration is measured by spectral deconvolution of UV spectra. The main advantages of the set-up are its low maintenance (weekly basis), an ability to diagnose interference or erroneous analyses and high precision of nitrate concentration measurements (0·025 % at 3 mm). The paper details the precision of diurnal nitrate uptake rate measurements, which reveals sensitivity to solution volume at low nitrate concentration, whereas at high concentration, it is mostly sensitive to the precision of volume estimates. Conclusions This novel set-up allows us to measure and characterize the dynamics of plant nitrate nutrition at high temporal resolution (minutes to hours) over long-term experiments (up to 1 year). It is reliable and also offers a novel method to regulate up to seven N treatments by adjusting the daily uptake of test plants relative to controls, in variable environments such as open fields and glasshouses. PMID:21985796
Scales and Patterns of Nitrate Transport and Transformation in the Hyporheic Zone of a Lowland River
NASA Astrophysics Data System (ADS)
Naden, E.; Krause, S.; Tecklenburg, C.; Munz, M.
2009-04-01
The Hyporheic Zone (HZ) represents the spatially and temporally variable part of the streambed that is affected by the mixture of groundwater and surface water and often characterised by strong redox gradients and high turnover rates of redox reactive substances. The HZ has often been understood as a complex bioreactor with a high potential to affect groundwater-surface water exchange as well control the chemical signature of waters along the hyporheic passage. Currently, 73% of groundwater and 28% of UK rivers sampled exhibit either high nitrate levels or rising trends (Defra, 2008) Because of the high metabolic rates that have often be observed, the HZ is by many expected to potentially ameliorate groundwater nitrate fluxes and thus to reduce nitrate pollution and benefit freshwater ecosystems. The objective of this pilot study was to set up a monitoring program on a typical lowland river within glacio-fluvial deposits and well connected to the shallow groundwater aquifer. This study aims to derive a conceptual model of hyporheic exchange and nutrient metabolism in an agriculturally used lowland system including the development of upscaling strategies that allow for the assessment of hyporheic uptake or contribution on a subcatchment scale. The research area covers a 250 metre stream reach of the River Tern (Shropshire, UK), a lowland groundwater dependent surface water body at risk of failing to achieve ‘good water' status under the WFD, primarily due to diffuse agricultural pollution. In two horizontal arrays 42 multi piezometers have been installed in the river bed offering sampling from between three and eight sampling points ranging from 5 cm to 200 cm depth. These allow the sampling of streambed porewater from more than 150 locations. Additionally, ten shallow groundwater boreholes (up to 3m depth) have been installed within the riparian floodplain. From June to September 2008 head measurements were taken at the streambed piezometers, riparian groundwater boreholes and the river in order to determine the groundwater flowfield and exchange with the surface water. At the same time interval streambed pore water and riparian groundwater were sampled from piezometers and boreholes alongside surface water samples from the river. The samples were analysed for dissolved oxygen and major anion concentrations. Initial results confirm indicate that the water sources mixing in the HZ are statistically distinctive. In contrast to the many observed head water streams the exchange between groundwater and surface water is not just determined by gradually changing hydraulic conductivities of the sediment material but strongly controlled by the spatial pattern of a discontinuous impermeable regional peat layer located in 50 cm depth on average. The peat layer is separating the fluxes within the streambed into two (partially connected) flow systems, with semi-confined conditions underneath and pattern of surface water mixing above the peat. Areas where the peat layer is disrupted are characterised by strong connection of both flow systems. Dependent on flow paths and residence times redox conditions and nitrate concentrations are showing substantial changes along the hyporheic flow path. The spatial very heterogeneous patterns of nitrate concentrations in the streambed were found controlled by complex flow processes at multiple scales covering small scale hyporheic exchange in pools, riffles and sand bars as well as large scale pattern of groundwater - surface water connectivity and riparian influences.
Su, Chunming; Puls, Robert W
2004-05-01
Recent studies have shown that zerovalent iron (Fe0) may potentially be used as a chemical medium in permeable reactive barriers (PRBs) for groundwater nitrate remediation; however, the effects of commonly found organic and inorganic ligands in soil and sediments on nitrate reduction by Fe0 have not been well understood. A 25.0 mL nitrate solution of 20.0 mg of N L(-1) (1.43 mM nitrate) was reacted with 1.00 g of Peerless Fe0 at 200 rpm on a rotational shaker at 23 degrees C for up to 120 h in the presence of each of the organic acids (3.0 mM formic, 1.5 mM oxalic, and 1.0 mM citric acids) and inorganic acids (3.0 mM HCl, 1.5 mM H2SO4, 3.0 mM H3BO3, and 1.5 mM H3PO4). These acids provided an initial dissociable H+ concentration of 3.0 mM available for nitrate reduction reactions under conditions of final pH < 9.3. Nitrate reduction rates (pseudo-first-order) increased in the order: H3PO4 < citric acid < H3BO3 < oxalic acid < H2SO4 < formic acid < HCl, ranging from 0.00278 to 0.0913 h(-1), corresponding to surface area normalized rates ranging from 0.126 to 4.15 h(-1) m(-2) mL. Correlation analysis showed a negative linear relationship between the nitrate reduction rates for the ligands and the conditional stability constants for the soluble complexes of the ligands with Fe2+ (R2 = 0.701) or Fe3+ (R2 = 0.918) ions. This sequence of reactivity corresponds also to surface adsorption and complexation of the three organic ligands to iron oxides, which increase in the order formate < oxalate < citrate. The results are also consistent with the sequence of strength of surface complexation of the inorganic ligands to iron oxides, which increases in the order: chloride < sulfate < borate < phosphate. The blockage of reactive sites on the surface of Fe0 and its corrosion products by specific adsorption of the inner-sphere complex forming ligands (oxalate, citrate, sulfate, borate, and phosphate) may be responsible for the decreased nitrate reduction by Fe0 relative to the chloride system.
Harclerode, C L; Gentry, T J; Aitkenhead-Peterson, J A
2013-06-01
Diffuse sources of surface water pathogens and nutrients can be difficult to isolate in larger river basins. This study used a geographical or nested approach to isolate diffuse sources of Escherichia coli and other water quality constituents in a 145.7-km(2) river basin in south central Texas, USA. Average numbers of E. coli ranged from 49 to 64,000 colony forming units (CFU) per 100 mL depending upon season and stream flow over the 1-year sampling period. Nitrate-N concentrations ranged from 48 to 14,041 μg L(-1) and orthophosphate-P from 27 to 2,721 μg L(-1). High concentrations of nitrate-N, dissolved organic nitrogen, and orthophosphate-P were observed downstream of waste water treatment plants but E. coli values were higher in a watershed draining an older part of the city. Total urban land use explained between 56 and 72 % of the variance in mean annual E. coli values (p < 0.05) in nine hydrologically disconnected creeks. Of the types of urban land use, commercial land use explained most of the variance in E. coli values in the fall and winter. Surface water sodium, alkalinity, and potassium concentrations in surface water were best described by the proportion of commercial land use in the watershed. Based on our nested approach in examining surface water, city officials are able to direct funding to specific areas of the basin in order to mitigate high surface water E. coli numbers and nutrient concentrations.
Furman, Olha S; Yu, Miao; Teel, Amy L; Watts, Richard J
2013-11-01
The water quality parameters nitrate-nitrogen, dissolved organic carbon, and suspended solids were correlated with photodegradation rates of the herbicides atrazine and 2,4-D in samples collected from four sites in the Columbia River Basin, Washington, USA. Surface water samples were collected in May, July, and October 2010 and analyzed for the water quality parameters. Photolysis rates for the two herbicides in the surface water samples were then evaluated under a xenon arc lamp. Photolysis rates of atrazine and 2,4-D were similar with rate constants averaging 0.025 h(-1) for atrazine and 0.039 h(-1) for 2,4-D. Based on multiple regression analysis, nitrate-nitrogen was the primary predictor of photolysis for both atrazine and 2,4-D, with dissolved organic carbon also a predictor for some sites. However, at sites where suspended solids concentrations were elevated, photolysis rates of the two herbicides were controlled by the suspended solids concentration. The results of this research provide a basis for evaluating and predicting herbicide photolysis rates in shallow surface waters. Copyright © 2013 Elsevier Ltd. All rights reserved.
High nitrate concentrations in some Midwest United States streams in 2013 after the 2012 drought
Van Metre, Peter C.; Frey, Jeffrey W.; Musgrove, MaryLynn; Nakagaki, Naomi; Qi, Sharon L.; Mahler, Barbara J.; Wieczorek, Michael; Button, Daniel T.
2016-01-01
Nitrogen sources in the Mississippi River basin have been linked to degradation of stream ecology and to Gulf of Mexico hypoxia. In 2013, the USGS and the USEPA characterized water quality stressors and ecological conditions in 100 wadeable streams across the midwestern United States. Wet conditions in 2013 followed a severe drought in 2012, a weather pattern associated with elevated nitrogen concentrations and loads in streams. Nitrate concentrations during the May to August 2013 sampling period ranged from <0.04 to 41.8 mg L−1 as N (mean, 5.31 mg L−1). Observed mean May to June nitrate concentrations at the 100 sites were compared with May to June concentrations predicted from a regression model developed using historical nitrate data. Observed concentrations for 17 sites, centered on Iowa and southern Minnesota, were outside the 95% confidence interval of the regression-predicted mean, indicating that they were anomalously high. The sites with a nitrate anomaly had significantly higher May to June nitrate concentrations than sites without an anomaly (means, 19.8 and 3.6 mg L−1, respectively) and had higher antecedent precipitation indices, a measure of the departure from normal precipitation, in 2012 and 2013. Correlations between nitrate concentrations and watershed characteristics and nitrogen and oxygen isotopes of nitrate indicated that fertilizer and manure used in crop production, principally corn, were the dominant sources of nitrate. The anomalously high nitrate levels in parts of the Midwest in 2013 coincide with reported higher-than-normal nitrate loads in the Mississippi River.
Groundwater Isolation Governs Chemistry and Microbial Community Structure along Hydrologic Flowpaths
Ben Maamar, Sarah; Aquilina, Luc; Quaiser, Achim; Pauwels, Hélène; Michon-Coudouel, Sophie; Vergnaud-Ayraud, Virginie; Labasque, Thierry; Roques, Clément; Abbott, Benjamin W.; Dufresne, Alexis
2015-01-01
This study deals with the effects of hydrodynamic functioning of hard-rock aquifers on microbial communities. In hard-rock aquifers, the heterogeneous hydrologic circulation strongly constrains groundwater residence time, hydrochemistry, and nutrient supply. Here, residence time and a wide range of environmental factors were used to test the influence of groundwater circulation on active microbial community composition, assessed by high throughput sequencing of 16S rRNA. Groundwater of different ages was sampled along hydrogeologic paths or loops, in three contrasting hard-rock aquifers in Brittany (France). Microbial community composition was driven by groundwater residence time and hydrogeologic loop position. In recent groundwater, in the upper section of the aquifers or in their recharge zone, surface water inputs caused high nitrate concentration and the predominance of putative denitrifiers. Although denitrification does not seem to fully decrease nitrate concentrations due to low dissolved organic carbon concentrations, nitrate input has a major effect on microbial communities. The occurrence of taxa possibly associated with the application of organic fertilizers was also noticed. In ancient isolated groundwater, an ecosystem based on Fe(II)/Fe(III) and S/SO4 redox cycling was observed down to several 100 of meters below the surface. In this depth section, microbial communities were dominated by iron oxidizing bacteria belonging to Gallionellaceae. The latter were associated to old groundwater with high Fe concentrations mixed to a small but not null percentage of recent groundwater inducing oxygen concentrations below 2.5 mg/L. These two types of microbial community were observed in the three sites, independently of site geology and aquifer geometry, indicating hydrogeologic circulation exercises a major control on microbial communities. PMID:26733990
Ammonium Nitrate Formation near the Colorado Front Range
NASA Astrophysics Data System (ADS)
Middlebrook, A. M.; Bahreini, R.; Brock, C. A.; Brown, S. S.; Cozic, J.; Frost, G. J.; Langford, A. O.; Lerner, B. M.; Matthew, B.; McKeen, S. A.; Neuman, J.; Nowak, J. B.; Peischl, J. W.; Quinn, P.; Ryerson, T. B.; Schultz, K.; Stark, H.; Trainer, M.; Wagner, N.; Williams, E. J.; Wollny, A. G.
2009-12-01
A significant air quality issue during wintertime temperature inversions along the Colorado Front Range urban corridor is the infamous “Brown Cloud” which is dominated by ammonium nitrate particles. Aerosol composition, size distribution, and gas phase measurements were obtained along with meteorology in Boulder-based ground studies during the winters of 2005 and 2009 and in an airborne survey over the Colorado Front Range urban corridor and northeastern Colorado on April 1, 2008. New in these campaigns was the fast time response data which showed that nitric acid was partitioned mainly into the aerosol phase as ammonium nitrate. During the survey flight, ammonium nitrate mass concentrations were highest on the west side of the urban corridor whereas nitrogen oxide concentrations were highest directly west and south of Denver. Nitric acid concentrations were highest south of the city. The calculated equilibrium gas phase ammonia was highest close to the ground directly around large feed lots near Brush and west of Greeley. These differences are consistent with what is known about the locations of emission sources, the predominant flow during the experiments, and the chemistry. Indeed, the ammonia emissions in the northern part of the region are sufficiently high to cause ammonium nitrate formation to be limited by nitric acid whereas in the southern part of the region ammonium nitrate formation was limited by low ammonia emissions. Although NOx (NO + NO2) emissions in the region are much larger than those for ammonia, NOx must be converted into nitric acid in order for ammonium nitrate to form. In the survey data, aerosol nitrate was correlated with the daytime nitric acid production rate but with higher slopes in the northern parts of the region. In the longer Boulder datasets, the calculated daytime production rate was slow and comparable to nighttime heterogeneous production via N2O5 hydrolysis. During periods of low aerosol surface area, daytime and nighttime production of nitric acid resulted in freshly formed ammonium nitrate particles. These results suggest that reductions in NOx emissions along the northern part of the region are likely to decrease the prevalence of the Brown Cloud.
Sensitivities of NOx transformation and the effects on surface ozone and nitrate
NASA Astrophysics Data System (ADS)
Lei, H.; Wang, J. X. L.
2014-02-01
As precursors to tropospheric ozone and nitrate, nitrogen oxide (NOx) in the present atmosphere and its transformation in response to emission and climate perturbations are studied by using the CAM-Chem model and air quality measurements from the National Emissions Inventory (NEI), Clean Air Status and Trends Network (CASTNET), and Environmental Protection Agency Air Quality System (EPA AQS). It is found that NOx transformations in present atmospheric conditions show different sensitivities over industrial and non-industrial regions. As a result, the surface ozone and nitrate formations can be divided into several regimes associated with the dominant emission types and relative levels of NOx and volatile organic compounds (VOC). Ozone production in industrial regions (the main NOx emission source areas) increases in warmer conditions and slightly decreases following an increase in NOx emissions due to NOx titration, which is opposite to the response in non-industrial regions. The ozone decrease following a temperature increase in non-industrial regions indicates that ozone production in regions that lack NOx emission sources may be sensitive to NOx transformation in remote source regions. The increase in NO2 from NOx titration over industrial regions results in an increase rate of total nitrate that remains higher than the increase rate of NOx emissions. The presented findings indicate that a change in the ozone concentration is more directly affected by changes in climate and precursor emissions, while a change in the nitrate concentration is affected by local ozone production types and their seasonal transfer. The sensitivity to temperature perturbations shows that a warmer climate accelerates the decomposition of odd nitrogen (NOy) during the night. As a result, the transformation rate of NOx to nitrate decreases. Examinations of the historical emissions and air quality records of a typical NOx-limited area, such as Atlanta and a VOC-limited area, such as Los Angeles further confirm the conclusions drawn from the modeling experiments.
Stream-Groundwater Interaction Buffers Seasonal Changes in Urban Stream Water Quality
NASA Astrophysics Data System (ADS)
Ledford, S. H.; Lautz, L. K.
2013-12-01
Urban streams in the northeastern United States have large road salt inputs during winter, increased nonpoint sources of inorganic nitrogen, and decreased short-term and permanent storage of nutrients. Meadowbrook Creek, a first order stream in Syracuse, New York, flows along a negative urbanization gradient, from a channelized and armored stream running through the middle of a roadway to a pool-riffle stream meandering through a broad, vegetated floodplain with a riparian aquifer. In this study we investigated how reconnection to groundwater and introduction of riparian vegetation impacted surface water chemistry by making bi-weekly longitudinal surveys of stream water chemistry in the creek from May 2012 until June 2013. Chloride concentrations in the upstream, urban reach of Meadowbrook Creek were strongly influenced by discharge of road salt to the creek during snow melt events in winter and by the chemistry of water draining an upstream retention basin in summer. Chloride concentrations ranged from 161.2 mg/L in August to 2172 mg/L in February. Chloride concentrations in the downstream, 'connected' reach had less temporal variation, ranging from 252.0 mg/L in August to 1049 mg/L in January, and were buffered by groundwater discharge, as the groundwater chloride concentrations during the sampling period ranged from 84.0 to 655.4 mg/L. Groundwater discharge resulted in higher chloride concentrations in summer and lower concentrations in winter in the connected reach relative to the urban reach, minimizing annual variation. In summer, there was little-to-no nitrate in the urban reach due to a combination of limited sources and high primary productivity. In contrast, during the summer, nitrate concentrations reached over 1 mg N/L in the connected reach due to the presence of riparian vegetation and lower nitrate uptake due to cooler temperatures and shading. During the winter, when temperatures fell below freezing, nitrate concentrations in the urban reach increased to around 0.58 mg N/L, but were still lower than the connected reach, which averaged 0.88 mg N/L. Groundwater discharge rates were measured longitudinally along the creek during a constant rate Rhodamine WT injection and also confirmed qualitatively by longitudinal changes in stream sulfate and δ18O. The buffering capability of groundwater discharge in urban systems has implications for managers trying to mitigate the effects of urbanization on surface water.
Determination of selected anions in water by ion chromatography
Fishman, Marvin J.; Pyen, Grace
1979-01-01
Ion chromatography is a rapid, sensitive, precise, and accurate method for the determination of major anions in rain water and surface waters. Simultaneous analyses of a single sample for bromide, chloride, fluoride, nitrate, nitrite, orthophosphate, and sulfate require approximately 20 minutes to obtain a chromatogram.Minimum detection limits range from 0.01 milligrams per liter for fluoride to 0.20 milligrams per liter for chloride and sulfate. Percent relative standard deviations were less than nine percent for all anions except nitrite in Standard Reference Water Samples. Only one reference sample contained nitrite and its concentration was near the minimum level of detection. Similar precision was found for chloride, nitrate, and sulfate at concentrations less than 5 milligrams per liter in rainfall samples. Precision for fluoride ranged from 12 to 22 percent, but is attributed to the low concentrations in these samples. The other anions were not detected.To determine accuracy of results, several samples were spiked with known concentrations of fluoride, chloride, nitrate, and sulfate; recoveries ranged from 96 to 103 percent. Known amounts of bromide and phosphate were added, separately, to several other waters, which contained bromide or phosphate. Recovery of added bromide and phosphate ranged from approximately 95 to 104 percent. No recovery data were obtained for nitrite.Chloride, nitrate, nitrite, orthophosphate, and sulfate, in several samples, were also determined independently by automated colorimetric procedures. An automated ion-selective electrode method was used to determine fluoride. Results are in agreement with results obtained by ion chromatography.
Structural modification in the formation of starch – silver nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begum, S. N. Suraiya; Ramasamy, Radha Perumal, E-mail: perumal.ramasamy@gmail.com; Aswal, V. K.
Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO{sub 3}) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO{sub 3}. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structuresmore » and with increasing the AgNO{sub 3} concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.« less
Evaluation of fly ash pellets for phosphorus removal in a laboratory scale denitrifying bioreactor.
Li, Shiyang; Cooke, Richard A; Huang, Xiangfeng; Christianson, Laura; Bhattarai, Rabin
2018-02-01
Nitrate and orthophosphate from agricultural activities contribute significantly to nutrient loading in surface water bodies around the world. This study evaluated the efficacy of woodchips and fly ash pellets in tandem to remove nitrate and orthophosphate from simulated agricultural runoff in flow-through tests. The fly ash pellets had previously been developed specifically for orthophosphate removal for this type of application, and the sorption bench testing showed a good promise for flow-through testing. The lab-scale horizontal-flow bioreactor used in this study consisted of an upstream column filled with woodchips followed by a downstream column filled with fly ash pellets (3 and 1 m lengths, respectively; both 0.15 m diameter). Using influent concentrations of 12 mg/L nitrate and 5 mg/L orthophosphate, the woodchip bioreactor section was able to remove 49-85% of the nitrate concentration at three hydraulic retention times ranging from 0.67 to 4.0 h. The nitrate removal rate for woodchips ranged from 40 to 49 g N/m 3 /d. Higher hydraulic retention times (i.e., smaller flow rates) corresponded with greater nitrate load reduction. The fly ash pellets showed relatively stable removal efficiency of 68-75% across all retention times. Total orthophosphate adsorption by the pellets was 0.059-0.114 mg P/g which was far less than the saturated capacity (1.69 mg/g; based on previous work). The fly ash pellets also removed some nitrate and the woodchips also removed some orthophosphate, but these reductions were not significant. Overall, woodchip denitrification followed by fly ash pellet P-sorption can be an effective treatment technology for nitrate and phosphate removal in subsurface drainage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of Nitrite/Nitrate concentrations on Corrosivity of Washed Precipitate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, J.W.
2001-03-28
Cyclic polarization scans were performed using A-537 carbon steel in simulated washed precipitate solutions of various nitrite and nitrate concentrations. The results of this study indicate that nitrate is an aggressive anion in washed precipitate. Furthermore, a quantitative linear log-log relationship between the minimum effective nitrite concentration and the nitrate concentration was established for washed precipitate with other ions at their average compositions.
Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems.
Schullehner, Jörg; Stayner, Leslie; Hansen, Birgitte
2017-03-09
Accurate assessments of exposure to nitrate in drinking water is a crucial part of epidemiological studies investigating long-term adverse human health effects. However, since drinking water nitrate measurements are usually collected for regulatory purposes, assumptions on (1) the intra-distribution system variability and (2) short-term (seasonal) concentration variability have to be made. We assess concentration variability in the distribution system of nitrate, nitrite, and ammonium, and seasonal variability in all Danish public waterworks from 2007 to 2016. Nitrate concentrations at the exit of the waterworks are highly correlated with nitrate concentrations within the distribution net or at the consumers' taps, while nitrite and ammonium concentrations are generally lower within the net compared with the exit of the waterworks due to nitrification. However, nitrification of nitrite and ammonium in the distribution systems only results in a relatively small increase in nitrate concentrations. No seasonal variation for nitrate, nitrite, or ammonium was observed. We conclude that nitrate measurements taken at the exit of the waterworks are suitable to calculate exposures for all consumers connected to that waterworks and that sampling frequencies in the national monitoring programme are sufficient to describe temporal variations in longitudinal studies.
Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems
Schullehner, Jörg; Stayner, Leslie; Hansen, Birgitte
2017-01-01
Accurate assessments of exposure to nitrate in drinking water is a crucial part of epidemiological studies investigating long-term adverse human health effects. However, since drinking water nitrate measurements are usually collected for regulatory purposes, assumptions on (1) the intra-distribution system variability and (2) short-term (seasonal) concentration variability have to be made. We assess concentration variability in the distribution system of nitrate, nitrite, and ammonium, and seasonal variability in all Danish public waterworks from 2007 to 2016. Nitrate concentrations at the exit of the waterworks are highly correlated with nitrate concentrations within the distribution net or at the consumers’ taps, while nitrite and ammonium concentrations are generally lower within the net compared with the exit of the waterworks due to nitrification. However, nitrification of nitrite and ammonium in the distribution systems only results in a relatively small increase in nitrate concentrations. No seasonal variation for nitrate, nitrite, or ammonium was observed. We conclude that nitrate measurements taken at the exit of the waterworks are suitable to calculate exposures for all consumers connected to that waterworks and that sampling frequencies in the national monitoring programme are sufficient to describe temporal variations in longitudinal studies. PMID:28282914
Skinner, Kenneth D.; Rupert, Michael G.
2012-01-01
As part of the U.S. Geological Survey’s National Water Quality Assessment (NAWQA) program nitrate transport in groundwater was modeled in the mid-Snake River region in south-central Idaho to project future concentrations of nitrate. Model simulation results indicated that nitrate concentrations would continue to increase over time, eventually exceeding the U.S. Environmental Protection Agency maximum contaminant level for drinking water of 10 milligrams per liter in some areas. A subregional groundwater model simulated the change of nitrate concentrations in groundwater over time in response to three nitrogen input scenarios: (1) nitrogen input fixed at 2008 levels; (2) nitrogen input increased from 2008 to 2028 using the same rate of increase as the average rate of increase during the previous 10 years (1998 through 2008); after 2028, nitrogen input is fixed at 2028 levels; and (3) nitrogen input related to agriculture completely halted, with only nitrogen input from precipitation remaining. Scenarios 1 and 2 project that nitrate concentrations in groundwater continue to increase from 10 to 50 years beyond the year nitrogen input is fixed, depending on the location in the model area. Projected nitrate concentrations in groundwater increase by as much as 2–4 milligrams per liter in many areas, with nitrate concentrations in some areas reaching 10 milligrams per liter. Scenario 3, although unrealistic, estimates how long (20–50 years) it would take nitrate in groundwater to return to background concentrations—the “flushing time” of the system. The amount of nitrate concentration increase cannot be explained solely by differences in nitrogen input; in fact, some areas with the highest amount of nitrogen input have the lowest increase in nitrate concentration. The geometry of the aquifer and the pattern of regional groundwater flow through the aquifer greatly influence nitrate concentrations. The aquifer thins toward discharge areas along the Snake River which forces upward convergence of good-quality regional groundwater that mixes with the nitrate-laden groundwater in the uppermost parts of the aquifer, which results in lowered nitrate concentrations. A new method of inputting nitrogen to the subregional groundwater model was used that prorates nitrogen input by the probability of detecting nitrate concentrations greater than 2 mg/L. The probability map is based on correlations with physical factors, and prorates an existing nitrogen input dataset providing an estimate of nitrogen flux to the water table that accounts for new factors such as soil properties. The effectiveness of this updated nitrogen input method was evaluated using the software UCODE_2005.
Bratkovich, A.; Dinnel, S.P.; Goolsby, D.A.
1994-01-01
Time histories of riverine water discharge, nitrate concentration, and nitrate, flux have been analyzed for the Mississippi and Atchafalaya rivers. Results indicate that water discharge variability is dominated by the annual cycle and shorter-time-scale episodic events presumably associated with snowmelt runoff and spring or summer rains. Interannual variability in water discharge is relatively small compared to the above. In contrast, nitrate concentration exhibits strongest variability at decadal time scales. The interannual variability is not monotonic but more complicated in structure. Weak covariability between water discharge and nitrate concentration leads to a relatively “noisy” nitrate flux signal. Nitrate flux variations exhibit a low-amplitude, long-term modulation of a dominant annual cycle. Predictor-hindcastor analyses indicate that skilled forecasts of nitrate concentration and nitrate flux fields are feasible. Water discharge was the most reliably hindcast (on seasonal to interannual time scales) due to the fundamental strength of the annual hydrologic cycle. However, the forecasting effort for this variable was less successful than the hindcasting effort, mostly due to a phase shift in the annual cycle during our relatively short test period (18 mo). Nitrate concentration was more skillfully predicted (seasonal to interannual time scales) due to the relative dominance of the decadal-scale portion of the signal. Nitrate flux was also skillfully forecast even though historical analyses seemed to indicate that it should be more difficult to predict than either water discharge or nitrate concentration.
NASA Astrophysics Data System (ADS)
Hamam, A.; Oukil, D.; Dib, A.; Hammache, H.; Makhloufi, L.; Saidani, B.
2015-08-01
The aim of this work is to synthesize polypyrrole (PPy) films on nonconducting cellulosic substrate and modified by copper oxide particles for use in the nitrate electroreduction process. Firstly, the chemical polymerization of polypyrrole onto cellulosic substrate is conducted by using FeCl3 as an oxidant and pyrrole as monomer. The thickness and topography of the different PPy films obtained were estimated using a profilometer apparatus. The electrochemical reactivity of the obtained electrodes was tested by voltamperometry technique and electrochemical impedance spectroscopy. Secondly, the modification of the PPy film surface by incorporation of copper oxide particles is conducted by applying a galvanostatic procedure from a CuCl2 solution. The SEM, EDX and XRD analysis showed the presence of CuO particles in the polymer films with dimensions less than 50 nm. From cyclic voltamperometry experiments, the composite activity for the nitrate electroreduction reaction was evaluated and the peak of nitrate reduction is found to vary linearly with initial nitrate concentration.
Nitrate transport and transformation processes in unsaturated porous media
Tindall, James A.; Petrusak, Robin L.; McMahon, Peter B.
1995-01-01
A series of experiments was conducted on two contrasting agricultural soils to observe the influence of soil texture, preferential flow, and plants on nitrate transport and denitrification under unsaturated conditions. Calcium nitrate fertilizer was applied to the surface of four large undisturbed soil cores (30 cm diameter by 40 cm height). Two of the cores were a structured clay obtained from central Missouri and two were an unstructured fine sand obtained from central Florida. The cores were irrigated daily and maintained at a matric potential of -20 kPa, representative of soil tension in the rooting zone of irrigated agricultural fields. Volumetric water content (θ), concentration of nitrate-N in the soil solution, and nitrous oxide flux at the surface, 10, 20, and 30 cm were monitored daily. Leaching loss of surface-applied N03− -N was significant in both the sand and the clay. In unplanted sand cores, almost all of the applied nitrate was leached below 30 cm within 10 days. Gaseous N loss owing to denitrification was no greater than 2% of the nitrate-N applied to the unplanted sand cores and, in general, was less than 1 %. Although leaching was somewhat retarded in the clay cores, about 60% of the applied nitrate-N was leached from the unplanted clay soil in 5–6 weeks. Under unsaturated conditions, the clay had little to no tendency to denitrify despite the greater moisture content of the clay and retarded leaching of nitrate in the clay. The planted sand cores had surprisingly large gaseous N loss owing to denitrification, as much as 17% of the nitrate-N. Results from both the clay and sand experiments show that the dynamics of nitrate transport and transformation in unsaturated soils are affected by small, localized variations in the soil moisture content profile, the gaseous diffusion coefficient of the soil, the rate at which the nitrate pulse passes through the soil, the solubility of N2O and N2 and the diffusion of the gasses through the soil solution, and development of a water content profile in the soil. Limited dentrification in the clay soil was due to a limited volume of soil available for infiltration after internal catchment and the development of denitrifying conditions resulting from the presence of an extensive macropore system.
NASA Astrophysics Data System (ADS)
Shah, V.; Jaegle, L.; Schroder, J. C.; Campuzano-Jost, P.; Jimenez, J. L.; Guo, H.; Sullivan, A.; Weber, R. J.; Green, J. R.; Fiddler, M.; Bililign, S.; Lopez-Hilfiker, F.; Lee, B. H.; Thornton, J. A.
2017-12-01
Submicron aerosol particles (PM1) remain a major air pollution concern in the urban areas of northeastern U.S. While SO2 and NOx emission controls have been effective at reducing summertime PM1 concentrations, this has not been the case for wintertime sulfate and nitrate concentrations, suggesting a nonlinear response during winter. During winter, organic aerosol (OA) is also an important contributor to PM1 mass despite low biogenic emissions, suggesting the presence of important urban sources. We use aircraft-based observations collected during the Wintertime INvestigation of Transport, Emissions and Reactivity (WINTER) campaign (Feb-March 2015), together with the GEOS-Chem chemical transport model, to investigate the sources and chemical processes governing wintertime PM1 over the northeastern U.S. The mean observed concentration of PM1 between the surface and 1 km was 4 μg m-3, about 30% of which was composed of sulfate, 20% nitrate, 10% ammonium, and 40% OA. The model reproduces the observed sulfate, nitrate and ammonium concentrations after updates to HNO3 production and loss, SO2 oxidation, and NH3 emissions. We find that 65% of the sulfate formation occurs in the aqueous phase, and 55% of nitrate formation through N2O5 hydrolysis, highlighting the importance of multiphase and heterogeneous processes during winter. Aqueous-phase sulfate production and the gas-particle partitioning of nitrate and ammonium are affected by atmospheric acidity, which in turn depends on the concentration of these species. We examine these couplings with GEOS-Chem, and assess the response of wintertime PM1 concentrations to further emission reductions based on the U.S. EPA projections for the year 2023. For OA, we find that the standard GEOS-Chem simulation underestimates the observed concentrations, but a simple parameterization developed from previous summer field campaigns is able to reproduce the observations and the contribution of primary and secondary OA. We find that residential wood combustion accounts for about 25% of the OA, while secondary production from urban anthropogenic VOCs accounts for the rest. We examine how OA concentrations may change as a result of changing emissions for the year 2023.
NASA Astrophysics Data System (ADS)
Zhu, Yan; Ye, Ming; Roeder, Eberhard; Hicks, Richard W.; Shi, Liangsheng; Yang, Jinzhong
2016-01-01
This paper presents a recently developed software, ArcGIS-based Nitrogen Load Estimation Toolkit (ArcNLET), for estimating nitrogen loading from septic systems to surface water bodies. The load estimation is important for managing nitrogen pollution, a world-wide challenge to water resources and environmental management. ArcNLET simulates coupled transport of ammonium and nitrate in both vadose zone and groundwater. This is a unique feature that cannot be found in other ArcGIS-based software for nitrogen modeling. ArcNLET is designed to be flexible for the following four simulating scenarios: (1) nitrate transport alone in groundwater; (2) ammonium and nitrate transport in groundwater; (3) ammonium and nitrate transport in vadose zone; and (4) ammonium and nitrate transport in both vadose zone and groundwater. With this flexibility, ArcNLET can be used as an efficient screening tool in a wide range of management projects related to nitrogen pollution. From the modeling perspective, this paper shows that in areas with high water table (e.g. river and lake shores), it may not be correct to assume a completed nitrification process that converts all ammonium to nitrate in the vadose zone, because observation data can indicate that substantial amount of ammonium enters groundwater. Therefore, in areas with high water table, simulating ammonium transport and estimating ammonium loading, in addition to nitrate transport and loading, are important for avoiding underestimation of nitrogen loading. This is demonstrated in the Eggleston Heights neighborhood in the City of Jacksonville, FL, USA, where monitoring well observations included a well with predominant ammonium concentrations. The ammonium loading given by the calibrated ArcNLET model can be 10-18% of the total nitrogen load, depending on various factors discussed in the paper.
Sulfate and nitrate in Asian dust particles observed in desert, coastal and marine air
NASA Astrophysics Data System (ADS)
Zhang, D.; Wu, F.; Junji, C.
2016-12-01
Sulfate and nitrate in dust particles are believed to be two key species which can largely alter the physical and chemical properties of the particles in the atmosphere, in particular under humid conditions. Their occurrence in the particles has usually been considered to be the consequence of particles' aging during their long-distance travel in the air although they are present in some crustal minerals. Our observations at two deserts in China during dust episodes revealed that there were soil-derived sulfate and background-like nitrate in atmospheric dust samples. Sulfate in dust samples was proportional to samples' mass and comprised at steady mass percentages in differently sized samples. In contrast, nitrate concentration was approximately stable and independent from dust loading. Our observations at inland and coastal areas of China during dust episodes revealed that sulfate and nitrate were hardly produced on the surface of dust particles that were originated from the deserts areas in northwestern China. This is because the dust particles were in the postfrontal air, where the temperature was low and the relative humidity was small due to the adiabatic properties of the air mass. There are a number studies reporting that sulfate and nitrate had been efficiently produced on mineral particles in inland areas of China. However, those mineral particles were more likely from the local areas rather than from the desert areas. Our observations in the coastal areas of Japan, which is located in the downstream areas of the Asian continent and surrounded by sea areas revealed that dust particles appearing there frequently contained sulfate and nitrate, indicating sulfate and nitrate had been efficiently produced on the surface of the particles when the particles traveled in the marine air between China and Japan.
Nutrient Concentrations and Stable Isotopes of Runoff from a Midwest Tile-Drained Corn Field
NASA Astrophysics Data System (ADS)
Wilkins, B. P.; Woo, D.; Li, J.; Michalski, G. M.; Kumar, P.; Conroy, J. L.; Keefer, D. A.; Keefer, L. L.; Hodson, T. O.
2017-12-01
Tile drains are a common crop drainage device used in Midwest agroecosystems. While efficient at drainage, the tiles provide a quick path for nutrient runoff, reducing the time available for microbes to use nutrients (e.g., NO3- and PO43-) and reduce export to riverine systems. Thus, understanding the effects of tile drains on nutrient runoff is critical to achieve nutrient reduction goals. Here we present isotopic and concentration data collected from tile drain runoff of a corn field located near Monticello, IL. Tile flow samples were measured for anion concentrations and stable isotopes of H2O and NO3-, while precipitation was measured for dual isotopes of H2O. Results demonstrate early tile flow from rain events have a low Cl- concentration (<20ppm) with water isotopic values reflecting precipitation, indicating preferential flow (>60% contribution) in the beginning of the hydrograph. As flow continues H2O isotopic values reflect pre-event water (ground and soil water), and Cl- concentrations increase representing a greater influence by matrix flow (60-90% contribution). Nitrate concentrations change dramatically, especially during the growing season, and do not follow a similar trend as the conservative Cl-, often decreasing days before, which represents missing nitrate in the upper surface portion of the soil. Nitrate isotopic data shows significant changes in 15N (4‰) and 18O (4‰) during individual hydrological events, representing that in addition to plant uptake and leaching, considerate NO3- is lost through denitrification. It is notable, that throughout the season d15N and d18O of nitrate change significantly representing that seasonally, substantial denitrification occurs.
The relationship between the nitrate concentration and hydrology of a small chalk spring; Israel
NASA Astrophysics Data System (ADS)
Burg, Avi; Heaton, Tim H. E.
1998-01-01
Discharge from a spring draining a small, perched, Cretaceous chalk aquifer in the Upper Galilee, Israel, was monitored over a period of two years. The water has elevated nitrate concentrations, with 15N/ 14N and chemical data suggesting that it is a mixture of low-nitrate and high-nitrate end-members; the latter derived from the sewage of a centuries-old village served by septic tanks. Hydrograph data allowed distinction between fissure flow during the period of winter rainfall, and matrix drainage during the dry summer months. These different flow types, however, did not have markedly different nitrate concentrations: a 50-fold increase in spring discharge due to fissure flow, compared with matrix drainage, was reflected in only a 35% decrease in nitrate concentrations. The relatively high nitrate concentrations in the fissure waters suggests that they have had close contact with, and are possibly displaced from the matrix. This should help to accelerate the decline in the spring's nitrate concentrations following the recent completion of the village's central sewage drainage system.
Katz, Brian G.; Böhlke, J.K.
2000-01-01
In an area of mixed agricultural land use in Suwannee and Lafayette Counties of northern Florida, water samples were collected monthly from 14 wells tapping the Upper Floridan aquifer during July 1998 through June 1999 to assess hydrologic and land-use factors affecting the variability in nitrate concentrations in ground water. Unusually high amounts of rainfall in September and October 1998 (43.5 centimeters total for both months) resulted in an increase in water levels in all wells in October 1998. This was followed by unusually low amounts of rainfall during November 1998 through May 1999, when rainfall was 40.7 centimeters below 30-year mean monthly values. The presence of karst features (sinkholes, springs, solution conduits) and the highly permeable sands that overlie the Upper Floridan aquifer provide for rapid movement of water containing elevated nitrate concentrations to the aquifer. Nitrate was the dominant form of nitrogen in ground water collected at all sites and nitrate concentrations ranged from less than 0.02 to 22 milligrams per liter (mg/L), as nitrogen. Water samples from most wells showed substantial monthly or seasonal fluctuations in nitrate concentrations. Generally, water samples from wells with nitrate concentrations higher than 10 mg/L showed the greatest amount of monthly fluctuation. For example, water samples from six of eight wells had monthly nitrate concentrations that varied by at least 5 mg/L during the study period. Water from most wells with lower nitrate concentrations (less than 6 mg/L) also showed large monthly fluctuations. For instance, nitrate concentrations in water from four sites showed monthly variations of more than 50 percent. Large fluctuations in nitrate concentrations likely result from seasonal agricultural practices (fertilizer application and animal waste spreading) at a particular site. For example, an increase in nitrate concentrations observed in water samples from seven sites in February or March 1999 most likely results from application of synthetic fertilizers during the late winter months. Lower nitrate concentrations were detected in water samples from five of eight wells sampled during high-flow conditions for the Suwannee River in March 1998 compared to low-flow conditions in November 1998. Evidence for reduction of nitrate due to denitrification reactions was observed at one site (AC-1), as indicated by elevated concentrations of nitrogen gas and a corresponding increase in nitrogen isotope (d15N-NO3) values with a decrease in nitrate concentrations. Denitrification is unlikely at other sites based on the presence of dissolved oxygen concentrations greater than 2 mg/L in ground water and no observed trend between nitrate concentrations and values d15N-NO3 values. Nitrate was the dominant nitrogen species in most monthly rainfall samples; however, ammonium concentrations were similar or greater than nitrate during November and December 1998. During February through May 1999, both nitrate and ammonium concentrations were substantially higher in monthly rainfall samples collected at the study area compared to mean monthly concentrations at the Bradford Forest site located east of the study area, which is part of the National Atmospheric Deposition Program/National Trends Network. Also, higher nitrogen deposition rates in the study area compared to those at Bradford Forest could indicate that substantial amounts of ammonia are volatilized from fertilizers and animal wastes, released to the atmosphere, and incorporated as nitrate and ammonium in rainfall deposited in the middle Suwannee River Basin. Ground-water samples from most sites had d15N-NO3 values that indicated a mixture of inorganic and organic sources of nitrogen, which corresponded to multiple land uses where both synthetic fertilizers and manure are used on fields near these sites. Distinct d15N-NO3 signatures, however, were observed at some sites. For example, water samples from areas of row-crop farmin
Evaluating Secondary Inorganic Aerosols in Three Dimensions
NASA Technical Reports Server (NTRS)
Mezuman, Keren; Bauer, Susanne E.; Tsigaridis, Kostas
2016-01-01
The spatial distribution of aerosols and their chemical composition dictates whether aerosols have a cooling or a warming effect on the climate system. Hence, properly modeling the three-dimensional distribution of aerosols is a crucial step for coherent climate simulations. Since surface measurement networks only give 2-D data, and most satellites supply integrated column information, it is thus important to integrate aircraft measurements in climate model evaluations. In this study, the vertical distribution of secondary inorganic aerosol (i.e., sulfate, ammonium, and nitrate) is evaluated against a collection of 14 AMS flight campaigns and surface measurements from 2000 to 2010 in the USA and Europe. GISS ModelE2 is used with multiple aerosol microphysics (MATRIX, OMA) and thermodynamic (ISORROPIA II, EQSAM) configurations. Our results show that the MATRIX microphysical scheme improves the model performance for sulfate, but that there is a systematic underestimation of ammonium and nitrate over the USA and Europe in all model configurations. In terms of gaseous precursors, nitric acid concentrations are largely underestimated at the surface while overestimated in the higher levels of the model. Heterogeneous reactions on dust surfaces are an important sink for nitric acid, even high in the troposphere. At high altitudes, nitrate formation is calculated to be ammonia limited. The underestimation of ammonium and nitrate in polluted regions is most likely caused by a too simplified treatment of the NH3/NH4(+) partitioning which affects the HNO3/NO3(-) partitioning.
Huang, Tao; Ju, Xiaotang; Yang, Hao
2017-02-08
Nitrate leaching is one of the most important pathways of nitrogen (N) loss which leads to groundwater contamination or surface water eutrophication. Clarifying the rates, controlling factors and characteristics of nitrate leaching is the pre-requisite for proposing effective mitigation strategies. We investigated the effects of interactions among chemical N fertilizer, straw and manure applications on nitrogen leaching in an intensively managed calcareous Fluvo-aquic soil with winter wheat-summer maize cropping rotations on the North China Plain from October 2010 to September 2013 using ceramic suction cups and seepage water calculations based on a long-term field experiment. Annual nitrate leaching reached 38-60 kg N ha -1 from conventional N managements, but declined by 32-71% due to optimum N, compost manure or municipal waste treatments, respectively. Nitrate leaching concentrated in the summer maize season, and fewer leaching events with high amounts are the characteristics of nitrate leaching in this region. Overuse of chemical N fertilizers, high net mineralization and nitrification, together with predominance of rainfall in the summer season with light soil texture are the main controlling factors responsible for the high nitrate leaching loss in this soil-crop-climatic system.
NASA Astrophysics Data System (ADS)
Huang, Tao; Ju, Xiaotang; Yang, Hao
2017-02-01
Nitrate leaching is one of the most important pathways of nitrogen (N) loss which leads to groundwater contamination or surface water eutrophication. Clarifying the rates, controlling factors and characteristics of nitrate leaching is the pre-requisite for proposing effective mitigation strategies. We investigated the effects of interactions among chemical N fertilizer, straw and manure applications on nitrogen leaching in an intensively managed calcareous Fluvo-aquic soil with winter wheat-summer maize cropping rotations on the North China Plain from October 2010 to September 2013 using ceramic suction cups and seepage water calculations based on a long-term field experiment. Annual nitrate leaching reached 38-60 kg N ha-1 from conventional N managements, but declined by 32-71% due to optimum N, compost manure or municipal waste treatments, respectively. Nitrate leaching concentrated in the summer maize season, and fewer leaching events with high amounts are the characteristics of nitrate leaching in this region. Overuse of chemical N fertilizers, high net mineralization and nitrification, together with predominance of rainfall in the summer season with light soil texture are the main controlling factors responsible for the high nitrate leaching loss in this soil-crop-climatic system.
Influence of Nitrogen Source on NDMA Formation during Chlorination of Diuron
Chen, Wei-Hsiang; Young, Thomas M.
2009-01-01
N-Nitrosodimethylamine (NDMA) is formed during chlorination of water containing the herbicide diuron (N′-(3,4-dichlorophenyl)-N, N-dimethylurea) but formation is greatly enhanced in the presence of ammonia (chloramination). Groundwater impacted by agricultural runoff may contain diuron and relatively high total nitrogen concentrations; this study examines the impact of the nitrogen form (ammonium, nitrite or nitrate) on NDMA formation during chlorination of such waters. NDMA formation during chlorination of diuron increased in the order nitrite < nitrate < ammonium for a given chlorine, nitrogen, and diuron dose. Formation of dichloramine seemed to fully explain enhanced NDMA formation in the presence of ammonium. Nitrate unexpectedly enhanced nitrosation of diuron derivatives to form NDMA compared to the cases of no added nitrogen or nitrite addition. Nitrite addition is less effective because it consumes more chlorine and produces intermediates that react rapidly with diuron and its aromatic byproducts. Differences between surface and groundwater in nitrogen forms and concentrations and disinfection approaches, suggest strategies to reduce NDMA formation should vary with drinking water source. PMID:19457535
Influence of nitrogen source on NDMA formation during chlorination of diuron.
Chen, Wei-Hsiang; Young, Thomas M
2009-07-01
N-Nitrosodimethylamine (NDMA) is formed during chlorination of water containing the herbicide diuron (N'-(3,4-dichlorophenyl)-N,N-dimethylurea) but formation is greatly enhanced in the presence of ammonia (chloramination). Groundwater impacted by agricultural runoff may contain diuron and relatively high total nitrogen concentrations; this study examines the impact of the nitrogen form (ammonium, nitrite or nitrate) on NDMA formation during chlorination of such waters. NDMA formation during chlorination of diuron increased in the order nitrite
NASA Astrophysics Data System (ADS)
Eshleman, K. N.
2011-12-01
Water quality monitoring data from streams and rivers provide the "gold standard" by which progress toward achieving real reductions in nutrient loadings to Chesapeake Bay must ultimately be assessed. The most recent trend results posted at the Chesapeake Bay Program (CBP) website reveal that a substantial percentage of tributaries are now showing long-term declines in flow-adjusted concentrations of nutrients and sediments: 22 sites showed statistically significant (p < 0.05) downward trends (1985-2010) in flow-adjusted concentrations, two sites showed upward trends, and eight sites showed no trend. Based on the data, the CBP has drawn the following conclusion: "At many monitored locations, long-term trends indicate that management actions, such as pollution controls for improved wastewater treatment plants and practices to reduce nutrients on farms and suburban lands, have reduced concentrations of nitrogen." But could this conclusion be pre-mature? I recently undertook a comparable analysis of long-term nitrate-N trends for a different group of watersheds (all located in the Chesapeake Bay watershed with long data records); this group includes nine watersheds that are predominantly (i.e., >75%) forested, plus five other Potomac River subwatersheds added for comparison. Based on comparable data and analytical methods to those used by CBP partners and USGS, 13 of the 14 sites-including both Potomac River stations (Chain Bridge at Washington DC and Hancock, Maryland)-showed statistically significant decreasing linear trends in annual flow-weighted nitrate-N concentration. Only one station-the heavily agricultural Upper Monocacy River-did not show a statistically significant (p < 0.05) trend. Five of the predominantly-forested watersheds also showed statistically significant decreasing trends in annual nitrate-N loads, and none of the stations showed a trend in annual runoff presumably due to high inter-annual hydroclimatological variability. While the largest absolute changes in nitrate-N concentration corresponded to the least forested watersheds, the largest percentage changes in nitrate-N concentration were actually observed for those watersheds with the greatest percentages of forestland. This result suggests that the natural dynamics of forests may be playing a very important (and under-appreciated) role in improving water quality throughout the Bay watershed. A second interesting finding was that the statistically significant reductions in annual nitrate-N concentration at the Potomac River RIM station could be entirely explained by commensurate improvements at the upstream (Hancock) station; in fact, no trend in nitrate-N concentration associated with the eastern portion of the basin was found (after subtracting out the influence of the upstream portion). Additional research is needed to understand why nitrogen retention by forested lands may be increasing and thus helping restore water quality throughout the Chesapeake Bay watershed. The results also have obvious implications for meeting local water quality goals as well as the basin-wide goal of the Chesapeake Bay TMDL for nitrogen.
NASA Astrophysics Data System (ADS)
Katz, B. G.; Stevenson, J. A.
2002-12-01
Human health and ecological concerns have arisen regarding spring waters in Florida as a steady increase in nitrate concentrations has been observed during the past 30 years. The extensive aesthetic, cultural, and recreational value of these springs, which also supply water for human consumption and support critical ecological habitats, could be threatened by the presence of nitrate. As part of the response to these concerns by the State of Florida, several research studies have used various chemical and isotopic tracers to determine sources of nitrate contamination and age of ground water discharging from springs. Since 1997, 60 water samples have been collected from 44 springs and analyzed for isotopic (15N, 3H/3He, 18O, 2H, 13C) and other chemical tracers (CFCs, major ions, dissolved gases, SF6). Delta 15N values of nitrate ranged from 2.6 to 12.9 per mil (median = 5.8 per mil) and indicated that nitrate in most spring waters originated from synthetic fertilizers. CFCs, 3H/3He, and SF6, used to estimate the residence time of ground water discharging from springs, indicated that spring-water ages ranged from 5 to 39 years. Concentrations of these multiple transient tracers are consistent with a two-component hydrologic model with mixtures of varying proportions of young water (less than 8 years) from the shallow part of the aquifer system and older water (20-50 years) from the deeper part of the flow system. Given residence times of 20-40 years for ground water discharging from most springs, it could take decades for nitrate concentrations to decrease to near background levels, even with immediate reductions in nitrogen inputs to the land surface. These research results are being used by the State of Florida to inform elected officials, water-resource mangers, and planners that decisions about land use today will affect the quality of ground water in springs for decades.
Pan, Shuihong; Feng, Chuchu; Lin, Jialu; Cheng, Lidong; Wang, Chengjun; Zuo, Yuegang
2017-04-01
The spatial distribution and seasonal variations of methylmercury (MeHg) in Wen-Rui-Tang (WRT) River network were investigated by monitoring the MeHg concentrations in surface water samples collected from 30 sites across the river network over four seasons. Detection frequencies and concentrations of MeHg were generally higher in January, indicating that low sunlight irradiation, wind speed, and temperature conditions might enhance the persistence of MeHg in surface water. The MeHg levels varied with sampling locations, with the highest concentrations being observed in the industrial area especially around wastewater outfall, revealing that the mercury contamination in WRT River mainly comes from the industrial wastewater. Photodegradation of MeHg in WRT River surface water and the effects of natural constituents such as fulvic acid (FA), ferric ions (Fe 3+ ), nitrate (NO 3 - ), and dissolved oxygen on the MeHg photodegradation in aqueous solutions were studied under the simulated sunlight. The experimental data indicated that the indirect photodecomposition of MeHg occurred in WRT River surface water. Photodegradation of MeHg in FA solution was initiated by triplet 3 FA* or MeHg-FA* via electron transfer interaction under light irradiations. The Fe 3+ and NO 3 - can absorb light energy to produce ·OH and enhance the photochemical degradation of MeHg. The MeHg photodecompositions in FA, nitrate, and Fe 3+ solutions were markedly accelerated after removing the dissolved oxygen.
Genualdi, Susan; Jeong, Nahyun; DeJager, Lowri
2018-04-01
Nitrites and nitrates can be present in dairy products from both endogenous and exogenous sources. In the European Union (EU), 150 mg kg - 1 of nitrates are allowed to be added to the cheese milk during the manufacturing process. The CODEX General Standard for Food Additives has a maximum permitted level of 50 mg kg - 1 residue in cheese, while in the United States (U.S.) nitrates are unapproved for use as food additives in cheese. In order to be able to investigate imported cheeses for nitrates intentionally added as preservatives and the endogenous concentrations of nitrates and nitrites present in cheeses in the U.S. marketplace, a method was developed and validated using ion chromatography with conductivity detection. A market sampling of cheese samples purchased in the Washington DC metro area was performed. In 64 samples of cheese, concentrations ranged from below the method detection limit (MDL) to 26 mg kg - 1 for nitrates and no concentrations of nitrites were found in any of the cheese samples above the MDL of 0.1 mg kg - 1 . A majority of the samples (93%) had concentrations below 10 mg kg - 1 , which indicate the presence of endogenous nitrates. The samples with concentrations above 10 mg kg - 1 were mainly processed cheese spread, which can contain additional ingredients often of plant-based origin. These ingredients are likely the cause of the elevated nitrate concentrations. The analysis of 12 additional cheese samples that are liable to the intentional addition of nitrates, 9 of which were imported, indicated that in this limited study, concentrations of nitrate in the U.S.-produced cheeses did not differ from those in imported samples.
Chang, T Y; Chen, C C; Cheng, K M; Chin, C Y; Chen, Y H; Chen, X A; Sun, J R; Young, J J; Chiueh, T S
2017-07-01
We report a facile route for the green synthesis of trimethyl chitosan nitrate-capped silver nanoparticles (TMCN-AgNPs) with positive surface charge. In this synthesis, silver nitrate, glucose, and trimethyl chitosan nitrate (TMCN) were used as silver precursor, reducing agent, and stabilizer, respectively. The reaction was carried out in a stirred basic aqueous medium at room temperature without the use of energy-consuming or expensive equipment. We investigated the effects of the concentrations of NaOH, glucose, and TMCN on the particle size, zeta potential, and formation yield. The AgNPs were characterized by UV-vis spectroscopy, photon correlation spectroscopy, laser Doppler anemometry, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The catalytic activity of the TMCN-AgNPs was studied by the reduction of 4-nitrophenol using NaBH 4 as a reducing agent. We evaluated the antibacterial effects of the TMCN-AgNPs on Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus using the broth microdilution method. The results showed that both gram-positive and gram-negative bacteria were killed by the TMCN-AgNPs at very low concentration (<6.13μg/mL). Moreover, the TMCN-AgNPs also showed high antibacterial activity against clinically isolated multidrug-resistant A. baumannii strains, and the minimum inhibitory concentration (MIC) was ≤12.25μg/mL. Copyright © 2017 Elsevier B.V. All rights reserved.
NITRATE POLLUTION IN SHALLOW GROUNDWATER OF A HARD ROCK REGION IN SOUTH CENTRAL INDIA
NASA Astrophysics Data System (ADS)
Brindha, K.; Rajesh, R.; Murugan, R.; Elango, L.
2009-12-01
Groundwater forms a major source of drinking water in most parts of the world. Due to the lack of piped drinking water supply, the population in rural areas depend on the groundwater resources for domestic purposes. Hence, the quality of groundwater in such regions needs to be monitored regularly. Presence of high concentration of nitrate in groundwater used for drinking is a major problem in many countries as it causes health related problems. Most often infants are affected by the intake of high nitrate in drinking water and food. The present study was carried out with the objective of assessing the nitrate concentration in groundwater and determining the causes for nitrate in groundwater in parts of Nalgonda district in India which is located at a distance of about 135 km towards ESE direction from Hyderabad. Nitrate concentration in groundwater of this area was analysed by collecting groundwater samples from forty six representative wells. Samples were collected once in two months from March 2008 to March 2009. A total of 244 groundwater samples were collected during the study. Soil samples were collected from fifteen locations during May 2009 and the denitrifying bacteria were isolated from the soil using spread plate method. The nitrate concentration in groundwater samples were analysed in the laboratory using Metrohm 861 advanced compact ion chromatograph using appropriate standards. The highest concentration of nitrate recorded during the sampling period was 879.65mg/l and the lowest concentration was below detection limit. The maximum permissible limit of nitrate for drinking water as per Bureau of Indian Standards is 45mg/l. About 13% of the groundwater samples collected from this study area possessed nitrate concentration beyond this limit. The nitrate concentration was high in the southeastern part of the study area. This implies that the nitrate concentration in groundwater tends to increase along the flow direction. Application of fertilizers is one of the sources for nitrate in groundwater. The recharge of rainwater through the indiscriminately dumped animal wastes also adds to nitrate in groundwater. As the population of denitrifying microbes (Agrobacterium sp.) in the topsoil increased, the nitrate concentration in groundwater decreased. The wells in the investigated region have been demarcated into safe and unsafe wells for consumption of water with respect to nitrate. The quality of groundwater in this region must be improved by denitrifying the groundwater before using it for consumption. Reduced dependence on nitrogen-rich fertilizers can also lower the influx of nitrates to a large extent. As the dumping of animal waste is also a reason behind high nitrate in groundwater, it would be better to use them as a biofertilizer. Due to the detrimental biological effects of nitrate, treatment and prevention methods must be considered to protect groundwater aquifers from nitrate leaching. Moreover, it is also important to educate the local population about keeping their surroundings clean, alternate use of the animal waste (as fuel) and to follow hygienic sanitation practices.
NASA Astrophysics Data System (ADS)
Silva, S. R.; Kendall, C.; Young, M. B.; Stringfellow, W. T.; Borglin, S. E.; Kratzer, C. R.; Dahlgren, R. A.; Schmidt, C.; Rollog, M. E.
2007-12-01
Many competing demands have been placed on the San Joaquin River including deep water shipping, use as agricultural and drinking water, transport of agricultural and urban runoff, and recreation. These long-established demands limit the management options and increase the importance of understanding the river dynamics. The relationships among sources of water, nitrate, and algae in the San Joaquin River must be understood before management decisions can be made to optimize aquatic health. Isotopic analyses of water samples collected along the San Joaquin River in 2005-2007 have proven useful in assessing these relationships: sources of nitrate, the productivity of the San Joaquin River, and the relationship between nitrate and algae in the river. The San Joaquin River receives water locally from wetlands and agricultural return flow, and from three relatively large tributaries whose headwaters are in the Sierra Nevada. The lowest nitrate concentrations occur during periods of high flow when the proportion of water from the Sierra Nevada is relatively large, reflecting the effect of dilution from the big tributaries and indicating that a large fraction of the nitrate is of local origin. Nitrogen isotopes of nitrate in the San Joaquin River are relatively high (averaging about 12 per mil), suggesting a significant source from animal waste or sewage and/or the effects of denitrification. The d15N of nitrate varies inversely with concentration, indicating that these high isotopic values are also a local product. The d15N values of nitrate from most of the local tributaries is lower than that in the San Joaquin suggesting that nitrate from these tributaries does not account for a significant fraction of nitrate in the river. The source of the non-tributary nitrate must be either small unmeasured surface inputs or groundwater. To investigate whether groundwater might be a significant source of nitrate to the San Joaquin River, groundwater samples are being collected monthly from over 20 bank and in-stream wells. Preliminary data suggest that much of the groundwater nitrate has been variably denitrified thereby increasing its d15N values, but not by enough to account for the high d15N values in the river nitrate. The d15N of algae in the San Joaquin reflects the high values of the nitrate in the river indicating (1) that the San Joaquin is productive despite its relatively high opacity, (2) that the algae use the nitrate as a primary nutrient source, and (3) that the concentrations of algae in the San Joaquin are not principally dependent on algae from the tributaries being flushed into the river as has been suggested. The sources of nitrate to the San Joaquin River must be identified if algae production is to be controlled and hypoxic conditions in the downstream reaches eliminated.
Mondragón, Rosa; Juliá, J Enrique; Cabedo, Luis; Navarrete, Nuria
2018-05-14
Nanoparticles have been used in thermal applications to increase the specific heat of the molten salts used in Concentrated Solar Power plants for thermal energy storage. Although several mechanisms for abnormal enhancement have been proposed, they are still being investigated and more research is necessary. However, this nanoparticle-salt interaction can also be found in chemical applications in which nanoparticles have proved suitable to be used as an adsorbent for nitrate removal given their high specific surface, reactivity and ionic exchange capacity. In this work, the ionic exchange capacity mechanism for the nanoparticles functionalization phenomenon was evaluated. The ionic exchange capacity of silica and alumina nanoparticles dispersed in lithium, sodium and potassium nitrates was measured. Fourier-transform infrared spectroscopy tests confirmed the adsorption of nitrate ions on the nanoparticle surface. A relationship between the ionic exchange capacity of nanoparticles and the specific heat enhancement of doped molten salts was proposed for the first time.
Tannase production by Paecilomyces variotii.
Battestin, Vania; Macedo, Gabriela Alves
2007-07-01
Surface response methodology was applied to the optimization of the laboratory scale production of tannase using a lineage of Paecilomyces variotii. A preliminary study was conducted to evaluate the effects of variables, including temperature ( degrees C), residue (%) (coffee husk:wheat bran), tannic acid (%) and salt solutions (%) on the production of tannase during 3, 5 and 7 days of fermentation. Among these variables, temperature, residues and tannic acid had significant effects on tannase production. The variables were optimized using surface response methodology. The best conditions for tannase production were: temperature (29-34 degrees C); tannic acid (8.5-14%); % residue (coffee husk:wheat bran 50:50) and incubation time of 5 days. The supplementation of external nitrogen and carbon sources at 0.4%, 0.8% and 1.2% concentration on tannase production were studied in the optimized medium. Three different nitrogen sources included yeast extract, ammonia nitrate and sodium nitrate along with carbon source (starch) were studied. Only ammonia nitrate showed a significant effect on tannase production. After the optimization process, the tannase activity increased 8.6-fold.
Results from the Big Spring basin water quality monitoring and demonstration projects, Iowa, USA
Rowden, R.D.; Liu, H.; Libra, R.D.
2001-01-01
Agricultural practices, hydrology, and water quality of the 267-km2 Big Spring groundwater drainage basin in Clayton County, Iowa, have been monitored since 1981. Land use is agricultural; nitrate-nitrogen (-N) and herbicides are the resulting contaminants in groundwater and surface water. Ordovician Galena Group carbonate rocks comprise the main aquifer in the basin. Recharge to this karstic aquifer is by infiltration, augmented by sinkhole-captured runoff. Groundwater is discharged at Big Spring, where quantity and quality of the discharge are monitored. Monitoring has shown a threefold increase in groundwater nitrate-N concentrations from the 1960s to the early 1980s. The nitrate-N discharged from the basin typically is equivalent to over one-third of the nitrogen fertilizer applied, with larger losses during wetter years. Atrazine is present in groundwater all year; however, contaminant concentrations in the groundwater respond directly to recharge events, and unique chemical signatures of infiltration versus runoff recharge are detectable in the discharge from Big Spring. Education and demonstration efforts have reduced nitrogen fertilizer application rates by one-third since 1981. Relating declines in nitrate and pesticide concentrations to inputs of nitrogen fertilizer and pesticides at Big Spring is problematic. Annual recharge has varied five-fold during monitoring, overshadowing any water-quality improvements resulting from incrementally decreased inputs. ?? Springer-Verlag 2001.
Stern, Jennifer C.; Sutter, Brad; Freissinet, Caroline; Navarro-González, Rafael; McKay, Christopher P.; Archer, P. Douglas; Buch, Arnaud; Brunner, Anna E.; Coll, Patrice; Eigenbrode, Jennifer L.; Fairen, Alberto G.; Franz, Heather B.; Glavin, Daniel P.; Kashyap, Srishti; McAdam, Amy C.; Ming, Douglas W.; Steele, Andrew; Szopa, Cyril; Wray, James J.; Martín-Torres, F. Javier; Zorzano, Maria-Paz; Conrad, Pamela G.; Mahaffy, Paul R.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Grotzinger, John; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; - Torres, F. Javier Martín; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d’Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Vasavada, Ashwin R.; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.
2015-01-01
The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110–300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70–260 and 330–1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen. PMID:25831544
Stern, Jennifer C; Sutter, Brad; Freissinet, Caroline; Navarro-González, Rafael; McKay, Christopher P; Archer, P Douglas; Buch, Arnaud; Brunner, Anna E; Coll, Patrice; Eigenbrode, Jennifer L; Fairen, Alberto G; Franz, Heather B; Glavin, Daniel P; Kashyap, Srishti; McAdam, Amy C; Ming, Douglas W; Steele, Andrew; Szopa, Cyril; Wray, James J; Martín-Torres, F Javier; Zorzano, Maria-Paz; Conrad, Pamela G; Mahaffy, Paul R
2015-04-07
The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110-300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70-260 and 330-1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen.
Investigation of processes leading to nitrate enrichment in soils in the Kalahari Region, Botswana
NASA Astrophysics Data System (ADS)
Schwiede, M.; Duijnisveld, W. H. M.; Böttcher, J.
In Southern Africa elevated nitrate concentrations are observed in mostly uninhabited semi-arid areas. In the Kalahari of Botswana groundwater locally exhibits concentrations up to 600 mg/l. It is assumed, that nitrate found in the groundwater originates mainly from nitrogen input and transformations in the soils. Our investigations in the Kalahari between Serowe and Orapa show that cattle raising is an important source for enhanced nitrate concentrations in the soils (Arenosols). But also in termite mounds very high nitrate stocks were found, and under natural vegetation (acacia trees and shrubs) nitrate concentrations were mostly unexpectedly high. This nitrate enrichment in the soils poses a serious threat to the groundwater quality. However, calculated soil water age distributions in the unsaturated zone clearly show that today’s nitrate pollution of the groundwater below the investigation area could originate from natural sources, but cannot be caused by the current land use for cattle raising.
Geochemical controls on microbial nitrate-dependent U(IV) oxidation
Senko, John M.; Suflita, Joseph M.; Krumholz, Lee R.
2005-01-01
After reductive immobilization of uranium, the element may be oxidized and remobilized in the presence of nitrate by the activity of dissimilatory nitrate-reducing bacteria. We examined controls on microbially mediated nitrate-dependent U(IV) oxidation in landfill leachate-impacted subsurface sediments. Nitrate-dependent U(IV)-oxidizing bacteria were at least two orders of magnitude less numerous in these sediments than glucose- or Fe(II)-oxidizing nitrate-reducing bacteria and grew more slowly than the latter organisms, suggesting that U(IV) is ultimately oxidized by Fe(III) produced by nitrate-dependent Fe(II)-oxidizing bacteria or by oxidation of Fe(II) by nitrite that accumulates during organotrophic dissimilatory nitrate reduction. We examined the effect of nitrate and reductant concentration on nitrate-dependent U(IV) oxidation in sediment incubations and used the initial reductive capacity (RDC = [reducing equivalents] - [oxidizing equivalents]) of the incubations as a unified measurement of the nitrate or reductant concentration. When we lowered the RDC with progressively higher nitrate concentrations, we observed a corresponding increase in the extent of U(IV) oxidation, but did not observe this relationship between RDC and U(IV) oxidation rate, especially when RDC > 0, suggesting that nitrate concentration strongly controls the extent, but not the rate of nitrate-dependent U(IV) oxidation. On the other hand, when we raised the RDC in sediment incubations with progressively higher reductant (acetate, sulfide, soluble Fe(II), or FeS) concentrations, we observed progressively lower extents and rates of nitrate-dependent U(IV) oxidation. Acetate was a relatively poor inhibitor of nitrate-dependent U(IV) oxidation, while Fe(II) was the most effective inhibitor. Based on these results, we propose that it may be possible to predict the stability of U(IV) in a bioremediated aquifer based on the geochemical characteristics of that aquifer.
Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions
NASA Astrophysics Data System (ADS)
Scholz, Florian; Löscher, Carolin R.; Fiskal, Annika; Sommer, Stefan; Hensen, Christian; Lomnitz, Ulrike; Wuttig, Kathrin; Göttlicher, Jörg; Kossel, Elke; Steininger, Ralph; Canfield, Donald E.
2016-11-01
Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface. Even in the anoxic water of oxygen minimum zones, where iron solubility should be enhanced, most of the iron is rapidly re-precipitated. To constrain the mechanism(s) of iron removal in anoxic ocean regions we explored the sediment and water in the oxygen minimum zone off Peru. During our sampling campaign the water column featured two distinct redox boundaries separating oxic from nitrate-reducing (i.e., nitrogenous) water and nitrogenous from weakly sulfidic water. The sulfidic water mass in contact with the shelf sediment contained elevated iron concentrations >300 nM. At the boundary between sulfidic and nitrogenous conditions, iron concentrations dropped sharply to <20 nM coincident with a maximum in particulate iron concentration. Within the iron gradient, we found an increased expression of the key functional marker gene for nitrate reduction (narG). Part of this upregulation was related to the activity of known iron-oxidizing bacteria. Collectively, our data suggest that iron oxidation and removal is induced by nitrate-reducing microbes, either enzymatically through anaerobic iron oxidation or by providing nitrite for an abiotic reaction. Given the important role that iron plays in nitrogen fixation, photosynthesis and respiration, nitrate-dependent iron oxidation likely represents a key-link between the marine biogeochemical cycles of nitrogen, oxygen and carbon.
Effects of nutrient management on nitrate levels in ground water near Ephrata Pennsylvania
Hall, David W.
1992-01-01
Effects of the implementation of nutrient management practices on ground-water quality were studied at a 55-acre farm in Lancaster County, Pennsylvania, from 1985-90. After nutrient management practices were implemented at the site in October 1986, statistically significant decreases (Wilcoxon Mann-Whitney test) in median nitrate concentrations in ground-water samples occurred at four of the five wells monitored. The largest decreases in nitrate concentration occurred in samples collected at the wells that had the largest nitrate concentrations prior to nutrient management. The decreases in median nitrate concentrations in ground-water samples ranged from 8 to 32 percent of the median concentrations prior to nutrient management and corresponded to nitrogen application decreases of 39 to 67 percent in contributing areas that were defined upgradient of these wells. Changes in nitrogen applications to the contributing areas of five water wells were correlated (Spearman rank-sum test) with nitrate concentrations of the well water. Changes in ground-water nitrate concentrations lagged behind the changes in applied-nitrogen fertilizers (primarily manure) by approximately 4 to 19 months.
Ground-water movement and nitrate in ground water, East Erda area, Tooele County, Utah, 1997-2000
Susong, D.D.
2005-01-01
Nitrate was discovered in ground water in the east Erda area of Tooele County, Utah, in 1994. The U.S. Geological Survey, in cooperation with Tooele County, investigated the ground-water flow system and water quality in the eastern part of Tooele Valley to determine (1) the vertical and horizontal distribution of nitrate, (2) the direction of movement of the nitrate contamination, and (3) the source of the nitrate. The potentiometric surface of the upper part of the basin-fill aquifer indicates that the general direction of ground-water flow is to the northwest, the flow system is complex, and there is a ground-water mound probably associated with springs. The spatial distribution of nitrate reflects the flow system with the nitrate contamination split into a north and south part by the ground-water mound. The distribution of dissolved solids and sulfate in ground water varies spatially. Vertical profiles of nitrate in water from selected wells indicate that nitrate contamination generally is in the upper part of the saturated zone and in some wells has moved downward. Septic systems, mining and smelting, agriculture, and natural sources were considered to be possible sources of nitrate contamination in the east Erda area. Septic systems are not the source of nitrate because water from wells drilled upgradient of all septic systems in the area had elevated nitrate concentrations. Mining and smelting activity are a possible source of nitrate contamination but few data are available to link nitrate contamination with mining sites. Natural and agricultural sources of nitrate are present east of the Erda area but few data are available about these sources. The source(s) of nitrate in the east Erda area could not be clearly delineated in spite of considerable effort and expenditure of resources.
USDA-ARS?s Scientific Manuscript database
The nitrogen cycle is impacted by human activities, including those that increase the use of nitrogen in agricultural systems, and this impact can be seen in effects such as increased nitrate (NO3) levels in groundwater or surface water resources, increased concentration of nitrous oxide (N2O) in th...
Investigating nitrate dynamics in a fine-textured soil affected by feedlot effluents.
Veizaga, E A; Rodríguez, L; Ocampo, C J
2016-10-01
Feedlots concentrate large volumes of manure and effluents that contain high concentrations of nitrate, among other constituents. If not managed properly, pen surfaces run-off and lagoons overflows may spread those effluents to surrounding land, infiltrating into the soil. Soil nitrate mobilization and distribution are of great concern due to its potential migration towards groundwater resources. This work aimed at evaluating the migration of nitrate originated on feedlots effluents in a fine-textured soil under field conditions. Soil water constituents were measured during a three-year period at three distinct locations adjacent to feedlot retention lagoons representing different degrees of exposure to water flow and manure accumulation. A simple statistical analysis was undertaken to identify patterns of observed nitrate and chloride concentrations and electrical conductivity and their differences with depth. HYDRUS-1D was used to simulate water flow and solute transport of Cl - , NO 4 + N, NO 3 - N and electrical conductivity to complement field data interpretation. Results indicated that patterns of NO 3 - N concentrations were not only notoriously different from electrical conductivity and Cl - but also ranges and distribution with depth differed among locations. A combination of dilution, transport, reactions such as nitrification/denitrification and vegetation water and solute uptake took place at each plots denoting the complexity of soil-solution behavior under extreme polluting conditions. Simulations using the concept of single porosity-mobile/immobile water (SP-MIM) managed structural controls and correctly simulated - all species concentrations under field data constrains. The opposite was true for the other two locations experiencing near-saturation conditions, absence of vegetation and frequent manure accumulation and runoff from feedlot lagoons. Although the results are site specific, findings are relevant to advance the understanding of NO 3 - N dynamics resulting from FL operations under heavy soils. Copyright © 2016 Elsevier B.V. All rights reserved.
Rattray, G.; Sievering, H.
2001-01-01
Micrometeorological measurements and ambient air samples, analyzed for concentrations of NH3, HNO3, NH4+, and NO3-, were collected at an alpine tundra site on Niwot Ridge, Colorado. The measured concentrations were extremely low and ranged between 5 and 70ngNm-3. Dry deposition fluxes of these atmospheric species were calculated using the micrometeorological gradient method. The calculated mean flux for NH3 indicates a net deposition to the surface and indicates that NH3 contributed significantly to the total N deposition to the tundra during the August-September measurement period. Our pre-measurement estimate of the compensation point for NH3 in air above the tundra was 100-200ngNm-3; thus, a net emission of NH3 was expected given the low ambient concentrations of NH3 observed. Based on our results, however, the NH3 compensation point at this alpine tundra site appears to have been at or below about 20ngNm-3. Large deposition velocities (>2cms-1) were determined for nitrate and ammonium and may result from reactions with surface-derived aerosols. Copyright (C) 2001 Elsevier Science B.V.Micrometeorological measurements and ambient air samples, analyzed for concentrations of NH3, HNO3, NH4+, and NO3-, were collected at an alpine tundra site on Niwot Ridge, Colorado. The measured concentrations were extremely low and ranged between 5 and 70 ng N m-3. Dry deposition fluxes of these atmospheric species were calculated using the micrometeorological gradient method. The calculated mean flux for NH3 indicates a net deposition to the surface and indicates that NH3 contributed significantly to the total N deposition to the tundra during the August-September measurement period. Our pre-measurement estimate of the compensation point for NH3 in air above the tundra was 100-200 ng N m-3; thus, a net emission of NH3 was expected given the low ambient concentrations of NH3 observed. Based on our results, however, the NH3 compensation point at this alpine tundra site appears to have been at or below about 20 ng N m-3. Large deposition velocities (>2 cm s-1) were determined for nitrate and ammonium and may result from reactions with surface-derived aerosols.
NASA Astrophysics Data System (ADS)
Katz, B. G.; Bohlke, J.; Hornsby, D.
2001-05-01
Nitrate is readily transported from agricultural activities at the surface to the Upper Floridan aquifer in northern Florida due to karst features mantled by highly permeable sands and a high recharge rate (50 cm/yr). In Suwannee and Lafayette Counties, nitrate contamination of groundwater is widespread due to the 10-30 kg/ha nitrogen (N) applied annually for the past few decades as synthetic fertilizers (the dominant source of N). Water samples were collected from 12 springs during baseflow conditions (1997-99) and monthly from 14 wells (1998-99). Springwaters were analyzed for various chemical (N species, dissolved gases, CFCs) and isotopic tracers (15N, 3H/3He, 18O, D, 13C). Water from wells was analyzed monthly for N species, and during low-flow and high-flow conditions for 15N, 18O, D, and 13C. As a result of oxic conditions in the aquifer, nitrate was the dominant N species in water samples. Large monthly fluctuations of groundwater nitrate concentrations were observed at most wells. Relatively high nitrate concentrations in groundwater from 7 wells likely resulted from seasonal agricultural practices including fertilizer applications and manure spreading on cropland. Relatively low nitrate concentrations in groundwater from two wells during high-flow conditions were related to mixing with river water. Groundwater samples had N-isotope values (3.8-11.7 per mil) that indicated varying mixtures of inorganic and organic N sources, which corresponded in part to varying proportions of synthetic fertilizers and manure applied to fields. In springwaters from Suwannee County, nitrate trends and N-isotope data (2.7-6.2 per mil) were consistent with a peak in fertilizer N input in the late 1970's and a relatively high overall ratio of artificial fertilizer/manure. In contrast, springwater nitrate trends and N-isotope data (4.5-9.1 per mil) in Lafayette County were consistent with a more monotonic increase in fertilizer N input and relatively low overall ratio of artificial fertilizer/manure. Dampened nitrate trends in springwaters in both counties, relative to trends in estimated N inputs, likely were related to ages of groundwater discharging from springs that are on the order of decades (10-30 years), based on 3H/3He and CFC age-dating techniques.
Transport and fate of nitrate and pesticides: Hydrogeology and riparian zone processes
Puckett, L.J.; Hughes, W.B.
2005-01-01
There is continuing concern over potential impacts of widespread application of nutrients and pesticides on ground- and surface-water quality. Transport and fate of nitrate and pesticides were investigated in a shallow aquifer and adjacent stream, Cow Castle Creek, in Orangeburg County, South Carolina. Pesticide and pesticide degradate concentrations were detected in ground water with greatest frequency and largest concentrations directly beneath and downgradient from the corn (Zea mays L.) field where they were applied. In almost all samples in which they were detected, concentrations of pesticide degradates greatly exceeded those of parent compounds, and were still present in ground waters that were recharged during the previous 18 yr. The absence of both parent and degradate compounds in samples collected from deeper in the aquifer suggests that this persistence is limited or that the ground water had recharged before use of the pesticide. Concentrations of NO3- in ground water decreased with increasing depth and age, but denitrification was not a dominant controlling factor. Hydrologic and chemical data indicated that ground water discharges to the creek and chemical exchange takes place within the upper 0.7 m of the streambed. Ground water had its greatest influence on surface-water chemistry during low-flow periods, causing a decrease in concentrations of Cl-, NO3-, pesticides, and pesticide degradates. Conversely, shallow subsurface drainage dominates stream chemistry during high-flow periods, increasing stream concentrations of Cl-, NO3-, pesticides, and pesticide degradates. These results point out the importance of understanding the hydrogeologic setting when investigating transport and fate of contaminants in ground water and surface water. ?? ASA, CSSA, SSSA.
NASA Astrophysics Data System (ADS)
Xue, Jian; Griffith, Stephen M.; Yu, Xin; Lau, Alexis K. H.; Yu, Jian Zhen
2014-12-01
Liquid water content (LWC) is the amount of liquid water on aerosols. It contributes to visibility degradation, provides a surface for gas condensation, and acts as a medium for heterogeneous gas/particle reactions. In this study, 520 half-hourly measurements of ionic chemical composition in PM2.5 at a receptor site in Hong Kong are used to investigate the dependence of LWC on ionic chemical composition, particularly on the relative abundance of sulfate and nitrate. LWC was estimated using a thermodynamic model (AIM-III). Within this data set of PM2.5 ionic compositions, LWC was highly correlated with the multivariate combination of sulfate and nitrate concentrations and RH (R2 = 0.90). The empirical linear regression result indicates that LWC is more sensitive to nitrate mass than sulfate. During a nitrate episode, the highest LWC (80.6 ± 17.9 μg m-3) was observed and the level was 70% higher than that during a sulfate episode despite a similar ionic PM2.5 mass concentration. A series of sensitivity tests were conducted to study LWC change as a function of the relative nitrate and sulfate abundance, the trend of which is expected to shift to more nitrate in China as a result of SO2 reduction and increase in NOx emission. Starting from a base case that uses the average of measured PM2.5 ionic chemical composition (63% SO42-, 11% NO3-, 19% NH4+, and 7% other ions) and an ionic equivalence ratio, [NH4+]/(2[SO42-] + [NO3-]), set constant to 0.72, the results show LWC would increase by 204% at RH = 40% when 50% of the SO42- is replaced by NO3- mass concentration. This is largely due to inhibition of (NH4)3H(SO4)2 crystallization while PM2.5 ionic species persist in the aqueous phase. At RH = 90%, LWC would increase by 12% when 50% of the SO42- is replaced by NO3- mass concentration. The results of this study highlight the important implications to aerosol chemistry and visibility degradation associated with LWC as a result of a shift in PM2.5 ionic chemical composition to more nitrate in atmospheric environments as is expected in many Chinese cities.
Nitrate in the Mississippi River and its tributaries, 1980 to 2008: Are we making progress?
Sprague, Lori A.; Hirsch, Robert M.; Aulenbach, Brent T.
2011-01-01
Changes in nitrate concentration and flux between 1980 and 2008 at eight sites in the Mississippi River basin were determined using a new statistical method that accommodates evolving nitrate behavior over time and produces flow-normalized estimates of nitrate concentration and flux that are independent of random variations in streamflow. The results show that little consistent progress has been made in reducing riverine nitrate since 1980, and that flow-normalized concentration and flux are increasing in some areas. Flow-normalized nitrate concentration and flux increased between 9 and 76% at four sites on the Mississippi River and a tributary site on the Missouri River, but changed very little at tributary sites on the Ohio, Iowa, and Illinois Rivers. Increases in flow-normalized concentration and flux at the Mississippi River at Clinton and Missouri River at Hermann were more than three times larger than at any other site. The increases at these two sites contributed much of the 9% increase in flow-normalized nitrate flux leaving the Mississippi River basin. At most sites, concentrations increased more at low and moderate streamflows than at high streamflows, suggesting that increasing groundwater concentrations are having an effect on river concentrations.
Spruill, T.B.; Tesoriero, A.J.; Mew, H.E.; Farrell, K.M.; Harden, S.L.; Colosimo, A.B.; Kraemer, S.R.
2005-01-01
Chemical, geologic, hydrologic, and age-dating information collected between 1999 and 2002 were used to examine the transport of contaminants, primarily nitrogen, in ground water and the pathways to surface water in a coastal plain setting in North Carolina. Data were collected from more than 35 wells and 4 surface-water sampling sites located in a 0.59 square-mile basin to examine detailed hydrogeology and geochemical processes affecting nutrient fate and transport. Two additional surface-water sampling sites were located downstream from the primary study site to evaluate basin-scale effects. Chemical and flow data also were collected at an additional 10 sites in the Coastal Plain portion of the Neuse River basin located between Kinston and New Bern, North Carolina, to evaluate loads transported in the Neuse River and primary tributary basins. At the Lizzie Research Station study site in North Carolina, horizontal flow is induced by the presence of a confining unit at shallow depth. Age-dating, chemical, and piezometric data indicate that horizontal flow from the surficial aquifer is the dominant source of ground water to streamflow. Nitrogen applied on cultivated fields at the Lizzie Research Station is substantially reduced as it moves from recharge to discharge areas. Denitrification in deeper parts of the aquifer and in riparian zones is indicated by a characterization of redox conditions in the aquifer and by the presence of excess nitrogen gas. Direct ground-water discharge of nitrate to surface water during base-flow conditions is unlikely to be significant because of strongly reducing conditions that occur in the riparian zones of these streams. Nitrate loads from a drainage tile at the study site may account for much of the nitrate load in the receiving stream, indicating that a major source of nutrients from ground water to this stream is artificial drainage. During base-flow conditions when the streams are not flowing, it is hypothesized that the mineralization of organic matter on the streambed is the source of nitrate and(or) ammonium in the stream. Base flow is a small contributor to nitrogen loads, because both flows and inorganic nitrogen concentrations are low during summer months. Effects of a confined hog operation on ground-water quality also were evaluated. The use of sprayed swine wastes to fertilize crops at the Lizzie Research Station study site since 1995 resulted in increased concentrations of nitrate and other chemical constituents in ground water beneath spray fields when compared to ground water beneath fields treated with commercial fertilizer. The nitrate concentration in ground water from the spray field well increased by a factor of 3.5 after 4 years of spray applications. Nitrate concentrations ranged from 10 to 35 milligrams per liter, and one concentration as high as 56 milligrams per liter was observed in water from this well in spring 2002. This finding is in agreement with findings of other studies conducted in the Coastal Plain of North Carolina that nitrate concentrations were significantly higher in ground water from cultivated fields sprayed with swine wastes than from fields treated with commercial fertilizer. Loads and yields of nitrogen and phosphorus in 14 streams in the Neuse River basin were evaluated for calendar years 2000 and 2001. Data indicate that anthropogenic effects on nitrogen yields were greatest in the first-order stream studied (yields were greater than 2 tons per square mile [ton/mi2] and 1 ton/mi2 or less in second- and higher-order streams) in the Little Contentnea Creek subbasin. Nitrogen yields in streams in the Contentnea Creek subbasin ranged from 0.59 to 2 ton/mi2 with typical yields of approximately 1 ton/mi2. Contentnea Creek near Evansdale had the highest yield (2 ton/mi2), indicating that a major source of nitrogen is upstream from this station. Nitrogen yields were lower at Contentnea Creek at Hookerton in 2000 and 2001 compared to previous yi
Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, Wells; Lang, Megan W.; Sharifi, Amir
2018-01-01
Water quality problems in the Chesapeake Bay Watershed (CBW) are expected to be exacerbated by climate variability and change. However, climate impacts on agricultural lands and resultant nutrient loads into surface water resources are largely unknown. This study evaluated the impacts of climate variability and change on two adjacent watersheds in the Coastal Plain of the CBW, using the Soil and Water Assessment Tool (SWAT) model. We prepared six climate sensitivity scenarios to assess the individual impacts of variations in CO2concentration (590 and 850 ppm), precipitation increase (11 and 21 %), and temperature increase (2.9 and 5.0 °C), based on regional general circulation model (GCM) projections. Further, we considered the ensemble of five GCM projections (2085–2098) under the Representative Concentration Pathway (RCP) 8.5 scenario to evaluate simultaneous changes in CO2, precipitation, and temperature. Using SWAT model simulations from 2001 to 2014 as a baseline scenario, predicted hydrologic outputs (water and nitrate budgets) and crop growth were analyzed. Compared to the baseline scenario, a precipitation increase of 21 % and elevated CO2 concentration of 850 ppm significantly increased streamflow and nitrate loads by 50 and 52 %, respectively, while a temperature increase of 5.0 °C reduced streamflow and nitrate loads by 12 and 13 %, respectively. Crop biomass increased with elevated CO2 concentrations due to enhanced radiation- and water-use efficiency, while it decreased with precipitation and temperature increases. Over the GCM ensemble mean, annual streamflow and nitrate loads showed an increase of ∼ 70 % relative to the baseline scenario, due to elevated CO2 concentrations and precipitation increase. Different hydrological responses to climate change were observed from the two watersheds, due to contrasting land use and soil characteristics. The watershed with a larger percent of croplands demonstrated a greater increased rate of 5.2 kg N ha−1 in nitrate yield relative to the watershed with a lower percent of croplands as a result of increased export of nitrate derived from fertilizer. The watershed dominated by poorly drained soils showed increased nitrate removal due do enhanced denitrification compared to the watershed dominated by well-drained soils. Our findings suggest that increased implementation of conservation practices would be necessary for this region to mitigate increased nitrate loads associated with predicted changes in future climate.
NASA Astrophysics Data System (ADS)
Hinsby, Klaus; Markager, Stiig; Kronvang, Brian; Windolf, Jørgen; Sonnenborg, Torben; Sørensen, Lærke
2015-04-01
Nitrate, which typically makes up the major part (~>90%) of dissolved inorganic nitrogen in groundwater and surface water, is the most frequent pollutant responsible for European groundwater bodies failing to meet the good status objectives of the European Water Framework Directive generally when comparing groundwater monitoring data with the nitrate quality standard of the Groundwater Directive (50 mg/l = the WHO drinking water standard). Still, while more than 50 % of the European surface water bodies do not meet the objective of good ecological status "only" 25 % of groundwater bodies do not meet the objective of good chemical status according to the river basin management plans reported by the EU member states. However, based on a study on interactions between groundwater, streams and a Danish estuary we argue that nitrate threshold values for aerobic groundwater often need to be significantly below the nitrate quality standard to ensure good ecological status of associated surface water bodies, and hence that the chemical status of European groundwater is worse than indicated by the present assessments. Here we suggest a methodology for derivation of groundwater and stream threshold values for total nitrogen ("nitrate") in a coastal catchment based on assessment of maximum acceptable nitrogen loadings (thresholds) to the associated vulnerable estuary. The applied method use existing information on agricultural practices and point source emissions in the catchment, groundwater, stream quantity and quality monitoring data that all feed data to an integrated groundwater and surface water modelling tool enabling us to conduct an assessment of total nitrogen loads and threshold concentrations derived to ensure/restore good ecological status of the investigated estuary. For the catchment to the Horsens estuary in Denmark we estimate the stream and groundwater thresholds for total nitrogen to be about 13 and 27 mg/l (~ 12 and 25 mg/l of nitrate). The shown example of deriving nitrogen threshold concentrations is for groundwater and streams in a coastal catchment discharging to a vulnerable estuary in Denmark, but the principles may be applied to large river basins with sub-catchments in several countries such as e.g. the Danube or the Rhine. In this case the relevant countries need to collaborate on derivation of nitrogen thresholds based on e.g. maximum acceptable nitrogen loadings to the Black Sea / the North Sea, and finally agree on thresholds for different parts of the river basin. Phosphorus is another nutrient which frequently results in or contributes to the eutrophication of surface waters. The transport and retention processes of total phosphorus (TP) is more complex than for nitrate (or alternatively total N), and presently we are able to establish TP thresholds for streams but not for groundwater. Derivation of TP thresholds is covered in an accompanying paper by Kronvang et al.
Kabala, Cezary; Karczewska, Anna; Gałka, Bernard; Cuske, Mateusz; Sowiński, Józef
2017-07-01
The aims of the study were to analyse the concentration of nitrate and ammonium ions in soil solutions obtained using MacroRhizon miniaturized composite suction cups under field conditions and to determine potential nitrogen leaching from soil fertilized with three types of fertilizers (standard urea, slow-release urea, and ammonium nitrate) at the doses of 90 and 180 kg ha -1 , applied once or divided into two rates. During a 3-year growing experiment with sugar sorghum, the concentration of nitrate and ammonium ions in soil solutions was the highest with standard urea fertilization and the lowest in variants fertilized with slow-release urea for most of the months of the growing season. Higher concentrations of both nitrogen forms were noted at the fertilizer dose of 180 kg ha -1 . One-time fertilization, at both doses, resulted in higher nitrate concentrations in June and July, while dividing the dose into two rates resulted in higher nitrate concentrations between August and November. The highest potential for nitrate leaching during the growing season was in July. The tests confirmed that the miniaturized suction cups MacroRhizon are highly useful for routine monitoring the concentration of nitrate and ammonium ions in soil solutions under field conditions.
Kent, Robert; Landon, Matthew K.
2013-01-01
Concentrations and temporal changes in concentrations of nitrate and total dissolved solids (TDS) in groundwater of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins of the Upper Santa Ana Valley Groundwater Basin were evaluated to identify trends and factors that may be affecting trends. One hundred, thirty-one public-supply wells were selected for analysis based on the availability of data spanning at least 11 years between the late 1980s and the 2000s. Forty-one of the 131 wells (31%) had a significant (p < 0.10) increase in nitrate and 14 wells (11%) had a significant decrease in nitrate. For TDS, 46 wells (35%) had a significant increase and 8 wells (6%) had a significant decrease. Slopes for the observed significant trends ranged from − 0.44 to 0.91 mg/L/yr for nitrate (as N) and − 8 to 13 mg/L/yr for TDS. Increasing nitrate trends were associated with greater well depth, higher percentage of agricultural land use, and being closer to the distal end of the flow system. Decreasing nitrate trends were associated with the occurrence of volatile organic compounds (VOCs); VOC occurrence decreases with increasing depth. The relations of nitrate trends to depth, lateral position, and VOCs imply that increasing nitrate concentrations are associated with nitrate loading from historical agricultural land use and that more recent urban land use is generally associated with lower nitrate concentrations and greater VOC occurrence. Increasing TDS trends were associated with relatively greater current nitrate concentrations and relatively greater amounts of urban land. Decreasing TDS trends were associated with relatively greater amounts of natural land use. Trends in TDS concentrations were not related to depth, lateral position, or VOC occurrence, reflecting more complex factors affecting TDS than nitrate in the study area.
NASA Astrophysics Data System (ADS)
Kenjabaev, S.; Forkutsa, I.; Dukhovny, V.; Frede, H. G.
2012-04-01
Leaching of nitrate-N (NO3-) from irrigated agricultural land and water contamination have become a worldwide concern. This study was conducted to investigate amount of nitrate-N leached to groundwater and surface water from irrigated cotton, winter wheat and maize fields in the Fergana Valley (Uzbekistan). Therefore at two sites ("Akbarabad" and "Azizbek") equipped with closed horizontal drainage system during 2010-2011 vegetation seasons we monitored water flow, nutrient concentrations and salinity at surface and subsurface drains, at irrigation canals and groundwater. We also applied stable isotopes (δ2H and δ18O) method in order to investigate the source of drainage water runoff. Discussed are results of 2010. Farmers fertilized cotton fields with ammonium nitrate of 350-450 kg ha-1 in "Akbarabad" and 700 kg ha-1 in "Azizbek" sites. In winter wheat and maize fields (in "Akbarabad") about 500 kg ha-1 of ammonium nitrate were applied. Cotton fields were irrigated with 2700 m3 ha-1 ("Akbarabad") and 3500 m3 ha-1 ("Azizbek"). In winter wheat and maize fields applied irrigation water amounted to 3900 m3 ha-1 and 723 m3 ha-1, respectively. Frequent groundwater and subsurface drainage water sampling revealed that nitrate leaching occurred mostly during and right after the irrigation events. The estimated average nitrate-N concentration in subsurface drainage water in "Akbarabad" was slightly higher (9 mg l-1) than in "Azizbek" (8 mg l-1). During July-November (2010), in average, nitrate-N losses through subsurface drainage amounted to 24 kg ha-1 in "Akbarabad" and 18 kg ha-1 in "Azizbek". The salinity of drainage water at both sites was similar and varied between 2.3-2.7 dS m-1. Preliminary results of isotope signals of studied water (precipitation, drainage, irrigation and ground water) indicate that the source of drainage water runoff comes from the irrigation water, while the contribution of rainfall is negligible. It is planned to run simulations with DRAINMOD model for further investigation of water and N balances of the selected sites. Developed recommendations for farmers on optimum irrigation water amounts and N fertilization will allow reducing environmental risks in agricultural lands of the Fergana Valley.
Watanabe, Mirai; Miura, Shingo; Hasegawa, Shun; Koshikawa, Masami K; Takamatsu, Takejiro; Kohzu, Ayato; Imai, Akio; Hayashi, Seiji
2018-04-28
High concentrations of nitrate have been detected in streams flowing from nitrogen-saturated forests; however, the spatial variations of nitrate leaching within those forests and its causes remain poorly explored. The aim of this study is to evaluate the influences of catchment topography and coniferous coverage on stream nitrate concentrations in a nitrogen-saturated forest. We measured nitrate concentrations in the baseflow of headwater streams at 40 montane forest catchments on Mount Tsukuba in central Japan, at three-month intervals for 1 year, and investigated their relationship with catchment topography and with coniferous coverage. Although stream nitrate concentrations varied from 0.5 to 3.0 mgN L -1 , those in 31 catchments consistently exceeded 1 mgN L -1 , indicating that this forest had experienced nitrogen saturation. A classification and regression tree analysis with multiple environmental factors showed that the mean slope gradient and coniferous coverage were the best and second best, respectively, at explaining inter-catchment variance of stream nitrate concentrations. This analysis suggested that the catchments with steep topography and high coniferous coverage tend to have high nitrate concentrations. Moreover, in the three-year observation period for five adjacent catchments, the two catchments with relatively higher coniferous coverage consistently had higher stream nitrate concentrations. Thus, the spatial variations in stream nitrate concentrations were primarily regulated by catchment steepness and, to a lesser extent, coniferous coverage in this nitrogen-saturated forest. Our results suggest that a decrease in coniferous coverage could potentially contribute to a reduction in nitrate leaching from this nitrogen-saturated forest, and consequently reduce the risk of nitrogen overload for the downstream ecosystems. This information will allow land managers and researchers to develop improved management plans for this and similar forests in Japan and elsewhere. Copyright © 2018 Elsevier B.V. All rights reserved.
Sebestyen, Stephen D.; Shanley, James B.; Boyer, Elizabeth W.; Kendall, Carol; Doctor, Daniel H.
2014-01-01
Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L−1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate show direct and rapid effects on forest streams that may be widespread, although undocumented, throughout nitrogen-polluted temperate forests. In contrast to a week-long nitrate decline during peak autumn litterfall, base flow DON concentrations increased after leaf fall and remained high for 2 months. Dissolved organic nitrogen was hydrologically flushed to the stream from riparian soils during stormflow. In contrast to distinct seasonal changes in base flow nitrate and DON concentrations, ammonium concentrations were typically at or below the detection limit, similar to the rest of the year. Our findings reveal couplings among catchment flow paths, nutrient sources, and transformations that control seasonal extremes of stream nitrogen in forested landscapes.
Rupert, Michael G.
1994-01-01
Nutrient and organic compound data from the U.S. Geological Survey and the U.S. Environmental Protection Agency STORET data bases provided information for development of a preliminary conceptual model of spatial and temporal ground-water quality in the upper Snake River Basin. Nitrite plus nitrate (as nitrogen; hereafter referred to as nitrate) concentrations exceeded the Federal drinking-water regulation of 10 milligrams per liter in three areas in Idaho" the Idaho National Engineering Laboratory, the area north of Pocatello (Fort Hall area), and the area surrounding Burley. Water from many wells in the Twin Falls area also contained elevated (greater than two milligrams per liter) nitrate concentrations. Water from domestic wells contained the highest median nitrate concentrations; water from industrial and public supply wells contained the lowest. Nitrate concentrations decreased with increasing well depth, increasing depth to water (unsaturated thickness), and increasing depth below water table (saturated thickness). Kjeldahl nitrogen concentrations decreased with increasing well depth and depth below water table. The relation between kjeldahl nitrogen concentrations and depth to water was poor. Nitrate and total phosphorus concentrations in water from wells were correlated among three hydrogeomorphic regions in the upper Snake River Basin, Concentrations of nitrate were statistically higher in the eastern Snake River Plain and local aquifers than in the tributary valleys. There was no statistical difference in total phosphorus concentrations among the three hydrogeomorphic regions. Nitrate and total phosphorus concentrations were correlated with land-use classifications developed using the Geographic Information Retrieval and Analysis System. Concentrations of nitrate were statistically higher in area of agricultural land than in areas of rangeland. There was no statistical difference in concentrations between rangeland and urban land and between urban land and agricultural land. There was no statistical difference in total phosphorus concentrations among any of the land-use classifications. Nitrate and total phosphorus concentrations also were correlated with land-use classifications developed by the Idaho Department of Water Resources for the Idaho part of the upper Snake River Basin. Nitrate concentrations were statistically higher in areas of irrigated agriculture than in areas of dryland agriculture and rangeland. There was no statistical difference in total phosphorus concentrations among any of the Idaho Department of Water Resources land-use classifications. Data were sufficient to assess long-term trends of nitrate concentrations in water from only eight wells: four wells north of Burley and four wells northwest of Pocatello. The trend in nitrate concentrations in water from all wells in upward. The following organic compounds were detected in ground water in the upper Snake River Basin: cyanazine, 2,4-D DDT, dacthal, diazinon, dichloropropane, dieldrin, malathion, and metribuzin. Of 211 wells sampled for organic compounds, water from 17 contained detectable concentrations.
NASA Astrophysics Data System (ADS)
Haller, Andreas; Kammann, Claudia; Löhnertz, Otmar
2017-04-01
Due to the rising use of mineral N fertilizers and legume use in agriculture, the input of reactive N into the global N cycle has dramatically increased. Therefore new agricultural techniques that increase N use efficiency and reduce the loss of soil mineral N to surface and ground waters are urgently required. Pyrogenic carbon (biochar) produced from biomass may be used as a beneficial soil amendment to sequester carbon (C) in soils, increase soil fertility in the long term, and reduce environmental pollution such as nitrate leaching or N2O emissions. However, reduced nitrate leaching is not a constant finding when using biochar as a soil amendment and the mechanisms are poorly understood. To investigate if biochar is able to reduce nitrate pollution and its subsequent effects on soil and aquatic fauna, we conducted a series of experiments using standard ecotoxicological test methods: (1) the collembolan reproduction test (ISO 11267 (1999)), (2) the earthworm reproduction test (ISO 11268-2 (1998)), (3) the aquatic Daphnia acute test (ISO 6341 (1996)) and (4) a seedling emergence and growth test (ISO 11269-2 (2006)) also involving leaching events. For the tests grapewood biochar produced with a Kon-Tiki kiln (600-700°C) was used which had previously demonstrated nitrate capture; terrestrial tests were carried out with loamy sand standard soil 2.2 (LUFA-Speyer, Germany). The tests included the factors: (A) nitrate addition (using critical values for the test organisms) or no nitrate addition, (B) control (no biochar), pure biochar and organically-coated biochar. In the aquatic test (3), a nitrate amount which caused 50% of the Daphnia-immobilizing toxic nitrate concentration in leachates was applied to the soil or soil-biochar mixtures. Subsequently, soils were incubated overnight and leached on the next day, producing (in the control) the calculated nitrate concentrations. Daphnids were incubated for 48 hours. Test results without nitrate confirmed that soil-biochar leachates did not impact Daphnia mobility. However, in the nitrate-amended control, Daphnia mobility was reduced by 52% as expected, while mobility was only reduced by 28% (pure BC) and by 16% (coated BC), respectively; this coincided with reduced nitrate concentrations in the leachates. In the presence of both biochars without high nitrate levels, adult earthworm biomass (2) was not different from that of the control, while the reproductive success (number of juvenile) increased by +46% with the coated biochar. With high nitrate concentrations, the reproductive success was strongly reduced by 96.7% (adult earthworm biomass remained constant). With the pure and coated biochars, the reproductive success increased by +171% and +678% compared to the (strongly reduced) soil-only control, respectively. The same response patterns were found in the collembolan test (1). In all cases biochar effects were correlated to nitrate capture in biochar particles which was more pronounced in the organically coated biochar. In conclusion post-treated biochars may be used as a tool for reducing nitrate pollution. However, more research is clearly needed. Acknowledgement: CK and AH gratefully acknowledge financial support of DFG grant KA3442/1-1 and the "OptiChar4EcoVin" project funded by the Hessian Ministry for Higher Education, Research and the Arts.
Harden, Stephen L.; Spruill, Timothy B.
2004-01-01
A study was conducted from August 2000 to August 2001 to characterize the influence of fertilizer use from different nitrogen sources on the quality of drainage water from 11 subsurface tile drains and 7 surface field ditches in a North Carolina Coastal Plain watershed. Agricultural fields receiving commercial fertilizer (conventional sites), swine lagoon effluent (spray sites), and wastewater-treatment plant sludge (sludge site) in the Middle Swamp watershed were investigated. The ionic composition of drainage water in tile drains and ditches varied depending on fertilizer source type. The dominant ions identified in water samples from tile drains and ditches include calcium, magnesium, sodium, chloride, nitrate, and sulfate, with tile drains generally having lower pH, low or no bicarbonates, and higher nitrate and chloride concentrations. Based on fertilizer source type, median nitrate-nitrogen concentrations were significantly higher at spray sites (32.0 milligrams per liter for tiles and 8.2 milligrams per liter for ditches) relative to conventional sites (6.8 milligrams per liter for tiles and 2.7 milligrams per liter for ditches). The median instantaneous nitrate-nitrogen yields also were significantly higher at spray sites (420 grams of nitrogen per hectare per day for tile drains and 15.6 grams of nitrogen per hectare per day for ditches) relative to conventional sites (25 grams of nitrogen per hectare per day for tile drains and 8.1 grams of nitrogen per hectare per day for ditches). The tile drain site where sludge is applied had a median nitrate-nitrogen concentration of 10.5 milligrams per liter and a median instantaneous nitrate-nitrogen yield of 93 grams of nitrogen per hectare per day, which were intermediate to those of the conventional and spray tile drain sites. Results from this study indicate that nitrogen loadings and subsequent edge-of-field nitrate-nitrogen yields through tile drains and ditches were significantly higher at sites receiving applications of swine lagoon effluent compared to sites receiving commercial fertilizer.
De Waele, J; D'Haene, K; Salomez, J; Hofman, G; De Neve, S
2017-02-01
Nitrate (NO 3 - ) leaching from farmland remains the predominant source of nitrogen (N) loads to European ground- and surface water. As soil mineral N content at harvest is often high and may increase by mineralisation from crop residues and soil organic matter, it is critical to understand which post-harvest management measures can be taken to restrict the average NO 3 - concentration in ground- and surface waters below the norm of 50 mg l -1 . Nitrate leaching was simulated with the EU-rotate_N model on a silty and a sandy soil following the five main arable crops cultivated in Flanders: cut grassland, silage maize, potatoes, sugar beets and winter wheat, in scenarios of optimum fertilisation with and without post-harvest measures. We compared the average NO 3 - concentration in the leaching water at a depth of 90 cm in these scenarios after dividing it by a factor of 2.1 to include natural attenuation processes occurring during transport towards ground- and surface water. For cut grassland, the average attenuated NO 3 - concentration remained below the norm on both soils. In order to comply with the Nitrates Directive, post-harvest measures seemed to be necessary on sandy soils for the four other crops and on silty soils for silage maize and for potatoes. Successful measures appeared to be the early sowing of winter crops after harvesting winter wheat, the undersowing of grass in silage maize and the removal of sugar beet leaves. Potatoes remained a problematic crop as N uptake by winter crops was insufficient to prevent excessive NO 3 - leaching. For each crop, maximum levels of soil mineral N content at harvest were proposed, both with and without additional measures, which could be used in future nutrient legislation. The approach taken here could be upscaled from the field level to the subcatchment level to see how different crops could be arranged within a subcatchment to permit the cultivation of problem crops without adversely affecting the water quality in such a subcatchment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Antecedent flow conditions and nitrate concentrations in the Mississippi River basin
Murphy, Jennifer C.; Hirsch, Robert M.; Sprague, Lori A.
2014-01-01
The relationship between antecedent flow conditions and nitrate concentrations was explored at eight sites in the 2.9 million square kilometers (km2) Mississippi River basin, USA. Antecedent flow conditions were quantified as the ratio between the mean daily flow of the previous year and the mean daily flow from the period of record (Qratio), and the Qratio was statistically related to nitrate anomalies (the unexplained variability in nitrate concentration after filtering out season, long-term trend, and contemporaneous flow effects) at each site. Nitrate anomaly and Qratio were negatively related at three of the four major tributary sites and upstream in the Mississippi River, indicating that when mean daily streamflow during the previous year was lower than average, nitrate concentrations were higher than expected. The strength of these relationships increased when data were subdivided by contemporaneous flow conditions. Five of the eight sites had significant negative relationships (p ≤ 0.05) at high or moderately high contemporaneous flows, suggesting nitrate that accumulates in these basins during a drought is flushed during subsequent high flows. At half of the sites, when mean daily flow during the previous year was 50 percent lower than average, nitrate concentration can be from 9 to 27 percent higher than nitrate concentrations that follow a year with average mean daily flow. Conversely, nitrate concentration can be from 8 to 21 percent lower than expected when flow during the previous year was 50 percent higher than average. Previously documented for small, relatively homogenous basins, our results suggest that relationships between antecedent flows and nitrate concentrations are also observable at a regional scale. Relationships were not observed (using all contemporaneous flow data together) for basins larger than 1 million km2, suggesting that above this limit the overall size and diversity within these basins may necessitate the use of more complicated statistical approaches or that there may be no discernible basin-wide relationship with antecedent flow. The relationships between nitrate concentration and Qratio identified in this study serve as the basis for future studies that can better define specific hydrologic processes occurring during and after a drought (or high flow period) which influence nitrate concentration, such as the duration or magnitude of low flows, and the timing of low and high flows.
Oenema, Jouke; Burgers, Saskia; Verloop, Koos; Hooijboer, Arno; Boumans, Leo; ten Berge, Hein
2010-01-01
Nitrate leaching in intensive grassland- and silage maize-based dairy farming systems on sandy soil is a main environmental concern. Here, statistical relationships are presented between management practices and environmental conditions and nitrate concentration in shallow groundwater (0.8 m depth) at farm, field, and point scales in The Netherlands, based on data collected in a participatory approach over a 7-yr period at one experimental and eight pilot commercial dairy farms on sandy soil. Farm milk production ranged from 10 to 24 Mg ha(-1). Soil and hydrological characteristics were derived from surveys and weather conditions from meteorological stations. Statistical analyses were performed with multiple regression models. Mean nitrate concentration at farm scale decreased from 79 mg L(-1) in 1999 to 63 in 2006, with average nitrate concentration in groundwater decreasing under grassland but increasing under maize land over the monitoring period. The effects of management practices on nitrate concentration varied with spatial scale. At farm scale, nitrogen surplus, grazing intensity, and the relative areas of grassland and maize land significantly contributed to explaining the variance in nitrate concentration in groundwater. Mean nitrate concentration was negatively correlated to the concentration of dissolved organic carbon in the shallow groundwater. At field scale, management practices and soil, hydrological, and climatic conditions significantly contributed to explaining the variance in nitrate concentration in groundwater under grassland and maize land. We conclude that, on these intensive dairy farms, additional measures are needed to comply with the European Union water quality standard in groundwater of 50 mg nitrate L(-1). The most promising measures are omitting fertilization of catch crops and reducing fertilization levels of first-year maize in the rotation.
Flueck, Joelle Leonie; Bogdanova, Anna; Mettler, Samuel; Perret, Claudio
2016-04-01
Dietary nitrate has been reported to lower oxygen consumption in moderate- and severe-intensity exercise. To date, it is unproven that sodium nitrate (NaNO3(-); NIT) and nitrate-rich beetroot juice (BR) have the same effects on oxygen consumption, blood pressure, and plasma nitrate and nitrite concentrations or not. The aim of this study was to compare the effects of different dosages of NIT and BR on oxygen consumption in male athletes. Twelve healthy, well-trained men (median [minimum; maximum]; peak oxygen consumption: 59.4 mL·min(-1)·kg(-1) [40.5; 67.0]) performed 7 trials on different days, ingesting different nitrate dosages and placebo (PLC). Dosages were 3, 6, and 12 mmol nitrate as concentrated BR or NIT dissolved in plain water. Plasma nitrate and nitrite concentrations were measured before, 3 h after ingestion, and postexercise. Participants cycled for 5 min at moderate intensity and further 8 min at severe intensity. End-exercise oxygen consumption at moderate intensity was not significantly different between the 7 trials (p = 0.08). At severe-intensity exercise, end-exercise oxygen consumption was ~4% lower in the 6-mmol BR trial compared with the 6-mmol NIT (p = 0.003) trial as well as compared with PLC (p = 0.010). Plasma nitrite and nitrate concentrations were significantly increased after the ingestion of BR and NIT with the highest concentrations in the 12-mmol trials. Plasma nitrite concentration between NIT and BR did not significantly differ in the 6-mmol (p = 0.27) and in the 12-mmol (p = 0.75) trials. In conclusion, BR might reduce oxygen consumption to a greater extent compared with NIT.
NASA Astrophysics Data System (ADS)
Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus
2015-04-01
Over the past decades, stream sampling protocols for environmental tracers were often limited by logistical and technological constraints. Long-term sampling programs would typically rely on weekly sampling campaigns, while high-frequency sampling would remain restricted to a few days or hours at best. We stipulate that the currently predominant sampling protocols are too coarse to capture and understand the full amplitude of rainfall-runoff processes and its relation to water quality fluctuations. Weekly sampling protocols are not suited to get insights into the hydrological system during high flow conditions. Likewise, high frequency measurements of a few isolated events do not allow grasping inter-event variability in contributions and processes. Our working hypothesis is based on the potential of a new generation of field-deployable instruments for measuring environmental tracers at high temporal frequencies over an extended period. With this new generation of instruments we expect to gain new insights into rainfall-runoff dynamics, both at intra- and inter-event scales. Here, we present the results of one year of DOC and nitrate measurements with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH). The instrument measures the absorption spectrum from 220 to 720 nm in situ and at high frequencies and derives DOC and nitrate concentrations. The measurements were carried out at 15 minutes intervals in the Weierbach catchment (0.47 km2) in Luxemburg. This fully forested catchment is characterized by cambisol soils and fractured schist as underlying bedrock. The time series of DOC and nitrate give insights into the high frequency dynamics of stream water. Peaks in DOC concentrations are closely linked to discharge peaks that occur during or right after a rainfall event. Those first discharge peaks can be linked to fast near surface runoff processes and are responsible for a remarkable amount of DOC export. A special characterisation of the Weierbach catchment are the delayed second peaks a few days after the rainfall event. Nitrate concentrations are following this second peak. We assume that this delayed response is going back to subsurface or upper groundwater flows, with nitrate enriched water. On an inter-event scale during low flow / base flow conditions, we observe interesting diurnal patterns of both DOC and nitrate concentrations. Overall, the long-term high-frequency measurements of DOC and nitrate provide us the opportunity to separate different rainfall-runoff processes and link the amount of DOC and nitrate export to them to quantify the overall relevance of the different processes.
Mihailović, Dragutin T; Alapaty, Kiran; Sakradzija, Mirjana
2008-06-01
Asymmetrical convective non-local scheme (CON) with varying upward mixing rates is developed for simulation of vertical turbulent mixing in the convective boundary layer in air quality and chemical transport models. The upward mixing rate form the surface layer is parameterized using the sensible heat flux and the friction and convective velocities. Upward mixing rates varying with height are scaled with an amount of turbulent kinetic energy in layer, while the downward mixing rates are derived from mass conservation. This scheme provides a less rapid mass transport out of surface layer into other layers than other asymmetrical convective mixing schemes. In this paper, we studied the performance of a nonlocal convective mixing scheme with varying upward mixing in the atmospheric boundary layer and its impact on the concentration of pollutants calculated with chemical and air-quality models. This scheme was additionally compared versus a local eddy-diffusivity scheme (KSC). Simulated concentrations of NO(2) and the nitrate wet deposition by the CON scheme are closer to the observations when compared to those obtained from using the KSC scheme. Concentrations calculated with the CON scheme are in general higher and closer to the observations than those obtained by the KSC scheme (of the order of 15-20%). Nitrate wet deposition calculated with the CON scheme are in general higher and closer to the observations than those obtained by the KSC scheme. To examine the performance of the scheme, simulated and measured concentrations of a pollutant (NO(2)) and nitrate wet deposition was compared for the year 2002. The comparison was made for the whole domain used in simulations performed by the chemical European Monitoring and Evaluation Programme Unified model (version UNI-ACID, rv2.0) where schemes were incorporated.
Jonvik, Kristin L; Nyakayiru, Jean; Pinckaers, Philippe Jm; Senden, Joan Mg; van Loon, Luc Jc; Verdijk, Lex B
2016-05-01
Dietary nitrate is receiving increased attention due to its reported ergogenic and cardioprotective properties. The extent to which ingestion of various nitrate-rich vegetables increases postprandial plasma nitrate and nitrite concentrations and lowers blood pressure is currently unknown. We aimed to assess the impact of ingesting different nitrate-rich vegetables on subsequent plasma nitrate and nitrite concentrations and resting blood pressure in healthy normotensive individuals. With the use of a semirandomized crossover design, 11 men and 7 women [mean ± SEM age: 28 ± 1 y; mean ± SEM body mass index (BMI, in kg/m(2)): 23 ± 1; exercise: 1-10 h/wk] ingested 4 different beverages, each containing 800 mg (∼12.9 mmol) nitrate: sodium nitrate (NaNO3), concentrated beetroot juice, a rocket salad beverage, and a spinach beverage. Plasma nitrate and nitrite concentrations and blood pressure were determined before and up to 300 min after beverage ingestion. Data were analyzed using repeated-measures ANOVA. Plasma nitrate and nitrite concentrations increased after ingestion of all 4 beverages (P < 0.001). Peak plasma nitrate concentrations were similar for all treatments (all values presented as means ± SEMs: NaNO3: 583 ± 29 μmol/L; beetroot juice: 597 ± 23 μmol/L; rocket salad beverage: 584 ± 24 μmol/L; spinach beverage: 584 ± 23 μmol/L). Peak plasma nitrite concentrations were different between treatments (NaNO3: 580 ± 58 nmol/L; beetroot juice: 557 ± 57 nmol/L; rocket salad beverage: 643 ± 63 nmol/L; spinach beverage: 980 ± 160 nmol/L; P = 0.016). When compared with baseline, systolic blood pressure declined 150 min after ingestion of beetroot juice (from 118 ± 2 to 113 ± 2 mm Hg; P < 0.001) and rocket salad beverage (from 122 ± 3 to 116 ± 2 mm Hg; P = 0.007) and 300 min after ingestion of spinach beverage (from 118 ± 2 to 111 ± 3 mm Hg; P < 0.001), but did not change with NaNO3 Diastolic blood pressure declined 150 min after ingestion of all beverages (P < 0.05) and remained lower at 300 min after ingestion of rocket salad (P = 0.045) and spinach (P = 0.001) beverages. Ingestion of nitrate-rich beetroot juice, rocket salad beverage, and spinach beverage effectively increases plasma nitrate and nitrite concentrations and lowers blood pressure to a greater extent than sodium nitrate. These findings show that nitrate-rich vegetables can be used as dietary nitrate supplements. This trial was registered at clinicaltrials.gov as NCT02271633. © 2016 American Society for Nutrition.
Molybdenum Availability Is Key to Nitrate Removal in Contaminated Groundwater Environments
Thorgersen, Michael P.; Lancaster, W. Andrew; Vaccaro, Brian J.; Poole, Farris L.; Rocha, Andrea M.; Mehlhorn, Tonia; Pettenato, Angelica; Ray, Jayashree; Waters, R. Jordan; Melnyk, Ryan A.; Chakraborty, Romy; Deutschbauer, Adam M.; Arkin, Adam P.
2015-01-01
The concentrations of molybdenum (Mo) and 25 other metals were measured in groundwater samples from 80 wells on the Oak Ridge Reservation (ORR) (Oak Ridge, TN), many of which are contaminated with nitrate, as well as uranium and various other metals. The concentrations of nitrate and uranium were in the ranges of 0.1 μM to 230 mM and <0.2 nM to 580 μM, respectively. Almost all metals examined had significantly greater median concentrations in a subset of wells that were highly contaminated with uranium (≥126 nM). They included cadmium, manganese, and cobalt, which were 1,300- to 2,700-fold higher. A notable exception, however, was Mo, which had a lower median concentration in the uranium-contaminated wells. This is significant, because Mo is essential in the dissimilatory nitrate reduction branch of the global nitrogen cycle. It is required at the catalytic site of nitrate reductase, the enzyme that reduces nitrate to nitrite. Moreover, more than 85% of the groundwater samples contained less than 10 nM Mo, whereas concentrations of 10 to 100 nM Mo were required for efficient growth by nitrate reduction for two Pseudomonas strains isolated from ORR wells and by a model denitrifier, Pseudomonas stutzeri RCH2. Higher concentrations of Mo tended to inhibit the growth of these strains due to the accumulation of toxic concentrations of nitrite, and this effect was exacerbated at high nitrate concentrations. The relevance of these results to a Mo-based nitrate removal strategy and the potential community-driving role that Mo plays in contaminated environments are discussed. PMID:25979890
Are groundwater nitrate concentrations reaching a turning point in some chalk aquifers?
Smith, J T; Clarke, R T; Bowes, M J
2010-09-15
In past decades, there has been much scientific effort dedicated to the development of models for simulation and prediction of nitrate concentrations in groundwaters, but producing truly predictive models remains a major challenge. A time-series model, based on long-term variations in nitrate fertiliser applications and average rainfall, was calibrated against measured concentrations from five boreholes in the River Frome catchment of Southern England for the period spanning from the mid-1970s to 2003. The model was then used to "blind" predict nitrate concentrations for the period 2003-2008. To our knowledge, this represents the first "blind" test of a model for predicting nitrate concentrations in aquifers. It was found that relatively simple time-series models could explain and predict a significant proportion of the variation in nitrate concentrations in these groundwater abstraction points (R(2)=0.6-0.9 and mean absolute prediction errors 4.2-8.0%). The study highlighted some important limitations and uncertainties in this, and other modelling approaches, in particular regarding long-term nitrate fertiliser application data. In three of the five groundwater abstraction points (Hooke, Empool and Eagle Lodge), once seasonal variations were accounted for, there was a recent change in the generally upward historical trend in nitrate concentrations. This may be an early indication of a response to levelling-off (and declining) fertiliser application rates since the 1980s. There was no clear indication of trend change at the Forston and Winterbourne Abbas sites nor in the trend of nitrate concentration in the River Frome itself from 1965 to 2008. Copyright 2010 Elsevier B.V. All rights reserved.
Villareal, Tracy A; Pilskaln, Cynthia H; Montoya, Joseph P; Dennett, Mark
2014-01-01
In oceanic subtropical gyres, primary producers are numerically dominated by small (1-5 µm diameter) pro- and eukaryotic cells that primarily utilize recycled nutrients produced by rapid grazing turnover in a highly efficient microbial loop. Continuous losses of nitrogen (N) to depth by sinking, either as single cells, aggregates or fecal pellets, are balanced by both nitrate inputs at the base of the euphotic zone and N2-fixation. This input of new N to balance export losses (the biological pump) is a fundamental aspect of N cycling and central to understanding carbon fluxes in the ocean. In the Pacific Ocean, detailed N budgets at the time-series station HOT require upward transport of nitrate from the nutricline (80-100 m) into the surface layer (∼0-40 m) to balance productivity and export needs. However, concentration gradients are negligible and cannot support the fluxes. Physical processes can inject nitrate into the base of the euphotic zone, but the mechanisms for transporting this nitrate into the surface layer across many 10s of m in highly stratified systems are unknown. In these seas, vertical migration by the very largest (10(2)-10(3) µm diameter) phytoplankton is common as a survival strategy to obtain N from sub-euphotic zone depths. This vertical migration is driven by buoyancy changes rather than by flagellated movement and can provide upward N transport as nitrate (mM concentrations) in the cells. However, the contribution of vertical migration to nitrate transport has been difficult to quantify over the required basin scales. In this study, we use towed optical systems and isotopic tracers to show that migrating diatom (Rhizosolenia) mats are widespread in the N. Pacific Ocean from 140°W to 175°E and together with other migrating phytoplankton (Ethmodiscus, Halosphaera, Pyrocystis, and solitary Rhizosolenia) can mediate time-averaged transport of N (235 µmol N m(-2) d(-1)) equivalent to eddy nitrate injections (242 µmol NO3 (-) m(-2) d(-1)). This upward biotic transport can close N budgets in the upper 250 m of the central Pacific Ocean and together with diazotrophy creates a surface zone where biological nutrient inputs rather than physical processes dominate the new N flux. In addition to these numerically rare large migrators, there is evidence in the literature of ascending behavior in small phytoplankton that could contribute to upward flux as well. Although passive downward movement has dominated models of phytoplankton flux, there is now sufficient evidence to require a rethinking of this paradigm. Quantifying these fluxes is a challenge for the future and requires a reexamination of individual phytoplankton sinking rates as well as methods for capturing and enumerating ascending phytoplankton in the sea.
Pilskaln, Cynthia H.; Montoya, Joseph P.; Dennett, Mark
2014-01-01
In oceanic subtropical gyres, primary producers are numerically dominated by small (1–5 µm diameter) pro- and eukaryotic cells that primarily utilize recycled nutrients produced by rapid grazing turnover in a highly efficient microbial loop. Continuous losses of nitrogen (N) to depth by sinking, either as single cells, aggregates or fecal pellets, are balanced by both nitrate inputs at the base of the euphotic zone and N2-fixation. This input of new N to balance export losses (the biological pump) is a fundamental aspect of N cycling and central to understanding carbon fluxes in the ocean. In the Pacific Ocean, detailed N budgets at the time-series station HOT require upward transport of nitrate from the nutricline (80–100 m) into the surface layer (∼0–40 m) to balance productivity and export needs. However, concentration gradients are negligible and cannot support the fluxes. Physical processes can inject nitrate into the base of the euphotic zone, but the mechanisms for transporting this nitrate into the surface layer across many 10s of m in highly stratified systems are unknown. In these seas, vertical migration by the very largest (102–103 µm diameter) phytoplankton is common as a survival strategy to obtain N from sub-euphotic zone depths. This vertical migration is driven by buoyancy changes rather than by flagellated movement and can provide upward N transport as nitrate (mM concentrations) in the cells. However, the contribution of vertical migration to nitrate transport has been difficult to quantify over the required basin scales. In this study, we use towed optical systems and isotopic tracers to show that migrating diatom (Rhizosolenia) mats are widespread in the N. Pacific Ocean from 140°W to 175°E and together with other migrating phytoplankton (Ethmodiscus, Halosphaera, Pyrocystis, and solitary Rhizosolenia) can mediate time-averaged transport of N (235 µmol N m-2 d-1) equivalent to eddy nitrate injections (242 µmol NO3− m-2 d-1). This upward biotic transport can close N budgets in the upper 250 m of the central Pacific Ocean and together with diazotrophy creates a surface zone where biological nutrient inputs rather than physical processes dominate the new N flux. In addition to these numerically rare large migrators, there is evidence in the literature of ascending behavior in small phytoplankton that could contribute to upward flux as well. Although passive downward movement has dominated models of phytoplankton flux, there is now sufficient evidence to require a rethinking of this paradigm. Quantifying these fluxes is a challenge for the future and requires a reexamination of individual phytoplankton sinking rates as well as methods for capturing and enumerating ascending phytoplankton in the sea. PMID:24688877
NASA Astrophysics Data System (ADS)
Lahlou, Radia; Armstrong, Peter R.; Calvet, Nicolas; Shamim, Tariq
2017-06-01
Nitrate salt vapor deposition on the reflecting surface of a secondary concentrator placed on top of an open molten salt tank at 500 °C is investigated using a lab-scale setup over an 8h-exposure cycle. Deposition, consisting of mostly spherical particles, is characterized in terms of chemical composition using energy dispersive X-ray spectroscopy. The corresponding specular reflectance degradation both temporary (before washing off the salt deposits) and permanent (residual reflectance loss after cleaning), is measured at different incidence angles and at reference points located at different heights. Reflectance drop due to salt deposits is compared to the one resulting from dust deposition. Long-term reflectance degradation by means of corrosion needs to be further studied through suitable accelerated aging tests.
Mullaney, John R.; Grady, Stephen J.
1997-01-01
The quality of water along flowpaths in a surficial aquifer system in Manchester, Connecticut, was studied during 1993-95 as part of the National Water Quality Assessment program. The flowpath study examined the relations among hydrogeology, land-use patterns, and the presence of contaminants in a surficial aquifer in an urban area, and evaluated ground water as a source of contamination to surface water. A two-dimensional, finite-difference groundwater- flow model was used to estimate travel distance, which ranged from about 50 to 11,000 feet, from the source areas to the sampled observation wells. Land use, land cover, and population density were determined in the source areas delineated by the ground-water-flow simulation. Source areas to the wells contained either high- or medium-density residential areas, and population density ranged from 629 to 8,895 people per square mile. Concentrations of selected inorganic constituents, including sodium, chloride, and nitrite plus nitrate nitrogen, were higher in the flowpath study wells than in wells in undeveloped areas with similar aquifer materials. One or more of 9 volatile organic compounds were detected at 12 of 14 wells. The three most commonly detected volatile organic compounds were chloroform, methyl-tert-butyl ether, and trichloroethene. Trichloroethene was detected at concentrations greater than the maximum contaminant level for drinking water (5 micrograms per liter) in samples from one well. Four pesticides, including dichloro diphenyl dichloroethylene, dieldrin, dichloroprop, and simazine were detected at low concentrations. Concentrations of sodium and chloride were higher in samples collected from wells screened in the top of the saturated zone than in samples collected from deeper zones. Volatile organic compounds and elevated concentrations of nitrite plus nitrate as nitrogen were detected at depths of as much as 60 feet below the water table, indicating that the effects of human activities on the ground-water quality extends to the bottom of the surficial aquifer. The age of ground water, as determined by tritium and 3helium concentrations, was 0.9 to 22.6 years. pH, alkalinity, and calcium were higher and concentrations of dissolved oxygen were lower in ground-water samples with ages of 10 years or more than in samples younger than 10 years. In addition, concentrations of sodium, chloride, and nitrite plus nitrate nitrogen were low in ground-water samples with ages of 10 years or more, indicating that concentrations of these compounds may be increasing with time or that the recharge areas to these wells may have had less intensive urban land use. Methyl-tert-butyl ether was detected only in wells with ground water ages of less than 11 years, which is consistent with the date of introduction of this compound as a gasoline additive in Connecticut. Analysis of additional samples collected for analysis of stable nitrogen isotopes indicated that the most likely source of elevated concentrations of nitrate nitrogen was lawn and garden fertilizers, but other sources, including wastewater effluents, soil organic nitrogen, and atmospheric deposition, may contribute to the total. Population density was positively correlated (at the 97 percent confidence level) to concentrations of nitrite plus nitrate as nitrogen. Water quality in the Hockanum River aquifer has been degraded by human activities, and, after discharge to surface water, affects the water quality in the Hockanum River. On an annual basis, ground-water discharge from the study area to the river (as measured at a downstream continuous-record gaging station) contributes about 5 percent of the annual load of nitrite plus nitrate nitrogen, but, during low flow, contributes 11 percent of the nitrite plus nitrate nitrogen, 32 percent of the calcium, and 16 percent of the chloride to the river.
The vertical distribution of tropospheric ammonia
NASA Technical Reports Server (NTRS)
Levine, J. S.; Hoell, J. M.; Augustsson, T. R.
1980-01-01
A one-dimensional tropospheric photochemical model is used to simulate measured profiles of NH3 obtained with the Infrared Heterodyne Radiometer. The relative roles of homogeneous loss, heterogeneous loss, and vertical eddy transport are discussed in terms of selecting parameters which best fit the measurements. The best fit was obtained for a vertical eddy diffusion coefficient of 200,000/sq cm per sec or greater (corresponding to a characteristic vertical transport time in excess of about 35 days), and a characteristic heterogeneous loss time in excess of 10 days. The characteristic homogeneous chemical loss time was found to be about 40 days at the surface and decreased to about 180 days at 10 km, and not very sensitive to model chemical perturbations. Increased ground-level concentrations of NH3 to about 10 ppb, compared to background surface concentrations of about 1 ppb, were measured several weeks after application of ammonium nitrate fertilizer. This suggests that the volatilization of ammonium nitrate fertilizer is rapid, and an important source of NH3. Because of the characteristic times for the loss mechanisms, synoptic time-scale phenomena may play an important role in determining the tropospheric distribution of NH3 concentrations.
NASA Astrophysics Data System (ADS)
Johnson, K. S.; Coletti, L.; Jannasch, H.; Martz, T.; Swift, D.; Riser, S.
2008-12-01
Long-term, autonomous observations of ocean biogeochemical cycles are now feasible with chemical sensors in profiling floats. These sensors will enable decadal-scale observations of trends in global ocean biogeochemical cycles. Here, we focus on measurements on nitrate and dissolved oxygen. The ISUS (In Situ Ultraviolet Spectrophotometer) optical nitrate sensor has been adapted to operate in a Webb Research, Apex profiling float. The Apex float is of the type used in the Argo array and is designed for multi-year, expendable deployments in the ocean. Floats park at 1000 m depth and make 60 nitrate and oxygen measurements at depth intervals ranging from 50 m below 400 m to 5 m in the upper 100 m as they profile to the surface. All data are transmitted to shore using the Iridium telemetry system and they are available on the Internet in near-real time. Floats equipped with ISUS and an Aanderaa oxygen sensor are capable of making 280 vertical profiles from 1000 m. At a 5 day cycle time, the floats should have nearly a four year endurance. Three floats have now been deployed at the Hawaii Ocean Time series station (HOT), Ocean Station Papa (OSP) in the Gulf of Alaska and at 50 South, 30 East in the Southern Ocean. Two additional floats are designated for deployment at the Bermuda Atlantic Time Series station (BATS) and in the Drake Passage. The HOT float has made 56 profiles over 260 days and should continue operating for 3 more years. Nitrate concentrations are in excellent agreement with the long-term mean observed at HOT. No significant long-term drift in sensor response has occurred. A variety of features have been observed in the HOT nitrate data that are linked to contemporaneous changes in oxygen production and mesoscale dynamics. The impacts of these features will be briefly described. The Southern Ocean float has operated for 200 days and is now observing reinjection of nitrate into surface waters as winter mixing occurs(surface nitrate > 24 micromolar). We expect that the OSP and Southern Ocean floats will provide a quantitative measurement of the timing and magnitude of the spring bloom via the drawdown of surface nitrate. We are funded through NSF and NOPP to continue float deployments at HOT, BATS, OSP and the Southern Ocean for the next 3 years and to refine the sensor so it can be offered as a commercial option for all float users. New sensors in development for float deployments include a stable ISFET pH sensor.
Identification of nitrate sources and discharge-depending nitrate dynamics in a mesoscale catchment
NASA Astrophysics Data System (ADS)
Mueller, Christin; Strachauer, Ulrike; Brauns, Mario; Musolff, Andreas; Kunz, Julia Vanessa; Brase, Lisa; Tarasova, Larisa; Merz, Ralf; Knöller, Kay
2017-04-01
During the last decades, nitrate concentrations in surface and groundwater have increased due to land use change and accompanying application of fertilizer in agriculture as well as increased atmospheric deposition. To mitigate nutrient impacts on downstream aquatic ecosystems, it is important to quantify potential nitrate sources, instream nitrate processing and its controls in a river system. The objective of this project is to characterize and quantify (regional) scale dynamics and trends in water and nitrogen fluxes of the entire Holtemme river catchment in central Germany making use of isotopic fingerprinting methods. Here we compare two key date sampling campaigns in 2014 and 2015, with spatially highly resolved measurements of discharge at 23 sampling locations including 11 major tributaries and 12 locations at the main river. Additionally, we have data from continuous runoff measurements at 10 locations operated by the local water authorities. Two waste water treatment plants contribute nitrogen to the Holtemme stream. This contribution impacts nitrate loads and nitrate isotopic signatures depending on the prevailing hydrological conditions. Nitrogen isotopic signatures in the catchment are mainly controlled by different sources (nitrified soil nitrogen in the headwater and manure/ effluents from WWTPs in the lowlands) and increase with raising nitrate concentrations along the main river. Nitrate loads at the outlet of the catchment are extremely different between both sampling campaigns (2014: NO3- = 97 t a-1, 2015: NO3- = 5 t a-1) which is associated with various runoff (2014: 0.8 m3 s-1, 2015: 0.2 m3 s-1). In 2015, the inflow from WWTP's raises the NO3- loads and enriches δ18O-NO3 values. Generally, oxygen isotope signatures from nitrate are more variable and are controlled by biogeochemical processes in concert with the oxygen isotopic composition of the ambient water. Elevated δ18O-NO3 in 2015 are most likely due to higher temperatures and lower discharge resulting in a higher impact of evaporation on water isotopes and a higher/different level of biological activity (esp. in the WWTP). Enriched isotope values for nitrogen and oxygen are not indicative of a significant impact of bacterial denitrification, because they are accompanied by increased nitrate concentrations (1 to 16 mg L-1). Based on the presented study, 50 % of the nitrate export from the Holtemme river catchment can be attributed to WWTP effluent. The remaining amount is related to agricultural land use. Consequently, nitrate load reduction in the river system cannot rely on internal processing but needs to be regulated by preventive measures especially by an improved wastewater treatment and land use management.
Nitrate Contamination in the groundwater of the Lake Acıgöl Basin, SW Turkey
NASA Astrophysics Data System (ADS)
Karaman, Muhittin; Budakoǧlu, Murat; Taşdelen, Suat
2017-04-01
The lacustrine Acıgöl basin, formed as an extensional half-graben, hosts various bodies of water, such as cold-hot springs, lakes, streams, and wells. The hydrologically closed basin contains a hypersaline lake (Lake Acıgöl) located in the southern part of the basin. The brackish springs and deep waters discharged along the Acıgöl fault zone in the southern part of the basin feed the hypersaline lake. Groundwater is used as drinking, irrigation, and domestic water in the closed Acıgöl Basin. Groundwater flows into the hypersaline lake from the highland. The Acıgöl basin hosts large plains (Hambat, Başmakçı, and Evciler). Waters in agricultural areas contain high amounts of nitrate; groundwater samples in agricultural areas contain nitrate levels higher than 10 mg/L. Nitrate concentrations in the groundwater samples varied from 0 to 487 mg/L (n=165); 25.4 % of the groundwater samples from the basin had nitrate concentrations above 10 mg/L (the WHO drinking guideline) and 52.2% of the groundwater samples from the basin had nitrate concentrations above 3.0 mg/L, and these high values were regarded as the result of human activity. The highest nitrate values were measured in the Hambat plain (480 and 100 mg/L) and Yirce Pinari spring (447 mg/L), which discharges along the Acıgöl fault zone in the southern part of the basin. The average multi-temporal nitrate concentration of the Yirce Pınarı spring was 3.3 mg/L. Extreme nitrate values were measured in the Yirce Pınarı spring during periods when sheep wool was washed (human activity). The lowest nitrate concentrations were observed in some springs that discharged along the Acıgöl fault zone in the southern part of the basin. Nitrate was not detected in deep groundwater discharged along the Acıgöl fault zone. Nitrate concentrations in deep groundwater and some springs discharged along the Acıgöl fault zone and those feeding the hypersaline lake were significantly affected by redox conditions. Nitrate in these reducing waters was transformed into ammonium. Nitrate concentrations in the Acıgöl Basin were enriched in groundwater beneath agricultural areas and this affected redox conditions. The main source of nitrate contamination was agricultural fertilizers. Elevated nitrate concentrations in groundwater, especially in agricultural areas of the Acigol Basin, can cause public health problems and environmental pollution.
Growing patterns to produce 'nitrate-free' lettuce (Lactuca sativa).
Croitoru, Mircea Dumitru; Muntean, Daniela-Lucia; Fülöp, Ibolya; Modroiu, Adriana
2015-01-01
Vegetables can contain significant amounts of nitrate and, therefore, may pose health hazards to consumers by exceeding the accepted daily intake for nitrate. Different hydroponic growing patterns were examined in this work in order to obtain 'nitrate-free lettuces'. Growing lettuces on low nitrate content nutrient solution resulted in a significant decrease in lettuces' nitrate concentrations (1741 versus 39 mg kg(-1)), however the beneficial effect was cancelled out by an increase in the ambient temperature. Nitrate replacement with ammonium was associated with an important decrease of the lettuces' nitrate concentration (from 1896 to 14 mg kg(-1)) and survival rate. An economically feasible method to reduce nitrate concentrations was the removal of all inorganic nitrogen from the nutrient solution before the exponential growth phase. This method led to lettuces almost devoid of nitrate (10 mg kg(-1)). The dried mass and calcinated mass of lettuces, used as markers of lettuces' quality, were not influenced by this treatment, but a small reduction (18%, p < 0.05) in the fresh mass was recorded. The concentrations of nitrite in the lettuces and their modifications are also discussed in the paper. It is possible to obtain 'nitrate-free' lettuces in an economically feasible way.
High-pressure liquid-monopropellant strand combustion.
NASA Technical Reports Server (NTRS)
Faeth, G. M.
1972-01-01
Examination of the influence of dissolved gases on the state of the liquid surface during high-pressure liquid-monopropellant combustion through the use of a strand burning experiment. Liquid surface temperatures were measured, using fine-wire thermocouples, during the strand combustion of ethyl nitrate, normal propyl nitrate, and propylene glycol dinitrate at pressures up to 81 atm. These measurements were compared with the predictions of a variable-property gas-phase analysis assuming an infinite activation energy for the decomposition reaction. The state of the liquid surface was estimated using a conventional low-pressure phase equilibrium model, as well as a high-pressure version that considered the presence of dissolved combustion-product gases in the liquid phase. The high-pressure model was found to give a superior prediction of measured liquid surface temperatures. Computed total pressures required for the surface to reach its critical mixing point during strand combustion were found to be in the range from 2.15 to 4.62 times the critical pressure of the pure propellant. Computed dissolved gas concentrations at the liquid surface were in the range from 35 to 50% near the critical combustion condition.
Shelton, Jennifer L.
2005-01-01
Evidence for anthropogenic impact on shallow ground-water quality beneath recently developed urban areas of Sacramento, California, has been observed in the sampling results from 19 monitoring wells in 1998. Eight volatile organic compounds (VOCs), four pesticides, and one pesticide transformation product were detected in low concentrations, and nitrate, as nitrogen, was detected in elevated concentrations; all of these concentrations were below National and State primary and secondary maximum contaminant levels. VOC results from this study are more consistent with the results from urban areas nationwide than from agricultural areas in the Central Valley, indicating that shallow ground-water quality has been impacted by urbanization. VOCs detected may be attributed to either the chlorination of drinking water, such as trichloromethane (chloroform) detected in 16 samples, or to the use of gasoline additives, such as methyl tert-butyl ether (MTBE), detected in 2 samples. Pesticides detected may be attributed to use on household lawns and gardens and rights-of-way, such as atrazine detected in three samples, or to past agricultural practices, and potentially to ground-water/surface-water interactions, such as bentazon detected in one sample from a well adjacent to the Sacramento River and downstream from where bentazon historically was used on rice. Concentrations of nitrate may be attributed to natural sources, animal waste, old septic tanks, and fertilizers used on lawns and gardens or previously used on agricultural crops. Seven sample concentrations of nitrate, as nitrogen, exceeded 3.0 milligrams per liter, a level that may indicate impact from human activities. Ground-water recharge from rainfall or surface-water runoff also may contribute to the concentrations of VOCs and pesticides observed in ground water. Most VOCs and pesticides detected in ground-water samples also were detected in air and surface-water samples collected at sites within or adjacent to the recently developed urban areas. Five arsenic sample concentrations exceeded the U.S. Environmental Protection Agency (USEPA) primary maximum contaminant level (MCL) of 10 milligrams per liter adopted in 2001. Measurements that exceeded USEPA or California Department of Health Services recommended secondary maximum contaminant levels include manganese, iron, chloride, total dissolved solids, and specific conductance. These exceedances are probably a result of natural processes. Variations in stable isotope ratios of hydrogen (2H/1H) and oxygen (18O/16O) may indicate different sources or a mixing of recharge waters to the urban ground water. These variations also may indicate recharge directly from surface water in one well adjacent to the Sacramento River. Tritium concentrations indicate that most shallow ground water has been recharged since the mid-1950s, and tritium/helium-3 age dates suggest that recharge has occurred in the last 2 to 30 years in some areas. In areas where water table depths exceed 20 meters and wells are deeper, ground-water recharge may have occurred prior to 1950, but low concentrations of pesticides and VOCs detected in these deeper wells indicate a mixing of younger and older waters. Overall, the recently urbanized areas can be divided into two groups. One group contains wells where few VOCs and pesticides were detected, nitrate mostly was not detected, and National and State maximum contaminant levels, including the USEPA MCL for arsenic, were exceeded; these wells are adjacent to rivers and generally are characterized by younger water, shallow (1 to 4 meters) water table, chemically reducing conditions, finer grained sediments, and higher organics in the soils. In contrast, the other group contains wells where more VOCs, pesticides, and elevated nitrate concentrations were detected; these wells are farther from rivers and are generally characterized by a mixture of young and old waters, intermediate to deep (7 to 35 meters) wate
Mousavi, S A; Montazerozohori, M; Masoudiasl, A; Mahmoudi, G; White, J M
2018-09-01
A nanostructured cationic zinc nitrate complex with a formula of [ZnLNO 3 ]NO 3 (where L = (N 2 E,N 2' E)-N 1 ,N 1' -(ethane-1,2-diyl)bis(N 2 -((E)-3-phenylallylidene)ethane-1,2-diamine)) was prepared by sonochemical process and characterized by single crystal X-ray crystallography, scanning electron microscopy (SEM), FT-IR and NMR spectroscopy and X-ray powder diffraction (XRPD). The X-ray analysis demonstrates the formation of a cationic complex that metal center is five-coordinated by four nitrogen atom from Schiff base ligand and one oxygen atom from nitrate group. The crystal packing analysis demonstrates the essential role of the nitrate groups in the organization of supramolecular structure. The morphology and size of ultrasound-assisted synthesized zinc nitrate complex have been investigated using scanning electron microscopy (SEM) by changing parameters such as the concentration of initial reactants, the sonication power and reaction temperature. In addition the calcination of zinc nitrate complex in air atmosphere led to production of zinc oxide nanoparticles. Copyright © 2018. Published by Elsevier B.V.
Lingua, Guido; Copetta, Andrea; Musso, Davide; Aimo, Stefania; Ranzenigo, Angelo; Buico, Alessandra; Gianotti, Valentina; Osella, Domenico; Berta, Graziella
2015-12-01
High nitrogen concentration in wastewaters requires treatments to prevent the risks of eutrophication in rivers, lakes and coastal waters. The use of constructed wetlands is one of the possible approaches to lower nitrate concentration in wastewaters. Beyond supporting the growth of the bacteria operating denitrification, plants can directly take up nitrogen. Since plant roots interact with a number of soil microorganisms, in the present work we report the monitoring of nitrate concentration in macrocosms with four different levels of added nitrate (0, 30, 60 and 90 mg l(-1)), using Phragmites australis, inoculated with bacteria or arbuscular mycorrhizal fungi, to assess whether the use of such inocula could improve wastewater denitrification. Higher potassium nitrate concentration increased plant growth and inoculation with arbuscular mycorrhizal fungi or bacteria resulted in larger plants with more developed root systems. In the case of plants inoculated with arbuscular mycorrhizal fungi, a faster decrease of nitrate concentration was observed, while the N%/C% ratio of the plants of the different treatments remained similar. At 90 mg l(-1) of added nitrate, only mycorrhizal plants were able to decrease nitrate concentration to the limits prescribed by the Italian law. These data suggest that mycorrhizal and microbial inoculation can be an additional tool to improve the efficiency of denitrification in the treatment of wastewaters via constructed wetlands.
NASA Astrophysics Data System (ADS)
Rozemeijer, J.; Ekkelenkamp, R.; van der Zaan, B.
2017-12-01
In 2016 Deltares launched the free to use Nitrate App which accurately reads and interprets nitrate test strips. The app directly displays the measured concentration and gives the option to share the result. Shared results are visualised in map functionality within the app and online. Since its introduction we've been seeing an increasing number of nitrate app applications. In this presentation we show some unanticipated types of application. The Nitrate App was originally intended to enable farmers to measure nitrate concentrations on their own farms. This may encourage farmers to talk to specialists about the right nutrient best management practices (BMP's) for their farm. Several groups of farmers have recently started to apply the Nitrate App and to discuss their results with each other and with the authorities. Nitrate concentration routings in catchments have proven to be another useful application. Within a day a person can generate a catchment scale nitrate concentration map identifying nitrate loss hotspots. In several routings in agricultural catchments clear point sources were found, for example at small scale manure processing plants. These routings proved that the Nitrate App can help water managers to target conservation practices more accurately to areas with the highest nitrate concentrations and loads. Other current applications are the screening of domestic water wells in California, the collection of extra measurements (also pH and NH4) in the National Monitoring Network for the Evaluation of the Manure Policy in the Netherlands, and several educational initiatives in cooperation with schools and universities.
Recurrent diarrhea in children living in areas with high levels of nitrate in drinking water.
Gupta, S K; Gupta, R C; Gupta, A B; Seth, A K; Bassin, J K; Gupta, A; Sharma, M L
2001-01-01
Given that there was documented evidence of an association between diarrhea and high nitrate ingestion, the authors examined drinking water nitrate concentration and its possible correlation(s) with methemoglobin levels, cytochrome b5 reductase activity, and recurrent diarrhea. In addition, the authors studied histopathological changes in the intestines of rabbits in an animal model. Five village areas were studied, and nitrate concentrations (expressed in mg of nitrate per liter of water) of 26, 45, 95, 220, and 459 existed in the respective villages. The study included 88 randomly selected children who were 8 yr of age or younger; they represented 10% of the total population of each of the areas. Detailed histories of recurrent diarrhea were noted, and medical examinations were conducted. Cytochrome b5 reductase activity and methemoglobin levels were estimated biochemically. Collected data were analyzed statistically with Microsoft Excel software. In addition, the authors exposed rabbits to various levels of nitrate, and histopathological changes of the stomach and intestine (small and large) were evaluated. There was a strong relationship between nitrate concentration and recurrent diarrhea; 80% of the recurrent diarrhea cases were explained by nitrate concentration alone. In the rabbit intestines, lymphocytic infiltration and hyperplasia characterized the submucosa as nitrate concentrations increased.
Huang, Tao; Ju, Xiaotang; Yang, Hao
2017-01-01
Nitrate leaching is one of the most important pathways of nitrogen (N) loss which leads to groundwater contamination or surface water eutrophication. Clarifying the rates, controlling factors and characteristics of nitrate leaching is the pre-requisite for proposing effective mitigation strategies. We investigated the effects of interactions among chemical N fertilizer, straw and manure applications on nitrogen leaching in an intensively managed calcareous Fluvo-aquic soil with winter wheat-summer maize cropping rotations on the North China Plain from October 2010 to September 2013 using ceramic suction cups and seepage water calculations based on a long-term field experiment. Annual nitrate leaching reached 38–60 kg N ha−1 from conventional N managements, but declined by 32–71% due to optimum N, compost manure or municipal waste treatments, respectively. Nitrate leaching concentrated in the summer maize season, and fewer leaching events with high amounts are the characteristics of nitrate leaching in this region. Overuse of chemical N fertilizers, high net mineralization and nitrification, together with predominance of rainfall in the summer season with light soil texture are the main controlling factors responsible for the high nitrate leaching loss in this soil-crop-climatic system. PMID:28176865
NASA Astrophysics Data System (ADS)
Mfumu Kihumba, Antoine; Ndembo Longo, Jean; Vanclooster, Marnik
2016-03-01
A multivariate statistical modelling approach was applied to explain the anthropogenic pressure of nitrate pollution on the Kinshasa groundwater body (Democratic Republic of Congo). Multiple regression and regression tree models were compared and used to identify major environmental factors that control the groundwater nitrate concentration in this region. The analyses were made in terms of physical attributes related to the topography, land use, geology and hydrogeology in the capture zone of different groundwater sampling stations. For the nitrate data, groundwater datasets from two different surveys were used. The statistical models identified the topography, the residential area, the service land (cemetery), and the surface-water land-use classes as major factors explaining nitrate occurrence in the groundwater. Also, groundwater nitrate pollution depends not on one single factor but on the combined influence of factors representing nitrogen loading sources and aquifer susceptibility characteristics. The groundwater nitrate pressure was better predicted with the regression tree model than with the multiple regression model. Furthermore, the results elucidated the sensitivity of the model performance towards the method of delineation of the capture zones. For pollution modelling at the monitoring points, therefore, it is better to identify capture-zone shapes based on a conceptual hydrogeological model rather than to adopt arbitrary circular capture zones.
NASA Astrophysics Data System (ADS)
Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus
2016-04-01
Over the past decades, stream sampling protocols for hydro-geochemical parameters were often limited by logistical and technological constraints. While long-term monitoring protocols were typically based on weekly sampling intervals, high frequency sampling was commonly limited to a few single events. In our study, we combined high frequency and long-term measurements to understand the DOC and nitrate behaviour and dynamics for different runoff events and seasons. Our study area is the forested Weierbach catchment (0.47 km2) in Luxembourg. The fractured schist bedrock is covered by cambisol soils. The runoff response of the catchment is characterized by a double peak behaviour. A first discharge peak occurs during or right after a rainfall event (triggered by fast near surface runoff generation processes), while a second delayed peak lasts several days (generated by subsurface flow/ shallow groundwater flow). Peaks in DOC concentrations are closely linked to the first discharge peak, whereas nitrate concentrations follow the second peak. Our observations were carried out with the field deployable instrument spectro::lyser (scan Messtechnik GmbH). This instrument relies on the principles of UV-Vis spectrometry and measures DOC and nitrate concentrations. The measurements were carried out at a high frequency of 15 minutes in situ in the Weierbach creek for more than two years. In addition, a long-term validation was carried out with data obtained from the analysis of water collected with automatic samplers. The long-term, high-frequency measurements allowed us to calculate a complete and detailed balance of DOC and nitrate export over two years. Transport behaviour of the DOC and nitrate showed different dynamics between the first and second hydrograph peaks. DOC is mainly exported during first peaks, while nitrate is mostly exported during the delayed second peaks. In combination with other measurements in the catchment, the long and detailed observations have enabled us to derive relationships between DOC and nitrate export and different catchment states: soil wetness and groundwater levels, precipitation and seasonality. Altogether, the long-term and high-frequency time series provides the opportunity to study DOC and nitrate export without having to just rely only on either a few single event measurements or coarse measurement protocols.
Transformation of Nitrate and Toluene in Groundwater by Sulfur Modified Iron(SMI-III)
NASA Astrophysics Data System (ADS)
Lee, W.; Park, S.; Lim, J.; Hong, U.; Kwon, S.; Kim, Y.
2009-12-01
In Korea, nitrate and benzene, toluene, ethylbenzene, and xylene isomers (BTEX) are frequently detected together as ground water contaminants. Therefore, a system simultaneously treating both nitrate (inorganic compound) and BTEX (organic compounds) is required to utilize groundwater as a water resource. In this study, we investigated the efficiency of Sulfur Modified Iron (SMI-III) in treating both nitrate and BTEX contaminated groundwater. Based on XRD (X-Ray Diffraction) analysis, the SMI-III is mainly composed of Fe3O4, S, and Fe. A series of column tests were conducted at three different empty bed contact times (EBCTs) for each compound. During the experiments, removal efficiency for both nitrate and toluene were linearly correlated with EBCT, suggesting that SMI-III have an ability to transform both nitrate and toluene. The concentration of SO42- and oxidation/reduction potential (ORP) were also measured. After exposed to nitrate contaminated groundwater, the composition of SMI-III was changed to Fe2O3, Fe3O4, Fe, and Fe0.95S1.05. The trends of effluent sulfate concentrations were inversely correlated with effluent nitrate concentrations, while the trends of ORP values, having the minimum values of -480 mV, were highly correlated with effluent nitrate concentrations. XRD analysis before and after exposed to nitrate contaminated groundwater, sulfate production, and nitrite detection as a reductive transformation by-product of nitrate suggest that nitrate is reductively transformed by SMI-III. Interestingly, in the toluene experiments, the trends of ORP values were inversely correlated with effluent toluene concentrations, suggesting that probably degrade through oxidation reaction. Consequently, nitrate and toluene probably degrade through reduction and oxidation reaction, respectively and SMI-III could serve as both electron donor and acceptor.
Hamlin, Heather J; Edwards, Thea M; McCoy, Jessica; Cruze, Lori; Guillette, Louis J
2016-11-01
Anthropogenic nitrogen is a ubiquitous environmental contaminant that is contributing to the degradation of freshwater, estuarine, and coastal ecosystems worldwide. The effects of environmental nitrate, a principal form of nitrogen, on the health of aquatic life is of increasing concern. We exposed female American alligators to three concentrations of nitrate (0.7, 10 and 100mg/L NO 3 -N) for a duration of five weeks and five months from hatch. We assessed growth, plasma sex steroid and thyroid hormone concentrations, and transcription levels of key genes involved in steroidogenesis (StAR, 3β-HSD, and P450 scc ) and hepatic clearance (Cyp1a, Cyp3a). Exposure to 100mg/L NO 3 -N for both five weeks and five months resulted in significantly increased plasma testosterone (T) concentrations compared with alligators in the reference treatment. No differences in 17β-estradiol, progesterone, or thyroid hormones were observed, nor were there differences in alligator weight or the mRNA abundance of steroidogenic or hepatic genes. Plasma and urinary nitrate concentrations increased with increasing nitrate treatment levels, although relative plasma concentrations of nitrate were significantly lower in five month, versus five week old animals, possibly due to improved kidney function in older animals. These results indicate that environmentally relevant concentrations of nitrate can increase circulating concentrations of T in young female alligators. Copyright © 2016 Elsevier Inc. All rights reserved.
Quality of surface and ground waters, Yakima Indian Reservation, Washington, 1973-74
Fretwell, M.O.
1977-01-01
This report describes the quality of the surface and ground waters of the Yakima Indian Reservation in south-central Washington, during the period November 1973-October 1974. The average dissolved-solids concentrations ranged from 48 to 116 mg/L (milligrams per liter) in the mountain streams, and from 88 to 372 mg/L in the lowland streams, drains, and a canal. All the mountain streams contain soft water (classified as 0-60 mg/L hardness as CaC03), and the lowland streams, drains, and canal contain soft to very hard water (more than 180 mg/L hardness as CaC03). The water is generally of suitable quality for irrigation, and neither salinity nor sodium hazards are a problem in waters from any of the streams studied. The specific conductance of water from the major aquifers ranged from 20 to 1 ,540 micromhos. Ground water was most dilute in mineral content in the Klickitat River basin and most concentrated in part of the Satus Creek basin. The ground water in the Satus Creek basin with the most concentrated mineral content also contained the highest percentage composition of sulfate, chloride, and nitrate. For drinking water, the nitrate-nitrogen concentrations exceeded the U.S. Public Health Service 's recommended limit of 10 mg/L over an area of several square miles, with a maximum observed concentration of 170 mg/L. (Woodard-USGS).
Ashworth, Ann; Mitchell, Klaus; Blackwell, Jamie R; Vanhatalo, Anni; Jones, Andrew M
2015-10-01
Epidemiological studies suggest that green leafy vegetables, which are high in dietary nitrate, are protective against CVD such as stroke. High blood pressure (BP) is a major risk factor for stroke and inorganic nitrate has been shown to reduce BP. The objective of the present study was to test the hypothesis that diets containing high-nitrate (HN) vegetables would increase plasma nitrate and nitrite concentrations and reduce BP in healthy women. A randomized, crossover trial, where participants received HN vegetables (HN diet) or avoided HN vegetables (Control diet) for 1 week. Before and after each intervention, resting BP and plasma nitrate and nitrite concentrations were measured. University of Exeter, UK. Nineteen healthy women (mean age 20 (sd 2) years; mean BMI 22·5 (sd 3·8) kg/m2). The HN diet significantly increased plasma nitrate concentration (before HN diet: mean 24·4 (sd 5·6) µmol/l; after HN diet: mean 61·0 (sd 44·1) µmol/l, P<0·05) and plasma nitrite concentration (before HN diet: mean 98 (sd 91) nmol/l; after HN diet: mean 185 (sd 34) nmol/l, P<0·05). No significant change in plasma nitrate or nitrite concentration was observed after the Control diet. The HN diet significantly reduced resting systolic BP (before HN diet: mean 107 (sd 9) mmHg; after HN diet: mean 103 (sd 6) mmHg, P<0·05). No significant change in systolic BP was observed after the Control diet (before Control diet: mean 106 (sd 8) mmHg; after Control diet: mean 106 (sd 8) mmHg). Consumption of HN vegetables significantly increased plasma nitrate and nitrite concentrations and reduced BP in normotensive women.
NASA Astrophysics Data System (ADS)
Cey, E. E.; Mellor, A. F.
2015-12-01
Generalized additive mixed models (GAMM's) are flexible regression models that are increasingly used in ecological and environmental studies to assess spatial and temporal trends in complex monitoring data. GAMM's hold promise for analysis of spatially and temporally correlated hydrogeologic data, but have been used only sparingly. Here we employed GAMM's to investigate the spatiotemporal distribution of pathogen indicators (E. coli and total coliform [TC]) and nitrate in the vulnerable Abbotsford-Sumas aquifer (ASA), and to explore potential relationships with hydrologic and climatic drivers, such as precipitation, streamflow, and groundwater level and temperature. A total of 46 wells sampled over a one year period showed more than 50% of samples exceeded 10 mg-N/L for nitrate. E. coli detections in groundwater were infrequent (4 of 385 total samples) and attributed mainly to surface water-groundwater connections. TC was detected frequently in groundwater (70% of samples) and the widespread TC distribution across the ASA could not be attributed solely to surface water connectivity. GAMM's showed that increased TC values in the wet season were most strongly related to groundwater temperatures and levels, while precipitation and well location were weaker (but still significant) predictors. In contrast, seasonal trends in nitrate were not significantly related to hydrologic forcings. Instead, nitrate concentrations across the aquifer were controlled by well location and depth, likely due to spatially variable nitrogen loading and localized geochemical attenuation. Major differences in nitrate and bacterial loading to the ASA were apparent in this study, and management strategies specific to each nonpoint source contaminant are recommended for improved source water protection.
Efflux Of Nitrate From Hydroponically Grown Wheat
NASA Technical Reports Server (NTRS)
Huffaker, R. C.; Aslam, M.; Ward, M. R.
1992-01-01
Report describes experiments to measure influx, and efflux of nitrate from hydroponically grown wheat seedlings. Ratio between efflux and influx greater in darkness than in light; increased with concentration of nitrate in nutrient solution. On basis of experiments, authors suggest nutrient solution optimized at lowest possible concentration of nitrate.
NASA Astrophysics Data System (ADS)
Heppell, Catherine M.; Binley, Andrew; Trimmer, Mark; Darch, Tegan; Jones, Ashley; Malone, Ed; Collins, Adrian L.; Johnes, Penny J.; Freer, Jim E.; Lloyd, Charlotte E. M.
2017-09-01
The role that hydrology plays in governing the interactions between dissolved organic carbon (DOC) and nitrogen in rivers draining lowland, agricultural landscapes is currently poorly understood. In light of the potential changes to the production and delivery of DOC and nitrate to rivers arising from climate change and land use management, there is a pressing need to improve our understanding of hydrological controls on DOC and nitrate dynamics in such catchments. We measured DOC and nitrate concentrations in river water of six reaches of the lowland river Hampshire Avon (Wiltshire, southern UK) in order to quantify the relationship between BFI (BFI) and DOC : nitrate molar ratios across contrasting geologies (Chalk, Greensand, and clay). We found a significant positive relationship between nitrate and BFI (p < 0. 0001), and a significant negative relationship between DOC and BFI (p < 0. 0001), resulting in a non-linear negative correlation between DOC : nitrate molar ratio and BFI. In the Hampshire Avon, headwater reaches which are underlain by clay and characterized by a more flashy hydrological regime are associated with DOC : nitrate ratios > 5 throughout the year, whilst groundwater-dominated reaches underlain by Chalk, with a high BFI have DOC : nitrate ratios in surface waters that are an order of magnitude lower (< 0.5). Our analysis also reveals significant seasonal variations in DOC : nitrate transport and highlights critical periods of nitrate export (e.g. winter in sub-catchments underlain by Chalk and Greensand, and autumn in drained, clay sub-catchments) when DOC : nitrate molar ratios are low, suggesting low potential for in-stream uptake of inorganic forms of nitrogen. Consequently, our study emphasizes the tight relationship between DOC and nitrate availability in agricultural catchments, and further reveals that this relationship is controlled to a great extent by the hydrological setting.
Benthic nitrogen turnover processes in coastal sediments at the Danube Delta
NASA Astrophysics Data System (ADS)
Bratek, Alexander; Dähnke, Kirstin; Neumann, Andreas; Möbius, Jürgen; Graff, Florian
2017-04-01
The Black Sea Shelf has been exposed to strong anthropogenic pressures from intense fisheries and high nutrient inputs and eutrophication over the past decades. In the light of decreasing riverine nutrient loads and improving nutrient status in the water column, nutrient regeneration in sediments and biological N-turnover in the Danube Delta Front have an important effect on nutrient loads in the shelf region. In May 2016 we determined pore water nutrient profiles in the Danube River Delta-Black Sea transition zone, aiming to assess N-regeneration and elimination based on nutrient profiles and stable N- isotope changes (nitrate and ammonium) in surface water masses and in pore water. We aimed to investigate the magnitude and isotope values of sedimentary NH4+ and NO3- and their impact on the current N-budget in Black Sea Shelf water. Based on changes in the stable isotope ratios of NO3- and NH4+, we aimed to differentiate diffusion and active processing of ammonium as well as nitrate sources and sinks in bottom water. First results show that the concentration of NH4+ in pore water increases with depth, reaching up to 1500 µM in deeper sediment layers. We find indications for high fluxes of ammonium to the overlying water, while stable isotope profiles of ammonium suggest that further processing, apart from mere diffusion, acts on the pore water ammonium pool. Nitrate concentration and stable isotope profiles show rapid consumption in deeper anoxic sediment layers, but also suggest that nitrate regeneration in bottom water increases the dissolved nitrate pool. Overall, the isotope and concentration data of pore water ammonium clearly mirror a combination of turnover processes and diffusion.
Böhlke, J K; O'Connell, Michael E; Prestegaard, Karen L
2007-01-01
Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr(-1)) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds.
Böhlke, J.K.; O'Connell, M. E.; Prestegaard, K.L.
2007-01-01
Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr-1) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds. ?? ASA, CSSA, SSSA.
Chemical catalysis of nitrate reduction by iron (II)
NASA Astrophysics Data System (ADS)
Ottley, C. J.; Davison, W.; Edmunds, W. M.
1997-05-01
Experiments have been conducted to investigate the chemical reduction of nitrate under conditions relevant to the often low organic carbon environment of groundwaters. At pH 8 and 20 ± 2°C, in the presence of Cu(II), NO 3- was chemically reduced by Fe(II) to NH 4+ with an average stoichiometric liberation of 8 protons. The rate of the reaction systematically increased with pH in the range pH 7-8.5. The half-life for nitrate reduction, t 1/2, was inversely related to the total molar copper concentration, [Cu T], by the equation log t 1/2 = -1.35 log [Cu T] -2.616, for all measured values of t 1/2 from 23 min to 15 days. At the Cu(II) concentrations used of 7 × 10 -6 -10 -3 M, Cu was present mainly as a solid phase, either adsorbed to the surfaces of precipitated iron oxides or as a saturated solid. It is this solid phase copper rather than CU 2+ in solution which is catalytically active. Neither magnetite, which was formed as a product of the reaction, nor freshly prepared lepidocrocite catalysed the reaction, but goethite did. Although traces of oxygen accelerated the reaction, at higher partial pressures (>0.01 atm) the reduction of nitrate was inhibited, probably due to competition between NO 3- and O 2 for Fe(II). Appreciable catalytic effects were also observed for solid phase forms of Ag(I), Cd(H), Ni(H), Hg(II), and Pb(II). Mn(II) enhanced the rate slightly, and there was evidence for slow abiotic reduction in the absence of any added metal catalysts. These results suggest that the chemical reduction of nitrate at catalytic concentrations and temperatures appropriate to groundwater conditions is feasible on a timescale of months to years.
NASA Astrophysics Data System (ADS)
Torres, Rodrigo; Silva, Nelson; Reid, Brian; Frangopulos, Máximo
2014-12-01
We estimated Si∗, the surplus or deficit of orthosilicic acid (DSi) relative to nitrate available for diatom growth, in the Chilean Patagonian Archipelago Interior Sea (PAIS). Si∗ and salinity were negatively correlated in the PAIS because of the mixing of high nitrate, low DSi subantarctic surface water and high DSi, low nitrate continental freshwater runoff. Both the slope and the intercept of this relationship decreased from northern to southern Patagonia, which was likely a consequence of reduced DSi inputs from several overlapping hydrological, biological and geological drivers along this gradient. In general, lower freshwater DSi concentrations were expected below 46°S, and a lower total DSi load was expected from reduced runoff below 51°S. The north-south decreasing DSi concentration trend may be linked to dilutions from a higher proportion of runoff in latitudes with higher precipitation rates (45-53°S), the transition to more resistant granitic rocks and glacial melt-water from the Northern and Southern Patagonia Ice Fields (46-51°S) and a reduced density of volcanoes active during the Holocene (48-56°S). The intensification of a southward DSi deficit may be a forcing factor involved in the reported southward reductions in plankton biomass and a more frequent occurrence of non-diatom blooms in southern PAIS.
NASA Astrophysics Data System (ADS)
Audigié, Pauline; Bizien, Nicolas; Baráibar, Ignacio; Rodríguez, Sergio; Pastor, Ana; Hernández, Marta; Agüero, Alina
2017-06-01
Molten nitrates can be employed as heat storage fluids in solar concentration power plants. However molten nitrates are corrosive and if operating temperatures are raised to increase efficiencies, the corrosion rates will also increase. High temperature corrosion resistant coatings based on Al have demonstrated excellent results in other sectors such as gas turbines. Aluminide slurry coated and uncoated P92 steel specimens were exposed to the so called Solar Salt (industrial grade), a binary eutectic mixture of 60 % NaNO3 - 40 % KNO3, in air for 2000 hours at 550°C and 580°C in order to analyze their behavior as candidates to be used in future solar concentration power plants employing molten nitrates as heat transfer fluids. Coated ferritic steels constitute a lower cost technology than Ni based alloy. Two different coating morphologies resulting from two heat treatment performed at 700 and 1050°C after slurry application were tested. The coated systems exhibited excellent corrosion resistance at both temperatures, whereas uncoated P92 showed significant mass loss from the beginning of the test. The coatings showed very slow reaction with the molten Solar Salt. In contrast, uncoated P92 developed a stratified, unprotected Fe, Cr oxide with low adherence which shows oscillating Cr content as a function of coating depth. NaFeO2 was also found at the oxide surface as well as within the Fe, Cr oxide.
The impact of historical land use change from 1850 to 2000 on secondary particulate matter and ozone
NASA Astrophysics Data System (ADS)
Heald, Colette L.; Geddes, Jeffrey A.
2016-12-01
Anthropogenic land use change (LUC) since preindustrial (1850) has altered the vegetation distribution and density around the world. We use a global model (GEOS-Chem) to assess the attendant changes in surface air quality and the direct radiative forcing (DRF). We focus our analysis on secondary particulate matter and tropospheric ozone formation. The general trend of expansion of managed ecosystems (croplands and pasturelands) at the expense of natural ecosystems has led to an 11 % decline in global mean biogenic volatile organic compound emissions. Concomitant growth in agricultural activity has more than doubled ammonia emissions and increased emissions of nitrogen oxides from soils by more than 50 %. Conversion to croplands has also led to a widespread increase in ozone dry deposition velocity. Together these changes in biosphere-atmosphere exchange have led to a 14 % global mean increase in biogenic secondary organic aerosol (BSOA) surface concentrations, a doubling of surface aerosol nitrate concentrations, and local changes in surface ozone of up to 8.5 ppb. We assess a global mean LUC-DRF of +0.017, -0.071, and -0.01 W m-2 for BSOA, nitrate, and tropospheric ozone, respectively. We conclude that the DRF and the perturbations in surface air quality associated with LUC (and the associated changes in agricultural emissions) are substantial and should be considered alongside changes in anthropogenic emissions and climate feedbacks in chemistry-climate studies.
A meta-analysis and statistical modelling of nitrates in groundwater at the African scale
NASA Astrophysics Data System (ADS)
Ouedraogo, Issoufou; Vanclooster, Marnik
2016-06-01
Contamination of groundwater with nitrate poses a major health risk to millions of people around Africa. Assessing the space-time distribution of this contamination, as well as understanding the factors that explain this contamination, is important for managing sustainable drinking water at the regional scale. This study aims to assess the variables that contribute to nitrate pollution in groundwater at the African scale by statistical modelling. We compiled a literature database of nitrate concentration in groundwater (around 250 studies) and combined it with digital maps of physical attributes such as soil, geology, climate, hydrogeology, and anthropogenic data for statistical model development. The maximum, medium, and minimum observed nitrate concentrations were analysed. In total, 13 explanatory variables were screened to explain observed nitrate pollution in groundwater. For the mean nitrate concentration, four variables are retained in the statistical explanatory model: (1) depth to groundwater (shallow groundwater, typically < 50 m); (2) recharge rate; (3) aquifer type; and (4) population density. The first three variables represent intrinsic vulnerability of groundwater systems to pollution, while the latter variable is a proxy for anthropogenic pollution pressure. The model explains 65 % of the variation of mean nitrate contamination in groundwater at the African scale. Using the same proxy information, we could develop a statistical model for the maximum nitrate concentrations that explains 42 % of the nitrate variation. For the maximum concentrations, other environmental attributes such as soil type, slope, rainfall, climate class, and region type improve the prediction of maximum nitrate concentrations at the African scale. As to minimal nitrate concentrations, in the absence of normal distribution assumptions of the data set, we do not develop a statistical model for these data. The data-based statistical model presented here represents an important step towards developing tools that will allow us to accurately predict nitrate distribution at the African scale and thus may support groundwater monitoring and water management that aims to protect groundwater systems. Yet they should be further refined and validated when more detailed and harmonized data become available and/or combined with more conceptual descriptions of the fate of nutrients in the hydrosystem.
NASA Technical Reports Server (NTRS)
Summers, David P.; DeVincenzi, Donald (Technical Monitor)
2000-01-01
FeS reduces nitrite to, ammonia at pHs lower than the corresponding reduction by aqueous Fe+2. The reduction follows a reasonable first order decay, in nitrite concentration, with a half life of about 150 min (room temperature, CO2, pH 6.25). The highest ammonia product yield measured was 53%. Under CO2, the product yield decreases from pH 5.0 to pH 6.9. The increasing concentration of bicarbonate at higher pH interferes with the reaction. Bicarbonate interference is shown by comparing runs under N2 and CO2. The reaction proceeds well in the presence of such species as chloride, sulfate, and phosphate though the yield drops significantly with phosphate. FeS also reduces nitrate and, unlike with Fe+2, the reduction shows more reproducibility. Again, the product yield decreases with increasing pH, from 7% at pH 4.7 to 0% at pH 6.9. It appears as if nitrate is much more sensitive to the presence of added species, perhaps not competing as well for binding sites on the FeS surface. This may be the cause of the lack of reproducibility of nitrate reduction by Fe+2 (which also can be sensitive to binding by certain species).
Molybdenum Availability Is Key to Nitrate Removal in Contaminated Groundwater Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorgersen, Michael P.; Lancaster, W. Andrew; Vaccaro, Brian J.
2015-05-15
The concentrations of molybdenum (Mo) and 25 other metals were measured in groundwater samples from 80 wells on the Oak Ridge Reservation (ORR) (Oak Ridge, TN), many of which are contaminated with nitrate, as well as uranium and various other metals. Moreover, the concentrations of nitrate and uranium were in the ranges of 0.1 μM to 230 mM and <0.2 nM to 580 μM, respectively. Most metals examined had significantly greater median concentrations in a subset of wells that were highly contaminated with uranium (≥126 nM). They included cadmium, manganese, and cobalt, which were 1,300- to 2,700-fold higher. A notablemore » exception, however, was Mo, which had a lower median concentration in the uranium-contaminated wells. This is significant, because Mo is essential in the dissimilatory nitrate reduction branch of the global nitrogen cycle. It is required at the catalytic site of nitrate reductase, the enzyme that reduces nitrate to nitrite. Furthermore, more than 85% of the groundwater samples contained less than 10 nM Mo, whereas concentrations of 10 to 100 nM Mo were required for efficient growth by nitrate reduction for twoPseudomonasstrains isolated from ORR wells and by a model denitrifier,Pseudomonas stutzeriRCH2. Higher concentrations of Mo tended to inhibit the growth of these strains due to the accumulation of toxic concentrations of nitrite, and this effect was exacerbated at high nitrate concentrations. The relevance of these results to a Mo-based nitrate removal strategy and the potential community-driving role that Mo plays in contaminated environments are discussed.« less
NASA Astrophysics Data System (ADS)
Linhoff, B.; Norton, S.; Travis, R.; Romero, Z.; Waters, B.
2017-12-01
Nitrate contamination of groundwater is a major problem globally including within the Albuquerque Basin in New Mexico. Ingesting high concentrations of nitrate (> 10 mg/L as N) can lead to an increased risk of cancer and to methemoglobinemia in infants. Numerous anthropogenic sources of nitrate have been identified within the Albuquerque Basin including fertilizers, landfills, multiple sewer pipe releases, sewer lagoons, domestic septic leach fields, and a nitric acid line outfall. Furthermore, groundwater near ephemeral streams often exhibits elevated NO3 concentrations and high NO3/Cl ratios incongruous with an anthropogenic source. These results suggest that NO3 can be concentrated through evaporation beneath ephemeral streams and mobilized via irrigation or land use change. This study seeks to use extensive geochemical analyses of groundwater and surface water to differentiate between various sources of NO3 contamination. The U.S. Geological Survey collected 54 groundwater samples from wells and six samples from ephemeral streams from within and from outside of areas of known nitrate contamination. To fingerprint the sources of nitrate pollution, samples were analyzed for major ions, trace metals, nutrients, dissolved gases, δ15N and δ18O in NO3, δ15N within N2 gas, and, δ2H and δ18O in H2O. Furthermore, most sites were sampled for artificial sweeteners and numerous contaminants of emerging concern including pharmaceutical drugs, caffeine, and wastewater indicators. This study will also investigate the age distribution of groundwater and the approximate age of anthropogenic NO3 contamination using 3He/4He, δ13C, 14C, 3H, as well as pharmaceutical drugs and artificial sweeteners with known patent and U.S. Food and Drug Administration approval dates. This broad suite of analytes will be used to differentiate between naturally occurring and multiple anthropogenic NO3 sources, and to potentially determine the approximate date of NO3 contamination.
INCA Modelling of the Lee System: strategies for the reduction of nitrogen loads
NASA Astrophysics Data System (ADS)
Flynn, N. J.; Paddison, T.; Whitehead, P. G.
The Integrated Nitrogen Catchment model (INCA) was applied successfully to simulate nitrogen concentrations in the River Lee, a northern tributary of the River Thames for 1995-1999. Leaching from urban and agricultural areas was found to control nitrogen dynamics in reaches unaffected by effluent discharges and abstractions; the occurrence of minimal flows resulted in an upward trend in nitrate concentration. Sewage treatment works (STW) discharging into the River Lee raised nitrate concentrations substantially, a problem which was compounded by abstractions in the Lower Lee. The average concentration of nitrate (NO3) for the simulation period 1995-96 was 7.87 mg N l-1. Ammonium (NH4) concentrations were simulated less successfully. However, concentrations of ammonium rarely rose to levels which would be of environmental concern. Scenarios were run through INCA to assess strategies for the reduction of nitrate concentrations in the catchment. The conversion of arable land to ungrazed vegetation or to woodland would reduce nitrate concentrations substantially, whilst inclusion of riparian buffer strips would be unsuccessful in reducing nitrate loading. A 50% reduction in nitrate loading from Luton STW would result in a fall of up to 5 mg N l-1 in the reach directly affected (concentrations fell from maxima of 13 to 8 mg N l-1 , nearly a 40 % reduction), whilst a 20% reduction in abstractions would reduce maximum peaks in concentration in the lower Lee by up to 4 mg l-1 (from 17 to 13 mg N l-1, nearly a 25 % reduction),.
Biological denitrification of high concentration nitrate waste
Francis, Chester W.; Brinkley, Frank S.
1977-01-01
Biological denitrification of nitrate solutions at concentrations of greater than one kilogram nitrate per cubic meter is accomplished anaerobically in an upflow column having as a packing material a support for denitrifying bacteria.
Williams, Marshall L.
2014-01-01
Mountain Home Air Force Base in southwestern Idaho draws most of its drinking water from the regional aquifer. The base is located within the State of Idaho's Mountain Home Groundwater Management Area and is adjacent to the State's Cinder Cone Butte Critical Groundwater Area. Both areas were established by the Idaho Department of Water Resources in the early 1980s because of declining water levels in the regional aquifer. The base also is listed by the Idaho Department of Environmental Quality as a nitrate priority area. The U.S. Geological Survey, in cooperation with the U.S. Air Force, began monitoring wells on the base in 1985, and currently monitors 25 wells for water levels and 17 wells for water quality, primarily nutrients. This report provides a summary of water-level and nitrate concentration data collected primarily between 2001 and 2013 and examines trends in those data. A Regional Kendall Test was run to combine results from all wells to determine an overall regional trend in water level. Groundwater levels declined at an average rate of about 1.08 feet per year. Nitrate concentration trends show that 3 wells (18 percent) are increasing in nitrate concentration trend, 3 wells (18 percent) show a decreasing nitrate concentration trend, and 11 wells (64 percent) show no nitrate concentration trend. Six wells (35 percent) currently exceed the U.S. Environmental Protection Agency's maximum contaminant limit of 10 milligrams per liter for nitrate (nitrite plus nitrate, measured as nitrogen).
Furlan, Isabella Spinardi; Bridi, Enrico Coser; Amaral, Flávia Lucisano Botelho do; França, Fabiana Mantovani Gomes; Turssi, Cecilia Pedroso; Basting, Roberta Tarkany
2017-01-01
The aim of this in vitro study was to evaluate enamel microhardness following bleaching treatments using either high- or low-concentration hydrogen peroxide (HP) agents containing calcium and/or fluoride. Sixty enamel blocks were bleached with 1 of 6 different bleaching agents (n = 10). The high-concentration HP agents were Whiteness HP Maxx (35% HP), Whiteness HP Blue (35% HP, 2% calcium gluconate), Pola Office+ (37.5% HP, 5% potassium nitrate), and Opalescence Boost (38% HP, 1.1% fluoride ion, 3% potassium nitrate). The low-concentration HP agents evaluated were Pola Day (9.5% HP) and White Class (10% HP, potassium nitrate, calcium, fluoride). High-concentration agents were applied in 3 sessions, whereas low-concentration agents were applied for 14 days. Knoop microhardness measurements were taken on the surface of the enamel before bleaching, at various timepoints during bleaching, and 14 days after the final bleaching treatment. The 2-way analysis of variance test showed that microhardness values were significantly influenced by the bleaching agent (P < 0.001) and application time (P < 0.001). The Tukey test showed that enamel bleached with Whiteness HP Maxx or White Class presented lower microhardness values than did the enamel treated with the remaining products. There was a reduction in micro-hardness values up to the end of the treatment. The results showed that the composition, concentration, and application protocol for each bleaching agent influenced the enamel microhardness values in that the microhardness decreased over time, regardless of the agent used or the addition of calcium and/or fluoride.
Clow, David W.; Nanus, Leora; Huggett, Brian
2010-01-01
An abundance of exposed bedrock, sparse soil and vegetation, and fast hydrologic flushing rates make aquatic ecosystems in Yosemite National Park susceptible to nutrient enrichment and episodic acidification due to atmospheric deposition of nitrogen (N) and sulfur (S). In this study, multiple linear regression (MLR) models were created to estimate fall‐season nitrate and acid neutralizing capacity (ANC) in surface water in Yosemite wilderness. Input data included estimated winter N deposition, fall‐season surface‐water chemistry measurements at 52 sites, and basin characteristics derived from geographic information system layers of topography, geology, and vegetation. The MLR models accounted for 84% and 70% of the variance in surface‐water nitrate and ANC, respectively. Explanatory variables (and the sign of their coefficients) for nitrate included elevation (positive) and the abundance of neoglacial and talus deposits (positive), unvegetated terrain (positive), alluvium (negative), and riparian (negative) areas in the basins. Explanatory variables for ANC included basin area (positive) and the abundance of metamorphic rocks (positive), unvegetated terrain (negative), water (negative), and winter N deposition (negative) in the basins. The MLR equations were applied to 1407 stream reaches delineated in the National Hydrography Data Set for Yosemite, and maps of predicted surface‐water nitrate and ANC concentrations were created. Predicted surface‐water nitrate concentrations were highest in small, high‐elevation cirques, and concentrations declined downstream. Predicted ANC concentrations showed the opposite pattern, except in high‐elevation areas underlain by metamorphic rocks along the Sierran Crest, which had relatively high predicted ANC (>200 μeq L−1). Maps were created to show where basin characteristics predispose aquatic resources to nutrient enrichment and acidification effects from N and S deposition. The maps can be used to help guide development of water‐quality programs designed to monitor and protect natural resources in national parks.
Response of humic acid formation to elevated nitrate during chicken manure composting.
Shi, Mingzi; Wei, Zimin; Wang, Liqin; Wu, Junqiu; Zhang, Duoying; Wei, Dan; Tang, Yu; Zhao, Yue
2018-06-01
Nitrate can stimulate microbes to degrade aromatic compounds, whereas humic acid (HA) as a high molecular weight aromatic compound, its formation may be affected by elevated nitrate during composting. Therefore, this study is conducted to determine the effect of elevated nitrate on HA formation. Five tests were executed by adding different nitrate concentrations to chicken manure composting. Results demonstrate that the concentration of HA in treatment group is significantly decreased compared with control group (p < 0.05), especially in the highest nitrate concentration group. RDA indicates that the microbes associated with HA and environmental parameters are influenced by elevated nitrate. Furthermore, structural equation model reveals that elevated nitrate reduces HA formation by mediating microbes directly, or by affecting ammonia and pH as the indirect drivers to regulate microbial community structure. Copyright © 2018 Elsevier Ltd. All rights reserved.
Burow, Karen R.; Shelton, Jennifer L.; Dubrovsky, Neil M.
1998-01-01
The processes that affect nitrate and pesticide occurrence may be better understood by relating ground-water quality to natural and human factors in the context of distinct, regionally extensive, land- use settings. This study assesses nitrate and pesticide occurrence in ground water beneath three agricultural land-use settings in the eastern San Joaquin Valley, California. Water samples were collected from 60 domestic wells in vineyard, almond, and a crop grouping of corn, alfalfa, and vegetable land-use settings. Each well was sampled once during 1993?1995. This study is one element of the U.S. Geological Survey?s National Water-Quality Assessment Program, which is designed to assess the status of, and trends in, the quality of the nation?s ground- and surface-water resources and to link the status and trends with an understanding of the natural and human factors that affect the quality of water. The concentrations and occurrence of nitrate and pesticides in ground-water samples from domestic wells in the eastern alluvial fan physiographic region were related to differences in chemical applica- tions and to the physical and biogeochemical processes that charac- terize each of the three land-use settings. Ground water beneath the vineyard and almond land-use settings on the coarse-grained, upper and middle parts of the alluvial fans is more vulnerable to nonpoint- source agricultural contamination than is the ground water beneath the corn, alfalfa, and vegetable land-use setting on the lower part of the fans, near the basin physiographic region. Nitrate concentrations ranged from less than 0.05 to 55 milligrams per liter, as nitrogen. Nitrate concentrations were significantly higher in the almond land-use setting than in the vineyard land-use setting, whereas concentrations in the corn, alfalfa, and vegetable land-use setting were intermediate. Nitrate concentrations exceeded the maximum contaminant level in eight samples from the almond land- use setting (40 percent), in seven samples from the corn, alfalfa, and vegetable land-use setting (35 percent), and in three samples from the vineyard land-use setting (15 percent). The physical and chemical characteristics of the vineyard and the almond land-use settings are similar, characterized by coarse-grained sediments and high dissolved- oxygen concentrations, reflecting processes that promote rapid infiltration of water and solutes. The high nitrate concentrations in the almond land-use setting reflect the high amount of nitrogen appli- cations in this setting, whereas the low nitrate concentrations in the vineyard land-use setting reflect relatively low nitrogen applications. In the corn, alfalfa, and vegetable land-use setting, the relatively fine-grained sediments, and low dissolved-oxygen concentrations, reflect processes that result in slow infiltration rates and longer ground-water residence times. The intermediate nitrate concentrations in the corn, alfalfa, and vegetable land-use setting are a result of these physical and chemical characteristics, combined with generally high (but variable) nitrogen applications. Twenty-three different pesticides were detected in 41 of 60 ground- water samples (68 percent). Eighty percent of the ground-water samples from the vineyard land-use setting had at least one pesticide detection, followed by 70 percent in the almond land-use setting, and 55 percent in the corn, alfalfa, and vegetable land-use setting. All concentra- tions were less than state or federal maximum contaminant levels only 5 of the detected pesticides have established maximum contaminant levels) with the exception of 1,2-dibromo-3-chloropropane, which exceeded the maximum contaminant level of 0.2 micrograms per liter in 10 ground-water samples from vineyard land-use wells and in 5 ground- water samples from almond land-use wells. Simazine was detected most often, occurring in 50 percent of the ground-water samples from the vineyard land-use wells and in 30 percent
Steele, G.V.; Cannia, J.C.
1997-01-01
In 1993, the U.S. Geological Survey and the North Platte Natural Resources District began a 3-year study to determine the geohydrology and water quality of the North Platte River alluvial aquifer near Oshkosh, Garden County, Nebraska. The objectives of the study were to determine the geohydrologic properties of the North Platte River alluvial aquifer, to establish a well network for long- term monitoring of concentrations of agricultural chemicals including nitrate and herbicides, and to establish baseline concentrations of major ions in the ground water. To meet these objectives, monitor wells were installed at 11 sites near Oshkosh. The geohydrologic properties of the aquifer were estimated from water-level measurements at selected irrigation wells located in the study area and short- term constant-discharge aquifer tests at two monitor wells. Water samples were collected bimonthly and analyzed for specific conductance, pH, water temperature, dissolved oxygen, and nutrients including dissolved nitrate. Samples were collected semiannually for analysis of major ions, and annually for triazine and acetamide herbicides. Evaluation of the aquifer-test data indicates the hydraulic conductivities of the North Platte River alluvial aquifer range between 169 and 184 feet per day and transmissivities ranged from 12,700 to 26,700 feet-squared per day. The average specific yield for the alluvial aquifer, based on the two aquifer tests, was 0.2. Additional hydrologic data for the alluvial aquifer include a horizontal gradient of about 0.002 foot per foot and estimated ground- water flow velocities of about 0.1 to 1.8 feet per day. Evaluation of the water-quality data indicates that nitrate concentrations exceed the U.S. Environmental Protection Agency's (USEPA) Maximum Contamination Level of 10 milligrams per liter for drinking water in areas to the east and west of Oshkosh. In these areas, nitrate concentrations generally are continuing to rise. West of Oshkosh the highest concentrations are now exceeding 50 milligrams per liter. With the exception of one sample, nitrate concentrations exceeding the Maximum Contamination Level were not detected in three wells used to monitor the ground water flowing into and out of the study area, nor in a monitor well located near a municipal well. Results of the study also indicate that an influx of water from Lost Creek Valley, north of the study area, may be mixing with ground water near Oshkosh and diluting concentrations of nitrate.
NASA Astrophysics Data System (ADS)
Sigler, W. A.; Ewing, S. A.; Payn, R. A.; Jones, C. A.; Brookshire, J.; Klassen, J. K.; Jackson-Smith, D.; Weissmann, G. S.
2016-12-01
Shallow aquifers impaired by nitrate from agriculture are widespread and remediation or prevention of this problem requires understanding of N leaching rates at a variety of spatial scales. Characterization of the drivers of nitrate leaching at an intermediate scale (103 to 105 ha) is needed to bridge from field scale observations to the landscape-scale context, allowing informed water resource management decisions. Here we explore patterns in nitrate leaching rates across a depositional landform with a predominant land use of non-irrigated small grain production in the Northern Great Plains within the Upper Missouri Basin. The shallow Moccasin terrace (260,000 ha) aquifer is bounded in vertical extent by underlying shale and is isolated from mountain front stream recharge, such that aquifer recharge is dominated by infiltration of precipitation through agricultural soils. We leverage this simplified landform scale water balance to estimate leaching rates using groundwater nitrate concentrations and surface water discharge, and quantify uncertainty using a Monte Carlo approach based on spatial variation in groundwater nitrate concentrations. Landform-scale nitrate-N leaching rates ranged between 10 and 24 kg ha-1 yr-1 during 2012-2014 across two terrace catchments. These rates represent 11 to 27% of fertilizer application rates but are likely derived from a combination of soil organic N mineralization and direct fertilizer loss. While groundwater apparent age is relatively young (0-5 y) based on tritium-helium analysis, whole-aquifer turnover time calculations are an order of magnitude longer (20-23 y), suggesting aquifer heterogeneity and thus a longer potential response time to management changes than suggested by tracer-based aging. We collaborated with local producers to undertake this work, and discussed our results with community members throughout the study. Based on a follow-up survey, producers are now more likely to consider nitrate leaching when making management decisions, suggesting that location-specific producer engagement can facilitate practical solutions to non-point source water quality issues.
Kim, Jonathan J; Comstock, Jeff; Ryan, Peter; Heindel, Craig; Koenigsberger, Stephan
2016-11-01
In 2000, elevated nitrate concentrations ranging from 12 to 34mg/L NO3N were discovered in groundwater from numerous domestic bedrock wells adjacent to a large dairy farm in central Vermont. Long-term plots and contours of nitrate vs. time for bedrock wells showed "little/no", "moderate", and "large" change patterns that were spatially separable. The metasedimentary bedrock aquifer is strongly anisotropic and groundwater flow is controlled by fractures, bedding/foliation, and basins and ridges in the bedrock surface. Integration of the nitrate concentration vs. time data and the physical and chemical aquifer characterization suggest two nitrate sources: a point source emanating from a waste ravine and a non-point source that encompasses the surrounding fields. Once removed, the point source of NO3 (manure deposited in a ravine) was exhausted and NO3 dropped from 34mg/L to <10mg/L after ~10years; however, persistence of NO3 in the 3 to 8mg/L range (background) reflects the long term flux of nitrates from nutrients applied to the farm fields surrounding the ravine over the years predating and including this study. Inferred groundwater flow rates from the waste ravine to either moderate change wells in basin 2 or to the shallow bedrock zone beneath the large change wells are 0.05m/day, well within published bedrock aquifer flow rates. Enrichment of (15)N and (18)O in nitrate is consistent with lithotrophic denitrification of NO3 in the presence of dissolved Mn and Fe. Once the ravine point-source was removed, denitrification and dilution collectively were responsible for the down-gradient decrease of nitrate in this bedrock aquifer. Denitrification was most influential when NO3N was >10mg/L. Our multidisciplinary methods of aquifer characterization are applicable to groundwater contamination in any complexly-deformed and metamorphosed bedrock aquifer. Copyright © 2016 Elsevier B.V. All rights reserved.
Su, Yiming; Zhang, Yalei; Zhou, Xuefei; Jiang, Ming
2013-09-01
This laboratory research investigated a possible cause of filamentous bulking under low level of dissolved oxygen conditions (dissolved oxygen value in aerobic zone maintained between 0.6-0.8 mg O2/L) in an airlift inner-circular anoxic-aerobic reactor. During the operating period, it was observed that low nitrate concentrations affected sludge volume index significantly. Unlike the existing hypothesis, the batch tests indicated that filamentous bacteria (mainly Thiothrix sp.) could store nitrate temporarily under carbon restricted conditions. When nitrate concentration was below 4 mg/L, low levels of carbon substrates and dissolved oxygen in the aerobic zone stimulated the nitrate-storing capacity of filaments. When filamentous bacteria riched in nitrate reached the anoxic zone, where they were exposed to high levels of carbon but limited nitrate, they underwent denitrification. However, when nonfilamentous bacteria were exposed to similar conditions, denitrification was restrained due to their intrinsic nitrate limitation. Hence, in order to avoid filamentous bulking, the nitrate concentration in the return sludge (from aerobic zone to the anoxic zone) should be above 4 mg/L, or alternatively, the nitrate load in the anoxic zone should be kept at levels above 2.7 mg NO(3-)-N/g SS.
Warner, Debbie; Lawrence, Stephen J.
2005-01-01
During 1997, the Dougherty County Health Department sampled more than 700 wells completed in the Upper Floridan aquifer in Dougherty County, Georgia, and determined that nitrate as nitrogen (hereinafter called nitrate) concentrations were above 10 milligrams per liter (mg/L) in 12 percent of the wells. Ten mg/L is the Georgia primary drinking-water standard. The ground-water flow system is complex and poorly understood in this predominantly agricultural area. Therefore, the U.S. Geological Survey (USGS) - in cooperation with Albany Water, Gas and Light Commission - conducted a study to better define ground-water flow and water quality in the Upper Florida aquifer in the southwestern Albany area, Georgia. Ground-water levels were measured in the southwestern Albany area, Georgia, during May 1998 and March 1999 (spring), and October 1998 and September 1999 (fall). Groundwater levels measured in 75 wells open only to the Upper Floridan aquifer were used to construct potentiometric-surface maps for those four time periods. These maps show that ground water generally flows from northwest to southeast at gradients ranging from about 2 to greater than 10 feet per mile. During spring and fall 1998, ground-water levels were high and mounding of the potentiometric surface occurred in the central part of the study area, indicating a local recharge area. Water levels declined from December through February, and by March 1999 the mound in the potentiometric surface had dissipated. Of the 75 wells in the potentiometric network, 24 were selected for a water-quality network. These 24 wells and 1 spring were sampled during fall 1998 and spring 1999. Samples were analyzed for major chemical constituents, selected minor constituents, selected nutrients, and chlorofluorocarbons (CFC). Water-quality field measurements - such as water temperature, pH, specific conductance (SC), and dissolved oxygen (DO) - were taken at each well. During August 2000, a ground-water sample was collected and analyzed for selected sewage tracers. During March 2001, water samples from selected wells were analyzed for nitrogen and oxygen isotopes. Age-dating analysis using CFCs yield apparent groundwater ages that range from modern to greater than 50 years. The chemistry of ground water in the Upper Floridan aquifer varies widely throughout the southwestern Albany area, Georgia, and in general represents the chemistry commonly found in recharge areas. From fall 1998 through spring 1999, median values of pH, SC, and DO concentration were 7.6 standard units, 266 microsiemens per centimeter at 25 degrees Celsius (uS/cm), and 5.6 mg/L, respectively. The SC is highest (350 - 400 uS/cm) where mounding of the potentiometric surface exists. Specific DO concentrations indicate an area of anoxic ground water in the north-central part of the study area. Water samples indicate that ground water in the study area is dominated by calcium and bicarbonate ions, which is consistent with the limestone lithology of the aquifer. About 25 percent of the samples contained sodium and chloride at ratios similar to those in rainfall, indicating a close proximity to recharge areas. The remaining water samples, however, had sodiumchloride ratios less than 0.90, the ratio in Tift County, Georgia, rainfall samples. These low sodium-chloride ratios are consistent with chloride enrichment. Minor constituent and nutrient concentrations typically are below laboratory reporting limits; however, the maximum nitrate concentration measured during the study period was 12.2 mg/L, and the median concentration for the study period was 3.0 mg/L. Samples collected during 1999 had a higher median nitrate concentration than the 1998 samples. Regression analysis indicated that nitrate concentrations are related exponentially to chloride concentrations. Four distinct groups of ground-water-quality samples, plus four unique samples, were identified using cluster analysis. Water-quality groups I and
Burow, Karen R.; Jurgens, Bryant C.; Belitz, Kenneth; Dubrovsky, Neil M.
2013-01-01
A regional assessment of multi-decadal changes in nitrate concentrations was done using historical data and a spatially stratified non-biased approach. Data were stratified into physiographic subregions on the basis of geomorphology and soils data to represent zones of historical recharge and discharge patterns in the basin. Data were also stratified by depth to represent a shallow zone generally representing domestic drinking-water supplies and a deep zone generally representing public drinking-water supplies. These stratifications were designed to characterize the regional extent of groundwater with common redox and age characteristics, two factors expected to influence changes in nitrate concentrations over time. Overall, increasing trends in nitrate concentrations and the proportion of nitrate concentrations above 5 mg/L were observed in the east fans subregion of the Central Valley. Whereas the west fans subregion has elevated nitrate concentrations, temporal trends were not detected, likely due to the heterogeneous nature of the water quality in this area and geologic sources of nitrate, combined with sparse and uneven data coverage. Generally low nitrate concentrations in the basin subregion are consistent with reduced geochemical conditions resulting from low permeability soils and higher organic content, reflecting the distal portions of alluvial fans and historical groundwater discharge areas. Very small increases in the shallow aquifer in the basin subregion may reflect downgradient movement of high nitrate groundwater from adjacent areas or overlying intensive agricultural inputs. Because of the general lack of regionally extensive long-term monitoring networks, the results from this study highlight the importance of placing studies of trends in water quality into regional context. Earlier work concluded that nitrate concentrations were steadily increasing over time in the eastern San Joaquin Valley, but clearly those trends do not apply to other physiographic subregions within the Central Valley, even where land use and climate are similar.
Regional trends in aquatic recovery from acidification in North America and Europe
Stoddard, J.L.; Jeffries, D.S.; Lukewille, A.; Clair, T.A.; Dillon, P.J.; Driscoll, C.T.; Forsius, M.; Johannessen, M.; Kahl, J.S.; Kellogg, J.H.; Kemp, A.; Mannlo, J.; Monteith, D.T.; Murdoch, Peter S.; Patrick, S.; Rebsdorl, A.; Skjelkvale, B.L.; Stainton, M.P.; Traaen, T.; Van Dam, H.; Webster, K.E.; Wleting, J.; Wllander, A.
1999-01-01
Rates of acidic deposition from the atmosphere ('acid rain') have decreased throughout the 1980s and 1990s across large portions of North America and Europe. Many recent studies have attributed observed reversals in surface-water acidification at national and regional scales to the declining deposition. To test whether emissions regulations have led to widespread recovery in surface-water chemistry, we analysed regional trends between 1980 and 1995 in indicators of acidification (sulphate, nitrate and base-cation concentrations, and measured (Gran) alkalinity) for 205 lakes and streams in eight regions of North America and Europe. Dramatic differences in trend direction and strength for the two decades are apparent. In concordance with general temporal trends in acidic deposition, lake and stream sulphate concentrations decreased in all regions with the exception of Great Britain all but one of these regions exhibited stronger downward trends in the 1990s than in the 1980s. In contrast, regional declines in lake and stream nitrate concentrations were rare and, when detected, were very small. Recovery in alkalinity, expected wherever strong regional declines in sulphate concentrations have occurred, was observed in all regions of Europe, especially in the 1990s, but in only one region (of five) in North America. We attribute the lack of recovery in three regions (south/central Ontario, the Adirondack/Catskill mountains and midwestern North America) to strong regional declines in base-cation concentrations that exceed the decreases in sulphate concentrations.
Liao, Qiang; Sun, Yahui; Huang, Yun; Xia, Ao; Fu, Qian; Zhu, Xun
2017-11-01
Interval between adjacent planar waveguides and light intensity emitted from waveguide surface were the primary two factors affecting light distribution characteristics in the planar waveguide flat-plate photobioreactor (PW-PBR). In this paper, the synergy effect between light and nitrate in the PW-PBR was realized to simultaneously enhance microalgae growth and lipid accumulation. Under an interval of 10mm between adjacent planar waveguides, 100% of microalgae cells in regions between adjacent waveguides could be illuminated. Chlorella vulgaris growth and lipid accumulation were synchronously elevated as light intensities emitted from planar waveguide surface increasing. With an identical initial nitrate concentration of 18mM, the maximum lipid content (41.66% in dry biomass) and lipid yield (2200.25mgL -1 ) were attained under 560μmolm -2 s -1 , which were 86.82% and 133.56% higher relative to those obtained under 160μmolm -2 s -1 , respectively. The PW-PBR provides a promising way for microalgae lipid production. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Photodegradation of UV filter PABA in nitrate solution].
Meng, Cui; Ji, Yue-Fei; Zeng, Chao; Yang, Xi
2011-09-01
The aqueous photolysis of a UV filter p-aminobenzoic acid (PABA) using Xe lamp as simulated solar irradiation source was investigated in the presence of nitrate ions. The effects of pH, concentration of nitrate ions and concentration of humic substance in natural water on the photodegradation of PABA were studied. The results showed that photodegradation of PABA in nitrate solution followed the first order kinetics. The increasing concentration of nitrate ion increased favored the photodegradaton of PABA, of which the first order constant increased from 0.002 2 min(-10 to 0.017 9 min(-1). The photodegradation of PABA promoted with the increase of pH while the increasing concentration of humic substance showed inhibiting effect. Hydroxyl radicals determined by the molecular probe method played a very importnant role in the photolysis process of PABA. Photoproducts upon irradiation of PABA in nitrate solution were isolated by means of solid-phase extraction (SPE) and identified by LC-MS techniques. The probable photoinduced degradation pathways in nitrate solution were proposed.
Lovley, D.R.; Goodwin, S.
1988-01-01
Factors controlling the concentration of dissolved hydrogen gas in anaerobic sedimentary environments were investigated. Results, presented here or previously, demonstrated that, in sediments, only microorganisms catalyze the oxidation of H2 coupled to the reduction of nitrate, Mn(IV), Fe(III), sulfate, or carbon dioxide. Theoretical considerations suggested that, at steady-state conditions, H2 concentrations are primarily dependent upon the physiological characteristics of the microorganism(s) consuming the H2 and that organisms catalyzing H2 oxidation, with the reduction of a more electrochemically positive electron acceptor, can maintain lower H2 concentrations than organisms using electron acceptors which yield less energy from H2 oxidation. The H2 concentrations associated with the specified predominant terminal electron-accepting reactions in bottom sediments of a variety of surface water environments were: methanogenesis, 7-10 nM; sulfate reduction, 1-1.5 nM; Fe(III) reduction, 0.2 nM; Mn(IV) or nitrate reduction, less than 0.05 nM. Sediments with the same terminal electron acceptor for organic matter oxidation had comparable H2 concentrations, despite variations in the rate of organic matter decomposition, pH, and salinity. Thus, each terminal electron-accepting reaction had a unique range of steady-state H2 concentrations associated with it. Preliminary studies in a coastal plain aquifer indicated that H2 concentrations also vary in response to changes in the predominant terminal electron-accepting process in deep subsurface environments. These studies suggest that H2 measurements may aid in determining which terminal electron-accepting reactions are taking place in surface and subsurface sedimentary environments. ?? 1988.
Montenegro, Marcelo F; Sundqvist, Michaela L; Nihlén, Carina; Hezel, Michael; Carlström, Mattias; Weitzberg, Eddie; Lundberg, Jon O
2016-12-01
In humans dietary circulating nitrate accumulates rapidly in saliva through active transport in the salivary glands. By this mechanism resulting salivary nitrate concentrations are 10-20 times higher than in plasma. In the oral cavity nitrate is reduced by commensal bacteria to nitrite, which is subsequently swallowed and further metabolized to nitric oxide (NO) and other bioactive nitrogen oxides in blood and tissues. This entero-salivary circulation of nitrate is central in the various NO-like effects observed after ingestion of inorganic nitrate. The very same system has also been the focus of toxicologists studying potential carcinogenic effects of nitrite-dependent nitrosamine formation. Whether active transport of nitrate and accumulation in saliva occurs also in rodents is not entirely clear. Here we measured salivary and plasma levels of nitrate and nitrite in humans, rats and mice after administration of a standardized dose of nitrate. After oral (humans) or intraperitoneal (rodents) sodium nitrate administration (0.1mmol/kg), plasma nitrate levels increased markedly reaching ~300µM in all three species. In humans ingestion of nitrate was followed by a rapid increase in salivary nitrate to >6000µM, ie 20 times higher than those found in plasma. In contrast, in rats and mice salivary nitrate concentrations never exceeded the levels in plasma. Nitrite levels in saliva and plasma followed a similar pattern, ie marked increases in humans but modest elevations in rodents. In mice there was also no accumulation of nitrate in the salivary glands as measured directly in whole glands obtained after acute administration of nitrate. This study suggests that in contrast to humans, rats and mice do not actively concentrate circulating nitrate in saliva. These apparent species differences should be taken into consideration when studying the nitrate-nitrite-nitric oxide pathway in rodents, when calculating doses, exploring physiological, therapeutic and toxicological effects and comparing with human data. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Boyd, Robert A.
2001-01-01
Water samples collected from the alluvium indicated ground water can be classified as a calcium-magnesium-bicarbonate type. Reducing conditions likely occur in some localized areas of the alluvium, as suggested by relatively large concentrations of dissolved iron (4,390 micrograms per liter) and manganese (2, 430 micrograms per liter) in some ground-water samples. Nitrite plus nitrate was detected at concentrations greater than or equal to 8 milligrams per liter in three samples collected from observation wells completed in close proximity to cropland; the nitrite plus nitrate concentration in one groundwater sample exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level for nitrate in drinking water (10 milligrams per liter as N). Triazine herbicides (atrazine, cyanazine, propazine, simazine, and selected degradation products) and chloroacetanilide herbicides (acetochlor, alachlor, and metolachlor) were detected in some water samples. A greater number of herbicide compounds were detected in surface-water samples than in ground-water samples. Herbicide concentrations typically were at least an order of magnitude greater in surfacewater samples than in ground-water samples. The Maximum Contaminant Level for alachlor (2 micrograms per liter) was exceeded in a sample from Dry Branch Creek at Tama Road and for atrazine (3 micrograms per liter) was exceeded in samples collected from Dry Branch Creek at Tama Road and the county drainage ditch at Tama Road.
Electrospinning cellulose based nanofibers for sensor applications
NASA Astrophysics Data System (ADS)
Nartker, Steven
2009-12-01
Bacterial pathogens have recently become a serious threat to the food and water supply. A biosensor based on an electrochemical immunoassay has been developed for detecting food borne pathogens, such as Escherichia coli (E. coli) O157:H7. These sensors consist of several materials including, cellulose, cellulose nitrate, polyaniline and glass fibers. The current sensors have not been optimized in terms of microscale architecture and materials. The major problem associated with the current sensors is the limited concentration range of pathogens that provides a linear response on the concentration conductivity chart. Electrospinning is a process that can be used to create a patterned fiber mat design that will increase the linear range and lower the detection limit of these sensors by improving the microscale architecture. Using the electrospinning process to produce novel mats of cellulose nitrate will offer improved surface area, and the cellulose nitrate can be treated to further improve chemical interactions required for sensor activity. The macro and micro architecture of the sensor is critical to the performance of the sensors. Electrospinning technology can be used to create patterned architectures of nanofibers that will enhance sensor performance. To date electrospinning of cellulose nitrate has not been performed and optimization of the electrospinning process will provide novel materials suitable for applications such as filtration and sensing. The goal of this research is to identify and elucidate the primary materials and process factors necessary to produce cellulose nitrate nanofibers using the electrospinning process that will improve the performance of biosensors. Cellulose nitrate is readily dissolved in common organic solvents such as acetone, tetrahydrofuran (THF) and N,N dimethylformamide (DMF). These solvents can be mixed with other latent solvents such as ethanol and other alcohols to provide a solvent system with good electrospinning behavior. Using cellulose nitrate in biosensor materials provides excellent antibody binding characteristics that are resistant to pH changes. Sensors will be constructed of electrospun materials and compared to existing materials. The main advantage of electrospinning fiber mats is the increased surface area, and controllable morphology, which ultimately affects biosensor performance. Characterization tools will include Environmental Scanning Electron Microscopy (ESEM), BET N2 adsorption, X-Ray Photoelectron Spectroscopy (XPS), Dynamic Mechanical Analysis (DMA) and AC impedance.
Putnam, Larry D.; Hoogestraat, Galen K.; Sawyer, J. Foster
2008-01-01
Onsite wastewater disposal systems (OWDS) are used extensively in the Black Hills of South Dakota where many of the watersheds and aquifers are characterized by fractured or solution-enhanced bedrock with thin soil cover. A study was conducted during 2006-08 to characterize water-quality effects and indicators of OWDS. Water samples were collected and analyzed for potential indicators of OWDS, including chloride, bromide, boron, nitrite plus nitrate (NO2+NO3), ammonia, major ions, nutrients, selected trace elements, isotopes of nitrate, microbiological indicators, and organic wastewater compounds (OWCs). The microbiological indicators were fecal coliforms, Escherichia coli (E. coli), enterococci, Clostridium perfringens (C. perfringens), and coliphages. Sixty ground-water sampling sites were located either downgradient from areas of dense OWDS or in background areas and included 25 monitoring wells, 34 private wells, and 1 spring. Nine surface-water sampling sites were located on selected streams and tributaries either downstream or upstream from residential development within the Precambrian setting. Sampling results were grouped by their hydrogeologic setting: alluvial, Spearfish, Minnekahta, and Precambrian. Mean downgradient dissolved NO2+NO3 concentrations in ground water for the alluvial, Spearfish, Minnekahta, and Precambrian settings were 0.734, 7.90, 8.62, and 2.25 milligrams per liter (mg/L), respectively. Mean downgradient dissolved chloride concentrations in ground water for these settings were 324, 89.6, 498, and 33.2 mg/L, respectively. Mean downgradient dissolved boron concentrations in ground water for these settings were 736, 53, 64, and 43 micrograms per liter (ug/L), respectively. Mean dissolved surface-water concentrations for NO2+NO3, chloride, and boron for downstream sites were 0.222 mg/L, 32.1 mg/L, and 28 ug/L, respectively. Mean values of delta-15N and delta-18O (isotope ratios of 14N to 15N and 18O to 16O relative to standard ratios) for nitrate in ground-water samples were 10.4 and -2.0 per mil (0/100), respectively, indicating a relatively small contribution from synthetic fertilizer and probably a substantial contribution from OWDS. The surface-water sample with the highest dissolved NO2+NO3 concentration of 1.6 mg/L had a delta-15N value of 12.36 0/100, which indicates warm-blooded animals (including humans) as the nitrate source. Fecal coliforms were detected in downgradient ground water most frequently in the Spearfish (19 percent) and Minnekahta (9.7 percent) settings. E. coli was detected most frequently in the Minnekahta (29 percent) and Spearfish (13 percent) settings. Enterococci were detected more frequently than other microbiological indicators in all four settings. Fecal coliforms and E. coli were detected in 73 percent and 95 percent of all surface-water samples, respectively. Enterococci, coliphages (somatic), and C. perfringens were detected in 50, 70, and 50 percent of surface-water samples, respectively. Of the 62 OWC analytes, 12 were detected only in environmental samples, 10 were detected in at least one environmental and one blank sample (not necessarily companion pairs), 2 were detected only in blank samples, and 38 were not detected in any blank, environmental, or replicate sample from either ground or surface water. Eleven different organic compounds were detected in ground-water samples at eight different sites. The most frequently occurring compound was DEET, which was found in 32 percent of the environmental samples, followed by tetrachloroethene, which was detected in 20 percent of the samples. For surface-water samples, 16 organic compounds were detected in 9 of the 10 total samples. The compound with the highest occurrence in surface-water samples was camphor, which was detected in 50 percent of samples. The alluvial setting was characterized by relatively low dissolved NO2+NO3 concentrations, detection of ammonia nitrogen, and relatively high concentr
Drivers of the autumn phytoplankton development in the open Black Sea
NASA Astrophysics Data System (ADS)
Mikaelyan, Alexander S.; Shapiro, Georgy I.; Chasovnikov, Valeriy K.; Wobus, Fred; Zanacchi, Marcus
2017-10-01
The dynamics of the autumn development of phytoplankton in the Black Sea were investigated using satellite-derived chlorophyll-a concentration (Chl), which was estimated for two regions in the deep sea over a 20-year period. We analysed 8-day composite Chl images along with changes in: (i) nutrient concentration obtained from in-situ measurements, (ii) sea surface temperature (SST), (iii) photosynthetically available radiation (PAR) obtained from satellite imagery, (iv) wind speed from the re-analysis of meteodata and (v) the depth of the upper mixed layer (UML) calculated from a 3D numerical model of the Black Sea. The peak in Chl was identified most frequently in the first half of November. A positive correlation between the duration of strong wind events and phytoplankton development was revealed, which was associated with the deepening of the UML, and replenishment of the photic zone with nutrients. The impact on phytoplankton was significant when the cumulative duration of strong wind (> 8 m s- 1) exceeded 60 h over the preceding 8 days. In such cases, the frequency of the Chl peaks increased up to 30-50% with an average of 20%. Strong wind was shown to determine the timing of the autumn bloom, but not its strength. From a positive relationship between the maximum Chl and nitrate concentration we found instead that the intensity of the autumn bloom was mainly defined by nitrate replenishment in the photic zone. On average, the timing of the seasonal maximum of Chl in the first half of November coincided with the deepening of the UML to the bottom of the seasonal thermocline (ca 25 m). Elution of nitrate from deeper layers, where its concentration is substantially higher, mitigated the nutrient limitation of phytoplankton growth. At the same time, a sharp decrease in PAR after mid-November resulted in the limitation of light for phytoplankton growth. Inter-annual variations of Chl in spring and autumn were shown not to be correlated. For example, the basin-wide autumn blooms were observed in some years when the spring blooms were absent. As the bloom cannot be based on regenerated nitrate, the amount of 'new' nitrate in the photic zone should have a positive trend in autumn. However, the sources and mechanisms of the basin-wide increase of nitrate concentration in the upper layer in autumn are not clear.
NASA Astrophysics Data System (ADS)
Sikora, M. T.; Elliott, E. M.
2009-12-01
Excess nitrate (NO3-) contributes to the overall degraded quality of streams in many urban areas. These systems are often dominated by impervious surfaces and storm sewers that can route atmospherically deposited nitrogen, from both wet and dry deposition, to waterways. Moreover, in densely populated watersheds there is the potential for interaction between urban waterways and sewer systems. The affects of accumulated nitrate in riverine and estuary systems include low dissolved oxygen, loss of species diversity, increased mortality of aquatic species, and general eutrophication of the waterbody. However, the dynamics of nitrate pollution from each source and it’s affect on urban waterways is poorly constrained. The isotopes of nitrogen and oxygen in nitrate have been proven effective in helping to distinguish contamination sources to ground and surface waters. In order to improve our understanding of urban nitrate pollution sources and dynamics, we examined nitrate isotopes (δ15N and δ18O) in base- and stormflow samples collected over a two-year period from a restored urban stream in Pittsburgh, Pennsylvania (USA). Nine Mile Run drains a 1,600 hectare urban watershed characterized by 38% impervious surface cover. Prior work has documented high nitrate export from the watershed (~19 kg NO3- ha-1 yr-1). Potential nitrate sources to the watershed include observed sewer overflows draining directly to the stream, as well as atmospheric deposition (~23 kg NO3- ha-1 yr-1). In this and other urban systems with high percentages of impervious surfaces, there is likely minimal input from nitrate derived from soil or fertilizer. In this presentation, we examine spatial and temporal patterns in nitrate isotopic composition collected at five locations along Nine Mile Run characterized by both sanitary and combined-sewer cross-connections. Preliminary isotopic analysis of low-flow winter streamwater samples suggest nitrate export from Nine Mile Run is primarily influenced by inputs of human waste despite high rates of atmospheric nitrate deposition. Further isotopic analysis of nitrate will examine seasonal variations in nitrate sources; compare nitrate dynamics and sources during low- versus high-flows, and the influence of interannual climatic variability on nitrate export.
Rupert, Michael G.; Plummer, Niel
2009-01-01
This raster data set delineates the predicted probability of elevated nitrate concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.
USDA-ARS?s Scientific Manuscript database
Riparian seepage zones in headwater agricultural watersheds represent important sources of nitrate-nitrogen (NO3-N) to surface waters, often connecting N-rich groundwater systems to streams. In this study, we examined how NO3-N concentrations in seep and stream water were affected by NO3-N processin...
The UCD sectional aerosol model has been coupled to the CMAQ air quality model and used to simulate air quality in Tampa, Florida. Sea salt emissions are parameterized as a function of modeled wind speed and relative humidity. Modeled aerosol sulfate, nitrate, ammonium, sodium,...
Yields and retention of inorganic nitrogen (DIN) and nitrate concentrations in surface runoff are summarized for 28 high elevation watersheds in the Sierra Nevada, California and Rocky Mountains of Wyoming and Colorado. Catchments ranged in elevation from 2475 to 3603 m and from...
NASA Astrophysics Data System (ADS)
Zhang, Hongliang; Li, Jingyi; Ying, Qi; Yu, Jian Zhen; Wu, Dui; Cheng, Yuan; He, Kebin; Jiang, Jingkun
2012-12-01
Nitrate and sulfate account for a significant fraction of PM2.5 mass and are generally secondary in nature. Contributions to these two inorganic aerosol components from major sources need to be identified for policy makers to develop cost effective regional emission control strategies. In this work, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model that directly tracks the contributions from multiple emission sources to secondary PM2.5 is developed to determine the regional contributions of power, industry, transportation and residential sectors as well as biogenic sources to nitrate and sulfate concentrations in China in January and August 2009.The source-oriented CMAQ model is capable of reproducing most of the available PM10 and PM2.5 mass, and PM2.5 nitrate and sulfate observations. Model prediction suggests that monthly average PM2.5 inorganic components (nitrate + sulfate + ammonium ion) can be as high as 60 μg m-3 in January and 45 μg m-3 in August, accounting for 20-40% and 50-60% of total PM2.5 mass. The model simulations also indicate significant spatial and temporal variation of the nitrate and sulfate concentrations as well as source contributions in the country. In January, nitrate is high over Central and East China with a maximum of 30 μg m-3 in the Sichuan Basin. In August, nitrate is lower and the maximum concentration of 16 μg m-3 occurs in North China. In January, highest sulfate occurs in the Sichuan Basin with a maximum concentration of 18 μg m-3 while in August high sulfate concentration occurs in North and East China with a similar maximum concentration. Power sector is the dominating source of nitrate and sulfate in both January and August. Transportation sector is an important source of nitrate (20-30%) in both months. Industry sector contributes to both nitrate and sulfate concentrations by approximately 20-30%. Residential sector contributes to approximately 10-20% of nitrate and sulfate in January but its contribution is low in August.
Point source pollution and variability of nitrate concentrations in water from shallow aquifers
NASA Astrophysics Data System (ADS)
Nemčić-Jurec, Jasna; Jazbec, Anamarija
2017-06-01
Agriculture is one of the several major sources of nitrate pollution, and therefore the EU Nitrate Directive, designed to decrease pollution, has been implemented. Point sources like septic systems and broken sewage systems also contribute to water pollution. Pollution of groundwater by nitrate from 19 shallow wells was studied in a typical agricultural region, middle Podravina, in northwest Croatia. The concentration of nitrate ranged from <0.1 to 367 mg/l in water from wells, and 29.8 % of 253 total samples were above maximum acceptable value of 50 mg/l (MAV). Among regions R1-R6, there was no statistically significant difference in nitrate concentrations ( F = 1.98; p = 0.15) during the years 2002-2007. Average concentrations of nitrate in all 19 wells for all the analyzed years were between recommended limit value of 25 mg/l (RLV) and MAV except in 2002 (concentration was under RLV). The results of the repeated measures ANOVA showed statistically significant differences between the wells at the point source distance (proximity) of <10 m, compared to the wells at the point source distance of >20 m ( F = 10.6; p < 0.001). Average annual concentrations of nitrate during the years studied are not statistically different, but interaction between proximity and years is statistically significant ( F = 2.07; p = 0.04). Results of k-means clustering confirmed division into four clusters according to the pollution. Principal component analysis showed that there is only one significant factor, proximity, which explains 91.6 % of the total variability of nitrate. Differences in water quality were found as a result of different environmental factors. These results will contribute to the implementation of the Nitrate Directive in Croatia and the EU.
Measurement of trace nitrate concentrations in seawater by ion chromatography with valve switching
NASA Astrophysics Data System (ADS)
Du, Juan; Fa, Yun; Zheng, Yue; Li, Xuebing; Du, Fanglin; Yang, Haiyan
2014-05-01
An ion chromatographic method with a valve switching facility was developed to determine trace nitrate concentrations in seawater using two pumps, two different suppressors, and two columns. A carbohydrate membrane desalter was used to reduce the high concentrations of sodium salts in samples. In this method, trace nitrate was eluted from the concentrator column to the analytical columns, while the matrix fl owed to waste. Neither chemical pre-treatment nor sample dilution was required. In the optimized separation conditions, the method showed good linearity ( R >0.99) in the 0.05 and 50 mg/L concentration range, and satisfactory repeatability (RSD<5%, n =6). The limit of detection for nitrate was 0.02 mg/L. Results showed that the valve switching system was suitable and practical for the determination of trace nitrate in seawater.
NASA Astrophysics Data System (ADS)
Balakrishnan, S.; Chelladurai, G.; Mohanraj, J.; Poongodi, J.
2017-07-01
Physico-chemical parameters were determined along the Vellapatti, Tharuvaikulam and Threspuram coastal waters, southeast coast of India. All the physico-chemical parameters such as sea surface temperature, salinity, pH, total alkalinity, total suspended solids, dissolved oxygen and nutrients like nitrate, nitrite, inorganic phosphate and reactive silicate were studied for a period of 12 months (June 2014-May 2015). Sea surface temperature varied from 26.4 to 29.7 °C. Salinity varied from 26.1 and 36.2 ‰, hydrogen ion concentration ranged between 8.0 and 8.5. Variation in dissolved oxygen content was from 4.125 to 4.963 mg l-1. Total alkalinity ranged from 64 to 99 mg/l. Total suspended solids ranged from 24 to 97 mg/l. Concentrations of nutrients, viz. nitrates (2.047-4.007 μM/l), nitrites (0.215-0.840 μM/l), phosphates (0.167-0.904 µM/l), total phosphorus (1.039-3.479 μM/l), reactive silicates (3.737-8.876 μM/l) ammonia (0.078-0.526 μM/l) and also varied independently.
Source Areas of Water and Nitrate in a Peatland Catchment, Minnesota, USA
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.
2017-12-01
In nitrogen polluted forests, stream nitrate concentrations increase and some unprocessed atmospheric nitrate may be transported to streams during stormflow events. This understanding has emerged from forests with upland mineral soils. In contrast, catchments with northern peatlands may have both upland soils and lowlands with deep organic soils, each with unique effects on nitrate transport and processing. While annual budgets show nitrate yields to be relatively lower from peatland than upland-dominated catchments, little is known about particular runoff events when stream nitrate concentrations have been higher (despite long periods with little or no nitrate in outlet streams) or the reasons why. I used site knowledge and expansive/extensive monitoring at the Marcell Experimental Forest in Minnesota, along with a targeted 2-year study to determine landscape areas, water sources, and nitrate sources that affected stream nitrate variation in a peatland catchment. I combined streamflow, upland runoff, snow amount, and frost depth data from long-term monitoring with nitrate concentration, yield, and isotopic data to show that up to 65% of stream nitrate during snowmelt of 2009 and 2010 was unprocessed atmospheric nitrate. Up to 46% of subsurface runoff from upland soils during 2009 was unprocessed atmospheric nitrate, which shows the uplands to be a stream nitrate source during 2009, but not during 2010 when upland runoff concentrations were below the detection limit. Differences are attributable to variations in water and nitrate sources. Little snow (a nitrate source), less upland runoff relative to peatland runoff, and deeper soil frost in the peatland caused a relatively larger input of nitrate from the uplands to the stream during 2009 and the peatland to the stream during 2010. Despite the near-absence of stream nitrate during much of rest of the year, these findings show an important time when nitrate transport affected downstream aquatic ecosystems, reasons why nitrate was transported, and that atmospheric nitrate pollution had a direct effect on a stream in a peatland catchment. Furthermore, this work illustrates how long-term monitoring when coupled with shorter-duration studies allows contemporary questions to be addressed within legacy catchment studies.
Pellerin, Brian A.; Downing, Bryan D.; Kendall, Carol; Dahlgren, Randy A.; Kraus, Tamara E.C.; Saraceno, John Franco; Spencer, Robert G. M.; Bergamaschi, Brian A.
2009-01-01
1. We investigated diurnal nitrate (NO3−) concentration variability in the San Joaquin River using an in situ optical NO3− sensor and discrete sampling during a 5‐day summer period characterized by high algal productivity. Dual NO3− isotopes (δ15NNO3 and δ18ONO3) and dissolved oxygen isotopes (δ18ODO) were measured over 2 days to assess NO3− sources and biogeochemical controls over diurnal time‐scales.2. Concerted temporal patterns of dissolved oxygen (DO) concentrations and δ18ODOwere consistent with photosynthesis, respiration and atmospheric O2 exchange, providing evidence of diurnal biological processes independent of river discharge.3. Surface water NO3− concentrations varied by up to 22% over a single diurnal cycle and up to 31% over the 5‐day study, but did not reveal concerted diurnal patterns at a frequency comparable to DO concentrations. The decoupling of δ15NNO3 and δ18ONO3isotopes suggests that algal assimilation and denitrification are not major processes controlling diurnal NO3− variability in the San Joaquin River during the study. The lack of a clear explanation for NO3− variability likely reflects a combination of riverine biological processes and time‐varying physical transport of NO3− from upstream agricultural drains to the mainstem San Joaquin River.4. The application of an in situ optical NO3− sensor along with discrete samples provides a view into the fine temporal structure of hydrochemical data and may allow for greater accuracy in pollution assessment.
GIS Spatial Analysis of Water Quality at Courtland Creek in Oakland, California
NASA Astrophysics Data System (ADS)
Matias, F.; Perez, L.; Martinez, E.; Rivera Soto, E.; McDonald, K.; Garcia, D.; Ruiz, I.
2015-12-01
Courtland Creek is a channelized stream that traverses residential and industrial sections of East Oakland, California. Segments of the creek are exposed on the surface and have been designated as City of Oakland park land. Since 2012, the quality of creek waters has been monitored through measurement and analysis of nutrient and other possible contaminant levels in samples collected in these exposed segments. Throughout the three-year period during which monitoring efforts have been undertaken, high concentration levels of nitrate have been observed. The primary aim of our research is to gain an overall indication of creek health in relation to its surrounding environment through the use of Geographic Information Systems (GIS) analysis of nutrient concentrations at the four sites. Investigating the relationship between Courtland Creek and the environmental factors influencing its health will enable us to develop a better sense of the actions that can be taken by the City of Oakland to create sustainable park land and healthy communities. During the summer of 2015, our group continued to monitor levels of ammonia, phosphate and nitrate at four different sites along the creek, and benthic macroinvertebrates were sampled at one of these sites. Preliminary analysis of benthic macroinvertebrate data indicates that Courtland Creek is in poor health ecologically. Nitrate concentration levels measured during the study period were lower than those detected in previous years but still indicate inputs other than those associated with natural processes. The high nitrate concentration levels may be the result of human and animal waste pollution, as supported by data obtained during a recent Environmental Protection Agency (EPA) - led E. coli survey that included the watershed within which Courtland Creek is situated.
Water quality of Bear Creek basin, Jackson County, Oregon
Wittenberg, Loren A.; McKenzie, Stuart W.
1980-01-01
Water-quality data identify surface-water-quality problems in Bear Creek basin, Jackson County, Oreg., where possible, their causes or sources. Irrigation and return-flow data show pastures are sources of fecal coliform and fecal streptococci bacteria and sinks for suspended sediment and nitrite-plus-nitrate nitrogen. Bear Creek and its tributaries have dissolved oxygen and pH values that do not meet State standards. Forty to 50% of the fecal coliform and fecal streptococci concentrations were higher than 1,000 bacteria colonies per 100 milliliters during the irrigation season in the lower two-thirds of the basin. During the irrigation season, suspended-sediment concentrations, average 35 milligrams per liter, were double those for the nonirrigation season. The Ashland sewage-treatment plant is a major source of nitrite plus nitrate, ammonia, and Kjeldahl nitrogen, and orthophosphate in Bear Creek. (USGS)
O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.; Xuan, Zhemin; Schirmer, Mario; Hoehn, Eduard; Vogt, Tobias
2011-01-01
When applying a stormwater infiltration pond best management practice (BMP) for protecting the quality of underlying groundwater, a common constituent of concern is nitrate. Two stormwater infiltration ponds, the SO and HT ponds, in central Florida, USA, were monitored. A temporal succession of biogeochemical processes was identified beneath the SO pond, including oxygen reduction, denitrification, manganese and iron reduction, and methanogenesis. In contrast, aerobic conditions persisted beneath the HT pond, resulting in nitrate leaching into groundwater. Biogeochemical differences likely are related to soil textural and hydraulic properties that control surface/subsurface oxygen exchange. A new infiltration BMP was developed and a full-scale application was implemented for the HT pond. Preliminary results indicate reductions in nitrate concentration exceeding 50% in soil water and shallow groundwater beneath the HT pond.
Bordeleau, Geneviève; Savard, Martine M; Martel, Richard; Ampleman, Guy; Thiboutot, Sonia
2008-06-06
Nitrate is one of the most common contaminants in shallow groundwater, and many sources may contribute to the nitrate load within an aquifer. Groundwater nitrate plumes have been detected at several ammunition production sites. However, the presence of multiple potential sources and the lack of existing isotopic data concerning explosive degradation-induced nitrate constitute a limitation when it comes to linking both types of contaminants. On military training ranges, high nitrate concentrations in groundwater were reported for the first time as part of the hydrogeological characterization of the Cold Lake Air Weapons Range (CLAWR), Alberta, Canada. Explosives degradation is thought to be the main source of nitrate contamination at CLAWR, as no other major source is present. Isotopic analyses of N and O in nitrate were performed on groundwater samples from the unconfined and confined aquifers; the dual isotopic analysis approach was used in order to increase the chances of identifying the source of nitrate. The isotopic ratios for the groundwater samples with low nitrate concentration suggested a natural origin with a strong contribution of anthropogenic atmospheric NOx. For the samples with nitrate concentration above the expected background level the isotopic ratios did not correspond to any source documented in the literature. Dissolved RDX samples were degraded in the laboratory and results showed that all reproduced degradation processes released nitrate with a strong fractionation. Laboratory isotopic values for RDX-derived NO(3)(-) produced a trend of high delta(18)O-low delta(15)N to low delta(18)O-high delta(15)N, and groundwater samples with nitrate concentrations above the expected background level appeared along this trend. Our results thus point toward a characteristic field of isotopic ratios for nitrate being derived from the degradation of RDX.
Babaei, Ali Akbar; Azari, Ali; Kalantary, Roshanak Rezaei; Kakavandi, Babak
2015-01-01
Herein, multi-wall carbon nanotubes (MWCNTs) were used as the carrier of nano-zero valent iron (nZVI) particles to fabricate a composite known as nZVI@MWCNTs. The composite was then characterized and applied in the nitrate removal process in a batch system under anoxic conditions. The influential parameters such as pH, various concentrations of nitrate and composite were investigated within 240 min of the reaction. The mechanism, kinetics and end-products of nitrate reduction were also evaluated. Results revealed that the removal nitrate percentage for nZVI@MWCNTs composite was higher than that of nZVI and MWCNTs alone. Experimental data from nitrate reduction were fitted to the Langmuir-Hinshelwood kinetic model. The values of observed rate constant (kobs) decreased with increasing the initial concentration of nitrate. Our experiments proved that the nitrate removal efficiency was favorable once both high amounts of nZVI@MWCNTs and low concentrations of nitrate were applied. The predominant end-products of the nitrate reduction were ammonium (84%) and nitrogen gas (15%). Our findings also revealed that ZVI@MWCNTs is potentially a good composite for removal/reduction of nitrate from aqueous solutions.
Hoogestraat, Galen K.
2012-01-01
Anthropogenic organic compounds (AOCs) in drinking-water sources commonly are derived from municipal, agricultural, and industrial wastewater sources, and are a concern for water-supply managers. A cooperative study between the city of Sioux Falls, S. Dak., and the U.S. Geological Survey was initiated in 2009 to (1) characterize the occurrence of anthropogenic organic compounds in the source waters (groundwater and surface water) to water supplies in the Sioux Falls area, (2) determine if the compounds detected in the source waters also are present in the finished water, and (3) identify probable sources of nitrate in the Big Sioux River Basin and determine if sources change seasonally or under different hydrologic conditions. This report presents analytical results of water-quality samples collected from source waters and finished waters in the Sioux Falls area. The study approach included the collection of water samples from source and finished waters in the Sioux Falls area for the analyses of AOCs, nutrients, and nitrogen and oxygen isotopes in nitrate. Water-quality constituents monitored in this study were chosen to represent a variety of the contaminants known or suspected to occur within the Big Sioux River Basin, including pesticides, pharmaceuticals, sterols, household and industrial products, polycyclic aromatic hydrocarbons, antibiotics, and hormones. A total of 184 AOCs were monitored, of which 40 AOCs had relevant human-health benchmarks. During 11 sampling visits, 45 AOCs (24 percent) were detected in at least one sample of source or finished water, and 13 AOCs were detected in at least 20 percent of all samples. Concentrations of detected AOCs were all less than 1 microgram per liter, except for two AOCs in multiple samples from the Big Sioux River, and one AOC in finished-water samples. Concentrations of AOCs were less than 0.1 microgram per liter in more than 75 percent of the detections. Nutrient concentrations varied seasonally in source-water samples from surface water and groundwater. In the Big Sioux River, nitrite plus nitrate concentrations were typically less than 1 milligram per liter as nitrogen, and reached a maximum of 4.06 milligrams per liter as nitrogen following a June 2010 storm. Nitrite plus nitrate concentrations in groundwater ranged from less than 0.1 to 0.701 milligram per liter as nitrogen. Eight of the AOCs detected have a human-health benchmark that could be used to evaluate the concentrations in a human-health context. Four AOCs had maximum concentrations within an order of magnitude of the benchmark, indicating that additional monitoring of the compound may be warranted. Three herbicides (atrazine, metolachlor, and prometon) and one degradate (deethylatrazine) were detected in finished-water samples as frequently as in source-water samples. The concentrations of herbicides in source water varied by an order of magnitude from the period of peak use (early summer) to the winter months. Groundwater and finished-water concentrations of atrazine were similar for the six sampling dates when groundwater was the only source water used. Upstream wastewater discharges contributed a fairly small percentage of the flow to the Big Sioux River near Sioux Falls, but several AOCs associated with wastewater were frequently detected. The interpretation of all potential sources of nitrogen cannot be accomplished by use of nitrogen and oxygen isotopes in nitrate alone, but provides a qualitative indication that very little nitrate originates from excess fertilizer runoff, and most nitrate originates from municipal wastewater effluent, manure runoff (either from field application or feeding operations), or fertilizers mineralized by processes in the soil.
Quantifying nutrient sources in an upland catchment using multiple chemical and isotopic tracers
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Doctor, D. H.; Kendall, C.; Aiken, G. R.
2006-12-01
To explore processes that control the temporal variation of nutrients in surface waters, we measured multiple environmental tracers at the Sleepers River Research Watershed, an upland catchment in northeastern Vermont, USA. Using a set of high-frequency stream water samples, we quantified the variation of nutrients over a range of stream flow conditions with chemical and isotopic tracers of water, nitrate, and dissolved organic carbon (DOC). Stream water concentrations of nitrogen (predominantly in the forms of nitrate and dissolved organic nitrogen) and DOC reflected mixing of water contributed from distinct sources in the forested landscape. Water isotopic signatures and end-member mixing analysis revealed when solutes entered the stream from these sources and that the sources were linked to the stream by preferential shallow subsurface and overland flow paths. Results from the tracers indicated that freshly-leached, terrestrial organic matter was the overwhelming source of high DOC concentrations in stream water. In contrast, in this region where atmospheric nitrogen deposition is chronically elevated, the highest concentrations of stream nitrate were attributable to atmospheric sources that were transported via melting snow and rain fall. These findings are consistent with a conceptual model of the landscape in which coupled hydrological and biogeochemical processes interact to control stream solute variability over time.
Aubert, Alice H; Thrun, Michael C; Breuer, Lutz; Ultsch, Alfred
2016-08-30
High-frequency, in-situ monitoring provides large environmental datasets. These datasets will likely bring new insights in landscape functioning and process scale understanding. However, tailoring data analysis methods is necessary. Here, we detach our analysis from the usual temporal analysis performed in hydrology to determine if it is possible to infer general rules regarding hydrochemistry from available large datasets. We combined a 2-year in-stream nitrate concentration time series (time resolution of 15 min) with concurrent hydrological, meteorological and soil moisture data. We removed the low-frequency variations through low-pass filtering, which suppressed seasonality. We then analyzed the high-frequency variability component using Pareto Density Estimation, which to our knowledge has not been applied to hydrology. The resulting distribution of nitrate concentrations revealed three normally distributed modes: low, medium and high. Studying the environmental conditions for each mode revealed the main control of nitrate concentration: the saturation state of the riparian zone. We found low nitrate concentrations under conditions of hydrological connectivity and dominant denitrifying biological processes, and we found high nitrate concentrations under hydrological recession conditions and dominant nitrifying biological processes. These results generalize our understanding of hydro-biogeochemical nitrate flux controls and bring useful information to the development of nitrogen process-based models at the landscape scale.
Gupta, S. K.; Gupta, R. C.; Seth, A. K.; Gupta, A. B.; Bassin, J. K.; Gupta, A.
1999-01-01
An epidemiological investigation was undertaken in India to assess the prevalence of methaemoglobinaemia in areas with high nitrate concentration in drinking-water and the possible association with an adaptation of cytochrome-b5 reductase. Five areas were selected, with average nitrate ion concentrations in drinking-water of 26, 45, 95, 222 and 459 mg/l. These areas were visited and house schedules were prepared in accordance with a statistically designed protocol. A sample of 10% of the total population was selected in each of the areas, matched for age and weight, giving a total of 178 persons in five age groups. For each subject, a detailed history was documented, a medical examination was conducted and blood samples were taken to determine methaemoglobin level and cytochrome-b5 reductase activity. Collected data were subjected to statistical analysis to test for a possible relationship between nitrate concentration, cytochrome-b5 reductase activity and methaemoglobinaemia. High nitrate concentrations caused methaemoglobinaemia in infants and adults. The reserve of cytochrome-b5 reductase activity (i.e. the enzyme activity not currently being used, but which is available when needed; for example, under conditions of increased nitrate ingestion) and its adaptation with increasing water nitrate concentration to reduce methaemoglobin were more pronounced in children and adolescents. PMID:10534899
Nitrate Utilization by the Diatom Skeletonema costatum
Serra, Juan L.; Llama, Maria J.; Cadenas, Eduardo
1978-01-01
Nitrate uptake has been studied in nitrogen-deficient cells of the marine diatom Skeletonema costatum. When these cells are incubated in the presence of nitrate, this ion is quickly taken up from the medium, and nitrite is excreted by the cells. Nitrite is excreted following classical saturation kinetics, its rate being independent of nitrate concentration in the incubation medium for nitrate concentration values higher than 3 micromolar. Nitrate uptake shows mixed-transfer kinetics, which can be attributed to the simultaneous contributions of mediated and diffusion transfer. Cycloheximide and p-hydroxymercuribenzoate inhibit the carrier-mediated contribution to nitrate uptake, without affecting the diffusion component. When cells are preincubated with nitrate, the net nitrogen uptake is increased. PMID:16660652
Berndt, M.P.; Galeone, D.R.; Spruill, T.B.; Crandall, C.A.
1998-01-01
Ground-water quality is generally good in three urban areas studied in the Coastal Plain of the southeastern United States?Ocala and Tampa, Florida, and Virginia Beach, Virginia. The hydrology of these areas differs in that Ocala has many karst depressions but virtually no surface-water features, and Tampa and Virginia Beach have numerous surface-water features, including small lakes, streams, and swamps. Samples were collected in early 1995 from 15 wells in Ocala (8 in the surficial aquifer and 7 in the Upper Floridan aquifer), 17 wells in Tamps (8 in the surficial aquifer and 9 in the Upper Floridan aquifer), and in the summer of 1995 from 15 wells in Virginia Beach (all in the surficial aquifer). In the surficial aquifer in Ocala, the major ion water type was calcium bicarbonate in five samples and mixed (no dominant ions) in three samples, with dissolved-solids concentrations ranging from 78 to 463 milligrams per liter. In Tampa, the water type was calcium bicarbonate in one sample and mixed in seven samples, with dissolved-solids concentrations ranging from 38 to 397 milligrams per liter. In Virginia Beach, water types were primarily calcium and sodium bicarbonate water, with dissolved-solids concentrations ranging from 89 to 740 milligrams per liter. The water types and dissolved-solids concentrations reflect the presence of carbonates in the surficial aquifer materials in the Ocala and Virginia Beach areas. The major ion water type was calcium bicarbonate for all 16 samples from the upper Floridan aquifer in both Florida cities. Dissolved-solids concentrations ranged from 210 to 551 milligrams per liter in Ocala, with a median of 287 milligrams per liter, and from 187 to 362 milligrams per liter in Tampa, with a median of 244 milligrams per liter. Concentrations of nitrate nitrogen were highest in the surficial aquifer in Ocala, and one sample exceeded 10 milligrams per liter, the U.S. Environmental Protection Agency maximum contaminant level for drinking water. Median nitrate concentrations were 1.2 milligrams per liter in Ocala and only 0.06 and 0.05 milligram per liter in Tampa and Virginia Beach, respectively. In Florida, some background water-quality data were available for comparison. The median nitrate concentration in Ocala was much higher than the median nitrate concentration of 0.05 milligram per liter in the background data. Median nitrate concentrations were 0.33 and 0.05 milligram per liter in samples from the Upper Floridan aquifer in Ocala and Tampa, respectively, and 0.05 milligram per liter in background samples. Of the 47 pesticides and 60 volatile organic compounds analyzed, only five pesticides and five volatile organic compounds were detected. The most commonly detected pesticide was prometon, a broad-scale herbicide, detected in samples from eight wells in Ocala (at concentrations ranging from 0.009 to 1.8 micrograms per liter), three wells in Virginia Beach (at concentrations ranging from 0.19 to 10 micrograms per liter), and from one well in Tampa (0.01 microgram per liter). The most commonly detected volatile organic compound was chloroform, which was detected four times at concentrations ranging from 0.3 to 2.2 micrograms per liter in Ocala and Tampa. Seven volatile organic compounds were detected in one sample in Virginia Beach; most were compounds associated with petroleum and coal tar.
Frans, Lonna M.; Helsel, Dennis R.
2005-01-01
Trends in nitrate concentrations in water from 474 wells in 17 subregions in the Columbia Basin Ground Water Management Area (GWMA) in three counties in eastern Washington were evaluated using a variety of statistical techniques, including the Friedman test and the Kendall test. The Kendall test was modified from its typical 'seasonal' version into a 'regional' version by using well locations in place of seasons. No statistically significant trends in nitrate concentrations were identified in samples from wells in the GWMA, the three counties, or the 17 subregions from 1998 to 2002 when all data were included in the analysis. For wells in which nitrate concentrations were greater than 10 milligrams per liter (mg/L), however, a significant downward trend of -0.4 mg/L per year was observed between 1998 and 2002 for the GWMA as a whole, as well as for Adams County (-0.35 mg/L per year) and for Franklin County (-0.46 mg/L per year). Trend analysis for a smaller but longer-term 51-well dataset in Franklin County found a statistically significant upward trend in nitrate concentrations of 0.1 mg/L per year between 1986 and 2003. The largest increase of nitrate concentrations occurred between 1986 and 1991. No statistically significant differences were observed in this dataset between 1998 and 2003 indicating that the increase in nitrate concentrations has leveled off.
Burow, Karen R.; Stork, Sylvia V.; Dubrovsky, N.M.
1998-01-01
The occurrence of nitrate and pesticides in ground water in California's eastern San Joaquin Valley may be greatly influenced by the long history of intensive farming and irrigation and the generally permeable sediments. This study, which is part of the U.S. Geological Survey National Water-Quality Assessment Program, was done to assess the quality of the ground water and to do a preliminary evaluation of the temporal trends in nitrate and pesticides in the alluvial fans of the eastern San Joaquin Valley. Ground-water samples were collected from 30 domestic wells in 1995 (each well was sampled once during 1995). The results of the analyses of these samples were related to various physical and chemical factors in an attempt to understand the processes that control the occurrence and the concentrations of nitrate and pesticides. A preliminary evaluation of the temporal trends in the occurrence and the concentration of nitrate and pesticides was done by comparing the results of the analyses of the 1995 ground-water samples with the results of the analyses of the samples collected in 1986-87 as part of the U.S. Geological Survey Regional Aquifer-System Analysis Program. Nitrate concentrations (dissolved nitrate plus nitrite, as nitrogen) in ground water sampled in 1995 ranged from less than 0.05 to 34 milligrams per liter, with a median concentration of 4.6 milligrams per liter. Nitrate concentrations exceeded the maximum contaminant level of 10 milligrams per liter (as nitrogen) in 5 of the 30 ground-water samples (17 percent), whereas 12 of the 30 samples (40 percent) had nitrate concentrations less than 3.0 milligrams per liter. The high nitrate concentrations were associated with recently recharged, well-oxygenated ground water that has been affected by agriculture (indicated by the positive correlations between nitrate, dissolved-oxygen, tritium, and specific conductance). Twelve pesticides were detected in 21 of the 30 ground-water samples (70 percent) in 1995, although only 5 pesticides were detected in more than 10 percent of the ground-water samples. All 12 pesticides were detected at concentrations below the maximum contaminant levels, except the banned soil fumigants 1,2-dibromo-3-chloropropane (3 detections) and 1,2-dibromoethane (1 detection). Atrazine and desethyl atrazine (a transformation product of atrazine) were the most frequently detected pesticides; they were detected in 11 ground-water samples. The frequent detections of atrazine and desethyl atrazine may be related either to past applications of atrazine or to recent application on rights-of-way. Simazine was detected in 10 ground-water samples and diuron was detected in 4 ground-water samples. The detections of simazine and diuron are generally consistent with their reported applications on the crops near the wells where they were detected. 1,2,3-trichloropropane, a manufacturing by-product of 1,2-dichloropropane and 1,3- dichloropropene formulations, was detected in 4 ground-water samples. The occurrence of 1,2,3-trichloropropane, 1,2-dibromo-3-chloropropane, and 1,2-dibromoethane is probably related to past use. Similar to nitrate concentrations, pesticide occurrence was positively correlated to dissolved-oxygen concentrations, indicating that areas with high dissolved-oxygen concentrations may be vulnerable to contamination by nitrate and pesticides. High dissolved-oxygen concentrations may be associated with water that has been rapidly recharged. A comparison of the concentrations and the occurrence of nitrate and pesticides between 1986-87 and 1995 indicates that nitrate concentrations may pose a greater threat to the quality of the ground-water resource in this region than pesticides, in the context of current drinking-water standards. Nitrate concentrations were significantly higher in the 1995 ground-water samples than in the 1986-87 samples collected from the same wells. Although the number of pesticide detections in 1995 is higher than the numb
Rosen, Michael R.
2003-01-01
Analysis of trends in nitrate and total dissolved-solids concentrations over time in Carson Valley, Nevada, indicates that 56 percent of 27 monitoring wells that have long-term records of nitrate concentrations show increasing trends, 11 percent show decreasing trends, and 33 percent have not changed. Total dissolved-solids concentrations have increased in 52 percent of these wells and are stable in 48 percent. None of these wells show decreasing trends in total dissolved-solids concentrations. The wells showing increasing trends in nitrate and total dissolved-solids concentrations were always in areas that use septic waste-disposal systems. Therefore, the primary cause of these increases is likely the increase in septic-tank usage over the past 40 years.
Cabo, Rona; Hernes, Sigrunn; Slettan, Audun; Haugen, Margaretha; Ye, Shu; Blomhoff, Rune; Mansoor, M Azam
2015-02-01
A number of studies have explored the effects of dietary nitrate on human health. Nitrate in the blood can be recycled to nitric oxide, which is an essential mediator involved in many important biochemical mechanisms. Nitric oxide is also formed in the body from l-arginine by nitric oxide synthase. The aim of this study was to investigate whether genetic polymorphisms in endothelial nitric oxide synthase (eNOS) and genes involved in folate metabolism affect the concentration of serum nitrate, serum folate, and plasma total homocysteine in healthy individuals after folic acid supplementation. In a randomized double-blind, crossover study, participants were given either folic acid 800 μg/d (n = 52) or placebo (n = 51) for 2 wk. Wash-out period was 2 wk. Fasting blood samples were collected, DNA was extracted by salting-out method and the polymorphisms in eNOS synthase and folate genes were genotyped by polymerase chain reaction methods. Measurement of serum nitrate and plasma total homocysteine (p-tHcy) concentration was done by high-performance liquid chromatography. The concentration of serum nitrate did not change in individuals after folic acid supplements (trial 1); however, the concentration of serum nitrate increased in the same individuals after placebo (P = 0.01) (trial 2). The individuals with three polymorphisms in eNOS gene had increased concentration of serum folate and decreased concentration of p-tHcy after folic acid supplementation. Among the seven polymorphisms tested in folate metabolizing genes, serum nitrate concentration was significantly decreased only in DHFR del 19 gene variant. A significant difference in the concentration of serum nitrate was detected among individuals with MTHFR C > T677 polymorphisms. Polymorphisms in eNOS and folate genes affect the concentration of serum folate and p-tHcy but do not have any effect on the concentration of NO3 in healthy individuals after folic acid supplementation. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Bronwen; Strelakos, Pat M.; Jokela, Brett
2000-01-01
A combination of aqueous chemistry, isotopic measurement, and in situ tracers were used to study the possible nitrate sources, the factors contributing to the spatial distribution of nitrate, and possible septic system influence in the ground water in the Scimitar Subdivision, Municipality of Anchorage, Alaska. Two water types were distinguished on the basis of the major ion chemistry: (1) a calcium sodium carbonate water, which was associated with isotopically heavier boron and with chlorofluorocarbons (CFC's) that were in the range expected from equilibration with the atmosphere (group A water) and (2) a calcium magnesium carbonate water, which was associated with elevated nitrate, chloride, and magnesium concentrations, generally isotopically lighter boron, and CFC's concentrations that were generally in excess of that expected from equilibration with the atmosphere (group B water). Water from wells in group B had nitrate concentrations that were greater than 3 milligrams per liter, whereas those in group A had nitrate concentrations of 0.2 milligram per liter or less. Nitrate does not appear to be undergoing extensive transformation in the ground-water system and behaves as a conservative ion. The major ion chemistry trends and the presence of CFC's in excess of an atmospheric source for group B wells are consistent with waste-water influences. The spatial distribution of the nitrate among wells is likely due to the magnitude of this influence on any given well. Using an expanded data set composed of 16 wells sampled only for nitrate concentration, a significant difference in the static water level relative to bedrock was found. Well water samples with less than 1 milligram per liter nitrate had static water levels within the bedrock, whereas those samples with greater than 1 milligram per liter nitrate had static water levels near or above the top of the bedrock. This observation would be consistent with a conceptual model of a low-nitrate fractured bedrock aquifer that receives slow recharge from an overlying nitrate-enriched surficial aquifer.
Impacts of management and climate change on nitrate leaching in a forested karst area.
Dirnböck, Thomas; Kobler, Johannes; Kraus, David; Grote, Rüdiger; Kiese, Ralf
2016-01-01
Forest management and climate change, directly or indirectly, affect drinking water resources, both in terms of quality and quantity. In this study in the Northern Limestone Alps in Austria we have chosen model calculations (LandscapeDNDC) in order to resolve the complex long-term interactions of management and climate change and their effect on nitrogen dynamics, and the consequences for nitrate leaching from forest soils into the karst groundwater. Our study highlights the dominant role of forest management in controlling nitrate leaching. Both clear-cut and shelterwood-cut disrupt the nitrogen cycle to an extent that causes peak concentrations and high fluxes into the seepage water. While this effect is well known, our modelling approach has revealed additional positive as well as negative impacts of the expected climatic changes on nitrate leaching. First, we show that peak nitrate concentrations during post-cutting periods were elevated under all climate scenarios. The maximal effects of climatic changes on nitrate concentration peaks were 20-24 mg L(-1) in 2090 with shelterwood or clear-cut management. Second, climate change significantly decreased the cumulative nitrate losses over full forest rotation periods (by 10-20%). The stronger the expected temperature increase and precipitation decrease (in summer), the lesser were the observed nitrate losses. However, mean annual seepage water nitrate concentrations and cumulative nitrate leaching were higher under continuous forest cover management than with shelterwood-cut and clear-cut systems. Watershed management can thus be adapted to climate change by either reducing peak concentrations or long-term loads of nitrate in the karst groundwater. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vaillancourt, Robert D.; Marra, John; Seki, Michael P.; Parsons, Michael L.; Bidigare, Robert R.
2003-07-01
A synoptic spatial examination of the eddy Haulani (17-20 November 2000) revealed a structure typical of Hawaiian cyclonic eddies with divergent surface flow forcing the upward displacement of deep waters. Hydrographic surveys revealed that surface water in the eddy center was ca. 3.5°C cooler, 0.5 saltier, and 1.4 kg m -3 denser than surface waters outside the eddy. Vertically integrated concentrations of nitrate+nitrite, phosphate and silicate were enhanced over out-eddy values by about 2-fold, and nitrate+nitrite concentrations were ca. 8× greater within the euphotic zone inside the eddy than outside. Si:N ratios were lower within the upper mixed layer of the eddy, indicating an enhanced Si uptake relative to nitrate+nitrite. Chlorophyll a concentrations were higher within the eddy compared to control stations outside, when integrated over the upper 150 m, but were not significantly different when integrated over the depth of the euphotic zone. Photosynthetic competency, assessed using fast repetition-rate fluorometry, varied with the doming of the isopycnals and the supply of macro-nutrients to the euphotic zone. The physical and chemical environment of the eddy selected for the accumulation of larger phytoplankton species. Photosynthetic bacteria ( Prochlorococcus and Synechococcus) and small (<3 μm diameter) photosynthetic eukaryotes were 3.6-fold more numerically abundant outside the eddy as compared to inside. Large photosynthetic eukaryotes (>3 μm diameter) were more abundant inside the eddy than outside. Diatoms of the genera Rhizosolenia and Hemiaulus outside the eddy contained diazotrophic endosymbiontic cyanobacteria, but these endosymbionts were absent from the cells of these species inside the eddy. The increase in cell numbers of large photosynthetic eukaryotes with hard silica or calcite cell walls is likely to have a profound impact on the proportion of the organic carbon production that is exported to deep water by sinking of senescent cells and cells grazed by herbivorous zooplankton and repackaged as large fecal pellets.
Nutrient enrichment and fish nutrient tolerance: Assessing biologically relevant nutrient criteria
Meador, Michael R.
2013-01-01
Relationships between nutrient concentrations and fish nutrient tolerance were assessed relative to established nutrient criteria. Fish community, nitrate plus nitrite (nitrate), and total phosphorus (TP) data were collected during summer low-flow periods in 2003 and 2004 at stream sites along a nutrient-enrichment gradient in an agricultural basin in Indiana and Ohio and an urban basin in the Atlanta, Georgia, area. Tolerance indicator values for nitrate and TP were assigned for each species and averaged separately for fish communities at each site (TIVo). Models were used to predict fish species expected to occur at a site under minimally disturbed conditions and average tolerance indicator values were determined for nitrate and TP separately for expected communities (TIVe). In both areas, tolerance scores (TIVo/TIVe) for nitrate increased significantly with increased nitrate concentrations whereas no significant relationships were detected between TP tolerance scores and TP concentrations. A 0% increase in the tolerance score (TIVo/TIVe = 1) for nitrate corresponded to a nitrate concentration of 0.19 mg/l (compared with a USEPA summer nitrate criterion of 0.17 mg/l) in the urban area and 0.31 mg/l (compared with a USEPA summer nitrate criterion of 0.86 mg/l) in the agricultural area. Fish nutrient tolerance values offer the ability to evaluate nutrient enrichment based on a quantitative approach that can provide insights into biologically relevant nutrient criteria.
Verifiable metamodels for nitrate losses to drains and groundwater in the Corn Belt, USA
Nolan, Bernard T.; Malone, Robert W.; Gronberg, Jo Ann M.; Thorp, K.R.; Ma, Liwang
2012-01-01
Nitrate leaching in the unsaturated zone poses a risk to groundwater, whereas nitrate in tile drainage is conveyed directly to streams. We developed metamodels (MMs) consisting of artificial neural networks to simplify and upscale mechanistic fate and transport models for prediction of nitrate losses by drains and leaching in the Corn Belt, USA. The two final MMs predicted nitrate concentration and flux, respectively, in the shallow subsurface. Because each MM considered both tile drainage and leaching, they represent an integrated approach to vulnerability assessment. The MMs used readily available data comprising farm fertilizer nitrogen (N), weather data, and soil properties as inputs; therefore, they were well suited for regional extrapolation. The MMs effectively related the outputs of the underlying mechanistic model (Root Zone Water Quality Model) to the inputs (R2 = 0.986 for the nitrate concentration MM). Predicted nitrate concentration was compared with measured nitrate in 38 samples of recently recharged groundwater, yielding a Pearson’s r of 0.466 (p = 0.003). Predicted nitrate generally was higher than that measured in groundwater, possibly as a result of the time-lag for modern recharge to reach well screens, denitrification in groundwater, or interception of recharge by tile drains. In a qualitative comparison, predicted nitrate concentration also compared favorably with results from a previous regression model that predicted total N in streams.
Chapin, T.P.; Caffrey, J.M.; Jannasch, H.W.; Coletti, L.J.; Haskins, J.C.; Johnson, K.S.
2004-01-01
Nitrate and water quality parameters (temperature, salinity, dissolved oxygen, turbidity, and depth) were measured continuously with in situ NO 3 analyzers and water quality sondes at two sites in Elkhorn Slough in Central California. The Main Channel site near the mouth of Elkhorn Slough was sampled from February to September 2001. Azevedo Pond, a shallow tidal pond bordering agricultural fields further inland, was sampled from December 1999 to July 2001. Nitrate concentrations were recorded hourly while salinity, temperature, depth, oxygen, and turbidity were recorded every 30 min. Nitrate concentrations at the Main Channel site ranged from 5 to 65 ??M. The propagation of an internal wave carrying water from ???100 m depth up the Monterey Submarine Canyon and into the lower section of Elkhorn Slough on every rising tide was a major source of nitrate, accounting for 80-90% of the nitrogen load during the dry summer period. Nitrate concentrations in Azevedo Pond ranged from 0-20 ??M during the dry summer months. Nitrate in Azevedo Pond increased to over 450 ??M during a heavy winter precipitation event, and interannual variability driven by differences in precipitation was observed. At both sites, tidal cycling was the dominant forcing, often changing nitrate concentrations by 5-fold or more within a few hours. Water volume flux estimates were combined with observed nitrate concentrations to obtain nitrate fluxes. Nitrate flux calculations indicated a loss of 4 mmol NO3 m -2 d-1 for the entire Elkhorn Slough and 1 mmol NO 3 m-2 d-1 at Azevedo Pond. These results suggested that the waters of Elkhorn Slough were not a major source of nitrate to Monterey Bay but actually a nitrate sink during the dry season. The limited winter data at the Main Channel site suggest that nitrate was exported from Elkhorn Slough during the wet season. Export of ammonium or dissolved organic nitrogen, which we did not monitor, may balance some or all of the NO 3 flux.
Frans, L.
2008-01-01
Pesticide and nitrate data for ground water sampled in the Central Columbia Plateau, Washington, between 1993 and 2003 by the U.S. Geological Survey National Water-Quality Assessment Program were evaluated for trends in concentration. A total of 72 wells were sampled in 1993-1995 and again in 2002-2003 in three well networks that targeted row crop and orchard land use settings as well as the regional basalt aquifer. The Regional Kendall trend test indicated that only deethylatrazine (DEA) concentrations showed a significant trend. Deethylatrazine concentrations were found to increase beneath the row crop land use well network, the regional aquifer well network, and for the dataset as a whole. No other pesticides showed a significant trend (nor did nitrate) in the 72-well dataset. Despite the lack of a trend in nitrate concentrations within the National Water-Quality Assessment dataset, previous work has found a statistically significant decrease in nitrate concentrations from 1998-2002 for wells with nitrate concentrations above 10 mg L-1 within the Columbia Basin ground water management area, which is located within the National Water-Quality Assessment study unit boundary. The increasing trend in DEA concentrations was found to negatively correlate with soil hydrologic group using logistic regression and with soil hydrologic group and drainage class using Spearman's correlation. The decreasing trend in high nitrate concentrations was found to positively correlate with the depth to which the well was cased using logistic regression, to positively correlate with nitrate application rates and sand content of the soil, and to negatively correlate with soil hydrologic group using Spearman's correlation. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Toxic effects of lead and nickel nitrate on rat liver chromatin components.
Rabbani-Chadegani Iii, Azra; Fani, Nesa; Abdossamadi, Sayeh; Shahmir, Nosrat
2011-01-01
The biological activity of heavy metals is related to their physicochemical interaction with biological receptors. In the present study, the effect of low concentrations of nickel nitrate and lead nitrate (<0.3 mM) on rat liver soluble chromatin and histone proteins was examined. The results showed that addition of various concentrations of metals to chromatin solution preceded the chromatin into aggregation and precipitation in a dose-dependant manner; however, the extent of absorbance changes at 260 and 400 nm was different between two metals. Gel electrophoresis of histone proteins and DNA of the supernatants obtained from the metal-treated chromatin and the controls revealed higher affinity of lead nitrate to chromatin compared to nickel nitrate. Also, the binding affinity of lead nitrate to histone proteins free in solution was higher than nickel. On the basis of the results, it is concluded that lead reacts with chromatin components even at very low concentrations and induce chromatin aggregation through histone-DNA cross-links. Whereas, nickel nitrate is less effective on chromatin at low concentrations, suggesting higher toxicity of lead nitrate on chromatin compared to nickel. Copyright © 2010 Wiley Periodicals, Inc.
Effects of Atmospheric Nitrate on an Upland Stream of the Northeastern USA
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Kendall, C.
2009-05-01
Excess nitrogen cascades through terrestrial biogeochemical cycles and affects stream nitrate concentrations in upland forests where atmospheric deposition is an important source of anthropogenic nitrogen. We will discuss approaches including high-frequency sampling, isotopic tracers, and end-member mixing analysis that can be used to decipher the sources, transformations, and hydrological processes that affect nitrate transport through forested upland catchments to streams. We present results of studies at the Sleepers River Research Watershed in Vermont, USA, a site where we have intensively measured stream nitrate concentrations during baseflow and stormflow. Stream nitrate concentrations are typically low and nearly 75% of annual inorganic N inputs from atmospheric deposition are retained within the catchment. However, high concentrations and stream loadings of nitrate occur during storm events due to source variation and hydrological flushing of nitrate from catchment soils. Using isotopic tracers and end-member mixing analysis, we have quantified source inputs of unprocessed atmospheric nitrate and show that this stream is directly affected by nitrogen pollution. Using a long-term record of stream hydrochemistry and our findings on event- scale nitrate flushing dynamics, we then explore how stream nitrate loading may respond to anthropogenic climate forcing during the next century. Results suggest that stream runoff and nitrate loadings will change during future emission scenarios (i.e. longer growing seasons and higher winter precipitation rates). Understanding the timing and magnitude of hydrological and hydrochemical responses is important because climate change effects on catchment hydrology may alter how nitrate is retained, produced, and hydrologically flushed in headwater ecosystems with implications for aquatic metabolism, nutrient export from catchments, and downstream eutrophication.
Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite-derived NO.
Kapil, Vikas; Milsom, Alexandra B; Okorie, Michael; Maleki-Toyserkani, Sheiva; Akram, Farihah; Rehman, Farkhanda; Arghandawi, Shah; Pearl, Vanessa; Benjamin, Nigel; Loukogeorgakis, Stavros; Macallister, Raymond; Hobbs, Adrian J; Webb, Andrew J; Ahluwalia, Amrita
2010-08-01
Ingestion of dietary (inorganic) nitrate elevates circulating and tissue levels of nitrite via bioconversion in the entero-salivary circulation. In addition, nitrite is a potent vasodilator in humans, an effect thought to underlie the blood pressure-lowering effects of dietary nitrate (in the form of beetroot juice) ingestion. Whether inorganic nitrate underlies these effects and whether the effects of either naturally occurring dietary nitrate or inorganic nitrate supplementation are dose dependent remain uncertain. Using a randomized crossover study design, we show that nitrate supplementation (KNO(3) capsules: 4 versus 12 mmol [n=6] or 24 mmol of KNO(3) (1488 mg of nitrate) versus 24 mmol of KCl [n=20]) or vegetable intake (250 mL of beetroot juice [5.5 mmol nitrate] versus 250 mL of water [n=9]) causes dose-dependent elevation in plasma nitrite concentration and elevation of cGMP concentration with a consequent decrease in blood pressure in healthy volunteers. In addition, post hoc analysis demonstrates a sex difference in sensitivity to nitrate supplementation dependent on resting baseline blood pressure and plasma nitrite concentration, whereby blood pressure is decreased in male volunteers, with higher baseline blood pressure and lower plasma nitrite concentration but not in female volunteers. Our findings demonstrate dose-dependent decreases in blood pressure and vasoprotection after inorganic nitrate ingestion in the form of either supplementation or by dietary elevation. In addition, our post hoc analyses intimate sex differences in nitrate processing involving the entero-salivary circulation that are likely to be major contributing factors to the lower blood pressures and the vasoprotective phenotype of premenopausal women.
Caron, William-Olivier; Lamhamedi, Mohammed S; Viens, Jeff; Messaddeq, Younès
2016-07-28
The reduction of nitrate leaching to ensure greater protection of groundwater quality has become a global issue. The development of new technologies for more accurate dosing of nitrates helps optimize fertilization programs. This paper presents the practical application of a newly developed electrochemical sensor designed for in situ quantification of nitrate. To our knowledge, this paper is the first to report the use of electrochemical impedance to determine nitrate concentrations in growing media under forest nursery conditions. Using impedance measurements, the sensor has been tested in laboratory and compared to colorimetric measurements of the nitrate. The developed sensor has been used in water-saturated growing medium and showed good correlation to certified methods, even in samples obtained over a multi-ion fertilisation season. A linear and significant relationship was observed between the resistance and the concentration of nitrates (R² = 0.972), for a range of concentrations of nitrates. We also observed stability of the sensor after exposure of one month to the real environmental conditions of the forest nursery.
Balangoda, Anusha; Deepananda, K H M Ashoka; Wegiriya, H C E
2018-02-01
This study investigated the potential toxic effects of environmentally relevant nitrate concentrations on development, growth, and mortality of early life stages of common hour-glass tree frog, Polypedates cruciger. Tadpoles from hatchlings through pre-adult were exposed to environmentally relevant nitrate concentrations detected in Mirissa, Sri Lanka. Newly hatched, external gill stage, and internal gill stage tadpoles were exposed to potassium nitrate for bioassay tests. No behavioral changes or abnormalities were observed in control and nitrate-induced group. However, detected environmental nitrate concentration significantly increased (p < 0.05) the growth of the tadpoles up to 25 days old. Results revealed that newly hatched and external gill stage was more susceptible to the nitrate pollution than internal gill stage. The results suggest that environmentally relevant nitrate can cause mortality on the amphibian population in ecosystems associated with agro-pastoral activities through altering the growth and direct toxicological effects on the survivorship.
The relation of ground-water quality to housing density, Cape Cod, Massachusetts
Persky, J.H.
1986-01-01
Correlation of median nitrate concentration in groundwater with housing density for 18 sample areas on Cape Cod yields a Pearson correlation coefficient of 0.802, which is significant at the 95 % confidence level. In five of nine sample areas where housing density is greater than one unit/acre, nitrate concentrations exceed 5 mg of nitrate/L (the Barnstable County planning goal for nitrate) in 25% of wells. Nitrate concentrations exceed 5 mg of nitrogen/L in 25% of wells in only one of nine sample areas where housing density is less than one unit/acre. Median concentrations of sodium and iron, and median levels of pH and specific conductance, are not significantly correlated with housing density. A computer generated map of nitrate shows a positive relation between nitrate concentration and housing density on Cape Cod. However, the presence of septage- or sewage-disposal sites and fertilizer use are also important factors that affect the nitrate concentration. A map of specific conductance also shows a positive relation to housing density, but little or no relation between housing density and sodium, ammonia, pH, or iron is apparent on the maps. Chemical analyses of samples collected from 3,468 private- and public-supply wells between January 1980 and June 1984 were used to examine the extent to which housing density determines water quality on Cape Cod, an area largely unsewered and underlain by a sole source aquifer. (Author 's abstract)
MacLeod, Cecilia Louise; Barringer, T.H.; Vowinkel, E.F.; Price, C.V.
1995-01-01
A water-quality data base was developed to permit the investigation of the relation of concentrations of nitrate (as nitrogen) in ground water to well depth, well use, and land use (agricultural, residential, urban nonresidential, and undeveloped) in Franklin Township. Nitrate concentrations in water from 868 wells tended to decrease with depth. A rank-order regression model of nitrate concen- trations and land-use percentages was fitted to data from 98 shallow domestic wells. The model, which explains about 25 percent of the variance in the data, indicated that nitrate concentration increased with the percentage of developed land in a well's buffer zone. Further stratification of the data based on well use (commercial, domestic, or agricultural/irrigation) indicated that elevated nitrate concentrations were more common in water from agricultural/irrigation wells than in water from domestic or commercial wells. Concentrations of nitrate were indicative of human activities in water from about one-third of the wells sampled but exceeded the U.S. Environmental Protection Agency's maximum contaminant level of 10 milligrams per liter in water from only 1 percent of the wells. A sampling strategy in which water from wells of different depths located within areas in each of the four land-use categories is sampled yearly and analyzed for nitrate and other constituents would facilitate determination of the effects of human activities on ground-water quality.
Oka, Yuka; Hirayama, Izumi; Yoshikawa, Mitsuhide; Yokoyama, Tomoko; Iida, Kenji; Iwakoshi, Katsushi; Suzuki, Ayana; Yanagihara, Midori; Segawa, Yukino; Kukimoto, Sonomi; Hamada, Humika; Matsuzawa, Satomi; Tabata, Setsuko; Sasamoto, Takeo
2017-01-01
A survey of nitrate-ion concentrations in plant-factory-cultured leafy vegetables was conducted. 344 samples of twenty-one varieties of raw leafy vegetables were examined using HPLC. The nitrate-ion concentrations in plant-factory-cultured leafy vegetables were found to be LOD-6,800 mg/kg. Furthermore, the average concentration values varied among different leafy vegetables. The average values for plant-factory-cultured leafy vegetables were higher than those of open-cultured leafy vegetables reported in previous studies, such as the values listed in the Standard Tables of Food Composition in Japan- 2015 - (Seventh revised edition). For some plant-factory-cultured leafy vegetables, such as salad spinach, the average values were above the maximum permissible levels of nitrate concentration in EC No 1258/2011; however, even when these plant-factory-cultured vegetables were routinely eaten, the intake of nitrate ions in humans did not exceed the ADI.
Effects of nitrogen fertilizers on the growth and nitrate content of lettuce (Lactuca sativa L.).
Liu, Cheng-Wei; Sung, Yu; Chen, Bo-Ching; Lai, Hung-Yu
2014-04-22
Nitrogen is an essential element for plant growth and development; however, due to environmental pollution, high nitrate concentrations accumulate in the edible parts of these leafy vegetables, particularly if excessive nitrogen fertilizer has been applied. Consuming these crops can harm human health; thus, developing a suitable strategy for the agricultural application of nitrogen fertilizer is important. Organic, inorganic, and liquid fertilizers were utilized in this study to investigate their effect on nitrate concentrations and lettuce growth. The results of this pot experiment show that the total nitrogen concentration in soil and the nitrate concentration in lettuce increased as the amount of nitrogen fertilizer increased. If the recommended amount of inorganic fertilizer (200 kg·N·ha⁻¹) is used as a standard of comparison, lettuce augmented with organic fertilizers (200 kg·N·ha⁻¹) have significantly longer and wider leaves, higher shoot, and lower concentrations of nitrate.
Effects of Nitrogen Fertilizers on the Growth and Nitrate Content of Lettuce (Lactuca sativa L.)
Liu, Cheng-Wei; Sung, Yu; Chen, Bo-Ching; Lai, Hung-Yu
2014-01-01
Nitrogen is an essential element for plant growth and development; however, due to environmental pollution, high nitrate concentrations accumulate in the edible parts of these leafy vegetables, particularly if excessive nitrogen fertilizer has been applied. Consuming these crops can harm human health; thus, developing a suitable strategy for the agricultural application of nitrogen fertilizer is important. Organic, inorganic, and liquid fertilizers were utilized in this study to investigate their effect on nitrate concentrations and lettuce growth. The results of this pot experiment show that the total nitrogen concentration in soil and the nitrate concentration in lettuce increased as the amount of nitrogen fertilizer increased. If the recommended amount of inorganic fertilizer (200 kg·N·ha−1) is used as a standard of comparison, lettuce augmented with organic fertilizers (200 kg·N·ha−1) have significantly longer and wider leaves, higher shoot, and lower concentrations of nitrate. PMID:24758896
[Nitrate concentrations in tap water in Spain].
Vitoria, Isidro; Maraver, Francisco; Sánchez-Valverde, Félix; Armijo, Francisco
2015-01-01
To determine nitrate concentrations in drinking water in a sample of Spanish cities. We used ion chromatography to analyze the nitrate concentrations of public drinking water in 108 Spanish municipalities with more than 50,000 inhabitants (supplying 21,290,707 potential individuals). The samples were collected between January and April 2012. The total number of samples tested was 324. The median nitrate concentration was 3.47 mg/L (range: 0.38-66.76; interquartile range: 4.51). The water from 94% of the municipalities contained less than 15 mg/L. The concentration was higher than 25mg/L in only 3 municipalities and was greater than 50mg/L in one. Nitrate levels in most public drinking water supplies in municipalities inhabited by almost half of the Spanish population are below 15 mg/L. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.
Shepherd, Anthony I; Wilkerson, Daryl P; Fulford, Jon; Winyard, Paul G; Benjamin, Nigel; Shore, Angela C; Gilchrist, Mark
2016-09-01
Nitric oxide alters gastric blood flow, improves vascular function, and mediates glucose uptake within the intestines and skeletal muscle. Dietary nitrate, acting as a source of nitric oxide, appears to be a potential low-cost therapy that may help maintain glucose homeostasis. In a randomized, double-blind, placebo-controlled crossover study, 31 young and older adult participants had a standardized breakfast, supplemented with either nitrate-rich beetroot juice (11.91 mmol nitrate) or nitrate-depleted beetroot juice as placebo (0.01 mmol nitrate). MRI was used to assess apparent diffusion coefficient (ADC), portal vein flux, and velocity. Plasma glucose, incretin, and C-peptide concentrations and blood pressure were assessed. Outcome variables were measured at baseline and hourly for 3 h. Compared with a placebo, beetroot juice resulted in a significant elevation in plasma nitrate and plasma nitrite concentration. No differences were seen for the young or older adult cohorts between placebo and beetroot juice for ADC, or portal vein flux. There was an interaction effect in the young adults between visits for portal vein velocity. Nitrate supplementation did not reduce plasma glucose, active GLP-1, total GLP-1, or plasma C-peptide concentrations for the young or older adult cohorts. Despite a significant elevation in plasma nitrite concentration following an acute dose of (11.91 mmol) nitrate, there was no effect on hepatic blood flow, plasma glucose, C-peptide, or incretin concentration in healthy adults. Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Czuba, Jonathan A.; Hansen, Amy T.; Foufoula-Georgiou, Efi; Finlay, Jacques C.
2018-02-01
Aquatic nitrate removal depends on interactions throughout an interconnected network of lakes, wetlands, and river channels. Herein, we present a network-based model that quantifies nitrate-nitrogen and organic carbon concentrations through a wetland-river network and estimates nitrate export from the watershed. This model dynamically accounts for multiple competing limitations on nitrate removal, explicitly incorporates wetlands in the network, and captures hierarchical network effects and spatial interactions. We apply the model to the Le Sueur Basin, a data-rich 2,880 km2 agricultural landscape in southern Minnesota and validate the model using synoptic field measurements during June for years 2013-2015. Using the model, we show that the overall limits to nitrate removal rate via denitrification shift between nitrate concentration, organic carbon availability, and residence time depending on discharge, characteristics of the waterbody, and location in the network. Our model results show that the spatial context of wetland restorations is an important but often overlooked factor because nonlinearities in the system, e.g., deriving from switching of resource limitation on denitrification rate, can lead to unexpected changes in downstream biogeochemistry. Our results demonstrate that reduction of watershed-scale nitrate concentrations and downstream loads in the Le Sueur Basin can be most effectively achieved by increasing water residence time (by slowing the flow) rather than by increasing organic carbon concentrations (which may limit denitrification). This framework can be used toward assessing where and how to restore wetlands for reducing nitrate concentrations and loads from agricultural watersheds.
Wilkerson, Daryl P.; Fulford, Jon; Winyard, Paul G.; Benjamin, Nigel; Shore, Angela C.
2016-01-01
Nitric oxide alters gastric blood flow, improves vascular function, and mediates glucose uptake within the intestines and skeletal muscle. Dietary nitrate, acting as a source of nitric oxide, appears to be a potential low-cost therapy that may help maintain glucose homeostasis. In a randomized, double-blind, placebo-controlled crossover study, 31 young and older adult participants had a standardized breakfast, supplemented with either nitrate-rich beetroot juice (11.91 mmol nitrate) or nitrate-depleted beetroot juice as placebo (0.01 mmol nitrate). MRI was used to assess apparent diffusion coefficient (ADC), portal vein flux, and velocity. Plasma glucose, incretin, and C-peptide concentrations and blood pressure were assessed. Outcome variables were measured at baseline and hourly for 3 h. Compared with a placebo, beetroot juice resulted in a significant elevation in plasma nitrate and plasma nitrite concentration. No differences were seen for the young or older adult cohorts between placebo and beetroot juice for ADC, or portal vein flux. There was an interaction effect in the young adults between visits for portal vein velocity. Nitrate supplementation did not reduce plasma glucose, active GLP-1, total GLP-1, or plasma C-peptide concentrations for the young or older adult cohorts. Despite a significant elevation in plasma nitrite concentration following an acute dose of (11.91 mmol) nitrate, there was no effect on hepatic blood flow, plasma glucose, C-peptide, or incretin concentration in healthy adults. PMID:27418682
Rodríguez-Martínez, Jesús; Guzmán-Ríos, Senén
2017-06-26
A study was conducted in 2014–15 by the U.S. Geological Survey (USGS), in cooperation with the Municipality of Caguas, to determine if changes in the stream sanitary quality during base-flow conditions have occurred since 1997–99, when a similar study was completed by the USGS. Water samples were collected for the current study during two synoptic surveys in 2014 and 2015. Water samples were analyzed for fecal and total coliform bacteria, nitrate plus nitrite as nitrogen, nitrogen and oxygen isotopes of nitrate, and human health and pharmaceutical products. Water sampling occurred at 39 stream locations used during the 1997–99 study by the USGS and at 11 additional sites. A total of 151 stream miles were classified on the basis of fecal and total coliform bacteria results.The overall spatial pattern of the sanitary quality of surface water during 2014–15 is similar to the pattern observed in 1997–99 in relation to the standards adopted by the Puerto Rico Environmental Quality Board in 1990. Surface water at most of the water-sampling sites exceeded the current standard for fecal coliform of 200 colonies per 100 milliliters adopted by the Puerto Rico Environmental Quality Board in 2010. The poorest sanitary quality was within the urban area of the Municipality of Caguas, particularly in urban stream reaches of Río Caguitas and in rural and suburban reaches bordered by houses in high density that either have inadequate septic tanks or discharge domestic wastewater directly into the stream channels. The best sanitary quality occurred in areas having little or no human development, such as in the wards of San Salvador and Beatriz to the south and southwest of Caguas, respectively. The concentration of nitrate plus nitrite as nitrogen ranged from 0.02 to 9.0 milligrams per liter, and did not exceed the U.S. Environmental Protection Agency drinking-water standard for nitrate as nitrogen of 10 milligrams per liter. The composition of nitrogen and oxygen isotopes of nitrate indicates that the origin of nitrate in the streams is most likely animal and human waste. A baseline was established for the concentrations of selected human health and pharmaceutical products at stations in some of the streams within the Municipality of Caguas. Thirty-eight human health and pharmaceutical products were present at or above the measurement detection level.
NASA Astrophysics Data System (ADS)
Tong, S.; Rodriguez-Gonzalez, L. C.; Henderson, M.; Feng, C.; Ergas, S. J.
2015-12-01
The rapid movement of human civilization towards urbanization, industrialization, and increased agricultural activities has introduced a large amount of nitrate into groundwater. Nitrate is a toxic substance discharged from groundwater to rivers and leads to decreased dissolved oxygen and eutrophication. For this experiment, an electron donor is needed to convert nitrate into non-toxic nitrogen gas. Pyrite is one of the most abundant minerals in the earth's crust making it an ideal candidate as an electron donor. The overall goal of this research was to investigate the potential for pyrite to be utilized as an electron donor for autotrophic denitrification of nitrate-contaminated groundwater. Batch studies of particulate pyrite autotrophic denitrification (PPAD) of synthetic groundwater (100 mg NO3--N L-1) were set up with varying biomass concentration, pyrite dose, and pyrite particle size. Reactors were seeded with mixed liquor volatile suspended solids (VSS) from a biological nitrogen removal wastewater treatment facility. PPAD using small pyrite particles (<0.45mm) resulted in a favorable nitrate removal. The nitrate removal rate increased from 0.26 to 0.34 mg L-1h-1 and then to 0.86 mg L-1h-1, approaching that of the sulfur oxidizing denitrification (SOD) rate of 1.19 mg L-1h-1. Based on Box-Behnken design (BBD) and response surface methodology (RSM), the optimal amount of biomass concentration, pyrite dose, and pyrite particle size were 1,250 mg VSS L-1, 125 g L-1, and 0.815-1.015 mm, respectively. PPAD exhibited substantial nitrate removal rate, lower sulfate accumulation (5.46 mg SO42-/mg NO3--N) and lower alkalinity consumption (1.70 mg CaCO3/mg NO3--N) when compared to SOD (7.54 mg SO42-/mg NO3--N, 4.57 mg CaCO3/mg NO3--N based on stoichiometric calculation). This research revealed that the PPAD process is a promising technique for nitrate-contaminated groundwater treatment and promoted the utilization of pyrite in the field of environmental remediation.
NASA Astrophysics Data System (ADS)
Crusius, John; Schroth, Andrew W.; Resing, Joseph A.; Cullen, Jay; Campbell, Robert W.
2017-06-01
Phytoplankton growth in the Gulf of Alaska (GoA) is limited by iron (Fe), yet Fe sources are poorly constrained. We examine the temporal and spatial distributions of Fe, and its sources in the GoA, based on data from three cruises carried out in 2010 from the Copper River (AK) mouth to beyond the shelf break. April data are the first to describe late winter Fe behavior before surface water nitrate depletion began. Sediment resuspension during winter and spring storms generated high "total dissolvable Fe" (TDFe) concentrations of 1000 nmol kg-1 along the entire continental shelf, which decreased beyond the shelf break. In July, high TDFe concentrations were similar on the shelf, but more spatially variable, and driven by low-salinity glacial meltwater. Conversely, dissolved Fe (DFe) concentrations in surface waters were far lower and more seasonally consistent, ranging from 4 nmol kg-1 in nearshore waters to 0.6-1.5 nmol kg-1 seaward of the shelf break during April and July, despite dramatic depletion of nitrate over that period. The reasonably constant DFe concentrations are likely maintained during the year across the shelf by complexation by strong organic ligands, coupled with ample supply of labile particulate Fe. The April DFe data can be simulated using a simple numerical model that assumes a DFe flux from shelf sediments, horizontal transport by eddy diffusion, and removal by scavenging. Given how global change is altering many processes impacting the Fe cycle, additional studies are needed to examine controls on DFe in the Gulf of Alaska.
Effect of Chlorella sorokiniana on the biological denitrification of drinking water.
Petrovič, Aleksandra; Simonič, Marjana
2015-04-01
The influence of Chlorella sorokiniana on drinking water's biological denitrification was studied at two different initial nitrate concentrations, 50 and 100 mg/L, respectively. Sucrose and grape juice were used as carbon sources. The experiments showed that the denitrification process in the presence of algae was, even at low concentrations, i.e. 50 mg/L of nitrate, slower than without them, but yet still more than 95% of nitrate was removed in 24 h. It was also discovered that, with the addition of ammonium and urea, the urea interfered much more with the denitrification process, as less than 50% of the initial nitrate was removed. However, algae did not contribute to the nitrate and ammonium removals, as the final concentrations of both in the presence of algae were higher by approx 5%. At 100 mg/L of initial nitrate, the denitrification kinetics in the presence of algae was apparently slower regarding those experiments at lower levels of nitrate and only 65-70% of nitrate was removed over 24 h. Using grape juice instead of sucrose improved the nitrate removal slightly.
Meena, Amanda H; Arai, Yuji
2016-01-01
Reductive precipitation of hexavalent chromium (Cr(VI)) with magnetite is a well-known Cr(VI) remediation method to improve water quality. The rapid (
Lee, Brady D; Ellis, Joshua T; Dodwell, Alex; Eisenhauer, Emalee E R; Saunders, Danielle L; Lee, M Hope
2018-05-15
Nitrate and radioiodine ( 129 I) contamination is widespread in groundwater underneath the Central Plateau of the Hanford Site. 129 I, a byproduct of nuclear fission, is of concern due to a 15.7 million year half-life, and toxicity. The Hanford 200 West Area contains plumes covering 4.3 km 2 with average 129 I concentrations of 3.5 pCi/L. Iodate accounts for 70.6% of the iodine present and organo-iodine and iodide make up 25.8% and 3.6%, respectively. Nitrate plumes encompassing the 129 I plumes have a surface area of 16 km 2 averaging 130 mg/L. A nitrate and iodate reducing bacterium closely related to Agrobacterium, strain DVZ35, was isolated from sediment incubated in a 129 I plume. Iodate removal efficiency was 36.3% in transition cultures, and 47.8% in anaerobic cultures. Nitrate (10 mM) was also reduced in the microcosm. When nitrate was spiked into the microcosms, iodate removal efficiency was 84.0% and 69.2% in transition and anaerobic cultures, respectively. Iodate reduction was lacking when nitrate was absent from the growth medium. These data indicate there is simultaneous reduction of nitrate and iodate by DVZ35, and iodate is reduced to iodide. Results provide the scientific basis for combined nitrogen and iodine cycling throughout the Hanford Site. Copyright © 2018. Published by Elsevier B.V.
Moussa, Samar G; Finlayson-Pitts, Barbara J
2010-08-28
The kinetics and mechanisms of the reaction of gas phase OH radicals with organics on surfaces are of fundamental chemical interest, as well as relevant to understanding the degradation of organics on tropospheric surfaces or when they are components of airborne particles. We report here studies of the oxidation of a terminal alkene self-assembled monolayer (7-octenyltrichlorosilane, C8= SAM) on a germanium attenuated total reflectance crystal by OH radicals at a concentration of 2.1 x 10(5) cm(-3) at 1 atm total pressure and 298 K in air. Loss of the reactant SAM and the formation of surface products were followed in real time using infrared spectroscopy. From the rate of loss of the C=C bond, a reaction probability within experimental error of unity was derived. The products formed on the surface include organic nitrates and carbonyl compounds, with yields of 10 +/- 4% and < or = 7 +/- 4%, respectively, and there is evidence for the formation of organic products with C-O bonds such as alcohols, ethers and/or alkyl peroxides and possibly peroxynitrates. The yield of organic nitrates relative to carbonyl compounds is higher than expected based on analogous gas phase mechanisms, suggesting that the branching ratio for the RO(2) + NO reaction is shifted to favor the formation of organic nitrates when the reaction occurs on a surface. Water uptake onto the surface was only slightly enhanced upon oxidation, suggesting that oxidation per se cannot be taken as a predictor of increased hydrophilicity of atmospheric organics. These experiments indicate that the mechanisms for the surface reactions are different from gas phase reactions, but the OH oxidation of surface species will still be a significant contributor to determining their lifetimes in air.
NASA Astrophysics Data System (ADS)
Pellerin, B. A.; Bergamaschi, B. A.; Saraceno, J.; Downing, B. D.; Crawford, C.; Gilliom, R.; Frederick, P.
2013-12-01
Nitrogen flux from the Mississippi River to the Gulf of Mexico has received considerable attention because it fuels primary production on the continental shelf and can contribute to the summer hypoxia observed in the Gulf. Accurately quantifying the load of nitrogen - particularly as nitrate - to the Gulf is critical for both predicting the size of the oxygen-depleted dead zone and establishing targets for N load reduction from the basin. Fluxes have been historically calculated with load estimation models using 5-10 years of discrete nitrate data collected approximately 12-18 times per year. These traditional monthly to biweekly sampling intervals often fail to adequately capture hydrologic pulses ranging from early snowmelt periods to short-duration rainfall events in small streams, but the ability to adequately resolve patterns in water quality in large rivers has received much less attention. The recent commercial availability of in situ optical sensors for nitrate, together with new techniques for data collection and analysis, provides an opportunity to measure nitrate concentration on time scales in which environmental conditions actually change. Data have been collected and analyzed from a USGS optical nitrate sensor deployed in the Mississippi River at Baton Rouge, Louisiana, since November 2011. Our nitrate data, collected at three hour intervals, shows a strong relationship to depth- and width-integrated discrete nitrate concentrations measured on 20 dates (r2=0.99, slope=1) after correcting for a consistent, small positive bias (0.10 mg/L). The close relationship between the in situ data measured on edge of the channel and the depth- and width-integrated sample suggests that the fixed sensor measurements provide a robust proxy for cross-sectional averaged nitrate concentrations at Baton Rouge under a range of flow conditions. Nitrate concentrations ranged from a low of 0.19 mg/L as N on September 11, 2012 to a high of 3.09 mg/L as N on July 12, 2013. This covers nearly the entire range of nitrate concentrations measured at Baton Rouge (2005-2013) and 30 miles upriver at St. Francisville (1996-2013). Seasonality in nitrate concentrations and discharge was observed, but daily values of discharge and nitrate concentrations reveal a decoupling both between dry and wet years and within a given year. Results from our study also suggest an anomalously high flush of nitrate from the upper basin in the wet spring of 2013, with higher than expected daily nitrate loads based on the daily runoff. A comparison of calculated (e.g. sensor) versus modeled spring nitrate loads reveals differences of up to 30% during certain months, although the implications of those difference for predicting the size of the Gulf hypoxia are not yet known.
Gates, Timothy K; Cody, Brent M; Donnelly, Joseph P; Herting, Alexander W; Bailey, Ryan T; Mueller Price, Jennifer
2009-01-01
Prudent interventions for reducing selenium (Se) in groundwater and streams within an irrigated river valley must be guided by a sound understanding of current field conditions. An emerging picture of the nature of Se contamination within the Lower Arkansas River Valley in Colorado is provided by data from a large number of groundwater and surface water sampling locations within two study regions along the river. Measurements show that dissolved Se concentrations in the river are about double the current Colorado Department of Public Health and Environment (CDPHE) chronic standard of 4.6 microg L(-1) for aquatic habitat in the upstream region and exceed the standard by a factor of 2 to 4 in the downstream region. Groundwater concentrations average about 57.7 microg L(-1) upstream and 33.0 microg L(-1) downstream, indicating a large subsurface source for irrigation-induced dissolution and mobilization of Se loads to the river and its tributaries. Inverse correlation was found between Se concentration and the distance to the closest identified shale in the direction upstream along the principal groundwater flow gradient. The data also exhibited, among other relationships, a moderate to strong correlation between dissolved Se and total dissolved solids in groundwater and surface water, a strong correlation with uranium in groundwater, and power relationships with nitrate in groundwater. The relationship to nitrate, derived primarily from N fertilizers, reveals the degree to which dissolved Se depends on oxidation and inhibited reduction due to denitrification and suggests that there are prospects for reducing dissolved Se through nitrate control. Current and future results from these ongoing studies will help provide a foundation for modeling and for the discovery of best management practices (BMPs) in irrigated agriculture that can diminish Se contamination.
The use of multilevel sampling techniques for determining shallow aquifer nitrate profiles.
Lasagna, Manuela; De Luca, Domenico Antonio
2016-10-01
Nitrate is a worldwide pollutant in aquifers. Shallow aquifer nitrate concentrations generally display vertical stratification, with a maximum concentration immediately below the water level. The concentration then gradually decreases with depth. Different techniques can be used to highlight this stratification. The paper aims at comparing the advantages and limitations of three open hole multilevel sampling techniques (packer system, dialysis membrane samplers and bailer), chosen on the base of a literary review, to highlight a nitrate vertical stratification under the assumption of (sub)horizontal flow in the aquifer. The sampling systems were employed at three different times of the year in a shallow aquifer piezometer in northern Italy. The optimal purge time, equilibration time and water volume losses during the time in the piezometer were evaluated. Multilevel techniques highlighted a similar vertical nitrate stratification, present throughout the year. Indeed, nitrate concentrations generally decreased with depth downwards, but with significantly different levels in the sampling campaigns. Moreover, the sampling techniques produced different degrees of accuracy. More specifically, the dialysis membrane samplers provided the most accurate hydrochemical profile of the shallow aquifer and they appear to be necessary when the objective is to detect the discontinuities in the nitrate profile. Bailer and packer system showed the same nitrate profile with little differences of concentration. However, the bailer resulted much more easier to use.
Fila, L; Chladek, J; Maly, M; Musil, J
2013-01-01
To evaluate correlation of exhaled breath condensate (EBC) nitrite and nitrate concentrations with disease severity in cystic fibrosis (CF) patients. Nitrites and nitrates are products of oxidative metabolism of nitric oxide. Impaired metabolism of nitric oxide plays a role in pathogenesis of CF. EBC was collected from 46 stable CF patients and from 21 healthy controls. EBC concentrations of nitrites and nitrates were correlated with parameters of lung disease and nutritional status and with systemic inflammatory markers. EBC nitrates concentrations in CF patients were lower than in healthy subjects (5.8 vs 14.3 μmol/l, p<0.001). They correlated positively with FEV1 (p=0.025) and serum albumin values (p=0.016) and negatively with chest radiograph Northern score (p=0.015) and serum C-reactive protein values (p=0.005). EBC nitrites concentrations in CF patients did not differ from those in healthy subjects and were not correlated to any studied parameter. EBC nitrates concentrations correlate with disease severity in CF patients and are lower than in healthy subjects (Tab. 4, Fig. 1, Ref. 48).
Shanley, J.B.; Kendall, C.; Albert, M.R.; Hardy, J.P.
1995-01-01
The chemical, isotopic, and morphologic evolution of a layered snowpack was investigated during the winter of 1993-94 at Sleepers River Research Watershed in Danville, Vermont. The snowpack was monitored at two small basins: a forested basin at 525 m elevation, and an agricultural basin at 292 m elevation. At each site, the snowpack morphology was characterized and individual layers were sampled seven times during the season. Nitrate and 8d18O profiles in the snowpack remained relatively stable until peak accumulation in mid-March, except near the snow surface, where rain-on-snow events caused water and nitrate movement down to impeding ice layers. Subsequently, water and nitrate moved more readily through the ripening snowpack. As the snowpack evolved, combined processes of preferential ion elution, isotopic fractionation, and infiltration of isotopically heavy rainfall caused the pack to become depleted in solutes and isotopically enriched. The release of nitrate and isotopically depleted water was reflected in patterns of nitrate concentrations and ??18O of meltwater and stream water. Results supported data from the previous year which suggested that streamflow in the forested basin during snowmelt was dominated by groundwater discharge.
Sheppard, J.C.
1962-07-31
A process of selectively extracting plutonium nitrate and neptunium nitrate with an organic solution of a tertiary amine, away from uranyl nitrate present in an aqueous solution in a maximum concentration of 1M is described. The nitric acid concentration is adjusted to about 4M and nitrous acid is added prior to extraction. (AEC)
NASA Astrophysics Data System (ADS)
Wang, Meng; Lu, Baohong
2017-04-01
Nitrate is essential for the growth and survival of plants, animals and humans. However, excess nitrate in drinking water is regarded as a health hazard as it is linked to infant methemoglobinemia and esophageal cancer. Revealing nitrate characteristics and identifying its sources are fundamental for making effective water management strategies, but nitrate sources in multi-tributaries and mixed land covered watersheds remain unclear. It is difficult to determine the predominant NO3- sources using conventional water quality monitoring techniques. In our study, based on 20 surface water sampling sites for more than two years' monitoring from April 2012 to December 2014, water chemical and dual isotopic approaches (δ15N-NO3- and δ18O-NO3-) were integrated for the first time to evaluate nitrate characteristics and sources in the Huashan watershed, Jianghuai hilly region, East China. The results demonstrated that nitrate content in surface water was relatively low in the downstream (<10 mg/L), but spatial heterogeneities were remarkable among different sub-watersheds. Extremely high nitrate was observed at the source of the river in one of the sub-watersheds, which exhibited an exponential decline along the stream due to dilution, absorption by aquatic plants, and high forest cover. Although dramatically decline of nitrate occurred along the stream, denitrification was not found in surface water by analyzing δ15N-NO3- and δ18O-NO3- relationship. Proportional contributions of five potential nitrate sources (i.e., precipitation; manure and sewage; soil nitrogen; nitrate fertilizer; nitrate derived from ammonia fertilizer and rainfall) were estimated using a Bayesian isotope mixing model. Model results indicated nitrate sources varied significantly among different rainfall conditions, land use types, as well as anthropologic activities. In summary, coupling dual isotopes of nitrate (δ15N-NO3- and δ18O-NO3-, simultaneously) with a Bayesian isotope mixing model offers a useful and practical way to qualitatively analyze nitrate sources and transformations as well as quantitatively estimate the contributions of potential nitrate sources in surface water. With the assessment of nitrate sources and characteristics, effective management strategies can be implemented to reduce N export and improve water quality in this region.
An insect-bacteria bioindicator for assessing detrimental nutrient enrichment in wetlands.
A. Dennis Lemly; Ryan S. King
2000-01-01
Field and laboratory studies were conducted to evaluate the use of bacterial growth on aquatic insects as a metric for determining the existence of nutrient impacts in wetlands. Results from field investigations indicated that elevated concentrations of nitrate and phosphate were associated with growth of filamentous bacteria on insect body surfaces and that there were...
McMahon, P.B.; Thomas, J.C.; Hunt, A.G.
2011-01-01
Previous water-quality assessments reported elevated concentrations of nitrate and methane in water from domestic wells screened in shallow zones of the Wasatch Formation, Garfield County, Colorado. In 2009, the U.S. Geological Survey, in cooperation with the Colorado Department of Public Health and Environment, analyzed samples collected from 26 domestic wells for a diverse set of geochemical tracers for the purpose of determining sources and sinks of nitrate and methane in groundwater from the Wasatch Formation. Nitrate concentrations ranged from less than 0.04 to 6.74 milligrams per liter as nitrogen (mg/L as N) and were significantly lower in water samples with dissolved-oxygen concentrations less than 0.5 mg/L than in samples with dissolved-oxygen concentrations greater than or equal to 0.5 mg/L. Chloride/bromide mass ratios and tracers of groundwater age (tritium, chlorofluorocarbons, and sulfur hexafluoride) indicate that septic-system effluent or animal waste was a source of nitrate in some young groundwater (less than 50 years), although other sources such as fertilizer also may have contributed nitrate to the groundwater. Nitrate and nitrogen gas (N2) concentrations indicate that denitrification was the primary sink for nitrate in anoxic groundwater, removing 99 percent of the original nitrate content in some samples that had nitrate concentrations greater than 10 mg/L as N at the time of recharge. Methane concentrations ranged from less than 0.0005 to 32.5 mg/L and were significantly higher in water samples with dissolved-oxygen concentrations less than 0.5 mg/L than in samples with dissolved-oxygen concentrations greater than or equal to 0.5 mg/L. High methane concentrations (greater than 1 mg/L) in some samples were biogenic in origin and appeared to be derived from a relatively deep source on the basis of helium concentrations and isotopic data. One such sample had water-isotopic and major-ion compositions similar to that of produced water from the underlying Mesaverde Group, which was the primary natural-gas producing interval in the study area. Methane in the Mesaverde Group was largely thermogenic in origin so biogenic methane in the sample probably was derived from deeper zones in the Wasatch Formation. The primary methane sink in the aquifer appeared to be methane oxidation on the basis of dissolved-oxygen and methane concentrations and methane isotopic data. The diverse data sets used in this study enhance previous water-quality assessments by providing new and more complete insights into the sources and sinks of nitrate and methane in groundwater. Field measurements of dissolved oxygen in groundwater were useful indicators of the Wasatch Formation's vulnerability to nitrate and methane contamination or enrichment. Results from this study also provide new evidence for the movement of water, ions, and gases into the shallow Wasatch Formation from sources such as the Mesaverde Group and deeper Wasatch Formation.
Townsend, M.A.; Sleezer, R.O.; Macko, S.A.; ,
1996-01-01
Differences in nitrate-N concentrations in,around water in Kansas can be explained by variations in agricultural practices and vadose-zone stratigraphy. In northwestern Kansas, past use of a local stream for tailwater runoff from irrigation and high fertilizer applications for sugar-beet farming resulted in high nitrate-N concentrations (12-60 mg L-1; in both soil and ground water. Nitrogen isotope values from the soil and ground water range from +4 to +8? which is typical for a fertilizer source. In parts of south-central Kansas, the use of crop rotation and the presence of both continuous fine-textured layers and a reducing ground-water chemistry resulted in ground-water nitrate-N values of 10 mg L-1; in both soil and grounwater. Nitrogen isotope values of +3 to +7? indicate a fertilizer source. Crop rotation decreased nitrate-N values in the shallow ground water (9 m). However, deeper ground water showed increasing nitrate-N concentrations as a result of past farming practices.
NASA Astrophysics Data System (ADS)
Wrable-Rose, Madeline; Primera-Pedrozo, Oliva M.; Pacheco-Londoño, Leonardo C.; Hernandez-Rivera, Samuel P.
2010-12-01
This research examines the surface contamination properties, trace sample preparation methodologies, detection systems response and generation of explosive contamination standards for trace detection systems. Homogeneous and reproducible sample preparation is relevant for trace detection of chemical threats, such as warfare agents, highly energetic materials (HEM) and toxic industrial chemicals. The objective of this research was to develop a technology capable of producing samples and standards of HEM with controlled size and distribution on a substrate to generate specimens that would reproduce real contamination conditions. The research activities included (1) a study of the properties of particles generated by two deposition techniques: sample smearing deposition and inkjet deposition, on gold-coated silicon, glass and stainless steel substrates; (2) characterization of composition, distribution and adhesion characteristics of deposits; (3) evaluation of accuracy and reproducibility for depositing neat highly energetic materials such as TNT, RDX and ammonium nitrate; (4) a study of HEM-surface interactions using FTIR-RAIRS; and (5) establishment of protocols for validation of surface concentration using destructive methods such as HPLC.
Water quality and possible sources of nitrate in the Cimarron Terrace Aquifer, Oklahoma, 2003
Masoner, Jason R.; Mashburn, Shana L.
2004-01-01
Water from the Cimarron terrace aquifer in northwest Oklahoma commonly has nitrate concentrations that exceed the maximum contaminant level of 10 milligrams per liter of nitrite plus nitrate as nitrogen (referred to as nitrate) set by the U.S. Environmental Protection Agency for public drinking water supplies. Starting in July 2003, the U.S. Geological Survey, in cooperation with the Oklahoma Department of Environmental Quality, conducted a study in the Cimarron terrace aquifer to assess the water quality and possible sources of nitrate. A qualitative and quantitative approach based on multiple lines of evidence from chemical analysis of nitrate, nitrogen isotopes in nitrate, pesticides (indicative of cropland fertilizer application), and wastewater compounds (indicative of animal or human wastewater) were used to indicate possible sources of nitrate in the Cimarron terrace aquifer. Nitrate was detected in 44 of 45 ground-water samples and had the greatest median concentration (8.03 milligrams per liter) of any nutrient analyzed. Nitrate concentrations ranged from <0.06 to 31.8 milligrams per liter. Seventeen samples had nitrate concentrations exceeding the maximum contaminant level of 10 milligrams per liter. Nitrate concentrations in agricultural areas were significantly greater than nitrate concentrations in grassland areas. Pesticides were detected in 15 of 45 ground-water samples. Atrazine and deethylatrazine, a metabolite of atrazine, were detected most frequently. Deethylatrazine was detected in water samples from 9 wells and atrazine was detected in samples from 8 wells. Tebuthiuron was detected in water samples from 5 wells; metolachlor was detected in samples from 4 wells; prometon was detected in samples from 4 wells; and alachlor was detected in 1 well. None of the detected pesticide concentrations exceeded the maximum contaminant level or health advisory level set by the U.S. Environmental Protection Agency. Wastewater compounds were detected in 28 of 45 groundwater samples. Of the 20 wastewater compounds detected, 11 compounds were from household chemicals, 3 compounds were hydrocarbons, 2 compounds were industrial chemicals, 2 compounds were pesticides, 1 compound was of animal source, and 1 compound was a detergent compound. The most frequently detected wastewater compound was phenol, which was detected in 23 wells. N,N-diethyl-meta-toluamide (DEET) was detected in water samples from 5 wells. Benzophenone, ethanol- 2-butoxy-phosphate, and tributylphosphate were detected in water samples from 3 wells. Fertilizer was determined to be the possible source of nitrate in samples from 13 of 45 wells sampled, with a15N values ranging from 0.43 to 3.46 permil. The possible source of nitrate for samples from the greatest number of wells (22 wells) was from mixed sources of nitrate from fertilizer, septic or manure, or natural sources. Mixed nitrate sources had a 15N values ranging from 0.25 to 9.83 permil. Septic or manure was determined as the possible source of nitrate in samples from 2 wells. Natural sources were determined to be the possible source of nitrate in samples from 7 wells, with a 15N values ranging from 0.83 to 9.44 permil.
Schroeder, R.A.; Martin, P.M.; Böhlke, J.K.
1993-01-01
Nitrogen in downward-infiltrating wastewater discharged from seepage pits (dry wells) at residences in the upper Mojave River Basin, California represents a significant potential source of nitrate contamination to the underlying ground water. However, increases in nitrate concentration in the ground water have not yet been observed. The low nitrate concentration in the ground water may be the result of lateral dispersion in the unsaturated zone, dilution below the water table, or denitrification of wastewater nitrate in the unsaturated zone. Measured vertical rates indicate that some wastewater has reached the water table beneath communities that are older than 5 to 10 years. As wastewater percolates from seepage pits into the unsaturated zone, reduced nitrogen is converted rapidly to nitrate at shallow depths and the nitrate concentrations commonly decrease with depth. The largest nitrate decreases seem to coincide with increased content of fine-grained sediments or with proximity to the water table. Between lysimeters at 160 and 199 feet at one residence, the decrease in nitrate concentration coincided with a large increase in sulfate, decrease in alkalinity, and increase in 815N in nitrate. Those data are consistent with denitrification by oxidation of iron sulfide to produce ferric oxides; but if such a reaction occurs, it must be in domains that are small in comparison with the sampled volumes because the waters also contain substantial quantities of dissolved oxygen. The predominantly low nitrate concentrations in the area's ground water are consistent with the operation of a nitrogen-removal mechanism, possibly denitrification; however, the reducing capacity of the sediments to maintain denitrification is not known.
Selected nutrients and pesticides in streams of the eastern Iowa basins, 1970-95
Schnoebelen, Douglas J.; Becher, Kent D.; Bobier, Matthew W.; Wilton, Thomas
1999-01-01
The statistical analysis of the nutrient data typically indicated a strong positive correlation of nitrate with streamflow. Total phosphorus concentrations with streamflow showed greater variability than nitrate, perhaps reflecting the greater potential of transport of phosphorus on sediment rather than in the dissolved phase as with nitrate. Ammonia and ammonia plus organic nitrogen showed no correlation with streamflow or a weak positive correlation. Seasonal variations and the relations of nutrients and pesticides to streamflow generally corresponded with nonpoint‑source loadings, although possible point sources for nutrients were indicated by the data at selected monitoring sites. Statistical trend tests for concentrations and loads were computed for nitrate, ammonia, and total phosphorus. Trend analysis indicated decreases for ammonia and total phosphorus concentrations at several sites and increases for nitrate concentrations at other sites in the study unit.
Krishna Mohan, Tulasi Venkata; Renu, Kadali; Nancharaiah, Yarlagadda Venkata; Satya Sai, Pedapati Murali; Venugopalan, Vayalam Purath
2016-02-01
A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mooers, H. D.; Alexander, E. C., Jr.
1994-01-01
A vegetable- and meat-canning facility located in the karst of southeastern Minnesota disposes ≈2.85×105 m3 yr-1 of wastewater by spray irrigation of an 83.7-ha field located atop the local groundwater divide. Cannery effluent contains high levels of chloride and nitrogen (organic and ammonia), in excess of 7000 mg/l and 400 mg/l, respectively. Nitrate-nitrogen concentrations are generally < 5 mg/l. Agricultural, domestic, and municipal sources of chloride and nitrate are common in the region, and water supplies frequently exceed the drinking-water limit for nitrate-nitrogen of 10 mg/l. Fifty-two area wells and thirteen surface-water locations were sampled and analyzed for five ionic species, including: chloride (Cl), nitrate-nitrogen (NO3-N), sulfate (SO4), nitrite-nitrogen (NO2-N), and phosphate (PO4). Two distinct chloride plumes flowing outward from the groundwater divide were identified, and 65% of the wells sampled had nitrate-nitrogen concentrations in excess of 10 mg/l. The data were divided into two groups: one group of samples from wells located near the canning facility and another group from outside that area. A correlation coefficient of R2= 0.004 for Cl vs. NO3-N in the vicinity of the irrigation fields indicates essentially no relationship between the source of Cl and NO3. In areas of agricultural and domestic activities located away from the cannery, an R2 of 0.54 suggests that Cl and NO3 have common sources in these areas.
Simultaneous reduction of nitrate and selenate by cell suspensions of selenium-respiring bacteria
Oremland, R.S.; Blum, J.S.; Bindi, A.B.; Dowdle, P.R.; Herbel, M.; Stolz, J.F.
1999-01-01
Washed-cell suspensions of Sulfurospirillum barnesii reduced selenate [Se(VI)] when cells were cultured with nitrate, thiosulfate, arsenate, or fumarate as the electron acceptor. When the concentration of the electron donor was limiting, Se(VI) reduction in whole cells was approximately fourfold greater in Se(VI)-grown cells than was observed in nitrate-grown cells; correspondingly, nitrate reduction was ~11-fold higher in nitrate-grown cells than in Se(VI)-grown cells. However, a simultaneous reduction of nitrate and Se(VI) was observed in both cases. At nonlimiting electron donor concentrations, nitrate- grown cells suspended with equimolar nitrate and selenate achieved a complete reductive removal of nitrogen and selenium oxyanions, with the bulk of nitrate reduction preceding that of selenate reduction. Chloramphenicol did not inhibit these reductions. The Se(VI)-respiring haloalkaliphile Bacillus arsenicoselenatis gave similar results, but its Se(VI) reductase was not constitutive in nitrate-grown cells. No reduction of Se(VI) was noted for Bacillus selenitireducens, which respires selenite. The results of kinetic experiments with cell membrane preparations of S. barnesii suggest the presence of constitutive selenate and nitrate reduction, as well as an inducible, high- affinity nitrate reductase in nitrate-grown cells which also has a low affinity for selenate. The simultaneous reduction of micromolar Se(VI) in the presence of millimolar nitrate indicates that these organisms may have a functional use in bioremediating nitrate-rich, seleniferous agricultural wastewaters. Results with 75Se-selenate tracer show that these organisms can lower ambient Se(VI) concentrations to levels in compliance with new regulations proposed for release of selenium oxyanions into the environment.
Tracing freshwater nitrate sources in pre-alpine groundwater catchments using environmental tracers
NASA Astrophysics Data System (ADS)
Stoewer, M. M.; Knöller, K.; Stumpp, C.
2015-05-01
Groundwater is one of the main resources for drinking water. Its quality is still threatened by the widespread contaminant nitrate (NO3-). In order to manage groundwater resources in a sustainable manner, we need to find options of lowering nitrate input. Particularly, a comprehensive knowledge of nitrate sources is required in areas which are important current and future drinking water reservoirs such as pre-alpine aquifers covered with permanent grassland. The objective of the present study was to identify major sources of nitrate in groundwater with low mean nitrate concentrations (8 ± 2 mg/L). To achieve the objective, we used environmental tracer approaches in four pre-alpine groundwater catchments. The stable isotope composition and tritium content of water were used to study the hydrogeology and transit times. Furthermore, nitrate stable isotope methods were applied to trace nitrogen from its sources to groundwater. The results of the nitrate isotope analysis showed that groundwater nitrate was derived from nitrification of a variety of ammonium sources such as atmospheric deposition, mineral and organic fertilizers and soil organic matter. A direct influence of mineral fertilizer, atmospheric deposition and sewage was excluded. Since temporal variation in stable isotopes of nitrate were detected only in surface water and locally at one groundwater monitoring well, aquifers appeared to be well mixed and influenced by a continuous nitrate input mainly from soil derived nitrogen. Hydrogeological analysis supported that the investigated aquifers were less vulnerable to rapid impacts due to long average transit times, ranging from 5 to 21 years. Our study revealed the importance of combining environmental tracer approaches and a comprehensive sampling campaign (local sources of nitrate, soil water, river water, and groundwater) to identify the nitrate sources in groundwater and its vulnerability. In future, the achieved results will help develop targeted strategies for a sustainable groundwater management focusing more on soil nitrogen storage.
Kay, Robert T.; Miner, James J.; Maurer, Debbie A.; Knight, Charles W.
2010-01-01
Agriculture and urbanization have altered the hydrology and water quality of the coastal wetland complex along the shore of Lake Michigan at the Spring Bluff Nature Preserve and Illinois Beach State Park in northeastern Lake County, Ill., and the adjacent Chiwaukee Prairie State Natural Area in southeastern Wisconsin. Culverts, roads, ditches, and berms installed within the wetland complex have altered the natural directions of surface-water flow and likely have increased the natural hydroperiod in the Spring Bluff Nature Preserve and decreased it in the northern part of the Illinois Beach State Park. Relative to presettlement conditions, surface-water runoff into the wetlands likely is greater in quantity and higher in concentrations of several constituents, including chloride, nitrate, phosphorous, and suspended sediment. These constituent concentrations are affected by a variety of factors, including the amount of agricultural and urban land use in the watersheds. Hydrologic, chemical, and biologic processes within the wetland communities reduce the concentrations of these constituents in surface water before the water discharges to Lake Michigan by as much as 75 percent for chloride, 85 percent for nitrate, 66 percent for phosphorous, and more than an order of magnitude for suspended sediment. However, concentrations of phosphorous and suspended sediment in surface water increased within parts of the wetland complex. Given these changes, the floristic quality of these wetlands has been altered from the historic condition. Specifically, Typha spp. and Phragmites australis occur in greater numbers and over a larger area than in the past. The spread of Typha spp. and Phragmites australis appears to be enhanced by anthropogenic alterations within the wetland complex, such as increased water levels and duration of inundation and, possibly, increases in the total concentration of dissolved constituents in water.
Aerosol-spray diverse mesoporous metal oxides from metal nitrates.
Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang
2015-04-21
Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances.
Schaap, Bryan D.
1999-01-01
Nitrogen fertilizer sales in Iowa have been higher in recent years than during the mid- 1970’s. This suggests that nitrate concentrations in water from well 9 may persist at present levels or could increase in future years if fertilizer use increases and if higher nitrate concentrations are directly related to higher nitrogen fertilizer use.
Risk of nitrate in groundwaters of the United States - A national perspective
Nolan, B.T.; Ruddy, B.C.; Hitt, K.J.; Helsel, D.R.
1997-01-01
Nitrate contamination of groundwater occurs in predictable patterns, based on findings of the U.S. Geological Survey's (USGS) National Water Quality Assessment (NAWQA) Program. The NAWQA Program was begun in 1991 to describe the quality of the Nation's water resources, using nationally consistent methods. Variables affecting nitrate concentration in groundwater were grouped as 'input' factors (population density end the amount of nitrogen contributed by fertilizer, manure, and atmospheric sources) and 'aquifer vulnerability' factors (soil drainage characteristic and the ratio of woodland acres to cropland acres in agricultural areas) and compiled in a national map that shows patterns of risk for nitrate contamination of groundwater. Areas with high nitrogen input, well-drained soils, and low woodland to cropland ratio have the highest potential for contamination of shallow groundwater by nitrate. Groundwater nitrate data collected through 1992 from wells less than 100 ft deep generally verified the risk patterns shown on the national map. Median nitrate concentration was 0.2 mg/L in wells representing the low-risk group, and the maximum contaminant level (MCL) was exceeded in 3% of the wells. In contrast, median nitrate concentration was 4.8 mg/L in wells representing the high-risk group, and the MCL was exceeded in 25% of the wells.Nitrate contamination of groundwater occurs in predictable patterns, based on findings of the U.S. Geological Survey's (USGS) National Water Quality Assessment (NAWQA) Program. The NAWQA Program was begun in 1991 to describe the quality of the Nation's water resources, using nationally consistent methods. Variables affecting nitrate concentration in groundwater were grouped as `input' factors (population density and the amount of nitrogen contributed by fertilizer, manure, and atmospheric sources) and `aquifer vulnerability' factors (soil drainage characteristic and the ratio of woodland acres to cropland acres in agricultural areas) and compiled in a national map that shows patterns of risk for nitrate contamination of groundwater. Areas with high nitrogen input, well-drained soils, and low woodland to cropland ratio have the highest potential for contamination of shallow groundwater by nitrate. Groundwater nitrate data collected through 1992 from wells less than 100 ft deep generally verified the risk patterns shown on the national map. Median nitrate concentration was 0.2 mg/L in wells representing the low-risk group, and the maximum contaminant level (MCL) was exceeded in 3% of the wells. In contrast, median nitrate concentration was 4.8 mg/L in wells representing the high-risk group, and the MCL was exceeded in 25% of the wells.
Effects of over-winter green cover on soil solution nitrate concentrations beneath tillage land.
Premrov, Alina; Coxon, Catherine E; Hackett, Richard; Kirwan, Laura; Richards, Karl G
2014-02-01
There is a growing need to reduce nitrogen losses from agricultural systems to increase food production while reducing negative environmental impacts. The efficacy of vegetation cover for reducing nitrate leaching in tillage systems during fallow periods has been widely investigated. Nitrate leaching reductions by natural regeneration (i.e. growth of weeds and crop volunteers) have been investigated to a lesser extent than reductions by planted cover crops. This study compares the efficacy of natural regeneration and a sown cover crop (mustard) relative to no vegetative cover under both a reduced tillage system and conventional plough-based system as potential mitigation measures for reducing over-winter soil solution nitrate concentrations. The study was conducted over three winter fallow seasons on well drained soil, highly susceptible to leaching, under temperate maritime climatic conditions. Mustard cover crop under both reduced tillage and conventional ploughing was observed to be an effective measure for significantly reducing nitrate concentrations. Natural regeneration under reduced tillage was found to significantly reduce the soil solution nitrate concentrations. This was not the case for the natural regeneration under conventional ploughing. The improved efficacy of natural regeneration under reduced tillage could be a consequence of potential stimulation of seedling germination by the autumn reduced tillage practices and improved over-winter plant growth. There was no significant effect of tillage practices on nitrate concentrations. This study shows that over winter covers of mustard and natural regeneration, under reduced tillage, are effective measures for reducing nitrate concentrations in free draining temperate soils. © 2013.
Quality of shallow ground water in alluvial aquifers of the Willamette Basin, Oregon, 1993-95
Hinkle, Stephen R.
1997-01-01
The current (1993?95) quality of shallow ground water (generally, <25 meters below land surface) in Willamette Basin alluvium is described using results from two studies. A Study-Unit Survey, or regional assessment of shallow groundwater quality in alluvium, was done from June through August 1993. During the Study-Unit Survey, data were collected from 70 domestic wells chosen using a random-selection process and located mostly in areas of agricultural land use. An urban Land-Use Study, which was a reconnaissance of shallow urban ground-water quality from 10 monitoring wells installed in areas of residential land use, was done in July 1995. Concentrations of nitrite plus nitrate (henceforth, nitrate, because nitrite concentrations were low) ranged from <0.05 to 26 mg N/L (milligrams nitrogen per liter) in ground water from 70 Study-Unit-Survey wells; concentrations exceeded the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) of 10 mg N/L in 9 percent of Study-Unit-Survey samples. Relationships were observed between nitrate concentrations and dissolved-oxygen concentrations, the amount of clay present within and overlying aquifers, overlying geology, and upgradient land use. Tritium (3H) data indicate that 21 percent of Study-Unit-Survey samples represented water recharged prior to 1953. Nitrogen-fertilizer application rates in the basin have increased greatly over the past several decades. Thus, some observed nitrate concentrations may reflect nitrogen loading rates that were smaller than those presently applied in the basin. Concentrations of phosphorus ranged from <0.01 to 2.2 mg/L in 70 Study-Unit-Survey wells and exceeded 0.10 mg/L in 60 percent of the samples. Phosphorus and nitrate concentrations were inversely correlated. From 1 to 5 pesticides and pesticide degradation products (henceforth, pesticides) were detected in ground water from each of 23 Study-Unit-Survey wells (33 percent of 69 wells sampled for pesticides) for a total of 51 pesticide detections. Thirteen different pesticides were detected; atrazine was the most frequently encountered pesticide. Although detections were widespread, concentrations were low (generally <1,000 ng/L [nanograms per liter]). (One ng/L is equal to 0.001 mg/L [micrograms per liter].) One detection (dinoseb, at 7,900 ng/L) exceeded a USEPA MCL. Relationships were observed between the occurrence of pesticides and the amount of clay present within and overlying aquifers, overlying geology, and land use. Between 1 and 5 volatile organic compounds (VOCs) were detected at each of 7 Study-Unit-Survey sites (11 percent of 65 sites evaluated), for a total of 14 VOC detections. One detection (tetrachloroethylene, at 29 mg/L) exceeded a USEPA MCL. Other detections were at low concentrations (0.2 to 2.0 mg/L). VOC detections generally were from sites associated with urban land use. Concentrations of arsenic ranged from <1 to 13 mg/L in 70 Study-Unit-Survey wells. Concentrations in 16 percent of samples exceeded the USEPA Risk-Specific-Dose Health Advisory of 2 mg/L. Radon concentrations ranged from 200 to 1,200 pCi/L (picocuries per liter) in 51 Study-Unit-Survey wells. All samples exceeded the USEPA Risk-Specific-Dose Health Advisory of 150 pCi/L. All urban Land-Use-Study samples were well oxygenated; thus, nitrate reduction probably did not affect these samples. Urban Land-Use-Study nitrate concentrations were similar to those of the well oxygenated, agricultural subset of Study-Unit-Survey samples. Pesticides were detected in samples from three urban Land-Use-Study sites, but concentrations were low (1 to 5 ng/L). In contrast, VOCs were detected in ground water from 80 percent of urban Land-Use-Study wells; concentrations ranged up to 7.6 mg/L. Trace-element concentrations in the urban Land-Use Study samples were low. Median concentrations consistently were <10 mg/L and frequently were <1 mg/L
Ho, Xing Lin; Loke, Wai Mun
2017-07-01
A randomized, double-blinded, placebo-controlled and crossover study was conducted to simultaneously measure the effects, 3 h after consumption and after 4-wk daily exposure to plant sterols-enriched food product, on in vivo nitrite and nitrate production in healthy adults. Eighteen healthy participants (67% female, 35.3 [mean] ± 9.5 [SD] years, mean body mass index 22.8 kg/m 2 ) received 2 soy milk (20 g) treatments daily: placebo and one containing 2.0 g free plant sterols equivalent of their palmityl esters (β-sitosterol, 55%; campesterol, 29%; and stigmasterol, 23%). Nitrite and nitrate concentrations were measured in the blood plasma and urine, using stable isotope-labeled gas chromatography-mass spectrometry. L-arginine and asymmetric dimethylarginine concentrations in blood serum were measured using commercially available enzyme immunoassays. Nitrite and nitrate concentrations in blood plasma (nitrite 5.83 ± 0.50 vs. 4.52 ± 0.27; nitrate 15.78 ± 0.96 vs. 13.43 ± 0.81 μmol/L) and urine (nitrite 1.12 ± 0.22 vs. 0.92 ± 0.36, nitrate 12.23 ± 1.15 vs. 9.71 ± 2.04 μmol/L) were significantly elevated after 4-wk plant sterols supplementation Placebo and 3-h treatments did not affect the blood plasma and urinary concentrations of nitrite and nitrate. Circulating levels of L-arginine and asymmetric dimethylarginine were unchanged in the placebo and treatment arms. Total plant sterols, β-Sitosterol, campesterol, and stigmasterol concentrations were significantly elevated after 4-wk treatments compared to the placebo and 3-h treatments. Blood plasma nitrite and nitrate concentrations correlated significantly with the plasma total and specific plant sterol concentrations. Our results suggest that dietary plant sterols, in the combination used, can upregulate nitrite, and nitrate production in vivo. © 2017 Institute of Food Technologists®.
Diminished Stream Nitrate Concentrations Linked to Dissolved Organic Carbon Dynamics After Leaf Fall
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Doctor, D. H.; Kendall, C.
2004-05-01
Thermodynamic coupling of the nitrogen and carbon cycles has broad implications for controls on catchment nutrient fluxes. In the northeast US, leaf fall occurs in early October and the availability of organic carbon increases as the leaves decompose. At the Sleepers River Research Watershed in northeastern Vermont (USA), we sampled stream chemistry from seven nested catchments to determine how stream dissolved organic carbon (DOC) and nitrate vary as a function of flow conditions, land-use, and basin size in response to leaf fall. Following leaf fall, nitrate concentration patterns were quantitatively different from other times of the year. Under baseflow conditions, stream and soil water DOC concentrations were higher than normal, whereas nitrate concentrations declined sharply at the five smallest catchments and more modestly at the two largest catchments. Under high flow conditions, flushing of nitrate was observed, as is typical for stormflow response at Sleepers River. Our field data suggest that in-stream processing of nitrate is likely thermodynamically and kinetically favorable under baseflow but not at higher flow conditions when expanding variable source areas make hydrological connections between nitrate source areas and streams. We are working to evaluate this hypothesis with isotopic and other monitoring data, and to model the coupled interactions of water, DOC, and nitrate fluxes in these nested catchments.
Antarctic polar stratospheric aerosols: The roles of nitrates, chlorides and sulfates
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Snetsinger, K. G.; Goodman, J. K.; Ferry, G. V.; Oberbeck, V. R.; Verma, S.; Fong, W.
1988-01-01
Nitric and hydrochloric acids have been postulated to condense in the winter polar stratosphere to become an important component of polar stratospheric clouds. One implication is that the removal of NO(y) from the gas phase by this mechanism allows high Cl(x) concentrations to react with O3, because the formation of ClNO3 is inhibited. Contributions of NO3 and Cl to the stratospheric aerosol were determined during the 1987 Airborne Antarctic Ozone Experiment by testing for the presence of nitrates and chlorides in the condensed phase. Aerosol particles were collected on four 500 micron diameter gold wires, each pretreated differently to give results that were specific to certain physical and chemical aerosol properties. One wire was carbon-coated for concentration and size analyses by scanning electron microscopy; X-ray energy dispersive analyses permitted the detection of S and Cl in individual particles. Three more wires were coated with Nitron, barium chloride and silver nitrate, respectively, to detect nitrate, sulfate and chloride in aerosol particles. All three ions, viz., sulfates, nitrates and chlorides were detected in the Antarctic stratospheric aerosol. In terms of number concentrations, the aerosol was dominated by sulfates, followed by chlorides and nitrates. An inverse linear regression can be established between nitrate concentrations and ozone mixing ratio, and between temperature and nitrates.
Skeletal muscle as an endogenous nitrate reservoir
Piknova, Barbora; Park, Ji Won; Swanson, Kathryn M.; Dey, Soumyadeep; Noguchi, Constance Tom; Schechter, Alan N
2015-01-01
The nitric oxide synthase (NOS) family of enzymes form nitric oxide (NO) from arginine in the presence of oxygen. At reduced oxygen availability NO is also generated from nitrate in a two step process by bacterial and mammalian molybdopterin proteins, and also directly from nitrite by a variety of five-coordinated ferrous hemoproteins. The mammalian NO cycle also involves direct oxidation of NO to nitrite, and both NO and nitrite to nitrate by oxy-ferrous hemoproteins. The liver and blood are considered the sites of active mammalian NO metabolism and nitrite and nitrate concentrations in the liver and blood of several mammalian species, including human, have been determined. However, the large tissue mass of skeletal muscle had not been generally considered in the analysis of the NO cycle, in spite of its long-known presence of significant levels of active neuronal NOS (nNOS or NOS1). We hypothesized that skeletal muscle participates in the NO cycle and, due to its NO oxidizing heme protein, oxymyoglobin, has high concentrations of nitrate ions. We measured nitrite and nitrate concentrations in rat and mouse leg skeletal muscle and found unusually high concentrations of nitrate but similar levels of nitrite, when compared to the liver. The nitrate reservoir in muscle is easily accessible via the bloodstream and therefore nitrate is available for transport to internal organs where it can be reduced to nitrite and NO. Nitrate levels in skeletal muscle and blood in nNOS−/− mice were dramatically lower when compared with controls, which support further our hypothesis. Although the nitrate reductase activity of xanthine oxidoreductase in muscle is less than that of liver, the residual activity in muscle could be very important in view of its total mass and the high basal level of nitrate. We suggest that skeletal muscle participates in overall NO metabolism, serving as a nitrate reservoir, for direct formation of nitrite and NO, and for determining levels of nitrate in other organs. PMID:25727730
NASA Astrophysics Data System (ADS)
Krause, Stefan; Angermann, Lisa; Naden, Emma; Cassidy, Nigel; Blume, Theresa
2010-05-01
The mixing of groundwater and surface water in hyporheic zones often coincides with high redox reactivity and chemical transformation potential. Depending on redox conditions and reaction types, hyporheic mixing of groundwater and surface water can lead to either attenuation or enrichment of pollutants or nutrients with diametrical implications for stream and aquifer hydro-ecological conditions. This study investigates the reactive transport of nitrate and a chlorinated solvent (Trichloroethylene - TCE) at the aquifer-river interface of a UK lowland river. In this study, distributed temperature sensor networks and hydro-geophysical methods, which have been applied for identifying structural streambed heterogeneity and tracing aquifer river exchange, were combined with hydro-chemical analyses of hyporheic multi-component reactive transport. In stream Electric Resistivity Tomography has been applied to map the complex spatial distribution of highly conductive sandy and gravely sediments in contrast to semi-confining, low conductivity peat lenses. Reach scale (1km) spatial patterns and temporal dynamics of aquifer-river exchange have been identified by heat tracer experiments based on fibre-optic Distributed Temperature Sensing in combination with 2D thermocouple-arrays and small scale heat pulse injection methods for tracing shallow (25 cm) hyporheic flow paths. Spatial patterns of hyporheic redox conditions, dissolved oxygen and organic carbon (DOC) content as well as concentrations of major anions, TCE and its decay products have been observed in 48 nested multi-level piezometers and passive DET (Diffusive Equilibrium in Thin film) gel probes. Our results indicate that patterns of cold spots in streambed sediments can be attributed to fast groundwater up-welling in sandy and gravely sediments resulting in low hyporheic residence times. Contrasting conditions were found at warmer areas at the streambed surface where groundwater - surface water exchange was inhibited by the existence of peat or clay lenses within the streambed. These flow-inhibiting structures have been shown to cause semi-confined conditions in the up-welling groundwater, resulting in long residence times and increased redox-reactivity. Anoxic conditions and high DOC contents combined with long residence times underneath peat layers cause highly efficient denitrification rates, reducing nitrate concentrations from > 50mg/l to below the level of detection. In contrast, sandy and gravely areas of fast groundwater up-welling where characterized by only marginal changes in nitrate concentrations. Observation of the reactive transport of the chlorinated solvent groundwater plume into the river suggest that natural attenuation of TCE, which competes with nitrate for DOC as reductive agent, is limited to the semi-confined, anoxic, low nitrate - high DOC groundwater pockets underneath streambed peat lenses. The investigations supported the development of a conceptual model of aquifer - river exchange and hyporheic reactivity in lowland rivers including temperature traceable "hyporheic super-reactors" of great importance for river restoration, water quality and ecology status.
NASA Astrophysics Data System (ADS)
Krause, S.; Angermann, L.; Naden, E.; Cassidy, N. J.
2009-12-01
The mixing of groundwater and surface water in hyporheic zones often coincides high redox reactivity and chemical transformation potential. Depending on redox conditions and reaction types, hyporheic mixing of groundwater and surface water can lead to either attenuation or enrichment of pollutants or nutrients with diametrical implications for stream and aquifer hydro-ecology. This study investigates the reactive transport of nitrate and the chlorinated solvent Trichloroethylene (TCE) at the aquifer-river interface of a UK lowland river. The investigations are based on novel distributed sensor networks and hydro-geophysical methods for the identification of structural streambed heterogeneity and the tracing of aquifer river exchange combined with hydro-chemical analyses of hyporheic multi-component reactive transport. In stream Electric Resistivity Tomography and Ground Penetrating Radar have been applied to map the complex spatial distribution of highly conductive sandy and gravely sediments in contrast to semi-confining, low conductivity peat lenses. Reach scale (1km) spatial patterns and temporal dynamics of aquifer-river exchange have been identified by heat tracer experiments based on fibre-optic Distributed Temperature Sensing in combination with 2D thermocouple-arrays and small scale heat pulse injection methods for tracing shallow (25 cm) hyporheic flow paths. Spatial patterns of hyporheic redox conditions, dissolved oxygen and organic carbon (DOC) content as well as concentrations of major anions, TCE and its decay products have been observed in 48 nested multi-level piezometers and passive DET (Diffusive Equilibrium in Thin film) gel probes. Our results indicate that patterns of cold spots in streambed sediments can be attributed to fast groundwater up-welling in sandy and gravely sediments resulting in low hyporheic residence times. Contrasting conditions were found at warmer areas at the streambed surface where groundwater - surface water exchange was inhibited by the existence of peat or clay lenses within the streambed. These flow-inhibiting structures have been shown to cause semi-confined conditions in the up-welling groundwater, resulting in long residence times and increased redox-reactivity. Anoxic conditions and high DOC contents combined with long residence times underneath peat layers cause highly efficient denitrification rates, reducing nitrate concentrations from > 50mg/l to below the level of detection. In contrast, sandy and gravely areas of fast groundwater up-welling where characterized by only marginal changes in nitrate concentrations. Observation of the reactive transport of the chlorinated solvent groundwater plume into the river suggest that natural attenuation of TCE, which competes with nitrate for DOC as reductive agent, is limited to the semi-confined, anoxic, low nitrate - high DOC groundwater pockets underneath streambed peat lenses. The investigations supported the development of a conceptual model of aquifer - river exchange and hyporheic reactivity in lowland rivers including temperature traceable “hyporheic super-reactors” of great importance for river restoration, water quality and ecology status.
Thomas, Mary Ann
2000-01-01
Ground-water quality was assessed in the northeastern part of the Corn Belt, where tile-drained row crops are underlain by fractured glacial till. Data were collected from 30 shallow monitor wells and 18 co-located domestic wells as part of the U.S. Geological Survey?s National Water-Quality Assessment in the Lake Erie-Lake St. Clair Basin. Pesticides or pesticide degradates were detected in 41 percent of the monitor wells and 6 percent of the domestic wells. The pesticides detected closely correspond to those most heavily applied?herbicides used on corn and soybeans. Pesticide degradates were detected three times more frequently, and at higher concentrations, than were parent compounds. No pesticide concentration exceeded a USEPA Maximum Contaminant Level (MCL), but MCL?s have not been established for 9 of the 11 compounds detected. Thirty-seven percent of monitor-well samples had nitrate concentrations indicative of human influences such as fertilizer, manure or septic systems. Nitrate was the only chemical constituent detected at a concentration greater than an MCL. The MCL was exceeded in 7 percent of samples from monitor wells which were too shallow to be used as a source of drinking water. Pesticide and nitrate concentrations in the study area are low relative to other agricultural areas of the Nation. Several authors have suggested that ground water in parts of the Upper Mid-west is minimally contaminated because it is protected by the surficial glacial till or tile drains. These ideas are examined in light of the relations between concentration, well depth, and ground-water age in the study area. Most of the shallow ground water is hydraulically connected to the land surface, based on the observations that 83 percent of waters from monitor wells were recharged after 1953, and 57 percent contained a pesticide or an elevated nitrate concentration. Fractures or sand-and-gravel stringers within the till are the probable pathways. In some areas, deeper parts of the ground-water-flow system are also hydraulically connected to the land surface. Almost half the waters from wells 50 to 100 feet deep were recharged after 1953. Anthropogenic constituents were detected in samples from three domestic wells 60 to 121 feet deep, in areas where the till is relatively coarse-grained. The hydrogeologic system has several geochemical characteristics conducive to transformations or sorption of nitrate or pesticides: (1) the till is clay-rich, has a high organic-carbon content, and contains an abundance of pyrite-rich shale fragments, (2) the ground water has low dissolved-oxygen concentrations, and (3) iron and manganese oxides and oxyhyroxides line the faces of fractures in the unsaturated zone. Although the aquifer system appears be protected from contamination in some areas, the fact that the surficial till is heterogeneous and of variable thickness suggests that the protection is not uniform. The protection can be breached by fractures or sand-and-gravel stringers, which are apparent in core samples but not noted on domestic-well logs.
Nitrogen in rock: Occurrences and biogeochemical implications
Holloway, J.M.; Dahlgren, R.A.
2002-01-01
There is a growing interest in the role of bedrock in global nitrogen cycling and potential for increased ecosystem sensitivity to human impacts in terrains with elevated background nitrogen concentrations. Nitrogen-bearing rocks are globally distributed and comprise a potentially large pool of nitrogen in nutrient cycling that is frequently neglected because of a lack of routine analytical methods for quantification. Nitrogen in rock originates as organically bound nitrogen associated with sediment, or in thermal waters representing a mixture of sedimentary, mantle, and meteoric sources of nitrogen. Rock nitrogen concentrations range from trace levels (>200 mg N kg -1) in granites to ecologically significant concentrations exceeding 1000 mg N kg -1 in some sedimentary and metasedimentary rocks. Nitrate deposits accumulated in arid and semi-arid regions are also a large potential pool. Nitrogen in rock has a potentially significant impact on localized nitrogen cycles. Elevated nitrogen concentrations in water and soil have been attributed to weathering of bedrock nitrogen. In some environments, nitrogen released from bedrock may contribute to nitrogen saturation of terrestrial ecosystems (more nitrogen available than required by biota). Nitrogen saturation results in leaching of nitrate to surface and groundwaters, and, where soils are formed from ammonium-rich bedrock, the oxidation of ammonium to nitrate may result in soil acidification, inhibiting revegetation in certain ecosystems. Collectively, studies presented in this article reveal that geologic nitrogen may be a large and reactive pool with potential for amplification of human impacts on nitrogen cycling in terrestrial and aquatic ecosystems.
Triska, F.J.; Pringle, C.M.; Zellweger, G.W.; Duff, J.H.; Avanzino, R.J.
1993-01-01
In Costa Rica, the Salto River is enriched by geothermal-based soluble reactive phosphorus (SRP), which raises the concentration up to 200 ??g/L whereas Pantano Creek, an unimpacted tributary, has an SRP concentration <10 ??g/L. Ammonium concentration in springs adjacent to the Salto and Pantano was typically greater than channel water (13 of 22 locations) whereas nitrate concentration was less (20 of 22 locations). Ground waters were typically high in ammonium relative to nitrate whereas channel waters were high in nitrate relative to ammonium. Sediment slurry studies indicated nitrification potential in two sediment types, firm clay (3.34 ??g N.cm-3.d-1) and uncompacted organic-rich sediment (1.76 ??g N.cm-3.d-1). Ammonium and nitrate amendments to each stream separately resulted in nitrate concentrations in excess of that expected after correlation for dilution using a conservative tracer. SRP concentration was not affected by DIN amendment to either stream. SRP concentration in the Pantano appeared to be regulated by abiotic sediment exchange reactions. DIN composition and concentration were regulated by a combination of biotic and abiotic processes. -from Authors
Adviento-Borbe, M Arlene A; Barnes, Brittany D; Iseyemi, Oluwayinka; Mann, Amanda M; Reba, Michele L; Robertson, William J; Massey, Joseph H; Teague, Tina G
2018-02-01
Use of furrow irrigation in row crop production is a common practice through much of the Midsouth US and yet, nutrients can be transported off-site through surface runoff. A field study with cotton (Gossypium hirsutum, L.) was conducted to understand the impact of furrow tillage practices and nitrogen (N) fertilizer placement on characteristics of runoff water quality during the growing season. The experiment was designed as a randomized complete block design with conventional (CT) and conservation furrow tillage (FT) in combination with either urea (URN) broadcast or 32% urea ammonium nitrate (UAN) injected, each applied at 101kgNha -1 . Concentrations of ammonium (NH 4 -N), nitrate (NO 3 -N), nitrite (NO 2 -N), and dissolved phosphorus (P) in irrigation runoff water and lint yields were measured in all treatments. The intensity and chemical form of nutrient losses were primarily controlled by water runoff volume and agronomic practice. Across tillage and fertilizer N treatments, median N concentrations in the runoff were <0.3mgNL -1 , with NO 3 -N being relatively the highest among N forms. Concentrations of runoff dissolved P were <0.05mgPL -1 and were affected by volume of runoff water. Water pH, specific electrical conductivity, alkalinity and hardness were within levels that common to local irrigation water and less likely to impair pollution in waterways. Lint yields averaged 1111kgha -1 and were higher (P-value=0.03) in FT compared to CT treatments. Runoff volumes across irrigation events were greater (P-value=0.02) in CT than FT treatments, which increased NO 3 -N mass loads in CT treatments (394gNO 3 -Nha -1 season -1 ). Nitrate-N concentrations in CT treatments were still low and pose little threat to N contaminations in waterways. The findings support the adoption of conservation practices for furrow tillage and N fertilizer placement that can reduce nutrient runoff losses in furrow irrigation systems. Published by Elsevier B.V.