Impact of downward-mixing ozone on surface ozone accumulation in southern Taiwan.
Lin, Ching-Ho
2008-04-01
The ozone that initially presents in the previous day's afternoon mixing layer can remain in the nighttime atmosphere and then be carried over to the next morning. Finally, this ozone can be brought to the ground by downward mixing as mixing depth increases during the daytime, thereby increasing surface ozone concentrations. Variation of ozone concentration during each of these periods is investigated in this work. First, ozone concentrations existing in the daily early morning atmosphere at the altitude range of the daily maximum mixing depth (residual ozone concentrations) were measured using tethered ozonesondes on 52 experimental days during 2004-2005 in southern Taiwan. Daily downward-mixing ozone concentrations were calculated by a box model coupling the measured daily residual ozone concentrations and daily mixing depth variations. The ozone concentrations upwind in the previous day's afternoon mixing layer were estimated by the combination of back air trajectory analysis and known previous day's surface ozone distributions. Additionally, the relationship between daily downward-mixing ozone concentration and daily photochemically produced ozone concentration was examined. The latter was calculated by removing the former from daily surface maximum ozone concentration. The measured daily residual ozone concentrations distributed at 12-74 parts per billion (ppb) with an average of 42 +/- 17 ppb are well correlated with the previous upwind ozone concentration (R2 = 0.54-0.65). Approximately 60% of the previous upwind ozone was estimated to be carried over to the next morning and became the observed residual ozone. The daily downward-mixing ozone contributes 48 +/- 18% of the daily surface maximum ozone concentration, indicating that the downward-mixing ozone is as important as daily photochemically produced ozone to daily surface maximum ozone accumulation. The daily downward-mixing ozone is poorly correlated with the daily photochemically produced ozone and contributes significantly to the daily variation of surface maximum ozone concentrations (R2 = 0.19). However, the contribution of downward-mixing ozone to daily ozone variation is not included in most existing statistical models developed for predicting daily ozone variation. Finally, daily surface maximum ozone concentration is positively correlated with daily afternoon mixing depth, attributable to the downward-mixing ozone.
Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China
NASA Astrophysics Data System (ADS)
Gao, Jinhui; Zhu, Bin; Xiao, Hui; Kang, Hanqing; Pan, Chen; Wang, Dongdong; Wang, Honglei
2018-05-01
As an important solar radiation absorbing aerosol, the effect of black carbon (BC) on surface ozone, via reducing photolysis rate, has been widely discussed by offline
model studies. However, BC-boundary layer (BL) interactions also influence surface ozone. Using the online
model simulations and process analysis, we demonstrate the significant impact of BC-BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection). For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the great impacts BC-BL interactions have on surface ozone by influencing the ozone contribution from physical process. This suggests that more attention should be paid to the mechanism of aerosol-BL interactions when controlling ozone pollution.
NASA Astrophysics Data System (ADS)
Yin, Xiufeng; Kang, Shichang; de Foy, Benjamin; Cong, Zhiyuan; Luo, Jiali; Zhang, Lang; Ma, Yaoming; Zhang, Guoshuai; Rupakheti, Dipesh; Zhang, Qianggong
2017-09-01
Ozone is an important pollutant and greenhouse gas, and tropospheric ozone variations are generally associated with both natural and anthropogenic processes. As one of the most pristine and inaccessible regions in the world, the Tibetan Plateau has been considered as an ideal region for studying processes of the background atmosphere. Due to the vast area of the Tibetan Plateau, sites in the southern, northern and central regions exhibit different patterns of variation in surface ozone. Here, we present continuous measurements of surface ozone mixing ratios at Nam Co Station over a period of ˜ 5 years (January 2011 to October 2015), which is a background site in the inland Tibetan Plateau. An average surface ozone mixing ratio of 47.6 ± 11.6 ppb (mean ± standard deviation) was recorded, and a large annual cycle was observed with maximum ozone mixing ratios in the spring and minimum ratios during the winter. The diurnal cycle is characterized by a minimum in the early morning and a maximum in the late afternoon. Nam Co Station represents a background region where surface ozone receives negligible local anthropogenic emissions inputs, and the anthropogenic contribution from South Asia in spring and China in summer may affect Nam Co Station occasionally. Surface ozone at Nam Co Station is mainly dominated by natural processes involving photochemical reactions, vertical mixing and downward transport of stratospheric air mass. Model results indicate that the study site is affected differently by the surrounding areas in different seasons: air masses from the southern Tibetan Plateau contribute to the high ozone levels in the spring, and enhanced ozone levels in the summer are associated with air masses from the northern Tibetan Plateau. By comparing measurements at Nam Co Station with those from other sites on the Tibetan Plateau, we aim to expand the understanding of ozone cycles and transport processes over the Tibetan Plateau. This work may provide a reference for future model simulations.
NASA Astrophysics Data System (ADS)
Johnson, B.; Cullis, P.; Schnell, R. C.; Oltmans, S. J.; Sterling, C. W.; Jordan, A. F.; Hall, E.
2016-12-01
Extreme high ozone mixing ratios, far exceeding U.S. National Air Quality Standards, were observed in the Uinta Basin in January-February 2013 under conditions highly favorable for wintertime ozone production. Hourly average ozone mixing ratios increased from regional background levels of 40-50 ppbv to >160 ppbv during several multi-day episodes of prolonged temperature inversions over snow-covered ground within air confining topography. Extensive surface and tethered balloon profile measurements of ozone, meteorology, CH4, CO2, NO2 and a suite of non-methane hydrocarbons (NMHCs) link emissions from oil and natural gas extraction with the strong ozone production throughout the Basin. High levels of NMHCs that were well correlated with CH4 showed that abundant O3 precursors were available throughout the Basin where high ozone mixing ratios extended from the surface to the top of the inversion layer at 200 m above ground level. This layer was at a nearly uniform height across the Basin even though there are significant terrain variations. Tethered balloon measurements rising above the elevated levels of ozone within the cold pool layer beneath the inversion measured regional background O3 concentrations. Surface wind and direction data from tethered balloons showed a consistent diurnal pattern in the Basin that moved air with the highest levels of CH4 and ozone precursor NMHC's from the gas fields of the east-central portion of the Basin to the edges during the day, before draining back into the Basin at night.
NASA Astrophysics Data System (ADS)
Senff, C. J.; Langford, A. O.; Banta, R. M.; Alvarez, R. J.; Weickmann, A.; Sandberg, S.; Marchbanks, R. D.; Brewer, A.; Hardesty, R. M.
2013-12-01
The Uintah Basin in northeast Utah has been experiencing extended periods of poor air quality in the winter months including very high levels of surface ozone. To investigate the causes of these wintertime ozone pollution episodes, two comprehensive studies were undertaken in January/February of 2012 and 2013. As part of these Uintah Basin Ozone Studies (UBOS), NOAA deployed its ground-based, scanning Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar to document the vertical structure of ozone and aerosol backscatter from near the surface up to about 3 km above ground level (AGL). TOPAZ, along with a comprehensive set of chemistry and meteorological measurements, was situated in both years at the Horse Pool site at the northern edge of a large concentration of gas producing wells in the eastern part of the Uintah Basin. The 2012 study was characterized by unusually warm and snow-free condition and the TOPAZ lidar observed deep boundary layers (BL) and mostly well-mixed vertical ozone profiles at or slightly above tropospheric background levels. During UBOS 2013, winter weather conditions in the Uintah Basin were more typical with snow-covered ground and a persistent, shallow cold-pool layer. The TOPAZ lidar characterized with great temporal and spatial detail the evolution of multiple high-ozone episodes as well as cleanout events caused by the passage of synoptic-scale storm systems. Despite the snow cover, the TOPAZ observations show well-mixed afternoon ozone and aerosol profiles up to about 100 m AGL. After several days of pollutant buildup, BL ozone values reached 120-150 ppbv. Above the mixed layer, ozone values gradually decreased to tropospheric background values of around 50 ppbv throughout the several-hundred-meter-deep cold-pool layer and then stayed constant above that up to about 3 km AGL. During the ozone episodes, the lidar observations show no indication of either vertical or horizontal transport of high ozone levels to the surface, thus supporting the notion that ozone is locally produced in the Uintah Basin. In both winters, TOPAZ occasionally observed ozone titration as the NOx-rich plume from the nearby Bonanza power plant was advected over the Horse Pool site. In 2012, low ozone values due to titration were observed at the surface and throughout the well-mixed BL, while in 2013 low ozone values were confined to the upper part of the cold-pool layer above the BL. This suggests that power plant NOx was very likely not part of the precursor mix that led to the high surface ozone values observed in 2013.
Quantifying isentropic stratosphere-troposphere exchange of ozone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Huang; Chen, Gang; Tang, Qi
There is increased evidence that stratosphere-troposphere exchange (STE) of ozone has a significant impact on tropospheric chemistry and radiation. Traditional diagnostics of STE consider the ozone budget in the lowermost stratosphere (LMS) as a whole. However, this can only render the hemispherically integrated ozone flux and therefore does not distinguish the exchange of ozone into low latitudes from that into high latitudes. The exchange of ozone at different latitudes may have different tropospheric impacts. This present study extends the traditional approach from the entire LMS to individual isentropic layers in the LMS and therefore gives the meridional distribution of STEmore » by the latitudes where each isentropic surface intersects the tropopause. The specified dynamics version of the Whole Atmosphere Community Climate Model is used to estimate the STE ozone flux on each isentropic surface. It is found that net troposphere-to-stratosphere ozone transport occurs in low latitudes along the 350–380 K isentropic surfaces and that net stratosphere-to-troposphere ozone transport takes place in the extratropics along the 280–350 K isentropes. Particularly, the seasonal cycle of extratropical STE ozone flux in the Northern Hemisphere displays a maximum in late spring and early summer, following the seasonal migration of the upper tropospheric jet and associated isentropic mixing. Moreover, differential diabatic heating and isentropic mixing tend to induce STE ozone fluxes in opposite directions, but the net effect results in a spatiotemporal pattern similar to the STE ozone flux associated with isentropic mixing.« less
Quantifying isentropic stratosphere-troposphere exchange of ozone
Yang, Huang; Chen, Gang; Tang, Qi; ...
2016-03-25
There is increased evidence that stratosphere-troposphere exchange (STE) of ozone has a significant impact on tropospheric chemistry and radiation. Traditional diagnostics of STE consider the ozone budget in the lowermost stratosphere (LMS) as a whole. However, this can only render the hemispherically integrated ozone flux and therefore does not distinguish the exchange of ozone into low latitudes from that into high latitudes. The exchange of ozone at different latitudes may have different tropospheric impacts. This present study extends the traditional approach from the entire LMS to individual isentropic layers in the LMS and therefore gives the meridional distribution of STEmore » by the latitudes where each isentropic surface intersects the tropopause. The specified dynamics version of the Whole Atmosphere Community Climate Model is used to estimate the STE ozone flux on each isentropic surface. It is found that net troposphere-to-stratosphere ozone transport occurs in low latitudes along the 350–380 K isentropic surfaces and that net stratosphere-to-troposphere ozone transport takes place in the extratropics along the 280–350 K isentropes. Particularly, the seasonal cycle of extratropical STE ozone flux in the Northern Hemisphere displays a maximum in late spring and early summer, following the seasonal migration of the upper tropospheric jet and associated isentropic mixing. Moreover, differential diabatic heating and isentropic mixing tend to induce STE ozone fluxes in opposite directions, but the net effect results in a spatiotemporal pattern similar to the STE ozone flux associated with isentropic mixing.« less
NASA Astrophysics Data System (ADS)
Sharma, Amit; Ojha, Narendra; Pozzer, Andrea; Mar, Kathleen A.; Beig, Gufran; Lelieveld, Jos; Gunthe, Sachin S.
2017-12-01
We evaluate numerical simulations of surface ozone mixing ratios over the south Asian region during the pre-monsoon season, employing three different emission inventories in the Weather Research and Forecasting model with Chemistry (WRF-Chem) with the second-generation Regional Acid Deposition Model (RADM2) chemical mechanism: the Emissions Database for Global Atmospheric Research - Hemispheric Transport of Air Pollution (EDGAR-HTAP), the Intercontinental Chemical Transport Experiment phase B (INTEX-B) and the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS). Evaluation of diurnal variability in modelled ozone compared to observational data from 15 monitoring stations across south Asia shows the model ability to reproduce the clean, rural and polluted urban conditions over this region. In contrast to the diurnal average, the modelled ozone mixing ratios during noontime, i.e. hours of intense photochemistry (11:30-16:30 IST - Indian Standard Time - UTC +5:30), are found to differ among the three inventories. This suggests that evaluations of the modelled ozone limited to 24 h average are insufficient to assess uncertainties associated with ozone buildup. HTAP generally shows 10-30 ppbv higher noontime ozone mixing ratios than SEAC4RS and INTEX-B, especially over the north-west Indo-Gangetic Plain (IGP), central India and southern India. The HTAP simulation repeated with the alternative Model for Ozone and Related Chemical Tracers (MOZART) chemical mechanism showed even more strongly enhanced surface ozone mixing ratios due to vertical mixing of enhanced ozone that has been produced aloft. Our study indicates the need to also evaluate the O3 precursors across a network of stations and the development of high-resolution regional inventories for the anthropogenic emissions over south Asia accounting for year-to-year changes to further reduce uncertainties in modelled ozone over this region.
NASA Astrophysics Data System (ADS)
Sterling, C. W.; Johnson, B.; Schnell, R. C.; Oltmans, S. J.; Cullis, P.; Hall, E. G.; Jordan, A. F.; Windell, J.; McClure-Begley, A.; Helmig, D.; Petron, G.
2015-12-01
During the Uinta Basin Winter Ozone Study (UBWOS) in Jan - Feb 2013, 735 tethered ozonesonde profiles were obtained at 3 sites including during high wintertime photochemical ozone production events that regularly exceeded 125 ppb. High resolution profiles of ozone and temperature with altitude, measured during daylight hours, showed the development of approximately week long high ozone episodes building from background levels of ~40 ppb to >150 ppb. The topography of the basin combined with a strong temperature inversion trapped oil and gas production effluents in the basin and the snow covered surface amplified the sun's radiation driving the photochemical ozone production at rates up to 13 ppb/hour in a cold layer capped at 1600-1700 meters above sea level. Beginning in mid-morning, ozone mixing ratios throughout the cold layer increased until late afternoon. Ozone mixing ratios were generally constant with height indicating that ozone production was nearly uniform throughout the depth of the cold pool. Although there was strong diurnal variation, ozone mixing ratios increased during the day more than decreased during the night, resulting in elevated levels the next morning; an indication that nighttime loss processes did not compensate for daytime production. Even though the 3 tethersonde sites were at elevations differing by as much as 140 m, the top of the high ozone layer was nearly uniform in altitude at the 3 locations. Mobile van surface ozone measurements across the basin confirmed this capped structure of the ozone layer; the vehicle drove out of high ozone mixing ratios at an elevation of ~1900 meters above sea level, above which free tropospheric ozone mixing ratios of ~50 ppb were measured. Exhaust plumes from a coal-fired power plant in the eastern portion of the basin were intercepted by the tethersondes. The structure of the profiles clearly showed that effluents in the plumes were not mixed downward and thus did not contribute precursor nitrogen oxides to the observed ozone production in the boundary layer.
Technical note: Examining ozone deposition over seawater
NASA Astrophysics Data System (ADS)
Sarwar, Golam; Kang, Daiwen; Foley, Kristen; Schwede, Donna; Gantt, Brett; Mathur, Rohit
2016-09-01
Surface layer resistance plays an important role in determining ozone deposition velocity over sea-water and can be influenced by chemical interactions at the air-water interface. Here, we examine the effect of chemical interactions of iodide, dimethylsulfide, dissolved organic carbon, and bromide in seawater on ozone deposition. We perform a series of simulations using the hemispheric Community Multiscale Air Quality model for summer months in the Northern Hemisphere. Our results suggest that each chemical interaction enhances the ozone deposition velocity and decreases the atmospheric ozone mixing ratio over seawater. Iodide enhances the median deposition velocity over seawater by 0.023 cm s-1, dissolved organic carbon by 0.021 cm s-1, dimethylsulfide by 0.002 cm s-1, and bromide by ∼0.0006 cm s-1. Consequently, iodide decreases the median atmospheric ozone mixing ratio over seawater by 0.7 ppb, dissolved organic carbon by 0.8 ppb, dimethylsulfide by 0.1 ppb, and bromide by 0.02 ppb. In a separate model simulation, we account for the effect of dissolved salts in seawater on the Henry's law constant for ozone and find that it reduces the median deposition velocity by 0.007 cm s-1 and increases surface ozone mixing ratio by 0.2 ppb. The combined effect of these processes increases the median ozone deposition velocity over seawater by 0.040 cm s-1, lowers the atmospheric ozone mixing ratio by 5%, and slightly improves model performance relative to observations.
NASA Astrophysics Data System (ADS)
Loughner, C.; Follette-Cook, M. B.; Fried, A.; Pickering, K. E.
2015-12-01
The highest observed surface ozone concentrations in the Houston metropolitan area in 2013 occurred on September 25, which coincided with the Texas DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaign. Surface ozone was elevated throughout the Houston metropolitan area with maximum 8-hour average ozone peaking along the western shore of Galveston Bay, reaching 124 ppbv, almost 50 ppbv above the current EPA standard of 75 ppbv. The NASA P-3B aircraft observed plumes from refinery flares west and northwest of Galveston Bay that were transported over the water. Continental air pollution from the north was transported into the Houston metropolitan area where it mixed with locally generated emissions. A bay breeze circulation formed causing pollutants that were transported out over the water in the morning to recirculate back inland where they mixed with freshly emitted pollution near the bay breeze convergence zone. The highest surface ozone concentrations were reported near the bay breeze front. This ozone episode will be presented using measurements made during the DISCOVER-AQ field campaign and a CMAQ model simulation with integrated source apportionment, which tracks the contribution of emissions source groups and regions on ozone concentrations.
Urban Summertime Ozone of China: Peak Ozone Hour and Nighttime Mixing
NASA Astrophysics Data System (ADS)
Qu, H.; Wang, Y.; Zhang, R.
2017-12-01
We investigate the observed diurnal cycle of summertime ozone in the cities of China using a regional chemical transport model. The simulated daytime ozone is in general agreement with the observations. Model simulations suggest that the ozone peak time and peak concentration are a function of NOx (NO + NO2) and volatile organic compound (VOC) emissions. The differences between simulated and observed ozone peak time and peak concentration in some regions can be applied to understand biases in the emission inventories. For example, the VOCs emissions are underestimated over the Pearl River Delta (PRD) region, and either NOx emissions are underestimated or VOC emissions are overestimated over the Yangtze River Delta (YRD) regions. In contrast to the general good daytime ozone simulations, the simulated nighttime ozone has a large low bias of up to 40 ppbv. Nighttime ozone in urban areas is sensitive to the nocturnal boundary-layer mixing, and enhanced nighttime mixing (from the surface to 200-500 m) is necessary for the model to reproduce the observed level of ozone.
NASA Astrophysics Data System (ADS)
Oikonomakis, Emmanouil; Aksoyoglu, Sebnem; Ciarelli, Giancarlo; Baltensperger, Urs; Prévôt, André Stephan Henry
2018-02-01
High surface ozone concentrations, which usually occur when photochemical ozone production takes place, pose a great risk to human health and vegetation. Air quality models are often used by policy makers as tools for the development of ozone mitigation strategies. However, the modeled ozone production is often not or not enough evaluated in many ozone modeling studies. The focus of this work is to evaluate the modeled ozone production in Europe indirectly, with the use of the ozone-temperature correlation for the summer of 2010 and to analyze its sensitivity to precursor emissions and meteorology by using the regional air quality model, the Comprehensive Air Quality Model with Extensions (CAMx). The results show that the model significantly underestimates the observed high afternoon surface ozone mixing ratios (≥ 60 ppb) by 10-20 ppb and overestimates the lower ones (< 40 ppb) by 5-15 ppb, resulting in a misleading good agreement with the observations for average ozone. The model also underestimates the ozone-temperature regression slope by about a factor of 2 for most of the measurement stations. To investigate the impact of emissions, four scenarios were tested: (i) increased volatile organic compound (VOC) emissions by a factor of 1.5 and 2 for the anthropogenic and biogenic VOC emissions, respectively, (ii) increased nitrogen oxide (NOx) emissions by a factor of 2, (iii) a combination of the first two scenarios and (iv) increased traffic-only NOx emissions by a factor of 4. For southern, eastern, and central (except the Benelux area) Europe, doubling NOx emissions seems to be the most efficient scenario to reduce the underestimation of the observed high ozone mixing ratios without significant degradation of the model performance for the lower ozone mixing ratios. The model performance for ozone-temperature correlation is also better when NOx emissions are doubled. In the Benelux area, however, the third scenario (where both NOx and VOC emissions are increased) leads to a better model performance. Although increasing only the traffic NOx emissions by a factor of 4 gave very similar results to the doubling of all NOx emissions, the first scenario is more consistent with the uncertainties reported by other studies than the latter, suggesting that high uncertainties in NOx emissions might originate mainly from the road-transport sector rather than from other sectors. The impact of meteorology was examined with three sensitivity tests: (i) increased surface temperature by 4 °C, (ii) reduced wind speed by 50 % and (iii) doubled wind speed. The first two scenarios led to a consistent increase in all surface ozone mixing ratios, thus improving the model performance for the high ozone values but significantly degrading it for the low ozone values, while the third scenario had exactly the opposite effects. Overall, the modeled ozone is predicted to be more sensitive to its precursor emissions (especially traffic NOx) and therefore their uncertainties, which seem to be responsible for the model underestimation of the observed high ozone mixing ratios and ozone production.
NASA Technical Reports Server (NTRS)
Gregory, G. L.; Wornom, D. E.; Mathis, J. J., Jr.; Sebacher, D. I.
1980-01-01
Ozone production was determined from aircraft and surface in situ measurements, as well as from an airborne laser absorption spectrometer. Three aircraft and approximately 10 surface stations provided air-quality data. Extensive meteorological, mixing-layer-height, and ozone-precursor data were also measured. Approximately 50 hrs (9 flight days) of data from the aircraft equipped to monitor ozone, nitrogen oxides, dewpoint temperature, and temperature are presented. In addition, each experiment conducted is discussed.
NASA Astrophysics Data System (ADS)
Toh, Ying Ying; Lim, Sze Fook; von Glasow, Roland
2013-05-01
The surface ozone concentrations at the Tanah Rata regional Global Atmosphere Watch (GAW) station, Malaysia (4°28‧N, 101°23‧E, 1545 m above Mean Sea Level (MSL)) from June 2006 to August 2008 were analyzed in this study. Overall the ozone mixing ratios are very low; the seasonal variations show the highest mixing ratios during the Southwest monsoon (average 19.1 ppb) and lowest mixing ratios during the spring intermonsoon (average 14.2 ppb). The diurnal variation of ozone is characterised by an afternoon maximum and night time minimum. The meteorological conditions that favour the formation of high ozone levels at this site are low relative humidity, high temperature and minimum rainfall. The average ozone concentration is lower during precipitation days compared to non-precipitation days. The hourly averaged ozone concentrations show significant correlations with temperature and relative humidity during the Northeast monsoon and spring intermonsoon. The highest concentrations are observed when the wind is blowing from the west. We found an anticorrelation between the atmospheric pressure tide and ozone concentrations. The ozone mixing ratios do not exceed the recommended Malaysia Air Quality Guidelines for 1-h and 8-h averages. Five day backward trajectories on two high ozone episodes in 07 August 2006 (40.0 ppb) and 24 February 2008 (45.7 ppb) are computed using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to investigate the origin of the pollutants and influence of regional transport. The high ozone episode during 07 August 2006 (burning season during southwest monsoon) is mainly attributed to regional transport from biomass burning in Sumatra, whereas favourable meteorological conditions (i.e. low relative humidity, high temperature and solar radiation, zero rainfall) and long range transport from Indo-China have elevated the ozone concentrations during 24 February 2008.
NASA Astrophysics Data System (ADS)
Surendran, Divya E.; Ghude, Sachin D.; Beig, G.; Emmons, L. K.; Jena, Chinmay; Kumar, Rajesh; Pfister, G. G.; Chate, D. M.
2015-12-01
This study presents the distribution of tropospheric ozone and related species for South Asia using the Model for Ozone and Related chemical Tracers (MOZART-4) and Hemispheric Transport of Air Pollution version-2 (HTAP-v2) emission inventory. The model present-day simulated ozone (O3), carbon monoxide (CO) and nitrogen dioxide (NO2) are evaluated against surface-based, balloon-borne and satellite-based (MOPITT and OMI) observations. The model systematically overestimates surface O3 mixing ratios (range of mean bias about: 1-30 ppbv) at different ground-based measurement sites in India. Comparison between simulated and observed vertical profiles of ozone shows a positive bias from the surface up to 600 hPa and a negative bias above 600 hPa. The simulated seasonal variation in surface CO mixing ratio is consistent with the surface observations, but has a negative bias of about 50-200 ppb which can be attributed to a large part to the coarse model resolution. In contrast to the surface evaluation, the model shows a positive bias of about 15-20 × 1017 molecules/cm2 over South Asia when compared to satellite derived CO columns from the MOPITT instrument. The model also overestimates OMI retrieved tropospheric column NO2 abundance by about 100-250 × 1013 molecules/cm2. A response to 20% reduction in all anthropogenic emissions over South Asia shows a decrease in the anuual mean O3 mixing ratios by about 3-12 ppb, CO by about 10-80 ppb and NOX by about 3-6 ppb at the surface level. During summer monsoon, O3 mixing ratios at 200 hPa show a decrease of about 6-12 ppb over South Asia and about 1-4 ppb over the remote northern hemispheric western Pacific region.
NASA Astrophysics Data System (ADS)
Osterman, G. B.; Neu, J. L.; Eldering, A.; Pinder, R. W.; Tang, Y.; McQueen, J.
2012-12-01
At night, ozone can be transported long distances above the surface inversion layer without chemical destruction or deposition. As the boundary layer breaks up in the morning, this nocturnal ozone can be mixed down to the surface and rapidly increase ozone concentrations at a rate that can rival chemical ozone production. Most regional scale models that are used for air quality forecasts and ozone source attribution do not adequately capture nighttime ozone concentrations and transport. We combine ozone profile data from the NASA Earth Observing System (EOS) Tropospheric Emission Spectrometer (TES) and other sensors, ozonesonde data collected during the INTEX Ozonesonde Network Study (IONS), EPA AirNow ground station ozone data, the Community Multi-Scale Air Quality (CMAQ) model, and the National Air Quality Forecast Capability (NAQFC) model to examine air quality events during August 2006. We present both aggregated statistics and case-study analyses that assess the relationship between the models' ability to reproduce surface air quality events and their ability to capture the vertical distribution of ozone both during the day and at night. We perform the comparisons looking at the geospatial dependence in the differences between the measurements and models under different surface ozone conditions.
Ozone Transport Aloft Drives Surface Ozone Maxima Across the Mojave Desert
NASA Astrophysics Data System (ADS)
VanCuren, R. A.
2014-12-01
A persistent layer of polluted air in the lower free troposphere over the Mojave Desert (California and Nevada) drives spring and summer surface ozone maxima as deep afternoon mixing delivers ozone and ozone precursors to surface measurement sites 200 km or more downwind of the mountains that separate the deserts from the heavily populated coastal areas of California. Pollutants in this elevated layer derive from California source regions (the Los Angeles megacity region and the intensive agricultural region of the San Joaquin Valley), and from long-range transport from Asia. Recognition of this poorly studied persistent layer explains and expands the significance of previously published reports of ozone and other pollutants observed in and over the Mojave Desert, resolves an apparent paradox in the timing of ozone peaks due to transport from the upwind basins, and provides a new perspective on the long-range downwind impacts of megacity pollution plumes.
NASA Astrophysics Data System (ADS)
Christian, Kenneth E.; Brune, William H.; Mao, Jingqiu; Ren, Xinrong
2018-02-01
Making sense of modeled atmospheric composition requires not only comparison to in situ measurements but also knowing and quantifying the sensitivity of the model to its input factors. Using a global sensitivity method involving the simultaneous perturbation of many chemical transport model input factors, we find the model uncertainty for ozone (O3), hydroxyl radical (OH), and hydroperoxyl radical (HO2) mixing ratios, and apportion this uncertainty to specific model inputs for the DC-8 flight tracks corresponding to the NASA Intercontinental Chemical Transport Experiment (INTEX) campaigns of 2004 and 2006. In general, when uncertainties in modeled and measured quantities are accounted for, we find agreement between modeled and measured oxidant mixing ratios with the exception of ozone during the Houston flights of the INTEX-B campaign and HO2 for the flights over the northernmost Pacific Ocean during INTEX-B. For ozone and OH, modeled mixing ratios were most sensitive to a bevy of emissions, notably lightning NOx, various surface NOx sources, and isoprene. HO2 mixing ratios were most sensitive to CO and isoprene emissions as well as the aerosol uptake of HO2. With ozone and OH being generally overpredicted by the model, we find better agreement between modeled and measured vertical profiles when reducing NOx emissions from surface as well as lightning sources.
NASA Astrophysics Data System (ADS)
Schnell, Russell C.; Johnson, Bryan J.; Oltmans, Samuel J.; Cullis, Patrick; Sterling, Chance; Hall, Emrys; Jordan, Allen; Helmig, Detlev; Petron, Gabrielle; Ahmadov, Ravan; Wendell, James; Albee, Robert; Boylan, Patrick; Thompson, Chelsea R.; Evans, Jason; Hueber, Jacques; Curtis, Abigale J.; Park, Jeong-Hoo
2016-09-01
As part of the Uinta Basin Winter Ozone Study, January-February 2013, we conducted 937 tethered balloon-borne ozone vertical and temperature profiles from three sites in the Uinta Basin, Utah (UB). Emissions from oil and gas operations combined with snow cover were favorable for producing high ozone-mixing ratios in the surface layer during stagnant and cold-pool episodes. The highly resolved profiles documented the development of approximately week-long ozone production episodes building from regional backgrounds of 40 ppbv to >165 ppbv within a shallow cold pool up to 200 m in depth. Beginning in midmorning, ozone-mixing ratios increased uniformly through the cold pool layer at rates of 5-12 ppbv/h. During ozone events, there was a strong diurnal cycle with each succeeding day accumulating 4-8 ppbv greater than the previous day. The top of the elevated ozone production layer was nearly uniform in altitude across the UB independent of topography. Above the ozone production layer, mixing ratios decreased with height to 400 m above ground level where they approached regional background levels. Rapid clean-out of ozone-rich air occurred within a day when frontal systems brought in fresh air. Solar heating and basin topography led to a diurnal flow pattern in which daytime upslope winds distributed ozone precursors and ozone in the Basin. NOx-rich plumes from a coal-fired power plant in the eastern sector of the Basin did not appear to mix down into the cold pool during this field study.
A numerical study of tropospheric ozone in the springtime in East Asia
NASA Astrophysics Data System (ADS)
Zhang, Meigen; Xu, Yongfu; Itsushi, Uno; Hajime, Akimoto
2004-04-01
The Models-3 Community Multi-scale Air Quality modeling system (CMAQ) coupled with the Regional Atmospheric Modeling System (RAMS) is applied to East Asia to study the transport and photochemical transformation of tropospheric ozone in March 1998. The calculated mixing ratios of ozone and carbon monoxide are compared with ground level observations at three remote sites in Japan and it is found that the model reproduces the observed features very well. Examination of several high episodes of ozone and carbon monoxide indicates that these elevated levels are found in association with continental outflow, demonstrating the critical role of the rapid transport of carbon monoxide and other ozone precursors from the continental boundary layer. In comparison with available ozonesonde data, it is found that the model-calculated ozone concentrations are generally in good agreement with the measurements, and the stratospheric contribution to surface ozone mixing ratios is quite limited.
Surface ozone in the Lake Tahoe Basin
Joel D. Burley; Sandra Theiss; Andrzej Bytnerowicz; Alan Gertler; Susan Schilling; Barbara Zielinska
2015-01-01
Surface ozone (O3) concentrations were measured in and around the Lake Tahoe Basin using both active monitors (2010) and passive samplers (2002, 2010). The 2010 data from active monitors indicate average summertime diurnal maxima of approximately 50â55 ppb. Some site-to-site variability is observed within the Basin during the well-mixed hours of...
Analysis of air quality with numerical simulation (CMAQ), and observations of trace gases
NASA Astrophysics Data System (ADS)
Castellanos, Patricia
Ozone, a secondary pollutant, is a strong oxidant that can pose a risk to human health. It is formed from a complex set of photochemical reactions involving nitrogen oxides (NOx) and volatile organic compounds (VOCs). Ambient measurements and air quality modeling of ozone and its precursors are important tools for support of regulatory decisions, and analyzing atmospheric chemical and physical processes. I worked on three methods to improve our understanding of photochemical ozone production in the Eastern U.S.: a new detector for NO2, a numerical experiment to test the sensitivity to the timing to emissions, and comparison of modeled and observed vertical profiles of CO and ozone. A small, commercially available cavity ring-down spectroscopy (CRDS) NO2 detector suitable for surface and aircraft monitoring was modified and characterized. The CRDS detector was run in parallel to an ozone chemiluminescence device with photolytic conversion of NO2 to NO. The two instruments measured ambient air in suburban Maryland. A linear least-squares fit to a direct comparison of the data resulted in a slope of 0.960+/-0.002 and R of 0.995, showing agreement between two measurement techniques within experimental uncertainty. The sensitivity of the Community Multiscale Air Quality (CMAQ) model to the temporal variation of four emissions sectors was investigated to understand the effect of emissions' daily variability on modeled ozone. Decreasing the variability of mobile source emissions changed the 8-hour maximum ozone concentration by +/-7 parts per billion by volume (ppbv). Increasing the variability of point source emissions affected ozone concentrations by +/-6 ppbv, but only in areas close to the source. CO is an ideal tracer for analyzing pollutant transport in AQMs because the atmospheric lifetime is longer than the timescale of boundary layer mixing. CO can be used as a tracer if model performance of CO is well understood. An evaluation of CO model performance in CMAQ was carried out using aircraft observations taken for the Regional Atmospheric Measurement, Modeling and Prediction Program (RAMMPP) in the summer of 2002. Comparison of modeled and observed CO total columns were generally in agreement within 5-10%. There is little evidence that the CO emissions inventory is grossly overestimated. CMAQ predicts the same vertical profile shape for all of the observations, i.e. CO is well mixed throughout the boundary layer. However, the majority of observations have poorly mixed air below 500 m, and well mixed air above. CMAQ appears to be transporting CO away from the surface more quickly than what is observed. Turbulent mixing in the model is represented with K-theory. A minimum Kz that scales with fractional urban land use is imposed in order to account for subgrid scale obstacles in urban areas and the urban heat island effect. Micrometeorological observations suggest that the minimum Kz is somewhat high. A sensitivity case where the minimum K z was reduced from 0.5 m2/s to 0.1 m2/s was carried out. Model performance of surface ozone observations at night increased significantly. The model better captures the observed ozone minimum with slower mixing, and increases ozone concentrations in the residual layer. Model performance of CO and ozone morning vertical profiles improves, but the effect is not large enough to bring the model and measurements into agreement. Comparison of modeled CO and O3 vertical profiles shows that turbulent mixing (as represented by eddy diffusivity) appears to be too fast, while convective mixing may be too slow.
NASA Technical Reports Server (NTRS)
Kuang, Shi; Newchurch, M. J.; Burris, John; Wang, Lihua; Knupp, Kevin; Huang, Guanyu
2013-01-01
This paper presents ozone structures measured by a ground-based ozone lidar and ozonesonde at Huntsville, Alabama, on 27-29 April 2010 originating from a stratosphere-to-troposphere transport event associated with a cutoff cyclone and tropopause fold. In this case, the tropopause reached 6 km and the stratospheric intrusion resulted in a 2-km thick elevated ozone layer with values between 70 and 85 ppbv descending from the 306-K to 298-K isentropic surface at a rate of 5 km day1. The potential temperature was provided by a collocated microwave profiling radiometer. We examine the corresponding meteorological fields and potential vorticity (PV) structures derived from the analysis data from the North American Mesoscale model. The 2-PVU (PV unit) surface, defined as the dynamic tropopause, is able to capture the variations of the ozone tropopause estimated from the ozonesonde and lidar measurements. The estimated ozone/PV ratio, from the measured ozone and model derived PV, for the mixing layer between the troposphere and stratosphere is approximately 41 ppbv/PVU with an uncertainty of approximately 33%. Within two days, the estimated mass of ozone irreversibly transported from the stratospheric into the troposphere is between 0.07 Tg (0.9 10(exp33) molecules) and 0.11 Tg (1.3 10(exp33) molecules) with an estimated uncertainty of 59%. Tropospheric ozone exhibited enormous variability due to the complicated mixing processes. Low ozone and large variability were observed in the mid-troposphere after the stratospheric intrusion due to the westerly advection including the transition from a cyclonic system to an anticyclonic system. This study using high temporal and vertical-resolution measurements suggests that, in this case, stratospheric air quickly lost its stratospheric characteristics once it is irreversibly mixed down into the troposphere.
NASA Astrophysics Data System (ADS)
Hardesty, R. M.; Senff, C. J.; Alvarez, R. J.; Banta, R. M.; Sandberg, S. P.; Weickmann, A. M.; Darby, L. S.
2007-12-01
A new all solid state ozone lidar was deployed on a NOAA Twin Otter to study boundary layer ozone and aerosol, mostly around Houston, during the 2006 Texas Air Quality Study. The new instrument transmits high pulse-rate, low pulse-energy light at 3 wavelengths in the ultraviolet to obtain ozone profiles with 500 m horizontal resolution and 90 m vertical resolution. During the Texas field study, 20 research flights resulted in nearly 70 hours of ozone measurements during the period from August 1 to September 15. Science objectives included characterization of background ozone levels over rural areas near Houston and Dallas and variability and structure of the boundary layer over different surface types, including urban, wooded, and agricultural land surface areas as well as over Galveston Bay and the Gulf of Mexico. A histogram of all boundary layer ozone concentration measurements showed a bimodal distribution with modes at 45 ppb and 70 ppb. The lower mode correlated with southerly flow, when relatively clean air was transported onshore into the Houston area. Segmenting the observations during southerly flow by region, including the Gulf of Mexico, land within about 55 km from the coast, and further inland indicated that background levels increased by about 10 ppb as air was transported onshore. During the latter part of the experiment, as more pollution was imported into the Houston region, background levels rose to nearly 80 ppb in regions N of Houston. Two flights aimed at observing import of ozone into Texas from the east showed that ozone concentrations increased and boundary layer depths deepened upwind of Houston between September 4 and September 8. Background levels rose by more than 10 ppb over this period. In addition to ozone measurements, we also estimated boundary layer height based on maximum gradient in observed backscatter. The technique worked well when the layer topped by the strongest gradient extends down to the surface. Investigation of the correlation between ozone levels and mixing layer heights both within and external to the Houston urban plume showed a variety of relationships, depending on, e.g., wind direction and occurrence of a bay/gulf breeze. On a day-to-day basis, higher ozone levels were weakly correlated with deeper mixing levels - this was likely due to advection of the urban heat island downwind with the high-ozone urban plume.
NASA Astrophysics Data System (ADS)
Hogrefe, Christian; Liu, Peng; Pouliot, George; Mathur, Rohit; Roselle, Shawn; Flemming, Johannes; Lin, Meiyun; Park, Rokjin J.
2018-03-01
This study analyzes simulated regional-scale ozone burdens both near the surface and aloft, estimates process contributions to these burdens, and calculates the sensitivity of the simulated regional-scale ozone burden to several key model inputs with a particular emphasis on boundary conditions derived from hemispheric or global-scale models. The Community Multiscale Air Quality (CMAQ) model simulations supporting this analysis were performed over the continental US for the year 2010 within the context of the Air Quality Model Evaluation International Initiative (AQMEII) and Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) activities. CMAQ process analysis (PA) results highlight the dominant role of horizontal and vertical advection on the ozone burden in the mid-to-upper troposphere and lower stratosphere. Vertical mixing, including mixing by convective clouds, couples fluctuations in free-tropospheric ozone to ozone in lower layers. Hypothetical bounding scenarios were performed to quantify the effects of emissions, boundary conditions, and ozone dry deposition on the simulated ozone burden. Analysis of these simulations confirms that the characterization of ozone outside the regional-scale modeling domain can have a profound impact on simulated regional-scale ozone. This was further investigated by using data from four hemispheric or global modeling systems (Chemistry - Integrated Forecasting Model (C-IFS), CMAQ extended for hemispheric applications (H-CMAQ), the Goddard Earth Observing System model coupled to chemistry (GEOS-Chem), and AM3) to derive alternate boundary conditions for the regional-scale CMAQ simulations. The regional-scale CMAQ simulations using these four different boundary conditions showed that the largest ozone abundance in the upper layers was simulated when using boundary conditions from GEOS-Chem, followed by the simulations using C-IFS, AM3, and H-CMAQ boundary conditions, consistent with the analysis of the ozone fields from the global models along the CMAQ boundaries. Using boundary conditions from AM3 yielded higher springtime ozone columns burdens in the middle and lower troposphere compared to boundary conditions from the other models. For surface ozone, the differences between the AM3-driven CMAQ simulations and the CMAQ simulations driven by other large-scale models are especially pronounced during spring and winter where they can reach more than 10 ppb for seasonal mean ozone mixing ratios and as much as 15 ppb for domain-averaged daily maximum 8 h average ozone on individual days. In contrast, the differences between the C-IFS-, GEOS-Chem-, and H-CMAQ-driven regional-scale CMAQ simulations are typically smaller. Comparing simulated surface ozone mixing ratios to observations and computing seasonal and regional model performance statistics revealed that boundary conditions can have a substantial impact on model performance. Further analysis showed that boundary conditions can affect model performance across the entire range of the observed distribution, although the impacts tend to be lower during summer and for the very highest observed percentiles. The results are discussed in the context of future model development and analysis opportunities.
NASA Astrophysics Data System (ADS)
Chang, K. L.; Petropavlovskikh, I. V.; Cooper, O. R.; Schultz, M.; Wang, T.
2017-12-01
Surface ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. The Tropospheric Ozone Assessment Report (TOAR) is designed to provide the research community with an up-to-date observation-based overview of tropospheric ozone's global distribution and trends. The TOAR Surface Ozone Database contains ozone metrics at thousands of monitoring sites around the world, densely clustered across mid-latitude North America, western Europe and East Asia. Calculating regional ozone trends across these locations is challenging due to the uneven spacing of the monitoring sites across urban and rural areas. To meet this challenge we conducted a spatial and temporal trend analysis of several TOAR ozone metrics across these three regions for summertime (April-September) 2000-2014, using the generalized additive mixed model (GAMM). Our analysis indicates that East Asia has the greatest human and plant exposure to ozone pollution among investigating regions, with increasing ozone levels through 2014. The results also show that ozone mixing ratios continue to decline significantly over eastern North America and Europe, however, there is less evidence for decreases of daytime average ozone at urban sites. The present-day spatial coverage of ozone monitors in East Asia (South Korea and Japan) and eastern North America is adequate for estimating regional trends by simply taking the average of the individual trends at each site. However the European network is more sparsely populated across its northern and eastern regions and therefore a simple average of the individual trends at each site does not yield an accurate regional trend. This analysis demonstrates that the GAMM technique can be used to assess the regional representativeness of existing monitoring networks, indicating those networks for which a regional trend can be obtained by simply averaging the trends of all individual sites and those networks that require a more sophisticated statistical approach.
NASA Technical Reports Server (NTRS)
Knudsen, Bjorn; Vondergathen, Peter; Braathen, Geir O.; Fabian, Rolf; Jorgensen, Torben S.; Kyro, Esko; Neuber, Roland; Rummukainen, Markku
1994-01-01
Ozone sonde data of the winters 1988/89, 1989/90, and 1990/91 from a group of Arctic stations are used in this study. The ozone mixing ratio on several isentropic surfaces is correlated to the potential vorticity (P). The P is based on the initialized analysis data from the European Center for Medium-Range Weather Forecasts. Similar investigations were made by Lait et al. (Geophys. Res. Lett., 17, 521-524, March Supplement 1990) for the AASE campaign (January and February 1989), showing how the ozone mixing ratio varies with the distance to the edge of the vortex. Their findings are confirmed and extended to the following two winters. Furthermore we have studied the temporal development of the P-ozone correlations during these winters in order to recognize any chemical ozone depletion.
NASA Astrophysics Data System (ADS)
Rohrer, Franz; Li, Xin; Hofzumahaus, Andreas; Ehlers, Christian; Holland, Frank; Klemp, Dieter; Lu, Keding; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Wahner, Andreas
2014-05-01
The nocturnal boundary layer (NBL) is a sublayer within the planetary boundary layer (PBL) which evolves above solid land each day in the late afternoon due to radiation cooling of the surface. It is a region of several hundred meters thickness which inhibits vertical mixing. A residual and a surface layer remain above and below the NBL. Inside the surface layer, almost all direct emissions of atmospheric constituents take place during this time. This stratification lasts until the next morning after sunrise. Then, the heating of the surface generates a new convectionally mixed layer which successively eats up the NBL from below. This process lasts until shortly before noon when the NBL disappears completely and the PBL is mixed convectionally. Ozone measurements onboard a Zeppelin airship in The Netherlands, in Italy, and in Finland are used to analyse this behaviour with respect to atmospheric constituents and consequences for the diurnal cycles observed in the surface layer, the nocturnal boundary layer, and the residual layer are discussed.
NASA Astrophysics Data System (ADS)
Kita, K.; Kawakami, S.; Miyazaki, Y.; Higashi, Y.; Kondo, Y.; Nishi, N.; Koike, M.; Blake, D. R.; Machida, T.; Sano, T.; Hu, W.; Ko, M.; Ogawa, T.
2002-02-01
The Biomass Burning and Lightning Experiment phase A (BIBLE-A) aircraft observation campaign was conducted from 24 September to 10 October 1998, during a La Niña period. During this campaign, distributions of ozone and its precursors (NO, CO, and nonmethane hydrocarbons (NMHCs)) were observed over the tropical Pacific Ocean, Indonesia, and northern Australia. Mixing ratios of ozone and its precursors were very low at altitudes between 0 and 13.5 km over the tropical Pacific Ocean. The mixing ratios of ozone precursors above 8 km over Indonesia were often significantly higher than those over the tropical Pacific Ocean, even though the prevailing easterlies carried the air from the tropical Pacific Ocean to over Indonesia within several days. For example, median NO and CO mixing ratios in the upper troposphere were 12 parts per trillion (pptv) and 72 parts per billion (ppbv) over the tropical Pacific Ocean and were 83 pptv and 85 ppbv over western Indonesia, respectively. Meteorological analyses and high ethene (C2H4) mixing ratios indicate that the increase of the ozone precursors was caused by active convection over Indonesia through upward transport of polluted air, mixing, and lightning all within the few days prior to observation. Sources of ozone precursors are discussed by comparing correlations of some NMHCs and CH3Cl concentrations with CO between the lower and upper troposphere. Biomass burning in Indonesia was nearly inactive during BIBLE-A and was not a dominant source of the ozone precursors, but urban pollution and lightning contributed importantly to their increases. The increase in ozone precursors raised net ozone production rates over western Indonesia in the upper troposphere, as shown by a photochemical model calculation. However, the ozone mixing ratio (˜20 ppbv) did not increase significantly over Indonesia because photochemical production of ozone did not have sufficient time since the augmentation of ozone precursors. Backward trajectories show that many air masses sampled over the ocean south of Indonesia and over northern Australia passed over western Indonesia 4-9 days prior to being measured. In these air masses the mixing ratios of ozone precursors, except for short-lived species, were similar to those over western Indonesia. In contrast, the ozone mixing ratio was higher by about 10 ppbv than that over Indonesia, indicating that photochemical production of ozone occurred during transport from Indonesia. The average rate of ozone increase (1.8 ppbv/d) during this transport is similar to the net ozone formation rate calculated by the photochemical model. This study shows that active convection over Indonesia carried polluted air upward from the surface and had a discernable influence on the distribution of ozone in the upper troposphere over the Indian Ocean, northern Australia, and the south subtropical Pacific Ocean, combined with NO production by lightning.
NASA Astrophysics Data System (ADS)
Kita, K.; Kawakami, S.; Miyazaki, Y.; Higashi, Y.; Kondo, Y.; Nishi, N.; Koike, M.; Blake, D. R.; Machida, T.; Sano, T.; Hu, W.; Ko, M.; Ogawa, T.
2003-02-01
The Biomass Burning and Lightning Experiment phase A (BIBLE-A) aircraft observation campaign was conducted from 24 September to 10 October 1998, during a La Niña period. During this campaign, distributions of ozone and its precursors (NO, CO, and nonmethane hydrocarbons (NMHCs)) were observed over the tropical Pacific Ocean, Indonesia, and northern Australia. Mixing ratios of ozone and its precursors were very low at altitudes between 0 and 13.5 km over the tropical Pacific Ocean. The mixing ratios of ozone precursors above 8 km over Indonesia were often significantly higher than those over the tropical Pacific Ocean, even though the prevailing easterlies carried the air from the tropical Pacific Ocean to over Indonesia within several days. For example, median NO and CO mixing ratios in the upper troposphere were 12 parts per trillion (pptv) and 72 parts per billion (ppbv) over the tropical Pacific Ocean and were 83 pptv and 85 ppbv over western Indonesia, respectively. Meteorological analyses and high ethene (C2H4) mixing ratios indicate that the increase of the ozone precursors was caused by active convection over Indonesia through upward transport of polluted air, mixing, and lightning all within the few days prior to observation. Sources of ozone precursors are discussed by comparing correlations of some NMHCs and CH3Cl concentrations with CO between the lower and upper troposphere. Biomass burning in Indonesia was nearly inactive during BIBLE-A and was not a dominant source of the ozone precursors, but urban pollution and lightning contributed importantly to their increases. The increase in ozone precursors raised net ozone production rates over western Indonesia in the upper troposphere, as shown by a photochemical model calculation. However, the ozone mixing ratio (~20 ppbv) did not increase significantly over Indonesia because photochemical production of ozone did not have sufficient time since the augmentation of ozone precursors. Backward trajectories show that many air masses sampled over the ocean south of Indonesia and over northern Australia passed over western Indonesia 4-9 days prior to being measured. In these air masses the mixing ratios of ozone precursors, except for short-lived species, were similar to those over western Indonesia. In contrast, the ozone mixing ratio was higher by about 10 ppbv than that over Indonesia, indicating that photochemical production of ozone occurred during transport from Indonesia. The average rate of ozone increase (1.8 ppbv/d) during this transport is similar to the net ozone formation rate calculated by the photochemical model. This study shows that active convection over Indonesia carried polluted air upward from the surface and had a discernable influence on the distribution of ozone in the upper troposphere over the Indian Ocean, northern Australia, and the south subtropical Pacific Ocean, combined with NO production by lightning.
Validation of SAGE II ozone measurements
NASA Technical Reports Server (NTRS)
Cunnold, D. M.; Chu, W. P.; Mccormick, M. P.; Veiga, R. E.; Barnes, R. A.
1989-01-01
Five ozone profiles from the Stratospheric Aerosol and Gas Experiment (SAGE) II are compared with coincident ozonesonde measurements obtained at Natal, Brazil, and Wallops Island, Virginia. It is shown that the mean difference between all of the measurements is about 1 percent and that the agreement is within 7 percent at altitudes between 20 and 53 km. Good agreement is also found for ozone mixing ratios on pressure surfaces. It is concluded that the SAGE II profiles provide useful ozone information up to about 60 km altitude.
Impact of surface ozone interactions on indoor air chemistry: A modeling study.
Kruza, M; Lewis, A C; Morrison, G C; Carslaw, N
2017-09-01
An INdoor air Detailed Chemical Model was developed to investigate the impact of ozone reactions with indoor surfaces (including occupants), on indoor air chemistry in simulated apartments subject to ambient air pollution. The results are consistent with experimental studies showing that approximately 80% of ozone indoors is lost through deposition to surfaces. The human body removes ozone most effectively from indoor air per square meter of surface, but the most significant surfaces for C 6 -C 10 aldehyde formation are soft furniture and painted walls owing to their large internal surfaces. Mixing ratios of between 8 and 11 ppb of C 6 -C 10 aldehydes are predicted to form in apartments in various locations in summer, the highest values are when ozone concentrations are enhanced outdoors. The most important aldehyde formed indoors is predicted to be nonanal (5-7 ppb), driven by oxidation-derived emissions from painted walls. In addition, ozone-derived emissions from human skin were estimated for a small bedroom at nighttime with concentrations of nonanal, decanal, and 4-oxopentanal predicted to be 0.5, 0.7, and 0.7 ppb, respectively. A detailed chemical analysis shows that ozone-derived surface aldehyde emissions from materials and people change chemical processing indoors, through enhanced formation of nitrated organic compounds and decreased levels of oxidants. © 2017 The Authors. Indoor Air Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Berchet, A.; Paris, J.-D.; Ancellet, G.; Law, K.; Stohl, A.; Nédélec, P.; Arshinov, M. Yu; Belan, B. D.; Ciais, P.
2012-04-01
Atmospheric pollution, including tropospheric ozone, has an adverse effect on humans and their environment. The Siberian air shed covers about 10% of Earth's land surface. Therefore, it can contribute significantly to the global tropospheric ozone budget due, in the region, to vast deposition losses on the boreal forest vegetation in the atmospheric surface layer on the one hand, and in-situ photochemical production from ozone precursors emitted by Siberian terrestrial ecosystems, and the influx of stratospheric ozone to the troposphere on the other hand. We have identified and characterized factors that influenced the tropospheric ozone budget over Siberia during spring 2010 by analyzing in-situ measurements of ozone, carbon dioxide, carbon monoxide, and methane mixing ratios collected by continuous analyzers during an intensive airborne measurement campaign of the YAK-AEROSIB Project, carried out between 15 and 18 April 2010. The observations, spanning over 3000 km and stretching from 800 to 6700 m above ground level, were analyzed using the Lagrangian model FLEXPART to simulate backward air mass transport. The analysis of trace gas variability and simulated origin of air masses origins showed that biomass burning and anthropogenic activity expectedly increased carbon monoxide and dioxide concentrations. Also, such plumes coming from east and west of West Siberian plain and from North-Eastern China were shown to increase ozone mixing ratio owing to photochemical processes taking place along the transport route. In the case of low ozone mixing ratios observed over a large area (800x200km) in the upper troposphere above 5500 m the air masses transported to the region under study were likely influenced by an Arctic ozone depletion event transported to lower latitudes and advected to the upper troposphere. The stratospheric source of ozone to the troposphere was observed directly in a well-defined stratospheric intrusion. Numerical simulations of this event suggest an input of 2.56 x 107 kg of ozone associated to a regional downward flux of 9.75 x 1010 molecules·cm-2·s-1.
Transport aloft drives peak ozone in the Mojave Desert
NASA Astrophysics Data System (ADS)
VanCuren, Richard
2015-05-01
Transport of anthropogenic pollution eastward out of the Los Angeles megacity region in California has been periodically observed to reach the Colorado River and the Colorado Plateau region beyond. In the 1980s, anthropogenic halocarbon tracers measured in and near the Las Angeles urban area and at a mountain-top site near the Colorado River, 400 km downwind, were shown to have a correlated seven-day cycle explainable by transport from the urban area with a time lag of 1-2 days. Recent short term springtime intensive studies using aircraft observations and regional modeling of long range transport of ozone from the Southern California megacity region showed frequent and persistent ozone impacts at surface sites across the Colorado Plateau and Southern Rocky Mountain region, at distances up to 1500 km, also with time lags of 1-2 days. However, the timing of ozone peaks at low altitude monitoring sites within the Mojave Desert, at distances from 100 to 400 km from the South Coast and San Joaquin Valley ozone source regions, does not show the expected time-lag behavior seen in the larger transport studies. This discrepancy is explained by recognizing ozone transport across the Mojave Desert to occur in a persistent layer of polluted air in the lower free troposphere with a base level at approximately 1 km MSL. This layer impacts elevated downwind sites directly, but only influences low altitude surface ozone maxima through deep afternoon mixing. Pollutants in this elevated layer derive from California source regions (the Los Angeles megacity region and the intensive agricultural region of the San Joaquin Valley), from long-range transport from Asia, and stratospheric down-mixing. Recognition of the role of afternoon mixing during spring and summer over the Mojave explains and expands the significance of previously published reports of ozone and other pollutants observed in and over the Mojave Desert, and resolves an apparent paradox in the timing of ozone peaks due to short-range and long-range transport from the upwind basins.
Thompson, Katherine C; Jones, Stephanie H; Rennie, Adrian R; King, Martin D; Ward, Andrew D; Hughes, Brian R; Lucas, Claire O M; Campbell, Richard A; Hughes, Arwel V
2013-04-09
The presence of unsaturated lipids in lung surfactant is important for proper respiratory function. In this work, we have used neutron reflection and surface pressure measurements to study the reaction of the ubiquitous pollutant gas-phase ozone, O3, with pure and mixed phospholipid monolayers at the air-water interface. The results reveal that the reaction of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, with ozone leads to the rapid loss of the terminal C9 portion of the oleoyl strand of POPC from the air-water interface. The loss of the C9 portion from the interface is accompanied by an increase in the surface pressure (decrease in surface tension) of the film at the air-water interface. The results suggest that the portion of the oxidized oleoyl strand that is still attached to the lipid headgroup rapidly reverses its orientation and penetrates the air-water interface alongside the original headgroup, thus increasing the surface pressure. The reaction of POPC with ozone also leads to a loss of material from the palmitoyl strand, but the loss of palmitoyl material occurs after the loss of the terminal C9 portion from the oleoyl strand of the molecule, suggesting that the palmitoyl material is lost in a secondary reaction step. Further experiments studying the reaction of mixed monolayers composed of unsaturated lipid POPC and saturated lipid dipalmitoyl-sn-glycero-3-phosphocholine, DPPC, revealed that no loss of DPPC from the air-water interface occurs, eliminating the possibility that a reactive species such as an OH radical is formed and is able to attack nearby lipid chains. The reaction of ozone with the mixed films does cause a significant change in the surface pressure of the air-water interface. Thus, the reaction of unsaturated lipids in lung surfactant changes and impairs the physical properties of the film at the air-water interface.
NASA Astrophysics Data System (ADS)
Sullivan, J. T.; McGee, T. J.; Rabenhorst, S. D.; Delgado, R.; Dreessen, J.; Sumnicht, G. K.; Twigg, L.
2016-12-01
A unique multi-day air quality event occurred throughout the Mid-Atlantic region from June 9-12, 2015. The June event was coupled to the advection of widespread smoke and debris from western Canada throughout the region. Observations indicated that the aged smoke impacted the Planetary Boundary Layer (PBL) and greatly enhanced ozone concentrations at the surface. Many ground sites in the region, particularly in Maryland, recorded 8-hr ozone concentrations that were in exceedance of the 75 ppb EPA National Ambient Air Quality Standard (NAAQS). After the high O3 episode occurred, a nocturnal low-level jet developed throughout the Mid-Atlantic region, which was spatially correlated with next day high O3 at several sites within the New England region. During this event, nearly continuous vertical profiles of ozone are presented at Beltsville, MD from the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL), which has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Lidar observations reveal a well-mixed polluted PBL, nocturnal residual layer, and subsequent mixing down of the residual layer in the morning. Additional measurements of surface ozone, aerosol lidar profiles, wind profiles, and balloon borne profiles are also presented. Model output and trajectory analyses are also presented to illustrate the complex flow regimes that occurred during the daytime and nighttime to help redistribute the polluted air mass.
Phonological studies of the new gas-induced agitated reactor using computational fluid dynamics.
Yang, T C; Hsu, Y C; Wang, S F
2001-06-01
An ozone-induced agitated reactor has been found to be very effective in degrading industrial wastewater. However, the cost of the ozone generation as well as its short residence time in reactors has restricted its application in a commercial scale. An innovated gas-induced draft tube installed inside a conventional agitated reactor was proved to effectively retain the ozone in a reactor. The setup was demonstrated to significantly promote the ozone utilization rate up to 96% from the conventional rate of 60% above the onset speed. This work investigates the mixing mechanism of an innovated gas-induced reactor for the future scale-up design by using the technique of computational fluid dynamics. A three-dimensional flow model was proposed to compute the liquid-gas free surface as well as the flow patterns inside the reactor. The turbulent effects generated by two 45 degrees pitch-blade turbines were considered and the two phases mixing phenomena were also manipulated by the Eulerian-Eulerian techniques. The consistency of the free surface profiles and the fluid flow patterns proved a good agreement between computational results and the experimental observation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Situ, S.; Guenther, Alex B.; Wang, X. J.
In this study, the BVOC emissions in November 2010 over the Pearl River Delta (PRD) region in southern China have been estimated by the latest version of a Biogenic Volatile Organic Compound (BVOC) emission model (MEGAN v2.1). The evaluation of MEGAN performance at a representative forest site within this region indicates MEGAN can estimate BVOC emissions reasonably well in this region except overestimating isoprene emission in autumn for reasons that are discussed in this manuscript. Along with the output from MEGAN, the Weather Research and Forecasting model with chemistry (WRF-Chem) is used to estimate the impacts of BVOC emissions onmore » surface ozone in the PRD region. The results show BVOC emissions increase the daytime ozone peak by *3 ppb on average, and the max hourly impacts of BVOC emissions on the daytime ozone peak is 24.8 ppb. Surface ozone mixing ratios in the central area of Guangzhou- Foshan and the western Jiangmen are most sensitive to BVOC emissions BVOCs from outside and central PRD influence the central area of Guangzhou-Foshan and the western Jiangmen significantly while BVOCs from rural PRD mainly influence the western Jiangmen. The impacts of BVOC emissions on surface ozone differ in different PRD cities, and the impact varies in different seasons. Foshan and Jiangmen being most affected in autumn, result in 6.0 ppb and 5.5 ppb increases in surface ozone concentrations, while Guangzhou and Huizhou become more affected in summer. Three additional experiments concerning the sensitivity of surface ozone to MEGAN input variables show that surface ozone is more sensitive to landcover change, followed by emission factors and meteorology.« less
Broad features of surface ozone variations over Indian region
NASA Technical Reports Server (NTRS)
Shende, R. R.; Jayaraman, K.; Sreedharan, C. R.; Tiwari, V. S.
1994-01-01
Surface ozone concentration at three Indian stations - New Delhi (28.6 deg N), Pune (18.5 deg N) and Thiruvananthapuram (formerly Trivandrum (8.3 deg N) - has been measured since 1973 with the help of an electrochemical continuous ozone recorder. These stations show diurnal, seasonal and annual cycles in surface ozone. Daily changes show that the minimum value occurs at sunrise and maximum in the afternoon. As regards seasonal variations, Thiruvananthapuram and Pune have a minimum value during monsoon season (June to August) while at New Delhi the minimum value occurs in January. However, New Delhi also records low ozone amount during monsoon season identical to the amounts show at Thiruvananthapuram and Pune. The annual cycles at these stations have been compared with similar measurements in the northern and southern hemispheres. The Indian measurements agree well with the annual cycles at these stations. Further, the analysis of the Indian data indicates that the major contribution in surface ozone comes from the natural sources like stratospheric-tropospheric exchange, turbulence, and mixing in the boundary layer; however, a small contribution from anthropogenic sources cannot be ruled out at Pune and probably at New Delhi, especially in winter and summer seasons.
NASA Astrophysics Data System (ADS)
Schnell, R. C.; Oltmans, S. J.; Johnson, B.; Petron, G.; Neely, R. R.
2013-12-01
The Uintah Basin, Utah is ~ 5,000 km2 in size with lower elevations of ~1400 m msl ringed by mountains rising to ~3,000 m. Within this basin are 6,000 gas wells that produced 10 billion m3 of natural gas and 4,000 oil wells that produced ~22 million barrels of oil in 2012. In winter, the confined geography in the basin traps effluents from these fossil fuel extraction activities into a shallow layer (a few 100 meters deep) beneath strong temperature inversions, especially when ample snow cover is present throughout the basin. The temperature inversions isolate the basin from upper level winds that allow for stagnant conditions that may last for a week or more before a frontal system may flush the basin out. The highly reflective snow provides for enhanced photolysis rates that in February are comparable to those in June. In 2013 December snowfall in the Uintah Basin persisted until early March with exceptionally elevated ozone production occurring in four distinct, 10-day periods separated by 2-3 days of near background values following frontal induced washouts of the basins. In one well studied ozone event, background ozone levels of 55 ppb in the basin were measured from the surface to the lower troposphere on January 30, 2013. By February 1, ozone concentrations from the surface to the top of the 180 m deep temperature inversion averaged 100 ppb. By February 6 ozone concentrations were 165 ppb throughout the same layer. From aircraft measurements these ozone concentrations were observed to be fairly well mixed throughout the basin although there were some notable hotspots. Clean-out of ozone and ozone precursors in the Uintah Basin was observed to occur within 4 hours or less as basin air was replaced with air coming in from the west coast and mixing to the surface.
Tagaris, Efthimios; Stergiou, Ioannis; Sotiropoulou, Rafaella-Eleni P
2017-06-01
The impact of shipping emissions on ozone mixing ratio over Europe is assessed for July 2006 using the Community Multiscale Air Quality modeling system and the Netherlands Organization for Applied Scientific Research anthropogenic emission inventory. Results suggest that ship-induced ozone contribution to the total surface ozone exceeds 5% over the sea and near the coastline, while an increase up to 5% is simulated over a large portion of the European land. The largest impact (i.e., an increase up to 30%) is simulated over the Mediterranean Sea. In addition, shipping emissions are simulated to increase NO 2 mixing ratio more than 90%, locally, and to modify the oxidizing capacity of the atmosphere through hydroxyl radical formation (increase by 20-60% over the sea along the European coasts and near the coastal zone). Therefore, emissions from ships may counteract the benefits derived from the anthropogenic emissions reduction strategies over the continent. Simulations suggest regions where shipping emissions have a major impact on ozone mixing ratio compared to individual anthropogenic emission sector categories. Shipping emissions are estimated to play an important role on ozone levels compared to road transport sector near the coastal zone. The impact of shipping emissions on ozone formation is also profound over a great part of the European land compared to the rest of anthropogenic emission categories.
Mortality tradeoff between air quality and skin cancer from changes in stratospheric ozone
NASA Astrophysics Data System (ADS)
Eastham, Sebastian D.; Keith, David W.; Barrett, Steven R. H.
2018-03-01
Skin cancer mortality resulting from stratospheric ozone depletion has been widely studied. Similarly, there is a deep body of literature on surface ozone and its health impacts, with modeling and observational studies demonstrating that surface ozone concentrations can be increased when stratospheric air mixes to the Earth’s surface. We offer the first quantitative estimate of the trade-off between these two effects, comparing surface air quality benefits and UV-related harms from stratospheric ozone depletion. Applying an idealized ozone loss term in the stratosphere of a chemistry-transport model for modern-day conditions, we find that each Dobson unit of stratospheric ozone depletion results in a net decrease in the global annual mortality rate of ~40 premature deaths per billion population (d/bn/DU). The impacts are spatially heterogeneous in sign and magnitude, composed of a reduction in premature mortality rate due to ozone exposure of ~80 d/bn/DU concentrated in Southeast Asia, and an increase in skin cancer mortality rate of ~40 d/bn/DU, mostly in Western Europe. This is the first study to quantify air quality benefits of stratospheric ozone depletion, and the first to find that marginal decreases in stratospheric ozone around modern-day values could result in a net reduction in global mortality due to competing health impact pathways. This result, which is subject to significant methodological uncertainty, highlights the need to understand the health and environmental trade-offs involved in policy decisions regarding anthropogenic influences on ozone chemistry over the 21st century.
Effect of different emission inventories on modeled ozone and carbon monoxide in Southeast Asia
NASA Astrophysics Data System (ADS)
Amnuaylojaroen, T.; Barth, M. C.; Emmons, L. K.; Carmichael, G. R.; Kreasuwun, J.; Prasitwattanaseree, S.; Chantara, S.
2014-12-01
In order to improve our understanding of air quality in Southeast Asia, the anthropogenic emissions inventory must be well represented. In this work, we apply different anthropogenic emission inventories in the Weather Research and Forecasting Model with Chemistry (WRF-Chem) version 3.3 using Model for Ozone and Related Chemical Tracers (MOZART) gas-phase chemistry and Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) aerosols to examine the differences in predicted carbon monoxide (CO) and ozone (O3) surface mixing ratios for Southeast Asia in March and December 2008. The anthropogenic emission inventories include the Reanalysis of the TROpospheric chemical composition (RETRO), the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B), the MACCity emissions (adapted from the Monitoring Atmospheric Composition and Climate and megacity Zoom for the Environment projects), the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS) emissions, and a combination of MACCity and SEAC4RS emissions. Biomass-burning emissions are from the Fire Inventory from the National Center for Atmospheric Research (NCAR) (FINNv1) model. WRF-Chem reasonably predicts the 2 m temperature, 10 m wind, and precipitation. In general, surface CO is underpredicted by WRF-Chem while surface O3 is overpredicted. The NO2 tropospheric column predicted by WRF-Chem has the same magnitude as observations, but tends to underpredict the NO2 column over the equatorial ocean and near Indonesia. Simulations using different anthropogenic emissions produce only a slight variability of O3 and CO mixing ratios, while biomass-burning emissions add more variability. The different anthropogenic emissions differ by up to 30% in CO emissions, but O3 and CO mixing ratios averaged over the land areas of the model domain differ by ~4.5% and ~8%, respectively, among the simulations. Biomass-burning emissions create a substantial increase for both O3 and CO by ~29% and ~16%, respectively, when comparing the March biomass-burning period to the December period with low biomass-burning emissions. The simulations show that none of the anthropogenic emission inventories are better than the others for predicting O3 surface mixing ratios. However, the simulations with different anthropogenic emission inventories do differ in their predictions of CO surface mixing ratios producing variations of ~30% for March and 10-20% for December at Thai surface monitoring sites.
Air Quality Science and Regulatory Efforts Require Geostationary Satellite Measurements
NASA Technical Reports Server (NTRS)
Pickering, Kenneth E.; Allen, D. J.; Stehr, J. W.
2006-01-01
Air quality scientists and regulatory agencies would benefit from the high spatial and temporal resolution trace gas and aerosol data that could be provided by instruments on a geostationary platform. More detailed time-resolved data from a geostationary platform could be used in tracking regional transport and in evaluating mesoscale air quality model performance in terms of photochemical evolution throughout the day. The diurnal cycle of photochemical pollutants is currently missing from the data provided by the current generation of atmospheric chemistry satellites which provide only one measurement per day. Often peak surface ozone mixing ratios are reached much earlier in the day during major regional pollution episodes than during local episodes due to downward mixing of ozone that had been transported above the boundary layer overnight. The regional air quality models often do not simulate this downward mixing well enough and underestimate surface ozone in regional episodes. Having high time-resolution geostationary data will make it possible to determine the magnitude of this lower-and mid-tropospheric transport that contributes to peak eight-hour average ozone and 24-hour average PM2.5 concentrations. We will show ozone and PM(sub 2.5) episodes from the CMAQ model and suggest ways in which geostationary satellite data would improve air quality forecasting. Current regulatory modeling is typically being performed at 12 km horizontal resolution. State and regional air quality regulators in regions with complex topography and/or land-sea breezes are anxious to move to 4-km or finer resolution simulations. Geostationary data at these or finer resolutions will be useful in evaluating such models.
Analysis of Ozone And CO2 Profiles Measured At A Diary Facility
NASA Astrophysics Data System (ADS)
Ogunjemiyo, S. O.; Hasson, A. S.; Ashkan, S.; Steele, J.; Shelton, T.
2015-12-01
Ozone and carbon dioxide are both greenhouse gasses in the planetary boundary layer. Ozone is a harmful secondary pollutant in the troposphere produced mostly during the day when there is a photochemical reaction in which primary pollutant precursors such as nitrous oxide (NOx) or volatile organic compounds (VOC's) mix with sunlight. As with most pollutants in the lower troposphere, both ozone and carbon dioxide vary in spatial and temporal scale depending on sources of pollution, environmental conditions and the boundary layer dynamics. Among the several factors that influence ozone variation, the seasonal changes in meteorological parameters and availability of ozone precursors are crucial because they control ozone formation and decay. Understanding how the difference in emission sources affect vertical transport of ozone and carbon dioxide is considered crucial to the improvement of their regional inventory sources. The purpose of this study is to characterize vertical transport of ozone and carbon at a diary facility. The study was conducted in the summer of 2011 and 2012 at a commercial dairy facility in Central California and involved profile measurements of ozone and CO2 using electrochemical ozonesondes, meteorological sondes and CO2 probe tethered to a 9 cubic meters helium balloon. On each day of the data collection, multiple balloon launches were made over a period representing different stages of the boundary layer development. The results show ozone and CO2 profiles display different characteristics. Regardless of the time of the day, the CO2 concentration decreases with height with a sharp gradient near the surface that is strengthened by a stable atmospheric condition, a feature suggesting the surface as the source. On the other hand, ozone profiles show greater link to the evolution of the lower boundary layer. Ozone profiles display unique features indicating ozone destruction near the surface. This unusual near the surface, observed even in the afternoon when the boundary layer is fully developed, greatly contrast ozone profiles are typical of urban environment
Airborne lidar observations of long-range transport in the free troposphere
NASA Technical Reports Server (NTRS)
Shipley, S. T.; Browell, E. V.; Mcdougal, D. S.; Orndorff, B. L.; Haagenson, P.
1984-01-01
Airborne lidar measurements of ozone and aerosols in the lower troposphere show the presence of pollutant layers above the mixed layer. Two case studies are analyzed to identify probable source regions and mechanisms for material injection into the free troposphere above local mixed layers. An elevated haze/oxidant layer observed over South Carolina on Aug. 2, 1980, was found to originate in cumulus convection over Georgia on Aug. 1, 1980. An extensive haze/oxidant layer observed over southeastern Virginia on July 31, 1981, is shown to have been in contact with the New England mixed layer on July 30, 1981. This transported air mass is estimated to contribute approximately 30 percent of the ozone maximum measured at the surface in the Norfolk, VA, area on July 31, 1981. Such elevated 'reservoir' layers are transported over long ranges and are not detected by sensors which are confined to the surface.
Experimental Findings from Aircraft Measurements in the Residual Layer
NASA Astrophysics Data System (ADS)
Caputi, D.; Conley, S. A.; Faloona, I. C.; Trousdell, J.
2016-12-01
The southern San Joaquin Valley of California is home to some of the highest ozone pollution in the United States. Thus, a complete understanding of boundary layer dynamics in this area during high ozone events is crucial for better ozone forecasting and effective attainment planning. This work will discuss the results from five aircraft deployments, spanning two summers, in which a Mooney aircraft operated by Scientific Aviation Inc. was flown between Fresno and Bakersfield throughout the diurnal cycle, measuring ozone, NOx, and methane. Under a simple budgeting model, changes in any species within the boundary layer can occur from advection, chemical production or loss, surface fluxes or deposition, and entrainment between the boundary layer and free troposphere. The advection of ozone appears to be most appreciable at night with stronger winds in the residual layer, and are on the order of 2 to 4 ppb hr-1. The nighttime chemical loss of ozone due to interaction with NO2 can be estimated by simple numerical modeling of observed quantities and reaction rates, and is found to often roughly compensate for the advection, with typical calculated values of -1 to -3 ppb hr-1. The mixing component is more difficult to directly quantify, but attempts are being made to estimate eddy viscosity by solving for this term in the budget equation. Additionally, small-scale features, such as nocturnal elevated mixed layers, localized BRN (bulk Richardson number) minimums, and low level jets are spotted in systematic ways throughout the flight data, and it is speculated that these may have a role in the transfer of ozone from the residual layer to the surface layer. Ultimately, the preliminary data is promising for the eventual goal of linking together the observed boundary layer evolution with ozone production during air pollution episodes.
Why do Models Overestimate Surface Ozone in the Southeastern United States?
NASA Technical Reports Server (NTRS)
Travis, Katherine R.; Jacob, Daniel J.; Fisher, Jenny A.; Kim, Patrick S.; Marais, Eloise A.; Zhu, Lei; Yu, Karen; Miller, Christopher C.; Yantosca, Robert M.; Sulprizio, Melissa P.;
2016-01-01
Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx = NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25 deg. x 0.3125 deg. horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30-60%, dependent on the assumption of the contribution by soil NOx emissions. Upper tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft, and reproduces the observed ozone production efficiency in the boundary layer as derived from a 15 regression of ozone and NOx oxidation products. However, the model is still biased high by 8 +/- 13 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone production in the model boundary layer.
Why do models overestimate surface ozone in the Southeast United States?
NASA Astrophysics Data System (ADS)
Travis, Katherine R.; Jacob, Daniel J.; Fisher, Jenny A.; Kim, Patrick S.; Marais, Eloise A.; Zhu, Lei; Yu, Karen; Miller, Christopher C.; Yantosca, Robert M.; Sulprizio, Melissa P.; Thompson, Anne M.; Wennberg, Paul O.; Crounse, John D.; St. Clair, Jason M.; Cohen, Ronald C.; Laughner, Joshua L.; Dibb, Jack E.; Hall, Samuel R.; Ullmann, Kirk; Wolfe, Glenn M.; Pollack, Illana B.; Peischl, Jeff; Neuman, Jonathan A.; Zhou, Xianliang
2016-11-01
Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx ≡ NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25° × 0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30-60 %, dependent on the assumption of the contribution by soil NOx emissions. Upper-tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 6 ± 14 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone production in the model boundary layer.
Why do Models Overestimate Surface Ozone in the Southeastern United States?
Travis, Katherine R; Jacob, Daniel J; Fisher, Jenny A; Kim, Patrick S; Marais, Eloise A; Zhu, Lei; Yu, Karen; Miller, Christopher C; Yantosca, Robert M; Sulprizio, Melissa P; Thompson, Anne M; Wennberg, Paul O; Crounse, John D; St Clair, Jason M; Cohen, Ronald C; Laughner, Joshua L; Dibb, Jack E; Hall, Samuel R; Ullmann, Kirk; Wolfe, Glenn M; Pollack, Illana B; Peischl, Jeff; Neuman, Jonathan A; Zhou, Xianliang
2016-01-01
Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NO x ≡ NO + NO 2 ) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC 4 RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25°×0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NO x from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC 4 RS observations of NO x and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO 2 columns. Our results indicate that NEI NO x emissions from mobile and industrial sources must be reduced by 30-60%, dependent on the assumption of the contribution by soil NO x emissions. Upper tropospheric NO 2 from lightning makes a large contribution to satellite observations of tropospheric NO 2 that must be accounted for when using these data to estimate surface NO x emissions. We find that only half of isoprene oxidation proceeds by the high-NO x pathway to produce ozone; this fraction is only moderately sensitive to changes in NO x emissions because isoprene and NO x emissions are spatially segregated. GEOS-Chem with reduced NO x emissions provides an unbiased simulation of ozone observations from the aircraft, and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NO x oxidation products. However, the model is still biased high by 8±13 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone production in the model boundary layer.
Why do Models Overestimate Surface Ozone in the Southeastern United States?
Travis, Katherine R.; Jacob, Daniel J.; Fisher, Jenny A.; Kim, Patrick S.; Marais, Eloise A.; Zhu, Lei; Yu, Karen; Miller, Christopher C.; Yantosca, Robert M.; Sulprizio, Melissa P.; Thompson, Anne M.; Wennberg, Paul O.; Crounse, John D.; St Clair, Jason M.; Cohen, Ronald C.; Laughner, Joshua L.; Dibb, Jack E.; Hall, Samuel R.; Ullmann, Kirk; Wolfe, Glenn M.; Pollack, Illana B.; Peischl, Jeff; Neuman, Jonathan A.; Zhou, Xianliang
2018-01-01
Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx ≡ NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25°×0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30–60%, dependent on the assumption of the contribution by soil NOx emissions. Upper tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft, and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 8±13 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone production in the model boundary layer. PMID:29619045
Factors dominating 3-dimensional ozone distribution during high tropospheric ozone period.
Chen, Xiaoyang; Liu, Yiming; Lai, Anqi; Han, Shuangshuang; Fan, Qi; Wang, Xuemei; Ling, Zhenhao; Huang, Fuxiang; Fan, Shaojia
2018-01-01
Data from an in situ monitoring network and five ozone sondes are analysed during August of 2012, and a high tropospheric ozone episode is observed around the 8th of AUG. The Community Multi-scale Air Quality (CMAQ) model and its process analysis tool were used to study factors and mechanisms for high ozone mixing ratio at different levels of ozone vertical profiles. A sensitive scenario without chemical initial and boundary conditions (ICBCs) from MOZART4-GEOS5 was applied to study the impact of stratosphere-troposphere exchange (STE) on vertical ozone. The simulation results indicated that the first high ozone peak near the tropopause was dominated by STE. Results from process analysis showed that: in the urban area, the second peak at approximately 2 km above ground height was mainly caused by local photochemical production. The third peak (near surface) was mainly caused by the upwind transportation from the suburban/rural areas; in the suburban/rural areas, local photochemical production of ozone dominated the high ozone mixing ratio from the surface to approximately 3 km height. Furthermore, the capability of indicators to distinguish O 3 -precursor sensitivity along the vertical O 3 profiles was investigated. Two sensitive scenarios, which had cut 30% anthropogenic NO X or VOC emissions, showed that O 3 -precursor indicators, specifically the ratios of O 3 /NOy, H 2 O 2 /HNO 3 or H 2 O 2 /NO Z , could partly distinguish the O 3 -precursor sensitivity between VOCs-sensitive and NOx-sensitive along the vertical profiles. In urban area, the O 3 -precursor relationship transferred from VOCs-sensitive within the boundary layer to NOx-sensitive at approximately 1-3 km above ground height, further confirming the dominant roles of transportation and photochemical production in high O 3 peaks at the near-ground layer and 2 km above ground height, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Clifton, O.; Paulot, F.; Fiore, A. M.; Horowitz, L. W.; Malyshev, S.; Shevliakova, E.; Correa, G. J. P.; Lin, M.
2017-12-01
Identifying the contributions of nonlinear chemistry and transport to observed surface ozone seasonal cycles over land using global models relies on an accurate representation of ozone uptake by vegetation (dry deposition). It is well established that in the absence of ozone precursor emission changes, a warming climate will increase surface ozone in polluted regions, and that a rise in temperature-dependent isoprene emissions would exacerbate this "climate penalty". However, the influence of changes in ozone dry deposition, expected to evolve with climate and land use, is often overlooked in air quality projections. With a new scheme that represents dry deposition within the NOAA GFDL dynamic vegetation land model (LM3) coupled to the NOAA GFDL atmospheric chemistry-climate model (AM3), we simulate the impact of 21st century climate and land use on ozone dry deposition and isoprene emissions. This dry deposition parameterization is a version of the Wesely scheme, but uses parameters explicitly calculated by LM3 that respond to climate and land use (e.g., stomatal conductance, canopy interception of water, leaf area index). The parameterization includes a nonstomatal deposition dependence on humidity. We evaluate climatological present-day seasonal cycles of ozone deposition velocities and abundances with those observed at northern mid-latitude sites. With a set of 2010s and 2090s decadal simulations under a high climate warming scenario (RCP8.5) and a sensitivity simulation with well-mixed greenhouse gases following RCP8.5 but air pollutants held at 2010 levels (RCP8.5_WMGG), we examine changes in surface ozone seasonal cycles. We build on our previous findings, which indicate that strong reductions in anthropogenic NOx emissions under RCP8.5 cause the surface ozone seasonal cycle over the NE USA to reverse, shifting from a summer peak at present to a winter peak by 2100. Under RCP8.5_WMGG, we parse the separate effects of climate and land use on ozone dry deposition vs. isoprene emissions to quantify the impact of each process on surface ozone seasonal cycles and compare to the changes induced by declining anthropogenic NOx emissions (RCP8.5).
NASA Astrophysics Data System (ADS)
Luhar, Ashok K.; Woodhouse, Matthew T.; Galbally, Ian E.
2018-03-01
Dry deposition at the Earth's surface is an important sink of atmospheric ozone. Currently, dry deposition of ozone to the ocean surface in atmospheric chemistry models has the largest uncertainty compared to deposition to other surface types, with implications for global tropospheric ozone budget and associated radiative forcing. Most global models assume that the dominant term of surface resistance in the parameterisation of ozone dry deposition velocity at the oceanic surface is constant. There have been recent mechanistic parameterisations for air-sea exchange that account for the simultaneous waterside processes of ozone solubility, molecular diffusion, turbulent transfer, and first-order chemical reaction of ozone with dissolved iodide and other compounds, but there are questions about their performance and consistency. We present a new two-layer parameterisation scheme for the oceanic surface resistance by making the following realistic assumptions: (a) the thickness of the top water layer is of the order of a reaction-diffusion length scale (a few micrometres) within which ozone loss is dominated by chemical reaction and the influence of waterside turbulent transfer is negligible; (b) in the water layer below, both chemical reaction and waterside turbulent transfer act together and are accounted for; and (c) chemical reactivity is present through the depth of the oceanic mixing layer. The new parameterisation has been evaluated against dry deposition velocities from recent open-ocean measurements. It is found that the inclusion of only the aqueous iodide-ozone reaction satisfactorily describes the measurements. In order to better quantify the global dry deposition loss and its interannual variability, modelled 3-hourly ozone deposition velocities are combined with the 3-hourly MACC (Monitoring Atmospheric Composition and Climate) reanalysis ozone for the years 2003-2012. The resulting ozone dry deposition is found to be 98.4 ± 30.0 Tg O3 yr-1 for the ocean and 722.8 ± 87.3 Tg O3 yr-1 globally. The new estimate of the ocean component is approximately a third of the current model estimates. This reduction corresponds to an approximately 20 % decrease in the total global ozone dry deposition, which (with all other components being unchanged) is equivalent to an increase of approximately 5 % in the modelled tropospheric ozone burden and a similar increase in tropospheric ozone lifetime.
LIDAR measurements of Arctic boundary layer ozone depletion events over the frozen Arctic Ocean
NASA Astrophysics Data System (ADS)
Seabrook, J. A.; Whiteway, J.; Staebler, R. M.; Bottenheim, J. W.; Komguem, L.; Gray, L. H.; Barber, D.; Asplin, M.
2011-09-01
A differential absorption light detection and ranging instrument (Differential Absorption LIDAR or DIAL) was installed on-board the Canadian Coast Guard Ship Amundsen and operated during the winter and spring of 2008. During this period the vessel was stationed in the Amundsen Gulf (71°N, 121-124°W), approximately 10-40 km off the south coast of Banks Island. The LIDAR was operated to obtain a continuous record of the vertical profile of ozone concentration in the lower atmosphere over the sea ice during the polar sunrise. The observations included several ozone depletion events (ODE's) within the atmospheric boundary layer. The strongest ODEs consisted of air with ozone mixing ratio less than 10 ppbv up to heights varying from 200 m to 600 m, and the increase to the background mixing ratio of about 35-40 ppbv occurred within about 200 m in the overlying air. All of the observed ODEs were connected to the ice surface. Back trajectory calculations indicated that the ODEs only occurred in air that had spent an extended period of time below a height of 500 m above the sea ice. Also, all the ODEs occurred in air with temperature below -25°C. Air not depleted in ozone was found to be associated with warmer air originating from above the surface layer.
Interactive Ozone and Methane Chemistry in GISS-E2 Historical and Future Climate Simulations
NASA Technical Reports Server (NTRS)
Shindell, D. T.; Pechony, O.; Voulgarakis, A.; Faluvegi, G.; Nazarenko. L.; Lamarque, J.-F.; Bowman, K.; Milly, G.; Kovari, B.; Ruedy, R.;
2013-01-01
The new generation GISS climate model includes fully interactive chemistry related to ozone in historical and future simulations, and interactive methane in future simulations. Evaluation of ozone, its tropospheric precursors, and methane shows that the model captures much of the largescale spatial structure seen in recent observations. While the model is much improved compared with the previous chemistry-climate model, especially for ozone seasonality in the stratosphere, there is still slightly too rapid stratospheric circulation, too little stratosphere-to-troposphere ozone flux in the Southern Hemisphere and an Antarctic ozone hole that is too large and persists too long. Quantitative metrics of spatial and temporal correlations with satellite datasets as well as spatial autocorrelation to examine transport and mixing are presented to document improvements in model skill and provide a benchmark for future evaluations. The difference in radiative forcing (RF) calculated using modeled tropospheric ozone versus tropospheric ozone observed by TES is only 0.016W/sq. m. Historical 20th Century simulations show a steady increase in whole atmosphere ozone RF through 1970 after which there is a decrease through 2000 due to stratospheric ozone depletion. Ozone forcing increases throughout the 21st century under RCP8.5 owing to a projected recovery of stratospheric ozone depletion and increases in methane, but decreases under RCP4.5 and 2.6 due to reductions in emissions of other ozone precursors. RF from methane is 0.05 to 0.18W/ sq. m higher in our model calculations than in the RCP RF estimates. The surface temperature response to ozone through 1970 follows the increase in forcing due to tropospheric ozone. After that time, surface temperatures decrease as ozone RF declines due to stratospheric depletion. The stratospheric ozone depletion also induces substantial changes in surface winds and the Southern Ocean circulation, which may play a role in a slightly stronger response per unit forcing during later decades. Tropical precipitation shifts south during boreal summer from 1850 to 1970, but then shifts northward from 1970 to 2000, following upper tropospheric temperature gradients more strongly than those at the surface.
A Two-Timescale Response to Ozone Depletion: Importance of the Background State
NASA Astrophysics Data System (ADS)
Seviour, W.; Waugh, D.; Gnanadesikan, A.
2015-12-01
It has been recently suggested that the response of Southern Ocean sea-ice extent to stratospheric ozone depletion is time-dependent; that the ocean surface initially cools due to enhanced northward Ekman drift caused by a poleward shift in the eddy-driven jet, and then warms after some time due to upwelling of warm waters from below the mixed layer. It is therefore possible that ozone depletion could act to favor a short-term increase in sea-ice extent. However, many uncertainties remain in understanding this mechanism, with different models showing widely differing time-scales and magnitudes of the response. Here, we analyze an ensemble of coupled model simulations with a step-function ozone perturbation. The two-timescale response is present with an approximately 30 year initial cooling period. The response is further shown to be highly dependent upon the background ocean temperature and salinity stratification, which is influenced by both natural internal variability and the isopycnal eddy mixing parameterization. It is suggested that the majority of inter-model differences in the Southern Ocean response to ozone depletion is caused by differences in stratification.
Effects of future land use and ecosystem changes on boundary-layer meteorology and air quality
NASA Astrophysics Data System (ADS)
Tai, A. P. K.; Wang, L.; Sadeke, M.
2017-12-01
Land vegetation plays key roles shaping boundary-layer meteorology and air quality via various pathways. Vegetation can directly affect surface ozone via dry deposition and biogenic emissions of volatile organic compounds (VOCs). Transpiration from land plants can also influence surface temperature, soil moisture and boundary-layer mixing depth, thereby indirectly affecting surface ozone. Future changes in the distribution, density and physiology of vegetation are therefore expected to have major ramifications for surface ozone air quality. In our study, we examine two aspects of potential vegetation changes using the Community Earth System Model (CESM) in the fully coupled land-atmosphere configuration, and evaluate their implications on meteorology and air quality: 1) land use change, which alters the distribution of plant functional types and total leaf density; and 2) ozone damage on vegetation, which alters leaf density and physiology (e.g., stomatal resistance). We find that, following the RCP8.5 scenario for 2050, global cropland expansion induces only minor changes in surface ozone in tropical and subtropical regions, but statistically significant changes by up to +4 ppbv in midlatitude North America and East Asia, mostly due to higher surface temperature that enhances biogenic VOC emissions, and reduced dry deposition to a lesser degree. These changes are in turn to driven mostly by meteorological changes that include a shift from latent to sensible heat in the surface energy balance and reduced soil moisture, reflecting not only local responses but also a northward expansion of the Hadley Cell. On the other hand, ozone damage on vegetation driven by rising anthropogenic emissions is shown to induce a further enhancement of ozone by up to +6 ppbv in midlatitude regions by 2050. This reflects a strong localized positive feedback, with severe ozone damage in polluted regions generally inducing stomatal closure, which in turn reduces transpiration, increases surface temperature, and thus enhances biogenic VOC emissions and surface ozone. Our findings demonstrate the importance of considering meteorological responses to vegetation changes in future air quality assessment, and call for greater coordination among land use, ecosystem and air quality management efforts.
NASA Technical Reports Server (NTRS)
Ryoo, Ju-Mee; Johnson, Matthew S.; Iraci, Laura T.; Yates, Emma L.; Gore, Warren
2017-01-01
High ozone (O3) concentrations at low altitudes (1.5e4 km) were detected from airborne Alpha Jet Atmospheric eXperiment (AJAX) measurements on 30 May 2012 off the coast of California (CA). We investigate the causes of those elevated O3 concentrations using airborne measurements and various models. GEOS-Chem simulation shows that the contribution from local sources is likely small. A back trajectory model was used to determine the air mass origins and how much they contributed to the O3 over CA. Low-level potential vorticity (PV) from Modern Era Retrospective analysis for Research and Applications 2 (MERRA-2) reanalysis data appears to be a result of the diabatic heating and mixing of airs in the lower altitudes, rather than be a result of direct transport from stratospheric intrusion. The Q diagnostic, which is a measure of the mixing of the air masses, indicates that there is sufficient mixing along the trajectory to indicate that O3 from the different origins is mixed and transported to the western U.S.The back-trajectory model simulation demonstrates the air masses of interest came mostly from the mid troposphere (MT, 76), but the contribution of the lower troposphere (LT, 19) is also significant compared to those from the upper troposphere/lower stratosphere (UTLS, 5). Air coming from the LT appears to be mostly originating over Asia. The possible surface impact of the high O3 transported aloft on the surface O3 concentration through vertical and horizontal transport within a few days is substantiated by the influence maps determined from the Weather Research and Forecasting Stochastic Time Inverted Lagrangian Transport (WRF-STILT) model and the observed increases in surface ozone mixing ratios. Contrasting this complex case with a stratospheric-dominant event emphasizes the contribution of each source to the high O3 concentration in the lower altitudes over CA. Integrated analyses using models, reanalysis, and diagnostic tools, allows high ozone values detected by in-situ measurements to be attributed to multiple source processes.
The historic surface ozone record, 1896-1975, and its relation to modern measurements
NASA Astrophysics Data System (ADS)
Galbally, I. E.; Tarasick, D. W.; Stähelin, J.; Wallington, T. J.; Steinbacher, M.; Schultz, M.; Cooper, O. R.
2017-12-01
Tropospheric ozone is a greenhouse gas, a key component of atmospheric chemistry, and is detrimental to human health and plant productivity. The historic surface ozone record 1896-1975 has been constructed from measurements selected for (a) instrumentation whose ozone response can be traced to modern tropospheric ozone measurement standards, (b) samples taken when there is low probability of chemical interference and (c) sampling locations, heights and times when atmospheric mixing will minimise vertical gradients of ozone in the planetary boundary layer above and around the measurement location. Early measurements with the Schönbein filter paper technique cannot be related to modern methods with any degree of confidence. The potassium iodide-arsenite technique used at Montsouris for 1876-1910 is valid for measuring ozone; however, due to the presence of the interfering gases sulfur dioxide, ammonia and nitrogen oxides, the measured ozone concentrations are not representative of the regional atmosphere. The use of these data sets for trend analyses is not recommended. In total, 58 acceptable sets of measurements are currently identified, commencing in Europe in 1896, Greenland in 1932 and globally by the late 1950's. Between 1896 and 1944 there were 21 studies (median duration 5 days) with a median mole fraction of 23 nmol mol-1 (range of study averages 15-62 nmol mol-1). Between 1950 and 1975 there were 37 studies (median duration approx. 21 months) with a median mole fraction of 22 nmol mol-1 (range of study averages 13-49 nmol mol-1), all measured under conditions likely to give ozone mole fractions similar to those in the planetary boundary layer. These time series are matched with modern measurements from the Tropospheric Ozone Assessment Report (TOAR) Ozone Database and used to examine changes between the historic and modern observations. These historic ozone levels are higher than previously accepted for surface ozone in the late 19th early 20th Century. This historic surface ozone analysis provides a new test for historical reconstructions by Climate-Chemistry models.
Semple, John L; Moore, G W Kent; Koutrakis, Petros; Wolfson, Jack M; Cristofanelli, Paolo; Bonasoni, Paolo
2016-12-01
Semple, John L., G.W. Kent Moore, Petros Koutrakis, Jack M. Wolfson, Paolo Cristofanelli, and Paolo Bonasoni. High concentrations of ozone air pollution on Mount Everest: health implications for Sherpa communities and mountaineers. High Alt Med Biol. 17:365-369, 2016.-Introduction: Populations in remote mountain regions are increasingly vulnerable to multiple climate mechanisms that influence levels of air pollution. Few studies have reported on climate-sensitive health outcomes unique to high altitude ecosystems. In this study, we report on the discovery of high-surface ozone concentrations and the potential impact on health outcomes on Mount Everest and the high Himalaya. Surface ozone measurements were collected during ascending transects in the Mount Everest region of Nepal with passive nitrite-coated Ogawa filter samplers to obtain 8-hour personal exposures (2860-5364 m asl). In addition, the Nepal Climate Observatory-Pyramid, a GAW-WMO Global Station sited in the Khumbu Valley (5079 m asl), collected ozone mixing ratios with photometric gas analyzer. Surface ozone measurements increased with altitude with concentrations that exceed 100 ppb (8-hour exposure). Highest values were during the spring season and the result of diverse contributions: hemispheric background values, the descent of ozone-rich stratospheric air, and the transport of tropospheric pollutants occurring at different spatial scales. Multiple climate factors, including descending stratospheric ozone and imported anthropogenic air masses from the Indo-Gangetic Plain, contribute to ambient ozone exposure levels in the vicinity of Mount Everest that are similar to if not higher than those reported in industrialized cities.
Projections of Future Summertime Ozone over the U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfister, G. G.; Walters, Stacy; Lamarque, J. F.
This study uses a regional fully coupled chemistry-transport model to assess changes in surface ozone over the summertime U.S. between present and a 2050 future time period at high spatial resolution (12 km grid spacing) under the SRES A2 climate and RCP8.5 anthropogenic pre-cursor emission scenario. The impact of predicted changes in climate and global background ozone is estimated to increase surface ozone over most of the U.S; the 5th - 95th percentile range for daily 8-hour maximum surface ozone increases from 31-79 ppbV to 30-87 ppbV between the present and future time periods. The analysis of a set ofmore » meteorological drivers suggests that these mostly will add to increasing ozone, but the set of simulations conducted does not allow to separate this effect from that through enhanced global background ozone. Statistically the most robust positive feedbacks are through increased temperature, biogenic emissions and solar radiation. Stringent emission controls can counteract these feedbacks and if considered, we estimate large reductions in surface ozone with the 5th-95th percentile reduced to 27-55 ppbV. A comparison of the high-resolution projections to global model projections shows that even though the global model is biased high in surface ozone compared to the regional model and compared to observations, both the global and the regional model predict similar changes in ozone between the present and future time periods. However, on smaller spatial scales, the regional predictions show more pronounced changes between urban and rural regimes that cannot be resolved at the coarse resolution of global model. In addition, the sign of the changes in overall ozone mixing ratios can be different between the global and the regional predictions in certain regions, such as the Western U.S. This study confirms the key role of emission control strategies in future air quality predictions and demonstrates the need for considering degradation of air quality with future climate change in emission policy making. It also illustrates the need for high resolution modeling when the objective is to address regional and local air quality or establish links to human health and society.« less
Products of ozone-initiated chemistry in a simulated aircraft environment.
Wisthaler, Armin; Tamás, Gyöngyi; Wyon, David P; Strøm-Tejsen, Peter; Space, David; Beauchamp, Jonathan; Hansel, Armin; Märk, Tilmann D; Weschler, Charles J
2005-07-01
We used proton-transfer-reaction mass spectrometry (PTR-MS) to examine the products formed when ozone reacted with the materials in a simulated aircraft cabin, including a loaded high-efficiency particulate air (HEPA) filter in the return air system. Four conditions were examined: cabin (baseline), cabin plus ozone, cabin plus soiled T-shirts (surrogates for human occupants), and cabin plus soiled T-shirts plus ozone. The addition of ozone to the cabin without T-shirts, at concentrations typically encountered during commercial air travel, increased the mixing ratio (v:v concentration) of detected pollutants from 35 ppb to 80 ppb. Most of this increase was due to the production of saturated and unsaturated aldehydes and tentatively identified low-molecular-weight carboxylic acids. The addition of soiled T-shirts, with no ozone present, increased the mixing ratio of pollutants in the cabin air only slightly, whereas the combination of soiled T-shirts and ozone increased the mixing ratio of detected pollutants to 110 ppb, with more than 20 ppb originating from squalene oxidation products (acetone, 4-oxopentanal, and 6-methyl-5-hepten-2-one). For the two conditions with ozone present, the more-abundant oxidation products included acetone/propanal (8-20 ppb), formaldehyde (8-10 ppb), nonanal (approximately 6 ppb), 4-oxopentanal (3-7 ppb), acetic acid (approximately 7 ppb), formic acid (approximately 3 ppb), and 6-methyl-5-hepten-2-one (0.5-2.5 ppb), as well as compounds tentatively identified as acrolein (0.6-1 ppb) and crotonaldehyde (0.6-0.8 ppb). The odor thresholds of certain products were exceeded. With an outdoor air exchange of 3 h(-1) and a recirculation rate of 20 h(-1), the measured ozone surface removal rate constant was 6.3 h(-1) when T-shirts were not present, compared to 11.4 h(-1) when T-shirts were present.
Global Distribution and Trends of Tropospheric Ozone: An Observation-Based Review
NASA Technical Reports Server (NTRS)
Cooper, O. R.; Parrish, D. D.; Ziemke, J.; Cupeiro, M.; Galbally, I. E.; Gilge, S.; Horowitz, L.; Jensen, N. R.; Lamarque, J.-F.; Naik, V.;
2014-01-01
Tropospheric ozone plays a major role in Earth's atmospheric chemistry processes and also acts as an air pollutant and greenhouse gas. Due to its short lifetime, and dependence on sunlight and precursor emissions from natural and anthropogenic sources, tropospheric ozone's abundance is highly variable in space and time on seasonal, interannual and decadal time-scales. Recent, and sometimes rapid, changes in observed ozone mixing ratios and ozone precursor emissions inspired us to produce this up-to-date overview of tropospheric ozone's global distribution and trends. Much of the text is a synthesis of in situ and remotely sensed ozone observations reported in the peer-reviewed literature, but we also include some new and extended analyses using well-known and referenced datasets to draw connections between ozone trends and distributions in different regions of the world. In addition, we provide a brief evaluation of the accuracy of rural or remote surface ozone trends calculated by three state-of-the-science chemistry-climate models, the tools used by scientists to fill the gaps in our knowledge of global tropospheric ozone distribution and trends.
Urban and Rural Ozone Collect over Lusaka (Zambia, 15.5 S, 28 E) during SAFARI-2000 (September 2000)
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Witte, Jacquelyn C.; Freiman, M. Tai; Phalane, N. Agnes; Coetzee, Gert J. R.
2002-01-01
In early September, throughout south central Africa, seasonal clearing of dry vegetation and the production of charcoal for cooking leads to intense smoke haze and ozone formation. Ozone soundings made over Lusaka in early September 2000 recorded layers of high ozone (greater than 125 ppbv at 5 km) during two stagnant periods, broken by a frontal passage that reduced boundary layer ozone by 30%. During the 6-day measurement period, surface ozone concentrations ranged from 50-95 ppbv and integrated tropospheric ozone from the soundings was 39-54 Dobson Units (note 1.3 km elevation at the launch site). A stable layer of high ozone at 2-5 km was advected from rural burning regions in western Zambia and neighboring countries, making Lusaka a collection point for transboundary pollution. This is confirmed by trajectories that show ozone leaving Angola, Namibia, Botswana and South Africa before heading toward the Indian Ocean and returning to Lusaka via Mozambique and Zimbabwe. Ozone in the mixed layer at Lusaka is heavily influenced by local sources.
NASA Astrophysics Data System (ADS)
Liu, Ningwei; Ren, Wanhui; Li, Xiaolan; Ma, Xiaogang; Zhang, Yunhai; Li, Bingkun
2018-03-01
Hourly mixing ratio data of ground-level ozone and its main precursors at ambient air quality monitoring sites in Shenyang during 2013-2015 were used to survey spatiotemporal variations in ozone. Then, the transport of ozone and its precursors among urban, suburban, and rural sites was examined. The correlations between ozone and some key meteorological factors were also investigated. Ozone and O x mixing ratios in Shenyang were higher during warm seasons and lower during cold ones, while ozone precursors followed the opposite cycle. Ozone mixing ratios reached maximum and minimum values in the afternoon and morning, respectively, reflecting the significant influence of photochemical production during daytime and depletion via titration during nighttime. Compared to those in downtown Shenyang, ozone mixing ratios were higher and the occurrence of peak values were later in suburban and rural areas downwind of the prevailing wind. The differences were most significant in summer, when the ozone mixing ratios at one suburban downwind site reached a maximum value of 35.6 ppb higher than those at the downtown site. This suggests that photochemical production processes were significant during the transport of ozone precursors, particularly in warm seasons with sufficient sunlight. Temperature, total radiation, and wind speed all displayed positive correlations with ozone concentration, reflecting their important role in accelerating ozone formation. Generally, the correlations between ozone and meteorological factors were slightly stronger at suburban sites than in urban areas, indicating that ozone levels in suburban areas were more sensitive to these meteorological factors.
NASA Technical Reports Server (NTRS)
Yue, G. K.; Veiga, R. E.; Poole, L. R.; Zawodny, J. M.; Proffitt, M. H.
1994-01-01
An empirical time-series model for estimating ozone mixing ratios based on Stratospheric Aerosols and Gas Experiment II (SAGE II) monthly mean ozone data for the period October 1984 through June 1991 has been developed. The modeling results for ozone mixing ratios in the 10- to 30- km region in early months of 1993 are presented. In situ ozone profiles obtained by a dual-beam UV-absorption ozone photometer during the Stratospheric Photochemistry, Aerosols and Dynamics Expedition (SPADE) campaign, May 1-14, 1993, are compared with the model results. With the exception of two profiles at altitudes below 16 km, ozone mixing ratios derived by the model and measured by the ozone photometer are in relatively good agreement within their individual uncertainties. The identified discrepancies in the two profiles are discussed.
NASA Astrophysics Data System (ADS)
Seviour, W.; Waugh, D.; Gnanadesikan, A.
2016-02-01
It has been recently suggested that the response of Southern Ocean sea-ice extent to stratospheric ozone depletion is time-dependent; that the ocean surface initially cools due to enhanced northward Ekman drift caused by a poleward shift in the eddy-driven jet, and then warms after some time due to upwelling of warm waters from below the mixed layer. It is therefore possible that ozone depletion could act to favor a short-term increase in sea-ice extent. However, many uncertainties remain in understanding this mechanism, with different models showing widely differing time-scales and magnitudes of the response. Here, we analyze an ensemble of coupled model simulations with a step-function ozone perturbation. The two-timescale response is present with an approximately 30 year initial cooling period. The response is further shown to be highly dependent upon the background ocean temperature and salinity stratification, which is influenced by both natural internal variability and the isopycnal eddy mixing parameterization. It is suggested that the majority of inter-model differences in the Southern Ocean response to ozone depletion are caused by differences in stratification.
Reactive nitrogen, ozone, and nitrate aerosols observed in the Arctic stratosphere in January 1990
NASA Technical Reports Server (NTRS)
Kondo, Y.; Aimedieu, P.; Koike, M.; Iwasaka, Y.; Newman, P. A.; Schmidt, U.; Matthews, W. A.; Hayashi, M.; Sheldon, W. R.
1992-01-01
Ozone mixing ratios in the vicinity of the 525-K potential temperature surface in January and early February of 1990 were observed to decrease sharply across the edge of the vortex boundary, where the vortex position was estimated from Ertel's potential vorticity. The changes in NO(y) mixing ratio with respect to altitude measured on January 18 and 31 were quite well correlated with those of ozone between 15 and 24 km, indicating that NO(y) also had a large gradient across the edge of the vortex. This is interpreted as being mainly due to the significant denitrification that occurred inside the vortex. The total amount of gas and particulate phase HNO3 was close to the NO(y) amount at the altitude of the 22- to 23-km region, suggesting that the conversion of non-HNO3 reactive nitrogen to HNO3 had occurred with a PSC.
Increasing springtime ozone mixing ratios in the free troposphere over western North America.
Cooper, O R; Parrish, D D; Stohl, A; Trainer, M; Nédélec, P; Thouret, V; Cammas, J P; Oltmans, S J; Johnson, B J; Tarasick, D; Leblanc, T; McDermid, I S; Jaffe, D; Gao, R; Stith, J; Ryerson, T; Aikin, K; Campos, T; Weinheimer, A; Avery, M A
2010-01-21
In the lowermost layer of the atmosphere-the troposphere-ozone is an important source of the hydroxyl radical, an oxidant that breaks down most pollutants and some greenhouse gases. High concentrations of tropospheric ozone are toxic, however, and have a detrimental effect on human health and ecosystem productivity. Moreover, tropospheric ozone itself acts as an effective greenhouse gas. Much of the present tropospheric ozone burden is a consequence of anthropogenic emissions of ozone precursors resulting in widespread increases in ozone concentrations since the late 1800s. At present, east Asia has the fastest-growing ozone precursor emissions. Much of the springtime east Asian pollution is exported eastwards towards western North America. Despite evidence that the exported Asian pollution produces ozone, no previous study has found a significant increase in free tropospheric ozone concentrations above the western USA since measurements began in the late 1970s. Here we compile springtime ozone measurements from many different platforms across western North America. We show a strong increase in springtime ozone mixing ratios during 1995-2008 and we have some additional evidence that a similar rate of increase in ozone mixing ratio has occurred since 1984. We find that the rate of increase in ozone mixing ratio is greatest when measurements are more heavily influenced by direct transport from Asia. Our result agrees with previous modelling studies, which indicate that global ozone concentrations should be increasing during the early part of the twenty-first century as a result of increasing precursor emissions, especially at northern mid-latitudes, with western North America being particularly sensitive to rising Asian emissions. We suggest that the observed increase in springtime background ozone mixing ratio may hinder the USA's compliance with its ozone air quality standard.
Increasing Springtime Ozone Mixing Ratios in the Free Troposphere Over Western North America
NASA Technical Reports Server (NTRS)
Cooper, O. R.; Parrish, D. D.; Stohl, A.; Trainer, M.; Nedelec, P.; Thouret, V.; Cammas, J. P.; Oltmans, S. J.; Johnson, B. J.; Tarasick, D.;
2010-01-01
In the lowermost layer of the atmosphere - the troposphere - ozone is an important source of the hydroxyl radical, an oxidant that breaks down most pollutants and some greenhouse gases. High concentrations of tropospheric ozone are toxic, however, and have a detrimental effect on human health and ecosystem productivity1. Moreover, tropospheric ozone itself acts as an effective greenhouse gas. Much of the present tropospheric ozone burden is a consequence of anthropogenic emissions of ozone precursors resulting in widespread increases in ozone concentrations since the late 1800s. At present, east Asia has the fastest-growing ozone precursor emissions. Much of the springtime east Asian pollution is exported eastwards towards western North America. Despite evidence that the exported Asian pollution produces ozone, no previous study has found a significant increase in free tropospheric ozone concentrations above the western USA since measurements began in the late 1970s. Here we compile springtime ozone measurements from many different platforms across western North America. We show a strong increase in springtime ozone mixing ratios during 1995-2008 and we have some additional evidence that a similar rate of increase in ozone mixing ratio has occurred since 1984. We find that the rate of increase in ozone mixing ratio is greatest when measurements are more heavily influenced by direct transport from Asia. Our result agrees with previous modelling studies, which indicate that global ozone concentrations should be increasing during the early part of the twenty-first century as a result of increasing precursor emissions, especially at northern mid-latitudes, with western North America being particularly sensitive to rising Asian emissions. We suggest that the observed increase in springtime background ozone mixing ratio may hinder the USA s compliance with its ozone air quality standard.
Metabolic identification of germs isolated from ozonized water mixed with underground water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fransolet, G.; Villers, G.; Goyens, A.
Twenty bacterial strains having shown a characteristic regrowth, starting from surface water treated and ozonized and then mixed with water of underground origin have been isolated. After verification of the purity of these strains, their preliminary identification has been attempted by utilizing more than 60 tests. The identification was limited to biochemical tests based on the following types of metabolism: energetic metabolism, carbohydrate metabolism, lipid metabolism, proteic metabolism, nutritional metabolism, and utilization of special media. In support of the results, one is able to affirm that the 20 strains belong to seven families consisting of Pseudomonadaceae, Bacillaceae, the group ofmore » Coryneformes, the Azotobactericeae, Micrococcaceae, Enterobacteriaceae and Vibrionaceae.« less
Overview of Global/Regional Models Used to Evaluate Tropospheric Ozone in North America
NASA Technical Reports Server (NTRS)
Johnson, Matthew S.
2015-01-01
Ozone (O3) is an important greenhouse gas, toxic pollutant, and plays a major role in atmospheric chemistry. Tropospheric O3 which resides in the planetary boundary layer (PBL) is highly reactive and has a lifetime on the order of days, however, O3 in the free troposphere and stratosphere has a lifetime on the order of weeks or months. Modeling O3 mixing ratios at and above the surface is difficult due to the multiple formation/destruction processes and transport pathways that cause large spatio-temporal variability in O3 mixing ratios. This talk will summarize in detail the global/regional models that are commonly used to simulate/predict O3 mixing ratios in the United States. The major models which will be focused on are the: 1) Community Multi-scale Air Quality Model (CMAQ), 2) Comprehensive Air Quality Model with Extensions (CAMx), 3) Goddard Earth Observing System with Chemistry (GEOS-Chem), 4) Real Time Air Quality Modeling System (RAQMS), 5) Weather Research and Forecasting/Chemistry (WRF-Chem) model, National Center for Atmospheric Research (NCAR)'s Model for OZone And Related chemical Tracers (MOZART), and 7) Geophysical Fluid Dynamics Laboratory (GFDL) AM3 model. I will discuss the major modeling components which impact O3 mixing ratio calculations in each model and the similarities/differences between these models. This presentation is vital to the 2nd Annual Tropospheric Ozone Lidar Network (TOLNet) Conference as it will provide an overview of tools, which can be used in conjunction with TOLNet data, to evaluate the complex chemistry and transport pathways controlling tropospheric O3 mixing ratios.
Mass and Ozone Fluxes from the Lowermost Stratosphere
NASA Technical Reports Server (NTRS)
Schoeberl, Mark R.; Olsen, Mark A.
2004-01-01
Net mass flux from the stratosphere to the troposphere can be computed from the heating rate along the 380K isentropic surface and the time rate of change of the mass of the lowermost stratosphere (the region between the tropopause and the 380K isentrope). Given this net mass flux and the cross tropopause diabatic mass flux, the residual adiabatic mass flux across the tropopause can also be estimated. These fluxes have been computed using meteorological fields from a free-running general circulation model (FVGCM) and two assimilation data sets, FVDAS, and UKMO. The data sets tend to agree that the annual average net mass flux for the Northern Hemisphere is about 1P10 kg/s. There is less agreement on the southern Hemisphere flux that might be half as large. For all three data sets, the adiabatic mass flux is computed to be from the upper troposphere into the lowermost stratosphere. This flux will dilute air entering from higher stratospheric altitudes. The mass fluxes are convolved with ozone mixing ratios from the Goddard 3D CTM (which uses the FVGCM) to estimate the cross-tropopause transport of ozone. A relatively large adiabatic flux of tropospheric ozone from the tropical upper troposphere into the extratropical lowermost stratosphere dilutes the stratospheric air in the lowermost stratosphere. Thus, a significant fraction of any measured ozone STE may not be ozone produced in the higher Stratosphere. The results also illustrate that the annual cycle of ozone concentration in the lowermost stratosphere has as much of a role as the transport in the seasonal ozone flux cycle. This implies that a simplified calculation of ozone STE mass from air mass and a mean ozone mixing ratio may have a large uncertainty.
NASA Technical Reports Server (NTRS)
Ryoo, Ju-Mee; Johnson, Matthew S.; Iraci, Laura T.; Yates, Emma L.; Pierce, R. Bradley; Tanaka, Tomoaki; Gore, Warren
2016-01-01
High ozone concentrations at low altitudes near the surface were detected from airborne Alpha Jet Atmospheric eXperiment (AJAX) measurements on May 30, 2012. We investigate the causes of the elevated ozone concentrations using the airborne measurements and various models. GEOSchem and WRF-STILT model simulations show that the contribution from local sources is small. From MERRA reanalysis, it is found that high potential vorticity (PV) is observed at low altitudes. This high PV appears to be only partially coming through the stratospheric intrusions because the air inside the high PV region is moist, which shows that mixing appears to be enhanced in the low altitudes. Considering that diabatic heating can also produce high PV in the lower troposphere, high ozone is partially coming through stratospheric intrusion, but this cannot explain the whole ozone concentration in the target areas of the western U.S. A back-trajectory model is utilized to see where the air masses originated. The air masses of the target areas came from the lower stratosphere (LS), upper (UT), mid- (MT), and lower troposphere (LT). The relative number of trajectories coming from LS and UT is low (7.7% and 7.6%, respectively) compared to that from LT (64.1%), but the relative ozone concentration coming from LS and UT is high (38.4% and 20.95%, respectively) compared to that from LT (17.7%). The air mass coming from LT appears to be mostly coming from Asia. Q diagnostics show that there is sufficient mixing along the trajectory to indicate that ozone from the different origins is mixed and transported to the western U.S. This study shows that high ozone concentrations can be detected by airborne measurements, which can be analyzed by integrated platforms such as models, reanalysis, and satellite data.
NASA Technical Reports Server (NTRS)
Ryoo, Ju-Mee; Johnson, Matthew S.; Iraci, Laura T.; Yates, Emma L.; Pierce, R. Bradley; Tanaka, Tomoaki; Gore, Warren
2015-01-01
High ozone concentrations at low altitudes near the surface were detected from airborne Alpha Jet Atmospheric eXperiment (AJAX) measurements on May 30, 2012. We investigate the causes of the elevated ozone concentrations using the airborne measurements and various models. GEOS-chem and WRF-STILT model simulations show that the contribution from local sources is small. From MERRA reanalysis, it is found that high potential vorticity (PV) is observed at low altitudes. This high PV appears to be only partially coming through the stratospheric intrusions because the air inside the high PV region is moist, which shows that mixing appears to be enhanced in the low altitudes. Considering that diabatic heating can also produce high PV in the lower troposphere, high ozone is partially coming through stratospheric intrusion, but this cannot explain the whole ozone concentration in the target areas of the western U.S. A back-trajectory model is utilized to see where the air masses originated. The air masses of the target areas came from the lower stratosphere (LS), upper (UT), mid- (MT), and lower troposphere (LT). The relative number of trajectories coming from LS and UT is low (7.7 and 7.6, respectively) compared to that from LT (64.1), but the relative ozone concentration coming from LS and UT is high (38.4 and 20.95, respectively) compared to that from LT (17.7). The air mass coming from LT appears to be mostly coming from Asia. Q diagnostics show that there is sufficient mixing along the trajectory to indicate that ozone from the different origins is mixed and transported to the western U.S. This study shows that high ozone concentrations can be detected by airborne measurements, which can be analyzed by integrated platforms such as models, reanalysis, and satellite data.
NASA Astrophysics Data System (ADS)
Klein, Amélie; Ancellet, Gérard; Ravetta, François; Thomas, Jennie L.; Pazmino, Andrea
2017-10-01
Systematic ozone LIDAR measurements were completed during a 4 year period (2011-2014) in Paris, France to study the seasonal variability of the vertical structure of ozone in the urban boundary layer. In addition, we use in-situ measurements from the surface air quality network that is located in Paris (AIRPARIF). Specifically, we use ozone and NO2 measurements made at two urban stations: Paris13 (60 m ASL) and the Eiffel Tower (310 m ASL) to validate and interpret the LIDAR profiles. Remote sensed tropospheric NO2 integrated columns from the SAOZ instrument located in Paris are also used to interpret ozone measurements. Comparison between ozone LIDAR measurements averaged from 250 m to 500 m and the Eiffel Tower in-situ measurements shows that the accuracy of the LIDAR (originally ±14 μg·m-3) is significantly improved (±7 μg·m-3) when a small telescope with a wide angular aperture is used. Results for the seasonal cycle of the ozone vertical gradient are found to be similar using two methods: (1) measured differences between AIRPARIF stations with measurements at 60 m ASL and 310 m ASL and (2) using LIDAR profiles from 300 m to the top of the Planetary Boundary Layer (PBL). Ozone concentrations measured by the LIDAR increase with altitude within the PBL, with a steeper gradient in winter (60 μg·m-3·km-1) and a less strong gradient in summer (20 μg·m-3·km-1). Results show that in winter, there is a sharp positive gradient of ozone at the surface, which is explained by ozone titration by NO combined with increased atmospheric stability in winter. In the afternoon during summer, photochemistry and vertical mixing are large enough to compensate for ozone titration near the surface, where NOx is emitted, and there is no gradient in ozone observed. In contrast, in the summer during the morning, ozone has a sharper positive vertical gradient similar to the winter values. Comparison of the vertically averaged ozone concentrations up to (0-3 km) and urban layer (0-310 m) ozone concentrations shows that the ratio between these two quantities is the largest in summer (86%) and the lowest in winter (49%). We conclude that satellite measurements that represent the 0-3 km integrated ozone column are not necessarily a good proxy for surface ozone and may lead to incorrect conclusions about the surface ozone seasonal variability. The ratio between the urban layer NO2 average concentration and the boundary layer NO2 average concentration obtained from SAOZ NO2 tropospheric columns is always less than 50%, meaning NO2 does not decrease linearly in the PBL, but with a sharper decrease close to the surface.
Importance of a Priori Vertical Ozone Profiles for TEMPO Air Quality Retrievals
NASA Technical Reports Server (NTRS)
Johnson, Matthew S.; Sullivan, John; Liu, Xiong; Zoogman, Peter; Newchurch, Mike; Kuang, Shi; McGee, Thomas; Leblanc, Thierry
2017-01-01
Ozone (O3) is a toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address the limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME (Global Ozone Monitoring Experiment), GOME-2, and OMI (Ozone Monitoring Instrument). This algorithm is suggested to use a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB-Clim) O3 climatology). This study evaluates the TB-Clim dataset and model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time data assimilation model products (NASA GMAO's (Global Modeling and Assimilation Office) operational GEOS-5 (Goddard Earth Observing System, Version 5) FP (Forecast Products) model and reanalysis data from MERRA2 (Modern-Era Retrospective analysis for Research and Applications, Version 2)) and a full chemical transport model (CTM), GEOS-Chem. In this study, vertical profile products are evaluated with surface (0-2 kilometers) and tropospheric (0-10 kilometers) TOLNet (Tropospheric Ozone Lidar Network) observations and the theoretical impact of individual a priori profile sources on the accuracy of TEMPO O3 retrievals in the troposphere and at the surface are presented. Results indicate that while the TB-Clim climatological dataset can replicate seasonally-averaged tropospheric O3 profiles, model-simulated profiles from a full CTM resulted in more accurate tropospheric and surface-level O3 retrievals from TEMPO when compared to hourly and daily-averaged TOLNet observations. Furthermore, it is shown that when large surface O3 mixing ratios are observed, TEMPO retrieval values at the surface are most accurate when applying CTM a priori profile information compared to all other data products.
The Global Structure of UTLS Ozone in GEOS-5: A Multi-Year Assimilation of EOS Aura Data
NASA Technical Reports Server (NTRS)
Wargan, Krzysztof; Pawson, Steven; Olsen, Mark A.; Witte, Jacquelyn C.; Douglass, Anne R.; Ziemke, Jerald R.; Strahan, Susan E.; Nielsen, J. Eric
2015-01-01
Eight years of ozone measurements retrieved from the Ozone Monitoring Instrument (OMI) and the Microwave Limb Sounder, both on the EOS Aura satellite, have been assimilated into the Goddard Earth Observing System version 5 (GEOS-5) data assimilation system. This study thoroughly evaluates this assimilated product, highlighting its potential for science. The impact of observations on the GEOS-5 system is explored by examining the spatial distribution of the observation-minus-forecast statistics. Independent data are used for product validation. The correlation coefficient of the lower-stratospheric ozone column with ozonesondes is 0.99 and the bias is 0.5%, indicating the success of the assimilation in reproducing the ozone variability in that layer. The upper-tropospheric assimilated ozone column is about 10% lower than the ozonesonde column but the correlation is still high (0.87). The assimilation is shown to realistically capture the sharp cross-tropopause gradient in ozone mixing ratio. Occurrence of transport-driven low ozone laminae in the assimilation system is similar to that obtained from the High Resolution Dynamics Limb Sounder (HIRDLS) above the 400 K potential temperature surface but the assimilation produces fewer laminae than seen by HIRDLS below that surface. Although the assimilation produces 5 - 8 fewer occurrences per day (up to approximately 20%) during the three years of HIRDLS data, the interannual variability is captured correctly. This data-driven assimilated product is complementary to ozone fields generated from chemistry and transport models. Applications include study of the radiative forcing by ozone and tracer transport near the tropopause.
NASA Astrophysics Data System (ADS)
Chevalier, A.; Gheusi, F.; Delmas, R.; Ordóñez, C.; Sarrat, C.; Zbinden, R.; Thouret, V.; Athier, G.; Cousin, J.-M.
2007-08-01
The PAES (French acronym for synoptic scale atmospheric pollution) network focuses on the chemical composition (ozone, CO, NOx/y and aerosols) of the lower troposphere (0-3000 m). Its high-altitude surface stations located in different mountainous areas in France complete the low-altitude rural MERA stations (the French contribution to the european program EMEP, European Monitoring and Evaluation Program). They are representative of pollution at the scale of the French territory because they are away from any major source of pollution. This study deals with ozone observations between 2001 and 2004 at 11 stations from PAES and MERA, in addition to 16 elevated stations located in mountainous areas of Switzerland, Germany, Austria, Italy and Spain. The set of stations covers a range of altitudes between 115 and 3550 m. The comparison between recent ozone mixing ratios to those of the last decade at Pic du Midi (2877 m), as well as trends calculated over 14-year data series at three high-altitude sites in the Alps (Jungfraujoch, Sonnblick and Zugspitze) reveal that ozone is still increasing but at a slower rate than in the 1980s and 1990s. The 2001-2004 mean levels of ozone from surface stations capture the ozone stratification revealed by climatological profiles from the airborne observation system MOZAIC (Measurement of OZone and water vapour by Airbus In-service airCraft) and from ozone soundings above Payerne (Switzerland). In particular all data evidence a clear transition at about 1000-1200 m a.s.l. between a sharp gradient below (of the order of +30 ppb/km) and a gentler gradient (+3 ppb/km) above. The same altitude (1200 m) is also found to be a threshold regarding how well the ozone levels at the surface stations agree with the free-tropospheric reference (MOZAIC or soundings). Below the departure can be as large as 40%, but suddenly drops within 15% above. For stations above 2000 m, the departure is even less than 8%. Ozone variability also reveals a clear transition between boundary-layer and free-tropospheric regimes around 1000 m a.s.l. Below, diurnal photochemistry accounts for about the third of the variability in summer, but less than 20% above - and at all levels in winter - where ozone variability is mostly due to day-to-day changes (linked to weather conditions or synoptic transport). In summary, the altitude range 1000-1200 m clearly turns out in our study to be an upper limit below which specific surface effects dominate the ozone content. Monthly-mean ozone mixing-ratios show at all levels a minimum in winter and the classical summer broad maximum in spring and summer - which is actually the superposition of the tropospheric spring maximum (April-May) and regional pollution episodes linked to persistent anticyclonic conditions that may occur from June to September. To complement this classical result it is shown that summer maxima are associated with considerably more variability than the spring maximum. This ensemble of findings support the relevance of mountain station networks such as PAES for the long-term observation of free-tropospheric ozone over Europe.
NASA Astrophysics Data System (ADS)
Choi, Hyun-Jung; Lee, Hwa Woon; Jeon, Won-Bae; Lee, Soon-Hwan
2012-01-01
This study evaluated an atmospheric and air quality model of the spatial variability in low-level coastal winds and ozone concentration, which are affected by sea surface temperature (SST) forcing with different thermal gradients. Several numerical experiments examined the effect of sea surface SST forcing on the coastal atmosphere and air quality. In this study, the RAMS-CAMx model was used to estimate the sensitivity to two different resolutions of SST forcing during the episode day as well as to simulate the low-level coastal winds and ozone concentration over a complex coastal area. The regional model reproduced the qualitative effect of SST forcing and thermal gradients on the coastal flow. The high-resolution SST derived from NGSST-O (New Generation Sea Surface Temperature Open Ocean) forcing to resolve the warm SST appeared to enhance the mean response of low-level winds to coastal regions. These wind variations have important implications for coastal air quality. A higher ozone concentration was forecasted when SST data with a high resolution was used with the appropriate limitation of temperature, regional wind circulation, vertical mixing height and nocturnal boundary layer (NBL) near coastal areas.
Ozone Climatology for Portsmouth, NH 1978-2002
NASA Astrophysics Data System (ADS)
Wake, C. P.; Miller, S. T.
2003-12-01
Hourly ozone mixing ratios have been monitored in Portsmouth, NH since 1978 for the typical "summer" ozone season (April to October) by the New Hampshire Department of Environmental Services. This 25 year record provides the basis to investigate seasonal variability in daily summertime ozone levels in Portsmouth NH and evaluate the relationship between ozone mixing ratios, temperature, precipitation, and the state of El Niño/Southern Oscillation. The overall goal of this research is to identify significant relationships between high ozone days and a suite of climate variables. The mean daily ozone mixing ratio in Portsmouth from 1977 through 2002 was 40 ppbv (sd 17 ppbv) with a mean of 6 days per summer when maxiumum 8 hour ozone levels exceed the 80 ppbv level. The highest ozone levels usually occur during June, July and August (with a peak in July), but high ozone days also occur May and September. April and October rarely experience high ozone. High ozone in coastal New Hampshire (and for most of New England) occurs predominantly on days when maximum temperatures are above 85 oF, although there are also may hot days when ozone levels do not reach elevated levels. Analysis of the relationship between number of days per year when 8 hour ozone is greater than 80 ppbv and maximum temperatures are greater than 85 oF indicates that there is a positive correlation (r = 0.60). Surprisingly, there is not a strong inverse relationship between ozone days and precipitation. For example, over the last 25 years, 1988 clearly stands out with 20 days with maximum 8 hour ozone above 80 ppbv. However, 1988 also experienced considerable precipitation in July and August (14.1 inches compared to the climatological mean of 6.7 inches) and relatively few days without precipitation (38 compared to the climatological mean of 44). There are differences in temperature, precipitation, and ozone levels in Portsmouth during years that are classified as El Ni¤o and neutral, compared to La Nina years. However, we have only experienced one strong La Nina year in the past 25 years, so the results must be viewed with caution. The La Nina year (1988) experience high ozone and more frequent hot days, as well as double the average precipitation. El Niño years experience slightly warmer, dryer and experience more frequent ozone days, although they are not significantly different from neutral years. Our results indicate that hot summers are indeed related to higher than average ozone levels, although there is considerable variability in this relationship. There does not appear to be a consistent ozone - precipitation relationship. Further work is needed to define these relationships for a larger number of stations throughout New England and also for comparison to broader synoptic to hemispheric circulation patterns and sea surface temperatures.
The influence of south foehn on the ozone mixing ratios at the high alpine site Arosa
NASA Astrophysics Data System (ADS)
Campana, Mike; Li, Yingshi; Staehelin, Johannes; Prevot, Andre S. H.; Bonasoni, Paolo; Loetscher, Hanspeter; Peter, Thomas
Within 2 years of trace gas measurements performed at Arosa (Switzerland, 2030 m above sea level), enhanced ozone mixing ratios were observed during south foehn events during summer and spring (5-10 ppb above the median value). The enhancements can be traced back to ozone produced in the strongly industrialized Po basin as confirmed by various analyses. Backward trajectories clearly show advection from this region during foehn. NO y versus O 3 correlation and comparison of O 3 mixing ratios between Arosa and Mt. Cimone (Italy, 2165 m asl) suggest that ozone is the result of recent photochemical production (+5.6 ppb on average), either directly formed during the transport or via mixing of air processed in the Po basin boundary layer. The absence of a correlation between air parcel residence times over Europe and ozone mixing ratios at Arosa during foehn events is in contrast to a previous analysis, which suggested such correlation without reference to the origin of the air. In the case of south foehn, the continental scale influence of pollutants emission on ozone at Arosa appears to be far less important than the direct influence of the Po basin emissions. In contrast, winter time displays a different situation, with mean ozone reductions of about 4 ppb for air parcels passing the Po basin, probably caused by mixing with ozone-poor air from the Po basin boundary layer.
The impact of urban canopy meteorological forcing on summer photochemistry
NASA Astrophysics Data System (ADS)
Huszár, Peter; Karlický, Jan; Belda, Michal; Halenka, Tomáš; Pišoft, Petr
2018-03-01
The regional climate model RegCM4.4, including the surface model CLM4.5, was offline coupled to the chemistry transport model CAMx version 6.30 in order to investigate the impact of the urban canopy induced meteorological changes on the longterm summer photochemistry over central Europe for the 2001-2005 period. First, the urban canopy impact on the meteorological conditions was calculated performing a reference experiment without urban landsurface considered and an experiment with urban surfaces modeled with the urban parameterization within the CLM4.5 model. In accordance with expectations, strong increases of urban surface temperatures (up to 2-3 K), decreases of wind speed (up to -1 ms-1) and increases of vertical turbulent diffusion coefficient (up to 60-70 m2s-1) were found. For the impact on chemistry, these three components were considered. Additionally, we accounted for the effect of temperature enhanced biogenic emission increase. Several experiments were performed by adding these effects one-by-one to the total impact: i.e., first, only the urban temperature impact was considered driving the chemistry model; secondly, the wind impact was added and so on. We found that the impact on biogenic emission account for minor changes in the concentrations of ozone (O3), oxides of nitrogen NOx = NO + NO2 and nitric acid (HNO3). On the other hand, the dominating component acting is the increased vertical mixing, resulting in up to 5 ppbv increase of urban ozone concentrations while causing -2 to -3 ppbv decreases and around 1 ppbv increases of NOx and HNO3 surface concentrations, respectively. The temperature impact alone results in reduction of ozone, increase in NO, decrease in NO2 and increases of HNO3. The wind impact leads, over urban areas, to ozone decreases, increases of NOx and a slight increase in HNO3. The overall impact is similar to the impact of increased vertical mixing alone. The Process Analysis (PA) technique implemented in CAMx was adopted to investigate the causes of the modeled impacts in more details. It showed that the main process contributing to the temperature impact on ozone is a dry-deposition enhancement, while the dominating process controlling the wind impact on ozone over cities is the advection reduction. In case of the impact of enhanced turbulence, PA suggests that ozone increases are, again as assumed, the result of increased downward vertical mixing supported by reduced chemical loss. Comparing the model concentrations with measurements over urban areas, a slight improvement of the model performance was achieved during afternoon hours if urban canopy forcing on chemistry via meteorology was accounted for. The study demonstrates that disregarding the urban canopy induced meteorological effects in air-quality oriented modeling studies can lead to erroneous results in the calculated species concentrations. However, it also shows that the individual components are not equally important: urban canopy induced turbulence effects dominate while the wind-speed and temperature related ones are of considerably smaller magnitude.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
... in Subpart 212.1, ``A burner designed to reduce flame turbulence by the mixing of fuel and air and by... Pavement and Asphalt Based Surface Coating,'' (see 77 FR 13974). Specifically, New York made amendments to...
Urban and Rural Ozone Pollution Over Lusaka (Zambia, 15.5S, 25E) During SAFARI-2000 (September 2000)
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Herman, J. R.; Witte, J. C.; Phahlane, A.; Coetzee, G. J. R.; Mukula, C.; Hudson, R. D.; Frolov, A. D.; Bhartia, P. K. (Technical Monitor)
2001-01-01
In early September, throughout south central Africa, seasonal clearing of dry vegetation and the production of charcoal for cooking leads to intense smoke haze and ozone formation. Ozone soundings made over Lusaka during a six-day period in early September 2000 recorded layers of high ozone (greater than 125 ppbv at 5 km) during two stagnant periods, interspersed by a frontal passage that reduced boundary layer ozone by 30 percent. Smoke aerosol column variations aloft and total ozone were monitored by a sun photometer. During the 6-day measurement period, surface ozone concentrations ranged from 50-95 ppbv and integrated tropospheric ozone from the soundings was 39- 54 Dobson Units (note 1.3 km elevation at the launch site). High ozone concentrations above the mixed and inversion layers were advected from rural burning regions in western Zambia where SAFARI aircraft and ground-based instruments observed intense biomass fires and elevated aerosol and trace gas amounts. TOMS tropospheric ozone and smoke aerosols products show the distribution of biomass burning and associated pollution throughout southern Africa in September 2000. Animations of satellite images and trajectories confirm pollutant recirculation over south central African fires, exit of ozone from Mozambique and Tanzania to the Indian Ocean and the characteristic buildup of tropospheric ozone over the Atlantic from western African outflow.
NASA Astrophysics Data System (ADS)
Langford, A. O.; Alvarez, R. J.; Brioude, J.; Fine, R.; Gustin, M. S.; Lin, M. Y.; Marchbanks, R. D.; Pierce, R. B.; Sandberg, S. P.; Senff, C. J.; Weickmann, A. M.; Williams, E. J.
2017-01-01
A series of deep stratospheric intrusions in late May 2013 increased the daily maximum 8 h surface ozone (O3) concentrations to more than 70 parts per billion by volume (ppbv) at rural and urban surface monitors in California and Nevada. This influx of ozone-rich lower stratospheric air and entrained Asian pollution persisted for more than 5 days and contributed to exceedances of the 2008 8 h national ambient air quality standard of 75 ppbv on 21 and 25 May in Clark County, NV. Exceedances would also have occurred on 22 and 23 May had the new standard of 70 ppbv been in effect. In this paper, we examine this episode using lidar measurements from a high-elevation site on Angel Peak, NV, and surface measurements from NOAA, the Clark County, Nevada Department of Air Quality, the Environmental Protection Agency Air Quality System, and the Nevada Rural Ozone Initiative. These measurements, together with analyses from the National Centers for Environmental Prediction/North American Regional Reanalysis; NOAA Geophysical Fluid Dynamics Laboratory AM3 model; NOAA National Environmental Satellite, Data, and Information Service Real-time Air Quality Modeling System; and FLEXPART models, show that the exceedances followed entrainment of 20 to 40 ppbv of lower stratospheric ozone mingled with another 0 to 10 ppbv of ozone transported from Asia by the unusually deep convective boundary layers above the Mojave desert. Our analysis suggests that this vigorous mixing can affect both high and low elevations and help explain the springtime ozone maximum in the southwestern U.S.
NASA Technical Reports Server (NTRS)
Ott, Lesley E.; Duncan, Bryan N.; Thompson, Anne M.; Diskin, Glenn; Fasnacht, Zachary; Langford, Andrew O.; Lin, Meiyun; Molod, Andrea Mara; Nielsen, J. Eric; Pusede, Sally E.;
2016-01-01
Aircraft observations and ozonesonde profiles collected on July 14 and 27, 2011, during the Maryland month-long DISCOVER-AQ campaign, indicate the presence of stratospheric air just above the planetary boundary layer (PBL). This raises the question of whether summer stratospheric intrusions (SIs) elevate surface ozone levels and to what degree they influence background ozone levels and contribute to ozone production. We used idealized stratospheric air tracers, along with observations, to determine the frequency and extent of SIs in Maryland during July 2011. On 4 of 14 flight days, SIs were detected in layers that the aircraft encountered above the PBL from the coincidence of enhanced ozone, moderate CO, and low moisture. Satellite observations of lower tropospheric humidity confirmed the occurrence of synoptic scale influence of SIs as do simulations with the GEOS-5 Atmospheric General Circulation Model. The evolution of GEOS-5 stratospheric air tracers agree with the timing and location of observed stratospheric influence and indicate that more than 50% of air in SI layers above the PBL had resided in the stratosphere within the previous 14 days. Despite having a strong influence in the lower free troposphere, these events did not significantly affect surface ozone, which remained low on intrusion days. The model indicates similar frequencies of stratospheric influence during all summers from 2009-2013. GEOS-5 results suggest that, over Maryland, the strong inversion capping the summer PBL limits downward mixing of stratospheric air during much of the day, helping to preserve low surface ozone associated with frontal passages that precede SIs.
NASA Astrophysics Data System (ADS)
Riemer, Daniel David
Two areas integral to the global cycle of tropospheric ozone were studied. The first segment of this investigation involved the study of marine ecosystems to define the sources of nonmethane hydrocarbons (NMHCs) in the surface ocean. This included laboratory and field investigations conducted to determine the function and importance of dissolved organic matter (DOM) in the abiotic photochemical production of nonmethane hydrocarbons (NMHCs) in surface seawater. Concurrently, phytoplankton were investigated as a biogenic source of NMHCs in the surface ocean. Low molecular weight alkenes, compounds observed in the greatest quantities in the surface ocean, are formed almost exclusively as a result of DOM-mediated photochemistry. Isoprene was found to be produced by all phytoplankton species investigated. The primary sink for NMHCs found in surface seawater was gas exchange. The second segment of this study focused on the prevalence of NMHCs and oxygenated volatile organic compounds (OVOCs) in the rural southeastern United States. To characterize the importance of NMHCs and OVOCs to the process of atmospheric reactivity and tropospheric ozone chemistry, mixing ratios for a number of NMHCs and OVOCs were determined. Isoprene and its primary oxidation products, methacrolein and methyl vinyl ketone, were observed to be the dominant hydroxyl radical (OH) sink in the rural atmosphere. Certain OVOCs, namely methanol, acetone and acetaldehyde-although not as important on a reactivity basis-were the most prevalent in terms of mass. Methanol was the dominant OVOC measured in the rural atmosphere and serves as an important source of formaldehyde in the rural atmosphere. On the basis of the mixing ratio patterns exhibited by many of the OVOCs present in the rural atmosphere, considerable biogenic sources are likely.
New Tether Ozonesonde System Developed for Uintah Basin Ozone Study in February, 2012
NASA Astrophysics Data System (ADS)
Johnson, B. J.; Cullis, P.; Wendell, J.; Hall, E.; Jordan, A.; Albee, R.; Schnell, R. C.
2012-12-01
NOAA/ESRL/GMD participated in the February, 2012 UINTAH basin air quality campaign to measure ozone concentrations from surface to 300 meters above ground level. The study region, southwest of Vernal, Utah, is an active oil and gas production and exploration area. During the previous winter in 2011, an air quality study led by state and local agencies and Utah State University measured very high ozone at several sites, exceeding 140 ppbv centered near Ouray, Utah under shallow boundary layer with surface snow-cover conditions. The high ozone conditions never developed during the 2012 campaign. The weather remained dry and warm with typical ozone mixing rations ranging from 20 to 60 ppbv. In order to provide near continuous ozone profiles without consuming a balloon and ozonesonde for each sounding, a tether system was developed by the Global Monitoring Division based upon a motorized deep sea fishing rod and reel with 50 pound line. The lightweight system was shown to be rugged and reliable and capable of conducting an ascending and descending profile to 300 m within 90 minutes. Communication software and data loggers continuously monitor the radiosonde pressure to control the ascent/descent rates and altitude. The system can operate unmanned as it will ascend, descend and hold an altitude as controlled from a laptop computer located up to 30 m distant.
NASA Astrophysics Data System (ADS)
Falk, Stefanie; Sinnhuber, Björn-Martin
2018-03-01
Ozone depletion events (ODEs) in the polar boundary layer have been observed frequently during springtime. They are related to events of boundary layer enhancement of bromine. Consequently, increased amounts of boundary layer volume mixing ratio (VMR) and vertical column densities (VCDs) of BrO have been observed by in situ observation, ground-based as well as airborne remote sensing, and from satellites. These so-called bromine explosion (BE) events have been discussed serving as a source of tropospheric BrO at high latitudes, which has been underestimated in global models so far. We have implemented a treatment of bromine release and recycling on sea-ice- and snow-covered surfaces in the global chemistry-climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) based on the scheme of Toyota et al. (2011). In this scheme, dry deposition fluxes of HBr, HOBr, and BrNO3 over ice- and snow-covered surfaces are recycled into Br2 fluxes. In addition, dry deposition of O3, dependent on temperature and sunlight, triggers a Br2 release from surfaces associated with first-year sea ice. Many aspects of observed bromine enhancements and associated episodes of near-complete depletion of boundary layer ozone, both in the Arctic and in the Antarctic, are reproduced by this relatively simple approach. We present first results from our global model studies extending over a full annual cycle, including comparisons with Global Ozone Monitoring Experiment (GOME) satellite BrO VCDs and surface ozone observations.
Ozone and Ozone By-Products in the Cabins of Commercial Aircraft
Weisel, Clifford; Weschler, Charles J.; Mohan, Kris; Vallarino, Jose; Spengler, John D.
2013-01-01
The aircraft cabin represents a unique indoor environment due to its high surface-to-volume ratio, high occupant density and the potential for high ozone concentrations at cruising altitudes. Ozone was continuously measured and air was sampled on sorbent traps, targeting carbonyl compounds, on 52 transcontinental U.S. or international flights between 2008 and 2010. The sampling was predominantly on planes that did not have ozone scrubbers (catalytic converters). Peak ozone levels on aircraft without catalytic convertors exceeded 100 ppb, with some flights having periods of more than an hour when the ozone levels were > 75ppb. Ozone was greatly reduced on relatively new aircraft with catalytic convertors, but ozone levels on two flights whose aircraft had older convertors were similar to those on planes without catalytic convertors. Hexanal, heptanal, octanal, nonanal, decanal and 6-methyl-5-hepten-2-one (6-MHO) were detected in the aircraft cabin at sub- to low ppb levels. Linear regression models that included the log transformed mean ozone concentration, percent occupancy and plane type were statistically significant and explained between 18 and 25% of the variance in the mixing ratio of these carbonyls. Occupancy was also a significant factor for 6-MHO, but not the linear aldehydes, consistent with 6-MHO’s formation from the reaction between ozone and squalene, which is present in human skin oils. PMID:23517299
Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice.
Moore, Christopher W; Obrist, Daniel; Steffen, Alexandra; Staebler, Ralf M; Douglas, Thomas A; Richter, Andreas; Nghiem, Son V
2014-02-06
The ongoing regime shift of Arctic sea ice from perennial to seasonal ice is associated with more dynamic patterns of opening and closing sea-ice leads (large transient channels of open water in the ice), which may affect atmospheric and biogeochemical cycles in the Arctic. Mercury and ozone are rapidly removed from the atmospheric boundary layer during depletion events in the Arctic, caused by destruction of ozone along with oxidation of gaseous elemental mercury (Hg(0)) to oxidized mercury (Hg(II)) in the atmosphere and its subsequent deposition to snow and ice. Ozone depletion events can change the oxidative capacity of the air by affecting atmospheric hydroxyl radical chemistry, whereas atmospheric mercury depletion events can increase the deposition of mercury to the Arctic, some of which can enter ecosystems during snowmelt. Here we present near-surface measurements of atmospheric mercury and ozone from two Arctic field campaigns near Barrow, Alaska. We find that coastal depletion events are directly linked to sea-ice dynamics. A consolidated ice cover facilitates the depletion of Hg(0) and ozone, but these immediately recover to near-background concentrations in the upwind presence of open sea-ice leads. We attribute the rapid recoveries of Hg(0) and ozone to lead-initiated shallow convection in the stable Arctic boundary layer, which mixes Hg(0) and ozone from undepleted air masses aloft. This convective forcing provides additional Hg(0) to the surface layer at a time of active depletion chemistry, where it is subject to renewed oxidation. Future work will need to establish the degree to which large-scale changes in sea-ice dynamics across the Arctic alter ozone chemistry and mercury deposition in fragile Arctic ecosystems.
Meteorological Simulations of Ozone Episode Case Days during the 1996 Paso del Norte Ozone Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, M.J.; Costigan, K.; Muller, C.
1999-02-01
Meteorological simulations centered around the border cities of El Paso and Ciudad Juarez have been performed during an ozone episode that occurred on Aug. 13,1996 during the 1996 Paso del Norte Ozone Study field campaign. Simulations were petiormed using the HOTMAC mesoscale meteorological model using a 1,2,4, and 8 km horizontal grid size nested mesh system. Investigation of the vertical structure and evolution of the atmospheric boundary layer for the Aug. 11-13 time period is emphasized in this paper. Comparison of model-produced wind speed profiles to rawirisonde and radar profiler measurements shows reasonable agreement. A persistent upper-level jet was capturedmore » in the model simulations through data assimilation. In the evening hours, the model was not able to produce the strong wind direction shear seen in the radar wind profiles. Based on virtual potential temperature profile comparisons, the model appears to correctly simulate the daytime growth of the convective mixed layer. However, the model underestimates the cooling of the surface layer at night. We found that the upper-level jet significantly impacted the turbulence structure of the boundary layer, leading to relatively high turbulent kinetic energy (tke) values aloft at night. The model indicates that these high tke values aloft enhance the mid-morning growth of the boundary layer. No upper-level turbulence measurements were available to verify this finding, however. Radar profiler-derived mixing heights do indicate relatively rapid morning growth of the mixed layer.« less
NASA Astrophysics Data System (ADS)
Matichuk, Rebecca; Tonnesen, Gail; Luecken, Deborah; Gilliam, Rob; Napelenok, Sergey L.; Baker, Kirk R.; Schwede, Donna; Murphy, Ben; Helmig, Detlev; Lyman, Seth N.; Roselle, Shawn
2017-12-01
The Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) models were used to simulate a 10 day high-ozone episode observed during the 2013 Uinta Basin Winter Ozone Study (UBWOS). The baseline model had a large negative bias when compared to ozone (O3) and volatile organic compound (VOC) measurements across the basin. Contrary to other wintertime Uinta Basin studies, predicted nitrogen oxides (NOx) were typically low compared to measurements. Increases to oil and gas VOC emissions resulted in O3 predictions closer to observations, and nighttime O3 improved when reducing the deposition velocity for all chemical species. Vertical structures of these pollutants were similar to observations on multiple days. However, the predicted surface layer VOC mixing ratios were generally found to be underestimated during the day and overestimated at night. While temperature profiles compared well to observations, WRF was found to have a warm temperature bias and too low nighttime mixing heights. Analyses of more realistic snow heat capacity in WRF to account for the warm bias and vertical mixing resulted in improved temperature profiles, although the improved temperature profiles seldom resulted in improved O3 profiles. While additional work is needed to investigate meteorological impacts, results suggest that the uncertainty in the oil and gas emissions contributes more to the underestimation of O3. Further, model adjustments based on a single site may not be suitable across all sites within the basin.
Boundary layer ozone - An airborne survey above the Amazon Basin
NASA Technical Reports Server (NTRS)
Gregory, Gerald L.; Browell, Edward V.; Warren, Linda S.
1988-01-01
Ozone data obtained over the forest canopy of the Amazon Basin during July and August 1985 in the course of NASA's Amazon Boundary Layer Experiment 2A are discussed, and ozone profiles obtained during flights from Belem to Tabatinga, Brazil, are analyzed to determine any cross-basin effects. The analyses of ozone data indicate that the mixed layer of the Amazon Basin, for the conditions of undisturbed meteorology and in the absence of biomass burning, is a significant sink for tropospheric ozone. As the coast is approached, marine influences are noted at about 300 km inland, and a transition from a forest-controlled mixed layer to a marine-controlled mixed layer is noted.
NASA Astrophysics Data System (ADS)
Luhar, Ashok K.; Galbally, Ian E.; Woodhouse, Matthew T.; Thatcher, Marcus
2017-03-01
Schemes used to parameterise ozone dry deposition velocity at the oceanic surface mainly differ in terms of how the dominant term of surface resistance is parameterised. We examine three such schemes and test them in a global climate-chemistry model that incorporates meteorological nudging and monthly-varying reactive-gas emissions. The default scheme invokes the commonly used assumption that the water surface resistance is constant. The other two schemes, named the one-layer and two-layer reactivity schemes, include the simultaneous influence on the water surface resistance of ozone solubility in water, waterside molecular diffusion and turbulent transfer, and a first-order chemical reaction of ozone with dissolved iodide. Unlike the one-layer scheme, the two-layer scheme can indirectly control the degree of interaction between chemical reaction and turbulent transfer through the specification of a surface reactive layer thickness. A comparison is made of the modelled deposition velocity dependencies on sea surface temperature (SST) and wind speed with recently reported cruise-based observations. The default scheme overestimates the observed deposition velocities by a factor of 2-4 when the chemical reaction is slow (e.g. under colder SSTs in the Southern Ocean). The default scheme has almost no temperature, wind speed, or latitudinal variations in contrast with the observations. The one-layer scheme provides noticeably better variations, but it overestimates deposition velocity by a factor of 2-3 due to an enhancement of the interaction between chemical reaction and turbulent transfer. The two-layer scheme with a surface reactive layer thickness specification of 2.5 µm, which is approximately equal to the reaction-diffusive length scale of the ozone-iodide reaction, is able to simulate the field measurements most closely with respect to absolute values as well as SST and wind-speed dependence. The annual global oceanic deposition of ozone determined using this scheme is approximately half of the original oceanic deposition obtained using the default scheme, and it corresponds to a 10 % decrease in the original estimate of the total global ozone deposition. The previously reported modelled estimate of oceanic deposition is roughly one-third of total deposition and with this new parameterisation it is reduced to 12 % of the modelled total global ozone deposition. Deposition parameterisation influences the predicted atmospheric ozone mixing ratios, especially in the Southern Hemisphere. For the latitudes 45-70° S, the two-layer scheme improves the prediction of ozone observed at an altitude of 1 km by 7 % and that within the altitude range 1-6 km by 5 % compared to the default scheme.
Bromoalkane production by Antarctic ice algae
NASA Technical Reports Server (NTRS)
Sturges, W. T.; Sullivan, C. W.; Schnell, R. C.; Heidt, L. E.; Pollock, W. H.
1993-01-01
Ice microalgae, collected from the underside of annual sea ice in McMurdo Sound, Antarctica, were found to contain and release to seawater a number of brominated hydrocarbons. These included bromoform, dibromomethane, mixed bromochloromethanes, and methyl bromide. Atmospheric measurements in the McMurdo Sound vicinity revealed the presence of bromoform and methyl bromide in the lower atmosphere, with lowest concentrations inland, further indicating that biogenic activity in the Sound is a source of organic bromine gases to the Antarctic atmosphere. This may have important implications for boundary layer chemistry in Antarctica. In the Arctic, the presence of bromoform has been linked to loss of surface ozone in the spring. We report here preliminary evidence for similar surface ozone loss at McMurdo Station.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Liu, J. M.
1986-01-01
The distribution of atmospheric ozone is nonuniform both in space and time. Local ozone concentration vary with altitude, latitude, longitude, and season. Two year ozonesonde data, January 1981 to December 1982, observed at four Canadian stations and 2.5 year backscattered ultraviolet experiment data on the Nimbus-4 satellite, April 1970 to August 1972, observed over five American stations were used to study the relationship between the total ozone, vertical height distribution of the ozone mixing ratio, vertical height distribution of half total ozone, and the local tropopause height. The results show that there is a postive correlation between total ozone in Dobson Units and the tropopause height in terms of atmospheric pressure. This result suggests that local intrusion of the statosphere into the troposphere, or the local decreasing of tropopause height could occur if there is a local increasing of total ozone. A comparison of the vertical height distribution of the ozone mixing ratio, the modified pressure height of half total ozone and the tropopause height shows that the pressure height of an ozone mixing ratio of 0.3 micrograms/g, and the modified pressure height of half total ozone are very well correlated with the tropopause pressure height.
The influence of temperature on ozone production under varying NOx conditions - a modelling study
NASA Astrophysics Data System (ADS)
Coates, Jane; Mar, Kathleen A.; Ojha, Narendra; Butler, Tim M.
2016-09-01
Surface ozone is a secondary air pollutant produced during the atmospheric photochemical degradation of emitted volatile organic compounds (VOCs) in the presence of sunlight and nitrogen oxides (NOx). Temperature directly influences ozone production through speeding up the rates of chemical reactions and increasing the emissions of VOCs, such as isoprene, from vegetation. In this study, we used an idealised box model with different chemical mechanisms (Master Chemical Mechanism, MCMv3.2; Common Representative Intermediates, CRIv2; Model for OZone and Related Chemical Tracers, MOZART-4; Regional Acid Deposition Model, RADM2; Carbon Bond Mechanism, CB05) to examine the non-linear relationship between ozone, NOx and temperature, and we compared this to previous observational studies. Under high-NOx conditions, an increase in ozone from 20 to 40 °C of up to 20 ppbv was due to faster reaction rates, while increased isoprene emissions added up to a further 11 ppbv of ozone. The largest inter-mechanism differences were obtained at high temperatures and high-NOx emissions. CB05 and RADM2 simulated more NOx-sensitive chemistry than MCMv3.2, CRIv2 and MOZART-4, which could lead to different mitigation strategies being proposed depending on the chemical mechanism. The increased oxidation rate of emitted VOC with temperature controlled the rate of Ox production; the net influence of peroxy nitrates increased net Ox production per molecule of emitted VOC oxidised. The rate of increase in ozone mixing ratios with temperature from our box model simulations was about half the rate of increase in ozone with temperature observed over central Europe or simulated by a regional chemistry transport model. Modifying the box model set-up to approximate stagnant meteorological conditions increased the rate of increase of ozone with temperature as the accumulation of oxidants enhanced ozone production through the increased production of peroxy radicals from the secondary degradation of emitted VOCs. The box model simulations approximating stagnant conditions and the maximal ozone production chemical regime reproduced the 2 ppbv increase in ozone per degree Celsius from the observational and regional model data over central Europe. The simulated ozone-temperature relationship was more sensitive to mixing than the choice of chemical mechanism. Our analysis suggests that reductions in NOx emissions would be required to offset the additional ozone production due to an increase in temperature in the future.
NASA Astrophysics Data System (ADS)
Finch, Douglas; Palmer, Paul
2016-04-01
Boreal forest fires emit pollutants that can have a strong influence on downwind surface ozone concentrations, with potential implications for exceeding air quality regulations. The influence of the mixing of pyrogenic, biogenic and anthropogenic emissions on ozone is not well understood. Using the nested 0.5° latitude x 0.667° longitude GEOS-Chem chemical transport model we track biomass burning plumes in North America. We identify the changes in key chemical reactions within these plumes as well as the sensitivity of ozone to the different emission sources. We illustrate the importance of this method using a case study of a multi-day forest fire during the BORTAS aircraft campaign over eastern Canada during summer 2011. We focus on emissions from the fire on the 17th of July and follow the plume for eight days. After the initial 24 hours of pyrogenic emissions the main source of VOCs is biogenic with increasing emissions from anthropogenic sources including outflow from Quebec City and Newfoundland. Using a Lagrangian framework, we show that the ozone production efficiency (OPE) of this plume decreases steadily as it moves away from the fire but increases rapidly as the plume reaches the east coast of Canada. Using a Eulerian framework we show that ozone mixing ratios of a east coast receptor region increase by approximately 15% even though the ozone tendency of the regional air mass is negative, which we find is due to the arrival of ozone precursors in the plume. We also consider the contribution of anthropogenic outflow over Nova Scotia that originates from the eastern seaboard of the United States to the local chemistry. Using these sensitivity model runs we generate a chemical reaction narrative for the plume trajectory that helps to understand the attribution of observed ozone variations.
Process-scale modeling of elevated wintertime ozone in Wyoming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotamarthi, V. R.; Holdridge, D. J.; Environmental Science Division
2007-12-31
Measurements of meteorological variables and trace gas concentrations, provided by the Wyoming Department of Environmental Quality for Daniel, Jonah, and Boulder Counties in the state of Wyoming, were analyzed for this project. The data indicate that highest ozone concentrations were observed at temperatures of -10 C to 0 C, at low wind speeds of about 5 mph. The median values for nitrogen oxides (NOx) during these episodes ranged between 10 ppbv and 20 ppbv (parts per billion by volume). Measurements of volatile organic compounds (VOCs) during these periods were insufficient for quantitative analysis. The few available VOCs measurements indicated unusuallymore » high levels of alkanes and aromatics and low levels of alkenes. In addition, the column ozone concentration during one of the high-ozone episodes was low, on the order of 250 DU (Dobson unit) as compared to a normal column ozone concentration of approximately 300-325 DU during spring for this region. Analysis of this observation was outside the scope of this project. The data analysis reported here was used to establish criteria for making a large number of sensitivity calculations through use of a box photochemical model. Two different VOCs lumping schemes, RACM and SAPRC-98, were used for the calculations. Calculations based on this data analysis indicated that the ozone mixing ratios are sensitive to (a) surface albedo, (b) column ozone, (c) NOx mixing ratios, and (d) available terminal olefins. The RACM model showed a large response to an increase in lumped species containing propane that was not reproduced by the SAPRC scheme, which models propane as a nearly independent species. The rest of the VOCs produced similar changes in ozone in both schemes. In general, if one assumes that measured VOCs are fairly representative of the conditions at these locations, sufficient precursors might be available to produce ozone in the range of 60-80 ppbv under the conditions modeled.« less
NASA Astrophysics Data System (ADS)
Nair, Prabha R.; George, Susan K.; David, Liji Mary; Parameswaran, Krishnaswamy
Ozone plays a key role in controlling the oxidation capacity of the troposphere and hence the lifetime of a variety of trace gases in the atmosphere. In pristine marine boundary layer (MBL), entire chemistry is initiated by the photolysis of ozone and the subsequent formation of OH radical from water vapour. Also in such environment, photochemical destruction is considered as a major sink in global ozone budget. Even though large number of studies on near surface ozone has been carried out over land such studies are very few over oceanic environments. This paper presents the observational results on the spatial variations of near-surface ozone over Bay of Bengal and Arabian Sea as revealed by the cruise-based measurements (cruise No. SK223) conducted as part of Integrated Campaign for Aerosol gases and Radiation Budget (ICARB) under the Geosphere Biosphere Programme of Indian Space Research Organisation (IGBP). Online measurements of ozone have been carried out by using a UV Photometric Analyser (model 49C of Thermo Electron Corporation, USA). Ozone mixing ratio was observed to be significantly high over northern Bay of Bengal (20-28 ppb) compared to southern Bay of Bengal and Arabian Sea. Minimum levels of ozone ( 5 ppb) have been measured in the central Bay of Bengal region. Over Arabian Sea latitudinal variation was not prominently observed. The over all latitudinal gradient is estimated to be 1.2 ppb/o latitude over Bay of Bengal with longitudinal gradient showing variation depending on the latitude sector. It was maximum (of 1.2ppb/o longitude) over the mid Bay of Bengal region ( 15o N). Longitudinal variation was not significant over northern and southern regions. A close examination of surface airflow patterns and the air mass back trajectories revealed increase in ozone level associated with continental outflow from the northern and central parts of the subcontinent. The diurnal pattern also showed variations depending on the proximity to inhabited land mass and also with meteorological parameters.
Rapid vertical trace gas transport by an isolated midlatitude thunderstorm
NASA Astrophysics Data System (ADS)
Hauf, Thomas; Schulte, Peter; Alheit, Reiner; Schlager, Hans
1995-11-01
During the cloud dynamics and chemistry field experiment CLEOPATRA in the summer of 1992 in southern Germany, the Deutsche Forschungsanstalt für Luft- und Raumfahrt (DLR) (German Aerospace Research Establishment) research aircraft Falcon traversed four times the anvil of a severe, isolated thunderstorm. The first two traverses were at 8 km altitude and close to the anvil cloud base, while the second two traverses were at 10 km. During the 8-km traverse, measured ozone mixing ratios dropped by 13 parts per billion by volume (ppbv) from the ambient cloud free environment to the anvil cloud, while water vapor increased by 0.3 g kg-1. At the 10-km traverses, ozone dropped by 25 ppbv, while water vapor increased by 0.18 g kg-1. Three-dimensional numerical thunderstorm simulations were performed to understand the cause of these changes. The simulations included the transport of two chemical inert tracers. Ozone was assumed to be one of them. The initial ozone profile was composed from an ozone routine sounding and the in situ Falcon measurements prior to the thunderstorm development. The second tracer is typical for a surface released pollutant with a nonzero, constant value in the boundary layer but zero above it. The redistribution of both tracers by the storm is calculated and compared with the observations. For the anvil penetration at 10 km, the calculated difference in ozone mixing ratios is 21 ppbv, while for water vapor an increase of 0.25 g kg-1 was found, in good agreement with the observations. To validate the model results, the radar reflectivity was calculated from simulated fields of cloud water, rain, graupel, hail, and snow and ice crystals and compared with observed values. With respect to maximum reflectivity values and spatial scales, again, excellent agreement was achieved. It is concluded that the rapid transport from the boundary layer directly into the anvil level is the most likely cause of the observed ozone decrease and water vapor increase. Entrainment of ozone-rich environmental air into the anvil cloud occurred but left a protected core with undiluted boundary layer air in the anvil cloud even at a distance of 120 km from the main updraft. Processes such as production of O3 by electrical discharges, chemical reactions of ozone with boundary layer-released or lightning-produced nitrogen compounds, scavenging by hydrometeors, and heterogeneous reactions at the surface of ice crystals may occur, but on the timescale of 0.5-1 hour seem to have a negligible influence on the observed ozone drop.
NASA Astrophysics Data System (ADS)
Fleming, Z. L.; von Schneidemesser, E.; Doherty, R. M.; Malley, C.; Cooper, O. R.; Pinto, J. P.; Colette, A.; Xu, X.; Simpson, D.; Schultz, M.; Hamad, S.; Moola, R.; Solberg, S.; Feng, Z.
2017-12-01
Ozone is an air pollutant formed in the atmosphere from precursor species (NOx, VOCs, CH4, CO) that is detrimental to human health and ecosystems. The global Tropospheric Ozone Assessment Report (TOAR) initiative has assembled a global database of surface ozone observations and generated ozone exposure metrics at thousands of measurement sites around the world. This talk will present results from the assessment focused on those indicators most relevant to human health. Specifically, the trends in ozone, comparing different time periods and patterns across regions and among metrics will be addressed. In addition, the fraction of population exposed to high ozone levels and how this has changed between 2000 and 2014 will also be discussed. The core time period analyzed for trends was 2000-2014, selected to include a greater number of sites in East Asia. Negative trends were most commonly observed at many US and some European sites, whereas many sites in East Asia showed positive trends, while sites in Japan showed more of a mix of positive and negative trends. More than half of the sites showed a common direction and significance in the trends for all five human-health relevant metrics. The peak ozone metrics indicate a reduction in exposure to peak levels of ozone related to photochemical episodes in Europe and the US. A considerable number of European countries and states within the US have shown a decrease in population-weighted ozone over time. The 2000-2014 results will be augmented and compared to the trend analysis for additional time periods that cover a greater number of years, but by necessity are based on fewer sites. Trends are found to be statistically significant at a larger fraction of sites with longer time series, compared to the shorter (2000-2014) time series.
The covariance of temperature and ozone due to planetary-wave forcing
NASA Technical Reports Server (NTRS)
Fraser, G. J.
1976-01-01
The cross-spectra of temperature and ozone mass mixing ratio at 42 km and 28 km has been determined for spring (1971) and summer (1971-2) over Christchurch, New Zealand (44 S, 172 E). The sources of data are the SCR and BUV experiments on Nimbus 4. The observed covariances are compared with a model in which the temperature and ozone perturbations are forced by an upward propagating planetary wave. The agreement between the observations and the model is reasonable. It is suggested that this cross-spectral method permits an estimate of the meridional gradient of ozone mass mixing ratio from measurements of the vertical profile of ozone mass mixing ratio at one location, supported by temperature profiles from at least two locations.
Cumulus cloud venting of mixed layer ozone
NASA Technical Reports Server (NTRS)
Ching, J. K. S.; Shipley, S. T.; Browell, E. V.; Brewer, D. A.
1985-01-01
Observations are presented which substantiate the hypothesis that significant vertical exchange of ozone and aerosols occurs between the mixed layer and the free troposphere during cumulus cloud convective activity. The experiments utilized the airborne Ultra-Violet Differential Absorption Lidar (UV-DIAL) system. This system provides simultaneous range resolved ozone concentration and aerosol backscatter profiles with high spatial resolution. Evening transects were obtained in the downwind area where the air mass had been advected. Space-height analyses for the evening flight show the cloud debris as patterns of ozone typically in excess of the ambient free tropospheric background. This ozone excess was approximately the value of the concentration difference between the mixed layer and free troposphere determined from independent vertical soundings made by another aircraft in the afternoon.
Tonneijck, A E G; Franzaring, J; Brouwer, G; Metselaar, K; Dueck, Th A
2004-09-01
Chronic effects of ozone on wet grassland species early in the growing season might be altered by interspecific competition. Individual plants of Holcus lanatus, Lychnis flos-cuculi, Molinia caerulea and Plantago lanceolata were grown in monocultures and in mixed cultures with Agrostis capillaris. Mesocosms were exposed to charcoal-filtered air plus 25 nl l(-1) ozone (CF+25), non-filtered air (NF), non-filtered air plus 25 nl l(-1) ozone (NF+25) and non-filtered air plus 50 nl l(-1) ozone (NF+50) early in the growing seasons of 2000 through 2002. Ozone-enhanced senescence and visible foliar injury were recorded on some of the target plants in the first year only. Ozone effects on biomass production were minimal and plant response to ozone did not differ between monocultures and mixed cultures. After three years, above-ground biomass of the plants in mixed culture compared to monocultures was three times greater for H. lanatus and two to four times smaller for the other species.
[Effect of ozone on membrane fouling in water and wastewater treatment: a research review].
Zhu, Hong-tao; Wen, Xiang-hua; Huang, Xia
2009-01-01
As a high efficient water and wastewater treatment technology, membrane filtration has been mainly used in wastewater treatment as membrane bioreactor, in reclaiming secondary effluent,treating surface water and potable water, and etc. Membrane fouling is a main obstacle to the wide application of membrane technology. Ozone has strong oxidizing power and has been utilized widely in water and wastewater treatment. In recent years, researches on combined process of ozone-membrane filtration are increasing. This paper does reviews and analysis of these researches. It is noticed that there has been a few of researches on the ozone treatment plus MBR process. Pre-ozonation of feed to MBR and slight ozonation of the mixed liquid in MBR may be used to relieve membrane fouling.Combined processes of ozone-membrane filtration can be divided into three classes in terms of the function of ozone and the system configuration: (1) cleaning the fouled membrane with ozone; (2) separate ozone-membrane filtration process; (3) integrated ozone-membrane filtration process. Although most reports supported that ozonation can control membrane fouling development,there were contrary results. At present, researches on the mechanisms of ozone's effect on membrane fouling control concentrated on the change of organic composition of the filtration influent under ozonation, however, particulate substances, microbial and inorganic substances may also be affected and then play roles in membrane fouling, depending on source water quality and process configuration. Moreover, there have not been common parameters to evaluate the ozone diffusion equipment and efficiency. The authors suggest that further researches should emphasize on integrated ozone-membrane process, and more attention should be paid to the cost-effectiveness of the combined process.
NASA Astrophysics Data System (ADS)
Behin, J.; Farhadian, N.
2017-10-01
Degradation of trifluralin, as a wide used pesticide, was investigated by advance oxidation process comprising O3/UV/H2O2 in a concentric tube airlift photoreactor. Main and interactive effects of three independent factors including pH (5-9), superficial gas velocity (0.05-0.15 cm/s) and time (20-60 min) on the removal efficiency were assessed using central composite face-centered design and response surface method (RSM). The RSM allows to solve multivariable equations and to estimate simultaneously the relative importance of several contributing parameters even in the presence of complex interaction. Airlift photoreactor imposed a synergistic effect combining good mixing intensity merit with high ozone transfer rate. Mixing in the airlift photoreactor enhanced the UV light usage efficiency and its availability. Complete degradation of trifluralin was achieved under optimum conditions of pH 9 and superficial gas velocity 0.15 cm/s after 60 min of reaction time. Under these conditions, degradation of trifluralin was performed in a bubble column photoreactor of similar volume and a lower efficiency was observed.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Doddridge, B. G.; Luke, W. T.; Johnson, J. E.; Witte, J. C.; Reynolds, R. M.; Johnson, B.; Oltmans, S. J.
1999-01-01
During the Aerosols-99 trans-Atlantic cruise from Norfolk, VA, to Cape Town, South Africa, 22 ozonesondes were launched from the NOAA R/V R H Brown between 17 Jan and 6 Feb 1999, with all sondes but one reaching 30 km. A composite of ozone profiles along the transect shows high free tropospheric ozone (up to 100 ppbv at 9 km) between 5N and 20S, a coherent feature straddling either side of the ITCZ. Latitudinal variations of tropospheric ozone are interpreted using correlative measurements of surface ozone, CO, water vapor, and aerosol optical thickness (column absorbance) measured from the ship. Elevated ozone in the lower troposphere results from photochemical reactions of precursors emitted by biomass burning north of the ITCZ. However, the greatest ozone mixing ratios are in the mid-troposphere south of the ITCZ, which gives evidence of interhemispheric transport. Column-integrated tropospheric ozone, 35 DU from 0-16 km, agrees with that derived from the TOMS satellite by the modified-residual method [Thompson and Hudson, 1999]. NCEP wind fields, ship-launched radiosondes and back trajectories are consistent with a picture of recirculating air parcels centered in the tropical Atlantic region which is identified with the maximum wave-one amplitude in total ozone seen in sondes and by satellite.
Analysis of atmospheric ozone measurements made from a B-747 airliner during March 1975
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Falconer, P. D.
1976-01-01
Measurements of atmospheric ozone in the upper troposphere and lower stratosphere made during March 1975 as part of the NASA Global Atmospheric Sampling Program are reported and analyzed. The interrelationships between the ozone mixing ratio and geographical and meteorological parameters are examined in several case studies. The ozone data correlate well with the difference between the flight altitude and the height of the tropopause, as obtained from National Meteorological Center gridded data. The distribution of ozone mixing ratios with latitude at an altitude of 11 + or - 0.5 km shows a poleward increase and large variability at latitudes greater than 30 deg N in agreement with published mean ozone levels from the North American ozone sonde network.
Nighttime Chemistry in the Polluted Boundary Layer (Invited)
NASA Astrophysics Data System (ADS)
Stutz, J.; Wong, K.; Tsai, C.; Pikelnaya, O.
2009-12-01
Chemistry in the urban nocturnal boundary layer (NBL) has received surprisingly little attention in the past. Surface observations often see low ozone and high NO levels, which lead to low nocturnal radical levels and consequently slow chemistry near the ground. Above the surface, however, ozone and radical levels, for example of NO3, are considerably higher, and more efficient chemical pathways for the removal of gaseous pollutants such as nitrogen oxides, ozone, and hydrocarbons, are active. The influence of nocturnal chemistry on aerosol composition is also largest aloft. These processes are poorly understood due to a lack of observations in the altitude range from 20 - 500m. The strong influence of vertical mixing and transport on the composition of the NBL poses an additional challenge, requiring the measurement of vertical concentration profiles and the use of chemical transport models for their interpretation. In addition, heterogeneous processes on the ground and on aerosol surfaces play an important role in the nocturnal atmosphere. In this presentation we will review our current understanding of nocturnal chemistry in the lowest 300m of the polluted atmosphere, with a focus on nitrogen compounds. A number of field experiments in recent years have given insight into the vertical distribution of some of the most important nocturnal trace gases in urban areas, such as ozone, NO2, NO3, N2O5, and HONO. In particular, two 6-week long experiments in Houston, TX, in 2006 and 2009, have shown the strong and persistent impact of vertical mixing on the distribution of all trace gases, as well as the chemistry in the lowest 300m of the atmosphere. These observations were accompanied by detailed meteorological observations and in-situ measurements of chemical species at 70m above the ground. The observations in Houston were interpreted with a 1D chemical transport model that allows quantification of chemistry and transport at night. Our results identify gaps in our understanding of the polluted nocturnal urban boundary layer will be discussed.
Ozone adsorption on carbon nanoparticles
NASA Astrophysics Data System (ADS)
Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis
2014-05-01
Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles < 50 nm), under magnetic stirring. The aerosol was then mixed with ozone in an aerosol flow tube. Ozone uptake experiments were performed with different particles concentrations with a fixed ozone concentration. The influence of several factors on kinetics was examined: initial ozone concentration, particle size (50 nm ≤ Dp ≤ 200 nm) and competitive adsorption (with probe molecule and water). The effect of initial ozone concentration was first studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were realized by selecting the particles size with a differential mobility analyser. We observed a strong size-dependent increase in reactivity with the decrease of particles size. This result is relevant for the health issues. Indeed the smallest particles are most likely to penetrate deep into the lungs. Competitive reactions between ozone and other species like H2O or atomic oxygen were also considered. Oxygen atoms were generated by photolysis of O3 (or O2) and were chosen because it is believed to form the same reactive oxygen intermediates than ozone. A weak water physisorption on soot was observed revealing hydrophobic properties of particles. Oxygen atoms were found to be strongly reactive. A Langmuir behavior was observed for oxygen atoms adsorption on carbon particles and we were able to determine an initial uptake coefficient of approximately 2.10-2. [1] Fenidel, W., et al., Interaction between carbon or iron aerosol particles and ozone. Atmospheric Environment, 1995. 29(9): p. 967-973. [2] Smith, D. and A. Chughtai, Reaction kinetics of ozone at low concentrations with n-hexane soot. Journal of geophysical research, 1996. 101(D14): p. 19607-19,620. [3] Kamm, S., et al., The heterogeneous reaction of ozone with soot aerosol. Atmospheric Environment, 1999. 33(28): p. 4651-4661. [4] Stephens, S., M.J. Rossi, and D.M. Golden, The heterogeneous reaction of ozone on carbonaceous surfaces. International journal of chemical kinetics, 1986. 18(10): p. 1133-1149. [5] Pöschl, U., et al., Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with benzo [a] pyrene: O3 and H2O adsorption, benzo [a] pyrene degradation, and atmospheric implications. The Journal of Physical Chemistry A, 2001. 105(16): p. 4029-4041.
An Overview of the Uintah Basin Winter Ozone Study Intensives: 2012, 2013, and 2014
NASA Astrophysics Data System (ADS)
Roberts, J. M.; Edwards, P. M.; Brown, S. S.; Ahmadov, R.; Bates, T. S.; De Gouw, J. A.; Gilman, J.; Graus, M.; Helmig, D.; Koss, A.; Langford, A. O.; Lefer, B. L.; Lerner, B. M.; Li, R.; Li, S. M.; Liggio, J.; McKeen, S. A.; McLaren, R.; Parrish, D. D.; Quinn, P.; Senff, C. J.; Stutz, J.; Thompson, C. R.; Tsai, J. Y.; Veres, P. R.; Washenfelder, R. A.; Warneke, C.; Wild, R. J.; Young, C.; Yuan, B.
2014-12-01
Ground level ozone frequently exceeds the National Ambient Air Quality Standard in the Uintah Basin in northeastern Utah during the winter season. The basin is home to some of the most intensive oil and gas production in the region, activities that have been accelerated by new technologies in that industry. High ozone episodes are coincident with the presence of snow and "cold pool" conditions during which a stable shallow boundary layer persists for periods of up to 10 days. Local emissions of NOx and VOCs build up within this layer, but the sources of radicals that initiate the photochemistry have been unclear since low photolysis rates and water vapor make the traditional channel, ozone photolysis, quite inefficient. Intensive studies over the past 3 winter seasons have shown that unconventional radical sources; primarily carbonyls, and to a lesser extent nitryl chloride and nitrous acid, are responsible for radical production in this environment. The role of snow cover is to restrict vertical mixing, enhance photolysis rates through increased albedo, and reduce ozone deposition. The uptake and production of photo-labile species on the snow surface were observed, but appear to have only minor influences on the ozone photochemistry.
Preliminary Analysis of Ozonesonde Data from Houston, TX as Part of INTEX-A, July - August 2004
NASA Astrophysics Data System (ADS)
Hersey, S.; Morris, G.; Fraser, M.; Holmes, C.; Thompson, A.; Kuscera, T.; Witte, J.
2004-12-01
The Houston area is well-known for its frequent levels of high ozone pollution. The extent of the pollution in Houston has important direct and indirect consequences for the local population, ranging from the cancelling of recess to increased rates of asthma to threats of fines and loss of transportation dollars for failure to comply with EPA standards. Despite these consequences, the Houston area has no established program to monitor ozone concentrations at any altitude in the atmosphere but the surface. During the period July 8 - August 12, we launched 25 ozonesondes that yielded data on the vertical distribution of ozone over the city of Houston as part of INTEX-A and a study sponsored by the Shell Center for Sustainable Development at Rice University. Combining ozonesonde data from Houston with a trajectory model from NASA Goddard provides a powerful approach to interpreting the data, including insight into local and remote contributions to Houston's ozone pollution. Analysis of our data show (1) the impact of remote wild fires on ozone levels above Houston, (2) the amount of ozone that develops over Houston in the course of one day, and (3) the extent of vertical mixing of Houston's ozone pollution, a factor in transport to areas downwind of the city.
Photoenhanced degradation of veratraldehyde upon the heterogeneous ozone reactions.
Net, Sopheak; Gligorovski, Sasho; Pietri, Sylvia; Wortham, Henri
2010-07-21
Light-induced heterogeneous reactions between gas-phase ozone and veratraldehyde adsorbed on silica particles were performed. At an ozone mixing ratio of 250 ppb, the loss of veratraldehyde largely increased from 1.81 x 10(-6) s(-1) in the dark to 2.54 x 10(-5) s(-1) upon exposure to simulated sunlight (lambda > 300 nm). The observed rates of degradation exhibited linear dependence with the ozone in the dark ozonolysis experiments which change in the non-linear Langmuir-Hinshelwood dependence in the experiments with simultaneous ozone and light exposure of the coated particles. When the coated silica particles were exposed only to simulated sunlight in absence of ozone the loss of veratraldehyde was about three times higher i.e. 5.97 x 10(-6) s(-1) in comparison to the ozonolysis experiment under dark conditions at 250 ppb ozone mixing ratio, 1.81 x 10(-6) s(-1).These results clearly show that the most important loss of veratraldehyde occurs under simultaneous ozone and light exposure of the coated silica particles. The main identified product in the heterogeneous reactions between gaseous ozone and adsorbed veratraldehyde under dark conditions and in presence of light was veratric acid.Carbon yields of veratric acid were calculated and the obtained results indicated that at low ozone mixing ratio (250 ppb) the carbon yield obtained under dark conditions is 70% whereas the carbon yield obtained in the experiments with simultaneous ozone and light exposure of the coated particles is 40%. In both cases the carbon yield of veratric acid exponentially decayed leading to the plateau ( approximately 35% of carbon yield) at an ozone mixing ratio of 6 ppm. Two reaction products i.e. 3-hydroxy-4-methoxybenzoic acid and 4-hydroxy-3-methoxybenzoic acid were identified (confirmed with the standards) only in the experiments performed under simultaneous ozonolysis and light irradiation of the particles.
NASA Astrophysics Data System (ADS)
Zhao, Wei; Fan, Shaojia; Guo, Hai; Gao, Bo; Sun, Jiaren; Chen, Laiguo
2016-11-01
The quantile regression (QR) method has been increasingly introduced to atmospheric environmental studies to explore the non-linear relationship between local meteorological conditions and ozone mixing ratios. In this study, we applied QR for the first time, together with multiple linear regression (MLR), to analyze the dominant meteorological parameters influencing the mean, 10th percentile, 90th percentile and 99th percentile of maximum daily 8-h average (MDA8) ozone concentrations in 2000-2015 in Hong Kong. The dominance analysis (DA) was used to assess the relative importance of meteorological variables in the regression models. Results showed that the MLR models worked better at suburban and rural sites than at urban sites, and worked better in winter than in summer. QR models performed better in summer for 99th and 90th percentiles and performed better in autumn and winter for 10th percentile. And QR models also performed better in suburban and rural areas for 10th percentile. The top 3 dominant variables associated with MDA8 ozone concentrations, changing with seasons and regions, were frequently associated with the six meteorological parameters: boundary layer height, humidity, wind direction, surface solar radiation, total cloud cover and sea level pressure. Temperature rarely became a significant variable in any season, which could partly explain the peak of monthly average ozone concentrations in October in Hong Kong. And we found the effect of solar radiation would be enhanced during extremely ozone pollution episodes (i.e., the 99th percentile). Finally, meteorological effects on MDA8 ozone had no significant changes before and after the 2010 Asian Games.
Surface ozone scenario and air quality in the north-central part of India.
Saini, Renuka; Taneja, Ajay; Singh, Pradyumn
2017-09-01
Tropospheric pollutants including surface ozone (O 3 ), nitrogen dioxide (NO 2 ), carbon monoxide (CO) and meteorological parameters were measured at a traffic junction (78°2' E and 27°11' N) in Agra, India from January 2012 to December 2012. Temporal analysis of pollutants suggests that annual average mixing ratios of tropospheric pollutants were: O 3 - 22.97±23.36ppbV, NO 2 - 19.84±16.71ppbV and CO - 0.91±0.86ppmV, with seasonal variations of O 3 having maximum mixing ratio during summer season (32.41±19.31ppbV), whereas lowest was found in post-monsoon season (8.74±3.8ppbV). O 3 precursors: NO 2 and CO, showed inverse relationship with O 3 . Seasonal variation and high O 3 episodes during summer are associated with meteorological parameters such as high solar radiation, atmospheric temperature and transboundary transport. The interdependence of these variables showed a link between the daytime mixing ratios of O 3 with the nighttime level of NO 2 . The mixing ratios of CO and NO 2 showed tight correlations, which confirms the influence of vehicular emissions combined with other anthropogenic activities due to office/working hours, shallowing, and widening of boundary layer. FLEXTRA backward trajectories for the O 3 episode days clearly indicate the transport from the NW and W to S/SE and SW direction at Agra in different seasons. Copyright © 2017. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Stolarski, Richard S.; Waugh, Darryn W.; Wang, Lei,; Oman, Luke D.; Douglass, Anne R.; Newman, Paul A.
2014-01-01
We examine the seasonal behavior of ozone by using measurements from various instruments including ozonesondes, Aura Microwave Limb Sounder, and Stratospheric Aerosol and Gas Experiment II. We find that the magnitude of the annual variation in ozone, as a percentage of the mean ozone, exhibits a maximum at or slightly above the tropical tropopause. The maximum is larger in the northern tropics than in the southern tropics, and the annual maximum of ozone in the southern tropics occurs 2 months later than that in the northern tropics, in contrast to usual assumption that the tropics can be treated as a horizontally homogeneous region. The seasonal cycles of ozone and other species in this part of the lower stratosphere result from a combination of the seasonal variation of the Brewer-Dobson circulation and the seasonal variation of tropical and midlatitude mixing. In the Northern Hemisphere, the impacts of upwelling and mixing between the tropics and midlatitudes on ozone are in phase and additive. In the Southern Hemisphere, they are not in phase. We apply a tropical leaky pipe model independently to each hemisphere to examine the relative roles of upwelling and mixing in the northern and southern tropical regions. Reasonable assumptions of the seasonal variation of upwelling and mixing yield a good description of the seasonal magnitude and phase in both the southern and northern tropics. The differences in the tracers and transport between the northern and southern tropical stratospheres suggest that the paradigm of well-mixed tropics needs to be revised to consider latitudinal variations within the tropics.
NASA Astrophysics Data System (ADS)
Haman, C. L.; Couzo, E.; Flynn, J. H.; Vizuete, W.; Heffron, B.; Lefer, B. L.
2014-05-01
Measurements and predictions of ambient ozone (O3), planetary boundary layer (PBL) height, the surface energy budget, wind speed, and other meteorological parameters were made near downtown Houston, Texas, and were used to investigate meteorological controls on elevated levels of ground-level O3. Days during the study period (1 April 2009 to 31 December 2010 for measurements and 15 April 2009 to 17 October 2009 for modeled) were classified into low (LO3) and high ozone (HO3) days. The majority of observed high HO3 days occurred in a postfrontal environment. Observations showed there is not a significant difference in daily maximum PBL heights on HO3 and LO3 days. Modeling results showed large differences between maximum PBL heights on HO3 and LO3 days. Nighttime and early morning observed and modeled PBL heights are consistently lower on HO3 days than on LO3 days. The observed spring LO3 days had the most rapid early morning PBL growth (~350 m h-1) while the fall HO3 group had the slowest (~200 m h-1). The predicted maximum average hourly morning PBL growth rates were greater on HO3 (624 m h-1) days than LO3 days (361 m h-1). Observed turbulent mixing parameters were up to 2-3 times weaker on HO3 days, which indicate large-scale subsidence associated with high-pressure systems (leading to clear skies and weak winds) substantially suppresses mixing. Lower surface layer ventilation coefficients were present in the morning on HO3 days in the spring and fall, which promotes the accumulation of O3 precursors near the surface.
Effects of Temperature and Air Density Profiles on Ozone Lidar Retrievals
NASA Astrophysics Data System (ADS)
Kirgis, G.; Langford, A. O.; Senff, C. J.; Alvarez, R. J. _II, II
2017-12-01
The recent reduction in the primary U.S. National Ambient Air Quality Standard (NAAQS) for ozone (O3) from 75 to 70 parts-per-billion by volume (ppbv) adds urgency to the need for better understanding of the processes that control ground-level concentrations in the United States. While ground-based in situ sensors are capable of measuring ozone levels, they don't give any insight into upper air transport and mixing. Differential absorption lidars such as the NOAA/ESRL Tunable Optical Profiler for Aerosol and oZone (TOPAZ) measure continuous vertical ozone profiles with high spatial and temporal resolution. However, the retrieved ozone mixing ratios depend on the temperature and air density profiles used in the analysis. This study analyzes the ozone concentrations for seven field campaigns from 2013 to 2016 to evaluate the impact of the assumed pressure and temperature profiles on the ozone mixing ratio retrieval. Pressure and temperature profiles from various spatial and temporal resolution models (Modern Era Retrospective-Analysis for Research and Applications, NCEP/NCAR Reanalysis, NCEP North American Regional Reanalysis, Rapid Refresh, and High-Resolution Rapid Refresh) are compared to reference ozone profiles created with pressure and temperature profiles from ozonesondes launched close to the TOPAZ measurement site. The results show significant biases with respect to time of day and season, altitude, and location of the model-extracted profiles. Limitations and advantages of all datasets used will also be discussed.
NASA Astrophysics Data System (ADS)
Derwent, Richard G.; Parrish, David D.; Galbally, Ian E.; Stevenson, David S.; Doherty, Ruth M.; Naik, Vaishali; Young, Paul J.
2018-05-01
Recognising that global tropospheric ozone models have many uncertain input parameters, an attempt has been made to employ Monte Carlo sampling to quantify the uncertainties in model output that arise from global tropospheric ozone precursor emissions and from ozone production and destruction in a global Lagrangian chemistry-transport model. Ninety eight quasi-randomly Monte Carlo sampled model runs were completed and the uncertainties were quantified in tropospheric burdens and lifetimes of ozone, carbon monoxide and methane, together with the surface distribution and seasonal cycle in ozone. The results have shown a satisfactory degree of convergence and provide a first estimate of the likely uncertainties in tropospheric ozone model outputs. There are likely to be diminishing returns in carrying out many more Monte Carlo runs in order to refine further these outputs. Uncertainties due to model formulation were separately addressed using the results from 14 Atmospheric Chemistry Coupled Climate Model Intercomparison Project (ACCMIP) chemistry-climate models. The 95% confidence ranges surrounding the ACCMIP model burdens and lifetimes for ozone, carbon monoxide and methane were somewhat smaller than for the Monte Carlo estimates. This reflected the situation where the ACCMIP models used harmonised emissions data and differed only in their meteorological data and model formulations whereas a conscious effort was made to describe the uncertainties in the ozone precursor emissions and in the kinetic and photochemical data in the Monte Carlo runs. Attention was focussed on the model predictions of the ozone seasonal cycles at three marine boundary layer stations: Mace Head, Ireland, Trinidad Head, California and Cape Grim, Tasmania. Despite comprehensively addressing the uncertainties due to global emissions and ozone sources and sinks, none of the Monte Carlo runs were able to generate seasonal cycles that matched the observations at all three MBL stations. Although the observed seasonal cycles were found to fall within the confidence limits of the ACCMIP members, this was because the model seasonal cycles spanned extremely wide ranges and there was no single ACCMIP member that performed best for each station. Further work is required to examine the parameterisation of convective mixing in the models to see if this erodes the isolation of the marine boundary layer from the free troposphere and thus hides the models' real ability to reproduce ozone seasonal cycles over marine stations.
A Two Time-scale response of the Southern Ocean to the Ozone Hole: Regional Responses and Mechanisms
NASA Astrophysics Data System (ADS)
Gnanadesikan, A.; Seviour, W.; Waugh, D.; Pradal, M. A. S.
2016-12-01
The impact of changing ozone on the climate of the Southern Ocean is evaluated using an ensemble of coupled climate models. By imposing a step change from 1860 to 2000 conditions we are able to estimate response functions associated with this change. Two time scales are found, an initial cooling centered in the Southwest Pacific followed by cooling in the Pacific sector and then warming in both sectors. The physical processes that drive this response are different across time periods and locations, as is the sign of the response itself. Initial cooling in the Pacific sector is not just driven by the increased winds pushing cold water northward, but also by a decrease in surface salinity reducing wintertime mixing and increased ice and clouds reflecting more shortwave radiation back to space. The decrease in salinity is primarily driven by a southward shift of precipitation associated with a shifting storm track, coupled with decreased evaporation associated with colder surface temperatures. A subsurface increase in heat associated with this reduction in mixing then upwells along the Antarctic coast, producing a subsequent warming. Similar changes in convective activity occur in the Weddell Sea but are offset in time.
NASA Technical Reports Server (NTRS)
Chameides, W. L.; Davis, D. D.; Gregory, G. L.; Sachse, G.; Torres, A. L.
1989-01-01
Simultaneous high-resolution measurements of O3, NO, CO, dew point temperature, and UV flux obtained during the NASA Global Tropospheric Experiment Chemical Instrumentation Test and Evaluation (GTE/CITE 1) spring 1984 airborne field exercise over the eastern North Pacific Ocean are analyzed. Mid-tropospheric CO, O3, and NO mixing ratios averaged about 120 parts per billion by volume (ppbv), 50 ppbv, and 10 parts per trillion by volume (pptv), respectively. Statistical analysis of the high-resolution data indicates the existence of two ozone sources, one related to the downward transport of ozone-rich air from the upper troposphere and stratosphere, and the other to the transport of ozone-rich air from the continents. Modeling calculations based on these average levels imply that, from the surface to about 8 km, photochemical reactions probably supplied a net sink of ozone to the region overlying the eastern North Pacific Ocean during the sampling period. However, because the NO levels measured during the flights were frequently at or near the detection limit of the instruments and because the results are very sensitive to the absolute NO levels and their temporal variability, the conclusion must be considered provisional.
NASA Astrophysics Data System (ADS)
Ou-Yang, C. F.; Lin, J. R.; Yen, M. C.; Sheu, G. R.; Wang, J. L.; Lin, N. H.
2017-12-01
Stratospheric intrusion (SI) is mainly induced by tropopause folds, frontal passages, cutoff lows, and surface pressure systems. Ozone can be increased rapidly by the SI with decreased humidity and other primary air pollutants in the lower free troposphere. We present 5 years of ozone observed at Lulin Atmospheric Background Station (LABS, 23.47°N, 120.87°E, 2862 m a.s.l.) as a representative regional mountain site located in subtropical East Asia from April 2006 to March 2011. A fast-screening algorithm was proposed to sift the SI events at the LABS. The ozone was increased approximately 13.5±6.1 ppb on average during the 54 detected SI events, whereas the mean ozone mixing ratio was calculated to be 32.8±15.2 ppb over the 5 years. Distinct seasonal variation of ozone was observed with a maximum in spring and a minimum in summer, which was predominately shaped by the long-range transport of biomass burning air masses from Southeast Asia and oceanic influences from the Pacific, respectively. By contrast, the SI events were observed at the LABS mainly during wintertime. The characteristics of the SI events were also investigated in association with Modern Era Retrospective Analysis - 2 (MERRA-2) assimilated data provided by NASA/GSFC in this study.
[Application of artificial neural networks on the prediction of surface ozone concentrations].
Shen, Lu-Lu; Wang, Yu-Xuan; Duan, Lei
2011-08-01
Ozone is an important secondary air pollutant in the lower atmosphere. In order to predict the hourly maximum ozone one day in advance based on the meteorological variables for the Wanqingsha site in Guangzhou, Guangdong province, a neural network model (Multi-Layer Perceptron) and a multiple linear regression model were used and compared. Model inputs are meteorological parameters (wind speed, wind direction, air temperature, relative humidity, barometric pressure and solar radiation) of the next day and hourly maximum ozone concentration of the previous day. The OBS (optimal brain surgeon) was adopted to prune the neutral work, to reduce its complexity and to improve its generalization ability. We find that the pruned neural network has the capacity to predict the peak ozone, with an agreement index of 92.3%, the root mean square error of 0.0428 mg/m3, the R-square of 0.737 and the success index of threshold exceedance 77.0% (the threshold O3 mixing ratio of 0.20 mg/m3). When the neural classifier was added to the neural network model, the success index of threshold exceedance increased to 83.6%. Through comparison of the performance indices between the multiple linear regression model and the neural network model, we conclud that that neural network is a better choice to predict peak ozone from meteorological forecast, which may be applied to practical prediction of ozone concentration.
Winter Photochemistry Underlying High Ozone in an Oil and Gas Producing Region
NASA Astrophysics Data System (ADS)
Brown, S. S.; Edwards, P. M.; Roberts, J. M.; Ahmadov, R.; Banta, R. M.; De Gouw, J. A.; Dube, W. P.; Field, R. A.; Gilman, J.; Graus, M.; Helmig, D.; Koss, A.; Langford, A. O.; Lefer, B. L.; Lerner, B. M.; McKeen, S. A.; Li, S. M.; Murphy, S. M.; Parrish, D. D.; Senff, C. J.; Stutz, J.; Thompson, C. R.; Trainer, M.; Veres, P. R.; Warneke, C.; Wild, R. J.; Young, C.; Yuan, B.; Zamora, R. J.; Washenfelder, R. A.
2014-12-01
Ozone formation during wintertime in oil and gas producing basins of the Rocky Mountain West now accounts for some of the highest ozone pollutant concentrations observed in the U.S. These events are scientifically challenging, occurring only during cold, snow covered periods when meteorological inversions concentrate pollutants near the surface, but when incident solar actinic flux that initiates photochemical reactions is at or near its minimum. A near-explicit chemical model that incorporates detailed measurements obtained during three successive winter field studies in the Uintah Basin, Utah, accurately reproduces the observed buildup of ozone and other photochemically generated species. It also identifies the sources of free radicals that drive this unusual photochemistry, and quantifies their relative contributions. Although sharing the same basic atmospheric chemistry, winter ozone formation differs from its summertime, urban counterpart in its dependence upon the relative concentrations of volatile organic compounds (VOCs) and nitrogen oxide (NOx) precursors. Observed NOx mixing ratios in the Uintah basin are lower than is typical of urban areas, while VOC levels are significantly larger. These extreme VOC concentrations allow for nearly optimal efficiency of ozone production from the available NOx. This analysis will inform the design of mitigation strategies and provide insight into the response of winter ozone to primary air pollutants in other regions, particularly those where oil and gas development is contemplated.
Observations of ozone-poor air in the tropical tropopause layer
NASA Astrophysics Data System (ADS)
Newton, Richard; Vaughan, Geraint; Hintsa, Eric; Filus, Michal T.; Pan, Laura L.; Honomichl, Shawn; Atlas, Elliot; Andrews, Stephen J.; Carpenter, Lucy J.
2018-04-01
Ozonesondes reaching the tropical tropopause layer (TTL) over the west Pacific have occasionally measured layers of very low ozone concentrations - less than 15 ppbv - raising the question of how prevalent such layers are and how they are formed. In this paper, we examine aircraft measurements from the Airborne Tropical Tropopause Experiment (ATTREX), the Coordinated Airborne Studies in the Tropics (CAST) and the Convective Transport of Active Species in the Tropics (CONTRAST) experiment campaigns based in Guam in January-March 2014 for evidence of very low ozone concentrations and their relation to deep convection. The study builds on results from the ozonesonde campaign conducted from Manus Island, Papua New Guinea, as part of CAST, where ozone concentrations as low as 12 ppbv were observed between 100 and 150 hPa downwind of a deep convective complex. TTL measurements from the Global Hawk unmanned aircraft show a marked contrast between the hemispheres, with mean ozone concentrations in profiles in the Southern Hemisphere between 100 and 150 hPa of between 10.7 and 15.2 ppbv. By contrast, the mean ozone concentrations in profiles in the Northern Hemisphere were always above 15.4 ppbv and normally above 20 ppbv at these altitudes. The CAST and CONTRAST aircraft sampled the atmosphere between the surface and 120 hPa, finding very low ozone concentrations only between the surface and 700 hPa; mixing ratios as low as 7 ppbv were regularly measured in the boundary layer, whereas in the free troposphere above 200 hPa concentrations were generally well in excess of 15 ppbv. These results are consistent with uplift of almost-unmixed boundary-layer air to the TTL in deep convection. An interhemispheric difference was found in the TTL ozone concentrations, with values < 15 ppbv measured extensively in the Southern Hemisphere but seldom in the Northern Hemisphere. This is consistent with a similar contrast in the low-level ozone between the two hemispheres found by previous measurement campaigns. Further evidence of a boundary-layer origin for the uplifted air is provided by the anticorrelation between ozone and halogenated hydrocarbons of marine origin observed by the three aircraft.
Exploring the roles of temperature and NOx on ozone production in the Sacramento urban plume
NASA Astrophysics Data System (ADS)
Lafranchi, B. W.; Cohen, R. C.
2009-12-01
We investigate the role of temperature and NOx (NOx = NO+NO2) on ozone (O3) production in the Sacramento urban plume over a stretch of seven years (2001-2007) using data collected at UC Blodgett Forest Research Station (a forested site in the Sierra Nevadas about 80 km downwind of Sacramento, CA) and at a series of California Air Resources Board (CARB) sites along the Sacramento-Blodgett transect. The consistent daytime wind patterns between the Central Valley of California and the foothills of the Sierra Nevada mountains permits the assumption of plume transport from downtown Sacramento, over the CARB monitoring sites in the eastern suburbs, and past the Blodgett Forest research site. While NOx emissions are limited primarily to the urban and suburban regions of the transect, biogenic volatile organic compound (VOC) emissions are significant throughout the transect, thus there is a fast transition from VOC-limited to NOx-limited as the plume travels away from the urban center, and we have the opportunity to analyze the differences in ozone production across these two chemical regimes. For this analysis, the Sacramento-Blodgett transect is separated into three segments: urban, suburban, and rural, defined by the locations of selected monitoring sites. Ozone concentrations across each segment are controlled by chemical production (Pchem) and loss (Lchem), deposition to surfaces (Ldep), and mixing with background air (Lmix). At an assumed deposition rate, mixing rate, and background O3 concentration, the net chemical flux of ozone (Pchem - Lchem) can be inferred from differences in ozone concentrations between adjacent monitoring sites. We show that ozone production rates, in general, increase with temperature. We also show that decreases in NOx emissions over the period from 2001-2007 have been effective at reducing ozone production at all points along the transect, but only on days where temperatures are highest. At low temperatures, this decrease is less apparent, and in the urban transect, ozone production is observed to increase as NOx concentrations decrease. This is attributed to the high NOx/VOC ratio that results from reduced biogenic emissions and strong local inputs of NOx, thus driving the chemical environment into a NOx-saturated regime. From these results, we give predictions of future ozone exceedences for various emissions and climate scenarios.
NASA Astrophysics Data System (ADS)
Lei, R.; Wang, S. C.; Yang, S.; Wang, Y.; Talbot, R. W.
2016-12-01
The policy-relevant background (PRB) ozone is defined by the U.S. Environmental Protection Agency (EPA) as the surface ozone mixing ratio that would occur over the U.S. without North American anthropogenic emission influences. PRB ozone over the Houston-Galveston-Brazoria (HGB) area may be affected by foreign sources due to its unique geographical location and meteorology. Our monitoring data revealed several high ozone events over HGB area which might be caused by Central American fire during the years of 2013-2015. To qualify the effects from Central American fire, we estimated the US, Central American and worldwide background over HGB area during those events using the GEOS-Chem global 3-D model. Anomalies in fire emissions leading to high PRB ozone were mapped through spatiotemporal sampling of the Fire INventory from NCAR (FINN) along background trajectories of air masses affecting the HGB area prior to and during the selected high PRB ozone days. Daily HGB PRB ozone estimated by researchers at the Texas Commission on Environmental Quality (TCEQ) was used as the data source to validate model results. Results showed that contribution of emission from Central American to HGB PRB ozone could be tripled during fire events compared to non-impacted fire days. Besides fire emissions from Central American, different types of meteorological events (e.g., cold fronts and thunderstorms) and high local photochemical production (e.g., heat waves and stagnation) are also found associated with high PRB ozone in HGB area during these events. Thus we imply that synthetic contribution from foreign sources and local meteorology to HGB PRB ozone warrants further investigated.
Photochemical ozone formation from petroleum refinery emissions
NASA Astrophysics Data System (ADS)
Sexton, Ken; Westberg, Hal
Atmospheric emissions from the Marathon oil refinery at Robinson, Illinois were investigated during June and July 1977. Surface and aerial measurements were used to provide an integrated, three dimensional monitoring network. Concentrations of ozone, oxides of nitrogen, sulfur dioxide, methane, carbon dioxide, individual non-methane hydrocarbons and halocarbons were recorded on a routine basis. In addition, meteorological parameters such as wind speed, wind direction, solar radiation and mixing height were also measured. The field monitoring study focused on three major areas: (1) characterization of gaseous components within the refinery effluent, especially nonmethane hydrocarbons and nitrogen oxides; (2) natural sunlight bag irradiation experiments to examine ozone forming potential of refinery emissions and (3) aerial measurements of changes in plume chemistry during the first six to eight hours of transport. Results indicate levels of hydrocarbons and nitrogen oxides were elevated downwind of the refinery. Concentrations within the effluent exceeded background values by as much as 300- and 10-fold, respectively. Irradiations of captured refinery emissions suggest excess photochemical ozone can be produced in the first 6 h, with amounts varying according to NMHC/NO x, ratios and initial NMHC concentrations. Real-time measurements on board the aircraft documented instances of ozone buildup in the refinery plume as it drifted downwind.
NASA Astrophysics Data System (ADS)
Ladd, I. H.; Fishman, J.; Pippin, M.; Sachs, S.; Skelly, J.; Chappelka, A.; Neufeld, H.; Burkey, K.
2006-05-01
Students around the world work cooperatively with their teachers and the scientific research community measuring local surface ozone levels using a hand-held optical scanner and ozone sensitive chemical strips. Through the GLOBE (Global Learning and Observations to Benefit the Environment) Program, students measuring local ozone levels are connected with the chemistry of the air they breathe and how human activity impacts air quality. Educational tools have been developed and correlated with the National Science and Mathematics Standards to facilitate integrating the study of surface ozone with core curriculum. Ozone air pollution has been identified as the major pollutant causing foliar injury to plants when they are exposed to concentrations of surface ozone. The inclusion of native and agricultural plants with measuring surface ozone provides an Earth system approach to understanding surface ozone. An implementation guide for investigating ozone induced foliar injury has been developed and field tested. The guide, Using Sensitive Plants as Bio-Indicators of Ozone Pollution, provides: the background information and protocol for implementing an "Ozone Garden" with native and agricultural plants; and, a unique opportunity to involve students in a project that will develop and increase their awareness of surface ozone air pollution and its impact on plants.
Impacts of stratospheric sulfate geoengineering on tropospheric ozone
NASA Astrophysics Data System (ADS)
Xia, Lili; Nowack, Peer J.; Tilmes, Simone; Robock, Alan
2017-10-01
A range of solar radiation management (SRM) techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air pollution. In conclusion, surface ozone and tropospheric chemistry would likely be affected by SRM, but the overall effect is strongly dependent on the SRM scheme. Due to the health and economic impacts of surface ozone, all these impacts should be taken into account in evaluations of possible consequences of SRM.
Tropospheric Bromine Chemistry: Implications for Present and Pre-industrial Ozone and Mercury
NASA Technical Reports Server (NTRS)
Parella, J. P.; Jacob, D. J.; Liang, Q.; Zhang, Y.; Mickley, L. J.; Miller, B.; Evans, M. J.; Yang, X.; Pyle, J. A.; Theys, N.;
2012-01-01
We present a new model for the global tropospheric chemistry of inorganic bromine (Bry) coupled to oxidant-aerosol chemistry in the GEOS-Chem chemical transport model (CTM). Sources of tropospheric Bry include debromination of sea-salt aerosol, photolysis and oxidation of short-lived bromocarbons, and transport from the stratosphere. Comparison to a GOME-2 satellite climatology of tropospheric BrO columns shows that the model can reproduce the observed increase of BrO with latitude, the northern mid-latitudes maximum in winter, and the Arctic maximum in spring. This successful simulation is contingent on the HOBr + HBr reaction taking place in aqueous aerosols and ice clouds. Bromine chemistry in the model decreases tropospheric ozone mixing ratios by <1-8 nmol/mol (6.5% globally), with the largest effects in the northern extratropics in spring. The global mean tropospheric OH concentration decreases by 4 %. Inclusion of bromine chemistry improves the ability of global models (GEOS-Chem and p-TOMCAT) to simulate observed 19th-century ozone and its seasonality. Bromine effects on tropospheric ozone are comparable in the present-day and pre-industrial atmospheres so that estimates of anthropogenic radiative forcing are minimally affected. Br atom concentrations are 40% higher in the pre-industrial atmosphere due to lower ozone, which would decrease by a factor of 2 the atmospheric lifetime of elemental mercury against oxidation by Br. This suggests that historical anthropogenic mercury emissions may have mostly deposited to northern mid-latitudes, enriching the corresponding surface reservoirs. The persistent rise in background surface ozone at northern mid-latitudes during the past decades could possibly contribute to the observations of elevated mercury in subsurface waters of the North Atlantic.
Treatment of azo dye Acid Orange 52 using ozonation and completed-mixed activated sludge process
NASA Astrophysics Data System (ADS)
Abidin, C. Z. A.; Fahmi; Ong, S. A.; Ahmad, R.; Sabri, S. N.
2017-06-01
In this study, the characteristic of colour and COD removal of azo dye Acid Orange 52 (AO52) by ozonation, in combination with complete-mixed activated sludge process (CMAS) was evaluated. The experimentation was arranged in two phases: during the first one, only ozonation was performed, while, during the second phase, it was integrated with CMAS. The performance of colour and COD concentration of AO52 with and without CMAS treatment, is compared and evaluated. From the results, it is obvious that high decolourization from the start of CMAS was contributed from the pre-treatments. The colour removal was due to the fact that ozonation able to cleave the azo bonds that represent colour. Thus, CMAS without pre-treatment are unable to decolourize the dyes sufficiently. 59.6% COD was removed from the first-stage, while merely 9.8% COD fraction removed from the subsequence second-stage CMAS. It is suggested that the rapid COD removal without ozonation are due to activated sludge adsorption processes. The decreased of mixed liquor suspended solids (MLSS) affected the CMAS performances, as the biomass decreased due to lack of nutrient for activated sludge microorganisms to multiply. Results from pre-ozonation alone contributed more than 50% of total COD removal, which indicated that at higher ozone dosage, tend to mineralize azo dye. Thus, ozonation not oxidized the dye though complete mineralization that produce carbon dioxide and water. However, it is a potential process for enhancing colour removal and biodegradability of dye-containing wastewater, once the appropriate ozonation time is determined. Therefore, the role of ozonation seems to break down the dye molecules and created ozonation by-product that is easily biodegraded in the subsequent biological treatment.
NASA Astrophysics Data System (ADS)
Cuchiara, G. C.; Li, X.; Carvalho, J.; Rappenglück, B.
2014-10-01
With over 6 million inhabitants the Houston metropolitan area is the fourth-largest in the United States. Ozone concentration in this southeast Texas region frequently exceeds the National Ambient Air Quality Standard (NAAQS). For this reason our study employed the Weather Research and Forecasting model with Chemistry (WRF/Chem) to quantify meteorological prediction differences produced by four widely used PBL schemes and analyzed its impact on ozone predictions. The model results were compared to observational data in order to identify one superior PBL scheme better suited for the area. The four PBL schemes include two first-order closure schemes, the Yonsei University (YSU) and the Asymmetric Convective Model version 2 (ACM2); as well as two turbulent kinetic energy closure schemes, the Mellor-Yamada-Janjic (MYJ) and Quasi-Normal Scale Elimination (QNSE). Four 24 h forecasts were performed, one for each PBL scheme. Simulated vertical profiles for temperature, potential temperature, relative humidity, water vapor mixing ratio, and the u-v components of the wind were compared to measurements collected during the Second Texas Air Quality Study (TexAQS-II) Radical and Aerosol Measurements Project (TRAMP) experiment in summer 2006. Simulated ozone was compared against TRAMP data, and air quality stations from Continuous Monitoring Station (CAMS). Also, the evolutions of the PBL height and vertical mixing properties within the PBL for the four simulations were explored. Although the results yielded high correlation coefficients and small biases in almost all meteorological variables, the overall results did not indicate any preferred PBL scheme for the Houston case. However, for ozone prediction the YSU scheme showed greatest agreements with observed values.
NASA Astrophysics Data System (ADS)
Cuchiara, Gustavo C.; Li, Xiangshang; Carvalho, Jonas; Rappenglück, Bernhard
2015-04-01
With over 6 million inhabitants the Houston metropolitan area is the fourth-largest in the United States. Ozone concentration in this southeast Texas region frequently exceeds the National Ambient Air Quality Standard (NAAQS). For this reason our study employed the Weather Research and Forecasting model with Chemistry (WRF/Chem) to quantify meteorological prediction differences produced by four widely used PBL schemes and analyzed its impact on ozone predictions. The model results were compared to observational data in order to identify one superior PBL scheme better suited for the area. The four PBL schemes include two first-order closure schemes, the Yonsei University (YSU) and the Asymmetric Convective Model version 2 (ACM2); as well as two turbulent kinetic energy closure schemes, the Mellor-Yamada-Janjic (MYJ) and Quasi-Normal Scale Elimination (QNSE). Four 24 h forecasts were performed, one for each PBL scheme. Simulated vertical profiles for temperature, potential temperature, relative humidity, water vapor mixing ratio, and the u-v components of the wind were compared to measurements collected during the Second Texas Air Quality Study (TexAQS-II) Radical and Aerosol Measurements Project (TRAMP) experiment in summer 2006. Simulated ozone was compared against TRAMP data, and air quality stations from Continuous Monitoring Station (CAMS). Also, the evolutions of the PBL height and vertical mixing properties within the PBL for the four simulations were explored. Although the results yielded high correlation coefficients and small biases in almost all meteorological variables, the overall results did not indicate any preferred PBL scheme for the Houston case. However, for ozone prediction the YSU scheme showed greatest agreements with observed values.
Ultraviolet radiation and the photobiology of earth's early oceans.
Cockell, C S
2000-10-01
During the Archean era (3.9-2.5 Ga ago) the earth was dominated by an oceanic lithosphere. Thus, understanding how life arose and persisted in the Archean oceans constitutes a major challenge in understanding early life on earth. Using a radiative transfer model of the late Archean oceans, the photobiological environment of the photic zone and the surface microlayer is explored at the time before the formation of a significant ozone column. DNA damage rates might have been approximately three orders of magnitude higher in the surface layer of the Archean oceans than on the present-day oceans, but at 30 m depth, damage may have been similar to the surface of the present-day oceans. However at this depth the risk of being transported to surface waters in the mixed layer was high. The mixed layer may have been inhabited by a low diversity UV-resistant biota. But it could have been numerically abundant. Repair capabilities similar to Deinococcus radiodurans would be sufficient to survive in the mixed layer. Diversity may have been greater in the region below the mixed layer and above the light compensation point corresponding to today's 'deep chlorophyll maximum'. During much of the Archean the air-water interface was probably an uninhabitable extreme environment for neuston. The habitability of some regions of the photic zone is consistent with the evidence embodied in the geologic record, which suggests an oxygenated upper layer in the Archean oceans. During the early Proterozoic, as ozone concentrations increased to a column abundance above 1 x 10(17) cm-2, UV stress would have been reduced and possibly a greater diversity of organisms could have inhabited the mixed layer. However, nutrient upwelling from newly emergent continental crusts may have been more significant in increasing total planktonic abundance in the open oceans and coastal regions than photobiological factors. The phohobiological environment of the Archean oceans has implications for the potential cross-transfer of life between other water bodies of the early Solar System, possibly on early Mars or the water bodies of a wet, early Venus.
NASA Astrophysics Data System (ADS)
Sadeke, M.; Tai, A. P. K.; Lombardozzi, D.; Val Martin, M.
2015-12-01
Surface ozone pollution is one of the major environmental concerns due to its damaging effects on human and vegetation. One of the largest uncertainties of future surface ozone prediction comes from its interaction with vegetation under a changing climate. Ozone can be modulated by vegetation through, e.g., biogenic emissions, dry deposition and transpiration. These processes are in turn affected by chronic exposure to ozone via lowered photosynthesis rate and stomatal conductance. Both ozone and vegetation growth are expected to be altered by climate change. To better understand these climate-ozone-vegetation interactions and possible feedbacks on ozone itself via vegetation, we implement an online ozone-vegetation scheme [Lombardozzi et al., 2015] into the Community Earth System Model (CESM) with active atmospheric chemistry, climate and land surface components. Previous overestimation of surface ozone in eastern US, Canada and Europe is shown to be reduced by >8 ppb, reflecting improved model-observation comparison. Simulated surface ozone is lower by 3.7 ppb on average globally. Such reductions (and improvements) in simulated ozone are caused mainly by lower isoprene emission arising from reduced leaf area index in response to chronic ozone exposure. Effects via transpiration are also potentially significant but require better characterization. Such findings suggest that ozone-vegetation interaction may substantially alter future ozone simulations, especially under changing climate and ambient CO2 levels, which would further modulate ozone-vegetation interactions. Inclusion of such interactions in Earth system models is thus necessary to give more realistic estimation and prediction of surface ozone. This is crucial for better policy formulation regarding air quality, land use and climate change mitigation. Reference list: Lombardozzi, D., et al. "The Influence of Chronic Ozone Exposure on Global Carbon and Water Cycles." Journal of Climate 28.1 (2015): 292-305.
Climate and Ozone Response to Increased Stratospheric Water Vapor
NASA Technical Reports Server (NTRS)
Shindell, Drew T.
2001-01-01
Stratospheric water vapor abundance affects ozone, surface climate, and stratospheric temperatures. From 30-50 km altitude, temperatures show global decreases of 3-6 K over recent decades. These may be a proxy for water vapor increases, as the Goddard Institute for Space Studies (GISS) climate model reproduces these trends only when stratospheric water vapor is allowed to increase. Observations suggest that stratospheric water vapor is indeed increasing, however, measurements are extremely limited in either spatial coverage or duration. The model results suggest that the observed changes may be part of a global, long-term trend. Furthermore, the required water vapor change is too large to be accounted for by increased production within the stratosphere, suggesting that ongoing climate change may be altering tropospheric input. The calculated stratospheric water vapor increase contributes an additional approximately equals 24% (approximately equals 0.2 W/m(exp 2)) to the global warming from well-mixed greenhouse gases over the past two decades. Observed ozone depletion is also better reproduced when destruction due to increased water vapor is included. If the trend continues, it could increase future global warming and impede stratospheric ozone recovery.
USDA-ARS?s Scientific Manuscript database
Increased mixing ratios of ground-level ozone threaten individual plants, plant communities and ecosystems. In this sense, ozone biomonitoring is of great interest. The ozone-sensitive S156 and the ozone-tolerant R123 genotypes of snap bean (Phaseolus vulgaris L.) have been proposed as a potential t...
NASA Astrophysics Data System (ADS)
Stella, P.; Loubet, B.; Laville, P.; Lamaud, E.; Cazaunau, M.; Laufs, S.; Bernard, F.; Grosselin, B.; Mascher, N.; Kurtenbach, R.; Mellouki, A.; Kleffmann, J.; Cellier, P.
2012-06-01
Tropospheric ozone (O3) is a known greenhouse gas responsible for impacts on human and animal health and ecosystem functioning. In addition, O3 plays an important role in tropospheric chemistry, together with nitrogen oxides. The determination of surface-atmosphere exchange fluxes of these trace gases is a prerequisite to establish their atmospheric budget and evaluate their impact onto the biosphere. In this study, O3, nitric oxide (NO) and nitrogen dioxide (NO2) fluxes were measured using the aerodynamic gradient method over a bare soil in an agricultural field. Ozone and NO fluxes were also measured using eddy-covariance and automatic chambers, respectively. The aerodynamic gradient measurement system, composed of fast response sensors, was capable to measure significant differences in NO and O3 mixing ratios between heights. However, due to local advection, NO2 mixing ratios were highly non-stationary and NO2 fluxes were, therefore, not significantly different from zero. The chemical reactions between O3, NO and NO2 led to little ozone flux divergence between the surface and the measurement height (less than 1% of the flux on average), whereas the NO flux divergence was about 10% on average. The use of fast response sensors allowed reducing the flux uncertainty. The aerodynamic gradient and the eddy-covariance methods gave comparable O3 fluxes. The chamber NO fluxes were down to 70% lower than the aerodynamic gradient fluxes, probably because of either the spatial heterogeneity of the soil NO emissions or the perturbation due to the chamber itself.
NASA Technical Reports Server (NTRS)
Selkirk, Henry B.; Schoeberl, M. R.; Olsen, M. A.; Douglass, A. R.
2011-01-01
We examine balloonsonde observations of water vapor and ozone from three Ticosonde campaigns over San Jose, Costa Rica [10 N, 84 W] during northern summer and a fourth during northern winter. The data from the summer campaigns show that the uppermost portion of the tropical tropopause layer between 360 and 380 K, which we term the tropopause saturation layer or TSL, is characterized by water vapor mixing ratios from proximately 3 to 15 ppmv and ozone from approximately 50 ppbv to 250 ppbv. In contrast, the atmospheric water vapor tape recorder at 380 K and above displays a more restricted 4-7 ppmv range in water vapor mixing ratio. From this perspective, most of the parcels in the TSL fall into two classes - those that need only additional radiative heating to rise into the tape recorder and those requiring some combination of additional dehydration and mixing with drier air. A substantial fraction of the latter class have ozone mixing ratios greater than 150 ppbv, and with water vapor greater than 7 ppmv this air may well have been transported into the tropics from the middle latitudes in conjunction with high-amplitude equatorial waves. We examine this possibility with both trajectory analysis and transport diagnostics based on HIRDLS ozone data. We apply the same approach to study the winter season. Here a very different regime obtains as the ozone-water vapor scatter diagram of the sonde data shows the stratosphere and troposphere to be clearly demarcated with little evidence of mixing in of middle latitude air parcels.
Using 3D LIF to Investigate and Improve Performance of a Multichamber Ozone Contactor
Three-dimensional laser-induced fluorescence (3DLIF) was applied to visualize and quantitatively analyze hydrodynamics and mixing in a multi-chamber ozone contactor, the most widely used design for water disinfection. The results suggested that the mixing was characterized by ext...
NASA Astrophysics Data System (ADS)
Oltmans, S. J.; Schnell, R. C.; Mefford, T. K.; Neely, R. R., III
2012-12-01
The wintertime cold, reduced sunlight conditions of the mid-latitudes of continental interior locations are normally not considered to be conducive to significant ozone production. Recent observations have shattered this expectation with hourly ozone mixing ratios regularly exceeding 100 ppb measured in January, February and March in the states of Wyoming and Utah in the United States. Maximum daily eight hour average ozone mixing ratios have exceeded 100 ppb, far exceeding the U.S. threshold of 75 ppb. Conditions under which this dramatic ozone production takes place include a mix of high levels of ozone precursors (NOx and VOCs), a very stable and shallow boundary layer, snow cover providing enhanced UV radiation, and air confining terrain features. The high levels of precursors have been tied to oil and gas extraction activities in the affected regions. Under the requisite meteorological conditions where high pressure, low winds, and snow-covered ground are present extremely stable and shallow (~50-200 m) boundary layers persist. The highly reflective snow cover provides enhanced photolysis rates that in February can exceed those in June. For several winters in Utah and Wyoming with large ozone enhancements, the time series of various meteorological (wind, temperature, solar radiation, snow cover) and chemical parameters (ozone and NOx) show a somewhat different progression of high ozone events between the two locations. In the Unitah Basin of Utah high ozone formation conditions are more persistent throughout the winter than in the Pinedale Anticline region of Wyoming. This is likely a function of the differing topography of the two areas. However, for individual events the two sites show a similar progression of rapid ozone formation each day. Sites in both Utah and Wyoming just outside the oil and gas extraction activity areas show little or no enhanced ozone. Winters without the requisite meteorological conditions also do not experience high ozone events.
Surface ozone concentrations in Europe: Links with the regional-scale atmospheric circulation
NASA Astrophysics Data System (ADS)
Davies, T. D.; Kelly, P. M.; Low, P. S.; Pierce, C. E.
1992-06-01
Daily surface ozone observations from 1978 (1976 for some analyses) to 1988 for Bottesford (United Kingdom), Cabauw, Kloosterburen (The Netherlands), Hohenpeissenberg, Neuglobsow, Hamburg, and Arkona (Germany) are used to analyze links between surface ozone variations and the atmospheric circulation. A daily Europe-wide synoptic classification highlights marked differences between surface ozone/meteorology relationships in summer and winter. These relationships are characterized by correlations between daily surface ozone concentrations at each station and a local subregional surface pressure gradient (a wind speed index). Although there are geographical variations, which are explicable in terms of regional climatology, there are distinct annual cycles. In summer, the surface ozone/wind speed relationship exhibits the expected negative sign; however, in winter, the relationship is, in the main, strongly positive, especially at those stations which are more influenced by the vigorous westerlies. Spring and autumn exhibit negative, positive, or transitional (between summer and winter) behavior, depending on geographical position. It is suggested that these relationships reflect the importance of vertical exchange from the free troposphere to the surface in the nonsummer months. Composite surface pressure patterns and surface pressure anomaly (from the long-term mean) patterns associated with high surface ozone concentrations on daily and seasonal time scales are consistent with the surface ozone/wind speed relationships. Moreover, they demonstrate that high surface ozone concentrations, in a climatological time frame, can be associated with mean surface pressure patterns which have a synoptic reality and are robust. Such an approach may be useful in interpreting past variations in surface ozone and may help to isolate the effect of human activity. It is also possible that assessments can be made of the effect of projected future changes in the atmospheric circulation. This potential is illustrated by the fact that up to 65% of the interannual variance in 6-month mean surface ozone concentrations can be explained by the subregional wind speed index.
Nadzir, Mohd Shahrul Mohd; Ashfold, Matthew J; Khan, Md Firoz; Robinson, Andrew D; Bolas, Conor; Latif, Mohd Talib; Wallis, Benjamin M; Mead, Mohammed Iqbal; Hamid, Haris Hafizal Abdul; Harris, Neil R P; Ramly, Zamzam Tuah Ahmad; Lai, Goh Thian; Liew, Ju Neng; Ahamad, Fatimah; Uning, Royston; Samah, Azizan Abu; Maulud, Khairul Nizam; Suparta, Wayan; Zainudin, Siti Khalijah; Wahab, Muhammad Ikram Abdul; Sahani, Mazrura; Müller, Moritz; Yeok, Foong Swee; Rahman, Nasaruddin Abdul; Mujahid, Aazani; Morris, Kenobi Isima; Sasso, Nicholas Dal
2018-01-01
The Antarctic continent is known to be an unpopulated region due to its extreme weather and climate conditions. However, the air quality over this continent can be affected by long-lived anthropogenic pollutants from the mainland. The Argentinian region of Ushuaia is often the main source area of accumulated hazardous gases over the Antarctic Peninsula. The main objective of this study is to report the first in situ observations yet known of surface ozone (O 3 ) over Ushuaia, the Drake Passage, and Coastal Antarctic Peninsula (CAP) on board the RV Australis during the Malaysian Antarctic Scientific Expedition Cruise 2016 (MASEC'16). Hourly O 3 data was measured continuously for 23 days using an EcoTech O 3 analyzer. To understand more about the distribution of surface O 3 over the Antarctic, we present the spatial and temporal of surface O 3 of long-term data (2009-2015) obtained online from the World Meteorology Organization of World Data Centre for greenhouse gases (WMO WDCGG). Furthermore, surface O 3 satellite data from the free online NOAA-Atmospheric Infrared Sounder (AIRS) database and online data assimilation from the European Centre for Medium-Range Weather Forecasts (ECMWF)-Monitoring Atmospheric Composition and Climate (MACC) were used. The data from both online products are compared to document the data sets and to give an indication of its quality towards in situ data. Finally, we used past carbon monoxide (CO) data as a proxy of surface O 3 formation over Ushuaia and the Antarctic region. Our key findings were that the surface O 3 mixing ratio during MASEC'16 increased from a minimum of 5 ppb to ~ 10-13 ppb approaching the Drake Passage and the Coastal Antarctic Peninsula (CAP) region. The anthropogenic and biogenic O 3 precursors from Ushuaia and the marine region influenced the mixing ratio of surface O 3 over the Drake Passage and CAP region. The past data from WDCGG showed that the annual O 3 cycle has a maximum during the winter of 30 to 35 ppb between June and August and a minimum during the summer (January to February) of 10 to 20 ppb. The surface O 3 mixing ratio during the summer was controlled by photochemical processes in the presence of sunlight, leading to the depletion process. During the winter, the photochemical production of surface O 3 was more dominant. The NOAA-AIRS and ECMWF-MACC analysis agreed well with the MASEC'16 data but twice were higher during the expedition period. Finally, the CO past data showed the surface O 3 mixing ratio was influenced by the CO mixing ratio over both the Ushuaia and Antarctic regions. Peak surface O 3 and CO hourly mixing ratios reached up to ~ 38 ppb (O 3 ) and ~ 500 ppb (CO) over Ushuaia. High CO over Ushuaia led to the depletion process of surface O 3 over the region. Monthly CO mixing ratio over Antarctic (South Pole) were low, leading to the production of surface O 3 over the Antarctic region.
NASA Astrophysics Data System (ADS)
Trousdell, J.; Faloona, I. C.
2017-12-01
In situ flight data collected in the San Joaquin Valley of California during the summer of 2016 is used to measure boundary layer entrainment rates, ozone photochemical production, regional methane and NOx emissions. The San Joaquin Valley is plagued with air quality issues including a high frequency of ozone exceedances in the summer and an aerosol issue in the winter exacerbated by a complex mesoscale environment with a different mountain range on three sides creating an effective cul-de-sac which limits outflow and ventilation. In addition, higher elevation air brought over top of the valley can influence the valley air by entrainment at the top of the turbulent daytime atmospheric boundary layer. The flights were conducted during the California Baseline Ozone Transport Study (CABOTS). Flights are valley wide between the cities of Fresno and Visalia with a thorough probing of the atmospheric boundary layer (ABL) including vertical profiling to diagnose the ABL height and its growth rate. Entrainment velocities, which are the parameterized mixing of free tropospheric air into the boundary layer, are determined by a detailed budget equation of the inversion height. A novel scalar budgeting technique is then applied to expose residual terms of individual equations that amount to ozone photochemical production and emission rates, including; NOx and methane. The budget equations are closed out by our predicted entrainment velocities, time rate of change and horizontal advection all determined via flight data. The results of our NOx budget suggests that the California Air Resources Board emission estimates for soil NOx is grossly underestimated. A strong relationship between entrainment rates and vertical wind shear has been observed, suggesting a significant contribution to entrainment driven by vertical shear compared to the surface buoyancy flux which drives the turbulent vertical motions in the boundary layer.
Zhang, Yanli; Wang, Xinming; Zhang, Zhou; Lü, Sujun; Huang, Zhonghui; Li, Longfeng
2015-01-01
Surface ozone is becoming an increasing concern in China's megacities such as the urban centers located in the highly industrialized and densely populated Pearl River Delta (PRD) region, where previous studies suggested that ozone production is sensitive to VOC emissions with alkenes being important precursors. However, little was known about sources of alkenes. Here we present our monitoring of ambient volatile organic compounds at four representative urban, suburban and rural sites in the PRD region during November-December 2009, which experienced frequent ozone episodes. C2-C4 alkenes, whose total mixing ratios were 11-20% of non-methane hydrocarbons (NMHCs) quantified, accounted for 38-64% of ozone formation potentials (OFPs) and 30-50% of the total hydroxyl radical (OH) reactivity by NMHCs. Ethylene was the most abundant alkene, accounting for 8-15% in total mixing ratios of NMHCs and contributed 25-46% of OFPs. Correlations between C2-C4 alkenes and typical source tracers suggested that ethylene might be largely related to vehicle exhausts and industry activities, while propene and butenes were much more LPG-related. Positive Matrix Factorization (PMF) confirmed that vehicle exhaust and liquefied petroleum gas (LPG) were two major sources that altogether accounted for 52-62%, 58-77%, 73-83%, 68-79% and 73-84% for ethylene, propene, 1-butene, trans-2-butene and cis-2-butene, respectively. Vehicle exhausts alone contributed 32-49% ethylene and 35-41% propene. Industry activities contributed 13-23% ethylene and 7-20% propene. LPG instead contributed the most to butenes (38-65%) and substantially to propene (23-36%). Extensive tests confirmed high fractions of propene and butenes in LPG then used in Guangzhou and in LPG combustion plumes; therefore, limiting alkene contents in LPG would benefit regional ozone control. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Rood, Richard B.; Douglass, Anne R.; Cerniglia, Mark C.; Sparling, Lynn C.; Nielsen, J. Eric
1999-01-01
We present a study of the distribution of ozone in the lowermost stratosphere with the goal of characterizing the observed variability. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High (low) potential vorticity at 300 hPa indicates that the tropopause is low (high), and the identification of these two groups is made to account for the dynamic variability. Conditional probability distribution functions are used to define the statistics of the ozone distribution from both observations and a three-dimensional model simulation using winds from the Goddard Earth Observing System Data Assimilation System for transport. Ozone data sets include ozonesonde observations from northern midlatitude stations (1991-96) and midlatitude observations made by the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) (1994- 1998). The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause (approximately 380K). The probability distribution functions are similar for the two data sources, despite differences in horizontal and vertical resolution and spatial and temporal sampling. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. Results show that during summer, much of the observed variability is explained by the height of the tropopause. During the winter and spring, when the tropopause fluctuations are larger, less of the variability is explained by tropopause height. This suggests that more mixing occurs during these seasons. During all seasons, there is a transition zone near the tropopause that contains air characteristic of both the troposphere and the stratosphere. The relevance of the results to the assessment of the environmental impact of aircraft effluence is also discussed.
NASA Astrophysics Data System (ADS)
Leung, F.
2016-12-01
Tropospheric ozone (O3) is the third most important anthropogenic greenhouse gas. It is causing significant crop production losses. Currently, O3 concentrations are projected to increase globally, which could have a significant impact on food security. The Joint UK Land Environment Simulator modified to include crops (JULES-crop) is used here to quantify the impacts of tropospheric O3 on crop production at the regional scale until 2100. We evaluate JULES-crop against the Soybean Free-Air-Concentration-Enrichment (SoyFACE) experiment in Illinois, USA. Experimental data from SoyFACE and various literature sources is used to calibrate the parameters for soybean and ozone damage parameters in soybean in JULES-crop. The calibrated model is then applied for a transient factorial set of JULES-crop simulations over 1960-2005. Simulated yield changes are attributed to individual environmental drivers, CO2, O3 and climate change, across regions and for different crops. A mixed scenario of RCP 2.6 and RCP 8.5 climatology and ozone are simulated to explore the implication of policy. The overall findings are that regions with high ozone concentration such as China and India suffer the most from ozone damage, soybean is more sensitive to O3 than other crops. JULES-crop predicts CO2 fertilisation would increase the productivity of vegetation. This effect, however, is masked by the negative impacts of tropospheric O3. Using data from FAO and JULES-crop estimated that ozone damage cost around 55.4 Billion USD per year on soybean. Irrigation improves the simulation of rice only, and it increases the relative ozone damage because drought can reduce the ozone from entering the plant stomata. RCP 8.5 scenario results in a high yield for all crops mainly due to the CO2 fertilisation effect. Mixed climate scenarios simulations suggest that RCP 8.5 CO2 concentration and RCP 2.6 O3 concentration result in the highest yield. Further works such as more crop FACE-O3 experiments and more Crop functional types in JULES are necessary. The model will thus contribute to a complete understanding of the impacts of climate change on food production. JULES will be later coupled with the Unified Model to quantify the impact of tropospheric O3 on crops productivity including feedbacks between the land-surface, atmospheric chemistry and climate change.
Why has the tropical lower stratosphere stopped cooling since 1997?
NASA Astrophysics Data System (ADS)
Polvani, Lorenzo; Wang, Lei; Aquila, Valentina; Waugh, Darryn
2017-04-01
The impact of ozone depleting substances on global lower stratospheric temperature trends is widely recognized. In the tropics, however, understanding lower stratospheric temperature trends has proven more challenging. While the tropical lower stratospheric cooling observed from 1979 to 1997 has been linked to tropical ozone decreases, those ozone trends cannot be of chemical origin, as active chlorine is not abundant in the tropical lower stratosphere. The 1979-1997 tropical ozone trends are believed to originate from enhanced upwelling which, it is often stated, would be driven by increasing concentrations of well-mixed greenhouse gases. Using simple arguments based on observational evidence after 1997, combined with model integrations with incrementally added single forcings, we argue that ozone depleting substances, not well-mixed greenhouse gases, have been the primary driver of temperature and ozone trends in the tropical lower stratosphere until 1997, and this has occurred because ozone depleting substances are key drivers of tropical upwelling and of the entire Brewer-Dobson circulation.
NASA Astrophysics Data System (ADS)
Polvani, L. M.; Wang, L.; Aquila, V.; Waugh, D.
2016-12-01
The impact of ozone depleting substances on global lower stratospheric temperature trends is widely recognized. In the tropics, however, understanding lower stratospheric temperature trends has proven more challenging. While the tropical lower stratospheric cooling observed from 1979 to 1997 has also been shown to result almost entirely from ozone decreases, those ozone trends cannot be of chemical origin, as active chlorine is not abundant in the tropical lower stratosphere. The 1979-1997 tropical ozone trends are believed to originate from enhanced upwelling which, it is often stated, would be driven by increasing concentrations of well mixed greenhouse gases. In this study, using simple arguments based on observational evidence after 1997, combined with model integrations with incrementally added single forcings, we argue that ozone depleting substances, not well mixed greenhouse gases, have been the primary driver of temperature and ozone trends in the tropical lower stratosphere until 1997, and this has occurred because ozone depleting substances affect tropical upwelling and the entire Brewer-Dobson circulation.
Key factors controlling ozone production in wildfire plumes
NASA Astrophysics Data System (ADS)
Jaffe, D. A.
2017-12-01
Production of ozone in wildfire plumes is complex and highly variable. As a wildfire plume mixes into an urban area, ozone is often, but not always, produced. We have examined multiple factors that can help explain some of this variability. This includes CO/NOy enhancement ratios, photolysis rates, PAN/NOy fraction and degree of NOx oxidation. While fast ozone production is well known, on average, ozone production increases downwind in a plume for several days. Peroxyacetyl nitrate (PAN) is likely a key cause for delayed ozone formation. Recent observations at the Mt. Bachelor Observatory a mountain top observatory relatively remote from nearby anthropogenic influence and in Boise Idaho, an urban setting, show the importance of PAN in wildfire plumes. From these observations we can devise a conceptual model that considers four factors in ozone production: NOx/VOC emission ratio; degree of NOx oxidation; transport time and pathway; and mixing with urban pollutants. Using this conceptual model, we can then devise a lagrangian modeling strategy that can be used to improve our understanding of ozone production in wildfire plumes, both in remote and urban settings.
Background ozone in North China: trends, photochemical and transport impacts
NASA Astrophysics Data System (ADS)
Xu, X.; Lin, W.; Ge, B.
2011-12-01
Tropospheric ozone is one of the key greenhouse gases and plays an important role in atmospheric chemistry. Being a strong oxidant, ozone in the surface layer has significant impacts on human and vegetation health. Long-term measurements of surface ozone are highly needed for climate change assessment and environmental policy-making. Such measurements are scarce, particularly from the background regions. Since 2004, surface ozone and some related reactive gases have been observed at Shangdianzi (SDZ), a Global Atmosphere Watch (GAW) station in North China. Located at the north edge of the Northern China Plain (NCP), the SDZ station is an ideal site for capturing polluted air masses from the NCP sector (southwest) and clean air masses from the background sector (northeast). This facilitates the investigation of impacts of regional transport on surface ozone. In this study, we present long-term measurements of surface ozone made at SDZ, discuss the trends of surface ozone levels in different seasons. Results about the observation-based ozone production efficiency (OPE) for the site will be presented, along with impacts from horizontal and vertical air transport.
Background ozone in North China: trends, photochemical and transport impacts
NASA Astrophysics Data System (ADS)
Xu, X.; Lin, W.; Ge, B.
2012-04-01
Tropospheric ozone is one of the key greenhouse gases and plays an important role in atmospheric chemistry. Being a strong oxidant, ozone in the surface layer has significant impacts on human and vegetation health. Long-term measurements of surface ozone are highly needed for climate change assessment and environmental policy-making. Such measurements are scarce, particularly from the background regions. Since 2004, surface ozone and some related reactive gases have been observed at Shangdianzi (SDZ), a Global Atmosphere Watch (GAW) station in North China. Located at the north edge of the Northern China Plain (NCP), the SDZ station is an ideal site for capturing polluted air masses from the NCP sector (southwest) and clean air masses from the background sector (northeast). This facilitates the investigation of impacts of regional transport on surface ozone. In this study, we present long-term measurements of surface ozone made at SDZ, discuss the trends of surface ozone levels in different seasons. Results about the observation-based ozone production efficiency (OPE) for the site will be presented, along with impacts from horizontal and vertical air transport.
Impact of iodine chemistry on coastal ozone levels at the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Tuite, K.; Stutz, J.; Brockway, N.; Colosimo, S. F.; Tsai, J. Y.; Grossmann, K.; Alvarez, S. L.; Flynn, J. H., III; Erickson, M.; Caicedo, V.; Griffin, R. J.; Wallace, H. W., IV; Schulze, B.; Sheesley, R. J.; Usenko, S.; Yarwood, G.; Nopmongcol, U.
2016-12-01
Reactive iodine (Ix = I + IO) is known to destroy ozone through catalytic cycles in the marine boundary layer (MBL) and can thus have a significant impact on tropospheric ozone in coastal regions. As air quality standards for ozone become stricter, accurate background levels are increasingly important for the development of ozone reduction strategies. The Texas Gulf coast is an example for the significance of MBL background ozone, as onshore flows from the Gulf of Mexico contribute to the ozone levels in Houston and other coastal areas. The Gulf coast often experiences ozone mixing ratios below 20 ppb during summer onshore flow conditions, which are currently overestimated by regional and global air quality models. Modeling with the Comprehensive Air quality Model with extensions (CAMx) and GEOS-Chem including halogen chemistry identified iodine emissions from the Gulf of Mexico as a possible explanation. However, ambient measurements of Ix species for the Gulf of Mexico are needed to test this hypothesis and, if confirmed, refine models. We measured IO, O3, and other trace gases at the Gulf coast near Galveston, TX, using UCLA's long path DOAS instrument and a suite of in-situ instruments. During the study period from May 15 through July 12, 2016, several multi-day events with MBL ozone levels below 20 ppb were encountered. Here we present the observational data with a focus on time periods with onshore flow from the Gulf. A chemical steady state analysis will be used to assess whether the observed Ix mixing ratios can explain these low ozone mixing ratios. Our results will be compared to the CAMx and GEOS-Chem model simulations.
Effect of Climate Change on Surface Ozone over North America, Europe, and East Asia
NASA Technical Reports Server (NTRS)
Schnell, Jordan L.; Prather, Michael J.; Josse, Beatrice; Naik, Vaishali; Horowitz, Larry W.; Zeng, Guang; Shindell, Drew T.; Faluvegi, Greg
2016-01-01
The effect of future climate change on surface ozone over North America, Europe, and East Asia is evaluated using present-day (2000s) and future (2100s) hourly surface ozone simulated by four global models. Future climate follows RCP8.5, while methane and anthropogenic ozone precursors are fixed at year-2000 levels. Climate change shifts the seasonal surface ozone peak to earlier in the year and increases the amplitude of the annual cycle. Increases in mean summertime and high-percentile ozone are generally found in polluted environments, while decreases are found in clean environments. We propose climate change augments the efficiency of precursor emissions to generate surface ozone in polluted regions, thus reducing precursor export to neighboring downwind locations. Even with constant biogenic emissions, climate change causes the largest ozone increases at high percentiles. In most cases, air quality extreme episodes become larger and contain higher ozone levels relative to the rest of the distribution.
The Effect of Climate Change on Ozone Depletion through Changes in Stratospheric Water Vapour
NASA Technical Reports Server (NTRS)
Kirk-Davidoff, Daniel B.; Hintsa, Eric J.; Anderson, James G.; Keith, David W.
1999-01-01
Several studies have predicted substantial increases in Arctic ozone depletion due to the stratospheric cooling induced by increasing atmospheric CO2 concentrations. But climate change may additionally influence Arctic ozone depletion through changes in the water vapor cycle. Here we investigate this possibility by combining predictions of tropical tropopause temperatures from a general circulation model with results from a one-dimensional radiative convective model, recent progress in understanding the stratospheric water vapor budget, modelling of heterogeneous reaction rates and the results of a general circulation model on the radiative effect of increased water vapor. Whereas most of the stratosphere will cool as greenhouse-gas concentrations increase, the tropical tropopause may become warmer, resulting in an increase of the mean saturation mixing ratio of water vapor and hence an increased transport of water vapor from the troposphere to the stratosphere. Stratospheric water vapor concentration in the polar regions determines both the critical temperature below which heterogeneous reactions on cold aerosols become important (the mechanism driving enhanced ozone depletion) and the temperature of the Arctic vortex itself. Our results indicate that ozone loss in the later winter and spring Arctic vortex depends critically on water vapor variations which are forced by sea surface temperature changes in the tropics. This potentially important effect has not been taken into account in previous scenarios of Arctic ozone loss under climate change conditions.
Development and evaluation of the Screening Trajectory Ozone Prediction System (STOPS, version 1.0)
NASA Astrophysics Data System (ADS)
Czader, B. H.; Percell, P.; Byun, D.; Kim, S.; Choi, Y.
2015-05-01
A hybrid Lagrangian-Eulerian based modeling tool has been developed using the Eulerian framework of the Community Multiscale Air Quality (CMAQ) model. It is a moving nest that utilizes saved original CMAQ simulation results to provide boundary conditions, initial conditions, as well as emissions and meteorological parameters necessary for a simulation. Given that these files are available, this tool can run independently of the CMAQ whole domain simulation, and it is designed to simulate source-receptor relationships upon changes in emissions. In this tool, the original CMAQ's horizontal domain is reduced to a small sub-domain that follows a trajectory defined by the mean mixed-layer wind. It has the same vertical structure and physical and chemical interactions as CMAQ except advection calculation. The advantage of this tool compared to other Lagrangian models is its capability of utilizing realistic boundary conditions that change with space and time as well as detailed chemistry treatment. The correctness of the algorithms and the overall performance was evaluated against CMAQ simulation results. Its performance depends on the atmospheric conditions occurring during the simulation period, with the comparisons being most similar to CMAQ results under uniform wind conditions. The mean bias for surface ozone mixing ratios varies between -0.03 and -0.78 ppbV and the slope is between 0.99 and 1.01 for different analyzed cases. For complicated meteorological conditions, such as wind circulation, the simulated mixing ratios deviate from CMAQ values as a result of the Lagrangian approach of using mean wind for its movement, but are still close, with the mean bias for ozone varying between 0.07 and -4.29 ppbV and the slope varying between 0.95 and 1.06 for different analyzed cases. For historical reasons, this hybrid Lagrangian-Eulerian based tool is named the Screening Trajectory Ozone Prediction System (STOPS), but its use is not limited to ozone prediction as, similarly to CMAQ, it can simulate concentrations of many species, including particulate matter and some toxic compounds, such as formaldehyde and 1,3-butadiene.
American River Watershed Investigation, California. Volume 3. Appendix M
1991-12-01
curing of the concrete and for general construction. The water used in concrete mixes must be free from injurious materials. Water from the American River...in achieving the desired bond strength between lifts. Water is needed for curing and to maintain freshness of lift joints. Lift surfaces should be kept...dizziness, throat pain, breathing difficulty and coughing . The health effects caused by combined concentrations of certain sulfur oxides and ozone
Hemispheric Differences in Tropical Lower Stratospheric Transport and Tracers Annual Cycle
NASA Technical Reports Server (NTRS)
Tweedy, Olga; Waugh, D.; Stolarski, R.; Oman, L.
2016-01-01
Transport of long-lived tracers (such as O, CO, and N O) in the lower stratosphere largely determines the composition of the entire stratosphere. Stratospheric transport includes the mean residual circulation (with air rising in the tropics and sinking in the polar and middle latitudes), plus two-way isentropic (quasi-horizontal) mixing by eddies. However, the relative importance of two transport components remains uncertain. Previous studies quantified the relative role of these processes based on tropics-wide average characteristics under common assumption of well-mixed tropics. However, multiple instruments provide us with evidence that show significant differences in the seasonal cycle of ozone between the Northern (0-20N) and Southern (0-20S) tropical (NT and ST respectively) lower stratosphere. In this study we investigate these differences in tracer seasonality and quantify transport processes affecting tracers annual cycle amplitude using simulations from Goddard Earth Observing System Chemistry Climate Model (GEOSCCM) and Whole Atmosphere Community Climate Model (WACCM) and compare them to observations from the Microwave Limb Sounder (MLS) on the Aura satellite. We detect the observed contrast between the ST and NT in GEOSCCM and WACCM: annual cycle in ozone and other chemical tracers is larger in the NT than in the ST but opposite is true for the annual cycle in vertical advection. Ozone budgets in the models, analyzed based on the Transformed Eulerian Mean (TEM) framework, demonstrate a major role of quasi-horizontal mixing vertical advection in determining the NTST ozone distribution and behavior. Analysis of zonal variations in the NT and ST ozone annual cycles further suggests important role of North American and Asian Summer Monsoons (associated with strong isentropic mixing) on the lower stratospheric ozone in the NT. Furthermore, multi model comparison shows that most CCMs reproduce the observed characteristic of ozone annual cycle quite well. Thus, latitudinal variations within the tropics have to be considered in order to understand the balance between upwelling and quasi- horizontal mixing in the tropical lower stratosphere and the paradigm of well mixed tropics has to be reconsidered.
NASA Astrophysics Data System (ADS)
Esswein, R. F.; Chatfield, R. B.; Crawford, J. H.; Weinheimer, A. J.; Fried, A.; Barrick, J. D.
2012-12-01
Unusually rich information about health-relevant surface smog pollution may be expected from developing multi-wavelength retrievals from space, e.g., in upcoming missions being planned by the United States ("GEO-CAPE") and by European and Asian agencies. The key is that ozone and its precursors are vertically correlated in layers that can be retrieved, and that situation-to-situation variation is more important than small local spatial variations. Variations in relationships are understood in terms of simple weather principles such as subsidence and repeating local circulation features. BACKGROUND: Near-surface pollution is one of the most challenging problems for Earth observations from space. Near- surface information must be inferred from column-integrated quantities obtained by passive remote sensing from nadir-looking satellite instruments. NASA has undertaken a major five-year experimental mission to investigate air pollution on the 1- to 100-km urban/regional scale. The mission concept involved Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality, generally known better by its acronym DISCOVER-AQ. A major goal is to understand the usefulness of and best methodologies for satellite remote sensing data. The DISCOVER-AQ airborne study repeatedly made spirals over various urban, industrial, transportation, and rural sites in detail around the Baltimore-Washington area in July, 2011. We compare mixing ratios appropriately averaged over a 0.2-3 km altitude ("Retrievable") and those measured at the bottom of the spirals, 0.2-0.5 km, the "Relevant". The "Retrievable" layer 0.2-3 km. was set by GEO-CAPE remote- sensing sensitivity analyses for ozone [Natraj et al., Atmos. Environ., 2011]. Correlations were quite good, ca. 0.9. Retrieved-relevant correlations for O3 were determined mostly by synoptic conditions. Comparisons for NO2 and HCHO mixing ratio (= m.r.) and especially log(m.r.) are affected by steeper decreases of m.r. with altitude. Retrieved-relevant relationships for NO2 and HCHO were determined more by surface location. Correlations for individual stations were good, but sites with the Chesapeake Bay Breeze showed relationships less than 1:1. CONNECTION TO HEALTH: These 3 species allows estimation of O3, P(O3) and their controls with useful accuracy [Chatfield ..., AE, 2010]. Our comparisons with ordinary near-surface monitors suffer very local influences and may not correspond to actual exposure. We compare "Retrieved" layer averages to several measures of the 8-hour surface ozone, so as to assess direct use of retrievals for health concerns. We also compare P(O3) with estimates of ozone increase throughout the day; such estimates may help now-casting and the improvement of smog simulations and forecasts.
Surface ozone in China: present-day distribution and long-term changes
NASA Astrophysics Data System (ADS)
Xu, X.; Lin, W.; Xu, W.
2017-12-01
Reliable knowledge of spatio-temporal variations of surface ozone is highly needed to assess the impacts of ozone on human health, ecosystem and climate. Although regional distributions and trends of surface ozone in European and North American countries have been well characterized, little is known about the variability of surface ozone in many other countries, including China, where emissions of ozone precursors have been changing rapidly in recent decades. Here we present the first comprehensive description of present-day (2013-2017) distribution and long-term changes of surface ozone in mainland China. Recent ozone measurements from China's air quality monitoring network (AQMN) are analyzed to show present-day distributions of a few ozone exposure metrics for urban environment. Long-term measurements of ozone at six background sites, a rural site and an urban are used to study the trends of ozone in background, rural and urban air, respectively. The average levels of ozone at the AQMN sites (mainly urban) are close to those found at many European and North American sites. However, ozone at most of the sites shows very large diurnal and seasonal variations so that ozone nonattainment can occur in many cities, particularly those in the North China Plain (NCP), the south of Northeast China (NEC), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Sichuan Basin-Chongqing region (SCB). In all these regions, particularly in the NCP, the maximum daily 8-h average (MDA8) ozone concentration can significantly exceed the national limit (75 ppb). High annual sum of ozone means over 35 ppb (SOMO35) exist mainly in the NCP, NEC and YRD, with regional averages over 4000 ppb·d. Surface ozone has significantly increased at Waliguan (a baseline site in western China) and Shangdianzi (a background site in the NCP), and decreased in winter and spring at Longfengshan (a background site in Northeast China). No clear trend can be derived from long-term measurements of ozone at other sites. Further attention should be paid to future changes of ozone in populated regions of China. Actions are urgently needed to control ozone pollution in the NCP and YRD.
Importance of A Priori Vertical Ozone Profiles for TEMPO Air Quality Retrievals
NASA Astrophysics Data System (ADS)
Johnson, M. S.; Sullivan, J. T.; Liu, X.; Zoogman, P.; Newchurch, M.; Kuang, S.; McGee, T. J.; Leblanc, T.
2017-12-01
Ozone (O3) is a toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address the limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm is suggested to use a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB-Clim) O3 climatology). This study evaluates the TB-Clim dataset and model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time data assimilation model products (NASA GMAO's operational GEOS-5 FP model and reanalysis data from MERRA2) and a full chemical transport model (CTM), GEOS-Chem. In this study, vertical profile products are evaluated with surface (0-2 km) and tropospheric (0-10 km) TOLNet observations and the theoretical impact of individual a priori profile sources on the accuracy of TEMPO O3 retrievals in the troposphere and at the surface are presented. Results indicate that while the TB-Clim climatological dataset can replicate seasonally-averaged tropospheric O3 profiles, model-simulated profiles from a full CTM resulted in more accurate tropospheric and surface-level O3 retrievals from TEMPO when compared to hourly and daily-averaged TOLNet observations. Furthermore, it is shown that when large surface O3 mixing ratios are observed, TEMPO retrieval values at the surface are most accurate when applying CTM a priori profile information compared to all other data products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Glenn Charles
1999-12-01
In this dissertation, results are presented of laboratory investigations and mathematical modeling efforts designed to better understand the interactions of ozone with surfaces. In the laboratory, carpet and duct materials were exposed to ozone and measured ozone uptake kinetics and the ozone induced emissions of volatile organic compounds. To understand the results of the experiments, mathematical methods were developed to describe dynamic indoor aldehyde concentrations, mass transport of reactive species to smooth surfaces, the equivalent reaction probability of whole carpet due to the surface reactivity of fibers and carpet backing, and ozone aging of surfaces. Carpets, separated carpet fibers, andmore » separated carpet backing all tended to release aldehydes when exposed to ozone. Secondary emissions were mostly n-nonanal and several other smaller aldehydes. The pattern of emissions suggested that vegetable oils may be precursors for these oxidized emissions. Several possible precursors and experiments in which linseed and tung oils were tested for their secondary emission potential were discussed. Dynamic emission rates of 2-nonenal from a residential carpet may indicate that intermediate species in the oxidation of conjugated olefins can significantly delay aldehyde emissions and act as reservoir for these compounds. The ozone induced emission rate of 2-nonenal, a very odorous compound, can result in odorous indoor concentrations for several years. Surface ozone reactivity is a key parameter in determining the flux of ozone to a surface, is parameterized by the reaction probability, which is simply the probability that an ozone molecule will be irreversibly consumed when it strikes a surface. In laboratory studies of two residential and two commercial carpets, the ozone reaction probability for carpet fibers, carpet backing and the equivalent reaction probability for whole carpet were determined. Typically reaction probability values for these materials were 10 -7, 10 -5, and 10 -5 respectively. To understand how internal surface area influences the equivalent reaction probability of whole carpet, a model of ozone diffusion into and reaction with internal carpet components was developed. This was then used to predict apparent reaction probabilities for carpet. He combines this with a modified model of turbulent mass transfer developed by Liu, et al. to predict deposition rates and indoor ozone concentrations. The model predicts that carpet should have an equivalent reaction probability of about 10 -5, matching laboratory measurements of the reaction probability. For both carpet and duct materials, surfaces become progressively quenched (aging), losing the ability to react or otherwise take up ozone. He evaluated the functional form of aging and find that the reaction probability follows a power function with respect to the cumulative uptake of ozone. To understand ozone aging of surfaces, he developed several mathematical descriptions of aging based on two different mechanisms. The observed functional form of aging is mimicked by a model which describes ozone diffusion with internal reaction in a solid. He shows that the fleecy nature of carpet materials in combination with the model of ozone diffusion below a fiber surface and internal reaction may explain the functional form and the magnitude of power function parameters observed due to ozone interactions with carpet. The ozone induced aldehyde emissions, measured from duct materials, were combined with an indoor air quality model to show that concentrations of aldehydes indoors may approach odorous levels. He shows that ducts are unlikely to be a significant sink for ozone due to the low reaction probability in combination with the short residence time of air in ducts.« less
NASA Astrophysics Data System (ADS)
Kalabokas, Pavlos; Cammas, Jean-Pierre; Thouret, Valerie; Volz-Thomas, Andreas; Boulanger, Damien; Repapis, Christos
2016-04-01
Vertical summertime ozone profiles measured in the period 1994-2008 in the framework of the MOZAIC project over the Eastern Mediterranean basin (especially over the Cairo and Tel-Aviv airports) were analysed, focusing at first in the lower troposphere (1.5-5 km). The vertical profiles collected during extreme days with very high or very low tropospheric ozone mixing ratios have been examined together with the average profiles of relative humidity, carbon monoxide, temperature gradient, wind speed and the corresponding composite maps of geopotential heights at 850 hPa. As a next step, average profiles corresponding, respectively, to the highest and the lowest ozone mixing ratios for the 0-1.5km layer over Cairo in summer are examined along with their corresponding composite maps of geopotential height (and anomalies), vertical velocity (and anomalies), specific humidity anomalies, precipitable water anomalies, air temperature anomalies and wind speed at 850 hPa as well as the corresponding backward trajectories. Based on the above analysis, it turns out that the lower-tropospheric ozone variability over the eastern Mediterranean area is controlled mainly by the synoptic meteorological conditions, combined with local topographical and meteorological features. In particular, the highest ozone concentrations in the lower troposphere and subsequently in the boundary layer are associated with large-scale subsidence of ozone-rich air masses from the upper troposphere under anticyclonic conditions while the lowest ozone concentrations are associated with low pressure conditions inducing uplifting of boundary-layer air, poor in ozone and rich in relative humidity, to the lower troposphere. Also, during the 7% highest ozone days at the 0-1.5km layer over Cairo, very high ozone concentrations of about 80 ppb on average are observed from the surface up to 4-5 km altitude. During the highest ozone days over both airports for the 1.5-5km layer and over Cairo over the 0-1.5km layer, there are extended regions of strong subsidence in the eastern Mediterranean but also in eastern and northern Europe and over these regions the atmosphere is dryer than average. The results of this study will be used within the framework of the MACC project. References Kalabokas, P. D., Cammas, J.-P., Thouret, V., Volz-Thomas, A., Boulanger, D. and Repapis C.C. 2013. Examination of the atmospheric conditions associated with high and low summer ozone levels in the lower troposphere over the eastern Mediterranean. Atmos. Chem. Phys. 13, 10339-10352. DOI: http://dx.doi.org/10.5194/acp-13-10339-2013 Kalabokas P. D., Thouret V., Cammas J.-P., Volz-thomas A., Boulanger D., Repapis C.C., 2015. The geographical distribution of meteorological parameters associated with high and low summer ozone levels in the lower troposphere and the boundary layer over the eastern Mediterranean (Cairo case), Tellus B, 67, 27853, http://dx.doi.org/10.3402/tellusb.v67.27853.
Effects of stratospheric ozone recovery on photochemistry and ozone air quality in the troposphere
NASA Astrophysics Data System (ADS)
Zhang, H.; Wu, S.; Huang, Y.; Wang, Y.
2014-04-01
There has been significant stratospheric ozone depletion since the late 1970s due to ozone-depleting substances (ODSs). With the implementation of the Montreal Protocol and its amendments and adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. In this study, we examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). With a full recovery of the stratospheric ozone, the projected increases in ozone column range from 1% over the low latitudes to more than 10% over the polar regions. The sensitivity factor of troposphere ozone photolysis rate, defined as the percentage changes in surface ozone photolysis rate for 1% increase in stratospheric ozone column, shows significant seasonal variation but is always negative with absolute value larger than one. The expected stratospheric ozone recovery is found to affect the tropospheric ozone destruction rates much more than the ozone production rates. Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. The global average tropospheric OH decreases by 1.7%, and the global average lifetime of tropospheric ozone increases by 1.5%. The perturbations to tropospheric ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 0.8 ppbv in the remote areas. Increases in ozone lifetime by up to 13% are found in the troposphere. The increased lifetimes of tropospheric ozone in response to stratospheric ozone recovery enhance the intercontinental transport of ozone and global pollution, in particular for the summertime. The global background ozone attributable to Asian emissions is calculated to increase by up to 15% or 0.3 ppbv in the Northern Hemisphere in response to the projected stratospheric ozone recovery.
Zucker, Ines; Avisar, Dror; Mamane, Hadas; Jekel, Martin; Hübner, Uwe
2016-09-01
The use of kinetic models to predict oxidation performance in wastewater is limited due to fast ozone depletion during the first milliseconds of the reaction. This paper introduces the Quench Flow Module (QFM), a bench-scale experimental technique developed to measure the first 5-500 milliseconds of ozone depletion for accurate determination of ozone exposure in wastewater-ozonation processes. Calculated ozone exposure in QFM experiments was up to 24% lower than in standard batch experiments, strongly depending on the initial sampling point for measurement in batch experiments. However, oxidation rates of slowly- and moderately-reacting trace organic compounds (TrOCs) were accurately predicted from batch experiments based on integration of ozone depletion and removal of an ozone-resistant probe compound to calculate oxidant exposures. An alternative concept, where ozone and hydroxyl radical exposures are back-calculated from the removal of two probe compounds, was tested as well. Although the QFM was suggested to be an efficient mixing reactor, ozone exposure ranged over three orders of magnitude when different probe compounds reacting moderately with ozone were used for the calculation. These effects were beyond uncertainty ranges for apparent second order rate constants and consistently observed with different ozone-injection techniques, i.e. QFM, batch experiments, bubble columns and venturi injection. This indicates that previously suggested mixing effects are not responsible for the difference and other still unknown factors might be relevant. Results furthermore suggest that ozone exposure calculations from the relative residual concentration of a probe compound are not a promising option for evaluation of ozonation of secondary effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cariolle, D.; Teyssèdre, H.
2007-01-01
This article describes the validation of a linear parameterization of the ozone photochemistry for use in upper tropospheric and stratospheric studies. The present work extends a previously developed scheme by improving the 2D model used to derive the coefficients of the parameterization. The chemical reaction rates are updated from a compilation that includes recent laboratory works. Furthermore, the polar ozone destruction due to heterogeneous reactions at the surface of the polar stratospheric clouds is taken into account as a function of the stratospheric temperature and the total chlorine content. Two versions of the parameterization are tested. The first one only requires the resolution of a continuity equation for the time evolution of the ozone mixing ratio, the second one uses one additional equation for a cold tracer. The parameterization has been introduced into the chemical transport model MOCAGE. The model is integrated with wind and temperature fields from the ECMWF operational analyses over the period 2000-2004. Overall, the results show a very good agreement between the modelled ozone distribution and the Total Ozone Mapping Spectrometer (TOMS) satellite data and the "in-situ" vertical soundings. During the course of the integration the model does not show any drift and the biases are generally small. The model also reproduces fairly well the polar ozone variability, with notably the formation of "ozone holes" in the southern hemisphere with amplitudes and seasonal evolutions that follow the dynamics and time evolution of the polar vortex. The introduction of the cold tracer further improves the model simulation by allowing additional ozone destruction inside air masses exported from the high to the mid-latitudes, and by maintaining low ozone contents inside the polar vortex of the southern hemisphere over longer periods in spring time. It is concluded that for the study of climatic scenarios or the assimilation of ozone data, the present parameterization gives an interesting alternative to the introduction of detailed and computationally costly chemical schemes into general circulation models.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Stauffer, Ryan M.; Miller, Sonya K.; Martins, Douglas K.; Joseph, Everette; Weinheimer, Andrew J.; Diskin, Glenn S.
2014-01-01
Much progress has been made in creating satellite products for tracking the pollutants ozone and NO2 in the troposphere. Yet, in mid-latitude regions where meteorological interactions with pollutants are complex, accuracy can be difficult to achieve, largely due to persistent layering of some constituents. We characterize the layering of ozone soundings and related species measured from aircraft over two ground sites in suburban Washington, DC (Beltsville, MD, 39.05N; 76.9W) and Baltimore (Edgewood, MD, 39.4N; 76.3W) during the July 2011 DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) experiment. First, we compare column-ozone amounts from the Beltsville and Edgewood sondes with data from overpassing satellites. Second, processes influencing ozone profile structure are analyzed using Laminar Identification and tracers: sonde water vapor, aircraft CO and NOy. Third, Beltsville ozone profiles and meteorological influences in July 2011 are compared to those from the summers of 2006-2010. Sonde-satellite offsets in total ozone during July 2011 at Edgewood and Beltsville, compared to the Ozone Monitoring Instrument (OMI), were 3 percent mean absolute error, not statistically significant. The disagreement between an OMIMicrowave Limb Sounder-based tropospheric ozone column and the sonde averaged 10 percent at both sites, with the sonde usually greater than the satellite. Laminar Identification (LID), that distinguishes ozone segments influenced by convective and advective transport, reveals that on days when both stations launched ozonesondes, vertical mixing was stronger at Edgewood. Approximately half the lower free troposphere sonde profiles have very dry laminae, with coincident aircraft spirals displaying low CO (80-110 ppbv), suggesting stratospheric influence. Ozone budgets at Beltsville in July 2011, determined with LID, as well as standard meteorological indicators, resemble those of 4 of the previous 5 summers. The penetration of stratospheric air throughout the troposphere appears to be typical for summer conditions in the Baltimore-Washington region.
Lee, Ming-Tao; Brown, Matthew A; Kato, Shunsuke; Kleibert, Armin; Türler, Andreas; Ammann, Markus
2015-05-14
A more detailed understanding of the heterogeneous chemistry of halogenated species in the marine boundary layer is required. Here, we studied the reaction of ozone (O3) with NaBr solutions in the presence and absence of citric acid (C6H8O7) under ambient conditions. Citric acid is used as a proxy for oxidized organic material present at the ocean surface or in sea spray aerosol. On neat NaBr solutions, the observed kinetics is consistent with bulk reaction-limited uptake, and a second-order rate constant for the reaction of O3 + Br(-) is 57 ± 10 M(-1) s(-1). On mixed NaBr-citric acid aqueous solutions, the uptake kinetics was faster than that predicted by bulk reaction-limited uptake and also faster than expected based on an acid-catalyzed mechanism. X-ray photoelectron spectroscopy (XPS) on a liquid microjet of the same solutions at 1.0 × 10(-3)-1.0 × 10(-4) mbar was used to obtain quantitative insight into the interfacial composition relative to that of the bulk solutions. It revealed that the bromide anion becomes depleted by 30 ± 10% while the sodium cation gets enhanced by 40 ± 20% at the aqueous solution-air interface of a 0.12 M NaBr solution mixed with 2.5 M citric acid in the bulk, attributed to the role of citric acid as a weak surfactant. Therefore, the enhanced reactivity of bromide solutions observed in the presence of citric acid is not necessarily attributable to a surface reaction but could also result from an increased solubility of ozone at higher citric acid concentrations. Whether the acid-catalyzed chemistry may have a larger effect on the surface than in the bulk to offset the effect of bromide depletion also remains open.
Rural southeast Texas air quality measurements during the 2006 Texas Air Quality Study.
Schade, Gunnar W; Khan, Siraj; Park, Changhyoun; Boedeker, Ian
2011-10-01
The authors conducted air quality measurements of the criteria pollutants carbon monoxide, nitrogen oxides, and ozone together with meteorological measurements at a park site southeast of College Station, TX, during the 2006 Texas Air Quality Study II (TexAQS). Ozone, a primary focus of the measurements, was above 80 ppb during 3 days and above 75 ppb during additional 8 days in summer 2006, suggestive of possible violations of the ozone National Ambient Air Quality Standard (NAAQS) in this area. In concordance with other air quality measurements during the TexAQS II, elevated ozone mixing ratios coincided with northerly flows during days after cold front passages. Ozone background during these days was as high as 80 ppb, whereas southerly air flows generally provided for an ozone background lower than 40 ppb. Back trajectory analysis shows that local ozone mixing ratios can also be strongly affected by the Houston urban pollution plume, leading to late afternoon ozone increases of as high as 50 ppb above background under favorable transport conditions. The trajectory analysis also shows that ozone background increases steadily the longer a southern air mass resides over Texas after entering from the Gulf of Mexico. In light of these and other TexAQS findings, it appears that ozone air quality is affected throughout east Texas by both long-range and regional ozone transport, and that improvements therefore will require at least a regionally oriented instead of the current locally oriented ozone precursor reduction policies.
Future heat waves and surface ozone
NASA Astrophysics Data System (ADS)
Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica
2018-06-01
A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).
The impact of synoptic weather on UK surface ozone and implications for premature mortality
NASA Astrophysics Data System (ADS)
Pope, R. J.; Butt, E. W.; Chipperfield, M. P.; Doherty, R. M.; Fenech, S.; Schmidt, A.; Arnold, S. R.; Savage, N. H.
2016-12-01
Air pollutants, such as ozone, have adverse impacts on human health and cause, for example, respiratory and cardiovascular problems. In the United Kingdom (UK), peak surface ozone concentrations typically occur in the spring and summer and are controlled by emission of precursor gases, tropospheric chemistry and local meteorology which can be influenced by large-scale synoptic weather regimes. In this study we composite surface and satellite observations of summer-time (April to September) ozone under different UK atmospheric circulation patterns, as defined by the Lamb weather types. Anticyclonic conditions and easterly flows are shown to significantly enhance ozone concentrations over the UK relative to summer-time average values. Anticyclonic stability and light winds aid the trapping of ozone and its precursor gases near the surface. Easterly flows (NE, E, SE) transport ozone and precursor gases from polluted regions in continental Europe (e.g. the Benelux region) to the UK. Cyclonic conditions and westerly flows, associated with unstable weather, transport ozone from the UK mainland, replacing it with clean maritime (North Atlantic) air masses. Increased cloud cover also likely decrease ozone production rates. We show that the UK Met Office regional air quality model successfully reproduces UK summer-time ozone concentrations and ozone enhancements under anticyclonic and south-easterly conditions for the summer of 2006. By using established ozone exposure-health burden metrics, anticyclonic and easterly condition enhanced surface ozone concentrations pose the greatest public health risk.
NASA Astrophysics Data System (ADS)
Hess, P.; Kinnison, D.; Tang, Q.
2015-03-01
Despite the need to understand the impact of changes in emissions and climate on tropospheric ozone, the attribution of tropospheric interannual ozone variability to specific processes has proven difficult. Here, we analyze the stratospheric contribution to tropospheric ozone variability and trends from 1953 to 2005 in the Northern Hemisphere (NH) mid-latitudes using four ensemble simulations of the free running (FR) Whole Atmosphere Community Climate Model (WACCM). The simulations are externally forced with observed time-varying (1) sea-surface temperatures (SSTs), (2) greenhouse gases (GHGs), (3) ozone depleting substances (ODS), (4) quasi-biennial oscillation (QBO), (5) solar variability (SV) and (6) stratospheric sulfate surface area density (SAD). A detailed representation of stratospheric chemistry is simulated, including the ozone loss due to volcanic eruptions and polar stratospheric clouds. In the troposphere, ozone production is represented by CH4-NOx smog chemistry, where surface chemical emissions remain interannually constant. Despite the simplicity of its tropospheric chemistry, at many NH measurement locations, the interannual ozone variability in the FR WACCM simulations is significantly correlated with the measured interannual variability. This suggests the importance of the external forcing applied in these simulations in driving interannual ozone variability. The variability and trend in the simulated 1953-2005 tropospheric ozone from 30 to 90° N at background surface measurement sites, 500 hPa measurement sites and in the area average are largely explained on interannual timescales by changes in the 30-90° N area averaged flux of ozone across the 100 hPa surface and changes in tropospheric methane concentrations. The average sensitivity of tropospheric ozone to methane (percent change in ozone to a percent change in methane) from 30 to 90° N is 0.17 at 500 hPa and 0.21 at the surface; the average sensitivity of tropospheric ozone to the 100 hPa ozone flux (percent change in ozone to a percent change in the ozone flux) from 30 to 90° N is 0.19 at 500 hPa and 0.11 at the surface. The 30-90° N simulated downward residual velocity at 100 hPa increased by 15% between 1953 and 2005. However, the impact of this on the 30-90° N 100 hPa ozone flux is modulated by the long-term changes in stratospheric ozone. The ozone flux decreases from 1965 to 1990 due to stratospheric ozone depletion, but increases again by approximately 7% from 1990 to 2005. The first empirical orthogonal function of interannual ozone variability explains from 40% (at the surface) to over 80% (at 150 hPa) of the simulated ozone interannual variability from 30 to 90° N. This identified mode of ozone variability shows strong stratosphere-troposphere coupling, demonstrating the importance of the stratosphere in an attribution of tropospheric ozone variability. The simulations, with no change in emissions, capture almost 50% of the measured ozone change during the 1990s at a variety of locations. This suggests that a large portion of the measured change is not due to changes in emissions, but can be traced to changes in large-scale modes of ozone variability. This emphasizes the difficulty in the attribution of ozone changes, and the importance of natural variability in understanding the trends and variability of ozone. We find little relation between the El Niño-Southern Oscillation (ENSO) index and large-scale tropospheric ozone variability over the long-term record.
Responses of Surface Ozone Air Quality to Anthropogenic Nitrogen Deposition
NASA Astrophysics Data System (ADS)
Zhang, L.; Zhao, Y.; Tai, A. P. K.; Chen, Y.; Pan, Y.
2017-12-01
Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. We combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by addition of atmospheric deposited nitrogen: emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index (LAI) in the model), could increase surface ozone from increased biogenic VOC emissions, but could also decrease ozone due to higher ozone dry deposition velocities. Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations show general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, Western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate and land use driven surface ozone changes at regional scales, and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important implications for future air quality prediction.
NASA Technical Reports Server (NTRS)
Stauffer, Ryan M.; Thompson, Anne M.; Oltmans, Samuel J.; Johnson, Bryan J.
2016-01-01
Much attention has been focused on the transport of ozone (O3) to the western U.S., particularly given the latest revision of the National Ambient Air Quality Standard to 70 parts per billion by volume (ppbv) of O3. This makes quantifying the contributions of stratosphere-to-troposphere exchange, local pollution, and pollution transport to this region essential. To evaluate free-tropospheric and surface O3 in the western U.S., we use self-organizing maps to cluster 18 years of ozonesonde profiles from Trinidad Head, CA. Three of nine O3 mixing ratio profile clusters exhibit thin laminae of high O3 above Trinidad Head. The high O3 layers are located between 1 and 6 km above mean sea level and reside above an inversion associated with a northern location of the Pacific subtropical high. Ancillary data (reanalyses, trajectories, and remotely sensed carbon monoxide) help identify the high O3 sources in one cluster, but distinguishing mixed influences on the elevated O3 in other clusters is difficult. Correlations between the elevated tropospheric O3 and surface O3 at high-altitude monitors at Lassen Volcanic and Yosemite National Parks, and Truckee, CA, are marked and long lasting. The temporal correlations likely result from a combination of transport of baseline O3 and covarying meteorological parameters. Days corresponding to the high O3 clusters exhibit hourly surface O3 anomalies of +5-10 ppbv compared to a climatology; the positive anomalies can last up to 3 days after the ozonesonde profile. The profile and surface O3 links demonstrate the importance of regular ozonesonde profiling at Trinidad Head.
NASA Technical Reports Server (NTRS)
Stauffer, Ryan M.; Thompson, Anne M.; Oltmans, Samual J.; Johnson, Bryan J.
2017-01-01
Much attention has been focused on the transport of ozone (O3) to the western U.S., particularly given the latest revision of the National Ambient Air Quality Standard to 70 parts per billion by volume (ppbv) of O3. This makes quantifying the contributions of stratosphere-to-troposphere exchange, local pollution, and pollution transport to this region essential. To evaluate free-tropospheric and surface O3 in the western U.S., we use self-organizing maps to cluster 18 years of ozonesonde profiles from Trinidad Head, CA. Three of nine O3 mixing ratio profile clusters exhibit thin laminae of high O3 above Trinidad Head. The high O3 layers are located between 1 and 6 km above mean sea level and reside above an inversion associated with a northern location of the Pacific subtropical high. Ancillary data (reanalyses, trajectories, and remotely sensed carbon monoxide) help identify the high O3 sources in one cluster, but distinguishing mixed influences on the elevated O3 in other clusters is difficult. Correlations between the elevated tropospheric O3 and surface O3 at high-altitude monitors at Lassen Volcanic and Yosemite National Parks, and Truckee, CA, are marked and long lasting. The temporal correlations likely result from a combination of transport of baseline O3 and covarying meteorological parameters. Days corresponding to the high O3 clusters exhibit hourly surface O3 anomalies of +5-10 ppbv compared to a climatology; the positive anomalies can last up to 3 days after the ozonesonde profile. The profile and surface O3 links demonstrate the importance of regular ozonesonde profiling at Trinidad Head.
NASA Astrophysics Data System (ADS)
Mahmud, A.; Di, P.; Mims, D.; Avise, J.; DaMassa, J.; Kaduwela, A. P.
2015-12-01
The California Air Resources Board (CARB) has been monitoring boundary layer ozone at the Walnut Grove Tower (WGT) since 1996 for investigating regional transport and vertical profile. Walnut Grove is located between Sacramento and Stockton, CA in the Sacramento - San Joaquin Delta. Sampling inlets are positioned at 30-ft, 400-ft, 800-ft, 1200-ft and 1600-ft levels of the 2000-ft tower, which is one of the tallest monitoring towers in the Western US. Ozone, ambient temperature, wind speed, and wind direction are simultaneously measured at each level, and reported as hourly averages. The current study included analyses of available ozone and corresponding meteorological data for the months of June - September from 1996 - 2014 with objectives to: 1) explore trends and inter-annual variability of ozone, 2) examine any correlations between ozone and meteorological parameters, 3) understand interactions of ozone measured at various levels, and 4) assess how well a regulatory state-of-the-science air quality model such as the Community Multi-scale Air Quality Model (CMAQ) captures observation. Daily 1-hr maximum ozone has been consistently decreasing during the 1996 - 2014 period at a rate of ~1 ppb per year. This indicates that CARB's measures to control ambient ozone have been effective over the past years. Evolution of the vertical profile throughout the day shows that ozone is fairly homogeneously mixed between 1 - 5 pm, when mixing height typically reaches the maximum. Ozone at 30-ft shows the greatest variability because of its proximity to the ground and emissions sources - rises faster during morning hours (7 - 10 am) and declines more rapidly during evening hours (7 - 10 pm) compared to other levels. Air masses reaching the tower are predominantly southwesterly (247 - 257 deg.) at the bottom, and southwesterly to slightly northwesterly (254 - 302 deg.) at top levels. Daily 1-hr maximum ozone was negatively correlated with wind speed (i.e. ozone was high under low wind condition) and positively correlated with ambient temperature (i.e. ozone was high under high temperature condition) during ~40% and ~50% of the time, respectively. A modeling exercise for Jun - Sep of 2012 shows that CMAQ captures the observed evolution and vertical mixing of ozone throughout the day quite well in the boundary layer.
Characteristics of ozone vertical profile observed in the boundary layer around Beijing in autumn.
Ma, Zhiqiang; Zhang, Xiaoling; Xu, Jing; Zhao, Xiujuan; Meng, Wei
2011-01-01
In the autumn of 2008, the vertical profiles of ozone and meteorological parameters in the low troposphere (0-1000 m) were observed at two sites around Beijing, specifically urban Nanjiao and rural Shangdianzi. At night and early morning, the lower troposphere divided into two stratified layers due to temperature inversion. Ozone in the lower layer showed a large gradient due to the titration of NO. Air flow from the southwest brought ozone-rich air to Beijing, and the ozone profiles were marked by a continuous increase in the residual layer at night. The accumulated ozone in the upper layer played an important role in the next day's surface peak ozone concentration, and caused a rapid increase in surface ozone in the morning. Wind direction shear and wind speed shear exhibited different influences on ozone profiles and resulted in different surface ozone concentrations in Beijing.
Variability of winter and summer surface ozone in Mexico City on the intraseasonal timescale
NASA Astrophysics Data System (ADS)
Barrett, Bradford S.; Raga, Graciela B.
2016-12-01
Surface ozone concentrations in Mexico City frequently exceed the Mexican standard and have proven difficult to forecast due to changes in meteorological conditions at its tropical location. The Madden-Julian Oscillation (MJO) is largely responsible for intraseasonal variability in the tropics. Circulation patterns in the lower and upper troposphere and precipitation are associated with the oscillation as it progresses eastward around the planet. It is typically described by phases (labeled 1 through 8), which correspond to the broad longitudinal location of the active component of the oscillation with enhanced precipitation. In this study we evaluate the intraseasonal variability of winter and summer surface ozone concentrations in Mexico City, which was investigated over the period 1986-2014 to determine if there is a modulation by the MJO that would aid in the forecast of high-pollution episodes. Over 1 000 000 hourly observations of surface ozone from five stations around the metropolitan area were standardized and then binned by active phase of the MJO, with phase determined using the real-time multivariate MJO index. Highest winter ozone concentrations were found in Mexico City on days when the MJO was active and in phase 2 (over the Indian Ocean), and highest summer ozone concentrations were found on days when the MJO was active and in phase 6 (over the western Pacific Ocean). Lowest winter ozone concentrations were found during active MJO phase 8 (over the eastern Pacific Ocean), and lowest summer ozone concentrations were found during active MJO phase 1 (over the Atlantic Ocean). Anomalies of reanalysis-based cloud cover and UV-B radiation supported the observed variability in surface ozone in both summer and winter: MJO phases with highest ozone concentration had largest positive UV-B radiation anomalies and lowest cloud-cover fraction, while phases with lowest ozone concentration had largest negative UV-B radiation anomalies and highest cloud-cover fraction. Furthermore, geopotential height anomalies at 250 hPa favoring reduced cloudiness, and thus elevated surface ozone, were found in both seasons during MJO phases with above-normal ozone concentrations. Similar height anomalies at 250 hPa favoring enhanced cloudiness, and thus reduced surface ozone, were found in both seasons during MJO phases with below-normal ozone concentrations. These anomalies confirm a physical pathway for MJO modulation of surface ozone via modulation of the upper troposphere.
NASA Astrophysics Data System (ADS)
Couach, O.; Balin, I.; Jimenez, R.; Quaglia, P.; Kirchner, F.; Ristori, P.; Simeonov, V.; Clappier, A.; van den Bergh, H.; Calpini, B.
In order to understand, to predict and to elaborate solutions concerning the photo- chemical and meteorological processes, which occur often in the summer time over the Grenoble city and its three surroundings valleys, both modeling and measurement approaches were considered. Two intensive air pollution and meteorological measure- ments campaigns were performed in 1998 and 1999. Ozone (O3) and other pollutants (NOx, CH2O, SO2, etc) as well as wind, temperature, solar radiation and relative hu- midity were intensively measured at surface level combined with 3D measurements range by using: an instrumented aircraft (Metair), two ozone lidars (e.g. EPFL ozone dial lidar) and wind profilers (e.g.Degreane). This poster will focus on the main results of these measurements like the 3D ozone distribution, the mixing height/planetary boundary layer evolution, the meteorological behavior, and the other pollutants evalu- ation. The paper also highlights the use of these measurements as a necessary database for comparison and checking (validation) of the model performances and thus to allow modeling solutions in predicting the air pollution events and thus permitting to build the right abatement strategies.
NASA Astrophysics Data System (ADS)
Rim, Donghyun; Gall, Elliott T.; Maddalena, Randy L.; Nazaroff, William W.
2016-01-01
Elevated tropospheric ozone concentrations are associated with increased morbidity and mortality. Indoor ozone chemistry affects human exposure to ozone and reaction products that also may adversely affect health and comfort. Reactive uptake of ozone has been characterized for many building materials; however, scant information is available on how diurnal variation of ambient ozone influences ozone reaction with indoor surfaces. The primary objective of this study is to investigate ozone-surface reactions in response to a diurnally varying ozone exposure for three common building materials: ceiling tile, painted drywall, and carpet tile. A secondary objective is to examine the effects of air temperature and humidity. A third goal is to explore how conditioning of materials in an occupied office building might influence subsequent ozone-surface reactions. Experiments were performed at bench-scale with inlet ozone concentrations varied to simulate daytime (ozone elevated) and nighttime (ozone-free in these experiments) periods. To simulate office conditions, experiments were conducted at two temperatures (22 °C and 28 °C) and three relative humidity values (25%, 50%, 75%). Effects of indoor surface exposures were examined by placing material samples in an occupied office and repeating bench-scale characterization after exposure periods of 1 and 2 months. Deposition velocities were observed to be highest during the initial hour of ozone exposure with slow decrease in the subsequent hours of simulated daytime conditions. Daily-average ozone reaction probabilities for fresh materials are in the respective ranges of (1.7-2.7) × 10-5, (2.8-4.7) × 10-5, and (3.0-4.5) × 10-5 for ceiling tile, painted drywall, and carpet tile. The reaction probability decreases by 7%-47% across the three test materials after two 8-h periods of ozone exposure. Measurements with the samples from an occupied office reveal that deposition velocity can decrease or increase with time. Influence of temperature and humidity on ozone-surface reactivity was not strong.
Nicholas, R; Dunton, P; Tatham, A; Fielding, L
2013-08-01
The effects of gaseous ozone and open air factor (OAF) on environmental Listeria monocytogenes attached to three common food contact surfaces were investigated. Listeria monocytogenes on different food contact surfaces was treated with ozone and OAF. Microbiological counts, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were performed. Ozone at 10 ppm gave <1-log reduction when L. monocytogenes was attached to stainless steel, while 45 ppm gave a log reduction of 3.41. OAF gave better log reductions than 10 ppm ozone, but lower log reductions than 45 ppm. Significant differences were found between surfaces. Biofilm organisms were significantly more resistant than those surface attached on stainless steel. SEM and AFM demonstrated different membrane and cell surface modifications following ozone or OAF treatment. The strain used demonstrated higher resistance to ozone than previous studies. This may be due to the fact that it was isolated from a food manufacturing premises that used oxidizing disinfectants. OAF was more effective at reducing the levels of the organism than an ozone concentration of 10 ppm. Pathogen management strategies must account for resistance of environmental strains when validating cleaning and disinfection. OAF has shown potential for surface decontamination compared with ozone. SEM and AFM are valuable tools for determining mechanisms of action of antimicrobial agents. © 2013 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Fadeyi, M. O.; Weschler, C. J.; Tham, K. W.
This study examined the impact of recirculation rates (7 and 14 h -1), ventilation rates (1 and 2 h -1), and filtration on secondary organic aerosols (SOAs) generated by ozone of outdoor origin reacting with limonene of indoor origin. Experiments were conducted within a recirculating air handling system that serviced an unoccupied, 236 m 3 environmental chamber configured to simulate an office; either no filter, a new filter or a used filter was located downstream of where outdoor air mixed with return air. For otherwise comparable conditions, the SOA number and mass concentrations at a recirculation rate of 14 h -1 were significantly smaller than at a recirculation rate of 7 h -1. This was due primarily to lower ozone concentrations, resulting from increased surface removal, at the higher recirculation rate. Increased ventilation increased outdoor-to-indoor transport of ozone, but this was more than offset by the increased dilution of SOA derived from ozone-initiated chemistry. The presence of a particle filter (new or used) strikingly lowered SOA number and mass concentrations compared with conditions when no filter was present. Even though the particle filter in this study had only 35% single-pass removal efficiency for 100 nm particles, filtration efficiency was greatly amplified by recirculation. SOA particle levels were reduced to an even greater extent when an activated carbon filter was in the system, due to ozone removal by the carbon filter. These findings improve our understanding of the influence of commonly employed energy saving procedures on occupant exposures to ozone and ozone-derived SOA.
Total ozone and surface temperature correlations during 1972 - 1981
NASA Technical Reports Server (NTRS)
Parsons, C. L.
1983-01-01
Ten years of Dobson spectrophotometer total ozone measurements and surface temperature observations were used to construct monthly mean values of the two parameters. The variability of both parameters is greatest in the months of January and February. Indeed, in January there is an apparent correlation between high total ozone values and abnormally low surface temperatures. However, the correlation does not hold in February. By reviewing the history of stratospheric warmings during this period, it is argued that the ozone and surface temperature correlation is influenced by the advection or lack of advection of ozone rich arctic air resulting from sudden stratospheric warmings.
Infrared measurements of atmospheric gases above Mauna Loa, Hawaii, in February 1987
NASA Technical Reports Server (NTRS)
Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Murcray, F. H.; Blatherwick, R. D.
1988-01-01
The IR absorptions spectra of 13 minor and trace atmospheric gases, recorded by the NOAA's Geophysical Monitoring for Climate Change (GMCC) program station at Mauna Loa, Hawaii, for four days in February 1987, were analyzed to determine simultaneous total vertical column amounts for these gases. Comparisons with other data indicate that the NOAA GMCC surface volume mixing ratios are good measures of the mean volume mixing ratios of these gases in the troposphere and that Mauna Loa is a favorable site for IR monitoring of atmospheric gases. The ozone total columns deduced from the IR spectra agreed with the correlative Umkehr observations.
Solar Effects on Climate and the Maunder Minimum: Minimum Certainty
NASA Technical Reports Server (NTRS)
Rind, David
2003-01-01
The current state of our understanding of solar effects on climate is reviewed. As an example of the relevant issues, the climate during the Maunder Minimum is compared with current conditions in GCM simulations that include a full stratosphere and parameterized ozone response to solar spectral irradiance variability and trace gas changes. The GISS Global Climate/Middle Atmosphere Model coupled to a q-flux/mixed layer model is used for the simulations, which begin in 1500 and extend to the present. Experiments were made to investigate the effect of total versus spectrally-varying solar irradiance changes; spectrally-varying solar irradiance changes on the stratospheric ozone/climate response with both pre-industrial and present trace gases; and the impact on climate and stratospheric ozone of the preindustrial trace gases and aerosols by themselves. The results showed that: (1) the Maunder Minimum cooling relative to today was primarily associated with reduced anthropogenic radiative forcing, although the solar reduction added 40% to the overall cooling. There is no obvious distinguishing surface climate pattern between the two forcings. (2)The global and tropical response was greater than 1 C, in a model with a sensitivity of 1.2 C per W m-2. To reproduce recent low-end estimates would require a sensitivity 1/4 as large. (3) The global surface temperature change was similar when using the total and spectral irradiance prescriptions, although the tropical response was somewhat greater with the former, and the stratospheric response greater with the latter. (4) Most experiments produce a relative negative phase of the NAO/AO during the Maunder Minimum, with both solar and anthropogenic forcing equally capable, associated with the tropical cooling and relative poleward EP flux refraction. (5) A full stratosphere appeared to be necessary for the negative AO/NAO phase, as was the case with this model for global warming experiments, unless the cooling was very large, while the ozone response played a minor role and did not influence surface temperature significantly. (6) Stratospheric ozone was most affected by the difference between present day and preindustrial atmospheric composition and chemistry, with increases in the upper and lower stratosphere during the Maunder Minimum. While the estimated UV reduction led to ozone decreases, this was generally less important than the anthropogenic effect except in the upper middle stratosphere, as judged by two different ozone photochemistry schemes. (7) The effect of the reduced solar irradiance on stratospheric ozone and on climate was similar in Maunder Minimum and current atmospheric conditions.
Retrieval of Surface Ozone from UV-MFRSR Irradiances using Deep Learning
NASA Astrophysics Data System (ADS)
Chen, M.; Sun, Z.; Davis, J.; Zempila, M.; Liu, C.; Gao, W.
2017-12-01
High concentration of surface ozone is harmful to humans and plants. USDA UV-B Monitoring and Research Program (UVMRP) uses Ultraviolet (UV) version of Multi-Filter Rotating Shadowband Radiometer (UV-MFRSR) to measure direct, diffuse, and total irradiances every three minutes at seven UV channels (i.e. 300, 305, 311, 317, 325, 332, and 368 nm channels with 2 nm full width at half maximum). Based on the wavelength dependency of aerosol optical depths, there have been plenty of literatures exploring retrieval methods of total column ozone from UV-MFRSR measurements. However, few has explored the retrieval of surface ozone. The total column ozone is the integral of the multiplication of ozone concentration (varying by height and time) and cross section (varying by wavelength and temperature) over height. Because of the distinctive values of ozone cross section in the UV region, the irradiances at seven UV channels have the potential to resolve the ozone concentration at multiple vertical layers. If the UV irradiances at multiple time points are considered together, the uncertainty or the vertical resolution of ozone concentrations can be further improved. In this study, the surface ozone amounts at the UVMRP station located at Billings, Oklahoma are estimated from the adjacent (i.e. within 200 miles) US Environmental Protection Agency (EPA) surface ozone observations using the spatial analysis technique. Then, the (direct normal) irradiances of UVMRP at one or more time points as inputs and the corresponding estimated surface ozone from EPA as outputs are fed into a pre-trained (dense) deep neural network (DNN) to explore the hidden non-linear relationship between them. This process could improve our understanding of their physical/mathematical relationship. Finally, the optimized DNN is tested with the preserved 5% of the dataset, which are not used during training, to verify the relationship.
Exposure-Relevant Ozone Chemistry in Occupied Spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Beverly Kaye
2009-04-01
Ozone, an ambient pollutant, is transformed into other airborne pollutants in the indoor environment. In this dissertation, the type and amount of byproducts that result from ozone reactions with common indoor surfaces, surface residues, and vapors were determined, pollutant concentrations were related to occupant exposure, and frameworks were developed to predict byproduct concentrations under various indoor conditions. In Chapter 2, an analysis is presented of secondary organic aerosol formation from the reaction of ozone with gas-phase, terpene-containing consumer products in small chamber experiments under conditions relevant for residential and commercial buildings. The full particle size distribution was continuously monitored, andmore » ultrafine and fine particle concentrations were in the range of 10 to>300 mu g m -3. Particle nucleation and growth dynamics were characterized.Chapter 3 presents an investigation of ozone reactions with aircraft cabin surfaces including carpet, seat fabric, plastics, and laundered and worn clothing fabric. Small chamber experiments were used to determine ozone deposition velocities, ozone reaction probabilities, byproduct emission rates, and byproduct yields for each surface category. The most commonly detected byproducts included C1?C10 saturated aldehydes and skin oil oxidation products. For all materials, emission rates were higher with ozone than without. Experimental results were used to predict byproduct exposure in the cabin and compare to other environments. Byproduct levels are predicted to be similar to ozone levels in the cabin, which have been found to be tens to low hundreds of ppb in the absence of an ozone converter. In Chapter 4, a model is presented that predicts ozone uptake by and byproduct emission from residual chemicals on surfaces. The effects of input parameters (residue surface concentration, ozone concentration, reactivity of the residue and the surface, near-surface airflow conditions, and byproduct yield) were explored. In Chapter 5, the reaction of ozone with permethrin, a residual insecticide used in aircraft cabins, to form phosgene is investigated. A derivatization technique was developed to detect phosgene at low levels, and chamber experiments were conducted with permethrin-coated cabin materials. It was determined that phosgene formation, if it occurs in the aircraft cabin, is not likely to exceed the relevant, health-based phosgene exposure guidelines.« less
NASA Technical Reports Server (NTRS)
Browell, E. V.; Shipley, S. T.; Butler, C. F.; Ismail, S.
1985-01-01
A detailed summary of the NASA Ultraviolet Differential Absorption Lidar (UV DIAL) data archive obtained during the EPA Persistent Elevated Pollution Episode/Northeast Regional Oxidant Study (PEPE/NEROS) Summer Field Experiment Program (July through August 1980) is presented. The UV dial data set consists of remote measurements of mixed layer heights, aerosol backscatter cross sections, and sequential ozone profiles taken during 14 long-range flights onboard the NASA Wallops Flight Center Electra aircraft. These data are presented in graphic and tabular form, and they have been submitted to the PEPE/NEROS data archive on digital magnetic tape. The derivation of mixing heights and ozone profiles from UV Dial signals is discussed, and detailed intercomparisons with measurements obtained by in situ sensors are presented.
Analysis of Strong Wintertime Ozone Events in an Area of Extensive Oil and Gas Extraction
NASA Astrophysics Data System (ADS)
Rappenglück, Bernhard; Ackermann, Luis; Alvarez, Sergio; Golovko, Julia; Buhr, Martin; Field, Robert; Soltis, Jeff; Montague, Derek C.; Hauze, Bill; Scott, Adamson; Risch, Dan; Wilkerson, George; Bush, David; Stoeckenius, Till; Keslar, Cara
2015-04-01
During recent years, elevated ozone (O3) values have been observed repeatedly in the Upper Green River Basin (UGRB), Wyoming during wintertime. This paper presents an analysis of high ozone days in late winter 2011 (1-hour average up to 166 ppbv). Intensive Observational Periods (IOPs) were performed which included comprehensive surface and boundary layer measurements. Low windspeeds in combination with low mixing layer heights (~50 m agl) are essential for accumulation of pollutants. Air masses contain substantial amounts of reactive nitrogen (NOx) and non-methane hydrocarbons (NMHC) emitted from fossil fuel exploration activities in the Pinedale Anticline. On IOP days in the morning hours reactive nitrogen (up to 69%), then aromatics and alkanes (each ~10-15%; mostly ethane and propane) are major contributors to the hydroxyl (OH) reactivity. This time frame largely coincides with lowest NMHC/NOx ratios (~50), reflecting a relatively low NMHC mixture, and a change from a NOx-limited regime towards a NMHC limited regime. OH production on IOP days is mainly due to nitrous acid (HONO). On a 24-hr basis and as determined for a measurement height of 1.80 m above the surface HONO photolysis on IOP days can contribute ~83% to OH production on average, followed by alkene ozonolysis (~9%). Photolysis by ozone and HCHO photolysis contributes about 4% each to hydroxyl formation. High HONO levels (maximum hourly median on IOP days: 1,096 pptv) are favored by a combination of shallow boundary layer conditions and enhanced photolysis rates due to the high albedo of the snow surface. HONO is most likely formed through (i) abundant nitric acid (HNO3) produced in atmospheric oxidation of NOx, deposited onto the snow surface and undergoing photo-enhanced heterogeneous conversion to HONO and (ii) combustion related emission of HONO. HONO production is confined to the lowermost 10 m of the boundary layer. HONO, serves as the most important precursor for OH, strongly enhanced due to the high albedo of the snow cover.
Using Ozone Lidar to Investigate Sources of High Ozone Concentrations in the Western United States
NASA Astrophysics Data System (ADS)
Senff, C. J.; Langford, A. O.; Alvarez, R. J.; Brewer, Wm. A.; Banta, R. M.; Marchbanks, R. D.; Sandberg, S. P.; Weickmann, A. M.; Holloway, J. S.; Williams, E. J.
2016-06-01
We have used NOAA's Tunable Optical Profiler for Aerosol and oZone (TOPAZ) ozone lidar to investigate the sources of high surface ozone concentrations in two different regions of the western United States (US): the Uintah Basin in northeast Utah and Clark County in southern Nevada, which includes the city of Las Vegas. The Uintah Basin is a booming oil and gas producing region that often suffers from very high wintertime ozone concentrations. Clark County experiences violations of the US ozone standard primarily in spring and early summer despite a lack of any major local pollution sources. TOPAZ lidar observations, in conjunction with surface in situ measurements and model results, provided strong evidence that the high wintertime ozone concentrations in the Uintah Basin are primarily driven by local emissions associated with oil and gas exploration, whereas the Clark County ozone exceedances are often caused by ozone-rich air that is transported from the lower stratosphere all the way down to the earth's surface.
Why do Models Overestimate Surface Ozone in the Southeastern United States?
NASA Astrophysics Data System (ADS)
Travis, K.; Jacob, D.; Fisher, J. A.; Kim, S.; Marais, E. A.; Zhu, L.; Yu, K.; Miller, C. E.; Yantosca, R.; Payer Sulprizio, M.; Thompson, A. M.; Wennberg, P. O.; Crounse, J.; St Clair, J. M.; Cohen, R. C.; Laughner, J.; Dibb, J. E.; Hall, S. R.; Ullmann, K.; Wolfe, G.; Pollack, I. B.; Peischl, J.; Neuman, J. A.; Zhou, X.
2016-12-01
Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx = NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25°×0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high in the Southeast and nationally by a factor of 2. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Upper tropospheric NO2 from lightning makes a large contribution to the satellite observations that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft, and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 8±13 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This may be caused by excessively dry conditions in the model, representing another factor important in the simulation of surface ozone.
NASA Technical Reports Server (NTRS)
Tong, Daniel; Pan, Li; Chen, Weiwei; Lamsal, Lok; Lee, Pius; Tang, Youhua; Kim, Hyuncheol; Kondragunta, Shobha; Stajner, Ivanka
2016-01-01
Satellite and ground observations detected large variability in nitrogen oxides (NOx) during the 2008 economic recession, but the impact of the recession on air quality has not been quantified. This study combines observed NOx trends and a regional chemical transport model to quantify the impact of the recession on surface ozone (O3) levels over the continental United States. The impact is quantified by simulating O3 concentrations under two emission scenarios: business-as-usual (BAU) and recession. In the BAU case, the emission projection from the Cross-State Air Pollution Rule is used to estimate the would-be NOx emission level in 2011. In the recession case, the actual NO2 trends observed from Air Quality System ground monitors and the Ozone Monitoring Instrument on the Aura satellite are used to obtain realistic changes in NOx emissions. The model prediction with the recession effect agrees better with ground O3 observations over time and space than the prediction with the BAU emission. The results show that the recession caused a 12ppbv decrease in surface O3 concentration over the eastern United States, a slight increase (0.51ppbv) over the Rocky Mountain region, and mixed changes in the Pacific West. The gain in air quality benefits during the recession, however, could be quickly offset by the much slower emission reduction rate during the post-recession period.
NASA Astrophysics Data System (ADS)
Zhao, Yuanhong; Zhang, Lin; Tai, Amos P. K.; Chen, Youfan; Pan, Yuepeng
2017-08-01
Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. Here we combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model, CLM) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by the addition of atmospheric deposited nitrogen - namely, emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index, LAI, in the model), could increase surface ozone from increased biogenic VOC emissions (e.g., a 6.6 Tg increase in isoprene emission), but it could also decrease ozone due to higher ozone dry deposition velocities (up to 0.02-0.04 cm s-1 increases). Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations shows general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate- and land-use-driven surface ozone changes at regional scales and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important implications for future air quality prediction.
NASA Technical Reports Server (NTRS)
Brinksma, E. J.; Meijer, Y. J.; Connor, B. J.; Manney, G. L.; Bergwerff, J. B.; Bodeker, G. E.; Boyd, I. S.; Liley, J. B.; Hogervorst, W.; Hovenier, J. W.;
1998-01-01
During early August 1997, the ozone column density measured over Lauder was unusually low, with a minimum value of 222 Dobson Units (DU) at August 10. These observations are striking since in August, during the Austral winter, the ozone column density should be heading towards its yearly maximum; The August mean ozone column density measured over Lauder between 1987 and 1996 was 348(+/-28) DU, the lowest monthly average in these ten years was 255 DU. Regular altitude profile measurements of ozone, performed at Network for the Detection of Stratospheric Change (NDSC) station Lauder, make it possible to do a detailed, altitude-resolved, study of the low ozone observations. The measurements show ozone poor air in two altitude regions of the stratosphere: A 'high region', extending from the 600 K to the 1050 K isentrope (25 to 34 km), and a 'low region', below about 550 K (22 km). High resolution reverse trajectory maps of potential vorticity (PV) and ozone mixing ratio, based on the assumption of passive advection by the large-scale three-dimensional winds, show that in the 'high region' the ozone poor air was part of the polar vortex, which was centered off the pole and extended over Lauder for several days, while in the 'low region' the ozone poor air was mixed in from low latitudes. A rapid recovery of the ozone column density, by more than 110 DU within 24 hours, was observed when in the low region an ozone rich filament of the polar vortex moved over Lauder, while in the high region the (ozone poor) high part of the vortex moved away.
Spatio-temporal observations of tertiary ozone maximum
NASA Astrophysics Data System (ADS)
Sofieva, V. F.; Kyrölä, E.; Verronen, P. T.; Seppälä, A.; Tamminen, J.; Marsh, D. R.; Smith, A. K.; Bertaux, J.-L.; Hauchecorne, A.; Dalaudier, F.; Fussen, D.; Vanhellemont, F.; Fanton D'Andon, O.; Barrot, G.; Guirlet, M.; Fehr, T.; Saavedra, L.
2009-03-01
We present spatio-temporal distributions of tertiary ozone maximum (TOM), based on GOMOS (Global Ozone Monitoring by Occultation of Stars) ozone measurements in 2002-2006. The tertiary ozone maximum is typically observed in the high-latitude winter mesosphere at altitude ~72 km. Although the explanation for this phenomenon has been found recently - low concentrations of odd-hydrogen cause the subsequent decrease in odd-oxygen losses - models have had significant deviations from existing observations until recently. Good coverage of polar night regions by GOMOS data has allowed for the first time obtaining spatial and temporal observational distributions of night-time ozone mixing ratio in the mesosphere. The distributions obtained from GOMOS data have specific features, which are variable from year to year. In particular, due to a long lifetime of ozone in polar night conditions, the downward transport of polar air by the meridional circulation is clearly observed in the tertiary ozone maximum time series. Although the maximum tertiary ozone mixing ratio is achieved close to the polar night terminator (as predicted by the theory), TOM can be observed also at very high latitudes, not only in the beginning and at the end, but also in the middle of winter. We have compared the observational spatio-temporal distributions of tertiary ozone maximum with that obtained using WACCM (Whole Atmosphere Community Climate Model) and found that the specific features are reproduced satisfactorily by the model. Since ozone in the mesosphere is very sensitive to HOx concentrations, energetic particle precipitation can significantly modify the shape of the ozone profiles. In particular, GOMOS observations have shown that the tertiary ozone maximum was temporarily destroyed during the January 2005 and December 2006 solar proton events as a result of the HOx enhancement from the increased ionization.
Spatio-temporal observations of the tertiary ozone maximum
NASA Astrophysics Data System (ADS)
Sofieva, V. F.; Kyrölä, E.; Verronen, P. T.; Seppälä, A.; Tamminen, J.; Marsh, D. R.; Smith, A. K.; Bertaux, J.-L.; Hauchecorne, A.; Dalaudier, F.; Fussen, D.; Vanhellemont, F.; Fanton D'Andon, O.; Barrot, G.; Guirlet, M.; Fehr, T.; Saavedra, L.
2009-07-01
We present spatio-temporal distributions of the tertiary ozone maximum (TOM), based on GOMOS (Global Ozone Monitoring by Occultation of Stars) ozone measurements in 2002-2006. The tertiary ozone maximum is typically observed in the high-latitude winter mesosphere at an altitude of ~72 km. Although the explanation for this phenomenon has been found recently - low concentrations of odd-hydrogen cause the subsequent decrease in odd-oxygen losses - models have had significant deviations from existing observations until recently. Good coverage of polar night regions by GOMOS data has allowed for the first time to obtain spatial and temporal observational distributions of night-time ozone mixing ratio in the mesosphere. The distributions obtained from GOMOS data have specific features, which are variable from year to year. In particular, due to a long lifetime of ozone in polar night conditions, the downward transport of polar air by the meridional circulation is clearly observed in the tertiary ozone maximum time series. Although the maximum tertiary ozone mixing ratio is achieved close to the polar night terminator (as predicted by the theory), TOM can be observed also at very high latitudes, not only in the beginning and at the end, but also in the middle of winter. We have compared the observational spatio-temporal distributions of the tertiary ozone maximum with that obtained using WACCM (Whole Atmosphere Community Climate Model) and found that the specific features are reproduced satisfactorily by the model. Since ozone in the mesosphere is very sensitive to HOx concentrations, energetic particle precipitation can significantly modify the shape of the ozone profiles. In particular, GOMOS observations have shown that the tertiary ozone maximum was temporarily destroyed during the January 2005 and December 2006 solar proton events as a result of the HOx enhancement from the increased ionization.
NASA Astrophysics Data System (ADS)
Biswas, J.; Farooqui, Z.; Guttikunda, S. K.
2012-12-01
It is well known that meteorological parameters have significant impact on surface ozone concentrations. Therefore it is important to remove the effects of meteorology on ozone concentrations to correctly estimate long-term trends in ozone levels due to the alterations in precursor emissions. This is important for the development of effectual control strategies. In this study surface observed ozone trends in New Delhi are analyzed using Komogorov-Zurbenko (KZ) filter, US EPA ozone adjustment due to weather approach and the classification and regression tree method. The statistical models are applied to the ozone data at three observational sites in New Delhi metropolitan areas, 1) Income Tax Office (ITO) 2) Sirifort and 3) Delhi College of Engineering (DCE). The ITO site is located adjacent to a traffic crossing, Sirifort is an urban site and the DCE site is located in a residential area. The ITO site is also influenced by local industrial emissions. DCE has higher ozone levels than the other two sites. It was found that ITO has lowest ozone concentrations amongst the three sites due to ozone titrating due to industrial and on-road mobile NOx emissions. The statistical methods employed can assess ozone trends at these sites with a high degree of confidence and the results can be used to gauge the effectiveness of control strategies on surface ozone levels in New Delhi.
Surface ozone variability at Kislovodsk Observatory
NASA Technical Reports Server (NTRS)
Elansky, Nikolay F.; Makarov, Oleg V.; Senik, Irina A.
1994-01-01
The results of the surface ozone observations at the Observatory 'Kislovodsk', situated in the North Caucasus at the altitude 2070 m a.s.l., are given. The observatory is in the background conditions and the variations of the surface ozone are determined by the natural dynamic and photochemical processes. The mean value of the concentration and its seasonal variations are very near to those obtained at the high-mountain stations in Alps. The daily variations have the features, which remain stable during all warm period of the year (April-October). These features, including the minimum of the surface ozone at noon, are formed by the mountain-valley circulation. The significant variations of the surface ozone are connected with the unstationary lee waves.
NASA Technical Reports Server (NTRS)
Bowman, K. W.; Jones, D.; Logan, J.; Worden, H.; Boersma, F.; Chang, R.; Kulawik, S.; Osterman, G.; Worden, J.
2008-01-01
The chemical and dynamical processes governing the zonal variability of tropical tropospheric ozone and carbon monoxide are investigated for November 2004 using satellite observations, in-situ measurements, and chemical transport models in conjunction with inverse-estimated surface emissions. Vertical ozone profile estimates from the Tropospheric Emission Spectrometer (TES) and ozone sonde measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ) network show the so called zonal 'wave-one' pattern, which is characterized by peak ozone concentrations (70-80 ppb) centered over the Atlantic, as well as elevated concentrations of ozone over Indonesia and Australia (60-70 ppb) in the lower troposphere. Observational evidence from TES CO vertical profiles and Ozone Monitoring Instrument (OMI) NO2 columns point to regional surface emissions as an important contributor to the elevated ozone over Indonesia. This contribution is investigated with the GEOS-Chem chemistry and transport model using surface emission estimates derived from an optimal inverse model, which was constrained by TES and Measurements Of Pollution In The Troposphere (MOPITT) CO profiles (Jones et al., 2007). These a posteriori estimates, which were over a factor of 2 greater than climatological emissions, reduced differences between GEOS-Chem and TES ozone observations by 30-40% and led to changes in GEOS-Chem upper tropospheric ozone of up to 40% over Indonesia. The remaining residual differences can be explained in part by upper tropospheric ozone produced from lightning NOx in the South Atlantic. Furthermore, model simulations from GEOS-Chem indicate that ozone over Indonesian/Australian is more sensitive to changes in surface emissions of NOx than ozone over the tropical Atlantic.
RECOZ data reduction and analysis: Programs and procedures
NASA Technical Reports Server (NTRS)
Reed, E. I.
1984-01-01
The RECOZ data reduction programs transform data from the RECOZ photometer to ozone number density and overburden as a function of altitude. Required auxiliary data are the altitude profile versus time and for appropriate corrections to the ozone cross sections and scattering effects, air pressure and temperature profiles. Air temperature and density profiles may also be used to transform the ozone density versus geometric altitude to other units, such as to ozone partial pressure or mixing ratio versus pressure altitude. There are seven programs used to accomplish this: RADAR, LISTRAD, RAW OZONE, EDIT OZONE, MERGE, SMOOTH, and PROFILE.
Long-term tropospheric and lower stratospheric ozone variations from ozonesonde observations
NASA Technical Reports Server (NTRS)
London, J.; Liu, S. C.
1992-01-01
An analysis is presented of the long-term mean pressure-latitude seasonal distribution of tropospheric and lower stratospheric ozone for the four seasons covering, in part, over 20 years of ozonesonde data. The observed patterns show minimum ozone mixing ratios in the equatorial and tropical troposphere except in regions where net photochemical production is dominant. In the middle and upper troposphere, and low stratosphere to 50 mb, ozone increases from the tropics to subpolar latitudes of both hemispheres. In mid stratosphere, the ozone mixing ratio is a maximum over the tropics. The observed vertical ozone gradient is small in the troposphere but increases rapidly above the tropopause. The amplitude of the annual variation increases from a minimum in the tropics to a maximum in polar regions. Also, the amplitude increases with height at all latitudes up to about 30 mb where the phase of the annual variation changes abruptly. The phase of the annual variation is during spring in the boundary layer, summer in mid troposphere, and spring in the upper troposhere and lower stratosphere.
The Quasi-biennial Oscillation and Annual Variations in Tropical Ozone from SHADOZ and HALOE
NASA Technical Reports Server (NTRS)
Witte, J. C.; Schoeberl, M. R.; Douglass, A. R.; Thompson, A. M.
2008-01-01
We examine the tropical ozone mixing ratio perturbation fields generated from a monthly ozone climatology using 1998 to 2006 ozonesonde data from the Southern Hemisphere Additional Ozonesondes (SHADOZ) network and the 13-year satellite record from 1993 to 2005 obtained from the Halogen Occultation Experiment (HALOE). The long time series and high vertical resolution of the ozone and temperature profiles from the SHADOZ sondes coupled with good tropical coverage north and south of the equator gives a detailed picture of the ozone structure in the lowermost stratosphere down through the tropopause where the picture obtained from HALOE measurements is blurred by coarse vertical resolution. Ozone perturbations respond to annual variations in the Brewer-Dobson Circulation (BDC) in the region just above the cold-point tropopause to around 20 km. Annual cycles in ozone and temperature are well correlated. Above 20 km, ozone and temperature perturbations are dominated by the Quasi-biennial Oscillation (QBO). Both satellite and sonde records show good agreement between positive and negative ozone mixing ratio anomalies and alternating QBO westerly and easterly wind shears from the Singapore rawinsondes with a mean periodicity of 26 months for SHADOZ and 25 months for HALOE. There is a temporal offset of one to three months with the QBO wind shear ahead of the ozone anomaly field. The meridional length scales for the annual cycle and the QBO, obtained using the temperature anomalies and wind shears in the thermal wind equation, compare well with theoretical calculations.
Kumari, Sonal; Verma, Nidhi; Lakhani, Anita; Tiwari, Suresh; Kandikonda, Maharaj Kumari
2018-05-01
In the present study, surface ozone (O 3 ), nitrogen oxides (NO x ), and carbon monoxide (CO) levels were measured at two sites downwind of fire active region in the Indo-Gangetic Plain (IGP): Agra (27.16° N, 78.08° E) and Delhi (28.37° N, 77.12° E) to study the impact of post-harvest crop-residue fires. The study period was classified into two groups: Pre-harvest period and Post-harvest period. During the post-harvest period, an enhancement of 17.3 and 31.7 ppb in hourly averaged O 3 mixing ratios was observed at Agra and Delhi, respectively, under similar meteorological conditions. The rate of change of O 3 was also higher in the post-harvest period by 56.2% in Agra and 39.5% in Delhi. Relatively higher O 3 episodic days were observed in the post-harvest period. Fire hotspots detected by Moderate Resolution Imaging Spectroradiometer (MODIS) along with backward air-mass trajectory analysis suggested that the enhanced O 3 and CO levels at the study sites during the post-harvest period could be attributed to crop-residue burning over the North-West IGP (NW-IGP). Satellite observations of surface CO mixing ratios and tropospheric formaldehyde (HCHO) column also showed higher levels during the post-harvest period. Graphical abstract.
Processes Controlling Water Vapor in the Winter Arctic Tropopause Region
NASA Technical Reports Server (NTRS)
Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Podolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Hipskino, R. Stephen (Technical Monitor)
2001-01-01
This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999-2000 winter season. Aircraft based water vapor, carbon monoxide, and ozone measurements are analyzed so as to establish how deeply tropospheric air mixes into the arctic lower-most stratosphere, and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to- stratosphere exchange extends into the arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases idly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of about 5 ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20\\% of the parcels which have ozone values of 300-350ppbv experiencing ice saturation in a given 10 day period. Third, during early Spring temperatures at the tropopause are cold enough so that 5-10\\% of parcels experience relative humidities above 100\\%, even if the water content is as low as 5 ppmv. The implication is that during, this period the arctic tropopause can play an important role in maintaining a very dry upper troposphere during early Spring.
Processes Controlling Water Vapor in the Winter Arctic Tropopause Region
NASA Technical Reports Server (NTRS)
Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik
2002-01-01
This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.
Direct observation of ozone formation on SiO2 surfaces in O2 discharges
NASA Astrophysics Data System (ADS)
Marinov, D.; Guaitella, O.; Booth, J. P.; Rousseau, A.
2013-01-01
Ozone production is studied in a pulsed O2 discharge at pressures in the range 1.3-6.7 mbar. Time-resolved absolute concentrations of O3 and O are measured in the post-discharge using UV absorption spectroscopy and two-photon absorption laser-induced fluorescence. In a bare silica discharge tube ozone is formed mainly by three-body gas-phase recombination. When the tube surface is covered by a high specific surface silica catalyst heterogeneous formation becomes the main source of ozone. The efficiency of this surface process increases with O2 pressure and is favoured by the presence of OH groups and adsorbed H2O on the surface. At p = 6.7 mbar ozone production accounts for up to 25% of the atomic oxygen losses on the surface.
NASA Technical Reports Server (NTRS)
Young, Sun-Woo; Carmichael, Gregory R.
1994-01-01
Tropospheric ozone production and transport in mid-latitude eastern Asia is studied. Data analysis of surface-based ozone measurements in Japan and satellite-based tropospheric column measurements of the entire western Pacific Rim are combined with results from three-dimensional model simulations to investigate the diurnal, seasonal and long-term variations of ozone in this region. Surface ozone measurements from Japan show distinct seasonal variation with a spring peak and summer minimum. Satellite studies of the entire tropospheric column of ozone show high concentrations in both the spring and summer seasons. Finally, preliminary model simulation studies show good agreement with observed values.
NASA Astrophysics Data System (ADS)
Arunachalam, M. S.; Obili, Manjula; Srimurali, M.
2016-07-01
Long-term variation of Surface Ozone, NO2, Temperature, Relative humidity and crop yield datasets over thirteen districts of Andhra Pradesh(AP) has been studied with the help of OMI, MODIS, AIRS, ERA-Interim re-analysis and Directorate of Economics and Statistics (DES) of AP. Inter comparison of crop yield loss estimates according to exposure metrics such as AOT40 (accumulated ozone exposure over a threshold of 40) and non-linear variation of surface temperature for twenty and eighteen varieties of two major crop growing seasons namely, kharif (April-September) and rabi (October-March), respectively has been made. Study is carried to establish a new crop-yield-exposure relationship for different crop cultivars of AP. Both ozone and temperature are showing a correlation coefficient of 0.66 and 0.87 with relative humidity; and 0.72 and 0.80 with NO2. Alleviation of high surface ozone results in high food security and improves the economy thereby reduces the induced warming of the troposphere caused by ozone. Keywords: Surface Ozone, NO2, Temperature, Relative humidity, Crop yield, AOT 40.
NASA Technical Reports Server (NTRS)
Olsen, Mark A.; Douglass, Anne R.; Newman, Paul A.; Gille, John C.; Nardi, Bruno; Yudin, Valery A.; Kinnison, Douglas E.; Khosravi, Rashid
2008-01-01
On 26 January 2006, the High Resolution Dynamic Limb Sounder (HIRDLS) observed low mixing ratios of ozone and nitric acid in an approximately 2 km vertical layer near 100 hPa extending from the subtropics to 55 degrees N over North America. The subsequent evolution of the layer is simulated with the Global Modeling Initiative (GMI) model and substantiated with HIRDLS observations. Air with low mixing ratios of ozone is transported poleward to 80 degrees N. Although there is evidence of mixing with extratropical air and diabatic descent, much of the tropical intrusion returns to the subtropics. This study demonstrates that HIRDLS and the GMI model are capable of resolving thin intrusion events. The observations combined with simulation are a first step towards development of a quantitative understanding of the lower stratospheric ozone budget.
NASA Astrophysics Data System (ADS)
Pendlebury, Diane; Gravel, Sylvie; Moran, Michael D.; Lupu, Alexandru
2018-02-01
A regional air quality forecast model, GEM-MACH, is used to examine the conditions under which a limited-area air quality model can accurately forecast near-surface ozone concentrations during stratospheric intrusions. Periods in 2010 and 2014 with known stratospheric intrusions over North America were modelled using four different ozone lateral boundary conditions obtained from a seasonal climatology, a dynamically-interpolated monthly climatology, global air quality forecasts, and global air quality reanalyses. It is shown that the mean bias and correlation in surface ozone over the course of a season can be improved by using time-varying ozone lateral boundary conditions, particularly through the correct assignment of stratospheric vs. tropospheric ozone along the western lateral boundary (for North America). Part of the improvement in surface ozone forecasts results from improvements in the characterization of near-surface ozone along the lateral boundaries that then directly impact surface locations near the boundaries. However, there is an additional benefit from the correct characterization of the location of the tropopause along the western lateral boundary such that the model can correctly simulate stratospheric intrusions and their associated exchange of ozone from stratosphere to troposphere. Over a three-month period in spring 2010, the mean bias was seen to improve by as much as 5 ppbv and the correlation by 0.1 depending on location, and on the form of the chemical lateral boundary condition.
NASA Technical Reports Server (NTRS)
Avery, Melody; Twohy, Cynthia; MCabe, David; Joiner, Joanna; Severance, Kurt; Atlas, Eliot; Blake, Donald; Bui, T. P.; Crounse, John; Dibb, Jack;
2010-01-01
During the Tropical Composition, Clouds and Climate Coupling (TC4) experiment that occurred in July and August of 2007, extensive sampling of active convection in the ITCZ region near Central America was performed from multiple aircraft and satellite sensors. As part of a sampling strategy designed to study cloud processes, the NASA ER-2, WB-57 and DC-8 flew in stacked "racetrack patterns" in convective cells. On July 24, 2007, the ER-2 and DC-8 probed an actively developing storm and the DC-8 was hit by lightning. Case studies of this flight, and of convective outflow on August 5, 2007 reveal a significant anti-correlation between ozone and condensed cloud water content. With little variability in the boundary layer and a vertical gradient, low ozone in the upper troposphere indicates convective transport. Because of the large spatial and temporal variability in surface CO and other pollutants in this region, low ozone is a better convective indicator. Lower tropospheric tracers methyl hydrogen peroxide, total organic bromine and calcium substantiate the ozone results. OMI measurements of mean upper tropospheric ozone near convection show lower ozone in convective outflow. A mass balance estimation of the amount of convective turnover below the tropical tropopause transition layer (TTL) is 50%, with an altitude of maximum convective outflow located between 10 and 11 km, 4 km below the cirrus anvil tops. It appears that convective lofting in this region of the ITCZ is either a two-stage or a rapid mixing process, because undiluted boundary layer air is never sampled in the convective outflow.
Simulation of tropospheric ozone with MOZART-2: An evaluation study over East Asia
NASA Astrophysics Data System (ADS)
Liu, Qianxia; Zhang, Meigen; Wang, Bin
2005-07-01
Climate changes induced by human activities have attracted a great amount of attention. With this, a coupling system of an atmospheric chemistry model and a climate model is greatly needed in China for better understanding the interaction between atmospheric chemical components and the climate. As the first step to realize this coupling goal, the three-dimensional global atmospheric chemistry transport model MOZART-2 (the global Model of Ozone and Related Chemical Tracers, version 2) coupled with CAM2 (the Community Atmosphere Model, version 2) is set up and the model results are compared against observations obtained in East Asia in order to evaluate the model performance. Comparison of simulated ozone mixing ratios with ground level observations at Minamitorishima and Ryori and with ozonesonde data at Naha and Tateno in Japan shows that the observed ozone concentrations can be reproduced reasonably well at Minamitorishima but they tend to be slightly overestimated in winter and autumn while underestimated a little in summer at Ryori. The model also captures the general features of surface CO seasonal variations quite well, while it underestimates CO levels at both Minamitorishima and Ryori. The underestimation is primarily associated with the emission inventory adopted in this study. Compared with the ozonesonde data, the simulated vertical gradient and magnitude of ozone can be reasonably well simulated with a little overestimation in winter, especially in the upper troposphere. The model also generally captures the seasonal, latitudinal and altitudinal variations in ozone concentration. Analysis indicates that the underestimation of tropopause height in February contributes to the overestimation of winter ozone in the upper and middle troposphere at Tateno.
Airborne LIDAR Measurements of Aerosol and Ozone Above the Alberta Oil Sands Region
NASA Astrophysics Data System (ADS)
Aggarwal, M.; Whiteway, J. A.; Seabrook, J.; Gray, L. H.
2014-12-01
Lidar measurements of ozone and aerosol were conducted from a Twin Otter aircraft above the oil sands region of northern Alberta. The field campaign was carried out with a total of five flights out of Fort McMurray, Alberta during the period between August 22 and August 26, 2013. Significant amounts of aerosol were observed within the boundary layer, up to a height of 1.6 km, but the ozone concentration remained at or below background levels. On August 24th the lidar observed a separated layer of aerosol above the boundary layer, at a height of 1.8 km, in which the ozone mixing ratio increased to 70 ppbv. Backward trajectory calculations revealed that the air containing this separated aerosol layer had passed over an area of forest fires. Directly below the layer of forest fire smoke, in the pollution from the oil sands industry, the measured ozone mixing ratio was lower than the background levels (≤35 ppbv).
Wilson, Ander; Reich, Brian J.; Nolte, Christopher G.; Spero, Tanya L.; Hubbell, Bryan; Rappold, Ana G.
2017-01-01
We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995–2005) and near-future (2025–2035) time period while incorporating a nonlinear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate nonlinear, spatially-varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 ppb (moderate level) and 75 ppb (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 ppb and 1.94°F; however, the results varied by region. Increases in ozone due to climate change result in an increase in ozone-mortality burden. Mortality attributed to ozone exceeding 40 ppb increases by 7.7% (1.6%, 14.2%). Mortality attributed to ozone exceeding 75 ppb increases by 14.2% (1.6%, 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. PMID:27005744
The TOAR database on observations of surface ozone (and more)
NASA Astrophysics Data System (ADS)
Schultz, M. G.; Schröder, S.; Cooper, O. R.; Galbally, I. E.; Petropavlovskikh, I. V.; von Schneidemesser, E.; Tanimoto, H.; Elshorbany, Y. F.; Naja, M. K.; Seguel, R. J.
2017-12-01
In support of the first Tropospheric Ozone Assessment Report (TOAR) a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues. Cooperation among many data centers and individual researchers worldwide made it possible to build the world's largest collection of in-situ hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. This presentation will provide a summary of the TOAR surface observations database including recent additions of ozone precursor and meteorological data. We will demonstrate how the database can be accessed and the data can be used, and we will discuss its limitations and the potential for closing some of teh remaining data gaps.
NASA Astrophysics Data System (ADS)
Zhang, Yuzhong; Wang, Yuhang; Crawford, James; Cheng, Ye; Li, Jianfeng
2018-05-01
Obtaining the full spatial coverage of daily surface ozone fields is challenging because of the sparsity of the surface monitoring network and the difficulty in direct satellite retrievals of surface ozone. We propose an indirect satellite retrieval framework to utilize the information from satellite-measured column densities of tropospheric NO2 and CH2O, which are sensitive to the lower troposphere, to derive surface ozone fields. The method is applicable to upcoming geostationary satellites with high-quality NO2 and CH2O measurements. To prove the concept, we conduct a simulation experiment using a 3-D chemical transport model for July 2011 over the eastern US. The results show that a second order regression using both NO2 and CH2O column densities can be an effective predictor for daily maximum 8-h average ozone. Furthermore, this indirect retrieval approach is shown to be complementary to spatial interpolation of surface observations, especially in regions where the surface sites are sparse. Combining column observations of NO2 and CH2O with surface site measurements leads to an improved representation of surface ozone over simple kriging, increasing the R2 value from 0.53 to 0.64 at a surface site distance of 252 km. The improvements are even more significant with larger surface site distances. The simulation experiment suggests that the indirect satellite retrieval technique can potentially be a useful tool to derive the full spatial coverage of daily surface ozone fields if satellite observation uncertainty is moderate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankelevich, Yu. A., E-mail: ymankelevich@mics.msu.su; Voronina, E. N.; Poroykov, A. Yu.
Plasmachemical and heterogeneous processes of generation and loss of ozone in the atmosphericpressure dielectric barrier discharge in oxygen are studied theoretically. Plasmachemical and electronic kinetics in the stage of development and decay of a single plasma filament (microdischarge) are calculated numerically with and without allowance for the effects of ozone vibrational excitation and high initial ozone concentration. The developed analytical approach is applied to determine the output ozone concentration taking into account ozone heterogeneous losses on the Al{sub 2}O{sub 3} dielectric surface. Using the results of quantummechanical calculations by the method of density functional theory, a multistage catalytic mechanism ofmore » heterogeneous ozone loss based on the initial passivation of a pure Al{sub 2}O{sub 3} surface by ozone and the subsequent interaction of O{sub 3} molecules with the passivated surface is proposed. It is shown that the conversion reaction 2O{sub 3} → 3O{sub 2} of a gas-phase ozone molecule with a physically adsorbed ozone molecule can result in the saturation of the maximum achievable ozone concentration at high specific energy depositions, the nonstationarity of the output ozone concentration, and its dependence on the prehistory of ozonizer operation.« less
Vertical ozone characteristics in urban boundary layer in Beijing.
Ma, Zhiqiang; Xu, Honghui; Meng, Wei; Zhang, Xiaoling; Xu, Jing; Liu, Quan; Wang, Yuesi
2013-07-01
Vertical ozone and meteorological parameters were measured by tethered balloon in the boundary layer in the summer of 2009 in Beijing, China. A total of 77 tethersonde soundings were taken during the 27-day campaign. The surface ozone concentrations measured by ozonesondes and TEI 49C showed good agreement, albeit with temporal difference between the two instruments. Two case studies of nocturnal secondary ozone maxima are discussed in detail. The development of the low-level jet played a critical role leading to the observed ozone peak concentrations in nocturnal boundary layer (NBL). The maximum of surface ozone was 161.7 ppbv during the campaign, which could be attributed to abundant precursors storage near surface layer at nighttime. Vertical distribution of ozone was also measured utilizing conventional continuous analyzers on 325-m meteorological observation tower. The results showed the NBL height was between 47 and 280 m, which were consistent with the balloon data. Southerly air flow could bring ozone-rich air to Beijing, and the ozone concentrations exceeded the China's hourly ozone standard (approximately 100 ppb) above 600 m for more than 12 h.
Wang, Qiulin; Tang, Minghui; Peng, Yaqi; Du, Cuicui; Lu, Shengyong
2018-05-01
Ozone assisted carbon nanotubes (CNTs) supported vanadium oxide/titanium dioxide (V/Ti-CNTs) or vanadium oxide-manganese oxide/titanium dioxide (V-Mn/Ti-CNTs) catalysts towards gaseous PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans) catalytic oxidations at low temperature (150 °C) were investigated. The removal efficiency (RE) and decomposition efficiency (DE) of PCDD/Fs achieved with V-Mn/Ti-CNTs alone were 95% and 45% at 150 °C under a space velocity (SV) of 14000 h -1 ; yet, these values reached 99% and 91% when catalyst and low concentration (50 ppm) ozone were used in combined. The ozone promotion effect on catalytic activity was further enhanced with the addition of manganese oxide (MnO x ) and CNTs. Adding MnO x and CNTs in V/Ti catalysts facilitated the ozone decomposition (creating more active species on catalyst surface), thus, improved ozone utilization (demanding relatively lower ozone addition concentration). On the other hand, this study threw light upon ozone promotion mechanism based on the comparison of catalyst properties (i.e. components, surface area, surface acidity, redox ability and oxidation state) before and after ozone treatment. The experimental results indicate that a synergistic effect exists between catalyst and ozone: ozone is captured and decomposed on catalyst surface; meanwhile, the catalyst properties are changed by ozone in return. Reactive oxygen species from ozone decomposition and the accompanied catalyst properties optimization are crucial reasons for catalyst activation at low temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cariolle, D.; Teyssèdre, H.
2007-05-01
This article describes the validation of a linear parameterization of the ozone photochemistry for use in upper tropospheric and stratospheric studies. The present work extends a previously developed scheme by improving the 2-D model used to derive the coefficients of the parameterization. The chemical reaction rates are updated from a compilation that includes recent laboratory work. Furthermore, the polar ozone destruction due to heterogeneous reactions at the surface of the polar stratospheric clouds is taken into account as a function of the stratospheric temperature and the total chlorine content. Two versions of the parameterization are tested. The first one only requires the solution of a continuity equation for the time evolution of the ozone mixing ratio, the second one uses one additional equation for a cold tracer. The parameterization has been introduced into the chemical transport model MOCAGE. The model is integrated with wind and temperature fields from the ECMWF operational analyses over the period 2000-2004. Overall, the results from the two versions show a very good agreement between the modelled ozone distribution and the Total Ozone Mapping Spectrometer (TOMS) satellite data and the "in-situ" vertical soundings. During the course of the integration the model does not show any drift and the biases are generally small, of the order of 10%. The model also reproduces fairly well the polar ozone variability, notably the formation of "ozone holes" in the Southern Hemisphere with amplitudes and a seasonal evolution that follow the dynamics and time evolution of the polar vortex. The introduction of the cold tracer further improves the model simulation by allowing additional ozone destruction inside air masses exported from the high to the mid-latitudes, and by maintaining low ozone content inside the polar vortex of the Southern Hemisphere over longer periods in spring time. It is concluded that for the study of climate scenarios or the assimilation of ozone data, the present parameterization gives a valuable alternative to the introduction of detailed and computationally costly chemical schemes into general circulation models.
Observations of chlorine monoxide over Scott Base, Antarctica, during the ozone hole, 1996-2005
Connor, Brian; Solomon, Philip; Barrett, James; Mooney, Thomas; Parrish, Alan
2007-01-01
We report observations of chlorine monoxide, ClO, in the lower stratosphere, made from Scott Base (77.85º S, 166.77º E) in springtime during each year, 1996-2005. The ClO amounts in the atmosphere are retrieved from remote measurements of microwave emission spectra. ClO column densities of up to about 2.5 × 1015 cm-2 are recorded during September, when chlorine is present in chemically active forms due to reactions on the surface of Polar Stratospheric Cloud (PSC) particles. Maximum mixing ratios of ClO are approximately 2 ppbv. The annual average of ClO column density during the activation period is anticorrelated with similar averages of ozone column measured at nearby Arrival Heights, with correlation coefficient of –0.81, and with averages of ozone mass integrated over the entire polar region, with similar correlation coefficients. There was a substantial decrease in ClO amounts during 2002-2004. There has been no systematic change in the timing of chlorine deactivation attributable to secular change in the Antarctic vortex
Tsai, Wen-Tien
2017-09-21
Among the halogenated hydrocarbons, chloromethanes (i.e., methyl chloride, CH₃Cl; methylene chloride, CH₂Cl₂; chloroform, CHCl₃; and carbon tetrachloride, CCl₄) play a vital role due to their extensive uses as solvents and chemical intermediates. This article aims to review their main chemical/physical properties and commercial/industrial uses, as well as the environment and health hazards posed by them and their toxic decomposition products. The environmental properties (including atmospheric lifetime, radiative efficiency, ozone depletion potential, global warming potential, photochemical ozone creation potential, and surface mixing ratio) of these chlorinated methanes are also reviewed. In addition, this paper further discusses their atmospheric fates and human health implications because they are apt to reside in the lower atmosphere when released into the environment. According to the atmospheric degradation mechanism, their toxic degradation products in the troposphere include hydrogen chloride (HCl), carbon monoxide (CO), chlorine (Cl₂), formyl chloride (HCOCl), carbonyl chloride (COCl₂), and hydrogen peroxide (H₂O₂). Among them, COCl₂ (also called phosgene) is a powerful irritating gas, which is easily hydrolyzed or thermally decomposed to form hydrogen chloride.
Temperature Dependence of Factors Controlling Isoprene Emissions
NASA Technical Reports Server (NTRS)
Duncan, Bryan N.; Yoshida, Yasuko; Damon, Megan R.; Douglass, Anne R.; Witte, Jacquelyn C.
2009-01-01
We investigated the relationship of variability in the formaldehyde (HCHO) columns measured by the Aura Ozone Monitoring Instrument (OMI) to isoprene emissions in the southeastern United States for 2005-2007. The data show that the inferred, regional-average isoprene emissions varied by about 22% during summer and are well correlated with temperature, which is known to influence emissions. Part of the correlation with temperature is likely associated with other causal factors that are temperature-dependent. We show that the variations in HCHO are convolved with the temperature dependence of surface ozone, which influences isoprene emissions, and the dependence of the HCHO column to mixed layer height as OMI's sensitivity to HCHO increases with altitude. Furthermore, we show that while there is an association of drought with the variation in HCHO, drought in the southeastern U.S. is convolved with temperature.
Trends in surface ozone concentrations at Arosa (Switzerland)
NASA Astrophysics Data System (ADS)
Staehelin, Johannes; Thudium, Juerg; Buehler, Ralph; Volz-Thomas, Andreas; Graber, Werner
During the years 1989-1991, ozone was measured at four sites around Arosa (Switzerland). One of these sites was identical with that, where surface ozone was measured in the 1950s (Götz and Volz, 1951; Perl, 1965). Comparison of both old and recent data indicates that surface ozone concentrations at Arosa have increased by a factor of approximately 2.2. The increase shows a seasonal variation with a relative increase of more than a factor of three in December and January. The results are discussed in the context of measurements made at other times, locations and altitudes. The comparison indicates that the increase in ozone levels at Arosa has most likely occured between the fifties and today. The measurements additionally suggest that photochemical ozone production in the free troposphere has significantly contributed to the observed ozone trends in winter.
Apparatus and process for the surface treatment of carbon fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulauskas, Felix Leonard; Ozcan, Soydan; Naskar, Amit K.
A method for surface treating a carbon-containing material in which carbon-containing material is reacted with decomposing ozone in a reactor (e.g., a hollow tube reactor), wherein a concentration of ozone is maintained throughout the reactor by appropriate selection of at least processing temperature, gas stream flow rate, reactor dimensions, ozone concentration entering the reactor, and position of one or more ozone inlets (ports) in the reactor, wherein the method produces a surface-oxidized carbon or carbon-containing material, preferably having a surface atomic oxygen content of at least 15%. The resulting surface-oxidized carbon material and solid composites made therefrom are also described.
NASA Astrophysics Data System (ADS)
Colette, A.; Ancellet, G.; Menut, L.; Arnold, S. R.
2006-03-01
The ozone variability observed by tropospheric ozone lidars during the ESCOMPTE campaign is analyzed by means of a hybrid-Lagrangian modeling study. Transport processes responsible for the formation of ozone-rich layers are identified using a semi-Lagrangian analysis of mesoscale simulations to identify the planetary boundary layer (PBL) footprint in the free troposphere. High ozone concentrations are related to polluted air masses exported from the Iberian PBL. The chemical composition of air masses coming from the PBL and transported in the free troposphere is evaluated using a Lagrangian chemistry model. The initial concentrations are provided by a model of chemistry and transport. Different scenarios are tested for the initial conditions and for the impact of mixing with background air in order to perform a quantitative comparison with the lidar observations. For this meteorological situation, the characteristic mixing time is of the order of 2 to 5 days depending on the initial conditions. Ozone is produced in the free troposphere within most air masses exported from the Iberian PBL at an average rate of 0.2 ppbv h-1, with a maximum ozone production of 0.4 ppbv h-1. Transport processes from the PBL are responsible for an increase of 13.3 ppbv of ozone concentrations in the free troposphere compared to background levels; about 45% of this increase is attributed to in situ production during the transport rather than direct export of ozone.
NASA Astrophysics Data System (ADS)
Colette, A.; Ancellet, G.; Menut, L.; Arnold, S. R.
2006-08-01
The ozone variability observed by tropospheric ozone lidars during the ESCOMPTE campaign is analyzed by means of a hybrid-Lagrangian modeling study. Transport processes responsible for the formation of ozone-rich layers are identified using a semi-Lagrangian analysis of mesoscale simulations to identify the planetary boundary layer (PBL) footprint in the free troposphere. High ozone concentrations are related to polluted air masses exported from the Iberian PBL. The chemical composition of air masses coming from the PBL and transported in the free troposphere is evaluated using a Lagrangian chemistry model. The initial concentrations are provided by a model of chemistry and transport. Different scenarios are tested for the initial conditions and for the impact of mixing with background air in order to perform a quantitative comparison with the lidar observations. For this meteorological situation, the characteristic mixing time is of the order of 2 to 6 days depending on the initial conditions. Ozone is produced in the free troposphere within most air masses exported from the Iberian PBL at an average rate of 0.2 ppbv h-1, with a maximum ozone production of 0.4 ppbv h-1. Transport processes from the PBL are responsible for an increase of 13.3 ppbv of ozone concentrations in the free troposphere compared to background levels; about 45% of this increase is attributed to in situ production during the transport rather than direct export of ozone.
Lowe, James
2018-01-01
A high reactivity and leaving no harmful residues make ozone an effective disinfectant for farm hygiene and biosecurity. Our objectives were therefore to (1) characterize the killing capacity of aqueous and gaseous ozone at different operational conditions on dairy cattle manure-based pathogens (MBP) contaminated different surfaces (plastic, metal, nylon, rubber, and wood); (2) determine the effect of microbial load on the killing capacity of aqueous ozone. In a crossover design, 14 strips of each material were randomly assigned into 3 groups, treatment (n = 6), positive-control (n = 6), and negative-control (n = 2). The strips were soaked in dairy cattle manure with an inoculum level of 107–108 for 60 minutes. The treatment strips were exposed to aqueous ozone of 2, 4, and 9 ppm and gaseous ozone of 1and 9 ppm for 2, 4, and 8 minutes exposure. 3M™ Petrifilm™ rapid aerobic count plate and plate reader were used for bacterial culture. On smooth surfaces, plastic and metal, aqueous ozone at 4 ppm reduced MBP to a safe level (≥5-log10) within 2 minutes (6.1 and 5.1-log10, respectively). However, gaseous ozone at 9 ppm for 4 minutes inactivated 3.3-log10 of MBP. Aqueous ozone of 9 ppm is sufficient to reduce MBP to a safe level, 6.0 and 5.4- log10, on nylon and rubber surfaces within 2 and 8 minutes, respectively. On complex surfaces, wood, both aqueous and gaseous ozone at up to 9 ppm were unable to reduce MBP to a safe level (3.6 and 0.8-log10, respectively). The bacterial load was a strong predictor for reduction in MBP (P<0.0001, R2 = 0.72). We conclude that aqueous ozone of 4 and 9 ppm for 2 minutes may provide an efficient method to reduce MBP to a safe level on smooth and moderately rough surfaces, respectively. However, ozone alone may not an adequate means of controlling MBP on complex surfaces. PMID:29758045
Influence of Mountains on Arctic Tropospheric Ozone
NASA Astrophysics Data System (ADS)
Whiteway, J. A.; Seabrook, J.
2015-12-01
Tropospheric ozone was measured above Ellesmere Island in the Canadian Arctic during spring using a differential absorption lidar (DIAL). Analysis of the observations revealed that mountains had a significant effect on the vertical distribution of ozone. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletion events were not observed during periods when mountains blocked the flow of air from over the sea ice. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be presented.
Turbulent mixing and removal of ozone within an Amazon rainforest canopy
NASA Astrophysics Data System (ADS)
Freire, L. S.; Gerken, T.; Ruiz-Plancarte, J.; Wei, D.; Fuentes, J. D.; Katul, G. G.; Dias, N. L.; Acevedo, O. C.; Chamecki, M.
2017-03-01
Simultaneous profiles of turbulence statistics and mean ozone mixing ratio are used to establish a relation between eddy diffusivity and ozone mixing within the Amazon forest. A one-dimensional diffusion model is proposed and used to infer mixing time scales from the eddy diffusivity profiles. Data and model results indicate that during daytime conditions, the upper (lower) half of the canopy is well (partially) mixed most of the time and that most of the vertical extent of the forest can be mixed in less than an hour. During nighttime, most of the canopy is predominantly poorly mixed, except for periods with bursts of intermittent turbulence. Even though turbulence is faster than chemistry during daytime, both processes have comparable time scales in the lower canopy layers during nighttime conditions. Nonchemical loss time scales (associated with stomatal uptake and dry deposition) for the entire forest are comparable to turbulent mixing time scale in the lower canopy during the day and in the entire canopy during the night, indicating a tight coupling between turbulent transport and dry deposition and stomatal uptake processes. Because of the significant time of day and height variability of the turbulent mixing time scale inside the canopy, it is important to take it into account when studying chemical and biophysical processes happening in the forest environment. The method proposed here to estimate turbulent mixing time scales is a reliable alternative to currently used models, especially for situations in which the vertical distribution of the time scale is relevant.
Ultrahigh vacuum and low-temperature cleaning of oxide surfaces using a low-concentration ozone beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, A.; Department of Physics, University of York, Heslington, York YO10 5DD; Graziosi, P.
We present a novel method of delivering a low-concentration (<15%) ozone beam to an ultra-high vacuum environment for the purpose of cleaning and dosing experimental samples through oxidation processing. The system described is safe, low-cost, and practical and overcomes the limitations of ozone transport in the molecular flow environment of high or ultrahigh vacuum whilst circumventing the use of pure ozone gas which is potentially highly explosive. The effectiveness of this method in removing surface contamination is demonstrated through comparison of high-temperature annealing of a simple oxide (MgO) in ozone and oxygen environments as monitored using quadrupole mass spectroscopy andmore » Auger electron spectroscopy. Additionally, we demonstrate the potential of ozone for obtaining clean complex oxide surfaces without the need for high-temperature annealing which may significantly alter surface structure.« less
Space-Based Diagnosis of Surface Ozone Sensitivity to Anthropogenic Emissions
NASA Technical Reports Server (NTRS)
Martin, Randall V.; Fiore, Arlene M.; VanDonkelaar, Aaron
2004-01-01
We present a novel capability in satellite remote sensing with implications for air pollution control strategy. We show that the ratio of formaldehyde columns to tropospheric nitrogen dioxide columns is an indicator of the relative sensitivity of surface ozone to emissions of nitrogen oxides (NO(x) = NO + NO2) and volatile organic compounds (VOCs). The diagnosis from these space-based observations is highly consistent with current understanding of surface ozone chemistry based on in situ observations. The satellite-derived ratios indicate that surface ozone is more sensitive to emissions of NO(x) than of VOCs throughout most continental regions of the Northern Hemisphere during summer. Exceptions include Los Angeles and industrial areas of Germany. A seasonal transition occurs in the fall when surface ozone becomes less sensitive to NOx and more sensitive to VOCs.
Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.; ...
2017-01-01
In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain–Fritsch +more » Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.
In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain–Fritsch +more » Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.« less
NASA Astrophysics Data System (ADS)
Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.; Berg, Larry K.; Fast, Jerome D.; Easter, Richard C.; Shrivastava, Manish; Thomas, Jennie L.
2017-10-01
In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain-Fritsch + Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.
NASA Technical Reports Server (NTRS)
Massman, W. J.; Pederson, J.; Delany, A.; Grantz, D.; Hertog, G. Den; Neumann, H. H.; Oncley, S. P.; Pearson, R., Jr.; Shaw, R. H.
1994-01-01
Plants and soils act as major sinks for the destruction of tropospheric ozone, especially during daylight hours when plant stomata open and are thought to provide the dominant pathway for the uptake of ozone. The present study, part of the California Ozone Deposition Experiment, compares predictions of the regional acid deposition model ozone surface conductance module with surface conductance data derived from eddy covariance measurements of ozone flux taken at a grape, a cotton, and a grassland site in the San Joaquin Valley of California during the summer of 1991. Results indicate that the model (which was developed to provide long-term large-area estimates for the eastern United States) significantly overpredicts the surface conductance at all times of the day for at least two important types of plant cover of the San Joaquin Valley and that it incorrectly partitions the ozone flux between transpiring and nontranspiring components of the surface at the third site. Consequently, the model either overpredicts or inaccurately represents the observed deposition velocities. Other results indicate that the presence of dew does not reduce the rate of ozone deposition, contradicting to model assumptions, and that model assumptions involving the dependency of stomata upon environmental temperature are unnecessary. The effects of measurement errors and biases, arising from the presence of the roughness sublayer and possible photochemical reactions, are also discussed. A simpler model for ozone surface deposition (at least for the San Joaquin Valley) is proposed and evaluated.
Effect of different emission inventories on modeled ozone and carbon monoxide in Southeast Asia
NASA Astrophysics Data System (ADS)
Amnuaylojaroen, T.; Barth, M. C.; Emmons, L. K.; Carmichael, G. R.; Kreasuwun, J.; Prasitwattanaseree, S.; Chantara, S.
2014-04-01
In order to improve our understanding of air quality in Southeast Asia, the anthropogenic emissions inventory must be well represented. In this work, we apply different anthropogenic emission inventories in the Weather Research and Forecasting Model with Chemistry (WRF-Chem) version 3.3 using MOZART gas-phase chemistry and GOCART aerosols to examine the differences in predicted carbon monoxide (CO) and ozone (O3) surface mixing ratios for Southeast Asia in March and December 2008. The anthropogenic emission inventories include the Reanalysis of the TROpospheric chemical composition (RETRO), the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B), the MACCity emissions (adapted from the Monitoring Atmospheric Composition and Climate and megacity Zoom for the Environment projects), the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS) emissions, and a combination of MACCity and SEAC4RS emissions. Biomass burning emissions are from the Fire Inventory from NCAR (FINNv1) model. WRF-chem reasonably predicts the 2 m temperature, 10 m wind, and precipitation. In general, surface CO is underpredicted by WRF-Chem while surface O3 is overpredicted. The NO2 tropospheric column predicted by WRF-Chem has the same magnitude as observations, but tends to underpredict NO2 column over the equatorial ocean and near Indonesia. Simulations using different anthropogenic emissions produce only a slight variability of O3 and CO mixing ratios, while biomass burning emissions add more variability. The different anthropogenic emissions differ by up to 20% in CO emissions, but O3 and CO mixing ratios differ by ~4.5% and ~8%, respectively, among the simulations. Biomass burning emissions create a substantial increase for both O3 and CO by ~29% and ~16%, respectively, when comparing the March biomass burning period to December with low biomass burning emissions. The simulations show that none of the anthropogenic emission inventories are better than the others and any of the examined inventories can be used for air quality simulations in Southeast Asia.
NASA Technical Reports Server (NTRS)
Cerniglia, M. C.; Douglass, A. R.; Rood, R. B.; Sparling, L. C..; Nielsen, J. E.
1999-01-01
We present a study of the distribution of ozone in the lowermost stratosphere with the goal of understanding the relative contribution to the observations of air of either distinctly tropospheric or stratospheric origin. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High [low] potential vorticity at 300 hPa suggests that the tropopause is low [high], and the identification of the two groups helps to account for dynamic variability. Conditional probability distribution functions are used to define the statistics of the mix from both observations and model simulations. Two data sources are chosen. First, several years of ozonesonde observations are used to exploit the high vertical resolution. Second, observations made by the Halogen Occultation Experiment [HALOE] on the Upper Atmosphere Research Satellite [UARS] are used to understand the impact on the results of the spatial limitations of the ozonesonde network. The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause [about 380K]. Despite the differences in spatial and temporal sampling, the probability distribution functions are similar for the two data sources. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. By using the model, possible mechanisms for the maintenance of mix of air in the lowermost stratosphere are revealed. The relevance of the results to the assessment of the environmental impact of aircraft effluence is discussed.
NASA Technical Reports Server (NTRS)
Cerniglia, M. C.; Douglass, A. R.; Rood, R. B.; Sparling, L. C.; Nielsen, J. E.
1999-01-01
We present a study of the distribution of ozone in the lowermost stratosphere with the goal of understanding the relative contribution to the observations of air of either distinctly tropospheric or stratospheric origin. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High [low] potential vorticity at 300 hPa suggests that the tropopause is low [high], and the identification of the two groups helps to account for dynamic variability. Conditional probability distribution functions are used to define the statistics of the mix from both observations and model simulations. Two data sources are chosen. First, several years of ozonesonde observations are used to exploit the high vertical resolution. Second, observations made by the Halogen Occultation Experiment [HALOE) on the Upper Atmosphere Research Satellite [UARS] are used to understand the impact on the results of the spatial limitations of the ozonesonde network. The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause [approximately 380K]. Despite the differences in spatial and temporal sampling, the probability distribution functions are similar for the two data sources. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. By using the model, possible mechanisms for the maintenance of mix of air in the lowermost stratosphere are revealed. The relevance of the results to the assessment of the environmental impact of aircraft effluence is discussed.
Analysis of European ozone trends in the period 1995-2014
NASA Astrophysics Data System (ADS)
Yan, Yingying; Pozzer, Andrea; Ojha, Narendra; Lin, Jintai; Lelieveld, Jos
2018-04-01
Surface-based measurements from the EMEP and Airbase networks are used to estimate the changes in surface ozone levels during the 1995-2014 period over Europe. We find significant ozone enhancements (0.20-0.59 µg m-3 yr-1 for the annual means; P-value < 0.01 according to an F-test) over the European suburban and urban stations during 1995-2012 based on the Airbase sites. For European background ozone observed at EMEP sites, it is shown that a significantly decreasing trend in the 95th percentile ozone concentrations has occurred, especially at noon (0.9 µg m-3 yr-1; P-value < 0.01), while the 5th percentile ozone concentrations continued to increase with a trend of 0.3 µg m-3 yr-1 (P-value < 0.01) during the study period. With the help of numerical simulations performed with the global chemistry-climate model EMAC, the importance of anthropogenic emissions changes in determining these changes over background sites are investigated. The EMAC model is found to successfully capture the observed temporal variability in mean ozone concentrations, as well as the contrast in the trends of 95th and 5th percentile ozone over Europe. Sensitivity simulations and statistical analysis show that a decrease in European anthropogenic emissions had contrasting effects on surface ozone trends between the 95th and 5th percentile levels and that background ozone levels have been influenced by hemispheric transport, while climate variability generally regulated the inter-annual variations of surface ozone in Europe.
Transboundary Contributions To Surface Ozone In California's Central Valley
NASA Astrophysics Data System (ADS)
Post, A.; Faloona, I. C.; Conley, S. A.; Lighthall, D.
2014-12-01
Rising concern over the impacts of exogenous air pollution in California's Central Valley has prompted the establishment of a coastal, high altitude monitoring site at the Chews Ridge Observatory (1550 m) approximately 30 km east of Point Sur in Monterey County, under the auspices of the Monterey Institute for Research in Astronomy. Two and a half years of continuous ozone data are presented in the context of long-range transport and its potential impact on surface air quality in the San Joaquin Valley (SJV). Past attempts to quantify the impact of transboundary ozone on surface levels have relied on uncertain model estimates, or have been limited to weekly ozonesonde data. Here, we present an observationally derived quantification of the contribution of free tropospheric ozone to surface sites in the San Joaquin Valley throughout three ozone seasons (June through September, 2012-2014). The diurnal ozone patterns at Chews Ridge, and their correlations with ozone aloft over the Valley, have been presented previously. Furthermore, reanalysis data of geopotential heights indicate consistent flow from Chews Ridge to the East, directly over the SJV. In a related airborne project we quantify the vertical exchange, or entrainment, rate over the Southern SJV from a series of focused flights measuring ozone concentrations during peak photochemical hours in conjunction with local meteorological data to quantify an ozone budget for the area. By applying the entrainment rates observed in that study here we are able to quantify the seasonal contributions of free tropospheric ozone measured at Chews Ridge to surface sites in the San Joaquin Valley, and compare prior model estimates to our observationally derived values.
Stratospheric Intrusion-Influenced Ozone Air Quality Exceedences Investigated in MERRA-2
NASA Technical Reports Server (NTRS)
Knowland, K. Emma; Ott, Lesley; Duncan, Bryan; Wargan, Krzysztof
2017-01-01
Ozone near the surface is harmful to human health and is a result of the photochemical reaction with both man-made and natural precursor pollutant sources. Therefore, in order to reduce near surface ozone concentrations, communities must reduce anthropogenic pollution sources. However, the injection of stratospheric ozone into the troposphere, known as a stratospheric intrusion, can also lead to concentrations of ground-level ozone exceeding air quality standards. Stratospheric intrusions are dynamical atmospheric features, however, these intrusions have been misrepresented in models and reanalyses until recently, as the features of a stratospheric intrusion are best identified in horizontal resolutions of approximately 50 km or smaller. NASA's Modern-Era Retrospective Analysis for Research and Applications Version-2 (MERRA-2) reanalysis is a publicly-available high-resolution dataset (50 km) with assimilated ozone that characterizes stratospheric ozone on the same spatiotemporal resolution as the meteorology. We show that stratospheric intrusions that impact surface air quality are well represented in the MERRA-2 reanalysis. This is demonstrated through a case study analysis of stratospheric intrusion events which were identified by the United States Environmental Protection Agency (EPA) to impact surface ozone air quality in spring 2012 in Colorado. The stratospheric intrusions are identified in MERRA-2 by the folding of the dynamical tropopause under the jet stream and subsequent isentropic descent of dry, O3-rich stratospheric air towards the surface where ozone air quality exceedences were observed. The MERRA-2 reanalysis can support air quality agencies for more rapid identification of the impact of stratospheric air on ground-level ozone.
NASA Astrophysics Data System (ADS)
Spychala, M. D.; Morris, G. A.; Lefer, B. L.; Rappenglueck, B.; Cohan, D. S.; zhou, W.
2012-12-01
The Tropospheric Ozone Pollution Project (TOPP) at Rice University (2004 - 2006) and the University of Houston (2006 - present) has gathered > 400 profiles of ozone, temperature, pressure, and relative humidity, and > 250 of those also have wind speed and wind direction near the core of the City of Houston, Texas. Houston continues to be plagued with difficulty in coming into compliance with EPA National Ambient Air Quality Standards (NAAQS) due to a combination of its geographic location, large commuter population, significant petrochemical and energy production, and favorable weather patterns. An outstanding question remains the relative partitioning of ozone between local and remote, anthropogenic and natural sources. In this presentation, we use TOPP ozone profiles to determine a "background" ozone concentration and compare this measure with surface monitor "background" ozone as determined from upwind and downwind Continuous Air Monitoring Stations (CAMS) in an effort to further our understanding of this partitioning. For periods studied with the Community Multiscale Air Quality (CMAQ) Model, we also compare the sonde and surface "background" ozone with that suggested by the model.
NASA Astrophysics Data System (ADS)
Osterman, G. B.; Neu, J. L.; Eldering, A.; Pinder, R. W.; Tang, Y.; McQueen, J.
2014-12-01
Most regional scale models that are used for air quality forecasts and ozone source attribution do not adequately capture the distribution of ozone in the mid- and upper troposphere, but it is unclear how this shortcoming relates to their ability to simulate surface ozone. We combine ozone profile data from the NASA Earth Observing System (EOS) Tropospheric Emission Spectrometer (TES) and a new joint product from TES and the Ozone Monitoring Instrument along with ozonesonde measurements and EPA AirNow ground station ozone data to examine air quality events during August 2006 in the Community Multi-Scale Air Quality (CMAQ) and National Air Quality Forecast Capability (NAQFC) models. We present both aggregated statistics and case-study analyses with the goal of assessing the relationship between the models' ability to reproduce surface air quality events and their ability to capture the vertical distribution of ozone. We find that the models lack the mid-tropospheric ozone variability seen in TES and the ozonesonde data, and discuss the conditions under which this variability appears to be important for surface air quality.
Fadnavis, S; Beig, G; Buchunde, P; Ghude, Sachin D; Krishnamurti, T N
2011-02-01
Vertical profiles of carbon monoxide (CO) and ozone retrieved from Tropospheric Emission Spectrometer have been analyzed during two super cyclone systems Mala and Sidr. Super cyclones Mala and Sidr traversed the Bay of Bengal (BOB) region on April 24-29, 2006 and November 12-16, 2007 respectively. The CO and ozone plume is observed as a strong enhancement of these pollutants in the upper troposphere over the BOB, indicating deep convective transport. Longitude-height cross-section of these pollutants shows vertical transport to the upper troposphere. CO mixing ratio ~90 ppb is observed near the 146-mb level during the cyclone Mala and near 316 mb during the cyclone Sidr. Ozone mixing ratio ~60-100 ppb is observed near the 316-mb level during both the cyclones. Analysis of National Centers for Environmental Prediction (NCEP) reanalysis vertical winds (omega) confirms vertical transport in the BOB.
NASA Technical Reports Server (NTRS)
Pippin, Margaret R.; Creilson, John K.; Henderson, Bryana L.; Ladd, Irene H.; Fishman, Jack; Votapkova, Dana; Krpcova, Ilona
2008-01-01
GLOBE (Global Learning and Observations to Benefit the Environment) is a worldwide hands-on, primary and secondary school-based education and science program, developed to give students a chance to perform real science by making measurements, analyzing data, and participating in research in collaboration with scientists. As part of the GLOBE Surface Ozone Protocol and with the assistance of the TEREZA Association in the Czech Republic, schools in the Czech Republic have been making and reporting daily measurements of surface ozone and surface meteorological data since 2001. Using a hand-held ozone monitor developed for GLOBE, students at several Czech schools have generated multiyear data records of surface ozone from 2001 to 2005. Analysis of the data shows surface ozone levels were anomalously high during the summer of 2003 relative to other summers. These findings are consistent with measurements by the European Environment Agency that highlights the summer of 2003 as having exceptionally long-lasting and spatially extensive episodes of high surface ozone, especially during the first half of August. Further analysis of the summer s prevailing meteorology shows not only that it was one of the hottest on record, a finding also seen in the student data, but the conditions for production of ozone were ideal. Findings such as these increase student, teacher, and scientist confidence in the utility of the GLOBE data for engaging budding scientists in the collection, analysis, and eventual interpretation of the data for inquiry-based education.
Crosbie, Ewan; Sorooshian, Armin; Monfared, Negar Abolhassani; Shingler, Taylor; Esmaili, Omid
2014-01-01
This study reports a multi-year (2000–2009) aerosol characterization for metropolitan Tehran and surrounding areas using multiple datasets (Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging Spectroradiometer (MISR), Total Ozone Mapping Spectrometer (TOMS), Goddard Ozone Chemistry Aerosol Radiation and Transport (GOCART), and surface and upper air data from local stations). Monthly trends in aerosol characteristics are examined in the context of the local meteorology, regional and local emission sources, and air mass back-trajectory data. Dust strongly affects the region during the late spring and summer months (May–August) when aerosol optical depth (AOD) is at its peak and precipitation accumulation is at a minimum. In addition, the peak AOD that occurs in July is further enhanced by a substantial number of seasonal wildfires in upwind regions. Conversely, AOD is at a minimum during winter; however, reduced mixing heights and a stagnant lower atmosphere trap local aerosol emissions near the surface and lead to significant reductions in visibility within Tehran. The unique meteorology and topographic setting makes wintertime visibility and surface aerosol concentrations particularly sensitive to local anthropogenic sources and is evident in the noteworthy improvement in visibility observed on weekends. Scavenging of aerosol due to precipitation is evident during the winter when aconsistent increase in surface visibility and concurrent decrease in AOD is observed in the days after rain compared with the days immediately before rain. PMID:25083295
Enhanced near-surface ozone under heatwave conditions in a Mediterranean island.
Pyrgou, Andri; Hadjinicolaou, Panos; Santamouris, Mat
2018-06-15
Near-surface ozone is enhanced under particular chemical reactions and physical processes. This study showed the seasonal variation of near-surface ozone in Nicosia, Cyprus and focused in summers when the highest ozone levels were noted using a seven year hourly dataset from 2007 to 2014. The originality of this study is that it examines how ozone levels changed under heatwave conditions (defined as 4 consecutive days with daily maximum temperature over 39 °C) with emphasis on specific air quality and meteorological parameters with respect to non-heatwave summer conditions. The influencing parameters had a medium-strong positive correlation of ozone with temperature, UVA and UVB at daytime which increased by about 35% under heatwave conditions. The analysis of the wind pattern showed a small decrease of wind speed during heatwaves leading to stagnant weather conditions, but also revealed a steady diurnal cycle of wind speed reaching a peak at noon, when the highest ozone levels were noted. The negative correlation of NOx budget with ozone was further increased under heatwave conditions leading to steeper lows of ozone in the morning. In summary, this research encourages further analysis into the persistent weather conditions prevalent during HWs stimulating ozone formation for higher temperatures.
Using Ozone To Clean and Passivate Oxygen-Handling Hardware
NASA Technical Reports Server (NTRS)
Torrance, Paul; Biesinger, Paul
2009-01-01
A proposed method of cleaning, passivating, and verifying the cleanliness of oxygen-handling hardware would extend the established art of cleaning by use of ozone. As used here, "cleaning" signifies ridding all exposed surfaces of combustible (in particular, carbon-based) contaminants. The method calls for exposing the surfaces of the hardware to ozone while monitoring the ozone effluent for carbon dioxide. The ozone would passivate the hardware while oxidizing carbon-based residues, converting the carbon in them to carbon dioxide. The exposure to ozone would be continued until no more carbon dioxide was detected, signifying that cleaning and passivation were complete.
Sánchez-Polo, M; von Gunten, U; Rivera-Utrilla, J
2005-09-01
Based on previous findings (Jans, U., Hoigné, J., 1998. Ozone Sci. Eng. 20, 67-87), the activity of activated carbon for the transformation of ozone into *OH radicals including the influence of operational parameters (carbon dose, ozone dose, carbon-type and carbon treatment time) was quantified. The ozone decomposition constant (k(D)) was increased by the presence of activated carbon in the system and depending on the type of activated carbon added, the ratio of the concentrations of *OH radicals and ozone, the R(ct) value ([*OH]/[O3]), was increased by a factor 3-5. The results obtained show that the surface chemical and textural characteristics of the activated carbon determines its activity for the transformation of ozone into *OH radicals. The most efficient carbons in this process are those with high basicity and large surface area. The obtained results show that the interaction between ozone and pyrrol groups present on the surface of activated carbon increase the concentration of O2*- radicals in the system, enhancing ozone transformation into *OH radicals. The activity of activated carbon decreases for extended ozone exposures. This may indicate that activated carbon does not really act as a catalyst but rather as a conventional initiator or promoter for the ozone transformation into *OH radicals. Ozonation of Lake Zurich water ([O3] = 1 mg/L) in presence of activated carbon (0.5 g/L) lead to an increase in the k(D) and R(ct) value by a factor of 10 and 39, respectively, thereby favouring the removal of ozone-resistant contaminants. Moreover, the presence of activated carbon during ozonation of Lake Zurich water led to a 40% reduction in the content of dissolved organic carbon during the first 60 min of treatment. The adsorption of low concentrations of dissolved organic matter (DOM) on activated carbon surfaces did not modify its capacity to initiate/promote ozone transformation into *OH radicals.
NASA Astrophysics Data System (ADS)
Wolff, Stefan; Tsokankunku, Anywhere; Pöhlker, Christopher; Saturno, Jorge; Walter, David; Ditas, Florian; Könemann, Tobias; Ganzeveld, Laurens; Yañez-Serrano, Ana Maria; Souza, Rodrigo; Trebs, Ivonne; Sörgel, Matthias
2017-04-01
The ATTO (Amazon Tall Tower Observatory) site (02°08'38.8''S, 58°59'59.5''W) is located in the remote Amazon rainforest, allowing atmospheric and forest studies away from nearby anthropogenic emission sources. Starting with continuous measurements of vertical mixing ratio profiles of H2O, CO2 and O3 in April 2012 at 8 heights between 0.05 m and 80 m above ground, the longest continuous record of near surface O3 in the Amazon rainforest was established. Black carbon (BC), CO and micrometeorological measurements are available for the same period. During intensive campaigns, NOx was measured as well using the same profile system, and, therefore several month of simultaneous NOx measurements are available. During a period of about four months also direct flux measurements of O3 are available. Here, we analyze the long term and seasonal variability of near surface O3 mixing ratios with respect to air pollution, deposition and transport. The Central Amazon is characterized by a clear seasonal precipitation pattern (ca. 350 mm around March and ca. 80 mm around September), correlating strongly with ozone mixing ratios. Since 2012 deforestation rates have increased again in the Amazon, leading to higher air pollution especially during the drier season in the last years. For several strong pollution events we compared the effects of long and short distance biomass burning on O3 and NOx mixing ratios using back trajectories and satellite data. By comparing O3 mixing ratios with solar radiation, Bowen ratio, several trace gases and aerosol loads (Volatile Organic Compounds, CO and BC), different correlation patterns throughout the year that are linked to the sources (transport of O3 and precursors) and sinks (stomatal uptake and chemical reactions) are investigated. For example, the last months of 2015 were strongly influenced by an extraordinary El Niño phenomenon, leading to much drier conditions and enhanced biomass burning in the Amazon, which prolonged the period of increased O3 values. These exceptional dry conditions and a slight La Niña in 2016 have influenced the water availability, which in turn may have affected the O3 deposition.
Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals
NASA Technical Reports Server (NTRS)
Johnson, Matthew S.; Sullivan, John T.; Liu, Xiong; Newchurch, Mike; Kuang, Shi; McGee, Thomas J.; Langford, Andrew O'Neil; Senff, Christoph J.; Leblanc, Thierry; Berkoff, Timothy;
2016-01-01
Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.
Evaluating a Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals
NASA Technical Reports Server (NTRS)
Johnson, Matthew S.; Sullivan, John; Liu, Xiong; Newchurch, Mike; Kuang, Shi; McGee, Thomas; Langford, Andrew; Senff, Chris; Leblanc, Thierry; Berkoff, Timothy;
2016-01-01
Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product.TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.
Evaluating A Priori Ozone Profile Information Used in TEMPO Tropospheric Ozone Retrievals
NASA Astrophysics Data System (ADS)
Johnson, M. S.; Sullivan, J. T.; Liu, X.; Newchurch, M.; Kuang, S.; McGee, T. J.; Langford, A. O.; Senff, C. J.; Leblanc, T.; Berkoff, T.; Gronoff, G.; Chen, G.; Strawbridge, K. B.
2016-12-01
Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is primarily conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address these limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm uses a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB) O3 climatology). It has been shown that satellite O3 retrievals are sensitive to a priori O3 profiles and covariance matrices. During this work we investigate the climatological data to be used in TEMPO algorithms (TB O3) and simulated data from the NASA GMAO Goddard Earth Observing System (GEOS-5) Forward Processing (FP) near-real-time (NRT) model products. These two data products will be evaluated with ground-based lidar data from the Tropospheric Ozone Lidar Network (TOLNet) at various locations of the US. This study evaluates the TB climatology, GEOS-5 climatology, and 3-hourly GEOS-5 data compared to lower tropospheric observations to demonstrate the accuracy of a priori information to potentially be used in TEMPO O3 algorithms. Here we present our initial analysis and the theoretical impact on TEMPO retrievals in the lower troposphere.
Effects of 1997-1998 El Nino on Tropospheric Ozone and Water Vapor
NASA Technical Reports Server (NTRS)
Chandra, S.; Ziemke, J. R.; Min, W.; Read, W. G.
1998-01-01
This paper analyzes the impact of the 1997-1998 El Nino on tropospheric column ozone and tropospheric water vapor derived respectively from the Total Ozone Mapping Spectrometer (TOMS) on Earth Probe and the Microwave Limb Scanning instrument on the Upper Atmosphere Research Satellite. The 1997-1998 El Nino, characterized by an anomalous increase in sea-surface temperature (SST) across the eastern and central tropical Pacific Ocean, is one of the strongest El Nino Southern Oscillation (ENSO) events of the century, comparable in magnitude to the 1982-1983 episode. The major impact of the SST change has been the shift in the convection pattern from the western to the eastern Pacific affecting the response of rain-producing cumulonimbus. As a result, there has been a significant increase in rainfall over the eastern Pacific and a decrease over the western Pacific and Indonesia. The dryness in the Indonesian region has contributed to large-scale burning by uncontrolled wildfires in the tropical rainforests of Sumatra and Borneo. Our study shows that tropospheric column ozone decreased by 4-8 Dobson units (DU) in the eastern Pacific and increased by about 10-20 DU in the western Pacific largely as a result of the eastward shift of the tropical convective activity as inferred from National Oceanic and Atmospheric Administration (NOAA) outgoing longwave radiation (OLR) data. The effect of this shift is also evident in the upper tropospheric water vapor mixing ratio which varies inversely as ozone (O3). These conclusions are qualitatively consistent with the changes in atmospheric circulation derived from zonal and vertical wind data obtained from the Goddard Earth Observing System data assimilation analyses. The changes in tropospheric column O3 during the course of the 1997-1998 El Nino appear to be caused by a combination of large-scale circulation processes associated with the shift in the tropical convection pattern and surface/boundary layer processes associated with forest fires in the Indonesian region.
NASA Astrophysics Data System (ADS)
Haman, Christine Lanier
Houston, Texas frequently exceeds the standard for ground-level ozone during the spring and fall. The large commuting population and vast number of industrial sources provide the necessary ingredients for photochemical ozone production in the presence of favorable meteorological conditions. The lack of continuous boundary layer (BL) observations prevents a comprehensive understanding of its role in ozone evolution. In this study, almost two years of BL observations are utilized to investigate the impacts of synoptic and micrometeorological-scale forcings on ozone. Aerosol gradients derived from ceilometer backscatter retrievals are used to identify the BL and residual layers (RL). Overall agreement is found between ceilometer and sonde estimates of the RL and BL heights (BLH), but difficulty detecting the layers occurs during cloud periods or immediately following precipitation. Large monthly variability is present in the peak afternoon BLH (e.g. mean August and December peaks are ˜2000 and 1100 m, respectively). Monthly nocturnal BLHs display much smaller differences. The majority of ozone exceedances occur during large-scale subsidence and weak winds in a postfrontal environment. These conditions result in turbulent kinetic energy, mechanical mixing, and ventilation processes that are 2--3 times weaker on exceedance days, which inhibit morning BL growth by an average of ˜100 m·hr-1 compared to low ozone days. The spring has higher nocturnal ozone levels, which is likely attributable to longer day lengths (˜78 minutes), stronger winds (˜0.78 m·s -1), and higher background ozone (˜5 ppbv) compared to the fall. Boundary layer entrainment plays an important role in ozone evolution. Exceedance days show a characteristic early morning rapid rise of ozone. Vertical ozone profiles indicate the RL ozone peak is ˜60 ppbv on exceedance days, which is ˜25 ppbv (+/- 10 ppbv) greater than low ozone days. The Integrated Profile Mixing (IPM) and Photochemical Budget (PB) methods are used to quantify ozone transport and photochemical production. On low ozone days, both the IPM and PB methods indicate ozone entrainment is ˜3--4 ppbv·hr-1 in this low photochemical environment of ˜1--4 ppbv·hr-1. During the rapid early morning ozone rise on exceedance days, RL entrainment and photochemical ozone production rates are 5--10 and 10--15 ppbv·hr -1, respectively.
Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations
Schultz, Martin G.; Schroder, Sabine; Lyapina, Olga; ...
2017-11-27
In support of the first Tropospheric Ozone Assessment Report (TOAR) a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature. Cooperation among many data centers and individual researchers worldwide made it possible to buildmore » the world's largest collection of in-situ hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of a posteriori data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface observation network both in terms of regions without monitoring, and in terms of regions that have monitoring programs but no public access to the data archive. Therefore future improvements to the database will require not only improved data harmonization, but also expanded data sharing and increased monitoring in data-sparse regions.« less
Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Martin G.; Schroder, Sabine; Lyapina, Olga
In support of the first Tropospheric Ozone Assessment Report (TOAR) a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature. Cooperation among many data centers and individual researchers worldwide made it possible to buildmore » the world's largest collection of in-situ hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of a posteriori data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface observation network both in terms of regions without monitoring, and in terms of regions that have monitoring programs but no public access to the data archive. Therefore future improvements to the database will require not only improved data harmonization, but also expanded data sharing and increased monitoring in data-sparse regions.« less
Ayouz, Mehdi; Babikov, Dmitri
2012-01-01
New global potential energy surface for the ground electronic state of ozone is constructed at the complete basis set level of the multireference configuration interaction theory. A method of fitting the data points by analytical permutationally invariant polynomial function is adopted. A small set of 500 points is preoptimized using the old surface of ozone. In this procedure the positions of points in the configuration space are chosen such that the RMS deviation of the fit is minimized. New ab initio calculations are carried out at these points and are used to build new surface. Additional points are added tomore » the vicinity of the minimum energy path in order to improve accuracy of the fit, particularly in the region where the surface of ozone exhibits a shallow van der Waals well. New surface can be used to study formation of ozone at thermal energies and its spectroscopy near the dissociation threshold.« less
California Baseline Ozone Transport Study (CABOTS): Ozonesonde Measurements
NASA Astrophysics Data System (ADS)
Eiserloh, A. J., Jr.; Chiao, S.; Spitze, J.; Cauley, S.; Clark, J.; Roberts, M.
2016-12-01
Because the EPA recently lowered the ambient air quality standard for the 8-hr average of ozone (O3) to70 ppbv, California must continue to achieve significant reductions in ozone precursor emissions and prepare for new State Implementation Plans (SIP) to demonstrate how ground-level ambient ozone will be reduced below the new health-based standard. Prior studies suggest that background levels of ozone traveling across the Pacific Ocean can significantly influence surface ozone throughout California, particularly during the spring. Evidence has been presented indicating that background levels of ozone continue to increase in the western United States over the recent few decades, implying more ozone exceedances in the future. To better understand the contributions of the external natural and anthropogenic pollution sources as well as atmospheric processes for surface ozone concentrations in California during the spring and summer months, the California Baseline Ozone Transport Study (CABOTS) has been established. One major goal of CABOTS is to implement near daily ozonesonde measurements along the California Coast to quantify background ozone aloft before entering the State during high ozone season. CABOTS has been ongoing from May through August of 2016 launching ozonesondes from Bodega Bay and Half Moon Bay, California. The temporal progression of ozonesonde measurements and subsequent analysis of the data will be discussed with a focus on the contribution of background ozone to surface ozone sites inland as well as likely origins of layers aloft. Comparisons of current ozonesondes versus prior ozonesonde studies of California will also be performed. A few selected cases of high ozone layers moving onshore from different sources will be discussed as well.
NASA Astrophysics Data System (ADS)
Granados-Muñoz, M. J.; Leblanc, T.
2015-12-01
Ozone in the lower troposphere acts as an air pollutant affecting human health and vegetation. Tropospheric ozone sources and variability are not yet fully identified or understood and recent studies reveal the importance of increasing the number of tropospheric ozone profiling stations and long term measurements. As part of the international monitoring network NDACC, and the U.S.-based network TOLNet, a differential absorption lidar has been performing tropospheric ozone measurements (3-20 km) at the JPL Table Mountain Facility (TMF, California) since 1999, and surface measurements have been performed since 2013 with a UV photometric analyzer. Because of the site's geolocation and high elevation, background tropospheric ozone, unaffected by the boundary layer dynamics and local anthropogenic emissions of ozone precursors, is usually expected. However, transboundary ozone contributions such as stratospheric intrusions and Asian pollution episodes are frequently detected. In this study, a statistical analysis of the 14-year lidar profiles and the 2.5-year surface data is presented. Seasonal, interannual and diurnal variability and its possible causes (e.g. El Nino/La Nina events, North American Monsoon) are investigated. Together with the high elevation surface data gathered at TMF, surface data from ARB stations nearby are analyzed to understand the lowermost tropospheric ozone variability component. The frequency of stratospheric intrusions and Asian pollution episodes reaching the Western U.S. is also examined in an attempt to understand the relative contribution of each process to the observed variability throughout the troposphere. The Table Mountain surface and lidar measurements are expected to contribute significantly to the emerging system of global air quality observations, and to the improvement of global and regional data assimilation and modeling.
Prombonas, Anthony; Yannikakis, Stavros; Karampotsos, Thanasis; Katsarou, Martha-Spyridoula; Drakoulis, Nikolaos
2016-01-01
Introduction Surface integrity of dental elastomeric impression materials that are subjected to disinfection is of major importance for the quality of the final prosthetic restorations. Aim The aim of this qualitative Scanning Electronic Microscopy (SEM) study was to reveal the effects of immersion or ozone disinfection on the surface of four dental elastomeric impression materials. Materials and Methods Four dental elastomeric impression material brands were used (two vinyl polysiloxane silicones, one polyether, and one vinyl polyether silicone). Total of 32 specimens were fabricated, eight from each impression material. Specimens were immersion (0.525% sodium hypochlorite solution or 0.3% benzalkonium chloride solution) or ozone disinfected or served as controls and examined with SEM. Results Surface degradation was observed on several speci-mens disinfected with 0.525% sodium hypochlorite solution. Similar wavy-wrinkling surface structures were observed in almost all specimens, when treated either with 0.3% benzalkonium chloride solution or ozone. Conclusion The SEM images obtained from this study revealed that both immersion disinfectants and ozone show similar impression material surface alterations. Ozone seems to be non-inferior as compared to immersion disinfectants, but superior as to environmental protection. PMID:28208993
Tropospheric ozone in east Asia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phadnis, M.J.
1996-12-31
An analysis of the observed data for the tropospheric ozone at mid latitudes in east Asia is done. There are three ways by which the tropospheric ozone is calculated, namely: (1) Ozonesonde measurements, (2) Fishman`s method of Residual Ozone and (3) TOMS measurements - an indirect method of calculating tropospheric ozone. In addition the surface ozone values at the network sites in Japan is also considered. The analysis of data is carried out for a period of twelve years from 1979 to 1991. In general it is observed that the tropospheric ozone is more in summer than winter, obviously becausemore » of the larger tropopause height in summer. On an average for the period of the analysis, the ozone values are at a high of about 60 DU (dobson units). While in winter the values go down to around 30 DU. Also a time series analysis shows an increasing trend in the values over the years. The ozonesonde values are correlated more to the TOMS tropospheric ozone values. For the stations analyzed in Japan, the TOMS tropospheric ozone values are generally greater than the ozonesonde values. The analysis of the average monthly surface ozone in Japan shows highs in spring and lows in summer. This can be attributed to movement of pollutant laden fronts towards Japan during spring. The highs for surface ozone are about 50 DU while the lows are around 20 DU.« less
NASA Technical Reports Server (NTRS)
Hoegy, Walter R.; McGee, Thomas J.; Burris, John F.; Heaps, William; Silbert, Donald; Sumnicht, Grant; Twigg, Laurence; Neuber, Roland
2000-01-01
The AROTEL instrument, deployed on the NASA DC-8 at Kiruna, Sweden for the SAGE III Ozone Loss and Validation Experiment (SOLVE), flew over the NDSC station operated by the Alfred Wegner Institute at Ny Aalesund, Spitsbergen. AROTEL ozone and temperature measurements made during near overflights of Ny Aalesund are compared with sonde ozone and temperature, and lidar ozone measurements from the NDSC station. Nine of the seventeen science flights during the December through March measurement period overflew near Ny Aalesund. Agreement of AROTEL with the ground-based temperature and ozone values at altitudes from just above the aircraft to about 30 km gives strong confidence in using AROTEL temperature and ozone mixing ratio to study the mechanisms of ozone loss in the winter arctic polar region.
NASA Technical Reports Server (NTRS)
Bhartia, Pawan K.; Ziemke, Jerry; Chandra, Sushil; Joiner, Joanna; Vassilkov, Alexandra; Taylor, Steven; Yang, Kai; Ahn, Chang-Woo
2004-01-01
The Cloud Slicing technique has emerged as a powerful tool for the study of ozone in the upper troposphere. In this technique one looks at the variation with cloud height of the above-cloud column ozone derived from the backscattered ultraviolet instruments, such as TOMS, to determine the ozone mixing ratio. For this technique to work properly one needs an instrument with relatively good horizontal resolution with very good signal to noise in measuring above-cloud column ozone. In addition, one needs the (radiatively) effective cloud pressure rather than the cloud-top pressure, for the ultraviolet photons received by a satellite instrument are scattered from inside the cloud rather than from the top. For this study we use data from the OMI sensor, which was recently launched on the EOS Aura satellite. OMI is a W-Visible backscattering instrument with a nadir pixel size of 13 x 24 km. The effective cloud pressure is derived from a new algorithm based on Rotational Raman Scattering and O2-O2, absorption in the 340-400 nm band of OMI.
Trends in stratospheric ozone profiles using functional mixed models
NASA Astrophysics Data System (ADS)
Park, A.; Guillas, S.; Petropavlovskikh, I.
2013-11-01
This paper is devoted to the modeling of altitude-dependent patterns of ozone variations over time. Umkehr ozone profiles (quarter of Umkehr layer) from 1978 to 2011 are investigated at two locations: Boulder (USA) and Arosa (Switzerland). The study consists of two statistical stages. First we approximate ozone profiles employing an appropriate basis. To capture primary modes of ozone variations without losing essential information, a functional principal component analysis is performed. It penalizes roughness of the function and smooths excessive variations in the shape of the ozone profiles. As a result, data-driven basis functions (empirical basis functions) are obtained. The coefficients (principal component scores) corresponding to the empirical basis functions represent dominant temporal evolution in the shape of ozone profiles. We use those time series coefficients in the second statistical step to reveal the important sources of the patterns and variations in the profiles. We estimate the effects of covariates - month, year (trend), quasi-biennial oscillation, the solar cycle, the Arctic oscillation, the El Niño/Southern Oscillation cycle and the Eliassen-Palm flux - on the principal component scores of ozone profiles using additive mixed effects models. The effects are represented as smooth functions and the smooth functions are estimated by penalized regression splines. We also impose a heteroscedastic error structure that reflects the observed seasonality in the errors. The more complex error structure enables us to provide more accurate estimates of influences and trends, together with enhanced uncertainty quantification. Also, we are able to capture fine variations in the time evolution of the profiles, such as the semi-annual oscillation. We conclude by showing the trends by altitude over Boulder and Arosa, as well as for total column ozone. There are great variations in the trends across altitudes, which highlights the benefits of modeling ozone profiles.
NASA Astrophysics Data System (ADS)
Chatfield, Robert B.; Delany, Anthony C.
1990-10-01
Biomass burning throughout the inhabited portions of the tropics generates precursors which lead to significant local atmospheric ozone pollution. Several simulations show how this smog could be only an easily observed, local manifestation of a much broader increase in tropospheric ozone. We illustrate basic processes with a one-dimensional time-dependent model that is closer to true meteorological motions than commonly used eddy diffusion models. Its application to a representative region of South America gives reasonable simulations of the local pollutants measured there. Three illustrative simulations indicate the importance of dilution, principally due to vertical transport, in increasing the efficiency of ozone production, possibly enough for high ozone to be apparent on a very large, intercontinental scale. In the first, cook-then-mix, simulation the nitrogen oxides and other burning-produced pollutants are confined to a persistently subsident fair weather boundary layer for several days, and the resultant ozone is found to have only a transient influence on the whole column of tropospheric ozone. In the second, mix-then-cook, simulation the effect of typical cumulonimbus convection, which vents an actively polluted boundary layer, is to make a persistent increase in the tropical ozone column. Such a broadly increased ozone column is observed over the the populated "continental" portion of the tropics. A third simulation averages all emission, transport, and deposition parameters, representing one column in a global tropospheric model that does not simulate individual weather events. This "oversmoothing" simulation produces 60% more ozone than observed or otherwise modeled. Qualitatively similar overprediction is suggested for all models which average significantly in time or space, as all need do. Clearly, simulating these O3 levels will depend sensitively on knowledge of the timing of emissions and transport.
Trends in stratospheric ozone profiles using functional mixed models
NASA Astrophysics Data System (ADS)
Park, A. Y.; Guillas, S.; Petropavlovskikh, I.
2013-05-01
This paper is devoted to the modeling of altitude-dependent patterns of ozone variations over time. Umkher ozone profiles (quarter of Umkehr layer) from 1978 to 2011 are investigated at two locations: Boulder (USA) and Arosa (Switzerland). The study consists of two statistical stages. First we approximate ozone profiles employing an appropriate basis. To capture primary modes of ozone variations without losing essential information, a functional principal component analysis is performed as it penalizes roughness of the function and smooths excessive variations in the shape of the ozone profiles. As a result, data driven basis functions are obtained. Secondly we estimate the effects of covariates - month, year (trend), quasi biennial oscillation, the Solar cycle, arctic oscillation and the El Niño/Southern Oscillation cycle - on the principal component scores of ozone profiles over time using generalized additive models. The effects are smooth functions of the covariates, and are represented by knot-based regression cubic splines. Finally we employ generalized additive mixed effects models incorporating a more complex error structure that reflects the observed seasonality in the data. The analysis provides more accurate estimates of influences and trends, together with enhanced uncertainty quantification. We are able to capture fine variations in the time evolution of the profiles such as the semi-annual oscillation. We conclude by showing the trends by altitude over Boulder. The strongly declining trends over 2003-2011 for altitudes of 32-64 hPa show that stratospheric ozone is not yet fully recovering.
Surface Ozone Variability and Trends over the South African Highveld from 1990 to 2007
NASA Technical Reports Server (NTRS)
Balashov, Nikolay V.; Thompson, Anne M.; Piketh, Stuart J.; Langerman, Kristy E.
2014-01-01
Surface ozone is a secondary air pollutant formed from reactions between nitrogen oxides (NOx = NO + NO2) and volatile organic compounds in the presence of sunlight. In this work we examine effects of the climate pattern known as the El Niño-Southern Oscillation (ENSO) and NOx variability on surface ozone from 1990 to 2007 over the South African Highveld, a heavily populated region in South Africa with numerous industrial facilities. Over summer and autumn (December-May) on the Highveld, El Niño, as signified by positive sea surface temperature (SST) anomalies over the central Pacific Ocean, is typically associated with drier and warmer than normal conditions favoring ozone formation. Conversely, La Niña, or negative SST anomalies over the central Pacific Ocean, is typically associated with cloudier and above normal rainfall conditions, hindering ozone production. We use a generalized regression model to identify any linear dependence that the Highveld ozone, measured at five air quality monitoring stations, may have on ENSO and NOx. Our results indicate that four out of the five stations exhibit a statistically significant sensitivity to ENSO at some point over the December-May period where El Niño amplifies ozone formation and La Niña reduces ozone formation. Three out of the five stations reveal statistically significant sensitivity to NOx variability, primarily in winter and spring. Accounting for ENSO and NOx effects throughout the study period of 18 years, two stations exhibit statistically significant negative ozone trends in spring, one station displays a statistically significant positive trend in August, and two stations show no statistically significant change in surface ozone.
Gao, J; Zhu, B; Xiao, H; Kang, H; Hou, X; Yin, Y; Zhang, L; Miao, Q
2017-03-01
Comprehensive measurements were conducted at the summit of Mount (Mt.) Huang, a rural site located in eastern China during the summer of 2011. They observed that ozone showed pronounced diurnal variations with high concentrations at night and low values during daytime. The Weather Research and Forecasting with Chemistry (WRF-Chem) model was applied to simulate the ozone concentrations at Mt. Huang in June 2011. With processes analysis and online ozone tagging method we coupled into the model system, the causes of this diurnal pattern and the contributions from different source regions were investigated. Our results showed that boundary layer diurnal cycle played an important role in driving the ozone diurnal variation. Further analysis showed that the negative contribution of vertical mixing was significant, resulting in the ozone decrease during the daytime. In contrast, ozone increased at night owing to the significant positive contribution of advection. This shifting of major factor between vertical mixing and advection formed this diurnal variation. Ozone source apportionment results indicated that approximately half was provided by inflow effect of ozone from outside the model domain (O 3-INFLOW ) and the other half was formed by ozone precursors (O 3-PBL ) emitted in eastern, central, and southern China. In the O 3-PBL , 3.0% of the ozone was from Mt. Huang reflecting the small local contribution (O 3-LOC ) and the non-local contributions (O 3-NLOC ) accounted for 41.6%, in which ozone from the southerly regions contributed significantly, for example, 9.9% of the ozone originating from Jiangxi, representing the highest geographical contributor. Because the origin and variation of O 3-NLOC was highly related to the diurnal movements in boundary layer, the similar diurnal patterns between O 3-NLOC and total ozone both indicated the direct influence of O 3-NLOC and the importance of boundary layer diurnal variations in the formation of such distinct diurnal ozone variations at Mt. Huang. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lidar Measurements of Tropospheric Ozone in the Arctic
NASA Astrophysics Data System (ADS)
Seabrook, Jeffrey; Whiteway, James
2016-06-01
This paper reports on differential absorption lidar (DIAL) measurements of tropospheric ozone in the Canadian Arctic during springtime. Measurements at Eureka Weather Station revealed that mountains have a significant effect on the vertical structure of ozone above Ellesmere Island. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when the flow of air from over the sea ice was blocked by mountains. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be shown in the presentation, while one is described in this paper.
NASA Astrophysics Data System (ADS)
Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val
2017-02-01
Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.
Reddy, Mallampati Srinivasa; Okuda, Tetsuji; Nakai, Satoshi; Nishijima, Wataru; Okada, Mitsumasa
2011-08-01
Wet gravity separation technique has been regularly practiced to separate the polypropylene (PP) and polyethylene (PE) (light plastic films) from chlorinated plastic films (CP films) (heavy plastic films). The CP films including poly vinyl chloride (PVC) and poly vinylidene chloride (PVDC) would float in water even though its density is more than 1.0g/cm(3). This is because films are twisted in which air is sometimes entrapped inside the twisted CP films in real existing recycling plant. The present research improves the current process in separating the PP and PE from plastic packaging waste (PPW), by reducing entrapped air and by increasing the hydrophilicity of the CP films surface with ozonation. The present research also measures the hydrophilicity of the CP films. In ozonation process mixing of artificial films up to 10min reduces the contact angle from 78° to 62°, and also increases the hydrophilicity of CP films. The previous studies also performed show that the artificial PVDC films easily settle down by the same. The effect of ozonation after the wet gravity separation on light PPW films obtained from an actual PPW recycling plant was also evaluated. Although actual light PPW films contained 1.3% of CP films however in present case all the CP films were removed from the PPW films as a settled fraction in the combination process of ozonation and wet gravity separation. The combination process of ozonation and wet gravity separation is the more beneficial process in recovering of high purity PP and PE films from the PPW films. Copyright © 2011 Elsevier Ltd. All rights reserved.
Deposition velocities and impact of physical properties on ozone removal for building materials
NASA Astrophysics Data System (ADS)
Lin, Chi-Chi; Hsu, Shu-Chen
2015-01-01
This study aims to estimate the ozone deposition velocities of eight commonly used building materials (BMs) which include calcium silicate board (CSB), green calcium silicate board (GCSB), mineral fiber ceiling (MFC), green mineral fiber ceiling (GMFC), gypsum board (GB), green gypsum board (GGB), wooden flooring (WF) and green wooden flooring (GWF). In addition, the impact of physical properties (specific surface area and total pore volume of BM) on ozone removal ability was also explored and discussed. Studies were conducted in a small-scale environmental stainless steel chamber. CSB and GCSB showed the highest ozone deposition velocities, while WF and GWF showed the lowest ozone deposition velocities among test BMs materials. All reaction probabilities were estimated to fall within the order of magnitude of 10-6. Green BMs showed lower reaction probabilities with ozone comparing with non-green BMs except for GGB. Consistent with the trends for deposition velocity, fleecy and porous materials exhibit higher reaction probabilities than smooth, non-porous surfaces. Specific surface area of BM is more closely related to ozone removal than total pore volume of BM with R2 of 0.93 vs. R2 of 0.84. Discussion of Thiele modulus for all test BMs indicates surface reactions are occurring quickly relative to internal diffusion and ozone removal is internal diffusion-limited.
GOME-2 Tropospheric Ozone Profile Retrievals from Joint UV/Visible Measurement
NASA Astrophysics Data System (ADS)
Liu, X.; Zoogman, P.; Chance, K.; Cai, Z.; Nowlan, C. R.; Huang, G.; Gonzalez Abad, G.
2016-12-01
It has been shown from sensitivity studies that adding visible measurements in the Chappuis ozone band to UV measurements in the Hartley/Huggins ozone bands can significantly enhance retrieval sensitivity to lower tropospheric ozone from backscattered solar radiances due to deeper photon penetration in the visible to the surface than in the ultraviolet. The first NASA EVI (Earth Venture Instrument) TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument is being developed to measure backscattered solar radiation in two channels ( 290-490 and 540-740 nm) and make atmospheric pollution measurements over North America from the Geostationary orbit. However, this retrieval enhancement has yet to be demonstrated from existing measurements due to the weak ozone absorption in the visible and strong interferences from surface reflectance and aerosols and the requirement of accurate radiometric calibration across different spectral channels. We present GOME-2 retrievals from joint UV/visible measurements using the SAO ozone profile retrieval algorithm, to directly explore the retrieval improvement in lower tropospheric ozone from additional visible measurements. To reduce the retrieval interference from surface reflectance, we add characterization of surface spectral reflectance in the visible based on combining EOFs (Empirical Orthogonal Functions) derived from ASTER and other surface reflectance spectra with MODIS BRDF climatology into the ozone profile algorithm. The impacts of various types of aerosols and surface BRDF on the retrievals will be investigated. In addition, we will also perform empirical radiometric calibration of the GOME-2 data based on radiative transfer simulations. We will evaluate the retrieval improvement of joint UV/visible retrieval over the UV retrieval based on fitting quality and validation against ozonesonde observations.
Ozone response to enhanced heterogeneous processing after the eruption of Mt. Pinatubo
NASA Technical Reports Server (NTRS)
Rodriguez, Jose M.; Ko, M. K. W.; Sze, N. D.; Heisey, C. W.; Yue, G. K.; Mccormick, M. P.
1994-01-01
Increases in aerosol loading after the Pinatubo eruption are expected to cause additional ozone depletion. Even though aerosol loadings were highest in the winter of 1991-1992, recent analyses of satellite and ground-based ozone measurements indicate that ozone levels in the winter of 1992-1993 are the lowest recorded in recent years, raising the question of the mechanisms responsible for such behavior. We have incorporated aerosol surface areas derived from the Stratospheric Aerosol and Gas Experiment II (SAGE-II) measurements into our two-dimensional model. Inclusion of heterogeneous chemsitry on these enhanced aerosol surfaces yields maximum ozone reductions during the winter of 1992-1993 in the Northern Hemisphere, consistent with those derived from observations. This delayed behavior is due to the combination of the non-linear nature of the impact of heterogeneous reactions as a function of aerosol surface area, and the long time constants for ozone in the lower stratosphere. If heterogeneous mechanisms are primarily responsible for the low 1992-1993 ozone levels, we expect ozone concentrations to start recovering in 1994.
Air Quality Impacts of Oil and Gas Operations in the Northern Colorado Front Range
NASA Astrophysics Data System (ADS)
Helmig, D.; Thompson, C. R.; Jacques, H.; Smith, K. R.; Terrell, R. M.
2014-12-01
Exceedences of the US EPA National Ambient Air Quality Standard (NAAQS) for surface ozone have been reported from monitoring sites in the Northern Colorado Front Range (NCFR) for more than fifteen years during summer. Comparison of ozone records from the NCFR clearly show that ozone primarily results from regional photochemical daytime production. Recent trend analyses do not show an improvement of surface ozone despite efforts by the State of Colorado to curb ozone precursor emissions. Our review of atmospheric volatile organic compound (VOC) measurements from historic and recent monitoring shows significant spatial increases of atmospheric VOC towards the oil and gas development area in Weld County, NW of the Denver-Boulder metropolitan region. Secondly, analyses of VOC trends and VOC signatures show an overall increase of oil and gas associated VOC relative to other VOC sources. These analyses suggest that oil and gas emissions are playing and increasing role in ozone production in the NCFR and that reductions of oil and gas emissions would be beneficial for lowering surface ozone and attainment of the ozone NAAQS.
NASA Astrophysics Data System (ADS)
Neale, Patrick J.; Thomas, Brian C.
2016-04-01
Two atmospheric responses to simulated astrophysical ionizing radiation events significant to life on Earth are production of odd-nitrogen species, especially NO2, and subsequent depletion of stratospheric ozone. Ozone depletion increases incident short-wavelength ultraviolet radiation (UVB, 280-315 nm) and longer (>600 nm) wavelengths of photosynthetically available radiation (PAR, 400-700 nm). On the other hand, the NO2 haze decreases atmospheric transmission in the long-wavelength UVA (315-400 nm) and short-wavelength PAR. Here, we use the results of previous simulations of incident spectral irradiance following an ionizing radiation event to predict changes in terran productivity focusing on photosynthesis of marine phytoplankton. The prediction is based on a spectral model of photosynthetic response, which was developed for the dominant genera in central regions of the ocean (Synechococcus and Prochlorococcus), and on remote-sensing-based observations of spectral water transparency, temperature, wind speed, and mixed layer depth. Predicted productivity declined after a simulated ionizing event, but the effect integrated over the water column was small. For integrations taking into account the full depth range of PAR transmission (down to 0.1% of utilizable PAR), the decrease was at most 2-3% (depending on strain), with larger effects (5-7%) for integrations just to the depth of the surface mixed layer. The deeper integrations were most affected by the decreased utilizable PAR at depth due to the NO2 haze, whereas shallower integrations were most affected by the increased surface UV. Several factors tended to dampen the magnitude of productivity responses relative to increases in surface-damaging radiation, for example, most inhibition in the modeled strains is caused by UVA and PAR, and the greatest relative increase in damaging exposure is predicted to occur in the winter when UV and productivity are low.
NASA Technical Reports Server (NTRS)
McGee, Thomas J.; Burris, John F.; Hoegy, Walter; Newman, Paul; Heaps,William; Silbert, Donald; Lait, Leslie; Sumnicht, Grant; Twigg, Laurence
2000-01-01
During the winter of 1999-2000, the AROTEL instrument was deployed on the NASA DC-8 at Kiruna, Sweden for the SAGE III Ozone Loss Validation Experiment (SOLVE). Measurements of ozone, temperature and aerosols were made on 18 local science flights from December to March. Extremely low temperatures were observed throughout most of the Arctic vortex and polar stratospheric clouds were observed throughout the Arctic area during January. Significant ozone loss was measured after the sun began to rise on the vortex area in February. Ozone mixing ratios as low as 800 ppbv were observed during flights in March.
NASA Astrophysics Data System (ADS)
Bauguitte, S. J.; Brough, N.; Frey, M. M.; Jones, A. E.; Roscoe, H. K.; Wolff, E. W.
2009-12-01
Concentrations of surface ozone over polar regions cannot be derived from satellite data so can only be studied from ground-based platforms. To understand the regional picture a carefully-designed network of ground-based monitors is required. Here we report on a network of 10 autonomous ozone monitors that was established around the Weddell Sea sector of coastal Antarctica with a transect up onto the Antarctic Plateau during the International Polar Year. The aim was to measure for a full year, thus gaining a much-improved broader view of boundary layer ozone seasonality at different locations as well as on factors affecting the budget of surface ozone in Antarctica. Of specific interest were the balance between halogen-driven destruction and photochemical production from snow-emitted precursors, as well as the spatial extent of ozone depletion events. Each ozone monitor measured successfully within its predefined duty cycle throughout the year, with some differences in performance dependent on power availability. Here we present technical information and first results from the network.
NASA Technical Reports Server (NTRS)
Li, Feng; Newman, Paul; Pawson, Steven; Waugh, Darryn
2014-01-01
Stratospheric ozone depletion has played a dominant role in driving Antarctic climate change in the last decades. In order to capture the stratospheric ozone forcing, many coupled atmosphere-ocean general circulation models (AOGCMs) prescribe the Antarctic ozone hole using monthly and zonally averaged ozone field. However, the prescribed ozone hole has a high ozone bias and lacks zonal asymmetry. The impacts of these biases on model simulations, particularly on Southern Ocean and the Antarctic sea ice, are not well understood. The purpose of this study is to determine the effects of using interactive stratospheric chemistry instead of prescribed ozone on Antarctic and Southern Ocean climate change in an AOGCM. We compare two sets of ensemble simulations for the 1960-2010 period using different versions of the Goddard Earth Observing System 5 - AOGCM: one with interactive stratospheric chemistry, and the other with prescribed monthly and zonally averaged ozone and 6 other stratospheric radiative species calculated from the interactive chemistry simulations. Consistent with previous studies using prescribed sea surface temperatures and sea ice concentrations, the interactive chemistry runs simulate a deeper Antarctic ozone hole and consistently larger changes in surface pressure and winds than the prescribed ozone runs. The use of a coupled atmosphere-ocean model in this study enables us to determine the impact of these surface changes on Southern Ocean circulation and Antarctic sea ice. The larger surface wind trends in the interactive chemistry case lead to larger Southern Ocean circulation trends with stronger changes in northerly and westerly surface flow near the Antarctica continent and stronger upwelling near 60S. Using interactive chemistry also simulates a larger decrease of sea ice concentrations. Our results highlight the importance of using interactive chemistry in order to correctly capture the influences of stratospheric ozone depletion on climate change over Antarctic and the Southern Ocean.
NASA Technical Reports Server (NTRS)
Yates, E.; Iraci, Laura T.; Johnson, Matthew; Ryoo, Ju-Mee; Pierce, Bradley R.; Cullis, Patrick; Gore, Warren J. Y.; Ives, Michael; Johnson, Bryan; LeBlanc, Thierry;
2016-01-01
In the rural western US free-tropospheric O3 has risen in recent years as a result of rising Asian emissions, deep stratospheric intrusions and more frequent wildfires. This increasing O3 trend combined with the high surface elevation of much of the western US, which aids mixing between boundary layer and free-troposphere, pose challenges in attaining the more stringent O3 National Ambient Air Quality Standard (NAAQS) at many western US rural surface sites. As such, the ability to identify various sources and transport mechanisms that contribute towards surface O3 is increasingly important. This paper analyzes vertical profiles of O3 from the Alpha Jet Atmospheric eXperiment (AJAX) over California and Nevada, ozonesondes from Trinidad Head, CA and tropospheric ozone profiles from the differential absorption lidar (DIAL) at the JPL Table Mountain Facility, CA. Surface O3 from the US EPA Clean air Status and Trends Network (CASNET) are used to discuss surface trends. GEOS-Chem determines the trends in regional O3 and assess the contributions of various sources on surface O3. And Realtime Air Quality Modeling System (RAQMS) is used to forecast and interpret free-tropospheric observations. Specifically we will address the following questions: What are the effects of the lowered NAAQS? Do we observe elevated O3 during 2012 at surface sites reported in previous studies? And if so, what are the causes? How variable is free-tropospheric O3 over California and Nevada? How frequently do we observe high O3 lamina in the free troposphere and what are the surface impacts?
NASA Astrophysics Data System (ADS)
Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.
2011-01-01
Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the possibility to develop compact ozonizers having high ozone yield at the low energy cost of O → O3 conversion.
Hydrodynamics of ozone contactors have a crucial impact on efficient inactivation of pathogens such as Cryptosporidium as well as control of disinfection byproducts such as bromate. Improper mixing behaviors including short-circuiting, internal recirculation and presence...
NASA Technical Reports Server (NTRS)
Fraser, R. S.; Ahmad, Z.
1978-01-01
The total amount of ozone in a vertical column of the earth's atmosphere is being derived from satellite measurements of the intensity of ultraviolet sunlight scattered by the earth-atmosphere system. The algorithm for deriving the ozone amount utilizes the assumption that the earth's surface reflects the incident light isotropically according to Lambert's law. Natural surface reflection deviates more or less from this law. Two extreme examples of anisotropic reflection from dark ocean and from bright snow are analyzed by means of models for their effects on the derived values of ozone.
Coincident Observations of Surface Ozone and NMVOCs over Abu Dhabi
NASA Astrophysics Data System (ADS)
Abbasi, Naveed; Majeed, Tariq; Iqbal, Mazhar; Tarasick, David; Davies, Jonathan; Riemer, Daniel; Apel, Eric
2016-07-01
The vertical profiles of ozone are measured coincidently with non-methane volatile organic compounds (NMVOCs) at the meteorological site located at the Abu Dhabi international airport (latitude 24.45N; longitude 54.22E) during the years 2012 - 2014. Some of the profiles show elevated surface ozone >95 ppbv during the winter months (December, January and February). The ground-level NMVOCs obtained from the gas chromatography-flame ionization detection/mass spectrometry system also show elevated values of acetylene, ethane, propane, butane, pentane, benzene, and toluene. NMVOCs and ozone abundances in other seasons are much lower than the values in winter season. NMVOCs are emitted from an extensive number of sources in urban environments including fuel production, distribution, and consumption, and serve as precursor of ozone. Transport sources contribute a substantial portion of the NMVOC burden to the urban atmosphere in developed regions. Abu Dhabi is located at the edge of the Arabian Gulf and is highly affected by emissions from petrochemical industries in the neighboring Gulf region. The preliminary results indicate that wintertime enhancement in ozone is associated with large values of NMVOCs at Abu Dhabi. The domestic production of surface ozone is estimated from the combination of oxygen recombination and NMVOCs and compared with the data. It is estimated that about 40-50% of ozone in Abu Dhabi is transported from the neighbouring petrochemical industries. We will present ozone sounding and NMVOCs data and our model estimates of surface ozone, including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.
The influence of changing UVB radiation in near-surface ozone time series
NASA Astrophysics Data System (ADS)
BröNnimann, Stefan; Voigt, Stefan; Wanner, Heinz
2000-04-01
UVB radiation plays an important role in tropospheric photochemistry since it determines the rate of ozone photolysis J(O1D) and subsequent formation of OH radicals. Consequently, changes of UVB radiation, for example due to changes of the stratospheric ozone amount, could alter the concentration of reactive tropospheric gases including ozone. An observation-based attempt is made to quantify the effect of changing UVB radiation on surface ozone peaks on a day-to-day scale using a time series of measurements at a Swiss mountain site. Seven years data of ozone, NO, NOx, and meteorological measurements from Chaumont (1140 m above sea level (asl)), total ozone and UVB measurements from Arosa (1847 m asl), and surface albedo from satellite observations are investigated. The study is restricted to fair weather days with moderately high NOx concentrations. Multiple regression analysis is performed using chemical, meteorological, and UV dependent variables to predict afternoon ozone peaks. From autumn to spring, positive deviations of ozone peaks are clearly connected with positive UVB deviations. The relation is statistically significant only in part of the seasonal data subsets; however, it is consistent with model studies. The estimated net effect on ozone peaks is normally within a range of 4 ppb, a range of about 6 ppb is predicted for large UVB changes. Applying the coefficients for the large interannual variability of the stratospheric ozone layer observed in spring in the last 10 years results in a range of variation of at most 1 to 1.5 ppb for monthly mean ozone peaks. For trends of J(O1D) from 1970 to 1990, a trend bias of surface ozone peaks on polluted fair weather days of less than 0.12 ppb/yr is calculated. Although the numbers are rather small, they may play a role in certain circumstances.
NASA Technical Reports Server (NTRS)
Chipperfield, M. P.; Liang, Q.; Strahan, S. E.; Morgenstern, O.; Dhomse, S. S.; Abraham, N. L.; Archibald, A. T.; Bekki, S.; Braesicke, P.; Di Genova, G.;
2014-01-01
We have diagnosed the lifetimes of long-lived source gases emitted at the surface and removed in the stratosphere using six three-dimensional chemistry-climate models and a two-dimensional model. The models all used the same standard photochemical data. We investigate the effect of different definitions of lifetimes, including running the models with both mixing ratio (MBC) and flux (FBC) boundary conditions. Within the same model, the lifetimes diagnosed by different methods agree very well. Using FBCs versus MBCs leads to a different tracer burden as the implied lifetime contained in the MBC value does not necessarily match a model's own calculated lifetime. In general, there are much larger differences in the lifetimes calculated by different models, the main causes of which are variations in the modeled rates of ascent and horizontal mixing in the tropical midlower stratosphere. The model runs have been used to compute instantaneous and steady state lifetimes. For chlorofluorocarbons (CFCs) their atmospheric distribution was far from steady state in their growth phase through to the 1980s, and the diagnosed instantaneous lifetime is accordingly much longer. Following the cessation of emissions, the resulting decay of CFCs is much closer to steady state. For 2100 conditions the model circulation speeds generally increase, but a thicker ozone layer due to recovery and climate change reduces photolysis rates. These effects compensate so the net impact on modeled lifetimes is small. For future assessments of stratospheric ozone, use of FBCs would allow a consistent balance between rate of CFC removal and model circulation rate
NASA Technical Reports Server (NTRS)
Chipperfield, M. P.; Liang, Q.; Strahan, S. E.; Morgenstern, O.; Dhomse, S. S.; Abraham, N. L.; Archibald, A. T.; Bekki, S.; Braesicke, P.; Di Genova, G.;
2014-01-01
We have diagnosed the lifetimes of long-lived source gases emitted at the surface and removed in the stratosphere using six three-dimensional chemistry-climate models and a two-dimensional model. The models all used the same standard photochemical data. We investigate the effect of different definitions of lifetimes, including running the models with both mixing ratio (MBC) and flux (FBC) boundary conditions. Within the same model, the lifetimes diagnosed by different methods agree very well. Using FBCs versus MBCs leads to a different tracer burden as the implied lifetime contained in theMBC value does not necessarilymatch a model's own calculated lifetime. In general, there are much larger differences in the lifetimes calculated by different models, the main causes of which are variations in the modeled rates of ascent and horizontal mixing in the tropical midlower stratosphere. The model runs have been used to compute instantaneous and steady state lifetimes. For chlorofluorocarbons (CFCs) their atmospheric distribution was far from steady state in their growth phase through to the 1980s, and the diagnosed instantaneous lifetime is accordingly much longer. Following the cessation of emissions, the resulting decay of CFCs is much closer to steady state. For 2100 conditions the model circulation speeds generally increase, but a thicker ozone layer due to recovery and climate change reduces photolysis rates. These effects compensate so the net impact on modeled lifetimes is small. For future assessments of stratospheric ozone, use of FBCs would allow a consistent balance between rate of CFC removal and model circulation rate.
Influence of mountains on Arctic tropospheric ozone
NASA Astrophysics Data System (ADS)
Seabrook, Jeffrey; Whiteway, James
2016-02-01
Tropospheric ozone was measured above Ellesmere Island in the Canadian Arctic during spring of 2008 using a differential absorption lidar. The observations were carried out at Eureka Weather Station, which is located between various mountain ranges. Analysis of the observations revealed that mountains had a significant effect on the vertical distribution of ozone. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when mountains blocked the flow of air from over the sea ice. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the midtroposphere descended in the lee of the mountains. Three case studies from spring of 2008 are described.
NASA Astrophysics Data System (ADS)
Xu, Wanyun; Lin, Weili; Xu, Xiaobin; Tang, Jie; Huang, Jianqing; Wu, Hao; Zhang, Xiaochun
2016-05-01
Tropospheric ozone is an important atmospheric oxidant, greenhouse gas and atmospheric pollutant at the same time. The oxidation capacity of the atmosphere, climate, human and vegetation health can be impacted by the increase of the ozone level. Therefore, long-term determination of trends of baseline ozone is highly needed information for environmental and climate change assessment. So far, studies on the long-term trends of ozone at representative sites are mainly available for European and North American sites. Similar studies are lacking for China and many other developing countries. Measurements of surface ozone were carried out at a baseline Global Atmospheric Watch (GAW) station in the north-eastern Tibetan Plateau region (Mt Waliguan, 36°17' N, 100°54' E, 3816 m a.s.l.) for the period of 1994 to 2013. To uncover the variation characteristics, long-term trends and influencing factors of surface ozone at this remote site in western China, a two-part study has been carried out, with this part focusing on the overall characteristics of diurnal, seasonal and long-term variations and the trends of surface ozone. To obtain reliable ozone trends, we performed the Mann-Kendall trend test and the Hilbert-Huang transform (HHT) analysis on the ozone data. Our results confirm that the mountain-valley breeze plays an important role in the diurnal cycle of surface ozone at Waliguan, resulting in higher ozone values during the night and lower ones during the day, as was previously reported. Systematic diurnal and seasonal variations were found in mountain-valley breezes at the site, which were used in defining season-dependent daytime and nighttime periods for trend calculations. Significant positive trends in surface ozone were detected for both daytime (0.24 ± 0.16 ppbv year-1) and nighttime (0.28 ± 0.17 ppbv year-1). The largest nighttime increasing rate occurred in autumn (0.29 ± 0.11 ppbv year-1), followed by spring (0.24 ± 0.12 ppbv year-1), summer (0.22 ± 0.20 ppbv year-1) and winter (0.13 ± 0.10 ppbv year-1), respectively. The HHT spectral analysis identified four different stages with different positive trends, with the largest increase occurring around May 2000 and October 2010. The HHT results suggest that there were 2-4a, 7a and 11a periodicities in the time series of surface ozone at Waliguan. The results of this study can be used for assessments of climate and environment change and in the validation of chemistry-climate models.
NASA Astrophysics Data System (ADS)
Lin, M.; Fiore, A. M.; Horowitz, L. W.; Cooper, O. R.; Langford, A. O.; Pan, L.; Liu, X.; Reddy, P. J.
2012-12-01
Recent studies have shown that deep stratospheric ozone intrusions can episodically enhance ground-level ozone above the health-based standard over the western U.S. in spring. Advanced warning of incoming intrusions could be used by state agencies to inform the public about poor air quality days. Here we explore the potential for using total ozone retrievals (version 5.2, level 3) at twice daily near global coverage from the AIRS instrument aboard the NASA Aqua satellite to identify stratospheric intrusions and forecast the eventual surface destination of transported stratospheric ozone. The method involves the correlation of AIRS daily total ozone columns at each 1ox1o grid box ~1-3 days prior to stratospheric enhancements to daily maximum 8-hour average ozone at a selected surface site using datasets from April to June in 2003-2011. The surface stratospheric enhancements are estimated by the GFDL AM3 chemistry-climate model which includes full stratospheric and tropospheric chemistry and is nudged to reanalysis winds. Our earlier work shows that the model presents deep stratospheric intrusions over the Western U.S. consistently with observations from AIRS, surface networks, daily ozone sondes, and aircraft lidar available in spring of 2010 during the NOAA CalNex field campaign. For the 15 surface sites in the U.S. Mountain West considered, a correlation coefficient of 0.4-0.7 emerges with AIRS ozone columns over 30o-50oN latitudes and 125o-105oW longitudes - variability in the AIRS column within this spatial domain indicates incoming intrusions. For each "surface receptor site", the spatial domain can narrow to an area ~5ox5o northwest of the individual site, with the strong correlation (0.5-0.7) occurring when the AIRS data is lagged by 1 day from the AM3 stratospheric enhancements in surface air. The spatial pattern of correlations is consistent with our process-oriented understanding developed from case studies of extreme intrusions. Surface observations during these events show that the sites experiencing elevated ozone levels are typically located over the southeastern side of the enhanced ozone columns captured by AIRS ~12 hours to 1 day prior. This first scoping study suggests there is potential to use near-daily global coverage of ozone in total column or in UT/LS levels from the space-based instruments (e.g. AIRS, OMI, MLS) to serve as a qualitative early-warning indicator of incoming stratospheric intrusions with a lead time of ~1-3 days. There is more skill in ~12 hours to 1 day as to where the intrusion will reach the surface, particularly during the ENSO years (i.e. 2003, 2008, 2010, 2011) when deep intrusions are more likely to occur as compared to other years. These space-based ozone products can also provide some indication of whether a historic exceedance was caused by an intrusion.
The Impact of New Estimates of Mixing Ratio and Flux-based Halogen Scenarios on Ozone Evolution
NASA Technical Reports Server (NTRS)
Oman, Luke D.; Douglass, Anne R.; Liang, Qing; Strahan, Susan E.
2014-01-01
The evolution of ozone in the 21st century has been shown to be mainly impacted by the halogen emissions scenario and predicted changes in the circulation of the stratosphere. New estimates of mixing ratio and flux-based emission scenarios have been produced from the SPARC Lifetime Assessment 2013. Simulations using the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) are conducted using this new A1 2014 halogen scenario and compared to ones using the A1 2010 scenario. This updated version of GEOSCCM includes a realistic representation of the Quasi-Biennial Oscillation and improvements related to the break up of the Antarctic polar vortex. We will present results of the ozone evolution over the recent past and 21st century to the A1 2010, A1 2014 mixing ratio, and an A1 2014 flux-based halogen scenario. Implications of the uncertainties in these estimates as well as those from possible circulation changes will be discussed.
NASA Technical Reports Server (NTRS)
Mlynczak, Martin G.; Garcia, Rolando R.; Roble, Raymond G.; Hagan, Maura
2000-01-01
We derive rates of energy deposition in the mesosphere due to the absorption of solar ultraviolet radiation by ozone. The rates are derived directly from measurements of the 1.27-microns oxygen dayglow emission, independent of knowledge of the ozone abundance, the ozone absorption cross sections, and the ultraviolet solar irradiance in the ozone Hartley band. Fifty-six months of airglow data taken between 1982 and 1986 by the near-infrared spectrometer on the Solar-Mesosphere Explorer satellite are analyzed. The energy deposition rates exhibit altitude-dependent annual and semi-annual variations. We also find a positive correlation between temperatures and energy deposition rates near 90 km at low latitudes. This correlation is largely due to the semiannual oscillation in temperature and ozone and is consistent with model calculations. There is also a suggestion of possible tidal enhancement of this correlation based on recent theoretical and observational analyses. The airglow-derived rates of energy deposition are then compared with those computed by multidimensional numerical models. The observed and modeled deposition rates typically agree to within 20%. This agreement in energy deposition rates implies the same agreement exists between measured and modeled ozone volume mixing ratios in the mesosphere. Only in the upper mesosphere at midlatitudes during winter do we derive energy deposition rates (and hence ozone mixing ratios) consistently and significantly larger than the model calculations. This result is contrary to previous studies that have shown a large model deficit in the ozone abundance throughout the mesosphere. The climatology of solar energy deposition and heating presented in this paper is available to the community at the Middle Atmosphere Energy Budget Project web site at http://heat-budget.gats-inc.com.
A climatology of visible surface reflectance spectra
NASA Astrophysics Data System (ADS)
Zoogman, Peter; Liu, Xiong; Chance, Kelly; Sun, Qingsong; Schaaf, Crystal; Mahr, Tobias; Wagner, Thomas
2016-09-01
We present a high spectral resolution climatology of visible surface reflectance as a function of wavelength for use in satellite measurements of ozone and other atmospheric species. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument is planned to measure backscattered solar radiation in the 290-740 nm range, including the ultraviolet and visible Chappuis ozone bands. Observation in the weak Chappuis band takes advantage of the relative transparency of the atmosphere in the visible to achieve sensitivity to near-surface ozone. However, due to the weakness of the ozone absorption features this measurement is more sensitive to errors in visible surface reflectance, which is highly variable. We utilize reflectance measurements of individual plant, man-made, and other surface types to calculate the primary modes of variability of visible surface reflectance at a high spectral resolution, comparable to that of TEMPO (0.6 nm). Using the Moderate-resolution Imaging Spectroradiometer (MODIS) Bidirection Reflectance Distribution Function (BRDF)/albedo product and our derived primary modes we construct a high spatial resolution climatology of wavelength-dependent surface reflectance over all viewing scenes and geometries. The Global Ozone Monitoring Experiment-2 (GOME-2) Lambertian Equivalent Reflectance (LER) product provides complementary information over water and snow scenes. Preliminary results using this approach in multispectral ultraviolet+visible ozone retrievals from the GOME-2 instrument show significant improvement to the fitting residuals over vegetated scenes.
Unexpected autumnal halogen activity in the lower troposphere at Neumayer III/Antarctica
NASA Astrophysics Data System (ADS)
Nasse, Jan-Marcus; Frieß, Udo; Pöhler, Denis; Schmitt, Stefan; Weller, Rolf; Schaefer, Thomas; Platt, Ulrich
2017-04-01
The influence of Reactive Halogen Species (RHS, like IO, BrO, ClO, etc.) on the lower polar troposphere has been subject of intense research for several decades. Ozone Depletion Events (ODEs) caused by the catalytic reaction of tropospheric ozone with inorganic halogen species or the oxidation of gaseous elemental mercury are well observed phenomena that occur during the respective springtime in both Arctic and Antarctica. Chlorine atoms also react more efficiently with hydrocarbons than e.g. OH radicals and all reactive halogen species can furthermore influence the atmospheric sulphur or nitrate cycles. While an autocatalytic release mechanism from salty surfaces, the so called bromine explosion, has been identified to rapidly increase inorganic bromine mixing ratios many aspects of atmospheric halogen chemistry in polar regions remains unclear. Since January 2016, we are operating an active Long Path DOAS instrument at Neumayer III on the Antarctic Ekström shelf ice designed for autonomous measurements. This instrument is able to detect a wide range of trace gases absorbing in the UV/Vis including ClO, BrO, OClO, IO, I2, OIO, ozone, NO2, H2O, O4, and SO2 at a temporal resolution of 5-30 minutes. The analysis of the first year of observations shows several surprising findings which give new insights into polar halogen chemistry. E.g. we observe surprisingly strong bromine activity in late summer and autumn (in addition to well-known springtime events) with mixing ratios often higher than 20 pptv. We could even observe peak mixing ratios of 110 pptv. The observed BrO levels could be the result of local/regional chemistry rather than long-range transport and modulated by the stability of the boundary layer. Also, there are hints for NOx - driven halogen activation. Furthermore, chlorine monoxide (ClO) and OClO mixing ratios of several ten pptv could be detected on a number of days, however the source mechanism for reactive chlorine remains unclear. We will give an overview of the entire time series and discuss interesting case studies with regard to chemistry, atmospheric conditions and transport.
Tsai, Wen-Tien
2017-01-01
Among the halogenated hydrocarbons, chloromethanes (i.e., methyl chloride, CH3Cl; methylene chloride, CH2Cl2; chloroform, CHCl3; and carbon tetrachloride, CCl4) play a vital role due to their extensive uses as solvents and chemical intermediates. This article aims to review their main chemical/physical properties and commercial/industrial uses, as well as the environment and health hazards posed by them and their toxic decomposition products. The environmental properties (including atmospheric lifetime, radiative efficiency, ozone depletion potential, global warming potential, photochemical ozone creation potential, and surface mixing ratio) of these chlorinated methanes are also reviewed. In addition, this paper further discusses their atmospheric fates and human health implications because they are apt to reside in the lower atmosphere when released into the environment. According to the atmospheric degradation mechanism, their toxic degradation products in the troposphere include hydrogen chloride (HCl), carbon monoxide (CO), chlorine (Cl2), formyl chloride (HCOCl), carbonyl chloride (COCl2), and hydrogen peroxide (H2O2). Among them, COCl2 (also called phosgene) is a powerful irritating gas, which is easily hydrolyzed or thermally decomposed to form hydrogen chloride. PMID:29051455
NASA Astrophysics Data System (ADS)
Fleming, Z. L.; Doherty, R. M.; von Schneidemesser, E.; Cooper, O. R.; Malley, C.; Colette, A.; Xu, X.; Pinto, J. P.; Simpson, D.; Schultz, M. G.; Hamad, S.; Moola, R.; Solberg, S.; Feng, Z.
2017-12-01
Using stations from the TOAR surface ozone database, this study quantifies present-day global and regional distributions of five ozone metrics relevant for both short-term and long-term human exposure. These metrics were explored at ozone monitoring sites globally, and re-classified for this project as urban or non-urban using population densities and night-time lights. National surface ozone limit values are usually related to an annual number of exceedances of daily maximum 8-hour running mean (MDA8), with many countries not even having any ozone limit values. A discussion and comparison of exceedances in the different ozone metrics, their locations and the seasonality of exceedances provides clues as to the regions that potentially have more serious ozone health implications. Present day ozone levels (2010-2014) have been compared globally and show definite geographical differences (see Figure showing the annual 4th highest MDA8 for present day ozone for all non-urban stations). Higher ozone levels are seen in western compared to eastern US, and between southern and northern Europe, and generally higher levels in east Asia. The metrics reflective of peak concentrations show highest values in western North America, southern Europe and East Asia. A number of the metrics show similar distributions of North-South gradients, most prominent across Europe and Japan. The interquartile range of the regional ozone metrics was largest in East Asia, higher for urban stations in Asia but higher for non-urban stations in Europe and North America. With over 3000 monitoring stations included in this analysis and despite the higher densities of monitoring stations in Europe, north America and East Asia, this study provides the most comprehensive global picture to date of surface ozone levels in terms of health-relevant metrics.
A Global Ozone Climatology from Ozone Soundings via Trajectory Mapping: A Stratospheric Perspective
NASA Technical Reports Server (NTRS)
Liu, J. J.; Tarasick, D. W.; Fioletov, V. E.; McLinden, C.; Zhao, T.; Gong, S.; Sioris, G.; Jin, J. J.; Liu, G.; Moeini, O.
2013-01-01
This study explores a domain-filling trajectory approach to generate a global ozone climatology from sparse ozonesonde data. Global ozone soundings of 51,898 profiles at 116 stations over 44 years (1965-2008) are used, from which forward and backward trajectories are performed for 4 days, driven by a set of meteorological reanalysis data. Ozone mixing ratios of each sounding from the surface to 26 km altitude are assigned to the entire path along the trajectory. The resulting global ozone climatology is archived monthly for five decades from the 1960s to the 2000s with grids of 5 degree 5 degree 1 km (latitude, longitude, and altitude). It is also archived yearly from 1965 to 2008. This climatology is validated at 20 ozonesonde stations by comparing the actual ozone sounding profile with that found through the trajectories, using the ozone soundings at all the stations except one being tested. The two sets of profiles are in good agreement, both individually with correlation coefficients between 0.975 and 0.998 and root mean square (RMS) differences of 87 to 482 ppbv, and overall with a correlation coefficient of 0.991 and an RMS of 224 ppbv. The ozone climatology is also compared with two sets of satellite data, from the Satellite Aerosol and Gas Experiment (SAGE) and the Optical Spectrography and InfraRed Imager System (OSIRIS). Overall, the ozone climatology compares well with SAGE and OSIRIS data by both seasonal and zonal means. The mean difference is generally under 20 above 15 km. The comparison is better in the northern hemisphere, where there are more ozonesonde stations, than in the southern hemisphere; it is also better in the middle and high latitudes than in the tropics, where assimilated winds are imperfect in some regions. This ozone climatology can capture known features in the stratosphere, as well as seasonal and decadal variations of these features. Furthermore, it provides a wealth of detail about longitudinal variations in the stratosphere such as the spring ozone maximum over the Canadian Arctic. It also covers higher latitudes than current satellite data. The climatology shows clearly the depletion of ozone from the 1970s to the mid 1990s and ozone recovery in the 2000s. When this climatology is used as the upper boundary condition in an Environment Canada operational chemical forecast model, the forecast is improved in the vicinity of the upper tropospherelower stratosphere region. As this ozone climatology is neither dependent on a priori data or photochemical modeling, it provides independent information and insight that can supplement satellite data and model simulations and enhance our understanding of stratospheric ozone.
Attribution of Trends and Variability in Surface Ozone over the United States
NASA Technical Reports Server (NTRS)
Strode, Sarah; Cooper, Owen; Damo, Megan; Logan, Jennifer; Rodriquez, Jose; Strahan, Susan; Witte, Jacquie
2013-01-01
Concentrations of tropospheric ozone, a greenhouse gas and air pollutant, are impacted by changes in precursor emissions as well meteorology and influx from the stratosphere. Observations show a decreasing trend in summertime surface ozone at rural stations in the eastern United States, while some western stations show increasing trends, particularly in springtime. We use the Global Modeling Initiative (GMI) global chemical transport model to investigate the roles of precursor emission changes, meteorological variability, and stratosphere-troposphere exchange (STE) in explaining observed trends in surface ozone from rural sites in the United States from 1991-2010. The model's interannual variability shows significant correlations with observations from many of the surface sites. We also compare the simulated ozone to ozonesonde data for several locations with sufficiently long records. We compare a simulation with time-dependent precursor emissions, including emission reductions over the United States and Europe and increases over Asia, to a simulation with fixed emissions to quantify the impact of changing emissions on the surface trends. The simulation with varying emissions reproduces much of the east-west difference in summertime ozone over the U.S., although it generally underestimates the negative trend in the East. In contrast, the fixed-emission simulation shows increasing ozone at both eastern and western sites. We will discuss possible causes of this behavior, including long-range transport and STE.
NASA Astrophysics Data System (ADS)
Tsikerdekis, Athanasios; Katragou, Eleni; Zanis, Prodromos; Melas, Dimitrios; Eskes, Henk; Flemming, Johannes; Huijnen, Vincent; Inness, Antje; Kapsomenakis, Ioannis; Schultz, Martin; Stein, Olaf; Zerefos, Christos
2014-05-01
In this work we evaluate near surface ozone concentrations of the MACCii global reanalysis using measurements from the EMEP and AIRBASE database. The eight-year long reanalysis of atmospheric composition data covering the period 2003-2010 was constructed as part of the FP7-funded Monitoring Atmospheric Composition and Climate project by assimilating satellite data into a global model and data assimilation system (Inness et al., 2013). The study mainly focuses in the differences between the assimilated and the non-assimilated experiments and aims to identify and quantify any improvements achieved by adding data assimilation to the system. Results are analyzed in eight European sub-regions and region-specific Taylor plots illustrate the evaluation and the overall predictive skill of each experiment. The diurnal and annual cycles of near surface ozone are evaluated for both experiments. Furthermore ozone exposure indices for crop growth (AOT40), human health (SOMO35) and the number of days that 8-hour ozone averages exceeded 60ppb and 90ppb have been calculated for each station based on both observed and simulated data. Results indicate mostly improvement of the assimilated experiment with respect to the high near surface ozone concentrations, the diurnal cycle and range and the bias in comparison to the non-assimilated experiment. The limitations of the comparison between assimilated and non-assimilated experiments for near surface ozone are also discussed.
NASA Technical Reports Server (NTRS)
Rodriguez, J. M.; Shia, R.-L.; Ko, M. K. W.; Heisey, C. W.; Weistenstein, D. K.; Miake-Lye, R. C.; Kolb, C. E.
1994-01-01
The deposition altitude of nitrogen oxides and other exhaust species emitted by stratospheric aircraft is a crucial parameter in determining the impact of these emissions on stratospheric ozone. We have utilized a model for the wake of a High-Speed Civil Transport (HSCT) to estimate the enhancements in water and reductions in ozone in these wakes as a function of time. Radiative calculations indicate differential cooling rates as large as -5K/day at the beginning of the far-wake regime, mostly due to the enhanced water abundance. These cooling rates would imply a net sinking of the wakes of about 1.2 km after three days in the limit of no mixing. Calculated mid-latitude column ozone reductions due to emissions from a Mach 2.4 HSCT would then change from about -1% to -06%. However, more realistic calculations adopting moderate mixing for the wake reduce the net sinking to less than 0.2 km, making the impact of radiative subsidence negligible.
NASA Astrophysics Data System (ADS)
Rodríguez, J. M.; Shia, R.-L.; Ko, M. K. W.; Heisey, C. W.; Weistenstein, D. K.; Miake-Lye, R. C.; Kolb, C. E.
1994-01-01
The deposition altitude of nitrogen oxides and other exhaust species emitted by stratospheric aircraft is a crucial parameter in determining the impact of these emissions on stratospheric ozone. We have utilized a model for the wake of a High-Speed Civil Transport (HSCT) to estimate the enhancements in water and reductions in ozone in these wakes as a function of time. Radiative calculations indicate differential cooling rates as large as -5K/day at the beginning of the far-wake regime, mostly due to the enhanced water abundance. These cooling rates would imply a net sinking of the wakes of about 1.2 km after three days in the limit of no mixing. Calculated mid-latitude column ozone reductions due to emissions from a Mach 2.4 HSCT would then change from about -1% to -0.6%. However, more realistic calculations adopting moderate mixing for the wake reduce the net sinking to less than 0.2 km, making the impact of radiative subsidence negligible.
NASA Technical Reports Server (NTRS)
Schmidlin, F. J.; Thompson, A. M.; Holdren, D. H.; Northam, E. T.; Witte, J. C.; Oltmans, S. J.; Hoegger, B.; Levrat, G. M.; Kirchhoff, V.
2000-01-01
Vertical ozone profiles between the Equator and 10 S latitude available from the Southern Hemisphere Additional Ozone (SHADOZ) program provide consistent data Ozone sets from up to 10 sounding locations. SHADOZ designed to provide independent ozone profiles in the tropics for evaluation of satellite ozone data and models has made available over 600 soundings over the period 1998-1999. These observations provide an ideal data base for the detailed description of ozone and afford differential comparison between sites. TOMS total ozone when compared with correlative integrated total ozone overburden from the sondes is found to be negatively biased when using the classical constant mixing ratio procedure to determine residual ozone. On the other hand, the climatological method proposed by McPeters and Labow appears to give consistent results but is positively biased. The longer then two years series of measurements also was subjected to harmonic analysis to examine data cycles. These will be discussed as well.
The Impact of Meteorology on Ozone Levels in the Lake Tahoe Basin
NASA Astrophysics Data System (ADS)
Theiss, Sandra
The Lake Tahoe Basin is located on the California-Nevada border and occasionally experiences elevated levels of ozone exceeding the 70 ppb California Air Resources Board (CARB) ambient air quality standard (8-hour average). Previous studies indicate that both the local generation of ozone in the Basin and long-range transport from out-of-Basin sources are important in contributing to ozone exceedances, but little is known about the impact of meteorology on the distribution of ozone source regions. In order to develop a better understanding of the factors affecting ozone levels and sources in the Lake Tahoe Basin, this study combines observational data from a 2010 and 2012 summer field campaigns, HYSPLIT back trajectories, and WRF model output to examine the meteorological influences of ozone transport in the topographically complex Lake Tahoe Basin. Findings from the field work portions of this study include enhanced background ozone levels at higher elevations, the local circulation pattern of lake breezes occurring at Lake level sites, and an indication that ozone precursors are coming off the Lake. Our analysis also showed that if transport of ozone does occur, it is more likely to come from the San Joaquin Valley to the south rather than originate in the large cities to the west, such as Sacramento and San Francisco. Analysis of modeled PBL schemes as compared with observational data showed that the ACM2 PBL scheme best represented the geographical domain. The ACM2 PBL scheme was then used to show wind circulation patterns in the Lake Tahoe Basin and concluded that there is decent vertical mixing over the Basin and no indication of ozone transport from the west however some indication of transport from the east. Overall this study concludes that transport from the west is less significant than transport from the south and east, and that transport only influences ozone values at higher elevations. Within the Basin itself (at lower elevations), local factors including mixing depth, rising or sinking air, and lake/land breeze circulations are more significant in influencing ozone values.
NASA Astrophysics Data System (ADS)
Liu, H.; Chan, C.; Huang, J.; Zhang, Y.; Choi, H.; Crawford, J. H.; Considine, D. B.; Zheng, X.; Oltmans, S. J.; Liu, S. C.; Zhang, L.; Liu, X.; Thouret, V.
2012-12-01
Tropospheric ozone concentrations and emissions of NOx have both increased significantly over China as a result of rapid industrialization during the past decade. These trends degrade local and regional air quality and have important effects on background tropospheric ozone and surface ozone over downwind North Pacific and North America. In-situ observations of tropospheric ozone over China are therefore essential to testing and improving our understanding of the impact of Asian anthropogenic (versus natural) emissions and various chemical, physical, and dynamical processes on both regional and global tropospheric ozone. Despite their critical importance, in-situ observations of tropospheric ozone profiles over China have been few and far between in most of the country. To investigate the ensemble of processes that control the distribution, variability, and sources of springtime tropospheric ozone over China and its surrounding regions, an intensive ozonesonde sounding campaign, called Transport of Air Pollutants and Tropospheric Ozone over China (TAPTO-China), was conducted at nine locations across China in the springs of 2004 (South China) and 2005 (North China). In this paper, we use a global 3-D model of tropospheric chemistry (GEOS-Chem) to examine the characteristics of distribution and variability and quantify various sources of tropospheric ozone over North China by analysis of intensive ozonesonde data obtained at four stations in North / Northwest China during the second phase of TAPTO-China (April-May 2005). These four stations include Xining (36.43N, 101.45E), Beijing (39.80N, 116.18E), Longfengshan (44.44N, 127.36E), and Aletai (47.73N, 88.08E). We drive GEOS-Chem with two sets of assimilated meteorological observations (GEOS-4 and GEOS-5) from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation Office (GAMO), allowing us to examine the impacts of variability in meteorology. We show that the observed tropospheric ozone mixing ratios exhibit strong spatio-temporal variability. The model generally simulates well the ozonesonde observations but tends to underestimate ozone in the upper troposphere over Beijing and Longfengshan. We find that Asian fossil fuel emissions, stratospheric ozone, African lightning NOx emissions, as well as intercontinental transport are the main contributors to tropospheric ozone over North China in spring. While the lower-tropospheric ozone is largely influenced by Asian fossil fuel emissions (except over Aletai, Northwest China), lightning NOx emissions have a larger impact on the upper-tropospheric ozone than Asian fossil fuel emissions (except over Longfengshan, Northeast China). Model simulations suggest that the European fossil fuel emissions contribute more to the lower-tropospheric ozone over Aletai than the Asian fossil fuel emissions. We will also show that tropospheric ozone measurements by Tropospheric Emission Spectrometer (TES) aboard the NASA EOS Aura satellite can be used to study tropospheric ozone variability at Xining.
An Assessment of Ground Level and Free Tropospheric Ozone Over California and Nevada
NASA Astrophysics Data System (ADS)
Yates, E. L.; Johnson, M. S.; Iraci, L. T.; Ryoo, J.-M.; Pierce, R. B.; Cullis, P. D.; Gore, W.; Ives, M. A.; Johnson, B. J.; Leblanc, T.; Marrero, J. E.; Sterling, C. W.; Tanaka, T.
2017-09-01
Increasing free tropospheric ozone (O3), combined with the high elevation and often deep boundary layers at western U.S. surface stations, poses challenges in attaining the more stringent 70 ppb O3 National Ambient Air Quality Standard. As such, use of observational data to identify sources and mechanisms that contribute to surface O3 is increasingly important. This work analyzes surface and vertical O3 observations over California and Nevada from 1995 to 2015. Over this period, the number of high O3 events (95th percentile) at the U.S. Environmental Protection Agency Clean Air Status and Trends Network (CASTNET) sites has decreased during summer, as a result of decreasing U.S. emissions. In contrast, an increase in springtime 5th percentile O3 indicates a general increase of baseline O3. During 2012 there was a peak in exceedances and in the average spring-summer O3 mixing ratios at CASTNET sites. Goddard Earth Observing System-Chem results show that the surface O3 attributable to transport from the upper troposphere and stratosphere was increased in 2013 compared to 2012, highlighting the importance of measurements aloft. Vertical O3 measurements from aircraft, ozonesondes, and lidar show distinct seasonal trends, with a high percentage of elevated O3 laminae (O3 > 70 ppb, 3-8 km) during spring and summer. Analysis of the timing of high O3 surface events and correlation between surface and vertical O3 data is used to discuss varying sources of western U.S. surface O3.
Estimation of ozone dry deposition over Europe for the period 2071-2100
NASA Astrophysics Data System (ADS)
Komjáthy, Eszter; Gelybó, Györgyi; László Lagzi, István.; Mészáros, Róbert
2010-05-01
Ozone in the lower troposphere is a phytotoxic air pollutant which can cause injury to plant tissues, causing reduction in plant growth and productivity. In the last decades, several investigations have been carried out for the purpose to estimate ozone load over different surface types. At the same time, the changes of atmospheric variables as well as surface/vegetation parameters due to the global climate change could also strongly modify both temporal and spatial variations of ozone load over Europe. In this study, the possible effects of climate change on ozone deposition are analyzed. Using a sophisticated deposition model, ozone deposition was estimated on a regular grid over Europe for the period 2071-2100. Our aim is to determine the uncertainties and the possible degree of change in ozone deposition velocity as an important predictor of total ozone load using climate data from multiple climate models and runs. For these model calculations, results of the PRUDENCE (Predicting of Regional Scenarios and Uncertainties for Defining European Climate Change Risks and Effects) climate prediction project were used. As a first step, seasonal variations of ozone deposition over different vegetation types in case of different climate scenarios are presented in this study. Besides model calculations, in the frame of a sensitivity analyses, the effects of surface/vegetation parameters (e.g. leaf area index or stomatal resistance) on ozone deposition under a modified climate regime have also been analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsunoda, Ryoichi; Ozawa, Takayoshi; Ando, Junichi
1998-09-15
Characteristics of the adsorption iostherms of water vapor on active carbons from coal and coffee grounds and those ozonized ones from the surface fractal dimension analysis are discussed. The upswing of the adsorption isotherms in the low relative pressure of coffee grounds-based active carbon, of which isotherms were not scarcely affected on ozonization, was attributed to the adsorption of water molecules on the metallic oxides playing the role of oxygen-surface complexes, which formed the corrugated surfaces on the basal planes of micropore walls with the surface fractal dimension D{sub s} > 2. On the other hand, coal-based active carbon withmore » D{sub s} < 2, which indicated the flat surfaces of micropore walls, showed little effect on the upswing even on ozonization, even though the adsorption amounts of water vapor were increased in the low relative pressure.« less
Convective Lofting Links Indian Ocean Air Pollution to Paradoxical South Atlantic Ozone Maxima
NASA Technical Reports Server (NTRS)
Chatfield, Robert B.; Guan, Hong; Thompson, Anne M.; Witte, Jacquelyn C.
2003-01-01
We describe a broad resolution of the "Atlantic Paradox" concerning the seasonal and geographic distribution of tropical tropospheric ozone. We describe periods of significant maximum tropospheric O3 for Jan.-April, 1999, exploiting satellite estimates and SHADOZ (Southern Hemisphere Additional Ozonesondes). Trajectory analyses connecting sondes and Total Tropospheric Ozone (TTO)O3 maps suggest a complex influence from the Indian Ocean: beginning with mixed combustion sources, then low level transport, cumulonimbus venting, and finally high-level transport to the west, with possible mixing over Africa. For the Jan.- March highest column-O3 periods in the Atlantic, distinct sounding peaks trace to specific NO sources, especially lightning, while in the same episodes, recurring every 30 or 60 days, more diffuse buildups of Indian-to-Atlantic pollution make important contributions.
Convective lofting links Indian Ocean air pollution to paradoxical South Atlantic ozone maxima
NASA Technical Reports Server (NTRS)
Chatfield, R. B.; Guan, H.; Thompson, A. M.; Witte, J. C.
2005-01-01
We describe a broad resolution of the Atlantic Parado concerning the seasonal and geographic distribution, of tropical tropospheric ozone. We highlight periods of significant maximum tropospheric O3 for Jan.- April, 1999, exploiting satellite estimates and SHADOZ (Southern Hemisphere Additional Ozonesondes). Trajectory analyses connecting sondes and Total Tropospheric Ozone (TTO) maps suggest a complex influence from the Indian Ocean: beginning with mixed combustion sources, then low level transport, cumulonimbus venting, possible stratospheric input, and finally high-level transport to the west, with possible mixing over Africa. For the Jan.-March highest column-O3 periods in the Atlantic, distinct sounding peaks trace to specific NO sources, especially lightning, while in the same episodes, recurring every 20-50 days, more diffuse buildups of Indian-to-Atlantic pollution make important contributions.
Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export
NASA Technical Reports Server (NTRS)
Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.;
2014-01-01
Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.
NASA Technical Reports Server (NTRS)
Pitari, Giovanni; Aquila, Valentina; Kravitz, Ben; Watanabe, Shingo; Tilmes, Simone; Mancini, Eva; DeLuca, Natalia; DiGenova, Glauco
2013-01-01
Geoengineering with stratospheric sulfate aerosols has been proposed as a means of temporarily cooling the planet, alleviating some of the side effects of anthropogenic CO2 emissions. However, one of the known side effects of stratospheric injections of sulfate aerosols is a decrease in stratospheric ozone. Here we show results from two general circulation models and two coupled chemistry climate models that have simulated stratospheric sulfate aerosol geoengineering as part of the Geoengineering Model Intercomparison Project (GeoMIP). Changes in photolysis rates and upwelling of ozone-poor air in the tropics reduce stratospheric ozone, suppression of the NOx cycle increases stratospheric ozone, and an increase in available surfaces for heterogeneous chemistry modulates reductions in ozone. On average, the models show a factor 20-40 increase of the sulfate aerosol surface area density (SAD) at 50 hPa in the tropics with respect to unperturbed background conditions and a factor 3-10 increase at mid-high latitudes. The net effect for a tropical injection rate of 5 Tg SO2 per year is a decrease in globally averaged ozone by 1.1-2.1 DU in the years 2040-2050 for three models which include heterogeneous chemistry on the sulfate aerosol surfaces. GISS-E2-R, a fully coupled general circulation model, performed simulations with no heterogeneous chemistry and a smaller aerosol size; it showed a decrease in ozone by 9.7 DU. After the year 2050, suppression of the NOx cycle becomes more important than destruction of ozone by ClOx, causing an increase in total stratospheric ozone. Contribution of ozone changes in this experiment to radiative forcing is 0.23 W m-2 in GISS-E2-R and less than 0.1 W m-2 in the other three models. Polar ozone depletion, due to enhanced formation of both sulfate aerosol SAD and polar stratospheric clouds, results in an average 5 percent increase in calculated surface UV-B.
Ray, Debajyoti; Malongwe, Joseph K'Ekuboni; Klán, Petr
2013-07-02
The kinetics of the ozonation reaction of 1,1-diphenylethylene (DPE) on the surface of ice grains (also called "artificial snow"), produced by shock-freezing of DPE aqueous solutions or DPE vapor-deposition on pure ice grains, was studied in the temperature range of 268 to 188 K. A remarkable and unexpected increase in the apparent ozonation rates with decreasing temperature was evaluated using the Langmuir-Hinshelwood and Eley-Rideal kinetic models, and by estimating the apparent specific surface area of the ice grains. We suggest that an increase of the number of surface reactive sites, and possibly higher ozone uptake coefficients are responsible for the apparent rate acceleration of DPE ozonation at the air-ice interface at lower temperatures. The increasing number of reactive sites is probably related to the fact that organic molecules are displaced more to the top of a disordered interface (or quasi-liquid) layer on the ice surface, which makes them more accessible to the gas-phase reactants. The effect of NaCl as a cocontaminant on ozonation rates was also investigated. The environmental implications of this phenomenon for natural ice/snow are discussed. DPE was selected as an example of environmentally relevant species which can react with ozone. For typical atmospheric ozone concentrations in polar areas (20 ppbv), we estimated that its half-life on the ice surface would decrease from ∼5 days at 258 K to ∼13 h at 188 K at submonolayer DPE loadings.
Stage-specific, Nonlinear Surface Ozone Damage to Rice Production in China
NASA Astrophysics Data System (ADS)
Carter, Colin A.; Cui, Xiaomeng; Ding, Aijun; Ghanem, Dalia; Jiang, Fei; Yi, Fujin; Zhong, Funing
2017-03-01
China is one of the most heavily polluted nations and is also the largest agricultural producer. There are relatively few studies measuring the effects of pollution on crop yields in China, and most are based on experiments or simulation methods. We use observational data to study the impact of increased air pollution (surface ozone) on rice yields in Southeast China. We examine nonlinearities in the relationship between rice yields and ozone concentrations and find that an additional day with a maximum ozone concentration greater than 120 ppb is associated with a yield loss of 1.12% ± 0.83% relative to a day with maximum ozone concentration less than 60 ppb. We find that increases in mean ozone concentrations, SUM60, and AOT40 during panicle formation are associated with statistically significant yield losses, whereas such increases before and after panicle formation are not. We conclude that heightened surface ozone levels will potentially lead to reductions in rice yields that are large enough to have implications for the global rice market.
NASA Astrophysics Data System (ADS)
Suthawaree, Jeeranut; Tajima, Yosuke; Khunchornyakong, Alisa; Kato, Shungo; Sharp, Alice; Kajii, Yoshizumi
2012-02-01
Measurement of Volatile Organic Compound (VOC) was carried out in suburban Bangkok during July 2-8, 2008. Analysis was performed using GC-FID and GC-MS. High mixing ratios of VOCs detected during the morning and evening are most likely due to vehicular emissions. Averaged VOC mixing ratios revealed distinct difference between mixing ratios of weekdays and weekend, which the latter were found to be lower. The most abundance species were propane and toluene. Ratios of benzene over toluene suggested that additional toluene mixing ratios was owing to industrial emission, which was particularly larger during weekdays. Comparison between C2Cl4 and CH3Cl mixing ratios obtained for suburban Tokyo reveal a relatively lower influence of biomass burning than suburban Bangkok. Elucidating by Ozone Formation Potential, toluene was found to contribute the most to O3 production followed by ethylene, m-,p-xylene, and propylene.
Surface modification of nitrogen-doped carbon nanotubes by ozone via atomic layer deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lushington, Andrew; Liu, Jian; Tang, Yongji
The use of ozone as an oxidizing agent for atomic layer deposition (ALD) processes is rapidly growing due to its strong oxidizing capabilities. However, the effect of ozone on nanostructured substrates such as nitrogen-doped multiwalled carbon nanotubes (NCNTs) and pristine multiwalled carbon nanotubes (PCNTs) are not very well understood and may provide an avenue toward functionalizing the carbon nanotube surface prior to deposition. The effects of ALD ozone treatment on NCNTs and PCNTs using 10 wt. % ozone at temperatures of 150, 250, and 300 °C are studied. The effect of ozone pulse time and ALD cycle number on NCNTs and PCNTsmore » was also investigated. Morphological changes to the substrate were observed by scanning electron microscopy and high resolution transmission electron microscopy. Brunauer-Emmett-Teller measurements were also conducted to determine surface area, pore size, and pore size distribution following ozone treatment. The graphitic nature of both NCNTs and PCNTs was determined using Raman analysis while x-ray photoelectron spectroscopy (XPS) was employed to probe the chemical nature of NCNTs. It was found that O{sub 3} attack occurs preferentially to the outermost geometric surface of NCNTs. Our research also revealed that the deleterious effects of ozone are found only on NCNTs while little or no damage occurs on PCNTs. Furthermore, XPS analysis indicated that ALD ozone treatment on NCNTs, at elevated temperatures, results in loss of nitrogen content. Our studies demonstrate that ALD ozone treatment is an effective avenue toward creating low nitrogen content, defect rich substrates for use in electrochemical applications and ALD of various metal/metal oxides.« less
Characterization of ozone decomposition in a soil slurry: kinetics and mechanism.
Lim, Hyung-Nam; Choi, Hechul; Hwang, Tae-Moon; Kang, Joon-Wun
2002-01-01
A series of soil slurry experiments were performed in a carefully conceived reactor set-up to investigate the characteristics of the catalytic decomposition of ozone on a sand and iron surface. Real time on-line monitoring of ozone in the reaction module was possible using flow injection analysis coupled with a computer-controlled UV detector and data acquisition system. The effects of the soil media and size, ozone dosage, pH and p-CBA as a probe compound were examined at the given experimental conditions. Two apparent phases existed, and ozone instantaneously decomposed within one second in the first phase. These were defined as the instantaneous ozone demand (ID) phase, and the relatively slow decay stage. The interactions of ozone with the soil organic matter (SOM) and metal oxides were attributed mostly to the instantaneous decomposition of ozone. From the probe (p-CBA) experiments, 60-68% of total p-CBA removal occurred during the ID phase. The generation of hydroxyl radicals (OH.) was demonstrated and was closely related with metal oxides as well as SOM. Metal oxides in soil surface were considered to have relatively faster reaction rate with ozone and provide more favorable reactive sites to generate higher amount of OH. than SOM. Even at one-tenth concentration of the sands, a goethite-induced catalytic reaction outfitted the removal rate ofp-CBA among all the soils tested. More than 40% of total p-CBA removal occurred on the soil surface. It was inferred that the radical reaction with the probe compound seemed to take place not only on the soil surface but also in the solid-liquid interface. Ozone decomposition and the reaction between OH. and p-CBA appeared to be independent of any change in pH.
Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality
NASA Astrophysics Data System (ADS)
Nowack, Peer Johannes; Abraham, Nathan Luke; Braesicke, Peter; Pyle, John Adrian
2016-03-01
Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term solar radiation management (SRM). Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere-ocean coupled climate model, we include atmospheric composition feedbacks for this experiment. While the SRM scheme considered here could offset greenhouse gas induced global mean surface warming, it leads to important changes in atmospheric composition. We find large stratospheric ozone increases that induce significant reductions in surface UV-B irradiance, which would have implications for vitamin D production. In addition, the higher stratospheric ozone levels lead to decreased ozone photolysis in the troposphere. In combination with lower atmospheric specific humidity under SRM, this results in overall surface ozone concentration increases in the idealized G1 experiment. Both UV-B and surface ozone changes are important for human health. We therefore highlight that both stratospheric and tropospheric ozone changes must be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality.
Foreign and Domestic Contributions to Springtime Ozone Pollution over China
NASA Astrophysics Data System (ADS)
Ni, R.; Lin, J.; Yan, Y.; Lin, W.; Chen, H.
2017-12-01
Ozone is a critical air pollutant that damages human health and vegetation. Previous studies for the United States and Europe have shown large influences of foreign emissions on domestic ozone levels, whereas the relative contributions of foreign versus domestic emissions are much less clear for China. Here, we use a global-regional two-way coupled model system based on GEOS-Chem to quantify the contributions to springtime ozone over China from anthropogenic emissions in major source regions across the globe. Our results indicate considerable influences of foreign anthropogenic pollution on China's ozone pollution. Together, foreign anthropogenic emissions enhance springtime surface ozone over China by 3 12 ppb. Of all ozone over China produced by global anthropogenic emissions, foreign emissions contribute 40% near the surface, and the contribution increases with altitude until a value of 80% in the upper troposphere. Impact from Japan and Korea is 1 2 ppb over east coastal regions, and negligible in inland. Anthropogenic emissions of South and South-East Asia increase ozone over Tibet and the Yunnan-Guizhou Plateau by up to 5 ppb, and their contribution increases with height due to strong vertical transport. Pollution from North America and Europe mainly accompanies strong westerly winds and frequent cyclonic activities that are favorable to long-range transport. European anthropogenic pollution enhances surface ozone by 1 3 ppb over West and North China. Despite a much longer transport distance, the contribution from North America is greater than European contribution due to the nearly doubled amount of anthropogenic NMVOC emissions. The high percentage contribution of foreign anthropogenic emissions to China's ozone pollution can be partly explained by excessive domestic NOx emissions that suppress ozone production efficiency and even destroy ozone. Our study is relevant to Chinese ozone pollution control and global environmental protection collaboration.
Adame, José A; Lozano, Antonio; Bolívar, Juan P; De la Morena, Benito A; Contreras, Juan; Godoy, Francisca
2008-01-01
In order to improve our knowledge of the surface ozone in the south of the Iberian Peninsula, annual, monthly, weekly and daily ozone concentrations have been closely monitored in the Seville metropolitan area highlighting those episodes that exceed the European Ozone Directive. A three-year period (2003-2005) and eight ozone stations were used; five of them located in the city's busiest areas and the rest in adjacent zones ( approximately 25km). In addition, the wind regime was also studied in order to understand the main characteristics of the surface atmospheric dynamics. The lowest ozone concentrations 17-33microgm(-3) took place in January while the highest 57-95microgm(-3) occurred in June. The ozone concentration week-weekend differences from May to September indicate that this phenomenon does not affect the ozone stations analysed. Daily cycles show minimum values between 7:00 and 8:00 UTC and maximum at noon, exceeding 90microgm(-3) during summer months. From March to October the ozone concentrations were above the target value for the protection of human health, especially during the summer months, with values up to 30% over the limit. The information threshold has been exceeded at all ozone stations studied but with greater frequency in the stations far from the city centre. In addition, at these latter stations the alert threshold was also exceeded on six occasions. This study in the city of Seville indicates that the high ozone levels are due to local atmospheric effects, mainly since the ozone air masses may undergo recirculation processes. The ozone is transported to the city from the S-SW, having a major impact in the NE areas.
Airborne measurements of biomass burning products over Africa
NASA Technical Reports Server (NTRS)
Helas, Guenter; Lobert, Juergen; Goldammer, Johann; Andreae, Meinrat O.; Lacaux, J. P.; Delmas, R.
1994-01-01
Ozone has been observed in elevated concentrations by satellites over hitherto believed 'background' areas. There is meteorological evidence that these ozone 'plumes' found over the Atlantic ocean originate from biomass fires on the African continent. Therefore we have investigated ozone and assumed precursor compounds over African regions. The measurements revealed large photosmog layers in altitudes between 1.5 and 4 km. Here we will focus on some results of ozone mixing ratios obtained during the DECAFE 91/FOS experiment and estimate the relevance of biomass burning as a source by comparing the strength of this source to stratospheric input.
Validation of ozone intensities at 10 μm with THz spectrometry
NASA Astrophysics Data System (ADS)
Drouin, Brian J.; Crawford, Timothy J.; Yu, Shanshan
2017-12-01
This manuscript reports an effort to improve the absolute accuracy of ozone intensities in the 10 μm region via a transfer of the precision of the rotational dipole moment onto the infrared measurement. The approach determines the ozone mixing ratio through alternately measuring seven pure rotation ozone lines from 692 to 779 GHz. A multispectrum fitting technique was employed. The results determine the column with absolute accuracy of 1.5% and the intensities of infrared transitions measured at this accuracy reproduce the recommended values to within a standard deviation of 2.8%.
Wintertime ozone fluxes and profiles above a subalpine spruce-fir forest
Karl Zeller
2000-01-01
High rural concentrations of ozone (O3) are thought to be stratospheric in origin, advected from upwind urban sources, or photochemically generated locally by natural trace gas emissions. Ozone is known to be transported vertically downward from the above-canopy atmospheric surface layer and destroyed within stomata or on other biological and mineral surfaces. However...
Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation.
Cheng, Ya-Ling; Juang, Yu-Chuan; Liao, Guan-Yu; Tsai, Pei-Wen; Ho, Shih-Hsin; Yeh, Kuei-Ling; Chen, Chun-Yen; Chang, Jo-Shu; Liu, Jhy-Chern; Chen, Wen-Ming; Lee, Duu-Jong
2011-01-01
The Scenedesmus obliquus FSP-3, a species with excellent potential for CO(2) capture and lipid production, was harvested using dispersed ozone flotation. While air aeration does not, ozone produces effective solid-liquid separation through flotation. Ozone dose applied for sufficient algal flotation is similar to those used in practical drinking waterworks. The algae removal rate, surface charge, and hydrophobicity of algal cells, and fluorescence characteristics and proteins and polysaccharides contents of algogenic organic matter (AOM) were determined during ozonation. Proteins released from tightly bound AOM are essential to modifying the hydrophobicity of bubble surfaces for easy cell attachment and to forming a top froth layer for collecting floating cells. Humic substances in the suspension scavenge dosed ozone that adversely affects ozone flotation efficiency of algal cells. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Frolov, A. D.; Thompson, A. M.; Hudson, R. D.; Browell, E. V.; Oltmans, S. J.; Witte, J. C.; Bhartia, P. K. (Technical Monitor)
2002-01-01
Over the past several years, we have developed two new tropospheric ozone retrievals from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument that are of sufficient resolution to follow pollution episodes. The modified-residual technique uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMS-direct method ('TDOT' = TOMS Direct Ozone in the Troposphere) represents a new algorithm that uses TOMS radiances directly to extract tropospheric ozone in regions of constant stratospheric ozone. It is not geographically restricted, using meteorological regimes as the basis for classifying TOMS radiances and for selecting appropriate comparison data. TDOT is useful where tropospheric ozone displays high mixing ratios and variability characteristic of pollution. Some of these episodes were observed downwind of Asian biomass burning during the TRACE-P (Transport and Atmospheric Chemical Evolution-Pacific) field experiment in March 2001. This paper features comparisons among TDOT tropospheric ozone column depth, integrated uv-DIAL measurements made from NASA's DC-8, and ozonesonde data.
Diagnosing ozone recovery using the O3-N2O relationship
NASA Astrophysics Data System (ADS)
Butler, A. H.; Gao, R. S.; Maycock, A.; Portmann, R. W.; Thornberry, T. D.; Rosenlof, K. H.; Fahey, D. W.
2016-12-01
The ubiquitous compact correlation between collocated values of stratospheric ozone (O3) and the tracer nitrous oxide (N2O) results from the stratospheric photochemical processes that produce ozone and destroy N2O combined with common transport and mixing processes. Changes in the correlation slope under certain circumstances reflect changes in the production and loss balance of ozone. This approach has been used extensively to diagnose and quantify ozone loss in polar spring. Using a coupled atmosphere-ocean model with interactive chemistry (CESM/WACCM), we show that this relationship can be used to diagnose ozone recovery in the lower extratropical stratosphere. We then consider in situ measurements of O3 and N2O from ATTREX, GloPac, and HIPPO as well as satellite measurements from ACE and Aura MLS to consider whether ozone recovery can be detected in observations during the period 2004-2016.
NASA Technical Reports Server (NTRS)
Hofmann, D. J.; Harder, J. W.; Rolf, S. R.; Rosen, J. M.
1987-01-01
The vertical distribution of ozone measured at McMurdo Station, Antarctica using balloon-borne sensors on 33 occasions during November 6, 1986 - August 25, 1986 is described. These observations suggest a highly structured cavity confined to the 12-20 km altitude region. In the 17-19 km altitude range, the ozone volume mixing ratio declined from about 2 ppm at the end of August to about 0.5 ppm by mid-October. The average decay in this region can be described as exponential with a half life of about 25 days. While total ozone, as obtained from profile integration, declined only about 35 percent, the integrated ozone between 14 and 18 km declined more than 70 percent. Vertical ozone profiles in the vortex revealed unusual structure with major features from 1 to 5 km thick which had suffered ozone depletions as great as 90 percent.
NASA Astrophysics Data System (ADS)
Mobasheri, M. R.; Shirazi, H.
2015-12-01
This article aims to increase the accuracy of Ozone data from tropospheric column (TOC) of the OMI and TES satellite instruments. To validate the estimated amount of satellite data, Ozonesonde data is used. The vertical resolution in both instruments in the tropospheric atmosphere decreases so that the degree of freedom signals (DOFS) on the average for TES is reduced to 2 and for OMI is reduced to1. But this decline in accuracy in estimation of tropospheric ozone is more obvious in urban areas so that estimated ozone in both instruments alone in non-urban areas show a high correlation with Ozonesonde. But in urban areas this correlation is significantly reduced, due to the ozone pre-structures and consequently an increase on surface-level ozone in urban areas. In order to improve the accuracy of satellite data, the average tropospheric ozone data from the two instruments were used. The aim is to increase the vertical resolution of ozone profile and the results clearly indicate an increase in correlations, but nevertheless the satellite data have a positive bias towards the earth data. To reduce the bias, with the solar flux and nitrogen dioxide values and surface temperatures are calculated as factors of ozone production on the earth's surface and formation of mathematical equations based on coefficients for each of the mentioned values and multiplication of these coefficients by satellite data and repeated comparison with the values of Ozonesonde, the results showed that bias in urban areas is greatly reduced.
Ozone and stratospheric height waves for opposite phases of the QBO
NASA Technical Reports Server (NTRS)
Mo, Kingtse C.; Nogues-Paegle, Julia
1994-01-01
The stratospheric quasi-biennial oscillation (QBO) provides an important source of interannual variations in the Northern Hemisphere. O'sullivan and Salby (1990) related extra-tropical eddy transport with the phase of the tropical QBO. When the tropical wind is easterly, the zero wind line is shifted into the winter hemisphere. Enhanced wave activity in middle latitudes acts to weaken the polar vortex. When the tropical wind is in the westerly phase the situation reverses. Heights at 30 mb and ozone configurations are contrasted in this paper for these two QBO phases. When the winter vortex deforms due to the amplification of planetary waves 1 and 2, extends westward and equatorward, the complementary band of low vorticity air spirals in toward the pole from lower latitudes. Sometimes, these planetary waves break (Juckes and McIntyre, 1987) and an irreversible mixing of air takes place between high and mid-latitudes. Global ozone patterns, as obtained form satellite observations, appear to be affected by planetary wave breaking (Leovy et al. 1985). This mixing results on regions with uniform ozone and potential vorticity. In the Southern Hemisphere (SH), Newman and Randel (1988) using Total Ozone Mapping Spectrometer (TOMS) data and the NMC analyses have found strong spatial correlation between the October mean temperature in the lower stratosphere and total ozone for the 1979 through 1986 years. Recently Nogues-Paegle et al.(1992) analyzed SH ozone and height data from 1986 to 1989. They found that leading empirical orthogonal functions (EOFs) for both ozone and 50 mb heights exhibit zonal wave 1 and 2 and that the correlations between ozone and 50 mb principal components (PCs) are high. The results were found to be consistent with a linear planetary wave advecting a passive tracer. In this paper, the dominant patterns of variability for 30 mb NMC heights and TOMS total ozone are obtained for the winter to summer transition (January to May) in the Northern Hemisphere (NH) for the years 1987-1990.
NASA Technical Reports Server (NTRS)
Ridley, B.; Atlas, E.; Selkirk, H.; Pfister, L.; Montzka, D.; Walega, J.; Donnelly, S.; Stroud, V.; Richard, E.; Kelly, K.
2004-01-01
Measurements of ozone, reactive carbon and nitrogen, and other trace constituents from flights of the NASA WB-57F aircraft in the upper troposphere and lower stratosphere reveal that convection in the tropics can present a complex mix of surface-emitted constituents right up to the altitude of the lapse rate tropopause. At higher latitudes over the southern US, the strongest transport signal, in terms of constituent mixing ratios, occurred in the potential temperature range of 340-350K or approximately over the altitude range of 9-11km. Weaker convective signals were also seen up to near the tropopause. There was no evidence of convective transport directly into the lower stratosphere from these flights. $CPY 2003 Elsevier Ltd. All rights reserved.
Andrzej Bytnerowicz; Mark Fenn; Edith B. Allen; Ricardo Cisneros
2016-01-01
At present, negative impacts of air pollution on California ecosystems are caused mainly by elevated levels of ozone and nitrogen deposition. Generally, ozone air pollution in California has been improving significantly since the 1970s; however, it still causes serious ecological and human health effects. The most serious ecological effects occur in mixed conifer...
The seasonality and geographic dependence of ENSO impacts on U.S. surface ozone variability
NASA Astrophysics Data System (ADS)
Xu, Li; Yu, Jin-Yi; Schnell, Jordan L.; Prather, Michael J.
2017-04-01
We examine the impact of El Niño-Southern Oscillation (ENSO) on surface ozone abundance observed over the continental United States (U.S.) during 1993-2013. The monthly ozone decreases (increases) during El Niño (La Niña) years with amplitude up to 1.8 ppb per standard deviation of Niño 3.4 index. The largest ENSO influences occur over two southern U.S. regions during fall when the ENSO develops and over two western U.S. regions during the winter to spring after the ENSO decays. ENSO affects surface ozone via chemical processes during warm seasons in southern regions, where favorable meteorological conditions occur, but via dynamic transport during cold seasons in western regions, where the ENSO-induced circulation variations are large. The geographic dependence and seasonality of the ENSO impacts imply that regulations regarding air quality and its exceedance need to be adjusted for different seasons and U.S. regions to account for the ENSO-driven patterns in surface ozone.
Bouya, H; Errami, M; Chakir, A; Roth, E
2015-09-01
This article is concerned with the study of the photochemical degradation of bupirimate adsorbed on a quartz surface by atmospheric oxidants, namely ozone and OH radicals. OH oxidation experiments were conducted relative to two reference compounds, terbuthylazine and (4-chlorophenyl)(3,4-dimethoxyphenyl) methanone. Meanwhile, ozone oxidation experiments were performed in the absolute mode and were interpreted by both, the Surface Layer Reaction and the Gas Surface Reaction models of heterogeneous reactions. The obtained results show that the rate constants for the reactions between bupirimate and OH radicals and ozone are (cm(3)molecule(-1)s(-1)): (1.06 ± 0.87) × 10(-12) and (5.4 ± 0.3) × 10(-20), respectively. As a consequence, for the experimental conditions used in this study, the lifetime of bupirimate at quartz like surface/atmosphere interfaces is several months against ozone and a tenth of days against OH-radical. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pisarenko, Aleksey N; Stanford, Benjamin D; Yan, Dongxu; Gerrity, Daniel; Snyder, Shane A
2012-02-01
An ozone and ozone/peroxide oxidation process was evaluated at pilot scale for trace organic contaminant (TOrC) mitigation and NDMA formation in both drinking water and water reuse applications. A reverse osmosis (RO) pilot was also evaluated as part of the water reuse treatment train. Ozone/peroxide showed lower electrical energy per order of removal (EEO) values for TOrCs in surface water treatment, but the addition of hydrogen peroxide increased EEO values during wastewater treatment. TOrC oxidation was correlated to changes in UV(254) absorbance and fluorescence offering a surrogate model for predicting contaminant removal. A decrease in N-nitrosodimethylamine (NDMA) formation potential (after chloramination) was observed after treatment with ozone and ozone/peroxide. However, during spiking experiments with surface water, ozone/peroxide achieved limited destruction of NDMA, while in wastewaters net direct formation of NDMA of 6-33 ng/L was observed after either ozone or ozone/peroxide treatment. Once formed during ozonation, NDMA passed through the subsequent RO membranes, which highlights the significance of the potential for direct NDMA formation during oxidation in reuse applications. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kenzelmann, P.; Weisenstein, D.; Peter, T.; Luo, B. P.; Rozanov, E.; Fueglistaler, S.; Thomason, L. W.
2009-04-01
Anthropogenic greenhouse gas emissions tend to warm the global climate, calling for significant rapid emission reductions. As potential support measures various ideas for geoengineering are currently being discussed. The assessment of the possible manifold and as yet substantially unexplored repercussions of implementing geoengineering ideas to ameliorate climate change poses enormous challenges not least in the realm of aerosol-cloud-climate interactions. Sulphur aerosols cool the Earth's surface by reflecting short wave radiation. By increasing the amount of sulphur aerosols in the stratosphere, for example by sulphur dioxide injections, part of the anthropogenic climate warming might be compensated due to enhanced albedo. However, we are only at the beginning of understanding possible side effects. One such effect that such aerosol might have is the warming of the tropical tropopause and consequently the increase of the amount of stratospheric water vapour. Using the 2D AER Aerosol Model we calculated the aerosol distributions for yearly injections of 1, 2, 5 and 10 Mt sulphur into the lower tropical stratosphere. The results serve as input for the 3D chemistry-climate model SOCOL, which allows calculating the aerosol effect on stratospheric temperatures and chemistry. In the injection region the continuously formed sulphuric acid condensates rapidly on sulphate aerosol, which eventually grow to such extent that they sediment down to the tropical tropopause region. The growth of the aerosol particles depends on non-linear processes: the more sulphur is emitted the faster the particles grow. As a consequence for the scenario with continuous sulphur injection of totally 10 Mt per year, only 6 Mt sulphur are in the stratosphere if equilibrium is reached. According to our model calculations this amount of sulphate aerosols leads to a net surface forcing of -3.4 W/m2, which is less then expected radiative forcing by doubling of carbon dioxide concentration. Hence, larger injections might be required than previously assumed. Rasch et al. (2008) showed that smaller particles would be advantageous in terms of cooling the surface. However, with a continuous injection of sulphur dioxide into to lower tropical stratosphere aerosol size distributions with mode radii larger than 0.5 microns are likely to form. An additional complication is that the sedimenting particles tend to heat the tropical tropopause region and as a consequence the entry mixing ratio of water vapour increases. For the extreme scenario of 10 Mt/year injection SOCOL predicts an enhancement of the water vapour entry mixing ratio by more than 1 ppmv. This is predicted to have a significant impact on the radiative forcing and the total ozone, because of enhanced heterogeneous reactions and because the increased water vapour intensifies the hydrogen and chlorine catalysed ozone destruction cycles. The intense warming of the lower stratosphere further intensifies the catalytic ozone destruction cycles. Furthermore, the stratospheric circulation is predicted to change due to the strong heating of the lower stratosphere. As a consequence of the intensified meridional temperature gradient the polar vortices are strengthened with enhanced formation of polar stratospheric clouds and ozone depletion. The ozone loss due to changed stratospheric dynamic is four times larger than the ozone loss caused by the increase of aerosol surface for heterogeneous reactions, which would postpone the recovery of the ozone hole even more as already pointed out by Tilmes et al. [2008]. At the same time the uncertainties involved in the different modelling steps are tremendous. Model validation, by comparing model runs of the 1991 Mt. Pinatubo eruption with observations, reveals that the temperature increase in the lower stratosphere and the tropopause region is probably overestimated by SOCOL. Other CCMs show similar behaviour. This lets us conclude that with the present modelling tools we are not capable to reliably predict the changes in stratospheric climate following geoengineering applications. Rasch, P. J. et al. (2008), Exploring the geoengineering of climate using stratospheric sulfate aerosols: The role of particle size, Geophysical Research Letters, 35 (2), L02,809. Tilmes, S. et al. (2008), The sensitivity of polar ozone depletion to proposed geoengineering schemes, Science, 320 (5880), 1201-1204.
Synoptic and meteorological drivers of extreme ozone concentrations over Europe
NASA Astrophysics Data System (ADS)
Otero, Noelia Felipe; Sillmann, Jana; Schnell, Jordan L.; Rust, Henning W.; Butler, Tim
2016-04-01
The present work assesses the relationship between local and synoptic meteorological conditions and surface ozone concentration over Europe in spring and summer months, during the period 1998-2012 using a new interpolated data set of observed surface ozone concentrations over the European domain. Along with local meteorological conditions, the influence of large-scale atmospheric circulation on surface ozone is addressed through a set of airflow indices computed with a novel implementation of a grid-by-grid weather type classification across Europe. Drivers of surface ozone over the full distribution of maximum daily 8-hour average values are investigated, along with drivers of the extreme high percentiles and exceedances or air quality guideline thresholds. Three different regression techniques are applied: multiple linear regression to assess the drivers of maximum daily ozone, logistic regression to assess the probability of threshold exceedances and quantile regression to estimate the meteorological influence on extreme values, as represented by the 95th percentile. The relative importance of the input parameters (predictors) is assessed by a backward stepwise regression procedure that allows the identification of the most important predictors in each model. Spatial patterns of model performance exhibit distinct variations between regions. The inclusion of the ozone persistence is particularly relevant over Southern Europe. In general, the best model performance is found over Central Europe, where the maximum temperature plays an important role as a driver of maximum daily ozone as well as its extreme values, especially during warmer months.
Ground-based microwave radiometry to determine stratospheric and mesospheric ozone profiles
NASA Astrophysics Data System (ADS)
Lobsiger, E.
1987-05-01
From April 1984 to April 1985 a microwave radiometer was operated at Bern measuring the thermal emission of the rotational ozone transition at 142.2 GHz to determine stratospheric and mesospheric ozone abundances in the range 25-75 km altitude. From a total of 334 retrieved daytime profiles, monthly mean ozone partial pressures for Umkehr layers 6-10 were calculated. On this basis ozone variations compare favorably with Umkehr data from the nearby Arosa station and with a monthly zonal mean model compiled from satellite data by Keating and Young (1985). From the microwave data, an annual mean ozone distribution was determined. The method retrieves somewhat larger ozone volume mixing ratios between 25 and 30 km altitude. For the rest of the measurement range of the sensor there is good agreement with 20-year annual mean ozone values from Arosa, with the Krueger and Minzner profile and with the respective annual mean data given by Keating and Young.
Model development for naphthenic acids ozonation process.
Al Jibouri, Ali Kamel H; Wu, Jiangning
2015-02-01
Naphthenic acids (NAs) are toxic constituents of oil sands process-affected water (OSPW) which is generated during the extraction of bitumen from oil sands. NAs consist mainly of carboxylic acids which are generally biorefractory. For the treatment of OSPW, ozonation is a very beneficial method. It can significantly reduce the concentration of NAs and it can also convert NAs from biorefractory to biodegradable. In this study, a factorial design (2(4)) was used for the ozonation of OSPW to study the influences of the operating parameters (ozone concentration, oxygen/ozone flow rate, pH, and mixing) on the removal of a model NAs in a semi-batch reactor. It was found that ozone concentration had the most significant effect on the NAs concentration compared to other parameters. An empirical model was developed to correlate the concentration of NAs with ozone concentration, oxygen/ozone flow rate, and pH. In addition, a theoretical analysis was conducted to gain the insight into the relationship between the removal of NAs and the operating parameters.
Is the ozone climate penalty robust in Europe?
NASA Astrophysics Data System (ADS)
Colette, Augustin; Andersson, Camilla; Baklanov, Alexander; Bessagnet, Bertrand; Brandt, Jørgen; Christensen, Jesper H.; Doherty, Ruth; Engardt, Magnuz; Geels, Camilla; Giannakopoulos, Christos; Hedegaard, Gitte B.; Katragkou, Eleni; Langner, Joakim; Lei, Hang; Manders, Astrid; Melas, Dimitris; Meleux, Frédérik; Rouïl, Laurence; Sofiev, Mikhail; Soares, Joana; Stevenson, David S.; Tombrou-Tzella, Maria; Varotsos, Konstantinos V.; Young, Paul
2015-08-01
Ozone air pollution is identified as one of the main threats bearing upon human health and ecosystems, with 25 000 deaths in 2005 attributed to surface ozone in Europe (IIASA 2013 TSAP Report #10). In addition, there is a concern that climate change could negate ozone pollution mitigation strategies, making them insufficient over the long run and jeopardising chances to meet the long term objective set by the European Union Directive of 2008 (Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008) (60 ppbv, daily maximum). This effect has been termed the ozone climate penalty. One way of assessing this climate penalty is by driving chemistry-transport models with future climate projections while holding the ozone precursor emissions constant (although the climate penalty may also be influenced by changes in emission of precursors). Here we present an analysis of the robustness of the climate penalty in Europe across time periods and scenarios by analysing the databases underlying 11 articles published on the topic since 2007, i.e. a total of 25 model projections. This substantial body of literature has never been explored to assess the uncertainty and robustness of the climate ozone penalty because of the use of different scenarios, time periods and ozone metrics. Despite the variability of model design and setup in this database of 25 model projection, the present meta-analysis demonstrates the significance and robustness of the impact of climate change on European surface ozone with a latitudinal gradient from a penalty bearing upon large parts of continental Europe and a benefit over the North Atlantic region of the domain. Future climate scenarios present a penalty for summertime (JJA) surface ozone by the end of the century (2071-2100) of at most 5 ppbv. Over European land surfaces, the 95% confidence interval of JJA ozone change is [0.44; 0.64] and [0.99; 1.50] ppbv for the 2041-2070 and 2071-2100 time windows, respectively.
NASA Astrophysics Data System (ADS)
Tomikawa, Y.; Yamanouchi, T.
2010-08-01
An analysis of the static stability and ozone vertical gradient in the ozone tropopause based (OTB) coordinate is applied to the ozonesonde data at 10 stations in the Southern Hemisphere (SH) extratropics. The tropopause inversion layer (TIL) with a static stability maximum just above the tropopause shows similar seasonal variations at two Antarctic stations, which are latitudinally far from each other. Since the sunshine hour varies with time in a quite different way between these two stations, it implies that the radiative heating due to solar ultraviolet absorption of ozone does not contribute to the seasonal variation of the TIL. A meridional section of the static stability in the OTB coordinate shows that the static stability just above the tropopause has a large latitudinal gradient between 60° S and 70° S in austral winter because of the absence of the TIL over the Antarctic. It is accompanied by an increase of westerly shear with height above the tropopause, so that the polar-night jet is formed above this latitude region. This result suggests a close relationship between the absence of the TIL and the stratospheric polar vortex in the Antarctic winter. A vertical gradient of ozone mixing ratio, referred to as ozone vertical gradient, around the tropopause shows similar latitudinal and seasonal variations with the static stability in the SH extratropics. In a height region above the TIL, a small ozone vertical gradient in the midlatitudes associated with the Antarctic ozone hole is observed in a height region of the subvortex but not around the polar vortex. This is a clear evidence of active latitudinal mixing between the midlatitudes and subvortex.
A 15-year climatology of wind pattern impacts on surface ozone in Houston, Texas
NASA Astrophysics Data System (ADS)
Souri, Amir Hossein; Choi, Yunsoo; Li, Xiangshang; Kotsakis, Alexander; Jiang, Xun
2016-06-01
Houston is recognized for its large petrochemical industrial facilities providing abundant radicals for tropospheric ozone formation. Fortunately, maximum daily 8-h average (MDA8) surface ozone concentrations have declined in Houston (- 0.6 ± 0.3 ppbv yr- 1) during the summers (i.e., May to September) of 2000 to 2014, possibly due to the reductions in precursor emissions by effective control policies. However, it is also possible that changes in meteorological variables have affected ozone concentrations. This study focused on the impact of long-term wind patterns which have the highest impact on ozone in Houston. The analysis of long-term wind patterns can benefit surface ozone studies by 1) providing wind patterns that distinctly changed ozone levels, 2) investigating the frequency of patterns and the respective changes and 3) estimating ozone trends in specific wind patterns that local emissions are mostly involved, thus separating emissions impacts from meteorology to some extent. To this end, the 900-hPa flow patterns in summers of 2000 to 2014 were clustered in seven classes (C1-C7) by deploying an unsupervised partitioning method. We confirm the characteristics of the clusters from a backward trajectory analysis, monitoring networks, and a regional chemical transport model simulation. The results indicate that Houston has experienced a statistically significant downward trend (- 0.6 ± 0.4 day yr- 1) of the cluster of weak easterly and northeasterly days (C4), when the highest fraction of ozone exceedances (MDA8 > 70 ppbv) occurred. This suggests that the reduction in ozone precursors was not the sole reason for the decrease in ozone exceedance days (- 1.5 ± 0.6 day yr- 1). Further, to examine the efficiency of control policies intended to reduce the amount of ozone, we estimated the trend of MDA8 ozone in C4 and C5 (weak winds) days when local emissions are primarily responsible for high ambient ozone levels. Both C4 and C5 show a large reduction in the 95th percentile and summertime trends mainly due to effective control strategies. Based on the 5th percentile daytime ozone for C1 (strong southeasterly wind) in coastal sites, this study found that the cleanest air masses that Houston received became more polluted during the summer of 2000-2014 by 1-3 ppbv. Though this study focused on Houston, the analysis method presented could generally be used to estimate ozone trends in other regions where surface ozone is dominantly influenced by both wind patterns and local emissions.
Nicotiana tabacum as model for ozone - plant surface reactions
NASA Astrophysics Data System (ADS)
Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin
2015-04-01
Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the difference of ozone measured before and after the plant cuvette was investigated as a function of stomatal opening. Switching from dark to light conditions and thus opening the stomata only a small increase in ozone loss was observed for the Ambalema variety (25%). In the case of the 3H02 variety, a line known to emit almost no diterpenoids, the ozone loss increased by more than 100% when changing from dark to light conditions. It is anticipated that the described effect is of importance also for other plant species emitting low-volatility unsaturated organic compounds (e.g. in form of exudates or resins).
NASA Astrophysics Data System (ADS)
Toyota, K.; McConnell, J. C.; Lupu, A.; Neary, L.; McLinden, C. A.; Richter, A.; Kwok, R.; Semeniuk, K.; Kaminski, J. W.; Gong, S.-L.; Jarosz, J.; Chipperfield, M. P.; Sioris, C. E.
2011-04-01
Episodes of high bromine levels and surface ozone depletion in the springtime Arctic are simulated by an online air-quality model, GEM-AQ, with gas-phase and heterogeneous reactions of inorganic bromine species and a simple scheme of air-snowpack chemical interactions implemented for this study. Snowpack on sea ice is assumed to be the only source of bromine to the atmosphere and to be capable of converting relatively stable bromine species to photolabile Br2 via air-snowpack interactions. A set of sensitivity model runs are performed for April 2001 at a horizontal resolution of approximately 100 km×100 km in the Arctic, to provide insights into the effects of temperature and the age (first-year, FY, versus multi-year, MY) of sea ice on the release of reactive bromine to the atmosphere. The model simulations capture much of the temporal variations in surface ozone mixing ratios as observed at stations in the high Arctic and the synoptic-scale evolution of areas with enhanced BrO column amount ("BrO clouds") as estimated from satellite observations. The simulated "BrO clouds" are in modestly better agreement with the satellite measurements when the FY sea ice is assumed to be more efficient at releasing reactive bromine to the atmosphere than on the MY sea ice. Surface ozone data from coastal stations used in this study are not sufficient to evaluate unambiguously the difference between the FY sea ice and the MY sea ice as a source of bromine. The results strongly suggest that reactive bromine is released ubiquitously from the snow on the sea ice during the Arctic spring while the timing and location of the bromine release are largely controlled by meteorological factors. It appears that a rapid advection and an enhanced turbulent diffusion associated with strong boundary-layer winds drive transport and dispersion of ozone to the near-surface air over the sea ice, increasing the oxidation rate of bromide (Br-) in the surface snow. Also, if indeed the surface snowpack does supply most of the reactive bromine in the Arctic boundary layer, it appears to be capable of releasing reactive bromine at temperatures as high as -10 °C, particularly on the sea ice in the central and eastern Arctic Ocean. Dynamically-induced BrO column variability in the lowermost stratosphere appears to interfere with the use of satellite BrO column measurements for interpreting BrO variability in the lower troposphere but probably not to the extent of totally obscuring "BrO clouds" that originate from the surface snow/ice source of bromine in the high Arctic. A budget analysis of the simulated air-surface exchange of bromine compounds suggests that a "bromine explosion" occurs in the interstitial air of the snowpack and/or is accelerated by heterogeneous reactions on the surface of wind-blown snow in ambient air, both of which are not represented explicitly in our simple model but could have been approximated by a parameter adjustment for the yield of Br2 from the trigger.
Surface ozone in the White Mountains of California
Joel Burley; Andrzej Bytnerowicz
2011-01-01
Surface ozone concentrations are presented for four high-elevation sites along a northesouth transect along the spine of the White Mountains and a fifth site located at lower elevation approximately 15 km to the west on the floor of the Owens Valley. The ozone data, which were collected from mid-June through mid-October of 2009, include results from two sites, White...
Water Reclamation Using a Ceramic Nanofiltration Membrane and Surface Flushing with Ozonated Water
Hoang, Anh T.; Okuda, Tetsuji; Takeuchi, Haruka; Tanaka, Hiroaki; Nghiem, Long D.
2018-01-01
A new membrane fouling control technique using ozonated water flushing was evaluated for direct nanofiltration (NF) of secondary wastewater effluent using a ceramic NF membrane. Experiments were conducted at a permeate flux of 44 L/m2h to evaluate the ozonated water flushing technique for fouling mitigation. Surface flushing with clean water did not effectively remove foulants from the NF membrane. In contrast, surface flushing with ozonated water (4 mg/L dissolved ozone) could effectively remove most foulants to restore the membrane permeability. This surface flushing technique using ozonated water was able to limit the progression of fouling to 35% in transmembrane pressure increase over five filtration cycles. Results from this study also heighten the need for further development of ceramic NF membrane to ensure adequate removal of pharmaceuticals and personal care products (PPCPs) for water recycling applications. The ceramic NF membrane used in this study showed approximately 40% TOC rejection, and the rejection of PPCPs was generally low and highly variable. It is expected that the fouling mitigation technique developed here is even more important for ceramic NF membranes with smaller pore size and thus better PPCP rejection. PMID:29671797
Water Reclamation Using a Ceramic Nanofiltration Membrane and Surface Flushing with Ozonated Water.
Fujioka, Takahiro; Hoang, Anh T; Okuda, Tetsuji; Takeuchi, Haruka; Tanaka, Hiroaki; Nghiem, Long D
2018-04-19
A new membrane fouling control technique using ozonated water flushing was evaluated for direct nanofiltration (NF) of secondary wastewater effluent using a ceramic NF membrane. Experiments were conducted at a permeate flux of 44 L/m²h to evaluate the ozonated water flushing technique for fouling mitigation. Surface flushing with clean water did not effectively remove foulants from the NF membrane. In contrast, surface flushing with ozonated water (4 mg/L dissolved ozone) could effectively remove most foulants to restore the membrane permeability. This surface flushing technique using ozonated water was able to limit the progression of fouling to 35% in transmembrane pressure increase over five filtration cycles. Results from this study also heighten the need for further development of ceramic NF membrane to ensure adequate removal of pharmaceuticals and personal care products (PPCPs) for water recycling applications. The ceramic NF membrane used in this study showed approximately 40% TOC rejection, and the rejection of PPCPs was generally low and highly variable. It is expected that the fouling mitigation technique developed here is even more important for ceramic NF membranes with smaller pore size and thus better PPCP rejection.
NASA Technical Reports Server (NTRS)
Kar, J.; Trepte, C. R.; Thomason, L. W.; Zawodny, J. M.; Cunnold, D. M.; Wang, H. J.
2002-01-01
Tropospheric measurements of ozone from SAGE II (version 6.1) in the tropics have been analyzed using 12 years of data (1985-1990, 1994-1999). The seasonally averaged vertical profiles of the ozone mixing ratio in the upper troposphere have been presented for the first time from satellite measurements. These profiles show qualitative similarities with corresponding seasonal mean ozonesonde profiles at northern and southern tropical stations and are about 40-50% less than the sonde values. Despite this systematic offset, the measurements appear to be consistent with a zonal wave one pattern in the upper tropospheric column ozone and with the recently predicted summertime ozone enhancement over the Middle East. These results thus affirm the usefulness of the occultation method in studying tropospheric ozone.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Liu, J. M.
1988-01-01
Two year ozonesonde data, January 1981 to December 1982, observed at four Canadian stations, and two-and-a-half year backscattered ultraviolet experiment data on the Nimbus-4 satellite, April 1970 to August 1972, observed over five U.S. stations, were used to study the relationship between the total ozone, vertical distribution of the ozone mixing ratio, height of half the total ozone, and the variation of local tropopause height. In view of the correlation between the variation of the tropopause height and the possible development of severe storms, a better understanding of the effect of the vertical distribution of the local ozone profile on the variation of the tropopause height can give considerable insight into the development of severe storms.
Ozone production process in pulsed positive dielectric barrier discharge
NASA Astrophysics Data System (ADS)
Ono, Ryo; Oda, Tetsuji
2007-01-01
The ozone production process in a pulsed positive dielectric barrier discharge (DBD) is studied by measuring the spatial distribution of ozone density using a two-dimensional laser absorption method. DBD occurs in a 6 mm point-to-plane gap with a 1 mm-thick glass plate placed on the plane electrode. First, the propagation of DBD is observed using a short-gated ICCD camera. It is shown that DBD develops in three phases: primary streamer, secondary streamer and surface discharge phases. Next, the spatial distribution of ozone density is measured. It is shown that ozone is mostly produced in the secondary streamer and surface discharge, while only a small amount of ozone is produced in the primary streamer. The rate coefficient of the ozone production reaction, O + O2 + M → O3 + M, is estimated to be 2.5 × 10-34 cm6 s-1.
NASA Astrophysics Data System (ADS)
Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine
2013-10-01
A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.
Fungicide residue remediation on table grapes using ozone fumigation
USDA-ARS?s Scientific Manuscript database
Ozone fumigation was explored as a means for degrading contemporary organic fungicides related to table grape production. Separate fumigations were conducted in a flow-through chamber on fungicides sorbed to model abiotic glass surfaces or to table grapes. Gaseous ozone at constant ozone concentrati...
Lusaka, Zambia, during SAFARI-2000: Convergence of local and imported ozone pollution
NASA Astrophysics Data System (ADS)
Thompson, Anne M.; Witte, Jacquelyn C.; Freiman, M. Tal; Phahlane, N. Agnes; Coetzee, Gert J. R.
2002-10-01
In August and September, throughout south central Africa, seasonal clearing of dry vegetation and other fire-related activities lead to intense smoke haze and ozone formation. The first ozone soundings in the heart of the southern African burning region were taken at Lusaka, Zambia (15.5S, 28E) in early September 2000. Maximum surface ozone was over 90 ppbv and column tropospheric ozone exceeded 50 DU. These values are higher than concurrent measurements over Nairobi (1S, 38E) and Irene (25S, 28E, near Pretoria). At least 30% of Lusaka surface ozone appears to be from local sources. A layer at 800-500 hPa has ozone >120 ppbv and originates from trans-boundary recirculation. Starting out over Zambia, Angola, and Namibia, ozone-rich air travels east to the Indian Ocean, before heading back toward Mozambique, Zimbabwe and Zambia. Thus, Lusaka collects local and imported pollution, consistent with its location within the southern African gyre.
Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho
2014-01-01
Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates. PMID:26109880
Diverse policy implications for future ozone and surface UV in a changing climate
NASA Astrophysics Data System (ADS)
Butler, A. H.; Daniel, J. S.; Portmann, R. W.; Ravishankara, A. R.; Young, P. J.; Fahey, D. W.; Rosenlof, K. H.
2016-06-01
Due to the success of the Montreal Protocol in limiting emissions of ozone-depleting substances, concentrations of atmospheric carbon dioxide, nitrous oxide, and methane will control the evolution of total column and stratospheric ozone by the latter half of the 21st century. As the world proceeds down the path of reducing climate forcing set forth by the 2015 Conference of the Parties to the United Nations Framework Convention on Climate Change (COP 21), a broad range of ozone changes are possible depending on future policies enacted. While decreases in tropical stratospheric ozone will likely persist regardless of the future emissions scenario, extratropical ozone could either remain weakly depleted or even increase well above historical levels, with diverse implication for ultraviolet (UV) radiation. The ozone layer’s dependence on future emissions of these gases creates a complex policy decision space for protecting humans and ecosystems, which includes unexpected options such as accepting nitrous oxide emissions in order to maintain historical column ozone and surface UV levels.
Damages of surface ozone: evidence from agricultural sector in China
NASA Astrophysics Data System (ADS)
Yi, Fujin; McCarl, Bruce A.; Zhou, Xun; Jiang, Fei
2018-03-01
This study measures the damages that surface ozone pollution causes within the Chinese agricultural sector under 2014 conditions. It also analyzes the agricultural benefits of ozone reductions. The analysis is done using a partial equilibrium model of China’s agricultural sector. Results indicate that there are substantial, spatially differentiated damages that are greatest in ozone-sensitive crop growing areas with higher ozone concentrations. The estimated damage to China’s agricultural sector range is between CNY 1.6 trillion and 2.2 trillion, which for comparison is about one fifth of 2014 agricultural revenue. When considering concentration reduction we find a 30% ozone reduction yields CNY 678 billion in sectoral benefits. These benefits largely fall to consumers with producers losing as the production gains lead to lower prices.
Yao, Weikun; Qu, Qiangyong; von Gunten, Urs; Chen, Chao; Yu, Gang; Wang, Yujue
2017-01-01
In this study methylisoborneol (MIB) and geosmin abatement in a surface water by conventional ozonation and the electro-peroxone (E-peroxone) process was compared. Batch tests with addition of ozone (O 3 ) stock solutions and semi-batch tests with continuous O 2 /O 3 gas sparging (simulating real ozone contactors) were conducted to investigate O 3 decomposition, •OH production, MIB and geosmin abatement, and bromate formation during the two processes. Results show that with specific ozone doses typically used in routine drinking water treatment (0.5-1.0 mg O 3 /mg dissolved organic carbon (DOC)), conventional ozonation could not adequately abate MIB and geosmin in a surface water. While increasing the specific ozone doses (1.0-2.5 mg O 3 /mg DOC) could enhance MIB and geosmin abatement by conventional ozonation, this approach resulted in significant bromate formation. By installing a carbon-based cathode to electrochemically produce H 2 O 2 from cathodic oxygen reduction, conventional ozonation can be conveniently upgraded to an E-peroxone process. The electro-generated H 2 O 2 considerably enhanced the kinetics and to a lesser extent the yields of hydroxyl radical (•OH) from O 3 decomposition. Consequently, during the E-peroxone process, abatement of MIB and geosmin occurred at much higher rates than during conventional ozonation. In addition, for a given specific ozone dose, the MIB and geosmin abatement efficiencies increased moderately in the E-peroxone (by ∼8-9% and ∼10-25% in the batch and semi-batch tests, respectively) with significantly lower bromate formation compared to conventional ozonation. These results suggest that the E-peroxone process may serve as an attractive backup of conventional ozonation processes during accidental spills or seasonal events such as algal blooms when high ozone doses are required to enhance MIB and geosmin abatement. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Li; Wang, Tao; Zhang, Qiang; Zheng, Junyu; Xu, Zheng; Lv, Mengyao
2016-04-01
Current chemical transport models commonly undersimulate the atmospheric concentration of nitrous acid (HONO), which plays an important role in atmospheric chemistry, due to the lack or inappropriate representations of some sources in the models. In the present study, we parameterized up-to-date HONO sources into a state-of-the-art three-dimensional chemical transport model (Weather Research and Forecasting model coupled with Chemistry: WRF-Chem). These sources included (1) heterogeneous reactions on ground surfaces with the photoenhanced effect on HONO production, (2) photoenhanced reactions on aerosol surfaces, (3) direct vehicle and vessel emissions, (4) potential conversion of NO2 at the ocean surface, and (5) emissions from soil bacteria. The revised WRF-Chem was applied to explore the sources of the high HONO concentrations (0.45-2.71 ppb) observed at a suburban site located within complex land types (with artificial land covers, ocean, and forests) in Hong Kong. With the addition of these sources, the revised model substantially reproduced the observed HONO levels. The heterogeneous conversions of NO2 on ground surfaces dominated HONO sources contributing about 42% to the observed HONO mixing ratios, with emissions from soil bacterial contributing around 29%, followed by the oceanic source (~9%), photochemical formation via NO and OH (~6%), conversion on aerosol surfaces (~3%), and traffic emissions (~2%). The results suggest that HONO sources in suburban areas could be more complex and diverse than those in urban or rural areas and that the bacterial and/or ocean processes need to be considered in HONO production in forested and/or coastal areas. Sensitivity tests showed that the simulated HONO was sensitive to the uptake coefficient of NO2 on the surfaces. Incorporation of the aforementioned HONO sources significantly improved the simulations of ozone, resulting in increases of ground-level ozone concentrations by 6-12% over urban areas in Hong Kong and the Pearl River Delta region. This result highlights the importance of accurately representing HONO sources in simulations of secondary pollutants over polluted regions.
Observations of ozone depletion events in a Finnish boreal forest
NASA Astrophysics Data System (ADS)
Chen, Xuemeng; Quéléver, Lauriane L. J.; Fung, Pak L.; Kesti, Jutta; Rissanen, Matti P.; Bäck, Jaana; Keronen, Petri; Junninen, Heikki; Petäjä, Tuukka; Kerminen, Veli-Matti; Kulmala, Markku
2018-01-01
We investigated the concentrations and vertical profiles of ozone over a 20-year period (1996-2016) at the SMEAR II station in southern Finland. Our results showed that the typical daily median ozone concentrations were in the range of 20-50 ppb with clear diurnal and annual patterns. In general, the profile of ozone concentrations illustrated an increase as a function of heights. The main aim of our study was to address the frequency and strength of ozone depletion events at this boreal forest site. We observed more than a thousand of 10 min periods at 4.2 m, with ozone concentrations below 10 ppb, and a few tens of cases with ozone concentrations below 2 ppb. Among these observations, a number of ozone depletion events that lasted for more than 3 h were identified, and they occurred mainly in autumn and winter months. The low ozone concentrations were likely related to the formation of a low mixing layer under the conditions of low temperatures, low wind speeds, high relative humidities and limited intensity of solar radiation.
Climate change impacts on projections of excess mortality at ...
We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate non-linear, spatially varying, ozone-temperature risk surfaces for 94 US urban areas using observeddata. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 p.p.b. (moderate level) and 75 p.p.b. (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 p.p.b. and 1.94 °F; however, the results variedby region . Increases in ozone because of climate change result in an increase in ozone mortality burden. Mortality attributed to ozone exceeding 40 p.p.b. increases by 7.7% (1 .6-14.2%). Mortality attributed to ozone exceeding 75 p.p.b. increases by 14.2% (1.628.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. In this study we evaluate changes in ozone related mortality due to changes in biogenic f
Ozone Production from the 2004 North American Boreal Fires
NASA Technical Reports Server (NTRS)
Pfister, G. G.; Emmons, L. K.; Hess, P. G.; Honrath, R.; Lamarque, J.-F.; Val Martin, M.; Owen, R. C.; Avery, M. A.; Browell, E. V.; Holloway, J. S.;
2006-01-01
We examine the ozone production from boreal forest fires based on a case study of wildfires in Alaska and Canada in summer 2004. The model simulations were performed with the chemistry transport model, MOZART-4, and were evaluated by comparison with a comprehensive set of aircraft measurements. In the analysis we use measurements and model simulations of carbon monoxide (CO) and ozone (O3) at the PICO-NARE station located in the Azores within the pathway of North American outflow. The modeled mixing ratios were used to test the robustness of the enhancement ratio deltaO3/deltaCO (defined as the excess O3 mixing ratio normalized by the increase in CO) and the feasibility for using this ratio in estimating the O3 production from the wildfires. Modeled and observed enhancement ratios are about 0.25 ppbv/ppbv which is in the range of values found in the literature, and results in a global net O3 production of 12.9 2 Tg O3 during summer 2004. This matches the net O3 production calculated in the model for a region extending from Alaska to the East Atlantic (9-11 Tg O3) indicating that observations at PICO-NARE representing photochemically well-aged plumes provide a good measure of the O3 production of North American boreal fires. However, net chemical loss of fire related O3 dominates in regions far downwind from the fires (e.g. Europe and Asia) resulting in a global net O3 production of 6 Tg O3 during the same time period. On average, the fires increased the O3 burden (surface-300 mbar) over Alaska and Canada during summer 2004 by about 7-9%, and over Europe by about 2-3%.
NASA Technical Reports Server (NTRS)
Li, Feng; Vikhliaev, Yury V.; Newman, Paul A.; Pawson, Steven; Perlwitz, Judith; Waugh, Darryn W.; Douglass, Anne R.
2016-01-01
Stratospheric ozone depletion plays a major role in driving climate change in the Southern Hemisphere. To date, many climate models prescribe the stratospheric ozone layer's evolution using monthly and zonally averaged ozone fields. However, the prescribed ozone underestimates Antarctic ozone depletion and lacks zonal asymmetries. In this study we investigate the impact of using interactive stratospheric chemistry instead of prescribed ozone on climate change simulations of the Antarctic and Southern Ocean. Two sets of 1960-2010 ensemble transient simulations are conducted with the coupled ocean version of the Goddard Earth Observing System Model, version 5: one with interactive stratospheric chemistry and the other with prescribed ozone derived from the same interactive simulations. The model's climatology is evaluated using observations and reanalysis. Comparison of the 1979-2010 climate trends between these two simulations reveals that interactive chemistry has important effects on climate change not only in the Antarctic stratosphere, troposphere, and surface, but also in the Southern Ocean and Antarctic sea ice. Interactive chemistry causes stronger Antarctic lower stratosphere cooling and circumpolar westerly acceleration during November-December-January. It enhances stratosphere-troposphere coupling and leads to significantly larger tropospheric and surface westerly changes. The significantly stronger surface wind stress trends cause larger increases of the Southern Ocean Meridional Overturning Circulation, leading to year-round stronger ocean warming near the surface and enhanced Antarctic sea ice decrease.
NASA Astrophysics Data System (ADS)
Pesnell, W. Dean; Goldberg, Richard A.; Jackman, Charles H.; Chenette, D. L.; Gaines, E. E.
2000-10-01
Highly relativistic electron precipitation events (HREs) include long-lived enhancements of the flux of electrons with E>1MeV into the Earth's atmosphere. HREs also contain increased fluxes of electrons with energies above 100 keV that have been predicted to cause large depletions of mesospheric ozone. For some of the measured instantaneous values of the electron fluxes during the HRE of May 1992, relative depletions greater than 22% were predicted to occur between altitudes of 55 and 80 km, where HOx reactions cause local minima in both the ozone number density and mixing ratio altitude profiles. These ozone depletions should follow the horizontal distribution of the electron precipitation, having a distinct boundary equatorward of the L=3 magnetic shell. To search for these effects, we have analyzed ozone data from the High Resolution Doppler Imager (HRDI) instrument on UARS. Owing to the multiple, off-track viewing angles of HRDI, observations in the region affected by the electrons are taken at similar local solar times before, during, and after the electron flux increase. Our analysis limits the relative ozone depletion to values <10% during the very intense May 1992 HRE. We do observe decreases in the ozone mixing ratio at several points in the diurnal cycle that may be associated with the transport of water vapor into the mesosphere during May 1992. This masking of the precipitating electron effects by the seasonal variations in water vapor can complicate the detection of those effects.
A new numerical model of the middle atmosphere. 2: Ozone and related species
NASA Technical Reports Server (NTRS)
Garcia, Rolando R.; Solomon, Susan
1994-01-01
A new two-dimensional model with detailed photochemistry is presented. The model includes descriptions of planetary wave and gravity wave propagation and dissipation to characterize the wave forcing and associated mixing in the stratosphere and mesosphere. Such a representation allows for explicit calculation of the regions of strong mixing in the middle atmosphere required for accurate simulation of trace gas transport. The new model also includes a detailed description of photochemical processes in the stratosphere and mesosphere. The downward transport of H2, H2O, and NO(y) from the mesosphere to the stratosphere is examined, and it is shown that mesospheric processes can influence the distributions of these chemical species in polar regions. For HNO3 we also find that small concentrations of liquid aerosols above 30 km could play a major role in determining the abundance in polar winter at high latitudes. The model is also used to examine the chemical budget of ozone in the midlatitude stratosphere and to set constraints on the effectiveness of bromine relative to chlorine for ozone loss and the role of the HO2 + BrO reaction. Recent laboratory data used in this modeling study suggest that this process greatly enhances the effectiveness of bromine for ozone destruction, making bromine-catalyzed chemistry second only to HO(x)-catalyzed ozone destruction in the contemporary stratosphere at midlatitudes below about 18 km. The calculated vertical distribution of ozone in the lower stratosphere agrees well with observations, as does the total column ozone during most seasons and latitudes, with the important exception of southern hemisphere winter and spring.
Effects and mechanism on Kapton film under ozone exposure in a ground near space simulator
NASA Astrophysics Data System (ADS)
Wei, Qiang; Yang, Guimin; Liu, Gang; Jiang, Haifu; Zhang, Tingting
2018-05-01
The effect on aircraft materials in the near space environment is a key part of air-and-space integration research. Ozone and aerodynamic fluids are important organizational factors in the near space environment and both have significant influences on the performance of aircraft materials. In the present paper a simulated ozone environment was used to test polyimide material that was rotated at the approximate velocity of 150-250 m/s to form an aerodynamic fluid field. The goal was to evaluate the performance evolution of materials under a comprehensive environment of ozone molecular corrosion and aerodynamic fluids. The research results show that corrosion and sputtering by ozone molecules results in Kapton films exhibiting a rugged "carpet-like" morphology exhibits an increase in surface roughness. The morphology after ozone exposure led to higher surface roughness and an increase in surface optical diffuse reflection, which is expressed by the lower optical transmittance and the gradual transition from light orange to brown. The mass loss test, XPS, and FTIR analysis show that the molecular chains on the surface of the Kapton film are destroyed resulting in Csbnd C bond breaking to form small volatile molecules such as CO2 or CO, which are responsible for a linear increase in mass loss per unit area. The Csbnd N and Csbnd O structures exhibit weakening tendency under ozone exposure. The present paper explores the evaluation method for Kapton's adaptability under the ozone exposure test in the near space environment, and elucidates the corrosion mechanism and damage mode of the polyimide material under the combined action of ozone corrosion and the aerodynamic fluid. This work provides a methodology for studying materials in the near-space environment.
Tobacco smoke aging in the presence of ozone: A room-sized chamber study
NASA Astrophysics Data System (ADS)
Petrick, Lauren M.; Sleiman, Mohamad; Dubowski, Yael; Gundel, Lara A.; Destaillats, Hugo
2011-09-01
Exposure to tobacco pollutants that linger indoors after smoking has taken place ( thirdhand smoke, THS) can occur over extended periods and is modulated by chemical processes involving atmospheric reactive species. This study investigates the role of ozone and indoor surfaces in chemical transformations of tobacco smoke residues. Gas and particle constituents of secondhand smoke (SHS) as well as sorbed SHS on chamber internal walls and model materials (cotton, paper, and gypsum wallboard) were characterized during aging. After smoldering 10 cigarettes in a 24-m 3 room size chamber, gas-phase nicotine was rapidly removed by sorption to chamber surfaces, and subsequently re-emitted during ventilation with clean air to a level of ˜10% that during the smoking phase. During chamber ventilation in the presence of ozone (180 ppb), ozone decayed at a rate of 5.6 h -1 and coincided with a factor of 5 less nicotine sorbed to wallboard. In the presence of ozone, no gas phase nicotine was detected as a result of re-emission, and higher concentrations of nicotine oxidation products were observed than when ventilation was performed with ozone-free air. Analysis of the model surfaces showed that heterogeneous nicotine-ozone reaction was faster on paper than cotton, and both were faster than on wallboard. However, wallboard played a dominant role in ozone-initiated reaction in the chamber due to its large total geometric surface area and sink potential compared to the other substrates. This study is the first to show in a room-sized environmental chamber that the heterogeneous ozone chemistry of sorbed nicotine generates THS constituents of concern, as observed previously in bench-top studies. In addition to the main oxidation products (cotinine, myosmine and N-methyl formamide), nicotine-1-oxide was detected for the first time.
The Sensitivity of U.S. Surface Ozone Formation to NOx, and VOCs as Viewed from Space
NASA Technical Reports Server (NTRS)
Duncan, Bryan N.; Yoshida, Yasuko; Sillman, Sanford; Retscher, Christian; Pickering, Kenneth E.; Martin, Randall V.; Celarier, Edward A.
2009-01-01
We investigated variations in the sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NO(x)) as inferred from the ratio of tropospheric columns of formaldehyde and nitrogen dioxide from the Aura Ozone Monitoring Instrument (OMI). The data indicate that ozone formation became: 1. more sensitive to NO(x) over most of the U.S, from 2005 to 2007 because of substantial decreases in NO(x) emissions primarily from stationary sources, and 2. more sensitive to NO(x) with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. Based on our interpretation of the data, current strategies implemented to reduce unhealthy levels of surface ozone should focus more on reducing NO(x) emissions, except in some downtown areas which have historically benefited from reductions in VOC emissions.
NASA Astrophysics Data System (ADS)
Mazzuca, Gina M.; Ren, Xinrong; Loughner, Christopher P.; Estes, Mark; Crawford, James H.; Pickering, Kenneth E.; Weinheimer, Andrew J.; Dickerson, Russell R.
2016-11-01
An observation-constrained box model based on the Carbon Bond mechanism, version 5 (CB05), was used to study photochemical processes along the NASA P-3B flight track and spirals over eight surface sites during the September 2013 Houston, Texas deployment of the NASA Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign. Data from this campaign provided an opportunity to examine and improve our understanding of atmospheric photochemical oxidation processes related to the formation of secondary air pollutants such as ozone (O3). O3 production and its sensitivity to NOx and volatile organic compounds (VOCs) were calculated at different locations and times of day. Ozone production efficiency (OPE), defined as the ratio of the ozone production rate to the NOx oxidation rate, was calculated using the observations and the simulation results of the box and Community Multiscale Air Quality (CMAQ) models. Correlations of these results with other parameters, such as radical sources and NOx mixing ratio, were also evaluated. It was generally found that O3 production tends to be more VOC-sensitive in the morning along with high ozone production rates, suggesting that control of VOCs may be an effective way to control O3 in Houston. In the afternoon, O3 production was found to be mainly NOx-sensitive with some exceptions. O3 production near major emissions sources such as Deer Park was mostly VOC-sensitive for the entire day, other urban areas near Moody Tower and Channelview were VOC-sensitive or in the transition regime, and areas farther from downtown Houston such as Smith Point and Conroe were mostly NOx-sensitive for the entire day. It was also found that the control of NOx emissions has reduced O3 concentrations over Houston but has led to larger OPE values. The results from this work strengthen our understanding of O3 production; they indicate that controlling NOx emissions will provide air quality benefits over the greater Houston metropolitan area in the long run, but in selected areas controlling VOC emissions will also be beneficial.
NASA Astrophysics Data System (ADS)
Baker, K. R.
2017-12-01
Highly instrumented field studies provide a unique opportunity to evaluate multiple aspects of photochemical grid model representation of fire emissions, dispersion, and chemical evolution. Fuel information and burn area for a specific fire coupled with near-fire and downwind chemical measurements provides information needed to constrain model predicted fire plume transport and chemical evolution of important pollutants such as ozone and particulate matter (PM2.5) that have deleterious health effects. Most local to regional scale field campaigns to date have made relatively few transects through plumes from fires with well characterized fuel type and consumption. While more comprehensive field studies are being planned for 2018 and beyond (WE-CAN, FIREX, FIRE-CHEM, and FASMEE), existing measurement data from multiple field campaigns including 2013 SEAC4RS, satellite data, and routine surface networks are used to assess how a regulatory modeling system captures fire impacts on local to regional scale ozone and PM2.5. Key aspects of the regulatory modeling system include fire location and burn area from SMARTFIRE2, emissions from BlueSky framework, and predictions of ambient O3 and PM2.5 from the Community Multiscale Air Quality (CMAQ) photochemical transport model. A comparison of model estimated O3 from specific fires with routine surface measurements at rural locations in proximity to the 2013 Rim fire, 2011 Wallow fire, and 2011 Flint Hills fires suggest the modeling system over-estimates smoke impacts on hourly ozone. Sensitivity simulations where solar radiation and photolysis rates are more aggressively attenuated by smoke reduced O3 predictions but did not ameliorate the over prediction bias. PM2.5 organic carbon tends to be overpredicted at rural surface sites downwind from the 2011 Flint Hills prescribed fires while results were mixed at rural sites downwind of the 2013 Rim fire and 2011 Wallow fire suggesting differences in fuel characterization (e.g., emission factors, emissions speciation, burn period, etc.) between these areas may contribute to differences in model prediction. Aircraft plume transects made downwind of the 2013 Rim fire and satellite information suggest the model does well at regional scale plume transport.
Interannual variability in baseline carbon monoxide (CO) and ozone (O3), defined as mixing ratios under minimal influence of recent and local emissions, was studied for seven rural sites in the Northeast US over 2001–2010. Annual baseline CO exhibited statistically signific...
NASA Astrophysics Data System (ADS)
Gall, Elliott; Darling, Erin; Siegel, Jeffrey A.; Morrison, Glenn C.; Corsi, Richard L.
2013-10-01
Ozone reactions that occur on material surfaces can lead to elevated concentrations of oxidized products in the occupied space of buildings. However, there is little information on the impact of materials at full scale, especially for green building materials. Experiments were completed in a 68 m3 climate-controlled test chamber with three certified green building materials that can cover large areas in buildings: (1) recycled carpet, (2) perlite-based ceiling tile and (3) low-VOC paint and primer on recycled drywall. Ozone deposition velocity and primary and secondary emission rates of C1 to C10 saturated carbonyls were determined for two chamber mixing conditions and three values of relative humidity. A direct comparison was made between ozone deposition velocities and carbonyl yields observed for the same materials analyzed in small (10 L) chambers. Total primary carbonyl emission rates from carpet, ceiling tile and painted drywall ranged from 27 to 120 μg m-2 h-1, 13 to 40 μg m-2 h-1, 3.9 to 42 μg m-2 h-1, respectively. Ozone deposition velocity to these three materials averaged 6.1 m h-1, 2.3 m h-1 and 0.32 m h-1, respectively. Total secondary carbonyl emissions from these materials ranged from 70 to 276 μg m-2 h-1, 0 to 12 μg m-2 h-1, and 0 to 30 μg m-2 h-1, respectively. Carbonyl emissions were determined with a transient approximation, and were found to be in general agreement with those found in the literature. These results suggest that care should be taken when selecting green building materials due to potentially large differences in primary and secondary emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnell, J. L.; Prather, M. J.; Josse, B.
Here we test the current generation of global chemistry–climate models in their ability to simulate observed, present-day surface ozone. Models are evaluated against hourly surface ozone from 4217 stations in North America and Europe that are averaged over 1° × 1° grid cells, allowing commensurate model–measurement comparison. Models are generally biased high during all hours of the day and in all regions. Most models simulate the shape of regional summertime diurnal and annual cycles well, correctly matching the timing of hourly (~ 15:00 local time (LT)) and monthly (mid-June) peak surface ozone abundance. The amplitude of these cycles is lessmore » successfully matched. The observed summertime diurnal range (~ 25 ppb) is underestimated in all regions by about 7 ppb, and the observed seasonal range (~ 21 ppb) is underestimated by about 5 ppb except in the most polluted regions, where it is overestimated by about 5 ppb. The models generally match the pattern of the observed summertime ozone enhancement, but they overestimate its magnitude in most regions. Most models capture the observed distribution of extreme episode sizes, correctly showing that about 80 % of individual extreme events occur in large-scale, multi-day episodes of more than 100 grid cells. The models also match the observed linear relationship between episode size and a measure of episode intensity, which shows increases in ozone abundance by up to 6 ppb for larger-sized episodes. Lastly, we conclude that the skill of the models evaluated here provides confidence in their projections of future surface ozone.« less
Schnell, J. L.; Prather, M. J.; Josse, B.; ...
2015-09-25
Here we test the current generation of global chemistry–climate models in their ability to simulate observed, present-day surface ozone. Models are evaluated against hourly surface ozone from 4217 stations in North America and Europe that are averaged over 1° × 1° grid cells, allowing commensurate model–measurement comparison. Models are generally biased high during all hours of the day and in all regions. Most models simulate the shape of regional summertime diurnal and annual cycles well, correctly matching the timing of hourly (~ 15:00 local time (LT)) and monthly (mid-June) peak surface ozone abundance. The amplitude of these cycles is lessmore » successfully matched. The observed summertime diurnal range (~ 25 ppb) is underestimated in all regions by about 7 ppb, and the observed seasonal range (~ 21 ppb) is underestimated by about 5 ppb except in the most polluted regions, where it is overestimated by about 5 ppb. The models generally match the pattern of the observed summertime ozone enhancement, but they overestimate its magnitude in most regions. Most models capture the observed distribution of extreme episode sizes, correctly showing that about 80 % of individual extreme events occur in large-scale, multi-day episodes of more than 100 grid cells. The models also match the observed linear relationship between episode size and a measure of episode intensity, which shows increases in ozone abundance by up to 6 ppb for larger-sized episodes. Lastly, we conclude that the skill of the models evaluated here provides confidence in their projections of future surface ozone.« less
Modeling ozone episodes in the Baltimore-Washington region
NASA Technical Reports Server (NTRS)
Ryan, William F.
1994-01-01
Surface ozone (O3) concentrations in excess of the National Ambient Air Quality Standard (NAAQS) continue to occur in metropolitan areas in the United States despite efforts to control emissions of O3 precursors. Future O3 control strategies will be based on results from modeling efforts that have just begun in many areas. Two initial questions that arise are model sensitivity to domain-specific conditions and the selection of episodes for model evaluation and control strategy development. For the Baltimore-Washington region (B-W), the presence of the Chesapeake Bay introduces a number of issues relevant to model sensitivity. In this paper, the specific questions of the determination of model volume (mixing height) for the Urban Airshed Model (UAM) is discussed and various alternative methods compared. For the latter question, several analytic approaches, Cluster Analysis and classification and Regression Tree (CART) analysis are undertaken to determine meteorological conditions associated with severe O3 events in the B-W domain.
Soybean Cultivar Variation in Response to Elevated Ozone Concentration
USDA-ARS?s Scientific Manuscript database
Crop losses to ozone damage are conservatively estimated to cost $1 to $3 billion in the U.S. These costs will rise as surface-level ozone increases over this century. A critical step in maximizing soybean yield in a future of rising tropospheric ozone is identifying variation in cultivar responses,...
Multi-Model Comparison of Lateral Boundary Contributions to Surface Ozone Over the United States
As the National Ambient Air Quality Standards (NAAQS) for ozone become more stringent, there has been growing attention on characterizing the contributions and the uncertainties in ozone from outside the US to the ozone concentrations within the US. The third phase of the Air Qua...
Swami, Saurabh; Muzammil, Raunaq; Saha, Supradip; Shabeer, Ahammed; Oulkar, Dasharath; Banerjee, Kaushik; Singh, Shashi Bala
2016-05-01
Ozonated water dip technique was evaluated for the detoxification of six pesticides, i.e., chlorpyrifos, cypermethrin, azoxystrobin, hexaconazole, methyl parathion, and chlorothalonil from apple fruits. Results revealed that ozonation was better than washing alone. Ozonation for 15 min decreased residues of the test pesticides in the range of from 26.91 to 73.58%, while ozonation for 30 min could remove the pesticide residues by 39.39-95.14 % compared to 19.05-72.80 % by washing. Cypermethrin was the least removed pesticide by washing as well as by ozonation. Chlorothalonil, chlorpyrifos, and azoxystrobin were removed up to 71.45-95.14 % in a 30-min ozonation period. In case of methyl parathion removal, no extra advantage could be obtained by ozonation. The HPLC analysis indicated that ozonation also affected adversely the ascorbic acid and cyanidin-3-glucoside content of apples. However, 11 polyphenols studied showed a mixed trend. Gallic acid, 3,4-dihydroxybenzoic acid, catechin, epicatechin, p-coumaric acid, quercetin-3-O-glucoside, quercetin, and kaempferol were found to decrease while syringic acid, rutin, and resveratrol were found to increase in 30-min ozonation.
Sarwar, Golam; Gantt, Brett; Schwede, Donna; Foley, Kristen; Mathur, Rohit; Saiz-Lopez, Alfonso
2015-08-04
Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen chemistry in a comprehensive atmospheric modeling system. The enhanced ozone deposition treatment accounts for the interaction of iodide in seawater with ozone and increases deposition velocities by 1 order of magnitude. Halogen chemistry includes detailed chemical reactions of organic and inorganic bromine and iodine species. Two different simulations are completed with the halogen chemistry: without and with photochemical reactions of higher iodine oxides. Enhanced deposition reduces mean summer-time surface ozone by ∼3% over marine regions in the Northern Hemisphere. Halogen chemistry without the photochemical reactions of higher iodine oxides reduces surface ozone by ∼15% whereas simulations with the photochemical reactions of higher iodine oxides indicate ozone reductions of ∼48%. The model without these processes overpredicts ozone compared to observations whereas the inclusion of these processes improves predictions. The inclusion of photochemical reactions for higher iodine oxides leads to ozone predictions that are lower than observations, underscoring the need for further refinement of the halogen emissions and chemistry scheme in the model.
Ozone Variability and Anomalies Observed During SENEX and SEAC4RS Campaigns in 2013
NASA Astrophysics Data System (ADS)
Kuang, Shi; Newchurch, Michael J.; Thompson, Anne M.; Stauffer, Ryan M.; Johnson, Bryan J.; Wang, Lihua
2017-10-01
Tropospheric ozone variability occurs because of multiple forcing factors including surface emission of ozone precursors, stratosphere-to-troposphere transport (STT), and meteorological conditions. Analyses of ozonesonde observations made in Huntsville, AL, during the peak ozone season (May to September) in 2013 indicate that ozone in the planetary boundary layer was significantly lower than the climatological average, especially in July and August when the Southeastern United States (SEUS) experienced unusually cool and wet weather. Because of a large influence of the lower stratosphere, however, upper tropospheric ozone was mostly higher than climatology, especially from May to July. Tropospheric ozone anomalies were strongly anticorrelated (or correlated) with water vapor (or temperature) anomalies with a correlation coefficient mostly about 0.6 throughout the entire troposphere. The regression slopes between ozone and temperature anomalies for surface up to midtroposphere are within 3.0-4.1 ppbv K-1. The occurrence rates of tropospheric ozone laminae due to STT are ≥50% in May and June and about 30% in July, August, and September suggesting that the stratospheric influence on free-tropospheric ozone could be significant during early summer. These STT laminae have a mean maximum ozone enhancement over the climatology of 52 ± 33% (35 ± 24 ppbv) with a mean minimum relative humidity of 2.3 ± 1.7%.
Gao, Yi; Zhang, Meigen
2012-01-01
The regional air quality modeling system RAMS (regional atmospheric modeling system)-CMAQ (community multi-scale air quality modeling system) is applied to analyze temporal and spatial variations in surface ozone concentration over Beijing and its surrounding region from July to October 2008. Comparison of simulated and observed meteorological elements and concentration of nitrogen oxides (NOx) and ozone at one urban site and three rural sites during Olympic Games show that model can generally reproduce the main observed feature of wind, temperature and ozone, but NOx concentration is overestimated. Although ozone concentration decreased during Olympics, high ozone episodes occurred on 24 July and 24 August with concentration of 360 and 245 microg/m3 at Aoyuncun site, respectively. The analysis of sensitive test, with and without emission controls, shows that emission controls could reduce ozone concentration in the afternoon when ozone concentration was highest but increase it at night and in the morning. The evolution of the weather system during the ozone episodes (24 July and 24 August) indicates that hot and dry air and a stable weak pressure field intensified the production of ozone and allowed it to accumulate. Process analysis at the urban site and rural site shows that under favorable weather condition on 24 August, horizontal transport was the main contributor of the rural place and the pollution from the higher layer would be transported to the surface layer. On 24 July, as the wind velocity was smaller, the impact of transport on the rural place was not obvious.
NASA Astrophysics Data System (ADS)
Newchurch, M.; Al-Saadi, J. A.; Alvarez, R. J.; Burris, J.; Cantrell, W.; Chen, G.; De Young, R.; Hardesty, R.; Hoff, R. M.; Kaye, J. A.; kuang, S.; Langford, A. O.; LeBlanc, T.; McDermid, I. S.; McGee, T. J.; Pierce, R.; Senff, C. J.; Sullivan, J. T.; Szykman, J.; Tonnesen, G.; Wang, L.
2012-12-01
An interagency research initiative for ground-based ozone and aerosol lidar profiling recently funded by NASA has important applications to air-quality studies in addition to the goal of serving the GEO-CAPE and other air-quality missions. Ozone is a key trace-gas species, a greenhouse gas, and an important pollutant in the troposphere. High spatial and temporal variability of ozone affected by various physical and photochemical processes motivates the high spatio-temporal lidar profiling of tropospheric ozone for improving the simulation and forecasting capability of the photochemical/air-quality models, especially in the boundary layer where the resolution and precision of satellite retrievals are fundamentally limited. It is well known that there are large discrepancies between the surface and upper-air ozone due to titration, surface deposition, diurnal processes, free-tropospheric transport, and other processes. Near-ground ozone profiling has been technically challenging for lidars due to some engineering difficulties, such as near-range saturation, field-of-view overlap, and signal processing issues. This initiative provides an opportunity for us to solve those engineering issues and redesign the lidars aimed at long-term, routine ozone/aerosol observations from the near surface to the top of the troposphere at multiple stations (i.e., NASA/GSFC, NASA/LaRC, NASA/JPL, NOAA/ESRL, UAHuntsville) for addressing the needs of NASA, NOAA, EPA and State/local AQ agencies. We will present the details of the science investigations, current status of the instrumentation development, data access/protocol, and the future goals of this lidar network. Ozone lidar/RAQMS comparison of laminar structures.
Crystal-face-selective adsorption of Au nanoparticles onto polycrystalline diamond surfaces.
Kondo, Takeshi; Aoshima, Shinsuke; Hirata, Kousuke; Honda, Kensuke; Einaga, Yasuaki; Fujishima, Akira; Kawai, Takeshi
2008-07-15
Crystal-face-selective adsorption of Au nanoparticles (AuNPs) was achieved on polycrystalline boron-doped diamond (BDD) surface via the self-assembly method combined with a UV/ozone treatment. To the best of our knowledge, this is the first report of crystal-face-selective adsorption on an inorganic solid surface. Hydrogen-plasma-treated BDD samples and those followed by UV/ozone treatment for 2 min or longer showed almost no adsorption of AuNP after immersion in the AuNP solution prepared by the citrate reduction method. However, the samples treated by UV/ozone for 10 s showed AuNP adsorption on their (111) facets selectively after the immersion. Moreover, the sample treated with UV/ozone for 40-60 s showed AuNP adsorption on the whole surface. These results indicate that the AuNP adsorption behavior can be controlled by UV/ozone treatment time. This phenomenon was highly reproducible and was applied to a two-step adsorption method, where AuNPs from different batches were adsorbed on the (111) and (100) surface in this order. Our findings may be of great value for the fabrication of advanced nanoparticle-based functional materials via bottom-up approaches with simple macroscale procedures.
NASA Astrophysics Data System (ADS)
Jung, H. C.; Moon, B. K.; Wie, J.
2017-12-01
Concentration of tropospheric ozone over South Korea has steadily been on the rise in the last decades, mainly due to rapid industrializing and urbanizing in the Eastern Asia. To identify the characteristics of tropospheric ozone in South Korea, we fitted a sine function to the surface ozone concentration data from 2005 to 2014. Based on fitted sine curves, we analyzed the shifts in the dates on which ozone concentration reached its peak in the calendar year. Ozone monitoring sites can be classified into type types: where the highest annual ozone concentration kept occurring sooner (Esites) and those that kept occurring later (Lsites). The seasonal analysis shows that the surface ozone had increased more rapidly in Esites than in Lsites in the past decade during springtime and vice-versa during summertime. We tried to find the reason for the different seasonal trends with the relationship between ozone and ozone precursors. As a result, it was found that the changes in the ground-level ozone concentration in the spring and summer times are considerably influenced by changes in nitrogen dioxide concentration, and this is closely linked to the destruction (production) process of ozone by nitrogen dioxide in spring (summer). The link between tropospheric ozone and nitrogen dioxide discussed in this study will have to be thoroughly examined through climate-chemistry modeling in the future. Acknowledgements This research was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."
Ozone depletion - Ultraviolet radiation and phytoplankton biology in Antarctic waters
NASA Technical Reports Server (NTRS)
Smith, R. C.; Prezelin, B. B.; Baker, K. S.; Bidigare, R. R.; Boucher, N. P.; Coley, T.; Karentz, D.; Macintyre, S.; Matlick, H. A.; Menzies, D.
1992-01-01
The near-50-percent thinning of the stratospheric ozone layer over the Antarctic, with increased passage of mid-UV radiation to the surface of the Southern Ocean, has prompted concern over possible radiation damage to the near-surface phytoplankton communities that are the bases of Antarctic marine ecosystems. As the ozone layer thinned, a 6-week study of the marginal ice zone of the Bellingshousen Sea in the austral spring of 1990 noted sea-surface and depth-dependent ratios of mid-UV irradiance to total irradiance increased, and mid-UV inhibition of photosynthesis increased. A 6-12 percent reduction in primary production associated with ozone depletion was estimated to have occurred over the course of the present study.
NASA Astrophysics Data System (ADS)
Shu, Shi; Morrison, Glenn C.
2012-02-01
Low volatility terpenoids emitted from consumer products can react with ozone on surfaces and may significantly alter concentrations of ozone, terpenoids and reaction products in indoor air. We measured the reaction probability and a second-order surface-specific reaction rate for the ozonation of dihydromyrcenol, a representative indoor terpenoid, adsorbed onto polyvinylchloride (PVC), glass, and latex paint coated spheres. The reaction probability ranged from (0.06-8.97) × 10 -5 and was very sensitive to humidity, substrate and mass adsorbed. The average surface reaction probability is about 10 times greater than that for the gas-phase reaction. The second-order surface-specific rate coefficient ranged from (0.32-7.05) × 10 -15 cm 4 s -1 molecule -1and was much less sensitive to humidity, substrate, or mass adsorbed. We also measured the ozone deposition velocity due to adsorbed dihydromyrcenol on painted drywall in a room-sized chamber, Based on that, we calculated the rate coefficient ((0.42-1.6) × 10 -15 cm 4 molecule -1 s -1), which was consistent with that derived from bench-scale experiments for the latex paint under similar conditions. We predict that more than 95% of dihydromyrcenol oxidation takes place on indoor surfaces, rather than in building air.
NASA Astrophysics Data System (ADS)
Zhao, Zijian; Wang, Yuxuan
2017-12-01
The West Pacific subtropical high (WPSH), as one of the most important components of the East Asian summer monsoon (EASM), is the key synoptic-scale circulation pattern influencing summertime precipitation and atmospheric conditions in China. Here we investigate the impacts of the WPSH on surface ozone daily variability over eastern China, using observations from recently established network of ozone monitors and meteorology reanalysis data during summer (June, July, August; JJA) 2014-2016 with a focus on 2014. An empirical orthogonal function (EOF) analysis of daily ozone variations reveals that the dominating eigenvector (EOF1), which contributes a quarter (25.2%) to the total variances, is a marked north-south contrast. This pattern is temporally well correlated (r = -0.66, p < 0.01) with daily anomalies of a normalized WPSH intensity index (WPSH-I). Spatially, the WPSH-I and ozone correlation is positive in North China (NC) but negative in South China (SC), which well correlates with the ozone EOF1 pattern showing the same north-south contrast (r = -0.86, p < 0.01). These associations suggest the dominant component of surface ozone daily variability in eastern China is linked with the variability of the WPSH intensity in that a stronger WPSH leads to a decrease of surface ozone over SC but an increase over NC and vice versa. This is because a stronger WPSH enhances southwesterly transport of moisture into SC, creating such conditions not conducive for ozone formation as higher RH, more cloudiness and precipitation, less UV radiation, and lower temperature. Meanwhile, as most of the rainfall due to the enhanced southwesterly transport of moisture occurs in SC, water vapor is largely depleted in the air masses transported towards NC, creating dry and sunny conditions over NC under a strong WPSH, thereby promoting ozone formation.
Sensitivity of U.S. surface ozone to future emissions and climate changes
NASA Astrophysics Data System (ADS)
Tao, Zhining; Williams, Allen; Huang, Ho-Chun; Caughey, Michael; Liang, Xin-Zhong
2007-04-01
The relative contributions of projected future emissions and climate changes to U.S. surface ozone concentrations are investigated focusing on California, the Midwest, the Northeast, and Texas. By 2050 regional average ozone concentrations increase by 2-15% under the IPCC SRES A1Fi (``dirty'') scenario, and decrease by 4-12% under the B1 (relatively ``clean'') scenario. However, the magnitudes of ozone changes differ significantly between major metropolitan and rural areas. These ozone changes are dominated by the emissions changes in 61% area of the contiguous U.S. under the B1 scenario, but are largely determined by the projected climate changes in 46% area under the A1Fi scenario. In the ozone responses to climate changes, the biogenic emissions changes contribute strongly over the Northeast, moderately in the Midwest, and negligibly in other regions.
NASA Astrophysics Data System (ADS)
Salsabila, N.; Moulydia, F.; Bismo, S.
2018-03-01
In this work, the effect of ozonation on coconut oil and mixture of coconut oil and olive oil was studied. The properties of ozonated oils (oleozon) were analytically tested by the method of iodine number, acid number, peroxide number, and FT-IR as general chemical substances. Ozonation may increase the peroxide and acid number for both oils but decrease the iodine number. The best ozonation condition has been seen from an increase of 277.52% acid number, peroxide number about 114.77 meq O2 2-/kg oil, and decrease of iodine number up to 22%. Furthermore, ozonated oils were mixed with herbal extract and be tested the diabetic wound healing ability through antibacterial activity test. A mixture of 160 mL coconut oil that ozonated for 72 hours and 0.18 gram herbal extracts with n-hexane solvent showed the highest inhibition zone of 18.3 mm in Staphylococcus aureus bacteria.
Ozonation of 1,2-dihydroxybenzene in the presence of activated carbon.
Zaror, C; Soto, G; Valdés, H; Mansilla, H
2001-01-01
This work aims at obtaining experimental data on ozonation of 1,2-dihydroxybenzene (DHB) in the presence of activated carbon, with a view to assessing possible changes in its surface chemical structure and adsorption capacity. Experiments were conducted in a 0.5 L reactor, loaded with 2 g Filtrasorb 400 granular activated carbon, and 1-5 mM DHB aqueous solution at pH 2-8. Ozone gas was generated with an Ozocav generator, and fed into the reactor for a given exposure time, in the range 0.5-240 min, at 25 degrees C and 1 atm. After each run, liquid and activated carbon samples were taken for chemical assays. Soluble organic groups present on the active carbon surface were desorbed and analysed by GC-MS and HPLC. Activated carbon chemical surface properties were analysed using TPD, FT-IR, and XPS techniques. Reactions between ozone and adsorbed DHB were shown to be fast, leading to formation of C-6, C-4 and C-2 by-products. Oxygenated surface groups, particularly, COOH and C = O, increased as a result of ozonation.
Autonomous Ozone and Aerosol Lidar Platform: Preliminary Results
NASA Astrophysics Data System (ADS)
Strawbridge, K. B.
2014-12-01
Environment Canada is developing an autonomous tropospheric ozone and aerosol lidar system for deployment in support of short-term field studies. Tropospheric ozone and aerosols (PM10 and PM2.5) are important atmospheric constituents in low altitude pollution affecting human health and vegetation. Ozone is photo-chemically active with nitrogen oxides and can have a distinct diurnal variability. Aerosols contribute to the radiative budget, are a tracer for pollution transport, undergo complex mixing, and contribute to visibility and cloud formation. This particular instrument will employ two separate lidar transmitter and receiver assemblies. The tropospheric ozone lidar, based on the differential absorption lidar (DIAL) technique, uses the fourth harmonics of a Nd:YAG laser directed into a CO2 Raman cell to produce 276 nm, 287nm and 299 nm (first to third Stokes lines) output wavelengths. The aerosol lidar is based on the 3+2 design using a tripled Nd:YAG to output 355 nm, 532 nm and 1064nm wavelengths. Both lidars will be housed in a modified cargo trailer allowing for easy deployment to remote areas. The unit can be operated and monitored 24 hours a day via an internet link and requires an external power source. Simultaneous ozone and aerosol lidar measurements will provide the vertical context necessary to understand the complex mixing and transformation of pollutants - particularly when deployed near other ground-based in-situ sensors. Preliminary results will be shown from a summer field study at the Centre For Atmospheric Research Experiments (CARE).
NASA Astrophysics Data System (ADS)
Zahardis, J.; Petrucci, G. A.
2006-11-01
The heterogeneous processing of organic aerosols by trace oxidants has many implications to atmospheric chemistry and climate regulation. This review covers a model heterogeneous reaction system (HRS): the oleic acid-ozone HRS and other reaction systems featuring fatty acids, and their derivatives. The analysis of the primary products of ozonolysis (azelaic acid, nonanoic acid, 9-oxononanoic acid, nonanal) is described. Anomalies in the relative product yields are noted and explained by the observation of secondary chemical reactions. The secondary reaction products arising from reactive Criegee intermediates are mainly peroxidic, notably secondary ozonides and α-acyloxyalkyl hydroperoxide polymers. These highly oxygenated products are of low volatility and hydrophilic which may enhance the ability of particles to act as cloud condensation nuclei. The kinetic description of this HRS is critically reviewed. Most kinetic studies suggest this oxidative processing is either a near surface reaction that is limited by the diffusion of ozone or a surface based reaction. Internally mixed particles and coatings represent the next stage in the progression towards more realistic proxies of tropospheric organic aerosols and a description of the products and the kinetics resulting from the ozonolysis of these proxies, which are based on fatty acids or their derivatives, is presented. Finally, a series of atmospheric implications of oxidative processing of particulate containing fatty acids is presented. These implications include the extended lifetime of unsaturated species in the troposphere facilitated by the presence of solids, semisolids or viscous phases, and an enhanced rate of ozone uptake by particulate unsaturates compared to corresponding gas phase organics. Ozonolysis of oleic acid enhances its CCN activity, which implies that oxidatively processed particulate may contribute to indirect forcing of radiation. Other effects, including the potential role of aldehydic products of ozonolysis in increasing the oxidative capacity of the troposphere, are also discussed.
NASA Astrophysics Data System (ADS)
Zahardis, J.; Petrucci, G. A.
2007-02-01
The heterogeneous processing of organic aerosols by trace oxidants has many implications to atmospheric chemistry and climate regulation. This review covers a model heterogeneous reaction system (HRS): the oleic acid-ozone HRS and other reaction systems featuring fatty acids, and their derivatives. The analysis of the commonly observed aldehyde and organic acid products of ozonolysis (azelaic acid, nonanoic acid, 9-oxononanoic acid, nonanal) is described. The relative product yields are noted and explained by the observation of secondary chemical reactions. The secondary reaction products arising from reactive Criegee intermediates are mainly peroxidic, notably secondary ozonides and α-acyloxyalkyl hydroperoxide oligomers and polymers, and their formation is in accord with solution and liquid-phase ozonolysis. These highly oxygenated products are of low volatility and hydrophilic which may enhance the ability of particles to act as cloud condensation nuclei (CCN). The kinetic description of this HRS is critically reviewed. Most kinetic studies suggest this oxidative processing is either a near surface reaction that is limited by the diffusion of ozone or a surface based reaction. Internally mixed particles and coatings represent the next stage in the progression towards more realistic proxies of tropospheric organic aerosols and a description of the products and the kinetics resulting from the ozonolysis of these proxies, which are based on fatty acids or their derivatives, is presented. Finally, the main atmospheric implications of oxidative processing of particulate containing fatty acids are presented. These implications include the extended lifetime of unsaturated species in the troposphere facilitated by the presence of solids, semi-solids or viscous phases, and an enhanced rate of ozone uptake by particulate unsaturates compared to corresponding gas-phase organics. Ozonolysis of oleic acid enhances its CCN activity, which implies that oxidatively processed particulate may contribute to indirect forcing of radiation.
NASA Technical Reports Server (NTRS)
Mickley L. J.; Jacob, D. J.; Field, B. D.; Rind, D.
2004-01-01
We examine the characteristics of the climate response to anthropogenic changes in tropospheric ozone. Using a general circulation model, we have carried out a pair of equilibrium climate simulations with realistic present-day and preindustrial ozone distributions. We find that the instantaneous radiative forcing of 0.49 W m(sup -2) due to the increase in tropospheric ozone since preindustrial times results in an increase in global mean surface temperature of 0.28 C. The increase is nearly 0.4 C in the Northern Hemisphere and about 0.2 C in the Southern Hemisphere. The largest increases (greater than 0.8 C) are downwind of Europe and Asia and over the North American interior in summer. In the lower stratosphere, global mean temperatures decrease by about 0.2 C due to the diminished upward flux of radiation at 9.6 micrometers. The largest stratospheric cooling, up to 1.0 C, occurs over high northern latitudes in winter, with possibly important implications for the formation of polar stratospheric clouds. To identify the characteristics of climate forcing unique to tropospheric ozone, we have conducted two additional climate equilibrium simulations: one in which preindustrial tropospheric ozone concentrations were increased everywhere by 18 ppb, producing the same global radiative forcing as present-day ozone but without the heterogeneity; and one in which CO2 was decreased by 25 ppm relative to present day, with ozone at present-day values, to again produce the same global radiative forcing but with the spectral signature of CO2 rather than ozone. In the first simulation (uniform increase of ozone), the global mean surface temperature increases by 0.25 C, with an interhemispheric difference of only 0.03 C, as compared with nearly 0.2 C for the heterogeneous ozone increase. In the second simulation (equivalent CO2), the global mean surface temperature increases by 0.36 C, 30% higher than the increase from tropospheric ozone. The stronger surface warming from CO2 is in part because CO2 forcing (obscured by water vapor) is shifted relatively poleward where the positive ice-albedo feedback amplifies the climate response and in part because the magnitude of the CO2 forcing in the mid-troposphere is double that of ozone. However, we find that CO2 is far less effective than tropospheric ozone in driving lower stratospheric cooling at high northern latitudes in winter.
NASA Astrophysics Data System (ADS)
Kalabokas, Pavlos; Repapis, Christos; Mihalopoulos, Nikos; Zerefos, Christos
2017-04-01
For the identification of the nature of spring and summertime ozone episodes, rural ozone measurements from the Eastern Mediterranean station of Finokalia-Crete, Greece during the first 4-year period of its record (1998-2001) have been analyzed with emphasis on periods of high ozone concentrations, according to the daily variation of the afternoon (12:00 - 18:00) ozone values. For the 7% highest spring and summertime ozone episodes composite NOAA/ESRL reanalysis maps of various meteorological parameters and/or their anomalies (geopotential height, specific humidity, vertical wind velocity omega, vector wind speed and temperature) have been examined together with their corresponding HYSPLIT back trajectories. This work is a continuation of a previous first approach regarding summer highest and lowest surface ozone episodes in Finokalia and other Central and Eastern Mediterranean stations (Kalabokas et al., 2008), which is now extended to more meteorological parameters and higher pressure levels. The results show that the examined synoptic meteorological condition during springtime ozone episodes over the Eastern Mediterranean station of Finokalia are quite similar with those conditions during high ozone springtime episodes observed at rural stations over the Western Mediterranean (Kalabokas et al., 2016). On the other hand the summer time synoptic conditions corresponding to highest surface ozone episodes at Finokalia are comparable with the conditions encountered during highest ozone episodes in the lower troposphere following analysis of MOZAIC vertical profiles over the Aegean Sea and the Eastern Mediterranean (Kalabokas et al., 2015 and references therein). During the highest ozone episodes, for both examined seasons, the transport of tropospheric ozone-rich air masses through atmospheric subsidence influences significantly the boundary layer and surface ozone concentrations. In particular, the geographic areas with observed tropospheric subsidence seem to be the transition regions between high and low pressure synoptic meteorological systems. References Kalabokas, P. D., Mihalopoulos, N., Ellul, R., Kleanthous, S., and Repapis, C. C., 2008. An investigation of the meteorological and photochemical factors influencing the background rural and marine surface ozone levels in the Central and Eastern Mediterranean, Atmos. Environ., 42, 7894-7906. Kalabokas P. D., Thouret V., Cammas J.-P., Volz-Τhomas A., Boulanger D., Repapis C.C., 2015. The geographical distribution of meteorological parameters associated with high and low summer ozone levels in the lower troposphere and the boundary layer over the eastern Mediterranean (Cairo case), Tellus B, 67, 27853, http://dx.doi.org/10.3402/tellusb.v67.27853. Kalabokas P., J. Hjorth, G. Foret, G. Dufour, M. Eremenko, G. Siour, J. Cuesta, M. Beekmann, 2016. An investigation on the origin of regional spring time ozone episodes in the Western Mediterranean and Central Europe. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-615.
Analysis of the breakdown of the Antarctic circumpolar vortex using TOMS ozone data
NASA Technical Reports Server (NTRS)
Bowman, Kenneth P.
1987-01-01
Climatological analysis of data from the Total Ozone Mapping Spectrometer (TOMS) on the Nimbus 7 satellite has shown that the annual cycles of ozone are very different in the Arctic and Antarctic. The annual cycle in the Arctic is a relatively smooth annual sine wave; but in the Antarctic the circumpolar vortex breaks down rapidly during the Southern Hemisphere spring (September through November), producing a rapid rise in total ozone and a sawtooth-shaped annual cycle. The evolution of the Antarctic total ozone field during the vortex breakdown was studied by computing areally-integrated ozone amounts from the TOMS data. This technique avoids substantial difficulties with using zonally-averaged ozone amounts to study the asymmetric breakdown phenomenon. Variability of total ozone is found to be large both within an individual year and between different years. During the last decade monthly-mean total ozone values in the Antarctic during the springtime vortex breakdown period have decreased dramatically. The ozone-area statistics indicate that the decrease has resulted in part from changes in the timing of the vortex breakdown and resultant ozone increase, which have occurred later during recent years. Analysis of the spatial scales involved in the ozone transport and mixing that occur during the vortex breakdown is now underway. Reliable calculation of diagnostic quantities like areally-integrated ozone is possible only with the high-resolution, two-dimensional, daily coverage provided by the TOMS instrument.
Lightning NOx and Impacts on Air Quality
NASA Technical Reports Server (NTRS)
Murray, Lee T.
2016-01-01
Lightning generates relatively large but uncertain quantities of nitrogen oxides, critical precursors for ozone and hydroxyl radical (OH), the primary tropospheric oxidants. Lightning nitrogen oxide strongly influences background ozone and OH due to high ozone production efficiencies in the free troposphere, effecting small but non-negligible contributions to surface pollutant concentrations. Lightning globally contributes 3-4 ppbv of simulated annual-mean policy-relevant background (PRB) surface ozone, comprised of local, regional, and hemispheric components, and up to 18 ppbv during individual events. Feedbacks via methane may counter some of these effects on decadal time scales. Lightning contributes approximately 1 percent to annual-mean surface particulate matter, as a direct precursor and by promoting faster oxidation of other precursors. Lightning also ignites wildfires and contributes to nitrogen deposition. Urban pollution influences lightning itself, with implications for regional lightning-nitrogen oxide production and feedbacks on downwind surface pollution. How lightning emissions will change in a warming world remains uncertain.
NASA Technical Reports Server (NTRS)
Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.
1991-01-01
Ozone (O3) and aerosol distributions were measured from an aircraft using a differential absorption lidar (DIAL) system as part of the 1988 NASA Global Tropospheric Experiment - Arctic Boundary Layer Experiment (ABLE-3A) to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during the summer. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere. Several cases of continental polar air masses were examined during the experiment. The aerosol scattering associated with these air masses was very low, and the atmospheric distribution of aerosols was quite homogeneous for those air masses that had been transported over the ice for greater than or = 3 days. The transition in O3 and aerosol distributions from tundra to marine conditions was examined several times. The aerosol data clearly show an abrupt change in aerosol scattering properties within the mixed layer from lower values over the tundra to generally higher values over the water. The distinct differences in the heights of the mixed layers in the two regions was also readily apparent. Several cases of enhanced O3 were observed during ABLE-3 in conjunction with enhanced aerosol scattering in layers in the free atmosphere. Examples are presented of the large scale variations of O3 and aerosols observed with the airborne lidar system from near the surface to above the tropopause over the Arctic during ABLE-3.
Ozone maxima over Southern Africa: A mid-latitude link
NASA Technical Reports Server (NTRS)
Barsby, Jane; Diab, Roseanne D.
1994-01-01
The relationship between patterns of total ozone and day-to-day weather was explored over South Africa for the period 1987 to 1988. Generally, there was a fairly poor relationship (variance less than 20 percent) between total ozone and the heights of the 100, 300 and 500 hPa geopotential heights at 5 South African stations. However, over a shorter period, October to December 1988, fluctuations in the height of the 300 hPa surface accounted for 53 percent of the variance in total ozone at Cape Town. High ozone amounts are associated with the lowering of the 300 hPa surface in the presence of an upper-air trough. The role of the mid-latitude westerly waves in this respect is discussed.
New Insights in Tropospheric Ozone and its Variability
NASA Technical Reports Server (NTRS)
Oman, Luke D.; Douglass, Anne R.; Ziemke, Jerry R.; Rodriquez, Jose M.
2011-01-01
We have produced time-slice simulations using the Goddard Earth Observing System Version 5 (GEOS-5) coupled to a comprehensive stratospheric and tropospheric chemical mechanism. These simulations are forced with observed sea surface temperatures over the past 25 years and use constant specified surface emissions, thereby providing a measure of the dynamically controlled ozone response. We examine the model performance in simulating tropospheric ozone and its variability. Here we show targeted comparisons results from our simulations with a multi-decadal tropical tropospheric column ozone dataset obtained from satellite observations of total column ozone. We use SHADOZ ozonesondes to gain insight into the observed vertical response and compare with the simulated vertical structure. This work includes but is not limited to ENSO related variability.
Impact of East Asian Summer Monsoon on Surface Ozone Pattern in China
NASA Astrophysics Data System (ADS)
Li, Shu; Wang, Tijian; Huang, Xing; Pu, Xi; Li, Mengmeng; Chen, Pulong; Yang, Xiu-Qun; Wang, Minghuai
2018-01-01
Tropospheric ozone plays a key role in regional and global atmospheric and climate systems. In East Asia, ozone can be affected both in concentration level and spatial pattern by typical monsoon climate. This paper uses three different indices to identify the strength of East Asian summer monsoon (EASM) and explores the possible impact of EASM intensity on the ozone pattern through synthetic and process analysis. The difference in ozone between three strong and three weak monsoon years was analyzed using the simulations from regional climate model RegCM4-Chem. It was found that EASM intensity can significantly influence the spatial distribution of ozone in the lower troposphere. When EASM is strong, ozone in the eastern part of China (28°N - 42° N) is reduced, but the inverse is detected in the north and south. The surface ozone difference ranges from -7 to 7 ppbv during the 3 months (June to August) of the EASM, with the most obvious difference in August. Difference of the 3 months' average ozone ranges from -3.5 to 4 ppbv. Process analysis shows that the uppermost factor controlling ozone level during summer monsoon seasons is the chemistry process. Interannual variability of EASM can impact the spatial distribution of ozone through wind in the lower troposphere, cloud cover, and downward shortwave radiation, which affect the transport and chemical formation of ozone. The phenomenon should be addressed when considering the interaction between ozone and the climate in East Asia region.
Ogata, Fumihiko; Tominaga, Hisato; Kangawa, Moe; Inoue, Kenji; Kawasaki, Naohito
2012-01-01
This study investigates the activated carbon (AC) treatment and ozone oxidation of the sulfa drugs--sulfamethoxazole (SMX), sulfamonomethoxine (SMM), sulfadimidine (SDD), and sulfadimethoxine (SDM)--in aqueous solution systems. Three AC samples were prepared from Shirasagi (AC1 and AC2) and coal (AC3), and the surface functional groups, solution pH, specific surface areas, pore volumes, and morphologies of the three samples were evaluated. The specific surface areas were in the following order: AC1 (1391 m²/g) > AC2 (1053 m²/g) > AC3 (807 m²/g). The pore volume and mean pore diameter of AC3 were greater than those of AC1 and AC2. The concentration of sulfa drugs adsorbed onto the AC samples reached equilibrium within 150 h. Experimental data of the adsorption rate were fitted to a pseudo-second-order model. The amount of sulfa drugs adsorbed onto the AC samples was in the order of SDM < SMM < SDD < SMX; the mechanism of adsorption of the sulfa drugs onto the AC samples depended on the hydrophobicity of the AC surface. The adsorption isotherm data were fitted to Freundlich and Langmuir models. Ozone was generated from oxygen gas using an A-27 ozone generator, and the complete degradation of the sulfa drugs by ozone treatment at 60 mL/min was achieved within 50 min. Ozone treatment caused the structure of the sulfa drugs to decompose via ozone oxidation.
Estimate of the effect of the 11-year solar activity cycle on the ozone content in the stratosphere
NASA Astrophysics Data System (ADS)
Gruzdev, A. N.
2014-09-01
Using spectral, cross-spectral, and regression methods, we analyzed the effect of the 11-year cycle of solar activity on the ozone content in the stratosphere and lower mesosphere via satellite measurement data obtained with the help of SBUV/SBUV2 instruments in 1978-2003. We revealed a high coherence between the ozone content and solar activity level on the solar cycle scale. In much of this area, the ozone content varies approximately in phase with the solar cycle; however, in areas of significant gradients of ozone mixing ratio in the middle stratosphere, the phase shift between ozone and solar oscillations can be considerable, up to π/2. This can be caused by dynamical processes. The altitude maxima of ozone sensitivity to the 11-year solar cycle were found in the upper vicinity of the stratopause (50-55 km), in the middle stratosphere (35-40 km), and the lower stratosphere (below 25 km). Maximal changes in ozone content in the solar cycle (up to 10% and more) were found in winter and spring in polar regions.
NASA Astrophysics Data System (ADS)
Martini, Matus Novak
We analyze the contribution of North American (NA) lightning and anthropogenic emissions to summertime ozone concentrations, radiative forcing, and exports from North America using the global University of Maryland chemistry transport model (UMD-CTM) and the regional scale Weather Research and Forecasting model with chemistry (WRF-Chem). Lightning NO contributes by 15--20 ppbv to upper tropospheric ozone concentrations over the United States with the effects of NA lightning on ozone seen as far east as North Africa and Europe. Using the UMD-CTM, we compare changes in surface and column ozone amounts due to the NOx State Implementation Plan (SIP) Call with the natural variability in ozone due to changes in meteorology and lightning. Comparing early summer 2004 with 2002, surface ozone decreased by up to 5 ppbv due to the NO x SIP Call while changes in meteorology and lightning resulted in a 0.3--1.4 ppbv increase in surface ozone. Ozone column variability was driven primarily by changes in lightning NO emissions, especially over the North Atlantic. As part of our WRF-Chem analysis, we modify the radiation schemes to use model-calculated ozone (interactive ozone) instead of climatological ozone profiles and conduct multiple 4-day simulations of July 2007. We found that interactive ozone increased the outgoing longwave radiation (OLR) by 3 W m-2 decreasing the bias with respect to remotely sensed OLR. The improvement is due to a high bias in the climatological ozone profiles. The interactive ozone had a small impact on mean upper troposphere temperature (-0.15°C). The UMD-CTM simulations indicate that NA anthropogenic emissions are responsible for more ozone export but less ozone radiative forcing than lightning NO emissions. Over the North Atlantic, NA anthropogenic emissions contributed 0.15--0.30 W m-2 to the net downward radiative flux at the tropopause while NA lightning contributed 0.30--0.50 W m-2. The ozone export from anthropogenic emissions was almost twice as large as that from lightning emissions. The WRF-Chem simulations show that the export of reactive nitrogen was 23%--28% of the boundary layer emissions and 26%--38% of the total emissions including lightning NO.
Impact of Stratospheric Ozone Zonal Asymmetries on the Tropospheric Circulation
NASA Technical Reports Server (NTRS)
Tweedy, Olga; Waugh, Darryn; Li, Feng; Oman, Luke
2015-01-01
The depletion and recovery of Antarctic ozone plays a major role in changes of Southern Hemisphere (SH) tropospheric climate. Recent studies indicate that the lack of polar ozone asymmetries in chemistry climate models (CCM) leads to a weaker and warmer Antarctic vortex, and smaller trends in the tropospheric mid-latitude jet and the surface pressure. However, the tropospheric response to ozone asymmetries is not well understood. In this study we report on a series of integrations of the Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) to further examine the effect of zonal asymmetries on the state of the stratosphere and troposphere. Integrations with the full, interactive stratospheric chemistry are compared against identical simulations using the same CCM except that (1) the monthly mean zonal mean stratospheric ozone from first simulation is prescribed and (2) ozone is relaxed to the monthly mean zonal mean ozone on a three day time scale. To analyze the tropospheric response to ozone asymmetries, we examine trends and quantify the differences in temperatures, zonal wind and surface pressure among the integrations.
TOLNet ozone lidar intercomparison during the discover-aq and frappé campaigns
NASA Astrophysics Data System (ADS)
Newchurch, Michael J.; Alvarez, Raul J.; Berkoff, Timothy A.; Carrion, William; DeYoung, Russell J.; Ganoe, Rene; Gronoff, Guillaume; Kirgis, Guillaume; Kuang, Shi; Langford, Andy O.; Leblanc, Thierry; McGee, Thomas J.; Pliutau, Denis; Senff, Christoph; Sullivan, John T.; Sumnicht, Grant; Twigg, Laurence W.; Wang, Lihua
2018-04-01
The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure atmospheric profiles of ozone and aerosols, to contribute to air-quality studies, atmospheric modeling, and satellite validation efforts. The accurate characterization of these lidars is of critical interest, and is necessary to determine cross-instrument calibration uniformity. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the "Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality" (DISCOVER-AQ) mission and the "Front Range Air Pollution and Photochemistry Éxperiment" (FRAPPÉ) to measure sub-hourly ozone variations from near the surface to the top of the troposphere. Although large differences occur at few individual altitudes in the near field and far field range, the TOLNet lidars agree with each other within ±4%. These results indicate excellent measurement accuracy for the TOLNet lidars that is suitable for use in air-quality and ozone modeling efforts.
[Observation of ozone dry deposition in the field of winter wheat.
Li, Shuo; Zheng, You Fei; Wu, Rong Jun; Yin, Ji Fu; Xu, Jing Xin; Zhao, Hui; Sun, Jian
2016-06-01
Ozone is one of the main atmospheric pollutants over surface layer, and its increasing surface ozone concentration and its impact on main crops have become the focus of the public. In order to explore ozone deposition law and environmental factors influencing ozone deposition process, this study used the micrometeorological methods and carried out the experiment under natural conditions. The results showed that during the observational period (the vigorously growing season of wheat), the mean value of ozone flux was -0.35 μg·m -2 ·s -1 (the negative sign indicated that the deposition direction was toward the ground). The mean rate of ozone deposition was 0.55 cm·s -1 . The mean value of aerodynamic resistance was 30 s·m -1 , the mean value of sub-layer resistance was 257 s·m -1 , and that of the canopy layer stomatic resistance was 163 s·m -1 . All the test parameters presented distinct diurnal fluctuation. The ozone deposition resistance was influenced by friction velocity, solar radiation velocity, temperature, relative humidity and other factors.
Feasibility of Sensing Tropospheric Ozone with MODIS 9.6 Micron Observations
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Iacovazzi, R., Jr.; Moon-Yoo, Jung
2004-01-01
With the infrared observations made by the Moderate Resolution Imaging Spectrometer (MODIS) on board the EOS-Aqua satellite, which include the 9.73 micron channel, a method is developed to deduce horizontal patterns of tropospheric ozone in cloud free conditions on a scale of about 100 km. It is assumed that on such small scale, at a given instant, horizontal changes in stratospheric ozone are small compared to that in the troposphere. From theoretical simulations it is found that uncertainties in the land surface emissivity and the vertical thermal stratification in the troposphere can lead to significant errors in the inferred tropospheric ozone. Because of this reason in order to derive horizontal patterns of tropospheric ozone in a given geographic area a tuning of this method is necessary with the help of a few dependent cases. After tuning, this method is applied to independent cases of MODIS data taken over Los Angeles basin in cloud free conditions to derive horizontal distribution of ozone in the troposphere. Preliminary results indicate that the derived patterns of ozone resemble crudely the patterns of surface ozone reported by EPA.
NASA Astrophysics Data System (ADS)
Goldberg, D. L.; Canty, T. P.; Hembeck, L.; Vinciguerra, T.; Carpenter, S. F.; Anderson, D. C.; Salawitch, R. J.; Dickerson, R. R.
2014-12-01
The amount of air pollution crossing state lines has great policy implications. Using the ozone source apportionment tool (OSAT) in the Comprehensive Air-Quality Model with Extensions (CAMx) version 6.10, we can quantify how much ozone is generated locally versus transported from upwind locations. Initial results show that up to 70% of the surface ozone in Maryland during poor air quality days in the summer of July 2011 can be attributed to pollution from outside of the state's borders. Modifications to the CB05 gas-phase chemistry mechanism, supported by literature recommendations and improve agreement with NASA's DISCOVER-AQ Maryland aircraft campaign, can further increase this percentage. Additionally, we show the role of upwind sources and background ozone has become increasingly important as local emissions of ozone precursors continue to drop, starting with the steep reductions imposed in 2002 in response to Maryland's State Implementation Plan submitted to EPA. This study suggests future efforts to control surface ozone must include a meaningful strategy for dealing with cross-state transport of ozone precursors.
Spatial Distribution of Ozone Precursors in the Uinta Basin
NASA Astrophysics Data System (ADS)
Mangum, C. D.; Lyman, S. N.
2012-12-01
Wintertime ozone mixing ratios in the Uinta Basin of Utah exceeding the EPA National Ambient Air Quality Standards measured during 2010 and 2011 led to a large campaign carried out in 2012 that included a study of the spatial distribution of ozone precursors in the Basin. In this study, speciated hydrocarbon mixing ratios (compounds with 6-11 carbon atoms) were measure at 10 sites around the Uinta Basin with Radiello passive samplers, and NO2, NO, and NOx (NO2 + NO) mixing ratios were measured at 16 sites with Ogawa passive sampler and active sampling instruments. Analysis of the Radiello passive samplers was carried out by CS2 desorption and analyzed on a Shimadzu QP-2010 GCMS. Analysis of the Ogawa passive samplers was done via 18.2 megohm water extraction and analyzed with a Dionex ICS-3000 ion chromatography system. February average hydrocarbon mixing ratios were highest in the area of maximum gas production (64.5 ppb as C3), lower in areas of oil production (24.3-30.0 ppb as C3), and lowest in urban areas and on the Basin rim (1.7-17.0 ppb as C3). February average for NOx was highest in the most densely populated urban area, Vernal (11.2 ppb), lower in in the area of maximum gas production (6.1 ppb), and lower still in areas of oil production and on the Basin Rim (0.6-2.7 ppb). Hydrocarbon speciation showed significant differences in spatial distribution around the Basin. Higher mixing ratios of toluene and other aromatics were much more prevalent in gas producing areas than oil producing areas. Similar mixing ratios of straight-chain alkane were observed in both areas. Higher mixing ratios of cycloalkanes were slightly more prevalent in gas producing than oil producing areas.
This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and activities of Cu, Mo, Cr and Mn oxides, and mixed metal oxides supported on -alumina, were tes...
This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and Cu, Mo, V, Cr and Mn metal oxides, and mixed metal oxides support on y-alumina as catalysts ov...
Johan Uddling; Ronald M. Teclaw; Mark E. Kubiske; Kurt S. Pregitzer; David S. Ellsworth
2008-01-01
Elevated concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]) have the potential to affect tree physiology and structure and hence forest water use, which has implications for climate feedbacks. We investigated how a 40% increase above ambient values in [CO2] and [O
NASA Technical Reports Server (NTRS)
Granados Munoz, Maria Jose; Johnson, Matthew S.; Leblanc, Thierry
2016-01-01
In the past decades, significant efforts have been made to increase tropospheric ozone long-term monitoring. A large number of ground-based, airborne and space-borne instruments are currently providing valuable data to contribute to better understand tropospheric ozone budget and variability. Nonetheless, most of these instruments provide in-situ surface and column-integrated data, whereas vertically resolved measurements are still scarce. Besides ozonesondes and aircraft, lidar measurements have proven to be valuable tropospheric ozone profilers. Using the measurements from the tropospheric ozone differential absorption lidar (DIAL) located at the JPL Table Mountain Facility, California, and the GEOS-Chem and GEOS-5 model outputs, the impact of the North American monsoon on tropospheric ozone during summer 2014 is investigated. The influence of the Monsoon lightning-induced NOx will be evaluated against other sources (e.g. local anthropogenic emissions and the stratosphere) using also complementary data such as backward-trajectories analysis, coincident water vapor lidar measurements, and surface ozone in-situ measurements.
Barriers and opportunities for passive removal of indoor ozone
NASA Astrophysics Data System (ADS)
Gall, Elliott T.; Corsi, Richard L.; Siegel, Jeffrey A.
2011-06-01
This paper presents a Monte Carlo simulation to assess passive removal materials (PRMs) that remove ozone with no additional energy input and minimal byproduct formation. Distributions for air exchange rate in a subset of homes in Houston, Texas, were taken from the literature and combined with background ozone removal rates in typical houses and previous experimentally determined ozone deposition velocities to activated carbon cloth and gypsum wallboard PRMs. The median ratio of indoor to outdoor ozone was predicted to be 0.16 for homes with no PRMs installed and ranged from 0.047 to 0.12 for homes with PRMs. Median values of ozone removal effectiveness in these homes ranged from 22% to 68% for the conditions investigated. Achieving an ozone removal effectiveness above 50% in half of the homes would require installing a large area of PRMs and providing enhanced air speed to transport pollutants to PRM surfaces. Challenges associated with achieving this removal include optimizing indoor transport and aesthetic implications of large surface areas of PRM materials.
How to most effectively expand the global surface ozone observing network
NASA Astrophysics Data System (ADS)
Sofen, E. D.; Bowdalo, D.; Evans, M. J.
2016-02-01
Surface ozone observations with modern instrumentation have been made around the world for more than 40 years. Some of these observations have been made as one-off activities with short-term, specific science objectives and some have been made as part of wider networks which have provided a foundational infrastructure of data collection, calibration, quality control, and dissemination. These observations provide a fundamental underpinning to our understanding of tropospheric chemistry, air quality policy, atmosphere-biosphere interactions, etc. brought together eight of these networks to provide a single data set of surface ozone observations. We investigate how representative this combined data set is of global surface ozone using the output from a global atmospheric chemistry model. We estimate that on an area basis, 25 % of the globe is observed (34 % land, 21 % ocean). Whereas Europe and North America have almost complete coverage, other continents, Africa, South America, Australia, and Asia (12-17 %) show significant gaps. Antarctica is surprisingly well observed (78 %). Little monitoring occurs over the oceans, with the tropical and southern oceans particularly poorly represented. The surface ozone over key biomes such as tropical forests and savanna is almost completely unmonitored. A chemical cluster analysis suggests that a significant number of observations are made of polluted air masses, but cleaner air masses whether over the land or ocean (especially again in the tropics) are significantly under-observed. The current network is unlikely to see the impact of the El Niño-Southern Oscillation (ENSO) but may be capable of detecting other planetary-scale signals. Model assessment and validation activities are hampered by a lack of observations in regions where the models differ substantially, as is the ability to monitor likely changes in surface ozone over the next century. Using our methodology we are able to suggest new sites which would help to close the gap in our ability to measure global surface ozone. An additional 20 surface ozone monitoring sites (a 20 % increase in the World Meteorological Organization Global Atmosphere Watch (WMO GAW) ozone sites or a 1 % increase in the total background network) located on 10 islands and in 10 continental regions would almost double the area observed. The cost of this addition to the network is small compared to other expenditure on atmospheric composition research infrastructure and would provide a significant long-term benefit to our understanding of the composition of the atmosphere, information which will also be available for consideration by air quality control managers and policy makers.
Tilmes, S.; Lamarque, J. -F.; Emmons, L. K.; ...
2015-01-01
The Community Atmosphere Model (CAM), version 5, is now coupled to extensive tropospheric and stratospheric chemistry, called CAM5-chem, and is available in addition to CAM4-chem in the Community Earth System Model (CESM) version 1.2. The main focus of this paper is to compare the performance of configurations with internally derived "free running" (FR) meteorology and "specified dynamics" (SD) against observations from surface, aircraft, and satellite, as well as understand the origin of the identified differences. We focus on the representation of aerosols and chemistry. All model configurations reproduce tropospheric ozone for most regions based on in situ and satellite observations.more » However, shortcomings exist in the representation of ozone precursors and aerosols. Tropospheric ozone in all model configurations agrees for the most part with ozonesondes and satellite observations in the tropics and the Northern Hemisphere within the variability of the observations. Southern hemispheric tropospheric ozone is consistently underestimated by up to 25%. Differences in convection and stratosphere to troposphere exchange processes are mostly responsible for differences in ozone in the different model configurations. Carbon monoxide (CO) and other volatile organic compounds are largely underestimated in Northern Hemisphere mid-latitudes based on satellite and aircraft observations. Nitrogen oxides (NO x) are biased low in the free tropical troposphere, whereas peroxyacetyl nitrate (PAN) is overestimated in particular in high northern latitudes. The present-day methane lifetime estimates are compared among the different model configurations. These range between 7.8 years in the SD configuration of CAM5-chem and 8.8 years in the FR configuration of CAM4-chem and are therefore underestimated compared to observational estimations. We find that differences in tropospheric aerosol surface area between CAM4 and CAM5 play an important role in controlling the burden of the tropical tropospheric hydroxyl radical (OH), which causes differences in tropical methane lifetime of about half a year between CAM4-chem and CAM5-chem. In addition, different distributions of NO x from lightning explain about half of the difference between SD and FR model versions in both CAM4-chem and CAM5-chem. Remaining differences in the tropical OH burden are due to enhanced tropical ozone burden in SD configurations compared to the FR versions, which are not only caused by differences in chemical production or loss but also by transport and mixing. For future studies, we recommend the use of CAM5-chem configurations, due to improved aerosol description and inclusion of aerosol–cloud interactions. However, smaller tropospheric surface area density in the current version of CAM5-chem compared to CAM4-chem results in larger oxidizing capacity in the troposphere and therefore a shorter methane lifetime.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tilmes, S.; Lamarque, J. -F.; Emmons, L. K.
The Community Atmosphere Model (CAM), version 5, is now coupled to extensive tropospheric and stratospheric chemistry, called CAM5-chem, and is available in addition to CAM4-chem in the Community Earth System Model (CESM) version 1.2. The main focus of this paper is to compare the performance of configurations with internally derived "free running" (FR) meteorology and "specified dynamics" (SD) against observations from surface, aircraft, and satellite, as well as understand the origin of the identified differences. We focus on the representation of aerosols and chemistry. All model configurations reproduce tropospheric ozone for most regions based on in situ and satellite observations.more » However, shortcomings exist in the representation of ozone precursors and aerosols. Tropospheric ozone in all model configurations agrees for the most part with ozonesondes and satellite observations in the tropics and the Northern Hemisphere within the variability of the observations. Southern hemispheric tropospheric ozone is consistently underestimated by up to 25%. Differences in convection and stratosphere to troposphere exchange processes are mostly responsible for differences in ozone in the different model configurations. Carbon monoxide (CO) and other volatile organic compounds are largely underestimated in Northern Hemisphere mid-latitudes based on satellite and aircraft observations. Nitrogen oxides (NO x) are biased low in the free tropical troposphere, whereas peroxyacetyl nitrate (PAN) is overestimated in particular in high northern latitudes. The present-day methane lifetime estimates are compared among the different model configurations. These range between 7.8 years in the SD configuration of CAM5-chem and 8.8 years in the FR configuration of CAM4-chem and are therefore underestimated compared to observational estimations. We find that differences in tropospheric aerosol surface area between CAM4 and CAM5 play an important role in controlling the burden of the tropical tropospheric hydroxyl radical (OH), which causes differences in tropical methane lifetime of about half a year between CAM4-chem and CAM5-chem. In addition, different distributions of NO x from lightning explain about half of the difference between SD and FR model versions in both CAM4-chem and CAM5-chem. Remaining differences in the tropical OH burden are due to enhanced tropical ozone burden in SD configurations compared to the FR versions, which are not only caused by differences in chemical production or loss but also by transport and mixing. For future studies, we recommend the use of CAM5-chem configurations, due to improved aerosol description and inclusion of aerosol–cloud interactions. However, smaller tropospheric surface area density in the current version of CAM5-chem compared to CAM4-chem results in larger oxidizing capacity in the troposphere and therefore a shorter methane lifetime.« less
Kim, Jae H; Lee, H J; Lee, S H
2006-07-01
This paper presents the first analysis of vertical ozone sounding measurements over Pohang, Korea. The main focus is to analyze the seasonal variation of vertical ozone profiles and determine the mechanisms controlling ozone seasonality. The maxima ozone at the surface and in the free troposphere are observed in May and June, respectively. In comparison with the ozone seasonality at Oki (near sea level) and Happo (altitude of 1840 m) in Japan, which are located at the same latitude as of Pohang, we have found that the time of the ozone maximum at the Japanese sites is always a month earlier than at Pohang. Analysis of the wind flow at the surface shows that the wind shifts from westerly to southerly in May over Japan, but in June over Pohang. However, this wind shift above boundary layer occurs a month later. This wind shift results in significantly smaller amounts of ozone because the southerly wind brings clean wet tropical air. It has been suggested that the spring ozone maximum in the lower troposphere is due to polluted air transported from China. However, an enhanced ozone amount over the free troposphere in June appears to have a different origin. A tongue-like structure in the time-height cross-section of ozone concentrations, which starts from the stratosphere and extends to the middle troposphere, suggests that the ozone enhancement occurs due to a gradual migration of ozone from the stratosphere. The high frequency of dry air with elevated ozone concentrations in the upper troposphere in June suggests that the air is transported from the stratosphere. HYSPLIT trajectory analysis supports the hypothesis that enhanced ozone in the free troposphere is not likely due to transport from sources of anthropogenic activity.
NASA Astrophysics Data System (ADS)
Tai, A. P. K.; Lombardozzi, D.; Val Martin, M.; Heald, C. L.
2015-12-01
Surface ozone is one of the most significant air pollutants due to its damaging effects not only on human health, but also on vegetation and crop productivity. Chronic ozone exposure has been shown to reduce photosynthesis and interfere with gas exchange in plants, which in turn affect the surface energy balance, carbon sink and other biogeochemical fluxes. Ozone damage on vegetation can thus have major ramifications on climate and atmospheric composition, including possible feedbacks onto ozone itself (see figure) that are not well understood. The damage of ozone on crops has been well documented, but a mechanistic understanding is not well established. Here we present several results pertaining to ozone-vegetation interaction. Using the Community Earth System Model, we find that inclusion of ozone damage on plants reduces the global land carbon sink by up to 5%, while simulated ozone is modified by -20 to +4 ppbv depending on the relative importance of competing mechanisms in different regions. We also perform a statistical analysis of multidecadal global datasets of crop yields, agroclimatic variables and ozone exposures to characterize the spatial variability of crop sensitivity to ozone and temperature extremes, specifically accounting for the confounding effect of ozone-temperature covariation. We find that several crops exhibit stronger sensitivity to ozone than found by previous field studies, with a strong anticorrelation between the sensitivity and average ozone levels that reflects biological adaptive ozone resistance. Our results show that a more complete understanding of ozone-vegetation interaction is necessary to derive more realistic future projections of climate, air quality and agricultural production, and thereby to formulate optimal strategies to safeguard public health and food security.
Characterising the three-dimensional ozone distribution of a tidally locked Earth-like planet
NASA Astrophysics Data System (ADS)
Proedrou, Elisavet; Hocke, Klemens
2016-06-01
We simulate the 3D ozone distribution of a tidally locked Earth-like exoplanet using the high-resolution, 3D chemistry-climate model CESM1(WACCM) and study how the ozone layer of a tidally locked Earth (TLE) (Ω _{TLE}= 1/365 days) differs from that of our present-day Earth (PDE) (Ω _{PDE}= 1/1 day). The middle atmosphere reaches a steady state asymptotically within the first 80 days of the simulation. An upwelling, centred on the subsolar point, is present on the day side while a downwelling, centred on the antisolar point, is present on the night side. In the mesosphere, we find similar global ozone distributions for the TLE and the PDE, with decreased ozone on the day side and enhanced ozone on the night side. In the lower mesosphere, a jet stream transitions into a large-scale vortex around a low-pressure system, located at low latitudes of the TLE night side. In the middle stratosphere, the concentration of odd oxygen is approximately equal to that of the ozone [({O}x) ≈ ({O}3)]. At these altitudes, the lifetime of odd oxygen is ˜16 h and the transport processes significantly contribute to the global distribution of stratospheric ozone. Compared to the PDE, where the strong Coriolis force acts as a mixing barrier between low and high latitudes, the transport processes of the TLE are governed by jet streams variable in the zonal and meridional directions. In the middle stratosphere of the TLE, we find high ozone values on the day side, due to the increased production of atomic oxygen on the day side, where it immediately recombines with molecular oxygen to form ozone. In contrast, the ozone is depleted on the night side, due to changes in the solar radiation distribution and the presence of a downwelling. As a result of the reduced Coriolis force, the tropical and extratropical air masses are well mixed and the global temperature distribution of the TLE stratosphere has smaller horizontal gradients than the PDE. Compared to the PDE, the total ozone column global mean is reduced by ˜19.3 %. The day side and the night side total ozone column means are reduced by 23.21 and 15.52 %, respectively. Finally, we present the total ozone column (TOC) maps as viewed by a remote observer for four phases of the TLE during its revolution around the star. The mean TOC values of the four phases of the TLE vary by up to 23 %.
NASA Astrophysics Data System (ADS)
Kreyling, Daniel; Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus
2018-03-01
The Extrapolar SWIFT model is a fast ozone chemistry scheme for interactive calculation of the extrapolar stratospheric ozone layer in coupled general circulation models (GCMs). In contrast to the widely used prescribed ozone, the SWIFT ozone layer interacts with the model dynamics and can respond to atmospheric variability or climatological trends.The Extrapolar SWIFT model employs a repro-modelling approach, in which algebraic functions are used to approximate the numerical output of a full stratospheric chemistry and transport model (ATLAS). The full model solves a coupled chemical differential equation system with 55 initial and boundary conditions (mixing ratio of various chemical species and atmospheric parameters). Hence the rate of change of ozone over 24 h is a function of 55 variables. Using covariances between these variables, we can find linear combinations in order to reduce the parameter space to the following nine basic variables: latitude, pressure altitude, temperature, overhead ozone column and the mixing ratio of ozone and of the ozone-depleting families (Cly, Bry, NOy and HOy). We will show that these nine variables are sufficient to characterize the rate of change of ozone. An automated procedure fits a polynomial function of fourth degree to the rate of change of ozone obtained from several simulations with the ATLAS model. One polynomial function is determined per month, which yields the rate of change of ozone over 24 h. A key aspect for the robustness of the Extrapolar SWIFT model is to include a wide range of stratospheric variability in the numerical output of the ATLAS model, also covering atmospheric states that will occur in a future climate (e.g. temperature and meridional circulation changes or reduction of stratospheric chlorine loading).For validation purposes, the Extrapolar SWIFT model has been integrated into the ATLAS model, replacing the full stratospheric chemistry scheme. Simulations with SWIFT in ATLAS have proven that the systematic error is small and does not accumulate during the course of a simulation. In the context of a 10-year simulation, the ozone layer simulated by SWIFT shows a stable annual cycle, with inter-annual variations comparable to the ATLAS model. The application of Extrapolar SWIFT requires the evaluation of polynomial functions with 30-100 terms. Computers can currently calculate such polynomial functions at thousands of model grid points in seconds. SWIFT provides the desired numerical efficiency and computes the ozone layer 104 times faster than the chemistry scheme in the ATLAS CTM.
NASA Astrophysics Data System (ADS)
Bozem, H.; Fischer, H.; Gurk, C.; Schiller, C. L.; Parchatka, U.; Koenigstedt, R.; Stickler, A.; Martinez, M.; Harder, H.; Kubistin, D.; Williams, J.; Eerdekens, G.; Lelieveld, J.
2014-02-01
Convective redistribution of ozone and its precursors between the boundary layer (BL) and the free troposphere (FT) influences photochemistry, in particular that of the middle and upper troposphere (UT). We present a case study of convective transport during the GABRIEL campaign over the tropical rain forest in Suriname in October 2005. During a measurement flight on 12 October the inflow and outflow regions of a cumulonimbus cloud (Cb) have been characterized, providing evidence of convective transport. We identified a distinct layer between 9 and 11 km altitude with enhanced mixing ratios of CO, O3, HOx, acetone and acetonitrile. The elevated O3 contradicts the expectation that convective transport brings low ozone air from the boundary layer to the outflow region. The enhanced mixing ratio of ozone in the outflow was mainly of dynamical origin. Entrainment of ozone rich air at the outflow level into the convective outflow accounts for 62% (range: 33-91%) of the observed O3. Ozone is enhanced by only 5-6% by photochemical production in the outflow due to enhanced NO from lightning, based on steady state model calculations, using in-situ observations including the first reported HOx measurements over the tropical rainforest. The "excess" ozone in the outflow is most probably due to direct production by corona discharge associated with lightning. We deduce a production rate of 5.12 × 1028 molecules O3 flash-1 (range: 9.89 × 1026-9.82 × 1028 molecules O3 flash-1), which is at the upper limit of the range of the values reported previously.
Lee, Hun; Kim, Eung Kweon; Kim, Hee Young; Kim, Tae-im
2017-01-01
Based on previous findings that ozone can induce an inflammatory response in the ocular surface of an animal model and in cultured human conjunctival epithelial cells, we investigated whether exposure to ozone exacerbates symptoms of allergic conjunctivitis. We evaluated the effects of exposure to ozone on conjunctival chemosis, conjunctival injection, corneal and conjunctival fluorescein staining scores, production of inflammatory cytokines in tears, and aqueous tear production in a mouse model of allergic conjunctivitis. To validate our in vivo results, we used interleukin (IL)-1α-pretreated conjunctival epithelial cells as an in vitro substitute for the mouse model. We evaluated whether exposure to ozone increased the inflammatory response and altered oxidative status and mitochondrial function in IL-1α-pretreated conjunctival epithelial cells. In the in vivo study, ozone induced increases in conjunctival chemosis, conjunctival injection, corneal and conjunctival fluorescein staining scores, and production of inflammatory cytokines, accompanied by a decrease in tear volume. In the in vitro study, exposure to ozone led to additional increases in IL-6 and tumor necrosis factor-α mRNA levels, which were already induced by treatment with IL-1α. Ozone did not induce any changes in cell viability. Pretreatment with IL-1α increased the expression of manganese superoxide dismutase, and exposure to ozone led to additional increments in the expression of this antioxidant enzyme. Ozone did not induce any changes in mitochondrial activity or expression of mitochondrial enzymes and proteins related to mitochondrial function, with the exception of phosphor-mammalian target of rapamycin. Treatment with butylated hydroxyanisole, a free radical scavenger, attenuated the ozone-induced increases in IL-6 expression in IL-1α-pretreated conjunctival epithelial cells. Therefore, we conclude that exposure to ozone exacerbates the detrimental effects on the integrity of the ocular surface caused by conjunctival allergic reactions, and further increases the inflammatory response in IL-1α-pretreated conjunctival epithelial cells. PMID:28046113
NASA Astrophysics Data System (ADS)
Chatfield, R. B.; Browell, E. V.; Brune, W. H.; Crawford, J. H.; Esswein, R.; Fried, A.; Olson, J. R.; Shetter, R. E.; Singh, H. B.
2006-12-01
We propose and evaluate two related and surprisingly simple empirical estimators for the local chemical production term for photochemical ozone; each uses two moderate-technology chemical measurements and a measurement of ultraviolet light. We nickname the techniques POGO-FAN: Production of Ozone by Gauging Oxidation: Formaldehyde and NO. (1) A non-linear function of a single three-factor index-variable, j (HCHO=>rads) [HCHO] [NO] seems to provide a good estimator of the largest single term in the production of smog ozone, the HOO+NO term, over a very wide range of situations. (2) By considering empirical contour plots summarizing isopleths of HOO+NO using j (HCHO=>rads) [HCHO] and [NO] separately as coordinates, we provide a slightly more complex 2-d indicator of smog ozone production that additionally allows an estimate of the NOx-sensitivity or NOx-saturation (i.e., VOC-sensitivity) of sampled air parcels. ~85 to >90 % of the variance is explained. The correspondence to "EKMA" contour plots, estimating afternoon ozone based on morningtime organics and NOx mixes, is not coincidental. We utilize a broad set of urban plume, regionally polluted and cleaner NASA DC-8 PBL samples from the Intercontinental Transport Experiment-North America (INTEX-NA), in which each of the variables was measured, to help establish our relationship. The estimator is described in terms both both of asymptotic smog photochemistry theory; primarily this suggests appropriate statistical approaches which can capture some of the complex interrelations of lower-tropospheric smog mix through correlation of reactive mixture components. HCHO is not only an important source of HOO radicals, but it more important serves as a "gauge" of all photochemical processing of volatile organic compounds. It probably captures information related to coincident VOC sources of various compounds and parallels in photochemical processing. Constrained modeling of observed atmospheric concentrations suggests that the prime source of ozone from HOO+NO reaction and other peroxy radical ozone formation reactions (ROO+NO), thus all ozone production, are closely related. Additionally, modeling allows us to follow ozone production and NOx-sensitivity throughout the varying photolytic cycle.
NASA Astrophysics Data System (ADS)
Clancy, R. T.; Wolff, M. J.; Malin, M. C.; Cantor, B. A.
2010-12-01
MARCI UV band imaging photometry within (260nm) and outside (320nm) the Hartley ozone band absorption supports daily global mapping of Mars ozone column abundances. Key retrieval issues include accurate UV radiometric calibrations, detailed specifications of surface and atmospheric background reflectance (surface albedo, atmospheric Raleigh and dust scattering/absorption), and simultaneous cloud retrievals. The implementation of accurate radiative transfer (RT) treatments of these processes has been accomplished (Wolff et al., 2010) such that daily global mapping retrievals for Mars ozone columns have been completed for the 2006-2010 period of MARCI global imaging. Ozone retrievals are most accurate for high column abundances associated with mid-to-high latitude regions during fall, winter, and spring seasons. We present a survey of these MARCI ozone column retrievals versus season, latitude, longitude, and year.
The Response of Tropical Tropospheric Ozone to ENSO
NASA Technical Reports Server (NTRS)
Oman, L. D.; Ziemke, J. R.; Douglass, A. R.; Waugh, D. W.; Lang, C.; Rodriguez, J. M.; Nielsen, J. E.
2011-01-01
We have successfully reproduced the Ozone ENSO Index (OEI) in the Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) forced by observed sea surface temperatures over a 25-year period. The vertical ozone response to ENSO is consistent with changes in the Walker circulation. We derive the sensitivity of simulated ozone to ENSO variations using linear regression analysis. The western Pacific and Indian Ocean region shows similar positive ozone sensitivities from the surface to the upper troposphere, in response to positive anomalies in the Nino 3.4 Index. The eastern and central Pacific region shows negative sensitivities with the largest sensitivity in the upper troposphere. This vertical response compares well with that derived from SHADOZ ozonesondes in each region. The OEI reveals a response of tropospheric ozone to circulation change that is nearly independent of changes in emissions and thus it is potentially useful in chemistry-climate model evaluation.
USDA-ARS?s Scientific Manuscript database
A water filtration and ozone disinfection system was installed at the U.S. Fish and Wildlife Service's Northeast Fishery Center in Lamar, Pennsylvania to treat a surface water supply that is used to culture sensitive and endangered fish. The treatment system first passes the surface water through dr...
NASA Astrophysics Data System (ADS)
Watanabe, S.; Takemura, T.; Sudo, K.; Yokohata, T.; Kawase, H.
2012-06-01
The historical anthropogenic change in the surface all-sky UV-B (solar ultraviolet: 280-315 nm) radiation through 1850-2005 is evaluated using an Earth system model. Responses of UV-B dose to anthropogenic changes in ozone and aerosols are separately evaluated using a series of historical simulations including/excluding these changes. Increases in these air pollutants cause reductions in UV-B transmittance, which occur gradually/rapidly before/after 1950 in and downwind of industrial and deforestation regions. Furthermore, changes in ozone transport in the lower stratosphere, which is induced by increasing greenhouse gas concentrations, increase ozone concentration in the extratropical upper troposphere and lower stratosphere. These transient changes work to decrease the amount of UV-B reaching the Earth's surface, counteracting the well-known effect increasing UV-B due to stratospheric ozone depletion, which developed rapidly after ca. 1980. As a consequence, the surface UV-B radiation change between 1850 and 2000 is negative in the tropics and NH extratropics and positive in the SH extratropics. Comparing the contributions of ozone and aerosol changes to the UV-B change, the transient change in ozone absorption of UV-B mainly determines the total change in the surface UV-B radiation at most locations. On the other hand, the aerosol direct and indirect effects on UV-B play an equally important role to that of ozone in the NH mid-latitudes and tropics. A typical example is East Asia (25° N-60° N and 120° E-150° E), where the effect of aerosols (ca. 70%) dominates the total UV-B change.
NASA Astrophysics Data System (ADS)
Watanabe, S.; Takemura, T.; Sudo, K.; Yokohata, T.; Kawase, H.
2012-02-01
The historical anthropogenic change in the surface all-sky UV-B (solar ultraviolet: 280-315 nm) radiation through 1850-2005 is evaluated using an Earth system model. Responses of UV-B dose to anthropogenic changes in ozone and aerosols are separately evaluated using a series of historical simulations including/excluding these changes. Increases in these air pollutants cause reductions in UV-B transmittance, which occur gradually/rapidly before/after 1950 in and downwind of industrial and deforestation regions. Furthermore, changes in ozone transport in the lower stratosphere, which is induced by increasing greenhouse gas concentrations, increase ozone concentration in the extratropical upper troposphere and lower stratosphere. These transient changes work to decrease the amount of UV-B reaching the Earth's surface, counteracting the well-known effect increasing UV-B due to stratospheric ozone depletion, which developed rapidly after ca. 1980. As a consequence, the surface all-sky UV-B radiation change between 1850 and 2000 is negative in the tropics and NH extratropics and positive in the SH extratropics. Comparing the contributions of ozone and aerosol changes to the UV-B change, the transient change in ozone absorption of UV-B mainly determines the total change in the surface all-sky UV-B radiation at most locations. On the other hand, the aerosol direct and indirect effects on UV-B play an equally important role to that of ozone in the NH mid-latitudes and tropics. A typical example is East Asia (25° N-60° N and 120° E-150° E), where the effect of aerosols (ca. 70%) dominates the total UV-B change.
NASA Technical Reports Server (NTRS)
Schnell, J. L.; Prather, M. J.; Josse, B.; Naik, V.; Horowitz, L. W.; Cameron-Smith, P.; Bergmann, D.; Zeng, G.; Plummer, D. A.; Sudo, K.;
2015-01-01
We test the current generation of global chemistry-climate models in their ability to simulate observed, present-day surface ozone. Models are evaluated against hourly surface ozone from 4217 stations in North America and Europe that are averaged over 1 degree by 1 degree grid cells, allowing commensurate model-measurement comparison. Models are generally biased high during all hours of the day and in all regions. Most models simulate the shape of regional summertime diurnal and annual cycles well, correctly matching the timing of hourly (approximately 15:00 local time (LT)) and monthly (mid-June) peak surface ozone abundance. The amplitude of these cycles is less successfully matched. The observed summertime diurnal range (25 ppb) is underestimated in all regions by about 7 parts per billion, and the observed seasonal range (approximately 21 parts per billion) is underestimated by about 5 parts per billion except in the most polluted regions, where it is overestimated by about 5 parts per billion. The models generally match the pattern of the observed summertime ozone enhancement, but they overestimate its magnitude in most regions. Most models capture the observed distribution of extreme episode sizes, correctly showing that about 80 percent of individual extreme events occur in large-scale, multi-day episodes of more than 100 grid cells. The models also match the observed linear relationship between episode size and a measure of episode intensity, which shows increases in ozone abundance by up to 6 parts per billion for larger-sized episodes. We conclude that the skill of the models evaluated here provides confidence in their projections of future surface ozone.
Factors affecting ozone removal rates in a simulated aircraft cabin environment
NASA Astrophysics Data System (ADS)
Tamás, Gyöngyi; Weschler, Charles J.; Bakó-Biró, Zsolt; Wyon, David P.; Strøm-Tejsen, Peter
Ozone concentrations were measured concurrently inside a simulated aircraft cabin and in the airstream providing ventilation air to the cabin. Ozone decay rates were also measured after cessation of ozone injection into the supply airstream. By systematically varying the presence or absence of people, soiled T-shirts, aircraft seats and a used HEPA filter, we have been able in the course of 24 experiments to isolate the contributions of these and other factors to the removal of ozone from the cabin air. In the case of this simulated aircraft, people were responsible for almost 60% of the ozone removal occurring within the cabin and recirculation system; respiration can only have been responsible for about 4% of this removal. The aircraft seats removed about 25% of the ozone; the loaded HEPA filter, 7%; and the other surfaces, 10%. A T-shirt that had been slept in overnight removed roughly 70% as much ozone as a person, indicating the importance of skin oils in ozone removal. The presence of the used HEPA filter in the recirculated airstream reduced the perceived air quality. Over a 5-h period, the overall ozone removal rate by cabin surfaces decreased at ˜3% h -1. With people present, the measured ratio of ozone's concentration in the cabin versus that outside the cabin was 0.15-0.21, smaller than levels reported in the literature. The results reinforce the conclusion that the optimal way to reduce people's exposure to both ozone and ozone oxidation products is to efficiently remove ozone from the air supply system of an aircraft.
Feedbacks between Climate and Fire Emissions
2011-11-29
CH4 2. Direct emission of short-lived climate forcers - Black Carbon - Particulate organic matter 3. Production of tropospheric ozone and secondary... tropospheric ozone and secondary organic particulate matter 4. Changes in land surface properties - Black carbon on snow - Albedo Radiative Forcing of Black...lived climate forcers: particles 3. Ozone production 4. Change in surface properties Fires Impacts on the Climate System 1. Emission of long lived
NASA Astrophysics Data System (ADS)
Anet, Julien G.; Steinbacher, Martin; Gallardo, Laura; Velásquez Álvarez, Patricio A.; Emmenegger, Lukas; Buchmann, Brigitte
2017-05-01
The knowledge of surface ozone mole fractions and their global distribution is of utmost importance due to the impact of ozone on human health and ecosystems and the central role of ozone in controlling the oxidation capacity of the troposphere. The availability of long-term ozone records is far better in the Northern than in the Southern Hemisphere, and recent analyses of the seven accessible records in the Southern Hemisphere have shown inconclusive trends. Since late 1995, surface ozone is measured in situ at "El Tololo", a high-altitude (2200 m a.s.l.) and pristine station in Chile (30° S, 71° W). The dataset has been recently fully quality controlled and reprocessed. This study presents the observed ozone trends and annual cycles and identifies key processes driving these patterns. From 1995 to 2010, an overall positive trend of ˜ 0.7 ppb decade-1 is found. Strongest trends per season are observed in March and April. Highest mole fractions are observed in late spring (October) and show a strong correlation with ozone transported from the stratosphere down into the troposphere, as simulated with a model. Over the 20 years of observations, the springtime ozone maximum has shifted to earlier times in the year, which, again, is strongly correlated with a temporal shift in the occurrence of the maximum of simulated stratospheric ozone transport at the site. We conclude that background ozone at El Tololo is mainly driven by stratospheric intrusions rather than photochemical production from anthropogenic and biogenic precursors. The major footprint of the sampled air masses is located over the Pacific Ocean. Therefore, due to the negligible influence of local processes, the ozone record also allows studying the influence of El Niño and La Niña episodes on background ozone levels in South America. In agreement with previous studies, we find that, during La Niña conditions, ozone mole fractions reach higher levels than during El Niño conditions.
Probabilistic Forecasting of Surface Ozone with a Novel Statistical Approach
NASA Technical Reports Server (NTRS)
Balashov, Nikolay V.; Thompson, Anne M.; Young, George S.
2017-01-01
The recent change in the Environmental Protection Agency's surface ozone regulation, lowering the surface ozone daily maximum 8-h average (MDA8) exceedance threshold from 75 to 70 ppbv, poses significant challenges to U.S. air quality (AQ) forecasters responsible for ozone MDA8 forecasts. The forecasters, supplied by only a few AQ model products, end up relying heavily on self-developed tools. To help U.S. AQ forecasters, this study explores a surface ozone MDA8 forecasting tool that is based solely on statistical methods and standard meteorological variables from the numerical weather prediction (NWP) models. The model combines the self-organizing map (SOM), which is a clustering technique, with a step wise weighted quadratic regression using meteorological variables as predictors for ozone MDA8. The SOM method identifies different weather regimes, to distinguish between various modes of ozone variability, and groups them according to similarity. In this way, when a regression is developed for a specific regime, data from the other regimes are also used, with weights that are based on their similarity to this specific regime. This approach, regression in SOM (REGiS), yields a distinct model for each regime taking into account both the training cases for that regime and other similar training cases. To produce probabilistic MDA8 ozone forecasts, REGiS weighs and combines all of the developed regression models on the basis of the weather patterns predicted by an NWP model. REGiS is evaluated over the San Joaquin Valley in California and the northeastern plains of Colorado. The results suggest that the model performs best when trained and adjusted separately for an individual AQ station and its corresponding meteorological site.
On the origin of regional spring time ozone episodes in the Western Mediterranean
NASA Astrophysics Data System (ADS)
Kalabokas, Pavlos; Hjorth, Jens; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Siour, Guillaume; Cuesta, Juan; Beekmann, Matthias
2017-04-01
For the identification of regional spring time ozone episodes, rural EMEP ozone measurements from countries surrounding the Western Mediterranean (Spain, France, Switzerland, Italy, Malta) have been examined with emphasis on periods of high ozone, according to the daily variation of the afternoon (12:00 - 18:00) ozone. For two selected high ozone episodes in April-May 2008, composite NCEP/NCAR reanalysis maps of various meteorological parameters and/or their anomalies (geopotential height, specific humidity, vertical velocity omega, vector wind speed and temperature) at various tropospheric pressure levels have been examined together with the corresponding satellite IASI ozone measurements (at 3 and 10 km), CHIMERE simulations, vertical ozone soundings and HYSPLIT back trajectories (Kalabokas et al., 2016). The results show that high surface ozone is measured at several countries simultaneously over several days. Also, the examined spring ozone episodes in Western Mediterranean and Central Europe are linked to synoptic meteorological conditions very similar to those recently observed in summertime ozone episodes over the Eastern Mediterranean (Doche et al., 2014; Kalabokas et al., 2015 and references therein), where the transport of tropospheric ozone-rich air masses through atmospheric subsidence influences significantly the boundary layer and surface ozone concentrations. In particular, the geographic areas with observed tropospheric subsidence seem to be the transition regions between high pressure and low pressure systems. IASI satellite measurements show extended areas of high tropospheric ozone over the low pressure systems adjacent to the anticyclones, which influence significantly the boundary layer and surface ozone concentrations within the anticyclones by subsidence and advection, in addition to the photochemically produced ozone there, resulting to exceedances of the 60 ppb standard for human health protection over extended geographical areas. References Doche, C., Dufour, G., Foret, G., Eremenko, M., Cuesta, J., Beekmann, M., and Kalabokas, P., 2014. Summertime tropospheric-ozone variability over the Mediterranean basin observed with IASI, Atmos. Chem. Phys., 14, 10589-10600. Kalabokas P. D., Thouret V., Cammas J.-P., Volz-Τhomas A., Boulanger D., Repapis C.C., 2015. The geographical distribution of meteorological parameters associated with high and low summer ozone levels in the lower troposphere and the boundary layer over the eastern Mediterranean (Cairo case), Tellus B, 67, 27853, http://dx.doi.org/10.3402/tellusb.v67.27853. Kalabokas P., J. Hjorth, G. Foret, G. Dufour, M. Eremenko, G. Siour, J. Cuesta, M. Beekmann, 2016. An investigation on the origin of regional spring time ozone episodes in the Western Mediterranean and Central Europe. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-615.
Analysis of Summer-Time Ozone and Precursor Species in the Southeast United States
NASA Technical Reports Server (NTRS)
Johnson, Matthew
2016-01-01
Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality and atmospheric chemistry. The understanding and ability to model the horizontal and vertical structure of O3 mixing ratios is difficult due to the complex formation/destruction processes and transport pathways that cause large variability of O3. The Environmental Protection Agency has National Ambient Air Quality Standards for O3 set at 75 ppb with future standards proposed to be as low as 65 ppb. These lower values emphasize the need to better understand/simulate the transport processes, emission sources, and chemical processes controlling precursor species (e.g., NOx, VOCs, and CO) which influence O3 mixing ratios. The uncertainty of these controlling variables is particularly large in the southeast United States (US) which is a region impacted by multiple different emission sources of precursor species (anthropogenic and biogenic) and transport processes resulting in complex spatio-temporal O3 patterns. During this work we will evaluate O3 and precursor species in the southeast US applying models, ground-based and airborne in situ data, and lidar observations. In the summer of 2013, the UAH O3 Differential Absorption Lidar (DIAL) (part of the Tropospheric Ozone Lidar Network (TOLNet)) measured vertical O3 profiles from the surface up to approximately 12 km. During this period, the lidar observed numerous periods of dynamic temporal and vertical O3 structures. In order to determine the sources/processes impacting these O3 mixing ratios we will apply the CTM GEOS-Chem (v9-02) at a 0.25 deg x 0.3125 deg resolution. Using in situ ground-based (e.g., SEARCH Network, CASTNET), airborne (e.g., NOAA WP-3D - SENEX 2013, DC-8 - SEAC4RS), and TOLNet lidar data we will first evaluate the model to determine the capability of GEOS-Chem to simulate the spatio-temporal variability of O3 in the southeast US. Secondly, we will perform model sensitivity studies in order to quantify which emission sources (e.g., anthropogenic, biogenic, lighting, wildfire) and transport processes (e.g., stratospheric, long-range, local scale) are contributing to these TOLNet-observed dynamic O3 patterns. Results from the evaluation of the model and the study of sources/processes impacting observed O3 mixing ratios will be presented.
Analysis of Summer-time Ozone and Precursor Species in the Southeast United States
NASA Astrophysics Data System (ADS)
Johnson, M. S.; Kuang, S.; Newchurch, M.; Hair, J. W.
2015-12-01
Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality and atmospheric chemistry. The understanding and ability to model the horizontal and vertical structure of O3 mixing ratios is difficult due to the complex formation/destruction processes and transport pathways that cause large variability of O3. The Environmental Protection Agency has National Ambient Air Quality Standards for O3 set at 75 ppb with future standards proposed to be as low as 65 ppb. These lower values emphasize the need to better understand/simulate the transport processes, emission sources, and chemical processes controlling precursor species (e.g., NOx, VOCs, and CO) which influence O3 mixing ratios. The uncertainty of these controlling variables is particularly large in the southeast United States (US) which is a region impacted by multiple different emission sources of precursor species (anthropogenic and biogenic) and transport processes resulting in complex spatio-temporal O3 patterns. During this work we will evaluate O3 and precursor species in the southeast US applying models, ground-based and airborne in situ data, and lidar observations. In the summer of 2013, the UAH O3 Differential Absorption Lidar (DIAL) (part of the Tropospheric Ozone Lidar Network (TOLNet)) measured vertical O3 profiles from the surface up to ~12 km. During this period, the lidar observed numerous periods of dynamic temporal and vertical O3 structures. In order to determine the sources/processes impacting these O3 mixing ratios we will apply the CTM GEOS-Chem (v9-02) at a 0.25° × 0.3125° resolution. Using in situ ground-based (e.g., SEARCH Network, CASTNET), airborne (e.g., NOAA WP-3D - SENEX 2013, DC-8 - SEAC4RS), and TOLNet lidar data we will first evaluate the model to determine the capability of GEOS-Chem to simulate the spatio-temporal variability of O3 in the southeast US. Secondly, we will perform model sensitivity studies in order to quantify which emission sources (e.g., anthropogenic, biogenic, lighting, wildfire) and transport processes (e.g., stratospheric, long-range, local scale) are contributing to these TOLNet-observed dynamic O3 patterns. Results from the evaluation of the model and the study of sources/processes impacting observed O3 mixing ratios will be presented.
Global ozone and air quality: a multi-model assessment of risks to human health and crops
NASA Astrophysics Data System (ADS)
Ellingsen, K.; Gauss, M.; van Dingenen, R.; Dentener, F. J.; Emberson, L.; Fiore, A. M.; Schultz, M. G.; Stevenson, D. S.; Ashmore, M. R.; Atherton, C. S.; Bergmann, D. J.; Bey, I.; Butler, T.; Drevet, J.; Eskes, H.; Hauglustaine, D. A.; Isaksen, I. S. A.; Horowitz, L. W.; Krol, M.; Lamarque, J. F.; Lawrence, M. G.; van Noije, T.; Pyle, J.; Rast, S.; Rodriguez, J.; Savage, N.; Strahan, S.; Sudo, K.; Szopa, S.; Wild, O.
2008-02-01
Within ACCENT, a European Network of Excellence, eighteen atmospheric models from the U.S., Europe, and Japan calculated present (2000) and future (2030) concentrations of ozone at the Earth's surface with hourly temporal resolution. Comparison of model results with surface ozone measurements in 14 world regions indicates that levels and seasonality of surface ozone in North America and Europe are characterized well by global models, with annual average biases typically within 5-10 nmol/mol. However, comparison with rather sparse observations over some regions suggest that most models overestimate annual ozone by 15-20 nmol/mol in some locations. Two scenarios from the International Institute for Applied Systems Analysis (IIASA) and one from the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) have been implemented in the models. This study focuses on changes in near-surface ozone and their effects on human health and vegetation. Different indices and air quality standards are used to characterise air quality. We show that often the calculated changes in the different indices are closely inter-related. Indices using lower thresholds are more consistent between the models, and are recommended for global model analysis. Our analysis indicates that currently about two-thirds of the regions considered do not meet health air quality standards, whereas only 2-4 regions remain below the threshold. Calculated air quality exceedances show moderate deterioration by 2030 if current emissions legislation is followed and slight improvements if current emissions reduction technology is used optimally. For the "business as usual" scenario severe air quality problems are predicted. We show that model simulations of air quality indices are particularly sensitive to how well ozone is represented, and improved accuracy is needed for future projections. Additional measurements are needed to allow a more quantitative assessment of the risks to human health and vegetation from changing levels of surface ozone.
Alexeeff, Stacey E; Pfister, Gabriele G; Nychka, Doug
2016-03-01
Climate change is expected to have many impacts on the environment, including changes in ozone concentrations at the surface level. A key public health concern is the potential increase in ozone-related summertime mortality if surface ozone concentrations rise in response to climate change. Although ozone formation depends partly on summertime weather, which exhibits considerable inter-annual variability, previous health impact studies have not incorporated the variability of ozone into their prediction models. A major source of uncertainty in the health impacts is the variability of the modeled ozone concentrations. We propose a Bayesian model and Monte Carlo estimation method for quantifying health effects of future ozone. An advantage of this approach is that we include the uncertainty in both the health effect association and the modeled ozone concentrations. Using our proposed approach, we quantify the expected change in ozone-related summertime mortality in the contiguous United States between 2000 and 2050 under a changing climate. The mortality estimates show regional patterns in the expected degree of impact. We also illustrate the results when using a common technique in previous work that averages ozone to reduce the size of the data, and contrast these findings with our own. Our analysis yields more realistic inferences, providing clearer interpretation for decision making regarding the impacts of climate change. © 2015, The International Biometric Society.
Stauffer, Ryan M; Thompson, Anne M
Hourly surface meteorological measurements were coupled with surface ozone (O 3 ) mixing ratio measurements at Hampton, Virginia and Baltimore, Maryland, two sites along the Chesapeake Bay in the Mid-Atlantic United States, to examine the behavior of surface O 3 during bay breeze events and quantify the impact of the bay breeze on local O 3 pollution. Analyses were performed for the months of May through September for the years 1986 to 2010. The years were split into three groups to account for increasingly stringent environmental regulations that reduced regional emissions of nitrogen oxides (NO x ): 1986-1994, 1995-2002, and 2003-2010. Each day in the 25-year record was marked either as a bay breeze day, a non-bay breeze day, or a rainy/cloudy day based on the meteorological data. Mean eight hour (8-h) averaged surface O 3 values during bay breeze events were 3 to 5 parts per billion by volume (ppbv) higher at Hampton and Baltimore than on non-bay breeze days in all year periods. Anomalies from mean surface O 3 were highest in the afternoon at both sites during bay breeze days in the 2003-2010 study period. In conjunction with an overall lowering of baseline O 3 after the 1995-2002 period, the percentage of total exceedances of the Environmental Protection Agency (EPA) 75 ppbv 8-h O 3 standard that occurred on bay breeze days increased at Hampton for 2003-2010, while remaining steady at Baltimore. These results suggest that bay breeze circulations are becoming more important to causing exceedance events at particular sites in the region, and support the hypothesis of Martins et al. (2012) that highly localized meteorology increasingly drives air quality events at Hampton.
NASA Technical Reports Server (NTRS)
Callis, L. B.; Natarajan, M.
1981-01-01
The effects of combined CO2 and CFCl3 and CF2Cl2 time-dependent scenarios on atmospheric O3 and temperature are described; the steady-state levels of O3 and surface temperature, to which the chlorofluoromethane scenario tends in the presence of twice and four time ambient CO2, are examined; and surface temperature changes, caused by the combined effects, are established. A description of the model and of the experiments is presented. Results indicate that (1) the total ozone time history is significantly different from that due to the chlorofluoromethane alone; (2) a local ozone minimum occurs in the upper stratosphere about 45 years from the present with a subsequent ozone increase, then decline; and (3) steady-state solutions indicate that tropospheric temperature and water vapor increases, associated with increased infrared opacity, cause significant changes in tropospheric ozone levels for 2 x CO2 and 4 x CO2, without the addition of chlorofluoromethanes.
Ozone destruction through heterogeneous chemistry following the eruption of El Chichon
NASA Technical Reports Server (NTRS)
Hofmann, David J.; Solomon, Susan
1989-01-01
The results of ozone observations at northern midlatitudes in late 1982 through 1983, following the eruption of El Chichon are discussed, together with the observations of other trace gases which may be linked to possible variations in ozone chemistry. These results are related to the in situ aerosol observations following the El Chicon eruption, with particular attention given to data relevant to heterogeneous reactions, such as the aerosol surface area and weight percent H2SO4. It is shown that, at midlatitudes, the observed volcanic-particle surface area reached a maximum of about 50 sq microns/cu m (above a typical background value of about 0.75) at an altitude of 18-20 km in early 1983; this enhancement of surface area is about the same as that encountered in stratospheric clouds in the Antarctic, suggesting a possible basis for ozone depletion through heterogeneous chemistry. The fraction of ozone reduction that may have occurred as a result of heterogeneous chemicl effects is estimated.
Goldberg, Daniel L.; Vinciguerra, Timothy P.; Anderson, Daniel C.; Hembeck, Linda; Canty, Timothy P.; Ehrman, Sheryl H.; Martins, Douglas K.; Stauffer, Ryan M.; Thompson, Anne M.; Salawitch, Ross J.; Dickerson, Russell R.
2018-01-01
A Comprehensive Air-Quality Model with Extensions (CAMx) version 6.10 simulation was assessed through comparison with data acquired during NASA’s 2011 DISCOVER-AQ Maryland field campaign. Comparisons for the baseline simulation (CB05 chemistry, EPA 2011 National Emissions Inventory) show a model overestimate of NOy by +86.2% and an underestimate of HCHO by −28.3%. We present a new model framework (CB6r2 chemistry, MEGAN v2.1 biogenic emissions, 50% reduction in mobile NOx, enhanced representation of isoprene nitrates) that better matches observations. The new model framework attributes 31.4% more surface ozone in Maryland to electric generating units (EGUs) and 34.6% less ozone to on-road mobile sources. Surface ozone becomes more NOx-limited throughout the eastern United States compared to the baseline simulation. The baseline model therefore likely underestimates the effectiveness of anthropogenic NOx reductions as well as the current contribution of EGUs to surface ozone. PMID:29618849
Goldberg, Daniel L; Vinciguerra, Timothy P; Anderson, Daniel C; Hembeck, Linda; Canty, Timothy P; Ehrman, Sheryl H; Martins, Douglas K; Stauffer, Ryan M; Thompson, Anne M; Salawitch, Ross J; Dickerson, Russell R
2016-03-16
A Comprehensive Air-Quality Model with Extensions (CAMx) version 6.10 simulation was assessed through comparison with data acquired during NASA's 2011 DISCOVER-AQ Maryland field campaign. Comparisons for the baseline simulation (CB05 chemistry, EPA 2011 National Emissions Inventory) show a model overestimate of NO y by +86.2% and an underestimate of HCHO by -28.3%. We present a new model framework (CB6r2 chemistry, MEGAN v2.1 biogenic emissions, 50% reduction in mobile NO x , enhanced representation of isoprene nitrates) that better matches observations. The new model framework attributes 31.4% more surface ozone in Maryland to electric generating units (EGUs) and 34.6% less ozone to on-road mobile sources. Surface ozone becomes more NO x -limited throughout the eastern United States compared to the baseline simulation. The baseline model therefore likely underestimates the effectiveness of anthropogenic NO x reductions as well as the current contribution of EGUs to surface ozone.
Neale, Patrick J; Thomas, Brian C
2016-04-01
Two atmospheric responses to simulated astrophysical ionizing radiation events significant to life on Earth are production of odd-nitrogen species, especially NO2, and subsequent depletion of stratospheric ozone. Ozone depletion increases incident short-wavelength ultraviolet radiation (UVB, 280-315 nm) and longer (>600 nm) wavelengths of photosynthetically available radiation (PAR, 400-700 nm). On the other hand, the NO2 haze decreases atmospheric transmission in the long-wavelength UVA (315-400 nm) and short-wavelength PAR. Here, we use the results of previous simulations of incident spectral irradiance following an ionizing radiation event to predict changes in terran productivity focusing on photosynthesis of marine phytoplankton. The prediction is based on a spectral model of photosynthetic response, which was developed for the dominant genera in central regions of the ocean (Synechococcus and Prochlorococcus), and on remote-sensing-based observations of spectral water transparency, temperature, wind speed, and mixed layer depth. Predicted productivity declined after a simulated ionizing event, but the effect integrated over the water column was small. For integrations taking into account the full depth range of PAR transmission (down to 0.1% of utilizable PAR), the decrease was at most 2-3% (depending on strain), with larger effects (5-7%) for integrations just to the depth of the surface mixed layer. The deeper integrations were most affected by the decreased utilizable PAR at depth due to the NO2 haze, whereas shallower integrations were most affected by the increased surface UV. Several factors tended to dampen the magnitude of productivity responses relative to increases in surface-damaging radiation, for example, most inhibition in the modeled strains is caused by UVA and PAR, and the greatest relative increase in damaging exposure is predicted to occur in the winter when UV and productivity are low.
Observational and Model Studies of Large-Scale Mixing Processes in the Stratosphere
NASA Technical Reports Server (NTRS)
Bowman, Kenneth P.
1997-01-01
The following is the final technical report for grant NAGW-3442, 'Observational and Model Studies of Large-Scale Mixing Processes in the Stratosphere'. Research efforts in the first year concentrated on transport and mixing processes in the polar vortices. Three papers on mixing in the Antarctic were published. The first was a numerical modeling study of wavebreaking and mixing and their relationship to the period of observed stratospheric waves (Bowman). The second paper presented evidence from TOMS for wavebreaking in the Antarctic (Bowman and Mangus 1993). The third paper used Lagrangian trajectory calculations from analyzed winds to show that there is very little transport into the Antarctic polar vortex prior to the vortex breakdown (Bowman). Mixing is significantly greater at lower levels. This research helped to confirm theoretical arguments for vortex isolation and data from the Antarctic field experiments that were interpreted as indicating isolation. A Ph.D. student, Steve Dahlberg, used the trajectory approach to investigate mixing and transport in the Arctic. While the Arctic vortex is much more disturbed than the Antarctic, there still appears to be relatively little transport across the vortex boundary at 450 K prior to the vortex breakdown. The primary reason for the absence of an ozone hole in the Arctic is the earlier warming and breakdown of the vortex compared to the Antarctic, not replenishment of ozone by greater transport. Two papers describing these results have appeared (Dahlberg and Bowman; Dahlberg and Bowman). Steve Dahlberg completed his Ph.D. thesis (Dahlberg and Bowman) and is now teaching in the Physics Department at Concordia College. We also prepared an analysis of the QBO in SBUV ozone data (Hollandsworth et al.). A numerical study in collaboration with Dr. Ping Chen investigated mixing by barotropic instability, which is the probable origin of the 4-day wave in the upper stratosphere (Bowman and Chen). The important result from this paper is that even in the presence of growing, unstable waves, the mixing barriers around
Shen, Lu; Mickley, Loretta J
2017-03-07
We develop a statistical model to predict June-July-August (JJA) daily maximum 8-h average (MDA8) ozone concentrations in the eastern United States based on large-scale climate patterns during the previous spring. We find that anomalously high JJA ozone in the East is correlated with these springtime patterns: warm tropical Atlantic and cold northeast Pacific sea surface temperatures (SSTs), as well as positive sea level pressure (SLP) anomalies over Hawaii and negative SLP anomalies over the Atlantic and North America. We then develop a linear regression model to predict JJA MDA8 ozone from 1980 to 2013, using the identified SST and SLP patterns from the previous spring. The model explains ∼45% of the variability in JJA MDA8 ozone concentrations and ∼30% variability in the number of JJA ozone episodes (>70 ppbv) when averaged over the eastern United States. This seasonal predictability results from large-scale ocean-atmosphere interactions. Warm tropical Atlantic SSTs can trigger diabatic heating in the atmosphere and influence the extratropical climate through stationary wave propagation, leading to greater subsidence, less precipitation, and higher temperatures in the East, which increases surface ozone concentrations there. Cooler SSTs in the northeast Pacific are also associated with more summertime heatwaves and high ozone in the East. On average, models participating in the Atmospheric Model Intercomparison Project fail to capture the influence of this ocean-atmosphere interaction on temperatures in the eastern United States, implying that such models would have difficulty simulating the interannual variability of surface ozone in this region.
NASA Astrophysics Data System (ADS)
Srinivasan, Samuelraj; Prabhu, Vijendra; Chandra, Subhash; Koshy, Shalini; Acharya, Shashidhar; Mahato, Krishna K.
2014-02-01
The present era of minimal invasive dentistry emphasizes the early detection and remineralization of initial enamel caries. Ozone has been shown to reverse the initial demineralization before the integrity of the enamel surface is lost. Nano-hydroxyapatite is a proven remineralizing agent for early enamel caries. In the present study, the effect of ozone in enhancing the remineralizing potential of nano-hydroxyapatite on artificially demineralized enamel was investigated using laser induced fluorescence. Thirty five sound human premolars were collected from healthy subjects undergoing orthodontic treatment. Fluorescence was recorded by exciting the mesial surfaces using 325 nm He-Cd laser with 2 mW power. Tooth specimens were subjected to demineralization to create initial enamel caries. Following which the specimens were divided into three groups, i.e ozone (ozonated water for 2 min), without ozone and artificial saliva. Remineralization regimen was followed for 3 weeks. The fluorescence spectra of the specimens were recorded from all the three experimental groups at baseline, after demineralization and remineralization. The average spectrum for each experimental group was used for statistical analysis. Fluorescence intensities of Ozone treated specimens following remineralization were higher than that of artificial saliva, and this difference was found to be statistically significant (P<0.0001). In a nutshell, ozone enhanced the remineralizing potential of nanohydroxyapatite, and laser induced fluorescence was found to be effective in assessing the surface mineral changes in enamel. Ozone can be considered an effective agent in reversing the initial enamel caries there by preventing the tooth from entering into the repetitive restorative cycle.
Mickley, Loretta J.
2017-01-01
We develop a statistical model to predict June–July–August (JJA) daily maximum 8-h average (MDA8) ozone concentrations in the eastern United States based on large-scale climate patterns during the previous spring. We find that anomalously high JJA ozone in the East is correlated with these springtime patterns: warm tropical Atlantic and cold northeast Pacific sea surface temperatures (SSTs), as well as positive sea level pressure (SLP) anomalies over Hawaii and negative SLP anomalies over the Atlantic and North America. We then develop a linear regression model to predict JJA MDA8 ozone from 1980 to 2013, using the identified SST and SLP patterns from the previous spring. The model explains ∼45% of the variability in JJA MDA8 ozone concentrations and ∼30% variability in the number of JJA ozone episodes (>70 ppbv) when averaged over the eastern United States. This seasonal predictability results from large-scale ocean–atmosphere interactions. Warm tropical Atlantic SSTs can trigger diabatic heating in the atmosphere and influence the extratropical climate through stationary wave propagation, leading to greater subsidence, less precipitation, and higher temperatures in the East, which increases surface ozone concentrations there. Cooler SSTs in the northeast Pacific are also associated with more summertime heatwaves and high ozone in the East. On average, models participating in the Atmospheric Model Intercomparison Project fail to capture the influence of this ocean–atmosphere interaction on temperatures in the eastern United States, implying that such models would have difficulty simulating the interannual variability of surface ozone in this region. PMID:28223483
Origin and Variability of Upper Tropospheric Nitrogen Oxides and Ozone at Northern Mid-Latitudes
NASA Technical Reports Server (NTRS)
Grewe, V.; Brunner, D.; Dameris, M.; Grenfell, J. L.; Hein, R.; Shindell, D.; Staehelin, J.
1999-01-01
Measurements of NO(x) and ozone performed during the NOXAR project are compared with results from the coupled chemistry-climate models ECHAM4.L39(DLR)/CHEM and GISS-model. The measurements are based on flights between Europe and the East coast of America and between Europe and the Far East in the latitude range 40 deg N to 65 deg N. The comparison concentrates on tropopause altitudes and reveals strong longitudinal variations of seasonal mean NO,, of 200 pptv. Either model reproduced strong variations 3 km below but not at the tropopause, indicating a strong missing NO(x) or NO(y) sink over remote areas, e.g. NO(x) to HNO3 conversion by OH from additional OH sources or HNO3 wash-out. Vertical profiles show maximum NO(x) values 2-3 km below the tropopause with a strong seasonal cycle. ECHAM4.L39(DLR)/CHEM reproduces a maximum, although located at the tropopause with a less pronounced seasonal cycle, whereas the GISS model reproduces the seasonal cycle but not the profile's shape due to its coarser vertical resolution. A comparison of NO(x) frequency distributions reveals that both models are capable of reproducing the observed variability, except that ECHAM4.L39(DLR)/CHEM shows no very high NO(x) mixing ratios. Ozone mean values, vertical profiles and frequency distributions are much better reproduced in either model, indicating that the NO(x) frequency distribution, namely the most frequent NO(x) mixing ratio, is more important for the tropospheric photochemical ozone production than its mean value. Both models show that among all sources, NO(x) from lightning contributes most to the seasonal cycle of NO(x) at tropopause altitudes. The impact of lightning in the upper troposphere on NO(x) does not vary strongly with altitude, whereas the impact of surface emissions decreases with altitude. However, the models show significant differences in lightning induced NO(x) concentrations, especially in winter, which may be related to the different treatment of the lower stratospheric coupling between dynamics and chemistry.
Chemical effect on ozone deposition over seawater
Surface layer resistance plays an important role in determining ozone deposition velocity over seawater. Recent studies suggest that surface layer resistance over sea-water is influenced by wind-speed and chemical interaction at the air-water interface. Here, we investigate the e...
Chemical Controls of Ozone Dry Deposition to the Sea Surface Microlayer
NASA Astrophysics Data System (ADS)
Carpenter, L.; Chance, R.; Tinel, L.; Saint, A.; Sherwen, T.; Loades, D.; Evans, M. J.; Boxhall, P.; Hamilton, J.; Stolle, C.; Wurl, O.; Ribas-Ribas, M.; Pereira, R.
2017-12-01
Oceanic dry deposition of atmospheric ozone (O3) is both the largest and most uncertain O3 depositional sink, and is widely acknowledged to be controlled largely by chemical reactions in the sea surface microlayer (SML) involving iodide (I-) and dissolved organic material (DOM). These reactions not only determine how quickly O3 can be removed from the atmosphere, but also result in emissions of trace gases including volatile organic compounds and may constitute a source of secondary organic aerosols to the marine atmosphere. Iodide concentrations at the sea surface vary by approximately an order of magnitude spatially, leading to more than fivefold variation in ozone deposition velocities (and volatile iodine fluxes). Sea-surface temperature is a reasonable predictor of [I-], however two recent parameterisations for surface I- differ by a factor of two at low latitudes. The nature and reactivity of marine DOM to O3 is almost completely unknown, although studies have suggested approximately equivalent chemical control of I- and DOM on ozone deposition. Here we present substantial new measurements of oceanic I- in both bulk seawater and the overlying SML, and show improved estimates of the global sea surface iodide distribution. We also present analyses of water-soluble DOM isolated from the SML and bulk seawater, and corresponding laboratory studies of ozone uptake to bulk and SML seawater, with the aim of characterizing the reactivity of O3 towards marine DOM.
NASA Astrophysics Data System (ADS)
Cooper, O. R.; Schultz, M.; Paoletti, E.; Galbally, I. E.; Naja, M. K.; Tarasick, D. W.; Evans, M. J.; Thompson, A. M.
2017-12-01
Tropospheric ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. Since 1990 a large portion of the anthropogenic emissions that react in the atmosphere to produce ozone has shifted from North America and Europe to Asia. This rapid shift, coupled with limited ozone monitoring in developing nations, left scientists unable to answer the most basic questions: Which regions of the world have the greatest human and plant exposure to ozone pollution? Is ozone continuing to decline in nations with strong emissions controls? To what extent is ozone increasing in the developing world? How can the atmospheric sciences community facilitate access to the ozone metrics necessary for quantifying ozone's impact on human health and crop/ecosystem productivity? To answer these questions the International Global Atmospheric Chemistry Project (IGAC) initiated the Tropospheric Ozone Assessment Report (TOAR). With over 220 member scientists and air quality specialists from 36 nations, TOAR's mission is to provide the research community with an up-to-date scientific assessment of tropospheric ozone's global distribution and trends from the surface to the tropopause. TOAR has also built the world's largest database of surface ozone observations and generated ozone exposure and dose metrics at thousands of measurement sites around the world, freely accessible for research on the global-scale impact of ozone on climate, human health and crop/ecosystem productivity. Plots of these metrics show the regions of the world with the greatest ozone exposure for humans and crops/ecosystems, at least in areas where observations are available. The results also highlight regions where air quality is improving and where it has degraded. TOAR has also conducted the first intercomparison of tropospheric column ozone from ozonesondes and multiple satellite instruments, which provide similar estimates of the present-day tropospheric ozone burden.
Low temperature ozone oxidation of solid waste surrogates
NASA Astrophysics Data System (ADS)
Nabity, James A.; Lee, Jeffrey M.
2015-09-01
Solid waste management presents a significant challenge to human spaceflight and especially, long-term missions beyond Earth orbit. A six-month mission will generate over 300 kg of solid wastes per crewmember that must be dealt with to eliminate the need for storage and prevent it from becoming a biological hazard to the crew. There are several methods for the treatment of wastes that include oxidation via ozone, incineration, microbial oxidation or pyrolysis and physical methods such as microwave drying and compaction. In recent years, a low temperature oxidation process using ozonated water has been developed for the chemical conversion of organic wastes to CO2 and H2O. Experiments were conducted to evaluate the rate and effectiveness with which ozone oxidized several different waste materials. Increasing the surface area by chopping or shredding the solids into small pieces more than doubled the rate of oxidation. A greater flow of ozone and agitation of the ozonated water system also increased processing rates. Of the materials investigated, plastics have proven the most difficult to oxidize. The processing of plastics above the glass transition temperatures caused the plastics to clump together which reduced the exposed surface area, while processing at lower temperatures reduced surface reaction kinetics.
An analysis of the impacts of global climate and emissions changes on regional tropospheric ozone
NASA Technical Reports Server (NTRS)
John, Kuruvilla; Crist, Kevin C.; Carmichael, Gregory R.
1994-01-01
Many of the synergistic impacts resulting from future changes in emissions as well as changes in ambient temperature, moisture, and UV flux have not been quantified. A three-dimensional regional-scale photo-chemical model (STEM-2) is used in this study to evaluate these perturbations to trace gas cycles over the eastern half of the United States of America. The model was successfully used to simulate a regional-scale ozone episode (base case - June 1984) and four perturbations scenarios - viz., perturbed emissions, temperature, water vapor column, and incoming UV flux cases, and a future scenario (for the year 2034). The impact of these perturbation scenarios on the distribution of ozone and other major pollutants such as SO2 and sulfates were analyzed in detail. The spatial distribution and the concentration of ozone at the surface increased by about 5-15 percent for most cases except for the perturbed water vapor case. The regional scale surface ozone concentration distribution for the year 2034 (future scenario) showed an increase of non-attainment areas. The rural areas of Pennsylvania, West Virginia, and Georgia showed the largest change in the surface ozone field for the futuristic scenario when compared to the base case.
Nitric acid oxide mixing ratio measurements using a rocket launched chemiluminescent instrument
NASA Technical Reports Server (NTRS)
Horvath, Jack J.
1989-01-01
A total of 18 rocket launched parachute borne nitric oxide instruments were launched from 1977 to 1985. A very precise instrument for the measurement of the nitric oxide mixing ratio was fabricated. No changes were made in the main body of the instruments, i.e., things associated with the reaction volume. Except for the last 4 launches, however, it did not yield the required absolute values that was hoped for. Two major problems were encountered. First, the wrong choice of the background calibration gas, nitrogen, caused the first 10 data sets to be too low in the absolute mixing ratio by nearly the order of 2 to 5 ppbv. The error was realized, and air was substituted for the bias gas measurement. Second, in the desire to extend the measurement to higher altitudes, the problem of contaminating the inlet flow tube with ozone from the reagent gas was encountered. The ozone valve was opened too early in the flight and this caused the pressure in the reaction volume to exceed the pressure at the flow tube entrance, permitting the ozone to migrate backwards. This problem was restricted to an altitude above 45 km.
Climatic consequences of observed ozone loss in the 1980s: Relevance to the greenhouse problem
NASA Technical Reports Server (NTRS)
Molnar, G. I.; Ko, M. K. W.; Zhou, S.; Sze, N. D.
1994-01-01
Recently published findings using satellite and ground-based observations indicate a large winter and summertime decrease in the column abundance of ozone at high and middle latitudes during the last decade. Using a simple ozone depletion profile reflecting the observed decrease in ozone column abundance, Ramaswamy et al. (1992) showed that the negative radiative forcing that results from the ozone decrease between 1979 and 1990 approximately balanced the greenhouse climate forcing due to the chlorofluorocarbons emitted during the same period. Here, we extend the forcing analyses by calculating the equilibrium surface temperature response explicitly, using an updated version of the Atmospheric and Environmental Research two-dimensional radiative-dynamical seasonal model. The calculated steady state responses suggest that the surface cooling due to the ozone depletion in the lower stratosphere offsets about 30% of the surface warming due to greenhouse gases emitted during the same decade. The temperature offset is roughly a factor of 2 larger than the corresponding offset obtained from forcing intercomparisons. This result appears to be related to the climate feedback mechanisms operating in the model troposphere, most notably that associated with atmospheric meridional heat transport. Thus a comprehensive assessment of ozone change effects on the predicted greenhouse warming cannot be accomplished based on forcing evaluations alone. Our results also show that calculations adopting a seasonally and latitudinally dependent ozone depletion profile produce a negative forcing about 50% smaller than that calculated for the depletion profile used by Ramaswamy et al. (1992).
Fu, Ywu-Jang; Qui, Hsuan-zhi; Liao, Kuo-Sung; Lue, Shingjiang Jessie; Hu, Chien-Chieh; Lee, Kueir-Rarn; Lai, Juin-Yih
2010-03-16
A thin SiO(x) selective surface layer was formed on a series of cross-linked poly(dimethylsiloxane) (PDMS) membranes by exposure to ultraviolet light at room temperature in the presence of ozone. The conversion of the cross-linked polysiloxane to SiO(x) was monitored by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray (EDX) microanalysis, contact angle analysis, and atomic force microscopy (AFM). The conversion of the cross-linked polysiloxane to SiO(x) increased with UV-ozone exposure time and cross-linking agent content, and the surface possesses highest conversion. The formation of a SiO(x) layer increased surface roughness, but it decreased water contact angle. Gas permeation measurements on the UV-ozone exposure PDMS membranes documented interesting gas separation properties: the O(2) permeability of the cross-linked PDMS membrane before UV-ozone exposure was 777 barrer, and the O(2)/N(2) selectivity was 1.9; after UV-ozone exposure, the permeability decreased to 127 barrer while the selectivity increased to 5.4. The free volume depth profile of the SiO(x) layer was investigated by novel slow positron beam. The results show that free volume size increased with the depth, yet the degree of siloxane conversion to SiO(x) does not affect the amount of free volume.
Chemical Data Assimilation Estimates of Continental US Ozone and Nitrogen Budgets during INTEX-A
NASA Technical Reports Server (NTRS)
Pierce, Robert B.; Schaack, Todd K.; Al-Saadi, Jassim A.; Fairlie, T. Duncan; Kittaka, Chieko; Lingenfelser, Gretchen; Natarajan, Murali; Olson, Jennifer; Soja, Amber; Zapotocny, Tom;
2007-01-01
Global ozone analyses, based on assimilation of stratospheric profile and ozone column measurements, and NOy predictions from the Real-time Air Quality Modeling System (RAQMS) are used to estimate the ozone and NOy budget over the Continental US during the July-August 2004 Intercontinental Chemical Transport Experiment-North America (INTEX-A). Comparison with aircraft, satellite, surface, and ozonesonde measurements collected during the INTEX-A show that RAQMS captures the main features of the global and Continental US distribution of tropospheric ozone, carbon monoxide, and NOy with reasonable fidelity. Assimilation of stratospheric profile and column ozone measurements is shown to have a positive impact on the RAQMS upper tropospheric/lower stratosphere ozone analyses, particularly during the period when SAGE III limb scattering measurements were available. Eulerian ozone and NOy budgets during INTEX-A show that the majority of the Continental US export occurs in the upper troposphere/lower stratosphere poleward of the tropopause break, a consequence of convergence of tropospheric and stratospheric air in this region. Continental US photochemically produced ozone was found to be a minor component of the total ozone export, which was dominated by stratospheric ozone during INTEX-A. The unusually low photochemical ozone export is attributed to anomalously cold surface temperatures during the latter half of the INTEX-A mission, which resulted in net ozone loss during the first 2 weeks of August. Eulerian NOy budgets are shown to be very consistent with previously published estimates. The NOy export efficiency was estimated to be 24 percent, with NOx+PAN accounting for 54 percent of the total NOy export during INTEX-A.
Surface ozone characterization at Larsemann Hills and Maitri, Antarctica.
Ali, Kaushar; Trivedi, D K; Sahu, S K
2017-04-15
Data are analyzed in terms of daily average ozone, its diurnal variation and its relation with meteorological parameters like dry bulb temperature (T), wet bulb temperature (T w ), atmospheric pressure and wind speed based on measurement of these parameters at two Indian Antarctic stations (Larsemann Hills, and Maitri) during 28th Indian Scientific Expedition of Antarctica (ISEA) organized during Antarctic summer of the year 2008-09. The work has been carried out to investigate summer time ozone level and its day-to-day and diurnal variability at these coastal locations and to highlight possible mechanism of ozone production and destruction. The result of the analysis indicates that daily average ozone concentration at Larsemann Hills varied from ~13 and ~20ppb with overall average value of ~16ppb and at Maitri, it varied from ~16 and ~21ppb with overall average value of ~18ppb. Photochemistry is found to partially contribute occasionally to the surface layer ozone at both the stations. Lower concentration of ozone at Maitri during beginning of the observational days may be due to destruction of ozone through activated halogens, whereas higher ozone on latter days may be due to photochemistry and advective transport from east to south-east areas. Ozone concentration during blizzard episodes at both the stations is reduced due to slow photochemical production of ozone, its photochemical removal and removal through deposition of ozone molecules on precipitation particles. Diurnal variation of ozone at Larsemann Hills and Maitri has been found to be absent. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluation studies of the Regional Acid Deposition Model (RADM) results have revealed that there exists high bias of surface SO2 and O3 concentrations by the model, especially during nighttime hours. omparison of the RADM results with surface measurements of hourly ozone concentr...
NASA Technical Reports Server (NTRS)
Goldberg, Daniel L.; Vinciguerra, Timothy P.; Anderson, Daniel C.; Hembeck, Linda; Canty, Timothy P.; Ehrman, Sheryl H.; Martins, Douglas K.; Stauffer, Ryan M.; Thompson, Anne M.; Salawitch, Ross J.;
2016-01-01
A Comprehensive Air-Quality Model with Extensions (CAMx) version 6.10 simulation was assessed through comparison with data acquired during NASA's 2011 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Maryland field campaign. Comparisons for the baseline simulation (Carbon Bond 2005 (CB05) chemistry, Environmental Protection Agency 2011 National Emissions Inventory) show a model overestimate of NOy by +86.2% and an underestimate of HCHO by -28.3%. We present a new model framework (Carbon Bond 6 Revision 2 chemistry (CB6r2), Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1 biogenic emissions, 50% reduction in mobile NOx, enhanced representation of isoprene nitrates) that better matches observations. The new model framework attributes 31.4% more surface ozone in Maryland to electric generating units (EGUs) and 34.6% less ozone to on-road mobile sources. Surface ozone becomes more NOx limited throughout the eastern United States compared to the baseline simulation. The baseline model therefore likely underestimates the effectiveness of anthropogenic NOx reductions as well as the current contribution of EGUs to surface ozone.
Mallampati, Srinivasa Reddy; Lee, Byoung Ho; Mitoma, Yoshiharu; Simion, Cristian
2017-02-01
One method of weakening the inherently hydrophobic surface of plastics relevant to flotation separation is heterogeneous nano-Fe/Ca/CaO catalytic ozonation. Nano-Fe/Ca/CaO-catalyzed ozonation for 15 min efficiently decreases the surface hydrophobicity of brominated and chlorinated flame retardant (B/CFR)-containing plastics (such as acrylonitrile-butadienestyrene (ABS), high-impact polystyrene (HIPS), and polyvinyl chloride (PVC)) in automobile shredder residue (ASR) to such an extent that their flotation ability is entirely depressed. Such a hydrophilization treatment also stimulates the ABS, HIPS, and PVC surface roughness, wetting of the surface, and the thermodynamic equilibrium conditions at the surface and ultimately changes surface polarity. SEM-EDS, AFM, and XPS analyses of the PVC and ABS surfaces demonstrated a marked decrease in [Cl/Br] and a significant increase in the number of hydrophilic groups, such as C-O, C=O, and (C=O)-O. Under froth flotation conditions at 50 rpm, about 99.5 % of ABS and 99.5 % of HIPS in ASR samples settled out, resulting in a purity of 98 and 98.5 % for ABS and HIPS in ASR samples, respectively. Furthermore, at 150 rpm, we also obtained 100 % PVC separation in the settled fraction, with 98 % purity in ASR. Total recovery of non-B/CFR-containing plastics reached nearly 100 % in the floating fraction. The amount of nano-Fe/Ca/CaO reagent employed during ozonation is very small, and additional removal of surface contaminants from the recycled ASR plastic surfaces by ozonation makes the developed process simpler, greener, and more effective.
Lee, Seungsoo; Nam, Sungho; Lee, Hyena; Kim, Hwajeong; Kim, Youngkyoo
2011-11-18
We report the influence of UV-ozone irradiation of the hole-collecting buffer layers on the performance and lifetime of polymer:fullerene solar cells. UV-ozone irradiation was targeted at the surface of the poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) layers by varying the irradiation time up to 600 s. The change of the surface characteristics in the PEDOT:PSS after UV-ozone irradiation was measured by employing optical absorption spectroscopy, photoelectron yield spectroscopy, and contact angle measurements, while Raman and X-ray photoelectron spectroscopy techniques were introduced for more microscopic analysis. Results showed that the UV-ozone irradiation changed the chemical structure/composition of the surface of the PEDOT:PSS layers leading to the gradual increase of ionization potential with irradiation time in the presence of up-and-down variations in the contact angle (polarity). This surface property change was attributed to the formation of oxidative components, as evidenced by XPS and Auger electron images, which affected the sheet resistance of the PEDOT:PSS layers. Interestingly, device performance was slightly improved by short irradiation (up to 10 s), whereas it was gradually decreased by further irradiation. The short-duration illumination test showed that the lifetime of solar cells with the UV-ozone irradiated PEDOT:PSS layer was improved due to the protective role of the oxidative components formed upon UV-ozone irradiation against the attack of sulfonic acid groups in the PEDOT:PSS layer to the active layer. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Atmospheric Impacts of Emissions from Oil and Gas Development in the Uintah Basin, Utah, USA
NASA Astrophysics Data System (ADS)
Helmig, D.; Boylan, P. J.; Hueber, J.; Van Dam, B. A.; Mauldin, L.; Parrish, D. D.
2012-12-01
In the Uintah Basin in northeast Utah, USA, surface ozone levels during winter months have approached and on occasion exceeded the US National Ambient Air Quality Standard (NAAQS). Emissions from the extensive oil and gas exploration in this region are suspected to be the cause of these ozone episodes; however emission rates and photochemical processes are uncertain. During February 2012 continuous surface measurements and vertical profiling from a tethered balloon platform at the Horsepool site yielded high resolution boundary layer profile data on ozone and ozone precursor compounds, i.e. nitrogen oxides and volatile organic compounds as well as methane. Findings from this study were: 1. Surface ozone during the study period, which had no snow cover, did not exceed the NAAQS. 2. Nitrogen oxides varied from 1-50 ppbv pointing towards significant emission sources, likely from oil and gas operations. 3. Methane concentrations were elevated, reaching up to ~10 times its Northern Hemisphere (NH) atmospheric background. 3. Light non-methane hydrocarbons (NMHC) constituted the main fraction of volatile organic compounds. NMHC concentrations were highly elevated, exceeding levels seen in urban areas. 4. Ozone, methane, NOx and VOC showed distinct diurnal cycles, with large concentration increases seen at night, except for ozone, which showed the opposite behavior. 5. During nighttime concentrations of NOx, NMHC, and methane built up near the surface to levels that were much higher than their daytime concentrations. 6. Comparing NMHC to methane concentrations indicates a mass flux ratio of ~30% for total VOC/methane emissions for the Uintah Basin.
NASA Astrophysics Data System (ADS)
Fares, S.; Schnitzhofer, R.; Hansel, A.; Petersson, F.; Matteucci, G.; Scarascia Mugnozza, G.; Jiang, X.; Guenther, A. B.; Loreto, F.
2012-12-01
Mediterranean plant ecosystems are exposed to abiotic stressors that may be exacerbated by climate change dynamics. Moreover, plants need now to cope with increasing anthropogenic pressures, often associated with expanding impacts of urbanization. Anthropogenic stressors include harmful gases (e.g. ozone,) that are transported from anthropogenic pollution sources to the vegetation. They may alter ecophysiology and compromise metabolism of Mediterranean plants. A disproportionate number of Mediterranean ecosystems, many dominated by forest trees, are being transformed into "urban or pre-urban forests". This is in particular the case for Castelporziano Estate, a 6,000 ha Mediterranean forest located just 25 km from Rome downtown at the coast of the Mediterranean Sea. In September 2011 an intensive field campaign was performed in Castelporziano to investigate ozone deposition and biogenic emissions of volatile organic compounds (BVOC) from a mixed Mediterranean forest, mainly composed by Quercus suber, Quercus ilex, Pinus pinea. Measurements were performed at canopy level with fast real-time instruments (a fast ozone analyzer and a Proton Transfer Reaction-Time of Flight Mass Spectrometer) that allowed eddy covariant flux measurements of ozone and BVOC. In the transitional period from a warm and dry summer to a wet and moderately cool fall we typically observed tropospheric ozone volume mixing ratios (VMR) of 60 ppb at around noon, with high deposition fluxes (up to -10 nmol m-2 s-1) into the forest canopy. Canopy models were used to to calculate that up to 90% of ozone uptake can be attributed to non-stomatal sinks, suggesting that chemical reactions between ozone and reactive BVOC may have played an important role. The concentrations of reactive isoprenoids (e.g. sesquiterpenes) were indeed observed to decrease during the central hours of the day, in coincidence with increased ozone concentrations. Concentrations and fluxes of isoprenoid-ozone-oxidation-(methyl-vinyl-ketone and methacrolein) were found to increase during the day time hours, matching the dynamic pattern of non-stomatal ozone uptake. Monoterpenes were the most abundant BVOC emitted by the forest with fluxes up to 10 nmol m-2 s-1 in the warm days, followed by the oxygenated BVOCs: methanol, acetone, acetaldehyde. Isoprene was emitted at a low rate (less than 1 nmol m-2 s-1), and observations used to develop a new parameterization data for modelling activity. MEGAN was used to predict biogenic emissions from Mediterranean ecosystems. Model results using new basal emission factors (BEF) estimated from the collected data-set revealed considerable differences in the emission estimates compared with the standard parameterization, thus suggesting the importance of including basal emission factors from monoterpene-emitting Mediterranean ecosystems to obtain an accurate estimate in the global model. Future research by chemical transport modelling and smog chamber experiments are planned to investigate the "ex-situ" ozone-forming potential of emitted BVOC, to fully understand the role of Mediterranean urban forests in the complex interactions between biosphere and atmosphere over large Mediterranean conurbations.
On the role of ozone feedback in the ENSO amplitude response under global warming
NASA Astrophysics Data System (ADS)
Nowack, P. J.; Braesicke, P.; Abraham, N. L.; Pyle, J. A.
2017-12-01
The El Niño-Southern Oscillation (ENSO) in the tropical Pacific is of key importance to global climate and weather. However, climate models still disagree on the ENSO's response under climate change. Here we show that typical model representations of ozone can have a first-order impact on ENSO amplitude projections in climate sensitivity simulations (i.e. standard abrupt 4xCO2). We mainly explain this effect by the lapse rate adjustment of the tropical troposphere to ozone changes in the upper troposphere and lower stratosphere (UTLS) under 4xCO2. The ozone-induced lapse rate changes modify the Walker circulation response to the CO2 forcing and consequently tropical Pacific surface temperature gradients. Therefore, not including ozone feedbacks increases the number of extreme ENSO events in our model. In addition, we demonstrate that even if ozone changes in the tropical UTLS are included in the simulations, the neglect of the ozone response in the middle-upper stratosphere still leads to significantly larger ENSO amplitudes (compared to simulations run with a fully interactive atmospheric chemistry scheme). Climate modeling studies of the ENSO often neglect changes in ozone. Our results imply that this could affect the inter-model spread found in ENSO projections and, more generally, surface climate change simulations. We discuss the additional complexity in quantifying such ozone-related effects that arises from the apparent model dependency of chemistry-climate feedbacks and, possibly, their range of surface climate impacts. In conclusion, we highlight the need to understand better the coupling between ozone, the tropospheric circulation, and climate variability. Reference: Nowack PJ, Braesicke P, Abraham NL, and Pyle JA (2017), On the role of ozone feedback in the ENSO amplitude response under global warming, Geophys. Res. Lett. 44, 3858-3866, doi:10.1002/2016GL072418.
NASA Astrophysics Data System (ADS)
Zadorozhny, Alexander; Dyominov, Igor
It is well known that anthropogenic emissions of greenhouse gases into the atmosphere produce a global warming of the troposphere and a global cooling of the stratosphere. The expected stratospheric cooling essentially influences the ozone layer via increased polar stratospheric cloud formation and via temperature dependences of the gas phase reaction rates. One more mechanism of how greenhouse gases influences the ozone layer is enhanced water evaporation from the oceans into the atmosphere because of increasing temperatures of the ocean surface due to greenhouse effect. The subject of this paper is a study of the influence of anthropogenic pollution of the atmosphere by the greenhouse gases CO2, CH4, N2O and ozone-depleting chlorine and bromine compounds on the expected long-term changes of the ozone layer with taking into account an increase of water vapour content in the atmosphere due to greenhouse effect. The study based on 2-D zonally averaged interactive dynamical radiative-photochemical model of the troposphere and stratosphere. The model allows to self-consistently calculating diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds of two types. It was supposed in the model that an increase of the ocean surface temperature caused by greenhouse effect is similar to calculated increase of atmospheric surface temperature. Evaporation rate from the ocean surface was computed in dependence of latitude. The model time-dependent runs were made for the period from 1975 to 2100 using two IPCC scenarios depicting maximum and average expected increases of greenhouse gases in the atmosphere. The model calculations show that anthropogenic increasing of water vapour abundance in the atmosphere due to heating of the ocean surface caused by greenhouse effect gives a sensible contribution to the expected ozone changes. The enhanced evaporation from the ocean increases noticeably a water vapour abundance in the stratosphere that decreases global total ozone and retards the expected recovery of the ozone layer. In polar latitudes, additional stratospheric water vapour increase due to greenhouse effect noticeably strengthens the impact of anthropogenic greenhouse gases on ozone through modification of polar stratospheric clouds and retards the expected recovery of the ozone, too. In the Northern hemisphere, the delay of the ozone recovery is about 5 years, in the Southern hemisphere the delay is about 2 years.
Xian, G.; Crane, M.
2006-01-01
Urban development in the Las Vegas Valley, Nevada, has grown rapidly in the past fifty years. Associated with this growth has been a change in landscape from natural cover types to developed urban land mixed with planned vegetation canopy throughout in the metropolitan area. Air quality in the Las Vegas Valley has been affected by increases in anthropogenic emissions and concentrations of carbon monoxide, ozone, and criteria pollutants of particular matter. Ozone concentration in the region is generally influenced by synoptic and mesoscale meteorological conditions, as well as regional transport of pollutants from the western side of Las Vegas. Local influences from ground-level nitrogen oxide emissions and vegetation canopy coverage also affect ozone concentration. Multi-year observational data collected by a network of local air monitoring stations in Clark County, Nevada, indicate that ozone maximums develop in May and June, while minimums exist primarily from November to February. Ozone concentrations are high on the west and northwest sides of the valley. A nighttime ozone reduction in the urban area characterizes the heterogeneous features of spatial distribution for average ozone levels in the Las Vegas urban area. The urban vegetation canopy has a locally positive effect by reducing ozone in urban areas. Decreased ozone levels associated with increased urban development density suggests that the highest ozone concentrations are associated with medium- to low-density urban development in Las Vegas.
Anitua, E; Zalduendo, M M; Troya, M; Orive, G
2015-04-01
Until now, ozone has been used in a rather empirical way. This in-vitro study investigates, for the first time, whether different ozone treatments of plasma rich in growth factors (PRGF) alter the biological properties and outcomes of this autologous platelet-rich plasma. Human plasma rich in growth factors was treated with ozone using one of the following protocols: a continuous-flow method; or a syringe method in which constant volumes of ozone and PRGF were mixed. In both cases, ozone was added before, during and after the addition of calcium chloride. Three ozone concentrations, of the therapeutic range 20, 40 and 80 μg/mL, were tested. Fibrin clot properties, growth factor content and the proliferative effect on primary osteoblasts and gingival fibroblasts were evaluated. Ozone treatment of PRGF using the continuous flow protocol impaired formation of the fibrin scaffold, drastically reduced the levels of growth factors and significantly decreased the proliferative potential of PRGF on primary osteoblasts and gingival fibroblasts. In contrast, treatment of PRGF with ozone using the syringe method, before, during and after the coagulation process, did not alter the biological outcomes of the autologous therapy. These findings suggest that ozone dose and the way that ozone combines with PRGF may alter the biological potential and therapeutic outcomes of PRGF. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Biocidal action of ozone-treated polystyrene surfaces on vegetative and sporulated bacteria
NASA Astrophysics Data System (ADS)
Mahfoudh, Ahlem; Barbeau, Jean; Moisan, Michel; Leduc, Annie; Séguin, Jacynthe
2010-03-01
Surfaces of materials can be modified to ensure specific interaction features with microorganisms. The current work discloses biocidal properties of polystyrene (PS) Petri-dish surfaces that have been exposed to a dry gaseous-ozone flow. Such treated PS surfaces are able to inactivate various species of vegetative and sporulated bacteria on a relatively short contact time. Denaturation of proteins seems likely based on a significant loss of enzymatic activity of the lysozyme protein. Characterization of these surfaces by atomic-force microscopy (AFM), Fourier-transform infra-red (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) reveals specific structural and chemical modifications as compared to untreated PS. Persistence of the biocidal properties of these treated surfaces is observed. This ozone-induced process is technically simple to achieve and does not require active precursors as in grafting.
Development of KRISS standard reference photometer (SRP) for ambient ozone measurement
NASA Astrophysics Data System (ADS)
Lee, S.; Lee, J.
2014-12-01
Surface ozone has adverse impacts on human health and ecosystem. Accurate measurement of ambient ozone concentration is essential for developing effective mitigation strategies and understanding atmospheric chemistry. Korea Research Institute of Standards and Science (KRISS) has developed new ozone standard reference photometers (SRPs) for the calibration of ambient ozone instruments. The basic principle of the KRISS ozone SRPs is to determine the absorption of ultraviolet radiation at a specific wavelength, 253.7 nm, by ozone in the atmosphere. Ozone concentration is calculated by converting UV transmittance through the Beer-Lambert Law. This study introduces the newly developed ozone SRPs and characterizes their performance through uncertainty analysis and comparison with BIPM (International Bureau of Weights and Measures) SRP.
Development of Compact Ozonizer with High Ozone Output by Pulsed Power
NASA Astrophysics Data System (ADS)
Tanaka, Fumiaki; Ueda, Satoru; Kouno, Kanako; Sakugawa, Takashi; Akiyama, Hidenori; Kinoshita, Youhei
Conventional ozonizer with a high ozone output using silent or surface discharges needs a cooling system and a dielectric barrier, and therefore becomes a large machine. A compact ozonizer without the cooling system and the dielectric barrier has been developed by using a pulsed power generated discharge. The wire to plane electrodes made of metal have been used. However, the ozone output was low. Here, a compact and high repetition rate pulsed power generator is used as an electric source of a compact ozonizer. The ozone output of 6.1 g/h and the ozone yield of 86 g/kWh are achieved at 500 pulses per second, input average power of 280 W and an air flow rate of 20 L/min.
Natural zeolite reactivity towards ozone: the role of compensating cations.
Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A
2012-08-15
Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L(-1)). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH(3)-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal. Copyright © 2012 Elsevier B.V. All rights reserved.
Ultraviolet-ozone treatment reduces levels of disease-associated prion protein and prion infectivity
Johnson, C.J.; Gilbert, P.; McKenzie, D.; Pedersen, J.A.; Aiken, Judd M.
2009-01-01
Background. Transmissible spongiform encephalopathies (TSEs) are a group of fatal neurodegenerative diseases caused by novel infectious agents referred to as prions. Prions appear to be composed primarily, if not exclusively, of a misfolded isoform of the cellular prion protein. TSE infectivity is remarkably stable and can resist many aggressive decontamination procedures, increasing human, livestock and wildlife exposure to TSEs. Findings. We tested the hypothesis that UV-ozone treatment reduces levels of the pathogenic prion protein and inactivates the infectious agent. We found that UV-ozone treatment decreased the carbon and prion protein content in infected brain homogenate to levels undetectable by dry-ashing carbon analysis or immunoblotting, respectively. After 8 weeks of ashing, UV-ozone treatment reduced the infectious titer of treated material by a factor of at least 105. A small amount of infectivity, however, persisted despite UV-ozone treatment. When bound to either montmorillonite clay or quartz surfaces, PrPTSE was still susceptible to degradation by UV-ozone. Conclusion. Our findings strongly suggest that UV-ozone treatment can degrade pathogenic prion protein and inactivate prions, even when the agent is associated with surfaces. Using larger UV-ozone doses or combining UV-ozone treatment with other decontaminant methods may allow the sterilization of TSE-contaminated materials. ?? 2009 Aiken et al; licensee BioMed Central Ltd.
NASA Astrophysics Data System (ADS)
Wilkins, Joseph L.
The influence of wildfire biomass burning and stratospheric air mass transport on tropospheric ozone (O3) concentrations in St. Louis during the SEAC4RS and SEACIONS-2013 measurement campaigns has been investigated. The Lagrangian particle dispersion model FLEXPART-WRF analysis reveals that 55% of ozonesonde profiles during SEACIONS were effected by biomass burning. Comparing ozonesonde profiles with numerical simulations show that as biomass burning plumes age there is O3 production aloft. A new plume injection height technique was developed based on the Naval Research Laboratory's (NRL) detection algorithm for pyro-convection. The NRL method identified 29 pyro-cumulonimbus events that occurred during the summer of 2013, of which 13 (44%) impacted the SEACIONS study area, and 4 (14%) impacted the St. Louis area. In this study, we investigate wildfire plume injection heights using model simulations and the FLAMBE emissions inventory using 2 different algorithms. In the first case, wildfire emissions are injected at the surface and allowed to mix within the boundary layer simulated by the meteorological model. In the second case, the injection height of wildfire emissions is determined by a guided deep-convective pyroCb run using the NRL detection algorithm. Results show that simulations using surface emissions were able to represent the transport of carbon monoxide plumes from wildfires when the plumes remained below 5 km or occurred during large convective systems, but that the surface effects were over predicted. The pyroCb cases simulated the long-range transport of elevated plumes above 5 km 68% of the time. In addition analysis of potential vorticity suggests that stratospheric intrusions or tropopause folds affected 13 days (48%) when there were sonde launches and 27 days (44%) during the entire study period. The largest impact occurred on September 12, 2013 when ozone-rich air impacted the nocturnal boundary layer. By analyzing ozonesonde profiles with meteorological transport models, we were able to identify biomass burning and stratospheric intrusions in St. Louis.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Frolov, A. D.; Hudson, R. D.; Witte, J. C.; Einaudi, Franco (Technical Monitor)
2000-01-01
Over the past several years, we have developed two new tropospheric ozone retrievals from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument that are of sufficient resolution to follow pollution episodes. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMS-direct method [("TDOT" = TOMS Direct Ozone in the Troposphere; Frolov et al., 2000] represents a new algorithm that uses TOMS radiances directly (i.e., not previously processed for TOMS ozone) to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution. These events tend to occur in certain meteorological regimes. For example, mid-latitude pollution usually occurs on the backside of subtropical fronts, as low pv, usually moist air intrudes to the extra-tropics. July 1999 was a month characterized by robust pollution in the eastern US, with high ozone, as detected by TOMS, originating over south central states and moving up the Atlantic seaboard. This corresponds to 50-80 DU in tropospheric ozone column depth. In most cases, further transport occurred to the North Atlantic, with ozone plumes traveling to western Europe in 4-5 days. Examples of high ozone and transit across boundaries within the US, as well as US->Europe, give a regional context for model results and field measurements taken in the SE US during the Nashville-1999 campaign period. Validation of the TDOT maps is made with ozonesondes taken during that time. TDOT maps also show ozone pollution from Asia traveling to the western US in July 1999.
Field measurements of the ambient ozone formation potential in Beijing during winter
NASA Astrophysics Data System (ADS)
Crilley, Leigh; Kramer, Louisa; Thomson, Steven; Lee, James; Squires, Freya; Bloss, William
2017-04-01
The air quality issues in Beijing have been well-documented, and the severe air pollution levels result in a unique chemical mix in the urban boundary layer, both in terms of concentration and composition. As many of the atmospheric chemical process are non-linear and interlinked, this makes predictions difficult for species formed in atmosphere, such as ozone, requiring field measurements to understand these processes in order to guide mitigation efforts. To investigate the ozone formation potential of ambient air, we employed a custom built instrument to measure in near real time the potential for in situ ozone production, using an artificial light source. Our results are thus indicative of the ozone formation potential for the sampled ambient air mixture. Measurements were performed as part of the Air Pollution and Human Health (APHH) field campaign in November / December 2016 at a suburban site in central Beijing. We also conducted experiments to examine the ozone production sensitivity to NOx. We will present preliminarily results from ambient sampling and NOx experiments demonstrating changes in the ozone production potential during clean and haze periods in Beijing.
EVALUATION OF OZONATION BY-PRODUCTS FROM TWO CALIFORNIA SURFACE WATERS
Ozonation by-products were analyzed for two surface water sources in Southern California--Los Angeles Aqueduct Water (LAAW) and State Project Water (SPW). ncluded are data obtained when LAAW was being treated at the Los Angeles Aqueduct Filtration Plant and similar data obtained ...
EVALUATION OF OZONATION BY-PRODUCTS FROM TWO CALIFORNIA SURFACE WATERS
Ozonation by-products were analyzed for two surface water sources in Southern California-Los Angeles Aqueduct Water (LAWW) and State Project Water (SPW). Included are data obtained when LAAW was being treated at the Los Angeles Aqueduct Filtration Plant and similar data obtained...
Ozone budgets from the Dynamics and Chemistry of Marine Stratocumulus experiment
NASA Technical Reports Server (NTRS)
Kawa, S. R.; Pearson, R., Jr.
1989-01-01
Measurements from the Dynamics and Chemistry of marine Stratocumulus experiment have been used to study components of the regional ozone budget. The surface destruction rate is determined by eddy correlation of ozone and vertical velocity measured by a low-flying aircraft. Significant variability is found in the measured surface resistance; it is partially correlated with friction velocity but appears to have other controlling influences as well. The mean resistance is 4190 s/m which is higher (slower destruction) than most previous estimates for seawater. Flux and mean measurements throughout the marine boundary layer are used to estimate the net rate of in situ photochemical production/destruction of ozone. Averaged over the flights, ozone concentration is found to be near steady state, and a net of photochemical destruction of 0.02-0.07 ng/cu m per sec is diagnosed. This is an important confirmation of photochemical model results for the remote marine boundary layer. Ozone vertical distributions above the boundary layer show a strongly layered structure with very sharp gradients. These distributions are possibly related to the stratospheric ozone source.
Ozone reactions with indoor materials during building disinfection
NASA Astrophysics Data System (ADS)
Poppendieck, D.; Hubbard, H.; Ward, M.; Weschler, C.; Corsi, R. L.
There is scant information related to heterogeneous indoor chemistry at ozone concentrations necessary for the effective disinfection of buildings, i.e., hundreds to thousands of ppm. In the present study, 24 materials were exposed for 16 h to ozone concentrations of 1000-1200 ppm in the inlet streams of test chambers. Initial ozone deposition velocities were similar to those reported in the published literature for much lower ozone concentrations, but decayed rapidly as reaction sites on material surfaces were consumed. For every material, deposition velocities converged to a relatively constant, and typically low, value after approximately 11 h. The four materials with the highest sustained deposition velocities were ceiling tile, office partition, medium density fiberboard and gypsum wallboard backing. Analysis of ozone reaction probabilities indicated that throughout each experiment, and particularly after several hours of disinfection, surface reaction resistance dominated the overall resistance to ozone deposition for nearly all materials. Total building disinfection by-products (all carbonyls) were quantified per unit area of each material for the experimental period. Paper, office partition, and medium density fiberboard each released greater than 38 mg m -2 of by-products.
Rashid, Ahmed Nafis; Tsuru, Kanji; Ishikawa, Kunio
2015-05-01
Ozone (O3 ) treatment of polyethylene terephthalate (PET) in distilled water was performed in the presence and absence of calcium (Ca(2+) ). PET was oxidized and thus carboxylic and hydroxyl functional groups were introduced on its surface after O3 treatment, regardless of the presence or absence of Ca(2+) . In the case of O3 treatment with Ca(2+) , PET surface was modified with Ca(2+) . Ca(2+) immobilization was confirmed by X-ray photoelectron spectrometric analysis. Hydrophilicity was investigated by measuring contact angles (CA). CA of PET decreased significantly after ozonation. Surface topography of PET before and after ozone treatment was observed by scanning electron microscopy, and showed no morphological changes. In vitro studies showed enhanced rat bone marrow cell responses on the O3 -treated PET surface. Ca(2+) -O3 oxidation at 37°C for 6 h is expected to be an effective method to fabricate PET with good biocompatibility. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Guan, Wei-Sheng; Huang, Han-Xiong; Wang, Bin
2013-10-01
In recent years, the fast growing demand for biomimetic surfaces featuring unique wettability and functionality in various fields highlights the necessity of developing a reliable technique for mass production. In this work, hierarchical topography designs of templates were applied to prepare superhydrophobic surfaces via microinjection compression molding, comprehensively considering the feasibility of mechanical demolding and the superhydrophobicity and mechanical robustness of the molded polypropylene parts. Mimicking the wettability of a lotus leaf or rose petal, superhydrophobic surfaces were replicated. An unstable wetting state formed on the surface exhibiting the petal effect. On such a surface, the increased water pressure could cause water penetration into the micro gaps between the hierarchical asperities featuring low-roughness sidewalls and bottom surface; the resultant water membrane led to drastically increased water adhesion of the surface. Moreover, the low-adhesion superhydrophobicity of the molded surface was changed into superhydrophilicity, by means of introducing carbonyl groups via ultraviolet/ozone treatment and the subsequent water membrane preserved in microstructures via the pre-wetting process. Patterning the superhydrophilic micro channel on the superhydrophobic surface developed the surface microfluidic devices for micro-liter fluid pumping and mixing processes driven by surface tension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, D.L.; Arbaugh, M.J.; Wakefield, V.A.
1987-08-01
Evidence is presented for a reduction in radial growth of Jeffrey pine in the mixed conifer forest of Sequoia and Kings Canyon National Parks, California. Mean annual radial increment of trees with symptoms of ozone injury was 11% less than trees at sites without ozone injury. Larger diameter trees (>40 cm) and older trees (>100 yr) had greater decreases in growth than smaller and younger trees. Differences in radial growth patterns of injured and uninjured trees were prominent after 1965. Winter precipitation accounted for a large proportion of the variance in growth of all trees, although ozone-stressed trees were moremore » sensitive to interannual variation in precipitation and temperature during recent years. These results corroborates surveys in visible ozone injury to foliage and are the first evidence of forest growth reduction associated with ozone injury in North America outside the Los Angeles basin.« less
NASA Astrophysics Data System (ADS)
Sinha, B.; Singh Sangwan, K.; Maurya, Y.; Kumar, V.; Sarkar, C.; Chandra, B. P.; Sinha, V.
2015-08-01
In this study we use a high-quality data set of in situ ozone measurements at a suburban site called Mohali in the state of Punjab to estimate ozone-related crop yield losses for wheat, rice, cotton and maize for Punjab and the neighbouring state Haryana for the years 2011-2013. We intercompare crop yield loss estimates according to different exposure metrics, such as AOT40 (accumulated ozone exposure over a threshold of 40) and M7 (mean 7-hour ozone mixing ratio from 09:00 to 15:59), for the two major crop growing seasons of kharif (June-October) and rabi (November-April) and establish a new crop-yield-exposure relationship for southern Asian wheat, maize and rice cultivars. These are a factor of 2 more sensitive to ozone-induced crop yield losses compared to their European and American counterparts. Relative yield losses based on the AOT40 metrics ranged from 27 to 41 % for wheat, 21 to 26 % for rice, 3 to 5 % for maize and 47 to 58 % for cotton. Crop production losses for wheat amounted to 20.8 ± 10.4 million t in the fiscal year of 2012-2013 and 10.3 ± 4.7 million t in the fiscal year of 2013-2014 for Punjab and Haryana taken together. Crop production losses for rice totalled 5.4 ± 1.2 million t in the fiscal year of 2012-2013 and 3.2 ± 0.8 million t in the year 2013-2014 for Punjab and Haryana taken together. The Indian National Food Security Ordinance entitles ~ 820 million of India's poor to purchase about 60 kg of rice or wheat per person annually at subsidized rates. The scheme requires 27.6 Mt of wheat and 33.6 Mt of rice per year. The mitigation of ozone-related crop production losses in Punjab and Haryana alone could provide > 50 % of the wheat and ~ 10 % of the rice required for the scheme. The total economic cost losses in Punjab and Haryana amounted to USD 6.5 ± 2.2 billion in the fiscal year of 2012-2013 and USD 3.7 ± 1.2 billion in the fiscal year of 2013-2014. This economic loss estimate represents a very conservative lower limit based on the minimum support price of the crop, which is lower than the actual production costs. The upper limit for ozone-related crop yield losses in all of India currently amounts to 3.5-20 % of India's GDP. The mitigation of high surface ozone would require relatively little investment in comparison to the economic losses incurred presently. Therefore, ozone mitigation can yield massive benefits in terms of ensuring food security and boosting the economy. The co-benefits of ozone mitigation also include a decrease in the ozone-related mortality and morbidity and a reduction of the ozone-induced warming in the lower troposphere.
NASA Astrophysics Data System (ADS)
Tai, A. P. K.
2016-12-01
Surface ozone is an air pollutant of significant concerns due to its harmful effects on human health, vegetation and crop productivity. Chronic ozone exposure is shown to reduce photosynthesis and interfere with gas exchange in plants, thereby influencing surface energy balance and biogeochemical fluxes with important ramifications for climate and atmospheric composition, including possible feedbacks onto ozone itself that are not well understood. Ozone damage on crops has been well documented, but a mechanistic understanding is not well established. Here we present several results pertaining to the effects of ozone-vegetation coupling on air quality, ecosystems and agriculture. Using the Community Earth System Model (CESM), we find that inclusion of ozone damage on plants reduces the global land carbon sink by up to 5%, while simulated ozone is enhanced by up to 6 ppbv North America, Europe and East Asia. This strong positive feedback on ozone air quality via ozone-vegetation coupling arises mainly from reduced stomatal conductance, which induces two feedback pathways: 1) reduced dry deposition and ozone uptake; and 2) reduced evapotranspiration that enhances vegetation temperature and thus isoprene emission. Using the same ozone-vegetation scheme in a crop model within CESM, we further examine the impacts of historical ozone exposure on global crop production. We contrast our model results with a separate statistical analysis designed to characterize the spatial variability of crop-ozone-temperature relationships and account for the confounding effect of ozone-temperature covariation, using multidecadal global datasets of crop yields, agroclimatic variables and ozone exposures. We find that several crops (especially C4 crops such as maize) exhibit stronger sensitivities to ozone than found by field studies or in CESM simulations. We also find a strong anticorrelation between crop sensitivities and average ozone levels, reflecting biological adaptive ozone resistance that is not accounted for in current generation of crop models. Our results show that a more complete understanding of ozone-vegetation interactions is necessary to derive more realistic future projections of climate, air quality, ecosystem functions and food security.
The relevance of the IUE results on young stars for Earth's paleoatmosphere
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Levine, J. S.; Augustsson, T. R.; Imhoff, C. L.; Giampap, M. S.
1982-01-01
Using the latest IUE results for seven T Tauri stars, which are believed to represent the young Sun and a detailed photochemical chemical model of the paleoatmosphere, the vertical distribution of Oxygen and Ozone in the early atmosphere was calculated. The calculations indicate that the surface Oxygen mixing ratio is as much as six orders of magnitude larger than previously estimated, but appears low enough for the formation of amino acids via the Urey-Miller type of experiments. It is believed that the quantification of the oxygen level in the Earth's paleoatmosphere presented can reconcile the demands of both biological and geological considerations.
Shynkaryk, Mykola V; Pyatkovskyy, Taras; Mohamed, Hussein M; Yousef, Ahmed E; Sastry, Sudhir K
2015-12-01
Produce safety has received much recent attention, with the emphasis being largely on discovery of how microbes invade produce. However, the sanitization operation deserves more attention than it has received. The ability of a sanitizer to reach the site of pathogens is a fundamental prerequisite for efficacy. This work addresses the transport processes of ozone (gaseous and liquid) sanitizer for decontamination of leafy greens. The liquid sanitizer was ineffective against Escherichia coli K-12 in situations where air bubbles may be trapped within cavities. A model was developed for diffusion of sanitizer into the interior of produce. The reaction rate of ozone with the surface of a lettuce leaf was determined experimentally and was used in a numerical simulation to evaluate ozone concentrations within the produce and to determine the time required to reach different locations. For aqueous ozone, the penetration depth was limited to several millimeters by ozone self-decomposition due to the significant time required for diffusion. In contrast, gaseous sanitizer was able to reach a depth of 100 mm in several minutes without depletion in the absence of reaction with surfaces. However, when the ozone gas reacted with the produce surface, gas concentration was significantly affected. Simulation data were validated experimentally by measuring ozone concentrations at the bottom of a cylinder made of lettuce leaf. The microbiological test confirmed the relationship between ozone transport, its self-decomposition, reaction with surrounding materials, and the degree of inactivation of E. coli K-12. Our study shows that decontamination of fresh produce, through direct contact with the sanitizer, is more feasible with gaseous than with aqueous sanitizers. Therefore, sanitization during a high-speed washing process is effective only for decontaminating the wash water.
Global health benefits of mitigating ozone pollution with methane emission controls.
West, J Jason; Fiore, Arlene M; Horowitz, Larry W; Mauzerall, Denise L
2006-03-14
Methane (CH(4)) contributes to the growing global background concentration of tropospheric ozone (O(3)), an air pollutant associated with premature mortality. Methane and ozone are also important greenhouse gases. Reducing methane emissions therefore decreases surface ozone everywhere while slowing climate warming, but although methane mitigation has been considered to address climate change, it has not for air quality. Here we show that global decreases in surface ozone concentrations, due to methane mitigation, result in substantial and widespread decreases in premature human mortality. Reducing global anthropogenic methane emissions by 20% beginning in 2010 would decrease the average daily maximum 8-h surface ozone by approximately 1 part per billion by volume globally. By using epidemiologic ozone-mortality relationships, this ozone reduction is estimated to prevent approximately 30,000 premature all-cause mortalities globally in 2030, and approximately 370,000 between 2010 and 2030. If only cardiovascular and respiratory mortalities are considered, approximately 17,000 global mortalities can be avoided in 2030. The marginal cost-effectiveness of this 20% methane reduction is estimated to be approximately 420,000 US dollars per avoided mortality. If avoided mortalities are valued at 1 US dollars million each, the benefit is approximately 240 US dollars per tone of CH(4) ( approximately 12 US dollars per tone of CO(2) equivalent), which exceeds the marginal cost of the methane reduction. These estimated air pollution ancillary benefits of climate-motivated methane emission reductions are comparable with those estimated previously for CO(2). Methane mitigation offers a unique opportunity to improve air quality globally and can be a cost-effective component of international ozone management, bringing multiple benefits for air quality, public health, agriculture, climate, and energy.
NASA Astrophysics Data System (ADS)
Kumar, Satheesh Mk; T, Nishanth; M, Praseeed K.
South India is a peninsular region surrounded by the three belts of Arabian Sea, Bay of Bengal and Indian Ocean. Usually, coastal regions experience relatively high air quality compared to that of the interior land masses owing to the abundance of OH over ocean surface which acts as detergent in the atmosphere. Kannur (11.9 N, 75.4E, 5 m AMSL) is a coastal location along the Arabian Sea which is located in the northern district of Kerala State with fairly low industrial activities. A continuous observation of surface ozone (O3), NOx and OX (NO2+ O3) which has been initiated at this coastal site since 2009 reveals the enhancement in the concentrations of these trace species quite significantly. It is observed that surface O3 mixing ratio is increased at a rate of 1.51 ± 0.5 ppbv/year during the four year period from 2009 at Kannur. The enhancement rate in the mixing ratios of NOx is 1.01 ± 0.4 ppbv/year and OX is 1.49±0.42 ppbv/year respectively. The increase of O3 may be attributed due to the increase in methane and non-methane organic emissions from the wet lands and vehicles may enhance O3 production and fairly low rate of change of NO concentration at this site. This paper describes the rate of changes of O3, NOx and OX during the period of observation in detail. Likewise, the increase in nighttime concentrations of O3 and PM10 observed during the festival occasions in the summer month of April in all years is explained. Being a weak industrialized location, the main source of pollution is by vehicular emissions and the increase in these trace gases in the context of rapid enhancement in the number of vehicles is well correlated. These results may be helpful for improving government policies to control the photochemical formation of secondary air pollutants in the rural coastal sites that has a significant influence on the onset of monsoon and the outcome of this study have significant relevance for gradual transformation of pristine locations into polluted sites.
Simulating climate change with interactive stratospheric ozone
NASA Astrophysics Data System (ADS)
Lin, P.; Ming, Y.
2017-12-01
We compare the simulated climate changes with and without interactive ozone in GFDL AM4. We also compare the simulations with a fully interactive stratospheric chemistry scheme versus those with a simplified scheme in which ozone is treated as a passive tracer. Despite its simplicity, the ozone tracer is sufficient to represent the ozone changes in response to changes in the stratospheric circulation as well as the zonally asymmetric distribution of ozone concentration. With interactive ozone, the model simulates a stronger cooling in the tropical lower stratosphere and less stratospheric moistening in response to surface warming. We further investigate how the different stratospheric response translate into different responses in the tropospheric circulations.
NASA Astrophysics Data System (ADS)
Lian See, Tan; Zulazlan Shah Zulkifli, Ahmad; Mook Tzeng, Lim
2018-04-01
Ozone is a reactant which can be applied for various environmental treatment processes. It can be generated via atmospheric air non-thermal plasmas when sufficient voltages are applied through a combination of electrodes and dielectric materials. In this study, the concentration of ozone generated via two different configurations of multi-cylinder dielectric barrier discharge (DBD) reactor (3 x 40 mm and 10 x 10 mm) was investigated. The influence of the voltage and the duty cycle to the concentration of ozone generated by each configuration was analysed using response surface methodology. Voltage was identified as significant factor to the ozone production process. However, the regressed model was biased towards one of the configuration, leaving the predicted results of another configuration to be out of range.
The chlorine budget of the present-day atmosphere - A modeling study
NASA Technical Reports Server (NTRS)
Weisenstein, Debra K.; Ko, Malcolm K. W.; Sze, Nien-Dak
1992-01-01
The contribution of source gases to the total amount of inorganic chlorine (ClY) is examined analytically with a time-dependent model employing 11 source gases. The source-gas emission data are described, and the modeling methodology is set forth with attention given to the data interpretation. The abundances and distributions are obtained for all 11 source gases with corresponding ClY production rates and mixing ratios. It is shown that the ClY production rate and the ClY mixing ratio for each source gas are spatially dependent, and the change in the relative contributions from 1950 to 1990 is given. Ozone changes in the past decade are characterized by losses in the polar and midlatitude lower stratosphere. The values for CFC-11, CCl4, and CH3CCl3 suggest that they are more evident in the lower stratosphere than is suggested by steady-state estimates based on surface concentrations.