A simultaneous deep micromachining and surface passivation method suitable for silicon-based devices
NASA Astrophysics Data System (ADS)
Babaei, E.; Gharooni, M.; Mohajerzadeh, S.; Soleimani, E. A.
2018-07-01
Three novel methods for simultaneous micromachining and surface passivation of silicon are reported. A thin passivation layer is achieved using continuous and sequential plasma processes based on SF6, H2 and O2 gases. Reducing the recombination by surface passivation is crucial for the realization of high-performance nanosized optoelectronic devices. The passivation of the surface as an important step, is feasible by plasma processing based on hydrogen pulses in proper time-slots or using a mixture of H2 and O2, and SF6 gases. The passivation layer which is formed in situ during the micromachining process obviates a separate passivation step needed in conventional methods. By adjusting the plasma parameters such as power, duration, and flows of gases, the process can be controlled for the best results and acceptable under-etching at the same time. Moreover, the pseudo-oxide layer which is formed during the micromachining processes will also improve the electrical characteristics of the surface, which can be used as an add-on for micro and nanowire applications. To quantify the effect of surface passivation in our method, ellipsometry, lifetime measurements, x-ray photoelectron spectroscopy, current–voltage and capacitance–voltage measurements and solar cell testing have been employed.
Surface passivation process of compound semiconductor material using UV photosulfidation
Ashby, Carol I. H.
1995-01-01
A method for passivating compound semiconductor surfaces by photolytically disrupting molecular sulfur vapor with ultraviolet radiation to form reactive sulfur which then reacts with and passivates the surface of compound semiconductors.
Stable surface passivation process for compound semiconductors
Ashby, Carol I. H.
2001-01-01
A passivation process for a previously sulfided, selenided or tellurated III-V compound semiconductor surface. The concentration of undesired mid-gap surface states on a compound semiconductor surface is reduced by the formation of a near-monolayer of metal-(sulfur and/or selenium and/or tellurium)-semiconductor that is effective for long term passivation of the underlying semiconductor surface. Starting with the III-V compound semiconductor surface, any oxidation present thereon is substantially removed and the surface is then treated with sulfur, selenium or tellurium to form a near-monolayer of chalcogen-semiconductor of the surface in an oxygen-free atmosphere. This chalcogenated surface is then contacted with a solution of a metal that will form a low solubility chalcogenide to form a near-monolayer of metal-chalcogen-semiconductor. The resulting passivating layer provides long term protection for the underlying surface at or above the level achieved by a freshly chalcogenated compound semiconductor surface in an oxygen free atmosphere.
Superacid Passivation of Crystalline Silicon Surfaces.
Bullock, James; Kiriya, Daisuke; Grant, Nicholas; Azcatl, Angelica; Hettick, Mark; Kho, Teng; Phang, Pheng; Sio, Hang C; Yan, Di; Macdonald, Daniel; Quevedo-Lopez, Manuel A; Wallace, Robert M; Cuevas, Andres; Javey, Ali
2016-09-14
The reduction of parasitic recombination processes commonly occurring within the silicon crystal and at its surfaces is of primary importance in crystalline silicon devices, particularly in photovoltaics. Here we explore a simple, room temperature treatment, involving a nonaqueous solution of the superacid bis(trifluoromethane)sulfonimide, to temporarily deactivate recombination centers at the surface. We show that this treatment leads to a significant enhancement in optoelectronic properties of the silicon wafer, attaining a level of surface passivation in line with state-of-the-art dielectric passivation films. Finally, we demonstrate its advantage as a bulk lifetime and process cleanliness monitor, establishing its compatibility with large area photoluminescence imaging in the process.
Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces
Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.
2014-09-09
A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).
Forming high-efficiency silicon solar cells using density-graded anti-reflection surfaces
Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.
2015-07-07
A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).
Chembath, Manju; Balaraju, J N; Sujata, M
2015-11-01
The surface of NiTi alloy was chemically modified using acidified ferric chloride solution and the characteristics of the alloy surface were studied from the view point of application as a bioimplant. Chemically treated NiTi was also subjected to post treatments by annealing at 400°C and passivation in nitric acid. The surface of NiTi alloy after chemical treatment developed a nanogrid structure with a combination of one dimensional channel and two dimensional network-like patterns. From SEM studies, it was found that the undulations formed after chemical treatment remained unaffected after annealing, while after passivation process the undulated surface was filled with oxides of titanium. XPS analysis revealed that the surface of passivated sample was enriched with oxides of titanium, predominantly TiO2. The influence of post treatment on the corrosion resistance of chemically treated NiTi alloy was monitored using Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) in Phosphate Buffered Saline (PBS) solution. In the chemically treated condition, NiTi alloy exhibited poor corrosion resistance due to the instability of the surface. On the other hand, the breakdown potential (0.8V) obtained was highest for the passivated samples compared to other surface treated samples. During anodic polarization, chemically treated samples displayed dissolution phenomenon which was predominantly activation controlled. But after annealing and passivation processes, the behavior of anodic polarization was typical of a diffusion controlled process which confirmed the enhanced passivity of the post treated surfaces. The total resistance, including the porous and barrier layer, was in the range of mega ohms for passivated surfaces, which could be attributed to the decrease in surface nickel content and formation of compact titanium oxide. The passivated sample displayed good bioactivity in terms of hydroxyapatite growth, noticed after 14days immersion in Hanks' solution. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhao, Chao; Ng, Tien Khee; Prabaswara, Aditya; Conroy, Michele; Jahangir, Shafat; Frost, Thomas; O'Connell, John; Holmes, Justin D; Parbrook, Peter J; Bhattacharya, Pallab; Ooi, Boon S
2015-10-28
We present a detailed study of the effects of dangling bond passivation and the comparison of different sulfide passivation processes on the properties of InGaN/GaN quantum-disk (Qdisk)-in-nanowire based light emitting diodes (NW-LEDs). Our results demonstrated the first organic sulfide passivation process for nitride nanowires (NWs). The results from Raman spectroscopy, photoluminescence (PL) measurements, and X-ray photoelectron spectroscopy (XPS) showed that octadecylthiol (ODT) effectively passivated the surface states, and altered the surface dynamic charge, and thereby recovered the band-edge emission. The effectiveness of the process with passivation duration was also studied. Moreover, we also compared the electro-optical performance of NW-LEDs emitting at green wavelength before and after ODT passivation. We have shown that the Shockley-Read-Hall (SRH) non-radiative recombination of NW-LEDs can be greatly reduced after passivation by ODT, which led to a much faster increasing trend of quantum efficiency and higher peak efficiency. Our results highlighted the possibility of employing this technique to further design and produce high performance NW-LEDs and NW-lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batra, Neha; Panigrahi, Jagannath; Singh, Rajbir
2015-06-15
The effect of deposition temperature (T{sub dep}) and subsequent annealing time (t{sub anl}) of atomic layer deposited aluminum oxide (Al{sub 2}O3) films on silicon surface passivation (in terms of surface recombination velocity, SRV) is investigated. The pristine samples (as-deposited) show presence of positive fixed charges, Q{sub F}. The interface defect density (D{sub it}) decreases with increase in T{sub dep} which further decreases with t{sub anl} up to 100s. An effective surface passivation (SRV<8 cm/s) is realized for T{sub dep} ≥ 200 °C. The present investigation suggests that low thermal budget processing provides the same quality of passivation as realized bymore » high thermal budget process (t{sub anl} between 10 to 30 min)« less
Vandana; Batra, Neha; Gope, Jhuma; Singh, Rajbir; Panigrahi, Jagannath; Tyagi, Sanjay; Pathi, P; Srivastava, S K; Rauthan, C M S; Singh, P K
2014-10-21
Thermal ALD deposited Al2O3 films on silicon show a marked difference in surface passivation quality as a function of annealing time (using a rapid thermal process). An effective and quality passivation is realized in short anneal duration (∼100 s) in nitrogen ambient which is reflected in the low surface recombination velocity (SRV <10 cm s(-1)). The deduced values are close to the best reported SRV obtained by the high thermal budget process (with annealing time between 10-30 min), conventionally used for improved surface passivation. Both as-deposited and low thermal budget annealed films show the presence of positive fixed charges and this is never been reported in the literature before. The role of field and chemical passivation is investigated in terms of fixed charge and interface defect densities. Further, the importance of the annealing step sequence in the MIS structure fabrication protocol is also investigated from the view point of its effect on the nature of fixed charges.
Internal passivation of Al-based microchannel devices by electrochemical anodization
NASA Astrophysics Data System (ADS)
Hymel, Paul J.; Guan, D. S.; Mu, Yang; Meng, W. J.; Meng, Andrew C.
2015-02-01
Metal-based microchannel devices have wide-ranging applications. We report here a method to electrochemically anodize the internal surfaces of Al microchannels, with the purpose of forming a uniform and dense anodic aluminum oxide (AAO) layer on microchannel internal surfaces for chemical passivation and corrosion resistance. A pulsed electrolyte flow was utilized to emulate conventional anodization processes while replenishing depleted ionic species within Al microtubes and microchannels. After anodization, the AAO film was sealed in hot water to close the nanopores. Focused ion beam (FIB) sectioning, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were utilized to characterize the AAO morphology and composition. Potentiodynamic polarization corrosion testing of anodized Al microtube half-sections in a NaCl solution showed an order of magnitude decrease in anodic corrosion current when compared to an unanodized tube. The surface passivation process was repeated for Al-based microchannel heat exchangers. A corrosion testing method based on the anodization process showed higher resistance to ion transport through the anodized specimens than unanodized specimens, thus verifying the internal anodization and sealing process as a viable method for surface passivation of Al microchannel devices.
Investigation of passive films on nickel Alloy 690 in lead-containing environments
NASA Astrophysics Data System (ADS)
Peng, B.; Lu, B. T.; Luo, J. L.; Lu, Y. C.; Ma, H. Y.
2008-09-01
Passive films formed on Alloy UNS N06690 were investigated in simulated crevice chemistries. It was found the role of lead in corrosion processes is strongly dependent on the pH value of the testing solutions. At pH 1.5 the effect of lead is narrowly noticeable; while at pH 12.7, lead has a significant influence on the electrochemical performance of alloy UNS N06690. The lead alters the surface morphologies at both pH and account for higher hydroxide content in the surface film at pH 12.7. The lead incorporation hinders the formation of spinel oxides during the passivation in alkaline solution. Nanoindentation tests indicate a significant lead-induced degradation in the mechanical properties of passive films. The passivation degradation is attributed to detrimental effects of lead via interrupting the dehydration process and hindering the formation of protective layers on the alloy surface.
Mesoscale Elucidation of Surface Passivation in the Li-Sulfur Battery Cathode.
Liu, Zhixiao; Mukherjee, Partha P
2017-02-15
The cathode surface passivation caused by Li 2 S precipitation adversely affects the performance of lithium-sulfur (Li-S) batteries. Li 2 S precipitation is a complicated mesoscale process involving adsorption, desorption and diffusion kinetics, which are affected profoundly by the reactant concentration and operating temperature. In this work, a mesoscale interfacial model is presented to study the growth of Li 2 S film on carbon cathode surface. Li 2 S film growth experiences nucleation, isolated Li 2 S island growth and island coalescence. The slow adsorption rate at small S 2- concentration inhibits the formation of nucleation seeds and the lateral growth of Li 2 S islands, which deters surface passivation. An appropriate operating temperature, especially in the medium-to-high temperature range, can also defer surface passivation. Fewer Li 2 S nucleation seeds form in such an operating temperature range, thereby facilitating heterogeneous growth and potentially inhibiting the lateral growth of the Li 2 S film, which may ultimately result in reduced surface passivation. The high specific surface area of the cathode microstructure is expected to mitigate the surface passivation.
Surface Defect Passivation and Reaction of c-Si in H2S.
Liu, Hsiang-Yu; Das, Ujjwal K; Birkmire, Robert W
2017-12-26
A unique passivation process of Si surface dangling bonds through reaction with hydrogen sulfide (H 2 S) is demonstrated in this paper. A high-level passivation quality with an effective minority carrier lifetime (τ eff ) of >2000 μs corresponding to a surface recombination velocity of <3 cm/s is achieved at a temperature range of 550-650 °C. X-ray photoelectron spectroscopy (XPS) confirmed the bonding states of Si and S and provides insights into the reaction pathway of Si with H 2 S and other impurity elements both during and after the reaction. Quantitative analysis of XPS spectra showed that the τ eff increases with an increase in the surface S content up to ∼3.5% and stabilizes thereafter, indicative of surface passivation by monolayer coverage of S on the Si surface. However, S passivation of the Si surface is highly unstable because of thermodynamically favorable reaction with atmospheric H 2 O and O 2 . This instability can be eliminated by capping the S-passivated Si surface with a protective thin film such as low-temperature-deposited amorphous silicon nitride.
CVD-Based Valence-Mending Passivation for Crystalline-Si Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Meng
2015-03-01
The objective of this project is to investigate a new surface passivation technique, valence-mending passivation, for its applications in crystalline-Si solar cells to achieve significant efficiency improvement and cost reduction. As the enabling technique, the project includes the development of chemical vapor deposition recipes to passivate textured Si(100) and multicrystalline-Si surfaces by sulfur and the characterization of the passivated Si surfaces, including thermal stability, Schottky barrier height, contact resistance and surface recombination. One important application is to replace the Ag finger electrode in Si cells with Al to reduce cost, by ~$0.1/Wp, and allow terawatt-scale deployment of crystalline-Si solar cells.more » These all-Al Si cells require a low-temperature metallization process for the Al electrode, to be compatible with valence-mending passivation and to prevent Al diffusion into n-type Si. Another application is to explore valence-mending passivation of grain boundaries in multicrystalline Si by diffusing sulfur into grain boundaries, to reduce the efficiency gas between monocrystalline-Si solar cells and multicrystalline-Si cells. The major accomplishments of this project include: 1) Demonstration of chemical vapor deposition processes for valence-mending passivation of both monocrystalline Si(100) and multicrystalline Si surfaces. Record Schottky barriers have been demonstrated, with the new record-low barrier of less than 0.08 eV between Al and sulfur-passivated n-type Si(100) and the new record-high barrier of 1.14 eV between Al and sulfur-passivated p-type Si(100). On the textured p-type monocrystalline Si(100) surface, the highest barrier with Al is 0.85 eV by valence-mending passivation. 2) Demonstration of a low-temperature metallization process for Al in crystalline-Si solar cells. The new metallization process is based on electroplating of Al in a room-temperature ionic liquid. The resistivity of the electroplated Al is ~7×10–6 ohm-cm, similar to that of screen-printed Ag. 3) Demonstration of two all-Al, Ag-free Si solar cells, with an electroplated Al front electrode and a screen-printed Al back electrode. One cell is an industrial p-type front-emitter cell, and the other is an n-type back-emitter cell. The efficiency of the p-type cell is close to 15%. This is an industrial cell and its efficiency is capped at ~18%. 4) Demonstration of grain boundary passivation by both hydrogen and sulfur using hydrogen sulfide (H2S). When the new grain boundary passivation is combined with Al2O3 surface passivation and post-annealing, the minority carrier lifetime in the p-type multicrystalline Si samples shows a significant improvement up to 68 fold. 5) In a side project, a simple green process is developed which is capable of recycling over 90% of the Si material in end-of-life crystalline-Si solar cells. The recycled Si meets the specifications for solar-grade Si and can be used as a new poly-Si feedstock for ingot growth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiar, Jeffery A.; Young, David; Lee, Benjamin
2016-11-21
The key attributes for achieving high efficiency crystalline silicon solar cells include class leading developments in the ability to approach the theoretical limits of silicon solar technology (29.4% efficiency). The push for high efficiency devices is further compounded with the clear need for passivation to reduce recombination at the metal contacts. At the same time there is stringent requirement to retain the same material device quality, surface passivation, and performance characteristics following subsequent processing. The development of passivated silicon cell structures that retain active front and rear surface passivation and overall material cell quality is therefore a relevant and activemore » area of development. To address the potential outcomes of metallization on passivated silicon stack, we report on some common microstructural features of degradation due to metallization for a series of silicon device stacks. A fundamental materials understanding of the metallization process on retaining high-efficiency passivated Si devices is therefore gained over these series of results.« less
Noise suppression in surface microseismic data by τ-p transform
Forghani-Arani, Farnoush; Batzle, Mike; Behura, Jyoti; Willis, Mark; Haines, Seth; Davidson, Michael
2013-01-01
Surface passive seismic methods are receiving increased attention for monitoring changes in reservoirs during the production of unconventional oil and gas. However, in passive seismic data the strong cultural and ambient noise (mainly surface-waves) decreases the effectiveness of these techniques. Hence, suppression of surface-waves is a critical step in surface microseismic monitoring. We apply a noise suppression technique, based on the τ — p transform, to a surface passive seismic dataset recorded over a Barnett Shale reservoir undergoing a hydraulic fracturing process. This technique not only improves the signal-to-noise ratios of added synthetic microseismic events, but it also preserves the event waveforms.
Surface Passivation for 3-5 Semiconductor Processing: Stable Gallium Sulphide Films by MOCVD
NASA Technical Reports Server (NTRS)
Macinnes, Andrew N.; Jenkins, Phillip P.; Power, Michael B.; Kang, Soon; Barron, Andrew R.; Hepp, Aloysius F.; Tabib-Azar, Massood
1994-01-01
Gallium sulphide (GaS) has been deposited on GaAs to form stable, insulating, passivating layers. Spectrally resolved photoluminescence and surface recombination velocity measurements indicate that the GaS itself can contribute a significant fraction of the photoluminescence in GaS/GaAs structures. Determination of surface recombination velocity by photoluminescence is therefore difficult. By using C-V analysis of metal-insulator-semiconductor structures, passivation of the GaAs with GaS films is quantified.
Mesoscale Elucidation of Surface Passivation in the Li–Sulfur Battery Cathode
Liu, Zhixiao; Mukherjee, Partha P.
2017-01-23
We report the cathode surface passivation caused by Li 2S precipitation adversely affects the performance of lithium-sulfur (Li-S) batteries. Li 2S precipitation is a complicated mesoscale process involving adsorption, desorption and diffusion kinetics, which are affected profoundly by the reactant concentration and operating temperature. In this work, a mesoscale interfacial model is presented to study the growth of Li 2S film on carbon cathode surface. Li 2S film growth experiences nucleation, isolated Li 2S island growth and island coalescence. The slow adsorption rate at small S 2- concentration inhibits the formation of nucleation seeds and the lateral growth of Limore » 2S islands, which deters surface passivation. An appropriate operating temperature, especially in the medium-to-high temperature range, can also defer surface passivation. Fewer Li 2S nucleation seeds form in such an operating temperature range, which facilitates heterogeneous growth and thereby inhibits the lateral growth of the Li 2S film, which may also result in reduced surface passivation. Finally, the high specific surface area of the cathode microstructure is expected to mitigate the surface passivation.« less
Passivated aluminum nanohole arrays for label-free biosensing applications.
Canalejas-Tejero, Víctor; Herranz, Sonia; Bellingham, Alyssa; Moreno-Bondi, María Cruz; Barrios, Carlos Angulo
2014-01-22
We report the fabrication and performance of a surface plasmon resonance aluminum nanohole array refractometric biosensor. An aluminum surface passivation treatment based on oxygen plasma is developed in order to circumvent the undesired effects of oxidation and corrosion usually found in aluminum-based biosensors. Immersion tests in deionized water and device simulations are used to evaluate the effectiveness of the passivation process. A label-free bioassay based on biotin analysis through biotin-functionalized dextran-lipase conjugates immobilized on the biosensor-passivated surface in aqueous media is performed as a proof of concept to demonstrate the suitability of these nanostructured aluminum films for biosensing.
Dual Electrolytic Plasma Processing for Steel Surface Cleaning and Passivation
NASA Astrophysics Data System (ADS)
Yang, L.; Zhang, P.; Shi, J.; Liang, J.; Tian, W. B.; Zhang, Y. M.; Sun, Z. M.
2017-10-01
To remove the rust on rebars and passivate the fresh surfaces, electrodes reversing electrolytic plasma processing (EPP) was proposed and conducted in a 10 wt.% Na2CO3 aqueous solution. The morphology and the composition of the surface were investigated by SEM and XPS. Experimental results show that the rust on the surface was removed effectively by cathode EPP, and a passive film containing Cr2O3 was achieved by the succeeding anode EPP treatment, by a simple operation of reversing the bias. The corrosion resistance was evaluated in a 3.5 wt.% NaCl aqueous solution using an electrochemical workstation. In comparison, the corrosion resistance was improved by the succeeding anode EPP treatment, which is evidenced by a positive shift of the open-circuit potential, an increase in the electrochemical impedance representing the inner layer by 76.8% and the decrease in the corrosion current density by 49.6%. This is an effective and environment-friendly technique to clean and passivate rebars and similar steel materials.
Front surface passivation of silicon solar cells with antireflection coating
NASA Technical Reports Server (NTRS)
Crotty, G.; Daud, T.; Kachare, R.
1987-01-01
It is demonstrated that the deposition and postdeposition sintering of an antireflection (AR) coating in hydrogen acts to passivate silicon solar cells. Cells with and without an SiO2 passivating layer, coated with a TiO(x)/Al2O3 AR coating, showed comparable enhancements in short-wavelength spectral response and in open-circuit voltage Voc after sintering at 400 C for 5 min in a hydrogen ambient. The improvement in Voc of cells without SiO2 is attributed to front-surface passivation by the AR coating during processing.
NASA Astrophysics Data System (ADS)
Richter, Armin; Benick, Jan; Kimmerle, Achim; Hermle, Martin; Glunz, Stefan W.
2014-12-01
Thin layers of Al2O3 are well known for the excellent passivation of p-type c-Si surfaces including highly doped p+ emitters, due to a high density of fixed negative charges. Recent results indicate that Al2O3 can also provide a good passivation of certain phosphorus-diffused n+ c-Si surfaces. In this work, we studied the recombination at Al2O3 passivated n+ surfaces theoretically with device simulations and experimentally for Al2O3 deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal due to depletion or weak inversion of the charge carriers at the c-Si/Al2O3 interface. This pronounced maximum was also observed experimentally for n+ surfaces passivated either with Al2O3 single layers or stacks of Al2O3 capped by SiNx, when activated with a low temperature anneal (425 °C). In contrast, for Al2O3/SiNx stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n+ diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al2O3/SiNx stacks can provide not only excellent passivation on p+ surfaces but also on n+ surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhixiao; Mukherjee, Partha P.
We report the cathode surface passivation caused by Li 2S precipitation adversely affects the performance of lithium-sulfur (Li-S) batteries. Li 2S precipitation is a complicated mesoscale process involving adsorption, desorption and diffusion kinetics, which are affected profoundly by the reactant concentration and operating temperature. In this work, a mesoscale interfacial model is presented to study the growth of Li 2S film on carbon cathode surface. Li 2S film growth experiences nucleation, isolated Li 2S island growth and island coalescence. The slow adsorption rate at small S 2- concentration inhibits the formation of nucleation seeds and the lateral growth of Limore » 2S islands, which deters surface passivation. An appropriate operating temperature, especially in the medium-to-high temperature range, can also defer surface passivation. Fewer Li 2S nucleation seeds form in such an operating temperature range, which facilitates heterogeneous growth and thereby inhibits the lateral growth of the Li 2S film, which may also result in reduced surface passivation. Finally, the high specific surface area of the cathode microstructure is expected to mitigate the surface passivation.« less
Method for processing silicon solar cells
Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.
1997-05-06
The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.
Method for processing silicon solar cells
Tsuo, Y. Simon; Landry, Marc D.; Pitts, John R.
1997-01-01
The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.
Hirata, Isao; Yoshida, Yasuhiro; Nagaoka, Noriyuki; Hiasa, Kyou; Abe, Yasuhiko; Maekawa, Kenji; Kuboki, Takuo; Akagawa, Yasumasa; Suzuki, Kazuomi; Van Meerbeek, Bart; Messersmith, Phillip B.; Okazaki, Masayuki
2011-01-01
The high corrosion resistance and strength-to-density ratio makes titanium widely used in major industry, but also in a gamut of medical applications. Here we report for the first time on our development of a titanium passivation layer sensor that makes use of surface plasmon resonance (SPR). The deposited titanium metal layer on the sensor was passivated in air, like titanium medical devices. Our ‘Ti-SPR sensor’ enables analysis of biomolecules interactions with the passivated surface of titanium in real time. As a proof of concept, corrosion of titanium passivation layer exposed to acid was monitored in real time. Also, the Ti-SPR sensor can accurately measure the time-dependence of protein adsorption onto titanium passivation layer with a sub-nanogram per square millimeter accuracy. Besides such SPR analyses, an SPR-imaging (SPRI) enables real-time assessment of chemical surface processes that occur simultaneously at ‘multiple independent spots’ on the Ti-SPR sensor, such as acid-corrosion or adhesion of cells. Our Ti-SPR sensor will therefore be very useful to study titanium-corrosion phenomena and biomolecular titanium-surface interactions with application in a broad range of industrial and biomedical fields. PMID:22154862
Process for producing cadmium sulfide on a cadmium telluride surface
Levi, Dean H.; Nelson, Art J.; Ahrenkiel, Richard K.
1996-01-01
A process for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness.
Process for producing cadmium sulfide on a cadmium telluride surface
Levi, D.H.; Nelson, A.J.; Ahrenkiel, R.K.
1996-07-30
A process is described for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness. 12 figs.
Pulsed excimer laser processing for cost-effective solar cells
NASA Technical Reports Server (NTRS)
Wong, David C.
1985-01-01
The application of excimer laser in the fabrication of photovoltaic devices was investigated extensively. Processes included junction formation, laser assisted chemical vapor deposition metallization, and laser assisted chemical vapor deposition surface passivation. Results demonstrated that implementation of junction formation by laser annealing in production is feasible because of excellent control in junction depth and quality. Both metallization and surface passivation, however, were found impractical to be considered for manufacturing at this stage.
Understanding the synthesis, performance, and passivation of metal oxide photocathodes
NASA Astrophysics Data System (ADS)
Flynn, Cory James
Metal oxides are ubiquitous in semiconductor technologies for their ease of synthesis, chemical stability, and tunable optical/electronic properties. These properties are especially important to fabricating efficient photoelectrodes for solar-energy applications. To counter inherent problems in these materials, new strategies were developed and successfully implemented on the widely-utilized p-type semiconductor, NiO. As the size of semiconductor materials shrink, the surface-to-volume ratio increases and surface defects dominate the performance of the materials. Surface defects can alter the optical and electronic characteristics of materials by changing the Fermi level, charge-carrier mobility, and surface reactivity. We first present a strategy to increase the electrical mobility of mesoporous metal oxide electrode materials by optimizing shape morphology. Transitioning from nanospheres to hexagonal nanoplatelets increased the charge-carrier mobility by one order of magnitude. We then employed this improved material with a new vapor-phase deposition method termed targeted atomic deposition (TAD) to selectively passivate defect sites in semiconductor nanomaterials. We demonstrated the capabilities of this passivation method by applying a TAD of aluminum onto NiO. By exploiting a temperature-dependent deposition process, we selectively passivated the highly reactive sites in NiO: oxygen dangling bonds associated with Ni vacancies. The TAD treatment completely passivated all measurable surface defects, optically bleached the material, and significantly improved all photovoltaic performance metrics in dye-sensitized solar cells. The technique was proven to be generic to numerous forms of NiO. While the implementation of TAD of Al was successful, the process involved pulsing two precursors to passivate the material. Ideally, the TAD process should require only a single precursor and continuous exposure. We utilized a continuous flow of diborane to perform a TAD of B onto NiO. The TAD process was successfully implemented in a simplified manner. The treatment moderately increased DSSC performance and proved viability with a different vapor-phase precursor.
Surface etching technologies for monocrystalline silicon wafer solar cells
NASA Astrophysics Data System (ADS)
Tang, Muzhi
With more than 200 GW of accumulated installations in 2015, photovoltaics (PV) has become an important green energy harvesting method. The PV market is dominated by solar cells made from crystalline silicon wafers. The engineering of the wafer surfaces is critical to the solar cell cost reduction and performance enhancement. Therefore, this thesis focuses on the development of surface etching technologies for monocrystalline silicon wafer solar cells. It aims to develop a more efficient alkaline texturing method and more effective surface cleaning processes. Firstly, a rapid, isopropanol alcohol free texturing method is successfully demonstrated to shorten the process time and reduce the consumption of chemicals. This method utilizes the special chemical properties of triethylamine, which can form Si-N bonds with wafer surface atoms. Secondly, a room-temperature anisotropic emitter etch-back process is developed to improve the n+ emitter passivation. Using this method, 19.0% efficient screen-printed aluminium back surface field solar cells are developed that show an efficiency gain of 0.15% (absolute) compared with conventionally made solar cells. Finally, state-of-the-art silicon surface passivation results are achieved using hydrogen plasma etching as a dry alternative to the classical hydrofluoric acid wet-chemical process. The effective native oxide removal and the hydrogenation of the silicon surface are shown to be the reasons for the excellent level of surface passivation achieved with this novel method.
Role of bond adaptability in the passivation of colloidal quantum dot solids.
Thon, Susanna M; Ip, Alexander H; Voznyy, Oleksandr; Levina, Larissa; Kemp, Kyle W; Carey, Graham H; Masala, Silvia; Sargent, Edward H
2013-09-24
Colloidal quantum dot (CQD) solids are attractive materials for photovoltaic devices due to their low-cost solution-phase processing, high absorption cross sections, and their band gap tunability via the quantum size effect. Recent advances in CQD solar cell performance have relied on new surface passivation strategies. Specifically, cadmium cation passivation of surface chalcogen sites in PbS CQDs has been shown to contribute to lowered trap state densities and improved photovoltaic performance. Here we deploy a generalized solution-phase passivation strategy as a means to improving CQD surface management. We connect the effects of the choice of metal cation on solution-phase surface passivation, film-phase trap density of states, minority carrier mobility, and photovoltaic power conversion efficiency. We show that trap passivation and midgap density of states determine photovoltaic device performance and are strongly influenced by the choice of metal cation. Supported by density functional theory simulations, we propose a model for the role of cations, a picture wherein metals offering the shallowest electron affinities and the greatest adaptability in surface bonding configurations eliminate both deep and shallow traps effectively even in submonolayer amounts. This work illustrates the importance of materials choice in designing a flexible passivation strategy for optimum CQD device performance.
Molecular dynamics study of solid-liquid heat transfer and passive liquid flow
NASA Astrophysics Data System (ADS)
Yesudasan Daisy, Sumith
High heat flux removal is a challenging problem in boilers, electronics cooling, concentrated photovoltaic and other power conversion devices. Heat transfer by phase change is one of the most efficient mechanisms for removing heat from a solid surface. Futuristic electronic devices are expected to generate more than 1000 W/cm2 of heat. Despite the advancements in microscale and nanoscale manufacturing, the maximum passive heat flux removal has been 300 W/cm2 in pool boiling. Such limitations can be overcome by developing nanoscale thin-film evaporation based devices, which however require a better understanding of surface interactions and liquid vapor phase change process. Evaporation based passive flow is an inspiration from the transpiration process that happens in trees. If we can mimic this process and develop heat removal devices, then we can develop efficient cooling devices. The existing passive flow based cooling devices still needs improvement to meet the future demands. To improve the efficiency and capacity of these devices, we need to explore and quantify the passive flow happening at nanoscales. Experimental techniques have not advanced enough to study these fundamental phenomena at the nanoscale, an alternative method is to perform theoretical study at nanoscales. Molecular dynamics (MD) simulation is a widely accepted powerful tool for studying a range of fundamental and engineering problems. MD simulations can be utilized to study the passive flow mechanism and heat transfer due to it. To study passive flow using MD, apart from the conventional methods available in MD, we need to have methods to simulate the heat transfer between solid and liquid, local pressure, surface tension, density, temperature calculation methods, realistic boundary conditions, etc. Heat transfer between solid and fluids has been a challenging area in MD simulations, and has only been minimally explored (especially for a practical fluid like water). Conventionally, an equilibrium canonical ensemble (NVT) is simulated using thermostat algorithms. For research in heat transfer involving solid liquid interaction, we need to perform non equilibrium MD (NEMD) simulations. In such NEMD simulations, the methods used for simulating heating from a surface is very important and must capture proper physics and thermodynamic properties. Development of MD simulation techniques to simulate solid-liquid heating and the study of fundamental mechanism of passive flow is the main focus of this thesis. An accurate surface-heating algorithm was developed for water which can now allow the study of a whole new set of fundamental heat transfer problems at the nanoscale like surface heating/cooling of droplets, thin-films, etc. The developed algorithm is implemented in the in-house developed C++ MD code. A direct two dimensional local pressure estimation algorithm is also formulated and implemented in the code. With this algorithm, local pressure of argon and platinum interaction is studied. Also, the surface tension of platinum-argon (solid-liquid) was estimated directly from the MD simulations for the first time. Contact angle estimation studies of water on platinum, and argon on platinum were also performed. A thin film of argon is kept above platinum plate and heated in the middle region, leading to the evaporation and pressure reduction thus creating a strong passive flow in the near surface region. This observed passive liquid flow is characterized by estimating the pressure, density, velocity and surface tension using Eulerian mapping method. Using these simulation, we have demonstrated the fundamental nature and origin of surface-driven passive flow. Heat flux removed from the surface is also estimated from the results, which shows a significant improvement can be achieved in thermal management of electronic devices by taking advantage of surface-driven strong passive liquid flow. Further, the local pressure of water on silicon di-oxide surface is estimated using the LAMMPS atomic to continuum (ATC) package towards the goal of simulating the passive flow in water.
Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer.
Black, L E; Cavalli, A; Verheijen, M A; Haverkort, J E M; Bakkers, E P A M; Kessels, W M M
2017-10-11
III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a PO x layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since PO x is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al 2 O 3 capping layer to form a PO x /Al 2 O 3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm -2 ), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as nanolasers and solar cells.
Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer
2017-01-01
III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a POx layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since POx is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al2O3 capping layer to form a POx/Al2O3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm–2), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as nanolasers and solar cells. PMID:28885032
NASA Astrophysics Data System (ADS)
Yoshiba, Shuhei; Tanitsu, Katsuya; Suda, Yoshiyuki; Kamisako, Koichi
2017-06-01
Passivation films or antireflection coatings are generally prepared using costly vacuum or high-temperature processes. Thus, we report the preparation of TiO x -SiO x composite films by novel spin coatable solutions for the synthesis of low-cost passivation coating materials. The desired films were formed by varying the mixing ratios of TiO x and SiO x , and the resulting films exhibited excellent surface passivation properties. For the p-type wafer, an optimal effective surface recombination velocity (S eff) of 93 cm/s was achieved at \\text{TiO}x:\\text{SiO}x = 6:4, while a surface recombination current density (J 0s) of 195 fA/cm2 was obtained. In contrast, for the n-type wafer, an S eff of 27 cm/s and a J 0s of 38 fA/cm2 were achieved at \\text{TiO}x:\\text{SiO}x = 8:2. This excellent surface passivation effect could be attributed to the low interface state density and high positive fixed charge density. Furthermore, the thickness of the interfacial SiO x layer was determined to be important for obtaining the desired surface passivation effect.
Advances in satellite oceanography
NASA Technical Reports Server (NTRS)
Brown, O. B.; Cheney, R. E.
1983-01-01
Technical advances and recent applications of active and passive satellite remote sensing techniques to the study of oceanic processes are summarized. The general themes include infrared and visible radiometry, active and passive microwave sensors, and buoy location systems. The surface parameters of sea surface temperature, windstream, sea state, altimetry, color, and ice are treated as applicable under each of the general methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Armin, E-mail: armin.richter@ise.fraunhofer.de; Benick, Jan; Kimmerle, Achim
2014-12-28
Thin layers of Al{sub 2}O{sub 3} are well known for the excellent passivation of p-type c-Si surfaces including highly doped p{sup +} emitters, due to a high density of fixed negative charges. Recent results indicate that Al{sub 2}O{sub 3} can also provide a good passivation of certain phosphorus-diffused n{sup +} c-Si surfaces. In this work, we studied the recombination at Al{sub 2}O{sub 3} passivated n{sup +} surfaces theoretically with device simulations and experimentally for Al{sub 2}O{sub 3} deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal duemore » to depletion or weak inversion of the charge carriers at the c-Si/Al{sub 2}O{sub 3} interface. This pronounced maximum was also observed experimentally for n{sup +} surfaces passivated either with Al{sub 2}O{sub 3} single layers or stacks of Al{sub 2}O{sub 3} capped by SiN{sub x}, when activated with a low temperature anneal (425 °C). In contrast, for Al{sub 2}O{sub 3}/SiN{sub x} stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n{sup +} diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al{sub 2}O{sub 3}/SiN{sub x} stacks can provide not only excellent passivation on p{sup +} surfaces but also on n{sup +} surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.« less
Myneni, Ganapati Rao [Yorktown, VA; Hjorvarsson, Bjorgvin [Lagga Arby, SE; Ciovati, Gianluigi [Newport News, VA
2006-12-19
A niobium cavity exhibiting high quality factors at high gradients is provided by treating a niobium cavity through a process comprising: 1) removing surface oxides by plasma etching or a similar process; 2) removing hydrogen or other gases absorbed in the bulk niobium by high temperature treatment of the cavity under ultra high vacuum to achieve hydrogen outgassing; and 3) assuring the long term chemical stability of the niobium cavity by applying a passivating layer of a superconducting material having a superconducting transition temperature higher than niobium thereby reducing losses from electron (cooper pair) scattering in the near surface region of the interior of the niobium cavity. According to a preferred embodiment, the passivating layer comprises niobium nitride (NbN) applied by reactive sputtering.
NASA Astrophysics Data System (ADS)
Henry, Nathan C.; Knorr, Daniel B.; Williams, Kristen S.; Baril, Neil; Nallon, Eric; Lenhart, Joseph L.; Andzelm, Jan W.; Pellegrino, Joseph; Tidrow, Meimei; Cleveland, Erin; Bandara, Sumith
2015-05-01
The efficacy of solution deposition of thiolated self-assembled monolayers (SAMs) has been explored for the purpose of passivating III-V type II superlattice (T2SL) photodetectors, more specifically a p-type heterojunction device. Sulfur passivation has previously been achieved on T2SL devices. However, degradation over time, temperature sensitivity and inconsistent reproducibility necessitate a physical encapsulate that can chemically bond to the chemical passivant. Thus, this research investigates two passivation methods, surface passivation with a thiol monolayer and passivation with a polymer encapsulant with a view toward future combination of these techniques. Analysis of the physical and chemical condition of the surface prior to deposition assisted in the development of ideal processes for optimized film quality. Successful deposition was facilitated by in situ oxide removal. Various commercially available functional (cysteamine) and non-functional (alkane) thiolated monolayers were investigated. Dark current was reduced by 3 orders of magnitude and achieved negligible surface leakage at low bias levels. The lowest dark current result, 7.69 × 10-6 A/cm2 at 50 mV, was achieved through passivation with cysteamine.
NASA Astrophysics Data System (ADS)
Salbreux, Guillaume; Jülicher, Frank
2017-09-01
We derive a fully covariant theory of the mechanics of active surfaces. This theory provides a framework for the study of active biological or chemical processes at surfaces, such as the cell cortex, the mechanics of epithelial tissues, or reconstituted active systems on surfaces. We introduce forces and torques acting on a surface, and derive the associated force balance conditions. We show that surfaces with in-plane rotational symmetry can have broken up-down, chiral, or planar-chiral symmetry. We discuss the rate of entropy production in the surface and write linear constitutive relations that satisfy the Onsager relations. We show that the bending modulus, the spontaneous curvature, and the surface tension of a passive surface are renormalized by active terms. Finally, we identify active terms which are not found in a passive theory and discuss examples of shape instabilities that are related to active processes in the surface.
Enhanced Passive Cooling for Waterless-Power Production Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Salvador B.
2016-06-14
Recent advances in the literature and at SNL indicate the strong potential for passive, specialized surfaces to significantly enhance power production output. Our exploratory computational and experimental research indicates that fractal and swirl surfaces can help enable waterless-power production by increasing the amount of heat transfer and turbulence, when compared with conventional surfaces. Small modular reactors, advanced reactors, and non-nuclear plants (e.g., solar and coal) are ideally suited for sCO2 coolant loops. The sCO2 loop converts the thermal heat into electricity, while the specialized surfaces passively and securely reject the waste process heat in an environmentally benign manner. The resultant,more » integrated energy systems are highly suitable for small grids, rural areas, and arid regions.« less
On the origin of the photocurrent of electrochemically passivated p-InP(100) photoelectrodes.
Goryachev, Andrey; Gao, Lu; van Veldhoven, René P J; Haverkort, Jos E M; Hofmann, Jan P; Hensen, Emiel J M
2018-05-15
III-V semiconductors such as InP are highly efficient light absorbers for photoelectrochemical (PEC) water splitting devices. Yet, their cathodic stability is limited due to photocorrosion and the measured photocurrents do not necessarily originate from H2 evolution only. We evaluated the PEC stability and activation of model p-InP(100) photocathodes upon photoelectrochemical passivation (i.e. repeated surface oxidation/reduction). The electrode was subjected to a sequence of linear potential scans with or without intermittent passivation steps (repeated passivation and continuous reduction, respectively). The evolution of H2 and PH3 gases was monitored by online electrochemical mass spectrometry (OLEMS) and the Faradaic efficiencies of these processes were determined. Repeated passivation led to an increase of the photocurrent in 0.5 M H2SO4, while continuous reduction did not affect the photocurrent of p-InP(100). Neither H2 nor PH3 formation increased to the same extent as the photocurrent during the repeated passivation treatment. Surface analysis of the spent electrodes revealed substantial roughening of the electrode surface by repeated passivation, while continuous reduction left the surface unaltered. On the other hand, photocathodic conditioning performed in 0.5 M HCl led to the expected correlation between photocurrent increase and H2 formation. Ultimately, the H2 evolution rates of the photoelectrodes in H2SO4 and HCl are comparable. The much higher photocurrent in H2SO4 is due to competing side-reactions. The results emphasize the need for a detailed evaluation of the Faradaic efficiencies of all the involved processes using a chemical-specific technique like OLEMS. Photo-OLEMS can be beneficial in the study of photoelectrochemical reactions enabling the instantaneous detection of small amounts of reaction by-products.
NASA Astrophysics Data System (ADS)
Shu, Zhan
With the absence of shading loss together with improved quality of surface passivation introduced by low temperature processed amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction, the interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell exhibits a potential for higher conversion efficiency and lower cost than a traditional front contact diffused junction solar cell. In such solar cells, the front surface passivation is of great importance to achieve both high open-circuit voltage (Voc) and short-circuit current (Jsc). Therefore, the motivation of this work is to develop a low temperature processed structure for the front surface passivation of IBC-SHJ solar cells, which must have an excellent and stable passivation quality as well as a good anti-reflection property. Four different thin film materials/structures were studied and evaluated for this purpose, namely: amorphous silicon nitride (a-SiNx:H), thick amorphous silicon film (a-Si:H), amorphous silicon/silicon nitride/silicon carbide (a-Si:H/a-SiN x:H/a-SiC:H) stack structure with an ultra-thin a-Si:H layer, and zinc sulfide (ZnS). It was demonstrated that the a-Si:H/a-SiNx:H/a-SiC:H stack surpasses other candidates due to both of its excellent surface passivation quality (SRV<5 cm/s) and lower absorption losses. The low recombination rate at the stack structure passivated c-Si surface is found to be resulted from (i) field effect passivation due to the positive fixed charge (Q fix~1x1011 cm-2 with 5 nm a-Si:H layer) in a-SiNx:H as measured from capacitance-voltage technique, and (ii) reduced defect state density (mid-gap Dit~4x1010 cm-2eV-1) at a-Si:H/c-Si interface provided by a 5 nm thick a-Si:H layer, as characterized by conductance-frequency measurements. Paralleled with the experimental studies, a computer program was developed in this work based on the extended Shockley-Read-Hall (SRH) model of surface recombination. With the help of this program, the experimental injection level dependent SRV curves of the stack passivated c-Si samples were successfully reproduced and the carrier capture cross sections of interface defect states were extracted. Additionally, anti-reflection properties of the stack structure were optimized and optical losses were analyzed. The Voc over 700 mV and Jsc over 38 mA/cm2 were achieved in IBC-SHJ solar cells using the stack structure for front surface passivation. Direct comparison shows that such low temperature deposited stack structure developed in this work achieves comparable device performance to the high temperature processed front surface passivation structure used in other high efficiency IBC solar cells. However, the lower fill factor (FF) of IBC-SHJ solar cell as compared with traditional front a-Si:H/c-Si heterojunction cell (HIT cell) greatly limits the overall performance of these devices. Two-dimensional (2D) simulations were used to comparatively model the HIT and IBC-SHJ solar cells to understand the underlying device physics which controls cell performance. The effects of a wide range of device parameters were investigated in the simulation, and pathways to improve the FF of IBC-SHJ solar cell were suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thi, Trinh Cham, E-mail: s1240009@jaist.ac.jp; Koyama, Koichi; Ohdaira, Keisuke
We improve the passivation property of n-type crystalline silicon (c-Si) surface passivated with a catalytic chemical vapor deposited (Cat-CVD) Si nitride (SiN{sub x}) film by inserting a phosphorous (P)-doped layer formed by exposing c-Si surface to P radicals generated by the catalytic cracking of PH{sub 3} molecules (Cat-doping). An extremely low surface recombination velocity (SRV) of 2 cm/s can be achieved for 2.5 Ω cm n-type (100) floating-zone Si wafers passivated with SiN{sub x}/P Cat-doped layers, both prepared in Cat-CVD systems. Compared with the case of only SiN{sub x} passivated layers, SRV decreases from 5 cm/s to 2 cm/s. The decrease in SRVmore » is the result of field effect created by activated P atoms (donors) in a shallow P Cat-doped layer. Annealing process plays an important role in improving the passivation quality of SiN{sub x} films. The outstanding results obtained imply that SiN{sub x}/P Cat-doped layers can be used as promising passivation layers in high-efficiency n-type c-Si solar cells.« less
Dry etching, surface passivation and capping processes for antimonide based photodetectors
NASA Astrophysics Data System (ADS)
Dutta, Partha; Langer, Jeffery; Bhagwat, Vinay; Juneja, Jasbir
2005-05-01
III-V antimonide based devices suffer from leakage currents. Surface passivation and subsequent capping of the surfaces are absolutely essential for any practical applicability of antimonide based devices. The quest for a suitable surface passivation technology is still on. In this paper, we will present some of the promising recent developments in this area based on dry etching of GaSb based homojunction photodiodes structures followed by various passivation and capping schemes. We have developed a damage-free, universal dry etching recipe based on unique ratios of Cl2/BCl3/CH4/Ar/H2 in ECR plasma. This novel dry plasma process etches all III-V compounds at different rates with minimal damage to the side walls. In GaSb based photodiodes, an order of magnitude lower leakage current, improved ideality factor and higher responsivity has been demonstrated using this recipe compared to widely used Cl2/Ar and wet chemical etch recipes. The dynamic zero bias resistance-area product of the Cl2/BCl3/CH4/Ar/H2 etched diodes (830 Ω cm2) is higher than the Cl2/Ar (300 Ω cm2) and wet etched (330 Ω cm2) diodes. Ammonium sulfide has been known to passivate surfaces of III-V compounds. In GaSb photodiodes, the leakage current density reduces by a factor of 3 upon sulfur passivation using ammonium sulfide. However, device performance degrades over a period of time in the absence of any capping or protective layer. Silicon Nitride has been used as a cap layer by various researchers. We have found that by using silicon nitride caps, the devices exhibit higher leakage than unpassivated devices probably due to plasma damage during SiNx deposition. We have experimented with various polymers for capping material. It has been observed that ammonium sulfide passivation when combined with parylene capping layer (150 Å), devices retain their improved performance for over 4 months.
Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2
NASA Astrophysics Data System (ADS)
Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas; Fadil, Ahmed; Syväjärvi, Mikael; Petersen, Paul Michael; Ou, Haiyan
2016-07-01
Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface for TiO2 deposition, a three-step cleaning procedure was introduced after RIE etching. The morphology of anatase TiO2 indicates that the nano-textured substrate has a much higher surface nucleated grain density than a flat substrate at the beginning of the deposition process. The corresponding reflectance increases with TiO2 thickness due to increased surface diffuse reflection. The passivation effect of ALD TiO2 thin film on the nano-textured fluorescent 6H-SiC sample was also investigated and a PL intensity improvement of 8.05% was obtained due to the surface passivation.
Semiconductor/dielectric interface engineering and characterization
NASA Astrophysics Data System (ADS)
Lucero, Antonio T.
The focus of this dissertation is the application and characterization of several, novel interface passivation techniques for III-V semiconductors, and the development of an in-situ electrical characterization. Two different interface passivation techniques were evaluated. The first is interface nitridation using a nitrogen radical plasma source. The nitrogen radical plasma generator is a unique system which is capable of producing a large flux of N-radicals free of energetic ions. This was applied to Si and the surface was studied using x-ray photoelectron spectroscopy (XPS). Ultra-thin nitride layers could be formed from 200-400° C. Metal-oxide-semiconductor capacitors (MOSCAPs) were fabricated using this passivation technique. Interface nitridation was able to reduce leakage current and improve the equivalent oxide thickness of the devices. The second passivation technique studied is the atomic layer deposition (ALD) diethylzinc (DEZ)/water treatment of sulfur treated InGaAs and GaSb. On InGaAs this passivation technique is able to chemically reduce higher oxidation states on the surface, and the process results in the deposition of a ZnS/ZnO interface passivation layer, as determined by XPS. Capacitance-voltage (C-V) measurements of MOSCAPs made on p-InGaAs reveal a large reduction in accumulation dispersion and a reduction in the density of interfacial traps. The same technique was applied to GaSb and the process was studied in an in-situ half-cycle XPS experiment. DEZ/H2O is able to remove all Sb-S from the surface, forming a stable ZnS passivation layer. This passivation layer is resistant to further reoxidation during dielectric deposition. The final part of this dissertation is the design and construction of an ultra-high vacuum cluster tool for in-situ electrical characterization. The system consists of three deposition chambers coupled to an electrical probe station. With this setup, devices can be processed and subsequently electrically characterized without exposing the sample to air. This is the first time that such a system has been reported. A special air-gap C-V probe will allow top gated measurements to be made, allowing semiconductor-dielectric interfaces to be studied during device processing.
Nitridation of SiO2 for surface passivation
NASA Technical Reports Server (NTRS)
Lai, S. K. C.
1985-01-01
An attempt is made to relate the electrical properties of silicon dioxide film to the process history. A model is proposed to explain some of the observed results. It is shown that with our present knowledge of the dielectric, silicon dioxide film shows a lot of promise for its use in surface passivation, both for its resistance to impurity diffusion and for its resistance to radiation damage effects.
NASA Technical Reports Server (NTRS)
Spencer, Michael; Dunbar, Scott; Chen, Curtis
2013-01-01
The Soil Moisture Active/Passive (SMAP) mission is scheduled for a late 2014 launch date. The mission will use both active radar and passive radiometer instruments at L-Band in order to achieve the science objectives of measuring soil moisture and land surface freeze-thaw state. To achieve requirements for a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. In this paper, focus will be placed on the radar design. The radar will employ synthetic-aperture processing to achieve a "moderate" resolution dual-pol product over a 1000 km swath. Because the radar is operating continuously, very frequent temporal coverage will be achieved at high latitudes. This data will be used to produce a surface freeze/thaw state data product.
Process and design considerations for high-efficiency solar cells
NASA Technical Reports Server (NTRS)
Rohati, A.; Rai-Choudhury, P.
1985-01-01
This paper shows that oxide surface passivation coupled with optimum multilayer anti-reflective coating can provide approx. 3% (absolute) improvement in solar cell efficiency. Use of single-layer AR coating, without passivation, gives cell efficiencies in the range of 15 to 15.5% on high-quality, 4 ohm-cm as well as 0.1 to 0.2 ohm-cm float-zone silicon. Oxide surface passivation alone raises the cell efficiency to or = 17%. An optimum double-layer AR coating on oxide-passivated cells provides an additional approx. 5 to 10% improvement over a single-layer AR-coated cell, resulting in cell efficiencies in excess of 18%. Experimentally observed improvements are supported by model calculations and an approach to or = 20% efficient cells is discussed.
NASA Technical Reports Server (NTRS)
Faur, Mircea; Faur, Maria; Jenkins, Phillip; Goradia, Manju; Goradia, Chandra; Bailey, Sheila; Weinberg, Irving; Jayne, Douglas
1990-01-01
The effects of various surface preparation procedures, including chemical treatment and anodic or chemical oxidation, closed-ampoule diffusion conditions, and post-diffusion surface preparation and annealing conditions, on the passivating properties of InP have been investigated in order to optimize the fabrication procedures of n(+)p InP solar cells made by closed-ampoule diffusion of sulfur into p-type InP. The InP substrates used were p-type Cd-doped to a level of 1.7 x 10 to the 16th/cu cm, Zn-doped to levels of 2.2 x 10 to the 16th and 1.2 x 10 to the 18th/cu cm, and n-type S-doped to 4.4 x 10 to the 18th/cu cm. The passivating properties have been evaluated from photoluminescence (PL) and conductance-voltage (G-V) data. Good agreement was found between the level of surface passivation and the composition of different surface layers as revealed by X-ray photoelectron spectroscopy (XPS) analysis.
Germanium detector passivated with hydrogenated amorphous germanium
Hansen, William L.; Haller, Eugene E.
1986-01-01
Passivation of predominantly crystalline semiconductor devices (12) is provided for by a surface coating (21) of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating (21) of amorphous germanium onto the etched and quenched diode surface (11) in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices (12), which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating (21) compensates for pre-existing undesirable surface states as well as protecting the semiconductor device (12) against future impregnation with impurities.
Chen, Qi; Ding, Huaiyi; Wu, Yukun; Sui, Mengqiao; Lu, Wei; Wang, Bing; Su, Wenming; Cui, Zheng; Chen, Liwei
2013-05-21
The adsorption of O2/H2O molecules on the ZnO nanowire (NW) surface results in the long lifetime of photo-generated carriers and thus benefits ZnO NW-based ultraviolet photodetectors by suppressing the dark current and improving the photocurrent gain, but the slow adsorption process also leads to slow detector response time. Here we show that a thermally evaporated copper phthalocyanine film is effective in passivating surface trap states of ZnO NWs. As a result, the organic/inorganic hybrid photodetector devices exhibit simultaneously improved photosensitivity and response time. This work suggests that it could be an effective way in interfacial passivation using organic/inorganic hybrid structures.
Novel Passivating/Antireflective Coatings for Space Solar Cells
NASA Technical Reports Server (NTRS)
Faur, Mircea; Faur, Maria; Bailey, S. G.; Flood, D. J.; Faur, H. M.; Mateescu, C. G.; Alterovitz, S. A.; Scheiman, D.; Jenkins, P. P.; Brinker, D. J.
2005-01-01
We are developing a novel process to grow passivating/antireflective (AR) coatings for terrestrial and space solar cells. Our approach involves a Room Temperature Wet Chemical Growth (RTWCG) process, which was pioneered, and is under development at SPECMAT, Inc., under a Reimbursable Space Act Agreement with NASA Glenn Research Center. The RTWCG passivating/AR coatings with graded index of refraction are applied in one easy step on finished (bare) cells. The RTWCG coatings grown on planar, textured and porous Si, as well as on poly-Si, CuInSe2, and III-V substrates, show excellent uniformity irrespective of surface topography, crystal orientation, size and shape. In this paper we present some preliminary results of the RTWCG coatings on Si and III-V substrates that show very good potential for use as a passivation/AR coating for space solar cell applications. Compared to coatings grown using conventional techniques, the RTWCG coatings have the potential to reduce reflection losses and improve current collection near the illuminated surface of space solar cells, while reducing the fabrication costs.
Passivation layer breakdown during laser-fired contact formation for photovoltaic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghavan, A.; DebRoy, T.; Palmer, T. A.
2014-07-14
Low resistance laser-fired ohmic contacts (LFCs) can be formed on the backside of Si-based solar cells using microsecond pulses. However, the impact of these longer pulse durations on the dielectric passivation layer is not clear. Retention of the passivation layer during processing is critical to ensure low recombination rates of electron-hole pairs at the rear surface of the device. In this work, advanced characterization tools are used to demonstrate that although the SiO{sub 2} passivation layer melts directly below the laser, it is well preserved outside the immediate LFC region over a wide range of processing parameters. As a result,more » low recombination rates at the passivation layer/wafer interface can be expected despite higher energy densities associated with these pulse durations.« less
Jung, Su Min; Kang, Han Lim; Won, Jong Kook; Kim, JaeHyun; Hwang, ChaHwan; Ahn, KyungHan; Chung, In; Ju, Byeong-Kwon; Kim, Myung-Gil; Park, Sung Kyu
2018-01-31
The recent development of high-performance colloidal quantum dot (QD) thin-film transistors (TFTs) has been achieved with removal of surface ligand, defect passivation, and facile electronic doping. Here, we report on high-performance solution-processed CdSe QD-TFTs with an optimized surface functionalization and robust defect passivation via hydrazine-free metal chalcogenide (MCC) ligands. The underlying mechanism of the ligand effects on CdSe QDs has been studied with hydrazine-free ex situ reaction derived MCC ligands, such as Sn 2 S 6 4- , Sn 2 Se 6 4- , and In 2 Se 4 2- , to allow benign solution-process available. Furthermore, the defect passivation and remote n-type doping effects have been investigated by incorporating indium nanoparticles over the QD layer. Strong electronic coupling and solid defect passivation of QDs could be achieved by introducing electronically active MCC capping and thermal diffusion of the indium nanoparticles, respectively. It is also noteworthy that the diffused indium nanoparticles facilitate charge injection not only inter-QDs but also between source/drain electrodes and the QD semiconductors, significantly reducing contact resistance. With benign organic solvents, the Sn 2 S 6 4- , Sn 2 Se 6 4- , and In 2 Se 4 2- ligand based QD-TFTs exhibited field-effect mobilities exceeding 4.8, 12.0, and 44.2 cm 2 /(V s), respectively. The results reported here imply that the incorporation of MCC ligands and appropriate dopants provide a general route to high-performance, extremely stable solution-processed QD-based electronic devices with marginal toxicity, offering compatibility with standard complementary metal oxide semiconductor processing and large-scale on-chip device applications.
Dark current reduction of Ge photodetector by GeO₂ surface passivation and gas-phase doping.
Takenaka, Mitsuru; Morii, Kiyohito; Sugiyama, Masakazu; Nakano, Yoshiaki; Takagi, Shinichi
2012-04-09
We have investigated the dark current of a germanium (Ge) photodetector (PD) with a GeO₂ surface passivation layer and a gas-phase-doped n+/p junction. The gas-phase-doped PN diodes exhibited a dark current of approximately two orders of magnitude lower than that of the diodes formed by a conventional ion implantation process, indicating that gas-phase doping is suitable for low-damage PN junction formation. The bulk leakage (Jbulk) and surface leakage (Jsurf) components of the dark current were also investigated. We have found that GeO₂ surface passivation can effectively suppress the dark current of a Ge PD in conjunction with gas-phase doping, and we have obtained extremely low values of Jbulk of 0.032 mA/cm² and Jsurf of 0.27 μA/cm.
NASA Astrophysics Data System (ADS)
Joo, So-Yeong; Park, Hyun-Su; Kim, Do-yeon; Kim, Bum-Sung; Lee, Chan Gi; Kim, Woo-Byoung
2018-01-01
In this study, we have developed an effective amino passivation process for quantum dots (QDs) at room temperature and have investigated a passivation mechanism using a photo-assisted chemical method. As a result of the reverse reaction of the H2O molecules, the etching kinetics of the photo-assisted chemical method increased upon increasing the 3-amino-1-propanol (APOL)/H2O ratio of the etching solution. Photon-excited electron-hole pairs lead to strong bonding between the organic and surface atoms of the QDs, and results in an increase of the quantum yield (QY%). This passivation method is also applicable to CdSe/ZnSe core/shell structures of QDs, due to the passivation of mid-gap defects states at the interface. The QY% of the as-synthesized CdSe QDs is dramatically enhanced by the amino passivation from 37% to 75% and the QY% of the CdSe/ZnSe core/shell QDs is also improved by ˜28%.
NASA Astrophysics Data System (ADS)
ur Rahman, Zia; Deen, K. M.; Cano, Lawrence; Haider, Waseem
2017-07-01
Corrosion resistance and biocompatibility of 316L stainless steel implants depend on the surface features and the nature of the passive film. The influence of electropolishing on the surface topography, surface free energy and surface chemistry was determined by atomic force microscopy, contact angle meter and X-ray photoelectron spectroscopy, respectively. The electropolishing of 316L stainless steel was conducted at the oxygen evolution potential (EPO) and below the oxygen evolution potential (EPBO). Compared to mechanically polished (MP) and EPO, the EPBO sample depicted lower surface roughness (Ra = 6.07 nm) and smaller surface free energy (44.21 mJ/m2). The relatively lower corrosion rate (0.484 mpy) and smaller passive current density (0.619 μA/cm2) as determined from cyclic polarization scans was found to be related with the presence of OH, Cr(III), Fe(0), Fe(II) and Fe(III) species at the surface. These species assured the existence of relatively uniform passive oxide film over EPBO surface. Moreover, the relatively large charge transfer (Rct) and passive film resistance (Rf) registered by EPBO sample from impedance spectroscopy analysis confirmed its better electrochemical performance. The in vitro response of these polished samples toward MC3T3 pre-osteoblast cell proliferation was determined to be directly related with their surface and electrochemical properties.
Characterization of Semiconductor Nanocrystal Assemblies as Components of Optoelectronic Devices
NASA Astrophysics Data System (ADS)
Malfavon-Ochoa, Mario
This dissertation presents new insight into the ability of small molecule passivated NCs to achieve intimate approach distances, despite being well passivated, while developing guiding principles in the area of ligand mediated microstructure control and the resulting macroscopic optical and electronic properties that close packing of high quality NCs enables. NC ligand coverage will be characterized quantitatively through thermogravimetric analysis (TGA), and qualitatively by photoluminescence and electroluminescence, in the case of functional devices; illustrating the importance of practitioner dependent control of ligand coverage through variations in the dispersion precipitation purification procedure. A unique examination of the relative contribution of energy and charge transfer in NC LEDs will demonstrate the ability to achieve charge transfer, at a level competitive with energy transfer, to well passivated NCs at various wt% loading in a polymer matrix. The observation of potential dependent recombination zones within an active layer further suggest novel, NC surface passivation mediated control of blend microstructure during solution processing towards the development of a bi-continuous network. Next, NC self-assembly and resulting microstructure dependent optical and electronic properties will be examined through electroluminescence and high-resolution transmission electron microscopy (TEM) micrographs of functional NC/polymer bulk heterojunction LEDs. The joint characterization of NC optical properties, and self-assembly microstructure provide a deeper understanding of the significant and inseparable effects of minimal changes in NC surface passivation on structure and function, and emphasize the potential to rely on strongly passivating ligands to control physical properties and processing parameters concurrently towards higher efficiency devices via low cost processing. Finally, micro-contact printing of blazed transmission gratings, using stable dispersions of core and core/shell NCs will be shown to produce close packed assemblies of NCs forming near-wavelength luminescent superstructures separated in space. We show the dominant contribution of a two-monolayer thick sharp interface CdS shell to the diffraction efficiency, and necessarily the refractive index, of the NCs, independent of core size. Utilization of these gratings as in-coupling elements at various positions within a device architecture are also examined. These new observations were achieved by unprecedented control of NC architecture during dispersion processing, while maintaining high luminescence, made possible by optimized NC surface passivation. These studies enable the formation of new LED architectures, and new optoelectronic devices based on angle resolved, monochromatic fluorescence from diffraction gratings prepared from simple solution processing approaches. Further, the novel observation of angle amplified interfering fluorescence from these features is argued to be a result of long range radiative coupling and superradiance enabled by the monodispersity and high-quality NC surface passivation described herein.
Luo, Hao; Liang, Lingyan; Cao, Hongtao; Dai, Mingzhi; Lu, Yicheng; Wang, Mei
2015-08-12
For ultrathin semiconductor channels, the surface and interface nature are vital and often dominate the bulk properties to govern the field-effect behaviors. High-performance thin-film transistors (TFTs) rely on the well-defined interface between the channel and gate dielectric, featuring negligible charge trap states and high-speed carrier transport with minimum carrier scattering characters. The passivation process on the back-channel surface of the bottom-gate TFTs is indispensable for suppressing the surface states and blocking the interactions between the semiconductor channel and the surrounding atmosphere. We report a dielectric layer for passivation of the back-channel surface of 20 nm thick tin monoxide (SnO) TFTs to achieve ambipolar operation and complementary metal oxide semiconductor (CMOS) like logic devices. This chemical passivation reduces the subgap states of the ultrathin channel, which offers an opportunity to facilitate the Fermi level shifting upward upon changing the polarity of the gate voltage. With the advent of n-type inversion along with the pristine p-type conduction, it is now possible to realize ambipolar operation using only one channel layer. The CMOS-like logic inverters based on ambipolar SnO TFTs were also demonstrated. Large inverter voltage gains (>100) in combination with wide noise margins are achieved due to high and balanced electron and hole mobilities. The passivation also improves the long-term stability of the devices. The ability to simultaneously achieve field-effect inversion, electrical stability, and logic function in those devices can open up possibilities for the conventional back-channel surface passivation in the CMOS-like electronics.
NASA Astrophysics Data System (ADS)
Takahashi, Hiroshi; Hashizume, Tamotsu; Hasegawa, Hideki
1999-02-01
In order to understand and optimize a novel oxide-free InP passivation process using a silicon surface quantum well, a detailed in situ X-ray photoelectron spectroscopy (XPS) and ultrahigh vacuum (UHV) contactless capacitance-voltage (C-V) study of the interface was carried out. Calculation of quantum levels in the silicon quantum well was performed on the basis of the band lineup of the strained Si3N4/Si/InP interface and the result indicated that the interface should become free of gap states when the silicon layer thickness is below 5 Å. Experimentally, such a delicate Si3N4/Si/InP structure was realized by partial nitridation of a molecular beam epitaxially (MBE) grown pseudomorphic silicon layer using an electron cyclotron resonance (ECR) N2 plasma. The progress of nitridation was investigated in detail by angle-resolved XPS. A newly developed UHV contactless C-V method realized in situ characterization of surface electronic properties of InP at each processing step for passivation. It was found that the interface state density decreased substantially into the 1010 cm-2 eV-1 range by optimizing the nitridation process of the silicon layer. It was concluded that both the surface bond termination and state removal by quantum confinement are responsible for the NSS reduction.
Cleaning Processes across NASA Centers
NASA Technical Reports Server (NTRS)
Hammond, John M.
2010-01-01
All significant surfaces of the hardware must be pre-cleaned to remove dirt, grit, scale, corrosion, grease, oil and other foreign matter prior to any final precision cleaning process. Metallic parts shall be surface treated (cleaned, passivated, pickled and/or coated) as necessary to prevent latent corrosion and contamination.
Effectiveness of passivation techniques on hydrogen desorption in a tritium environment
NASA Astrophysics Data System (ADS)
Woodall, Steven Michael
2009-11-01
Tritium is a radioactive isotope of hydrogen. It is used as a fuel in fusion reactors, a booster material in nuclear weapons and as a light source in commercial applications. When tritium is used in fusion reactors, and especially when used in the manufacture of nuclear weapons, purity is critical. For U.S. Department of Energy use, tritium is recycled by Savannah River Site in South Carolina and is processed to a minimum purity of 99.5%. For use elsewhere in the country, it must be shipped and stored, while maintaining the highest purity possible. As an isotope of hydrogen it exchanges easily with the most common isotope of hydrogen, protium. Stainless steel bottles are used to transport and store tritium. Protium, present in air, becomes associated in and on the surface of stainless steel during and after the manufacture of the steel. When filled, the tritium within the bottle exchanges with the protium in and on the surface of the stainless steel, slowly contaminating the pure tritium with protium. The stainless steel is therefore passivated to minimize the protium outgrowth of the bottles into the pure tritium. This research is to determine how effective different passivation techniques are in minimizing the contamination of tritium with protium. Additionally, this research will attempt to determine a relationship between surface chemistry of passivated steels and protium contamination of tritium. The conclusions of this research found that passivated bottles by two companies which routinely provide passivated materials to the US Department of Energy provide low levels of protium outgrowth into pure tritium. A bottle passivated with a material to prevent excessive corrosion in a highly corrosive environment, and a clean and polished bottle provided outgrowth rates roughly twice those of the passivated bottles above. Beyond generally high levels of chromium, oxygen, iron and nickel in the passivated bottles, there did not appear to be a strong correlation between surface chemistry in the surface of the bottles and protium outgrowth rates.
Zhou, D; Xu, T; Lambert, Y; Cristini-Robbe; Stiévenard, D
2015-12-01
The light absorption of polysilicon planar junctions can be improved using nanostructured top surfaces due to their enhanced light harvesting properties. Nevertheless, associated with the higher surface, the roughness caused by plasma etching and defects located at the grain boundary in polysilicon, the concentration of the recombination centers increases, leading to electrical performance deterioration. In this work, we demonstrate that wet oxidation combined with hydrogen passivation using SiN(x):H are the key technological processes to significantly decrease the surface recombination and improve the electrical properties of nanostructured n(+)-i-p junctions. Nanostructured surface is fabricated by nanosphere lithography in a low-cost and controllable approach. Furthermore, it has been demonstrated that the successive annealing of silicon nitride films has significant effect on the passivation quality, resulting in some improvements on the efficiency of the Si nanostructure-based solar cell device.
NASA Astrophysics Data System (ADS)
Gruszko, J.; Majorana Collaboration
2017-09-01
The Majorana Demonstrator searches for neutrinoless double-beta decay of 76Ge using arrays of high-purity germanium detectors. If observed, this process would demonstrate that lepton number is not a conserved quantity in nature, with implications for grand-unification and for explaining the predominance of matter over antimatter in the universe. A problematic background in such large granular detector arrays is posed by alpha particles. In the Majorana Demonstrator, events have been observed that are consistent with energy-degraded alphas originating on the passivated surface, leading to a potential background contribution in the region-of-interest for neutrinoless double-beta decay. However, it is also observed that when energy deposition occurs very close to the passivated surface, charges drift through the bulk onto that surface, and then drift along it with greatly reduced mobility. This leads to both a reduced prompt signal and a measurable change in slope of the tail of a recorded pulse. In this contribution we discuss the characteristics of these events and the development of a filter that can identify the occurrence of this delayed charge recovery, allowing for the efficient rejection of passivated surface alpha events in analysis.
NASA Astrophysics Data System (ADS)
Sathyaseelan, V. S.; Rufus, A. L.; Chandramohan, P.; Subramanian, H.; Velmurugan, S.
2015-12-01
Full system decontamination of Primary Heat Transport (PHT) system of Pressurised Heavy Water Reactors (PHWRs) resulted in low decontamination factors (DF) on stainless steel (SS) surfaces. Hence, studies were carried out with 403 SS and 410 SS that are the material of construction of "End-Fitting body" and "End-Fitting Liner tubes". Three formulations were evaluated for the dissolution of passive films formed over these alloys viz., i) Two-step process consisting of oxidation and reduction reactions, ii) Dilute Chemical Decontamination (DCD) and iii) High Temperature Process. The two-step and high temperature processes could dissolve the oxide completely while the DCD process could remove only 60%. Various techniques like XRD, Raman spectroscopy and SEM-EDX were used for assessing the dissolution process. The two-step process is time consuming, laborious while the high temperature process is less time consuming and is recommended for SS decontamination.
Suresh, S; Unni, Gautam E; Satyanarayana, M; Sreekumaran Nair, A; Mahadevan Pillai, V P
2018-08-15
Guiding and capturing photons at the nanoscale by means of metal nanoparticles and interfacial engineering for preventing back-electron transfer are well documented techniques for performance enhancement in excitonic solar cells. Drifting from the conventional route, we propose a simple one-step process to integrate both metal nanoparticles and surface passivation layer in the porous photoanode matrix of a dye-sensitized solar cell. Silver nanoparticles and Nb 2 O 5 surface passivation layer are simultaneously deposited on the surface of a highly porous nanocrystalline TiO 2 photoanode, facilitating an absorption enhancement in the 465 nm and 570 nm wavelength region and a reduction in back-electron transfer in the fabricated dye-sensitized solar cells together. The TiO 2 photoanodes were prepared by spray pyrolysis deposition method from a colloidal solution of TiO 2 nanoparticles. An impressive 43% enhancement in device performance was accomplished in photoanodes having an Ag-incorporated Nb 2 O 5 passivation layer as against a cell without Ag nanoparticles. By introducing this idea, we were able to record two benefits - the metal nanoparticles function as the absorption enhancement agent, and the Nb 2 O 5 layer as surface passivation for TiO 2 nanoparticles and as an energy barrier layer for preventing back-electron transfer - in a single step. Copyright © 2018 Elsevier Inc. All rights reserved.
Yeo, L P; Yan, Y H; Lam, Y C; Chan-Park, Mary B
2006-11-21
As-fabricated deep reactive ion etched (DRIE) silicon mold with very high aspect ratio (>10) feature patterns is unsuitable for poly(dimethylsiloxane) (PDMS) replication because of the strong interaction between the Si surface and the replica and the corrugated mold sidewalls. The silicon mold can be conveniently passivated via plasma polymerization of octafluorocyclobutane (C4F8), which is also employed in the DRIE process itself, to enable the mold to be used repeatedly. To optimize the passivation conditions, we have undertaken a Box-Behnken experimental design on the basis of three passivation process parameters (plasma power, C4F8 flow rate, and deposition time). The measured responses were fluorinated film thickness, demolding status/success, demolding force, and fluorine/carbon ratio on the fifth replica surface. The optimal passivation process conditions were predicted to be an input power of 195 W, a C4F8 flow rate of 57 sccm, and a deposition time of 364 s; these were verified experimentally to have high accuracy. Demolding success requires medium-deposited film thickness (66-91 nm), and the thickness of the deposited films correlated strongly with deposition time. At moderate to high ranges, increased plasma power or gas flow rate promoted polymerization over reactive etching of the film. It was also found that small quantities of the fluorinated surface were transferred from the Si mold to the PDMS at each replication, entailing progressive wear of the fluorinated layer.
Large Exciton Energy Shifts by Reversible Surface Exchange in 2D II-VI Nanocrystals.
Zhou, Yang; Wang, Fudong; Buhro, William E
2015-12-09
Reaction of n-octylamine-passivated {CdSe[n-octylamine](0.53±0.06)} quantum belts with anhydrous metal carboxylates M(oleate)2 (M = Cd, Zn) results in a rapid exchange of the L-type amine passivation for Z-type M(oleate)2 passivation. The cadmium-carboxylate derivative is determined to have the composition {CdSe[Cd(oleate)2](0.19±0.02)}. The morphologies and crystal structures of the quantum belts are largely unaffected by the exchange processes. Addition of n-octylamine or oleylamine to the M(oleate)2-passivated quantum belts removes M(oleate)2 and restores the L-type amine passivation. Analogous, reversible surface exchanges are also demonstrated for CdS quantum platelets. The absorption and emission spectra of the quantum belts and platelets are reversibly shifted to lower energy by M(oleate)2 passivation vs amine passivation. The largest shift of 140 meV is observed for the Cd(oleate)2-passivated CdSe quantum belts. These shifts are attributed entirely to changes in the strain states in the Zn(oleate)2-passivated nanocrystals, whereas changes in strain states and confinement dimensions contribute roughly equally to the shifts in the Cd(oleate)2-passivated nanocrystals. Addition of Cd(oleate)2, which electronically couples to the nanocrystal lattices, increases the effective thickness of the belts and platelets by approximately a half of a monolayer, thus increasing the confinement dimension.
Lai, Bo; Zhou, Yuexi; Wang, Juling; Zhang, Yunhong; Chen, Zhiqiang
2014-01-01
This study provides mechanistic insights into the passivation of the packing particles during the treatment of acrylonitrile-butadiene-styrene (ABS) resin wastewater by the Fe0/GAC system. The granular-activated carbon (GAC) and iron chippings (Fe0) were mixed together with a volumetric ratio of 1:1. GAC has a mean particle size of approximately 3-5 mm, a specific surface of 748 m2 g(-1), a total pore volume of 0.48 mL g(-1) and a bulk density of 0.49 g cm(-3). The iron chippings have a compact and non-porous surface morphology. The results show that the packing particles in the Fe0/GAC system would lose their activity because the removal of TOC and PO4(3-) for ABS resin wastewater could not carried out by the Fe0/GAC system after 40 days continuous running. Meanwhile, the availability of O2 and intrinsic reactivity of Fe0 play a key role on the form of passive film with different iron oxidation states. The passive film on the surface of iron chippings was formed by two phases: (a) local corrosion phase (0-20 d) and (b) co-precipitation phase (20-40 d), while that of GAC was mainly formed by the co-precipitation of corrosion products with SO4(2-) and PO4(3-) because SO4(2-) and PO4(3-) would not easily reach the Fe0 surface. Therefore, in order to avoid the occurrence of filler passivation, high concentrations of SO4(2-) and PO4(3-) in wastewater should be removed before the treatment process of the Fe/GAC system.
NASA Astrophysics Data System (ADS)
Hayase, Shuzi; Hirotani, Daisuke; Moriya, Masahiro; Ogomi, Yuhei; Shen, Qing; Yoshino, Kenji; Toyoda, Taro
2016-09-01
In order to examine the interface structure of TiO2/perovskite layer, quartz crystal microbalance sensor (QCM) was used. On the QCM sensor, TiO2 layer was fabricated and the PbI2 solution in Dimethylformamide (DMF) was passed on the QCM sensor to estimate the adsorption density of the PbI2 on the titania2. The amount of PbI2 adsorption on TiO2 surface increased as the adsorption time and leveled off at a certain time. PbI2 still remained even after the solvent only (DMF) was passed on the TiO2 layer on QCM (namely rinsing with DMF), suggesting that the PbI2 was tightly bonded on the TiO2 surface. The bonding structure was found to be Ti-O-Pb linkage by XPS analysis. We concluded that the Ti-OH on the surface of TiO2 reacts with I-Pb-I to form Ti-O-Pb-I and HI (Fig.1 B). The surface trap density was measured by thermally stimulated current (TSC) method. Before the PbI2 passivation, the trap density of TiO2 was 1019 cm3. The trap density decreased to 1016/cm3 after the PbI2 passivation, suggesting that the TiO2 surface trap was passivated with I-Pb-I. The passivation density was tuned by the concentration of PbI2 in DMF, by which TiO2 layer was passivated. Perovskite solar cells were fabricated on the passivated TiO2 layer with various PbI2 passivation densities by one step process (mixture of PbI2 + MAI in DMF). It was found that Jsc increased with an increase in the Ti-O-Pb density. We concluded that the interface between TiO2 and perovskite layer has passivation structure consisting of Ti-O-Pb-I which decreases the trap density of the interfaces and supresses charge recombination. The effect of Cl anion on high efficiency is still controversial when perovskite layer is prepared by one step method from the mixture of MAI and PbCl2. It was found that adsorption density of PbCl2 on TiO2 surface was much higher than that of PbI2 from the experiment using QCM sensor. After the surface was washed with DMF, Cl and Pb were detected. These results suggest that the TiO2 surface was much more passivated by PbCl2 than by PbI2. This may explain partially the high efficiency when the perovskite layer was fabricated by one step process consisting of MAI and PbCl2 solution. We also observed that the crystal size increased with an increase in the amount of Cl anion which of course one of the explanation of the high efficiency. The interface of hole transport layer/perovskite layer, and between perovskite layer /perovskite layer (grain boundary) was passivated with organic amines. The passivation was also effective for increasing Voc and Jsc. This was explained by the results of transient absorption spectroscopy that the charge recombination time between hole transport payer/perovskite layer increased from 0.3 μsec to 60 μsec.
Edmonds, Mary; Kent, Tyler; Chagarov, Evgueni; Sardashti, Kasra; Droopad, Ravi; Chang, Mei; Kachian, Jessica; Park, Jun Hong; Kummel, Andrew
2015-07-08
A saturated Si-Hx seed layer for gate oxide or contact conductor ALD has been deposited via two separate self-limiting and saturating CVD processes on InGaAs(001)-(2 × 4) at substrate temperatures of 250 and 350 °C. For the first self-limiting process, a single silicon precursor, Si3H8, was dosed at a substrate temperature of 250 °C, and XPS results show the deposited silicon hydride layer saturated at about 4 monolayers of silicon coverage with hydrogen termination. STS results show the surface Fermi level remains unpinned following the deposition of the saturated silicon hydride layer, indicating the InGaAs surface dangling bonds are electrically passivated by Si-Hx. For the second self-limiting process, Si2Cl6 was dosed at a substrate temperature of 350 °C, and XPS results show the deposited silicon chloride layer saturated at about 2.5 monolayers of silicon coverage with chlorine termination. Atomic hydrogen produced by a thermal gas cracker was subsequently dosed at 350 °C to remove the Si-Cl termination by replacing with Si-H termination as confirmed by XPS, and STS results confirm the saturated Si-Hx bilayer leaves the InGaAs(001)-(2 × 4) surface Fermi level unpinned. Density function theory modeling of silicon hydride surface passivation shows an Si-Hx monolayer can remove all the dangling bonds and leave a charge balanced surface on InGaAs.
Protecting the surface of a light absorber in a photoanode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shu; Lewis, Nathan S.
A photoanode includes a passivation layer on a light absorber. The passivation layer is more resistant to corrosion than the light absorber. The photoanode includes a surface modifying layer that is location on the passivation layer such that the passivation layer is between the light absorber and the surface modifying layer. The surface modifying layer reduces a resistance of the passivation layer to conduction of holes out of the passivation layer.
Inhibiting Substances as Tracers for the Reactivity Assessment of Fe(0)-PRBs
NASA Astrophysics Data System (ADS)
Dahmke, A.
2001-12-01
Passivation processes of Fe(0)-barriers are well known from lab-studies (Phillips et al., (2000), Schlicker et al., (2000)) and from field-sites. Normally the passivation processes are correlated with the groundwater composition but quantitative prediction and monitoring of the inhibition velocity under field conditions is a serious problem. Currently, only concentration profiles of contaminants, isotope studies or the measurement of reactivity loss with column-experiments of altered Fe(0)-material from the field sites are used for the characterization of Fe(0)-reactivity. All of theses approaches have serious disadvantages and limitations. Thus the sampling of unaltered Fe(0)-material out of the reactive barrier is difficult and the perturbed installation of the material in column experiments may lead to significant modification in the field behaviour of the Fe(0)-barrier. In addition, the concentration profile of the contaminant is not always a good tool for reactivity estimations due to uncertainties in hydrogeological boundary conditions. The same general restrictions apply also for isotope studies, in which the shift of the d13C signal is used as an indicator for degradation processes of the chlorinated aliphatics. Therefore here the use of Fe(0) inhibiting substances as reactive tracers is presented as a new approach for the characterization of the Fe(0)-reactivity. The methodology of reactive tracers to determine reactive surface areas of Fe(III) in porous was developed last year by Veehmayer et al. (2000) by interpretation of the breakthrough curves of species with known specific interactions with the solid phase. The concept is also applicable for the estimation of reactive sites in Fe(0)-columns, so that the breakthrough curves of oxidants like NO3-, CrO42- or oxidizing organic substances may be interpreted as indicative of reactive reducing sites in the Fe(0)-column. Such correlation was already shown by Schlicker et al., (2000), who explained the movement of passivation fronts by the blocking of reactive sites at the Fe(0) surface. To investigate this approach different column experiments with passivated Fe(0) are being currently carried out. Initial results from the lab indicate that different inorganic as well as organic substances can be used for characterization of the passivation state of the Fe(0) surface. Application of reactive tracer combinations also give some clues about the surface properties of the inhibiting substances, which might be helpful with respect to reactivation approaches for passivated permeable Fe(0)-barriers. Despite the first encouraging but more phenomenological lab results some theoretical problems, like the alteration of the specific surface area during the lab experiments or competition processes between organic or inorganic compounds at the altered surface of the Fe particles have to be addressed more in detail.
Numerical simulation of the control of the three-dimensional transition process in boundary layers
NASA Technical Reports Server (NTRS)
Kral, L. D.; Fasel, H. F.
1990-01-01
Surface heating techniques to control the three-dimensional laminar-turbulent transition process are numerically investigated for a water boundary layer. The Navier-Stokes and energy equations are solved using a fully implicit finite difference/spectral method. The spatially evolving boundary layer is simulated. Results of both passive and active methods of control are shown for small amplitude two-dimensional and three-dimensional disturbance waves. Control is also applied to the early stages of the secondary instability process using passive or active control techniques.
Silicon surface passivation by silicon nitride deposition
NASA Technical Reports Server (NTRS)
Olsen, L. C.
1984-01-01
Silicon nitride deposition was studied as a method of passivation for silicon solar cell surfaces. The following three objectives were the thrust of the research: (1) the use of pecvd silicon nitride for passivation of silicon surfaces; (2) measurement techniques for surface recombination velocity; and (3) the importance of surface passivation to high efficiency solar cells.
NASA Astrophysics Data System (ADS)
Jiang, Ye; Shen, Honglie; Yang, Wangyang; Zheng, Chaofan; Tang, Quntao; Yao, Hanyu; Raza, Adil; Li, Yufang; Huang, Chunlai
2018-02-01
In this paper, we report passivation properties of inverted pyramidal nanostructure based multi-crystalline silicon (mc-Si) by Al2O3 films with spin-coating method. Precursors AlCl3 and Al(acac)3 for Al2O3 films were chosen for comparison. Al2O3/SiO x stacks were found to be able to passivate the nanostructured surface well. With the number of spin-coating up to five, the Al2O3 films could conformally attach the nanostructure. The weighted average reflectance values (ranging from 400-900 nm) of the passivated silicon surface could be reduced to 10.74% (AlCl3) and 11.12% (Al(acac)3), and the effective carrier lifetime could reach 7.84 and 16.98 μs, respectively. This work presented a potential process to fabricate low cost high efficiency mc-Si solar cells.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Kirstetter, P.; Hong, Y.; Turk, J.
2016-12-01
The overland precipitation retrievals from satellite passive microwave (PMW) sensors such as the Global Precipitation Mission (GPM) microwave imager (GMI) are impacted by the land surface emissivity. The estimation of PMW emissivity faces challenges because it is highly variable under the influence of surface properties such as soil moisture, surface roughness and vegetation. This study proposes an improved quantitative understanding of the relationship between the emissivity and surface parameters. Surface parameter information is obtained through (i) in-situ measurements from the International Soil Moisture Network and (ii) satellite measurements from the Soil Moisture Active and Passive mission (SMAP) which provides global scale soil moisture estimates. The variation of emissivity is quantified with soil moisture, surface temperature and vegetation at various frequencies/polarization and over different types of land surfaces to sheds light into the processes governing the emission of the land. This analysis is used to estimate the emissivity under rainy conditions. The framework built with in-situ measurements serves as a benchmark for satellite-based analyses, which paves a way toward global scale emissivity estimates using SMAP.
Khnouf, Ruba; Karasneh, Dina; Albiss, Borhan Aldeen
2016-02-01
PDMS and PMMA are two of the most used polymers in the fabrication of lab-on-chip or microfluidic devices. In order to use these polymers in biological applications, it is sometimes essential to be able to bind biomolecules such as proteins and DNA to the surface of these materials. In this work, we have evaluated a number of processes that have been developed to bind protein to PDMS surfaces which include passive adsorption, passive adsorption with glutaraldehyde cross-linking, (3-aminopropyl) triethoxysilane functionalization followed by glutaraldehyde or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride cross-linkers. It has been shown that the latter technique--using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride--results in more than twice the bonding of protein to the surface of PDMS microchannels than proteins binding passively. We have also evaluated a few techniques that have been tested for the functionalization of PMMA microchannels where we have found that the use of polyethyleneimine (PEI) has led to the strongest protein-PMMA microchannel bond. We finally demonstrated the effect of PDMS curing methodology on protein adsorption to its surface, and showed that increased curing time is the factor that reduces passive adsorption the most. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dispersion analysis of passive surface-wave noise generated during hydraulic-fracturing operations
Forghani-Arani, Farnoush; Willis, Mark; Snieder, Roel; Haines, Seth S.; Behura, Jyoti; Batzle, Mike; Davidson, Michael
2014-01-01
Surface-wave dispersion analysis is useful for estimating near-surface shear-wave velocity models, designing receiver arrays, and suppressing surface waves. Here, we analyze whether passive seismic noise generated during hydraulic-fracturing operations can be used to extract surface-wave dispersion characteristics. Applying seismic interferometry to noise measurements, we extract surface waves by cross-correlating several minutes of passive records; this approach is distinct from previous studies that used hours or days of passive records for cross-correlation. For comparison, we also perform dispersion analysis for an active-source array that has some receivers in common with the passive array. The active and passive data show good agreement in the dispersive character of the fundamental-mode surface-waves. For the higher mode surface waves, however, active and passive data resolve the dispersive properties at different frequency ranges. To demonstrate an application of dispersion analysis, we invert the observed surface-wave dispersion characteristics to determine the near-surface, one-dimensional shear-wave velocity.
Overview of processing activities aimed at higher efficiencies and economical production
NASA Technical Reports Server (NTRS)
Bickler, D. B.
1985-01-01
An overview of processing activities aimed at higher efficiencies and economical production were presented. Present focus is on low-cost process technology for higher-efficiency cells of up to 18% or higher. Process development concerns center on the use of less than optimum silicon sheet, the control of production yields, and making uniformly efficient large-area cells. High-efficiency cell factors that require process development are bulk material perfection, very shallow junction formation, front-surface passivation, and finely detailed metallization. Better bulk properties of the silicon sheet and the keeping of those qualities throughout large areas during cell processing are required so that minority carrier lifetimes are maintained and cell performance is not degraded by high doping levels. When very shallow junctions are formed, the process must be sensitive to metallizatin punch-through, series resisitance in the cell, and control of dopant leaching during surface passivation. There is a need to determine the sensitivity to processing by mathematical modeling and experimental activities.
NASA Technical Reports Server (NTRS)
Vandegriend, A. A.; Owe, M.; Chang, A. T. C.
1992-01-01
The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. The research program consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components are explained in general and activities performed within the passive microwave research component are summarized. The microwave theory is discussed taking into account: soil dielectric constant, emissivity, soil roughness effects, vegetation effects, optical depth, single scattering albedo, and wavelength effects. The study site is described. The soil moisture data and its processing are considered. The relation between observed large scale soil moisture and normalized brightness temperatures is discussed. Vegetation characteristics and inverse modeling of soil emissivity is considered.
Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing
2015-01-01
In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 10(12) to 1 × 10(12) cm(-2) eV(-1), the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 10(12) cm(-2) for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study.
Hoffbauer, Mark A.; Prettyman, Thomas H.
2001-01-01
Reduction of surface leakage current by surface passivation of Cd.sub.1-x Zn.sub.x Te and other materials using hyperthermal oxygen atoms. Surface effects are important in the performance of CdZnTe room-temperature radiation detectors used as spectrometers since the dark current is often dominated by surface leakage. A process using high-kinetic-energy, neutral oxygen atoms (.about.3 eV) to treat the surface of CdZnTe detectors at or near ambient temperatures is described. Improvements in detector performance include significantly reduced leakage current which results in lower detector noise and greater energy resolution for radiation measurements of gamma- and X-rays, thereby increasing the accuracy and sensitivity of measurements of radionuclides having complex gamma-ray spectra, including special nuclear materials.
Bismuth Passivation Technique for High-Resolution X-Ray Detectors
NASA Technical Reports Server (NTRS)
Chervenak, James; Hess, Larry
2013-01-01
The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buttler, William T.; Lamoreaux, Steven K.
2010-08-10
We formalize the physics of an optical heterodyne accelerometer that allows measurement of low and high velocities from material surfaces under high strain. The proposed apparatus incorporates currently common optical velocimetry techniques used in shock physics, with interferometric techniques developed to self-stabilize and passively balance interferometers in quantum cryptography. The result is a robust telecom-fiber-based velocimetry system insensitive to modal and frequency dispersion that should work well in the presence of decoherent scattering processes, such as from ejecta clouds and shocked surfaces.
NASA Astrophysics Data System (ADS)
Li, Xuewu; Zhang, Qiaoxin; Guo, Zheng; Shi, Tian; Yu, Jingui; Tang, Mingkai; Huang, Xingjiu
2015-07-01
This work has developed a simple and low-cost method to render 6061 aluminum alloy surface superhydrophobicity and excellent corrosion inhibition. The superhydrophobic aluminum alloy surface has been fabricated by hydrochloric acid etching, potassium permanganate passivation and fluoroalkyl-silane modification. Meanwhile, the effect of the etching and passivation time on the wettability and corrosion inhibition of the fabricated surface has also been investigated. Results show that with the etching time of 6 min and passivation time of 180 min the fabricated micro/nano-scale terrace-like hierarchical structures accompanying with the nanoscale coral-like network bulge structures after being modified can result in superhydrophobicity with a water contact angle (CA) of 155.7°. Moreover, an extremely weak adhesive force to droplets as well as an outstanding self-cleaning behavior of the superhydrophobic surface has also been proved. Finally, corrosion inhibition in seawater of the as-prepared aluminum alloy surface is characterized by potentiodynamic polarization curves and electrochemical impedance spectroscopy. Evidently, the fabricated superhydrophobic surface attained an improved corrosion inhibition efficiency of 83.37% compared with the traditional two-step processing consisting of etching and modification, which will extend the further applications of aluminum alloy especially in marine engineering fields.
Investigating the 3-D Subduction Initiation Processes at Transform Faults and Passive Margins
NASA Astrophysics Data System (ADS)
Peng, H.; Leng, W.
2017-12-01
Studying the processes of subduction initiation is a key for understanding the Wilson cycle and improving the theory of plate tectonics. Previous studies investigated subduction initiation with geological synthesis and geodynamic modeling methods, discovering that subduction intends to initiate at the transform faults close to oceanic arcs, and that its evolutionary processes and surface volcanic expressions are controlled by plate strength. However, these studies are mainly conducted with 2-D models, which cannot deal with lateral heterogeneities of crustal thickness and strength along the plate interfaces. Here we extend the 2-D model to a 3-D parallel subduction model with high computational efficiency. With the new model, we study the dynamic controlling factors, morphology evolutionary processes and surface expressions for subduction initiation with lateral heterogeneities of material properties along transform faults and passive margins. We find that lateral lithospheric heterogeneities control the starting point of the subduction initiation along the newly formed trenches and the propagation speed for the trench formation. New subduction tends to firstly initiate at the property changing point along the transform faults or passive margins. Such finds may be applied to explain the formation process of the Izu-Bonin-Mariana (IBM) subduction zone in the western Pacific and the Scotia subduction zone at the south end of the South America. Our results enhance our understanding for the formation of new trenches and help to provide geodynamic modeling explanations for the observed remnant slabs in the upper mantle and the surface volcanic expressions.
Multi-channel Analysis of Passive Surface Waves (MAPS)
NASA Astrophysics Data System (ADS)
Xia, J.; Cheng, F. Mr; Xu, Z.; Wang, L.; Shen, C.; Liu, R.; Pan, Y.; Mi, B.; Hu, Y.
2017-12-01
Urbanization is an inevitable trend in modernization of human society. In the end of 2013 the Chinese Central Government launched a national urbanization plan—"Three 100 Million People", which aggressively and steadily pushes forward urbanization. Based on the plan, by 2020, approximately 100 million people from rural areas will permanently settle in towns, dwelling conditions of about 100 million people in towns and villages will be improved, and about 100 million people in the central and western China will permanently settle in towns. China's urbanization process will run at the highest speed in the urbanization history of China. Environmentally friendly, non-destructive and non-invasive geophysical assessment method has played an important role in the urbanization process in China. Because human noise and electromagnetic field due to industrial life, geophysical methods already used in urban environments (gravity, magnetics, electricity, seismic) face great challenges. But humanity activity provides an effective source of passive seismic methods. Claerbout pointed out that wavefileds that are received at one point with excitation at the other point can be reconstructed by calculating the cross-correlation of noise records at two surface points. Based on this idea (cross-correlation of two noise records) and the virtual source method, we proposed Multi-channel Analysis of Passive Surface Waves (MAPS). MAPS mainly uses traffic noise recorded with a linear receiver array. Because Multi-channel Analysis of Surface Waves can produces a shear (S) wave velocity model with high resolution in shallow part of the model, MPAS combines acquisition and processing of active source and passive source data in a same flow, which does not require to distinguish them. MAPS is also of ability of real-time quality control of noise recording that is important for near-surface applications in urban environment. The numerical and real-world examples demonstrated that MAPS can be used for accurate and fast imaging of high-frequency surface wave energy, and some examples also show that high quality imaging similar to those with active sources can be generated only by the use of a few minutes of noise. The use of cultural noise in town, MAPS can image S-wave velocity structure from the ground surface to hundreds of meters depth.
Kim, Hyungjin; Lien, Der-Hsien; Amani, Matin; Ager, Joel W; Javey, Ali
2017-05-23
Recently, there has been considerable research interest in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) for future optoelectronic applications. It has been shown that surface passivation with the organic nonoxidizing superacid bis(trifluoromethane)sulfonamide (TFSI) produces MoS 2 and WS 2 monolayers whose recombination is at the radiative limit, with a photoluminescence (PL) quantum yield (QY) of ∼100%. While the surface passivation persists under ambient conditions, exposure to conditions such as water, solvents, and low pressure found in typical semiconductor processing degrades the PL QY. Here, an encapsulation/passivation approach is demonstrated that yields near-unity PL QY in MoS 2 and WS 2 monolayers which are highly stable against postprocessing. The approach consists of two simple steps: encapsulation of the monolayers with an amorphous fluoropolymer and a subsequent TFSI treatment. The TFSI molecules are able to diffuse through the encapsulation layer and passivate the defect states of the monolayers. Additionally, we demonstrate that the encapsulation layer can be patterned by lithography and is compatible with subsequent fabrication processes. Therefore, our work presents a feasible route for future fabrication of highly efficient optoelectronic devices based on TMDCs.
Semiconductor with protective surface coating and method of manufacture thereof. [Patent application
Hansen, W.L.; Haller, E.E.
1980-09-19
Passivation of predominantly crystalline semiconductor devices is provided for by a surface coating of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating of amorphous germanium onto the etched and quenched diode surface in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices, which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating compensates for pre-existing undesirable surface states as well as protecting the semiconductor device against future impregnation with impurities.
In-depth investigation of spin-on doped solar cells with thermally grown oxide passivation
NASA Astrophysics Data System (ADS)
Ahmad, Samir Mahmmod; Cheow, Siu Leong; Ludin, Norasikin A.; Sopian, K.; Zaidi, Saleem H.
Solar cell industrial manufacturing, based largely on proven semiconductor processing technologies supported by significant advancements in automation, has reached a plateau in terms of cost and efficiency. However, solar cell manufacturing cost (dollar/watt) is still substantially higher than fossil fuels. The route to lowering cost may not lie with continuing automation and economies of scale. Alternate fabrication processes with lower cost and environmental-sustainability coupled with self-reliance, simplicity, and affordability may lead to price compatibility with carbon-based fuels. In this paper, a custom-designed formulation of phosphoric acid has been investigated, for n-type doping in p-type substrates, as a function of concentration and drive-in temperature. For post-diffusion surface passivation and anti-reflection, thermally-grown oxide films in 50-150-nm thickness were grown. These fabrication methods facilitate process simplicity, reduced costs, and environmental sustainability by elimination of poisonous chemicals and toxic gases (POCl3, SiH4, NH3). Simultaneous fire-through contact formation process based on screen-printed front surface Ag and back surface through thermally grown oxide films was optimized as a function of the peak temperature in conveyor belt furnace. Highest efficiency solar cells fabricated exhibited efficiency of ∼13%. Analysis of results based on internal quantum efficiency and minority carried measurements reveals three contributing factors: high front surface recombination, low minority carrier lifetime, and higher reflection. Solar cell simulations based on PC1D showed that, with improved passivation, lower reflection, and high lifetimes, efficiency can be enhanced to match with commercially-produced PECVD SiN-coated solar cells.
Lv, Y J; Song, X B; Wang, Y G; Fang, Y L; Feng, Z H
2016-12-01
Ultra-thin AlN/GaN heterostructure field-effect transistors (HFETs) with, and without, SiN passivation were fabricated by the same growth and device processes. Based on the measured DC characteristics, including the capacitance-voltage (C-V) and output current-voltage (I-V) curves, the variation of electron mobility with gate bias was found to be quite different for devices with, and without, SiN passivation. Although the AlN barrier layer is ultra thin (c. 3 nm), it was proved that SiN passivation induces no additional tensile stress and has no significant influence on the piezoelectric polarization of the AlN layer using Hall and Raman measurements. The SiN passivation was found to affect the surface properties, thereby increasing the electron density of the two-dimensional electron gas (2DEG) under the access region. The higher electron density in the access region after SiN passivation enhanced the electrostatic screening for the non-uniform distributed polarization charges, meaning that the polarization Coulomb field scattering has a weaker effect on the electron drift mobility in AlN/GaN-based devices.
Li, Ruilong; Zhu, Yaxian; Zhang, Yong
2015-06-01
A novel method for in situ determination of the polycyclic aromatic hydrocarbons (PAHs) adsorbed onto the root surface of Kandelia obovata seedlings was established using laser-induced time-resolved nanosecond fluorescence spectroscopy (LITRF). The linear dynamic ranges for the established method were 1.5-1240ng/spot for phenanthrene, 1.0-1360ng/spot for pyrene and 5.0-1220ng/spot for benzo[a]pyrene. Then, the mechanisms of PAHs transport from the Ko root surface to tissues were investigated. The three-phase model including fast, slow and very slow fractions was superior to the single or dual-phase model to describe the PAHs transport processes. Moreover, the fast fraction of PAHs transport process was mainly due to passive movement, while the slow and very slow fractions were not. Passive movement was the main process of B[a]P adsorbed onto Ko root surface transport to tissues. In addition, the extent of the PAHs transport to Ko root tissues at different salinity were evaluated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mapping chemical elements on the surface of orthodontic appliance by SEM-EDX
Mikulewicz, Marcin; Wołowiec, Paulina; Michalak, Izabela; Chojnacka, Katarzyna; Czopor, Wojciech; Berniczei-Royko, Adam; Vegh, Andras; Gedrange, Thomas
2014-01-01
Background During orthodontic treatment, the various elements that constitute the fixed appliance undergo different processes. As a result of a change of the surface, elution/coverage of metals on the surface can be observed in the process of corrosion/passivation. Material/Methods Scanning electron microscopy with an energy-dispersive X-ray analytical system (SEM-EDX) was used to analyze the composition of stainless steel elements of orthodontic fixed appliances (before and after orthodontic treatment), to obtain the composition of the surface of the elements. The analyzed elements were: brackets (Victory Series APC PLUS 022, 3M Unitek, Monrovia, CA, USA); wires (0.017×0.025, 3M Unitek, Monrovia, CA, USA); and bands (37+, 3M Unitek, Monrovia, CA, USA). Results The results showed a decrease of chromium and iron contribution to the surface, with increase of oxygen content in used vs. new elements of the appliance. Conclusions Our results confirm the formation of oxides (passivation layer) on the surface of stainless steel as a result of the presence of the orthodontic appliance in patients’ oral cavities. PMID:24857929
Mapping chemical elements on the surface of orthodontic appliance by SEM-EDX.
Mikulewicz, Marcin; Wołowiec, Paulina; Michalak, Izabela; Chojnacka, Katarzyna; Czopor, Wojciech; Berniczei-Royko, Adam; Vegh, Andras; Gedrange, Thomas
2014-05-25
During orthodontic treatment, the various elements that constitute the fixed appliance undergo different processes. As a result of a change of the surface, elution/coverage of metals on the surface can be observed in the process of corrosion/passivation. Scanning electron microscopy with an energy-dispersive X-ray analytical system (SEM-EDX) was used to analyze the composition of stainless steel elements of orthodontic fixed appliances (before and after orthodontic treatment), to obtain the composition of the surface of the elements. The analyzed elements were: brackets (Victory Series APC PLUS 022, 3M Unitek, Monrovia, CA, USA); wires (0.017×0.025, 3M Unitek, Monrovia, CA, USA); and bands (37+, 3M Unitek, Monrovia, CA, USA). The results showed a decrease of chromium and iron contribution to the surface, with increase of oxygen content in used vs. new elements of the appliance. Our results confirm the formation of oxides (passivation layer) on the surface of stainless steel as a result of the presence of the orthodontic appliance in patients' oral cavities.
Electrochemical investigations of Cr-Ni-Mo stainless steel used in urology
NASA Astrophysics Data System (ADS)
Przondziono, J.; Walke, W.
2011-05-01
The influence of chemical passivation process on physical and chemical characteristics of samples made of X2CrNiMo 17-7-2 steel with differentiated hardening, in the solution simulating the environment of human urine was analysed in the study. Wire obtained in cold drawing process is used for the production of stents and appliances in urological treatment. Proper roughness of the surface was obtained through mechanical working - grinding (Ra = 0,40 μn) and electrochemical polishing (Ra = 0,12 μn). Chemical passivation process was carried out in 40% solution of HN03 within 60 minutes in the temperature of 65°C. The tests of corrosion resistance were made on the ground of registered anodic polarisation curves and Stern method. For evaluation of phenomena occurring on the surface of tested steel, electrochemical impedance spectroscopy (EIS) was applied.
NASA Astrophysics Data System (ADS)
Haque, Shatil
This research is focused on the processing of an innovative three-dimensional packaging architecture for power electronics building blocks with soldered device interconnections and subsequent characterization of the module's critical interfaces. A low-cost approach termed metal posts interconnected parallel plate structure (MPIPPS) was developed for packaging high-performance modules of power electronics building blocks (PEBB). The new concept implemented direct bonding of copper posts, not wire bonding of fine aluminum wires, to interconnect power devices as well as joining the different circuit planes together. We have demonstrated the feasibility of this packaging approach by constructing PEBB modules (consisting of Insulated Gate Bipolar Transistors (IGBTs), diodes, and a few gate driver elements and passive components). In the 1st phase of module fabrication with IGBTs with Si3N 4 passivation, we had successfully fabricated packaged devices and modules using the MPIPPS technique. These modules were tested electrically and thermally, and they operated at pulse-switch and high power stages up to 6kW. However, in the 2nd phase of module fabrication with polyimide passivated devices, we experienced significant yield problems due to metallization difficulties of these devices. The under-bump metallurgy scheme for the development of a solderable interface involved sputtering of Ti-Ni-Cu and Cr-Cu, and an electroless deposition of Zn-Ni-Au metallization. The metallization process produced excellent yield in the case of Si3N4 passivated devices. However, under the same metallization schemes, devices with a polyimide passivation exhibited inconsistent electrical contact resistance. We found that organic contaminants such as hydrocarbons remain in the form of thin monolayers on the surface, even in the case of as-received devices from the manufacturer. Moreover, in the case of polyimide passivated devices, plasma cleaning introduced a few carbon constituents on the surface, which was not observed in the case of Si3N4 passivated devices. X-Ray Photoelectron Spectroscopy (XPS) Spectra showed evidence of possible carbon contaminants, such as carbide (˜282.9eV) and graphite (˜284.3eV) on the surface at binding energies below the binding energy of the hydrocarbon peak (C 1s at 285eV). Whereas above the hydrocarbon peak energy level, carbon-nitrogen compounds, single bond carbon compounds (˜285.9eV) and double bond carbon compounds (˜288.5eV) were evident. The majority of the carbon composition on the pad surface was associated with hydrocarbons, which were hydrophobic in nature, thus making the device contact pad less wettable. (Abstract shortened by UMI.)
Robust passive control for a class of uncertain neutral systems based on sliding mode observer.
Liu, Zhen; Zhao, Lin; Kao, Yonggui; Gao, Cunchen
2017-01-01
The passivity-based sliding mode control (SMC) problem for a class of uncertain neutral systems with unmeasured states is investigated. Firstly, a particular non-fragile state observer is designed to generate the estimations of the system states, based upon which a novel integral-type sliding surface function is established for the control process. Secondly, a new sufficient condition for robust asymptotic stability and passivity of the resultant sliding mode dynamics (SMDs) is obtained in terms of linear matrix inequalities (LMIs). Thirdly, the finite-time reachability of the predesigned sliding surface is ensured by resorting to a novel adaptive SMC law. Finally, the validity and superiority of the scheme are justified via several examples. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Effective passivation of silicon surfaces by ultrathin atomic-layer deposited niobium oxide
NASA Astrophysics Data System (ADS)
Macco, B.; Bivour, M.; Deijkers, J. H.; Basuvalingam, S. B.; Black, L. E.; Melskens, J.; van de Loo, B. W. H.; Berghuis, W. J. H.; Hermle, M.; Kessels, W. M. M. Erwin
2018-06-01
This letter reports on effective surface passivation of n-type crystalline silicon by ultrathin niobium oxide (Nb2O5) films prepared by atomic layer deposition (ALD) and subjected to a forming gas anneal at 300 °C. A champion recombination parameter J0 of 20 fA/cm2 and a surface recombination velocity Seff of 4.8 cm/s have been achieved for ultrathin films of 1 nm. The surface pretreatment was found to have a strong impact on the passivation. Good passivation can be achieved on both HF-treated c-Si surfaces and c-Si surfaces with a wet-chemically grown interfacial silicon oxide layer. On HF-treated surfaces, a minimum film thickness of 3 nm is required to achieve a high level of surface passivation, whereas the use of a wet chemically-grown interfacial oxide enables excellent passivation even for Nb2O5 films of only 1 nm. This discrepancy in passivation between both surface types is attributed to differences in the formation and stoichiometry of interfacial silicon oxide, resulting in different levels of chemical passivation. On both surface types, the high level of passivation of ALD Nb2O5 is aided by field-effect passivation originating from a high fixed negative charge density of 1-2 × 1012 cm-3. Furthermore, it is demonstrated that the passivation level provided by 1 nm of Nb2O5 can be further enhanced through light-soaking. Finally, initial explorations show that a low contact resistivity can be obtained using Nb2O5-based contacts. Together, these properties make ALD Nb2O5 a highly interesting building block for high-efficiency c-Si solar cells.
NASA Astrophysics Data System (ADS)
Benjumea, Beatriz; Macau, Albert; Gabàs, Anna; Figueras, Sara
2016-04-01
We combine geophysical well logging and passive seismic measurements to characterize the near-surface geology of an area located in Hontomin, Burgos (Spain). This area has some near-surface challenges for a geophysical study. The irregular topography is characterized by limestone outcrops and unconsolidated sediments areas. Additionally, the near-surface geology includes an upper layer of pure limestones overlying marly limestones and marls (Upper Cretaceous). These materials lie on top of Low Cretaceous siliciclastic sediments (sandstones, clays, gravels). In any case, a layer with reduced velocity is expected. The geophysical data sets used in this study include sonic and gamma-ray logs at two boreholes and passive seismic measurements: three arrays and 224 seismic stations for applying the horizontal-to-vertical amplitude spectra ratio method (H/V). Well-logging data define two significant changes in the P-wave-velocity log within the Upper Cretaceous layer and one more at the Upper to Lower Cretaceous contact. This technique has also been used for refining the geological interpretation. The passive seismic measurements provide a map of sediment thickness with a maximum of around 40 m and shear-wave velocity profiles from the array technique. A comparison between seismic velocity coming from well logging and array measurements defines the resolution limits of the passive seismic techniques and helps it to be interpreted. This study shows how these low-cost techniques can provide useful information about near-surface complexity that could be used for designing a geophysical field survey or for seismic processing steps such as statics or imaging.
Method of passivating semiconductor surfaces
Wanlass, M.W.
1990-06-19
A method is described for passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.
Method of passivating semiconductor surfaces
Wanlass, Mark W.
1990-01-01
A method of passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.
Disentangling nonradiative recombination processes in Ge micro-crystals on Si substrates
NASA Astrophysics Data System (ADS)
Pezzoli, Fabio; Giorgioni, Anna; Gallacher, Kevin; Isa, Fabio; Biagioni, Paolo; Millar, Ross W.; Gatti, Eleonora; Grilli, Emanuele; Bonera, Emiliano; Isella, Giovanni; Paul, Douglas J.; Miglio, Leo
2016-06-01
We address nonradiative recombination pathways by leveraging surface passivation and dislocation management in μm-scale arrays of Ge crystals grown on deeply patterned Si substrates. The time decay photoluminescence (PL) at cryogenic temperatures discloses carrier lifetimes approaching 45 ns in band-gap engineered Ge micro-crystals. This investigation provides compelling information about the competitive interplay between the radiative band-edge transitions and the trapping of carriers by dislocations and free surfaces. Furthermore, an in-depth analysis of the temperature dependence of the PL, combined with capacitance data and finite difference time domain modeling, demonstrates the effectiveness of GeO2 in passivating the surface of Ge and thus in enhancing the room temperature PL emission.
NASA Astrophysics Data System (ADS)
Adamczyk, Krzysztof; Søndenâ, Rune; Stokkan, Gaute; Looney, Erin; Jensen, Mallory; Lai, Barry; Rinio, Markus; Di Sabatino, Marisa
2018-02-01
In this work, we applied internal quantum efficiency mapping to study the recombination activity of grain boundaries in High Performance Multicrystalline Silicon under different processing conditions. Wafers were divided into groups and underwent different thermal processing, consisting of phosphorus diffusion gettering and surface passivation with hydrogen rich layers. After these thermal treatments, wafers were processed into heterojunction with intrinsic thin layer solar cells. Light Beam Induced Current and Electron Backscatter Diffraction were applied to analyse the influence of thermal treatment during standard solar cell processing on different types of grain boundaries. The results show that after cell processing, most random-angle grain boundaries in the material are well passivated, but small-angle grain boundaries are not well passivated. Special cases of coincidence site lattice grain boundaries with high recombination activity are also found. Based on micro-X-ray fluorescence measurements, a change in the contamination level is suggested as the reason behind their increased activity.
Lan, Xinzheng; Voznyy, Oleksandr; García de Arquer, F Pelayo; Liu, Mengxia; Xu, Jixian; Proppe, Andrew H; Walters, Grant; Fan, Fengjia; Tan, Hairen; Liu, Min; Yang, Zhenyu; Hoogland, Sjoerd; Sargent, Edward H
2016-07-13
Colloidal quantum dot (CQD) solar cells are solution-processed photovoltaics with broad spectral absorption tunability. Major advances in their efficiency have been made via improved CQD surface passivation and device architectures with enhanced charge carrier collection. Herein, we demonstrate a new strategy to improve further the passivation of CQDs starting from the solution phase. A cosolvent system is employed to tune the solvent polarity in order to achieve the solvation of methylammonium iodide (MAI) and the dispersion of hydrophobic PbS CQDs simultaneously in a homogeneous phase, otherwise not achieved in a single solvent. This process enables MAI to access the CQDs to confer improved passivation. This, in turn, allows for efficient charge extraction from a thicker photoactive layer device, leading to a certified solar cell power conversion efficiency of 10.6%, a new certified record in CQD photovoltaics.
Sun, Yiling; Gao, Pingqi; He, Jian; Zhou, Suqiong; Ying, Zhiqin; Yang, Xi; Xiang, Yong; Ye, Jichun
2016-12-01
Silicon/organic hybrid solar cells have recently attracted great attention because they combine the advantages of silicon (Si) and the organic cells. In this study, we added a patterned passivation layer of silicon nitride (SiNx:H) onto the rear surface of the Si substrate in a Si/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) hybrid solar cell, enabling an improvement of 0.6 % in the power conversion efficiency (PCE). The addition of the SiNx:H layer boosted the open circuit voltage (V oc) from 0.523 to 0.557 V, suggesting the well-passivation property of the patterned SiNx:H thin layer that was created by plasma-enhanced chemical vapor deposition and lithography processes. The passivation properties that stemmed from front PSS, rear-SiNx:H, front PSS/rear-SiNx:H, etc. are thoroughly investigated, in consideration of the process-related variations.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Yu, Fengxi; Chen, Lihong; Li, Jingfa
2018-06-01
Organic additives, such as the Lewis base thiophene, have been successfully applied to passivate halide perovskite surfaces, improving the stability and properties of perovskite devices based on CH3NH3PbI3. Yet, the detailed nanostructure of the perovskite surface passivated by additives and the mechanisms of such passivation are not well understood. This study presents a nanoscopic view on the interfacial structure of an additive/perovskite interface, consisting of a Lewis base thiophene molecular additive and a lead halide perovskite surface substrate, providing insights on the mechanisms that molecular additives can passivate the halide perovskite surfaces and enhance the perovskite-based device performance. Molecular dynamics study on the interactions between water molecules and the perovskite surfaces passivated by the investigated additive reveal the effectiveness of employing the molecular additives to improve the stability of the halide perovskite materials. The additive/perovskite surface system is further probed via molecular engineering the perovskite surfaces. This study reveals the nanoscopic structure-property relationships of the halide perovskite surface passivated by molecular additives, which helps the fundamental understanding of the surface/interface engineering strategies for the development of halide perovskite based devices.
NASA Astrophysics Data System (ADS)
Sun, Qiming; Melnikov, Alexander; Mandelis, Andreas; Pagliaro, Robert H.
2018-01-01
InGaAs-camera based heterodyne lock-in carrierography (HeLIC) is developed for surface recombination velocity (SRV) imaging characterization of bare (oxide-free) hydrogen passivated Si wafer surfaces. Samples prepared using four different hydrofluoric special-solution etching conditions were tested, and a quantitative assessment of their surface quality vs. queue-time after the hydrogen passivation process was made. The data acquisition time for an SRV image was about 3 min. A "round-trip" frequency-scan mode was introduced to minimize the effects of signal transients on data self-consistency. Simultaneous best fitting of HeLIC amplitude-frequency dependencies at various queue-times was used to guarantee the reliability of resolving surface and bulk carrier recombination/transport properties. The dynamic range of the measured SRV values was established from 0.1 to 100 m/s.
Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange
Binetti, Enrico; Striccoli, Marinella; Sibillano, Teresa; Giannini, Cinzia; Brescia, Rosaria; Falqui, Andrea; Comparelli, Roberto; Corricelli, Michela; Tommasi, Raffaele; Agostiano, Angela; Curri, M Lucia
2015-01-01
Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700–850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices. PMID:27877842
Nanoscale studies at the early stages of the exposure of copper surfaces after systematic treatments in synthesized water solutions can provide useful information about corrosion processes. The corrosion and passivation of copper surfaces as influenced by pH, dissolved inorganic ...
NASA Astrophysics Data System (ADS)
Erryani, Aprilia; Lestari, Franciska Pramuji; Annur, Dhyah; Kartika, Ika
2018-05-01
The role of blowing agent in the manufacture of porous metal alloys is very important to produce the desired pore. The thermal stability and speed of foam formation have an effect on the resulting pore structure. In porous metal alloys, uniformity of size and pore deployment are the main determinants of the resulting alloys. The coating process of calcium carbonate (CaCO3) has been done using Sodium trisilicate solution by sol-gel method. Foaming agent was pretreated by coating SiO2 passive layer on the surface of CaCO3. This coating aims to produce a more stable blowing agent so that the foaming process can produce a more uniform pore size. The microstructure of the SiO2 passive was observed using Scanning Electron Microscope (SEM) equipped by Energy Dispersive X-Ray Spectrometer (EDS) mapping. The results showed coating CaCO3 using sodium trisilicate was successfully done creating a passive layer of SiO2 on the surface of CaCO3. By the coating process, the thermal stability of coated CaCO3 increased compared to uncoated CaCO3.
Patterning of supported lipid bilayers and proteins using material selective nitrodopamine-mPEG.
Spycher, Philipp R; Hall, Heike; Vogel, Viola; Reimhult, Erik
2015-01-01
We present a generic patterning process by which biomolecules in a passivated background are patterned directly from physiological buffer to microfabricated surfaces without the need for further processing. First, nitrodopamine-mPEG is self-assembled to selectively render TiO2 patterns non-fouling to biomolecule adsorption on hydrophilic and adhesive glass surfaces. After the controlled TiO2 passivation, the biomolecules can be directly adsorbed from solution in a single step creating large scale micropatterned and highly homogeneous arrays of biomolecules with very high pattern definition. We demonstrate the formation of fluid supported lipid bilayers (SLBs) down to the single μm-level limited only by the photolithographic process. Non-specific adsorption of lipid vesicles to the TiO2 background was found to be almost completely suppressed. The SLB patterns can be further selectively functionalized with retained mobility, which we demonstrate through biotin-streptavidin coupling. We envision this single step patterning approach to be very beneficial for membrane-based biosensors and for pattering of cells on a passivated background with complex, sub-cellular geometries; in each application the adherent areas have a tunable mobility of interaction sites controlled by the fluidity of the membrane.
Engineered Multifunctional Surfaces for Fluid Handling
NASA Technical Reports Server (NTRS)
Thomas, Chris; Ma, Yonghui; Weislogel, Mark
2012-01-01
Designs incorporating variations in capillary geometry and hydrophilic and/or antibacterial surface properties have been developed that are capable of passive gas/liquid separation and passive water flow. These designs can incorporate capillary grooves and/or surfaces arranged to create linear and circumferential capillary geometry at the micro and macro scale, radial fin configurations, micro holes and patterns, and combinations of the above. The antibacterial property of this design inhibits the growth of bacteria or the development of biofilm. The hydrophilic property reduces the water contact angle with a treated substrate such that water spreads into a thin layer atop the treated surface. These antibacterial and hydrophilic properties applied to a thermally conductive surface, combined with capillary geometry, create a novel heat exchanger capable of condensing water from a humid, two-phase water and gas flow onto the treated heat exchanger surfaces, and passively separating the condensed water from the gas flow in a reduced gravity application. The overall process to generate the antibacterial and hydrophilic properties includes multiple steps to generate the two different surface properties, and can be divided into two major steps. Step 1 uses a magnetron-based sputtering technique to implant the silver atoms into the base material. A layer of silver is built up on top of the base material. Completion of this step provides the antibacterial property. Step 2 uses a cold-plasma technique to generate the hydrophilic surface property on top of the silver layer generated in Step 1. Completion of this step provides the hydrophilic property in addition to the antibacterial property. Thermally conductive materials are fabricated and then treated to create the antibacterial and hydrophilic surface properties. The individual parts are assembled to create a condensing heat exchanger with antibacterial and hydrophilic surface properties and capillary geometry, which is capable of passive phase separation in a reduced gravity application. The plasma processes for creating antibacterial and hydrophilic surface properties are suitable for applications where water is present on an exposed surface for an extended time, such that bacteria or biofilms could form, and where there is a need to manage the water on the surface. The processes are also suitable for applications where only the hydrophilic property is needed. In particular, the processes are applicable to condensing heat exchangers (CHXs), which benefit from the antibacterial properties as well as the hydrophilic properties. Water condensing onto the control surfaces of the CHX will provide the moist conditions necessary for the growth of bacteria and the formation of biofilms. The antibacterial properties of the base layer (silver) will mitigate and prevent the growth of bacteria and formation of biofilms that would otherwise reduce the CHX performance. In addition, the hydrophilic properties reduce the water contact angle and prevent water droplets from bridging between control surfaces. Overall, the hydrophilic properties reduce the pressure drop across the CHX.
NASA Astrophysics Data System (ADS)
Adamowicz, B.; Miczek, M.; Ikeya, K.; Mutoh, M.; Saitoh, T.; Fujikura, H.; Hasegawa, H.
1999-03-01
The photoluminescence surface state spectroscopy (PLS 3) method was applied to a study of the surface state distribution ( NSS), effective surface recombination velocity ( Seff), electron ( EFn) and hole ( EFp) quasi-Fermi levels and band bending ( VS) on the Al 0.33Ga 0.67As surface air-exposed and passivated by the Si interface control layer (ICL) technique. Using the detailed measurements of the PL quantum efficiency for different excitation intensities, combined with the rigorous computer simulations of the bulk and surface recombination processes, the behavior and correlation among the surface characteristics under photo-excitation was determined. The present analysis indicated that forming of a Si 3N 4/Si ICL double layer (with a monolayer level control) on AlGaAs surface reduces the minimum interface state density down to 10 10 cm -2 eV -1 and surface recombination velocity to the range of 10 4 cm/s under low excitations.
Carrad, D J; Burke, A M; Reece, P J; Lyttleton, R W; Waddington, D E J; Rai, A; Reuter, D; Wieck, A D; Micolich, A P
2013-08-14
We have studied the efficacy of (NH4)2Sx surface passivation on the (311)A GaAs surface. We report XPS studies of simultaneously-grown (311)A and (100) heterostructures showing that the (NH4)2Sx solution removes surface oxide and sulfidizes both surfaces. Passivation is often characterized using photoluminescence measurements; we show that while (NH4)2Sx treatment gives a 40-60 × increase in photoluminescence intensity for the (100) surface, an increase of only 2-3 × is obtained for the (311)A surface. A corresponding lack of reproducible improvement in the gate hysteresis of (311)A heterostructure transistor devices made with the passivation treatment performed immediately prior to gate deposition is also found. We discuss possible reasons why sulfur passivation is ineffective for (311)A GaAs, and propose alternative strategies for passivation of this surface.
Direct evidence of void passivation in Cu(InGa)(SSe){sub 2} absorber layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dongho; Kim, Young-Su; Mo, Chan B.
We have investigated the charge collection condition around voids in copper indium gallium sulfur selenide (CIGSSe) solar cells fabricated by sputter and a sequential process of selenization/sulfurization. In this study, we found direct evidence of void passivation by using the junction electron beam induced current method, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The high sulfur concentration at the void surface plays an important role in the performance enhancement of the device. The recombination around voids is effectively suppressed by field-assisted void passivation. Hence, the generated carriers are easily collected by the electrodes. Therefore, when the S/(S + Se)more » ratio at the void surface is over 8% at room temperature, the device performance degradation caused by the recombination at the voids is negligible at the CIGSSe layer.« less
THE EFFECTS OF POLARIZATION UPON THE STEEL WIRE-NITRIC ACID MODEL OF NERVE ACTIVITY.
Bishop, G H
1927-11-20
The active process in a short length of steel wire passivated by 65 per cent nitric acid has been observed under the influence of a polarizing current, and the form of the potential recorded by the cathode ray oscillograph. In the passive wire, 80 per cent of the total potential drop takes place at the anode, 20 per cent at the cathode. The change from active to passive states, as measured by the potential change, is very abrupt compared to the duration of activity and the potential curve at a point on the wire is probably almost rectangular. The duration of the refractory state is decreased at the anode and increased at the cathode, as in nerve. This fact is against the idea that reactivity after passivation results from a partial reduction of an oxide layer. Soft iron wire passivated by anodal polarization repassivates after activation in acid of a dilution that fails to passivate it initially. It soon becomes rhythmic with a very short refractory phase, and then reacts continuously. Such a wire exhibits a very sharp alternation between a dark brown oxide coat during activity, and a bright clean surface during passivation. A passive steel wire in nitric acid shows many of the characteristics of an inert electrode such as platinum, and it may be inferred that, superposed upon the primary passivation potential, there exists an electrode or oxidation-reduction potential equilibrium between the effects of the various constituents of the solution. It is suggested that the phenomena of nerve-like reactivity in this system may involve an alternation between two protective coatings of the steel wire. During activity, the surface becomes mechanically coated with a brown oxide. If this coating does not adhere, due to gas convection or to rapid solution of the oxide, passivation does not result. Under sufficiently intense oxidizing conditions, a second oxide coat may form in the interstices of the first, and cover the surface as the first coating dissolves off. This furnishes the electrochemical protection of passivation, which is followed by the gradual attainment of electrode equilibrium with the solution.
THE EFFECTS OF POLARIZATION UPON THE STEEL WIRE-NITRIC ACID MODEL OF NERVE ACTIVITY
Bishop, George H.
1927-01-01
The active process in a short length of steel wire passivated by 65 per cent nitric acid has been observed under the influence of a polarizing current, and the form of the potential recorded by the cathode ray oscillograph. In the passive wire, 80 per cent of the total potential drop takes place at the anode, 20 per cent at the cathode. The change from active to passive states, as measured by the potential change, is very abrupt compared to the duration of activity and the potential curve at a point on the wire is probably almost rectangular. The duration of the refractory state is decreased at the anode and increased at the cathode, as in nerve. This fact is against the idea that reactivity after passivation results from a partial reduction of an oxide layer. Soft iron wire passivated by anodal polarization repassivates after activation in acid of a dilution that fails to passivate it initially. It soon becomes rhythmic with a very short refractory phase, and then reacts continuously. Such a wire exhibits a very sharp alternation between a dark brown oxide coat during activity, and a bright clean surface during passivation. A passive steel wire in nitric acid shows many of the characteristics of an inert electrode such as platinum, and it may be inferred that, superposed upon the primary passivation potential, there exists an electrode or oxidation-reduction potential equilibrium between the effects of the various constituents of the solution. It is suggested that the phenomena of nerve-like reactivity in this system may involve an alternation between two protective coatings of the steel wire. During activity, the surface becomes mechanically coated with a brown oxide. If this coating does not adhere, due to gas convection or to rapid solution of the oxide, passivation does not result. Under sufficiently intense oxidizing conditions, a second oxide coat may form in the interstices of the first, and cover the surface as the first coating dissolves off. This furnishes the electrochemical protection of passivation, which is followed by the gradual attainment of electrode equilibrium with the solution. PMID:19872388
Passive Polarimetric Information Processing for Target Classification
NASA Astrophysics Data System (ADS)
Sadjadi, Firooz; Sadjadi, Farzad
Polarimetric sensing is an area of active research in a variety of applications. In particular, the use of polarization diversity has been shown to improve performance in automatic target detection and recognition. Within the diverse scope of polarimetric sensing, the field of passive polarimetric sensing is of particular interest. This chapter presents several new methods for gathering in formation using such passive techniques. One method extracts three-dimensional (3D) information and surface properties using one or more sensors. Another method extracts scene-specific algebraic expressions that remain unchanged under polariza tion transformations (such as along the transmission path to the sensor).
Method for surface passivation and protection of cadmium zinc telluride crystals
Mescher, Mark J.; James, Ralph B.; Schlesinger, Tuviah E.; Hermon, Haim
2000-01-01
A method for reducing the leakage current in CZT crystals, particularly Cd.sub.1-x Zn.sub.x Te crystals (where x is greater than equal to zero and less than or equal to 0.5), and preferably Cd.sub.0.9 Zn.sub.0.1 Te crystals, thereby enhancing the ability of these crystal to spectrally resolve radiological emissions from a wide variety of radionuclides. Two processes are disclosed. The first method provides for depositing, via reactive sputtering, a silicon nitride hard-coat overlayer which provides significant reduction in surface leakage currents. The second method enhances the passivation by oxidizing the CZT surface with an oxygen plasma prior to silicon nitride deposition without breaking the vacuum state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Yuguo; Upadhyaya, Vijaykumar; Chen, Chia-Wei
This paper reports on the implementation of carrier-selective tunnel oxide passivated rear contact for high-efficiency screen-printed large area n-type front junction crystalline Si solar cells. It is shown that the tunnel oxide grown in nitric acid at room temperature (25°C) and capped with n+ polysilicon layer provides excellent rear contact passivation with implied open-circuit voltage iVoc of 714mV and saturation current density J0b of 10.3 fA/cm2 for the back surface field region. The durability of this passivation scheme is also investigated for a back-end high temperature process. In combination with an ion-implanted Al2O3-passivated boron emitter and screen-printed front metal grids,more » this passivated rear contact enabled 21.2% efficient front junction Si solar cells on 239 cm2 commercial grade n-type Czochralski wafers.« less
Role of Pb for Ag growth on H-passivated Si(1 0 0) surfaces
NASA Astrophysics Data System (ADS)
Mathew, S.; Satpati, B.; Joseph, B.; Dev, B. N.
2005-08-01
We have deposited Ag on hydrogen passivated Si(1 0 0) surfaces under high vacuum conditions at room temperature. The deposition, followed by annealing at 250 °C for 30 min, produced silver islands of an average lateral size 36±14 nm. Depositing a small amount of Pb prior to Ag deposition reduced the average island size to 14±5 nm. A small amount of Pb, initially present at the Ag-Si interface, is found to be segregating to the surface of Ag after annealing. Both these aspects, namely, reduction of the island size and Pb floating on the Ag surface conform to the surfactant action of Pb. Samples have been characterized by transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy (RBS). A selective etching process that preferentially removes Pb, in conjunction with RBS, was used to detect surface segregation of Pb involving depth scales below the resolution of conventional RBS. The annealing and etching process leaves only smaller Ag islands on the surface with complete removal of Pb. Ag growth in the presence of Pb leads to smaller Ag islands with a narrower size distribution.
Southern Mariana OBS Experiment and Preliminary Results of Passive-Source Investigations
NASA Astrophysics Data System (ADS)
Le, B. M.; Lin, J.; Yang, T.; Shiyan 3, S. P. O. R.
2017-12-01
The Southern Mariana OBS Experiment (SMOE) was one of the first seismic experiments targeting the deepest part of Earth's surface. During the Phase I experiment in December 2016, an array of OBS instruments were deployed across the Challenger Deep that recorded both active-source and passive-source data. During the Phase II experiment in December 2016-June 2017, passive-source data were recorded. We have retrieved earthquake signals and processed the waveforms from the recorded global, regional and local events, respectively, during the Phase I experiment. Most of the waveforms recorded by the OBS array have fairly good quality with discernible main phases. Rayleigh waves from many earthquakes were analyzed using the frequency-time analysis and their group velocities at different periods were obtained. The dispersion curves from different Rayleigh wave propagating paths would be valuable for inverting the structure of the subducting Pacific and overriding Philippine Sea plates. Furthermore, we applied the ambient noise cross-correlation method and retrieved high-quality coherence surface wave waveforms. With its relatively high frequencies, the surface waves can be used to study the crustal structure of the region. Together with the Phase II data, we expect that this seismic experiment will provide unprecedented constraints on the structure and geodynamic processes of the southern Mariana trench.
NASA Astrophysics Data System (ADS)
Fu, Chen; Lin, Zhaojun; Cui, Peng; Lv, Yuanjie; Zhou, Yang; Dai, Gang; Luan, Chongbiao; Liu, Huan; Cheng, Aijie
2018-01-01
A new method to determine the two-dimensional electron gas (2DEG) density distribution of the AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) after the Si3N4 passivation process has been presented. Detailed device characteristics were investigated and better transport properties have been observed for the passivated devices. The strain variation and the influence of the surface trapping states were analyzed. By using the polarization Coulomb field (PCF) scattering theory, the 2DEG density after passivation was both quantitively and qualitatively determined, which has been increased by 45% under the access regions and decreased by 2% under the gate region.
Method for producing highly reflective metal surfaces
Arnold, Jones B.; Steger, Philip J.; Wright, Ralph R.
1983-01-01
The invention is a novel method for producing mirror surfaces which are extremely smooth and which have high optical reflectivity. The method includes electrolessly depositing an amorphous layer of nickel on an article and then diamond-machining the resulting nickel surface to increase its smoothness and reflectivity. The machined nickel surface then is passivated with respect to the formation of bonds with electrodeposited nickel. Nickel then is electrodeposited on the passivated surface to form a layer of electroplated nickel whose inside surface is a replica of the passivated surface. The electroplated nickel layer then is separated from the passivated surface. The mandrel then may be re-passivated and provided with a layer of electrodeposited nickel, which is then recovered from the mandrel providing a second replica. The mandrel can be so re-used to provide many such replicas. As compared with producing each mirror-finished article by plating and diamond-machining, the new method is faster and less expensive.
Lee, Jonghwan; Park, Cheolmin; Dao, Vinh Ai; Lee, Youn-Jung; Ryu, Kyungyul; Choi, Gyuho; Kim, Bonggi; Ju, Minkyu; Jeong, Chaehwan; Yi, Junsin
2013-11-01
In this paper, we present a detailed study on the local back contact (LBC) formation of rear-surface-passivated silicon solar cells, where both the LBC opening and metallization are realized by one-step alloying of a dot of fine pattern screen-printed aluminum paste with the silicon substrate. Based on energy dispersive spectrometer (EDS) and scanning electron microscopy (SEM) characterizations, we suggest that the aluminum distribution and the silicon concentration determine the local-back-surface-field (Al-p+) layer thickness, resistivity of the Al-p+ and hence the quality of the Al-p+ formation. The highest penetration of silicon concentration of 78.17% in aluminum resulted in the formation of a 5 microm-deep Al-p+ layer, and the minimum LBC resistivity of 0.92 x 10-6 omega cm2. The degradation of the rear-surface passivation due to high temperature of the LBC formation process can be fully recovered by forming gas annealing (FGA) at temperature and hydrogen content of 450 degrees C and 15%, respectively. The application of the optimized LBC of rear-surface-passivated by a dot of fine pattern screen(-) printed aluminum paste resulted in efficiency of up to 19.98% for the p-type czochralski (CZ) silicon wafers with 10.24 cm2 cell size at 649 mV open circuit voltage. By FGA for rear-surface passivation recovery, efficiencies up to 20.35% with a V(OC) of 662 mV, FF of 82%, and J(SC) of 37.5 mA/cm2 were demonstrated.
NASA Astrophysics Data System (ADS)
Cui, Yingqi; Cui, Xianhui; Zhang, Li; Xie, Yujuan; Yang, Mingli
2018-04-01
Ligand passivation is often used to suppress the surface trap states of semiconductor quantum dots (QDs) for their continuous photoluminescence output. The suppression process is related to the electrophilic/nucleophilic activity of surface atoms that varies with the structure and size of QD and the electron donating/accepting nature of ligand. Based on first-principles-based descriptors and cluster models, the electrophilic/nucleophilic activities of bare and chloride-coated CdSe clusters were studied to reveal the suppression mechanism of Cl-passivated QDs and compared to experimental observations. The surface atoms of bare clusters have higher activity than inner atoms and their activity decreases with cluster size. In the ligand-coated clusters, the Cd atom remains as the electrophilic site, while the nucleophilic site of Se atoms is replaced by Cl atoms. The activities of Cd and Cl atoms in the coated clusters are, however, remarkably weaker than those in bare clusters. Cluster size, dangling atoms, ligand coverage, electronegativity of ligand atoms, and solvent (water) were found to have considerable influence on the activity of surface atoms. The suppression of surface trap states in Cl-passivated QDs was attributed to the reduction of electrophilic/nucleophilic activity of Cd/Se/Cl atoms. Both saturation to under-coordinated surface atoms and proper selection for the electron donating/accepting strength of ligands are crucial for eliminating the charge carrier traps. Our calculations predicted a similar suppressing effect of chloride ligands with experiments and provided a simple but effective approach to assess the charge carrier trapping behaviors of semiconductor QDs.
Nitride surface passivation of GaAs nanowires: impact on surface state density.
Alekseev, Prokhor A; Dunaevskiy, Mikhail S; Ulin, Vladimir P; Lvova, Tatiana V; Filatov, Dmitriy O; Nezhdanov, Alexey V; Mashin, Aleksander I; Berkovits, Vladimir L
2015-01-14
Surface nitridation by hydrazine-sulfide solution, which is known to produce surface passivation of GaAs crystals, was applied to GaAs nanowires (NWs). We studied the effect of nitridation on conductivity and microphotoluminescence (μ-PL) of individual GaAs NWs using conductive atomic force microscopy (CAFM) and confocal luminescent microscopy (CLM), respectively. Nitridation is found to produce an essential increase in the NW conductivity and the μ-PL intensity as well evidence of surface passivation. Estimations show that the nitride passivation reduces the surface state density by a factor of 6, which is of the same order as that found for GaAs/AlGaAs nanowires. The effects of the nitride passivation are also stable under atmospheric ambient conditions for six months.
NASA Astrophysics Data System (ADS)
Stephens, A. W.; Green, M. A.
1996-10-01
A method for measuring minority-carrier mobility using microwave-detected photoconductance decay without requiring bulk lifetime, estimates is presented. Three different measurements on a single sample yield values for surface recombination velocity, bulk lifetime, and diffusivity. For each measurement the surface conditions of the sample are changed, allowing extraction of different parameters. The usefulness of 0.08 molar ethanol/iodine solution as a means of achieving such good surface passivation is demonstrated. The following procedure was used to achieve high surface recombination. A CF4 plasma surface etch was shown to achieve the same level of surface damage as mechanical abrasion. The advantage of the new method is that it completely eliminates the chance of breaking samples during the abrasion process, which is of particular advantage for thin samples. The new experimental method for minority-carrier mobility measurement is evaluated using carrier lifetime measurements made on a commercially available Leo Giken ``Wafer-τ'' lifetime tester.
Enhancement of biocompatibility of 316LVM stainless steel by cyclic potentiodynamic passivation.
Shahryari, Arash; Omanovic, Sasha; Szpunar, Jerzy A
2009-06-15
Passivation of stainless steel implants is a common procedure used to increase their biocompatibility. The results presented in this work demonstrate that the electrochemical cyclic potentiodynamic polarization (CPP) of a biomedical grade 316LVM stainless steel surface is a very efficient passivation method that can be used to significantly improve the material's general corrosion resistance and thus its biocompatibility. The influence of a range of experimental parameters on the passivation/corrosion protection efficiency is discussed. The passive film formed on a 316LVM surface by using the CPP method offers a significantly higher general corrosion resistance than the naturally grown passive film. The corresponding relative corrosion protection efficiency measured in saline during a 2-month period was 97% +/- 1%, which demonstrates a very high stability of the CPP-formed passive film. Its high corrosion protection efficiency was confirmed also at temperatures and chloride concentrations well above normal physiological levels. It was also shown that the CPP is a significantly more effective passivation method than some other surface-treatment methods commonly used to passivate biomedical grade stainless steels. In addition, the CPP-passivated 316LVM surface showed an enhanced biocompatibility in terms of preosteoblast (MC3T3) cells attachment. An increased thickness of the CPP-formed passive film and its enrichment with Cr(VI) and oxygen was determined to be the origin of the material's increased general corrosion resistance, whereas the increased surface roughness and surface (Volta) potential were suggested to be the origin of the enhanced preosteoblast cells attachment. Copyright 2008 Wiley Periodicals, Inc.
Carrier characteristics influence the kinetics of passive drug loading into lipid nanoemulsions.
Göke, Katrin; Bunjes, Heike
2018-05-01
Passive loading as a novel screening approach is a material-saving tool for the efficient selection of a suitable colloidal lipid carrier system for poorly water soluble drug candidates. This method comprises incubation of preformed carrier systems with drug powder and subsequent determination of the resulting drug load of the carrier particles after removal of excess drug. For reliable routine use and to obtain meaningful loading results, information on the kinetics of the process is required. Passive loading proceeds via a dissolution-diffusion-based mechanism, where drug surface area and drug water solubility are key parameters for fast passive loading. While the influence of the drug characteristics is mostly understood, the influence of the carrier characteristics remains unknown. The aim of this study was to examine how the lipid nanocarriers' characteristics, i.e. the type of lipid, the lipid content and the particle size, influence the kinetics of passive loading. Fenofibrate was used as model drug and the loading progress was analyzed by UV spectroscopy. The saturation solubility in the nanocarrier particles, i.e. the lipid type, did not influence the passive loading rate constant. Low lipid content in the nanocarrier and a small nanocarrier particle size both increased passive loading speed. Both variations increase the diffusivity of the nanocarrier particles, which is the primary cause for fast loading at these conditions: The quicker the carrier particles diffuse, the higher is the speed of passive loading. The influence of the diffusivity of the lipid nanocarriers and the effect of drug dissolution rate were included in an overall mechanistic model developed for similar processes (A. Balakrishnan, B.D. Rege, G.L. Amidon, J.E. Polli, Surfactant-mediated dissolution: contributions of solubility enhancement and relatively low micelle diffusivity, J. Pharm. Sci. 93 (2004) 2064-2075). The resulting mechanistic model gave a good estimate of the speed of passive loading in nanoemulsions. Whilst the drug's characteristics - apart from drug surface area - are basically fixed, the lipid nanocarriers can be customized to improve passive loading speed, e.g. by using small nanocarrier particles. The knowledge of the loading mechanism now allows the use of passive loading for the straightforward, material-saving selection of suitable lipid drug nanocarriers. Copyright © 2017 Elsevier B.V. All rights reserved.
Hong, Seonghwan; Park, Sung Pyo; Kim, Yeong-Gyu; Kang, Byung Ha; Na, Jae Won; Kim, Hyun Jae
2017-11-24
We report low-temperature solution processing of hafnium oxide (HfO 2 ) passivation layers for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). At 150 °C, the hafnium chloride (HfCl 4 ) precursor readily hydrolyzed in deionized (DI) water and transformed into an HfO 2 film. The fabricated HfO 2 passivation layer prevented any interaction between the back surface of an a-IGZO TFT and ambient gas. Moreover, diffused Hf 4+ in the back-channel layer of the a-IGZO TFT reduced the oxygen vacancy, which is the origin of the electrical instability in a-IGZO TFTs. Consequently, the a-IGZO TFT with the HfO 2 passivation layer exhibited improved stability, showing a decrease in the threshold voltage shift from 4.83 to 1.68 V under a positive bias stress test conducted over 10,000 s.
Passivating Window/First Layer AR Coating for Space Solar Cells
NASA Technical Reports Server (NTRS)
Faur, Mircea; Faur, Maria; Bailey, S. G.; Flood, D. J.; Brinker, D. J.; Alterovitz, S. A.; Wheeler, D. R.; Matesscu, G.; Goradia, C.; Goradia, M.
2004-01-01
Chemically grown oxides, if well designed, offer excellent surface passivation of the emitter surface of space solar cells and can be used as effective passivating window/first layer AR coating. In this paper, we demonstrate the effectiveness of using a simple room temperature wet chemical technique to grow cost effective passivating layers on solar cell front surfaces after the front grid metallization step. These passivating layers can be grown both on planar and porous surfaces. Our results show that these oxide layers: (i) can effectively passivate the from the surface, (ii) can serve as an effective optical window/first layer AR coating, (iii) are chemically, thermally and UV stable, and (iv) have the potential of improving the BOL and especially the EOL efficiency of space solar cells. The potential of using this concept to simplify the III-V based space cell heterostructures while increasing their BOL and EOL efficiency is also discussed.
NASA Astrophysics Data System (ADS)
Xiao, Hai-Qing; Zhou, Chun-Lan; Cao, Xiao-Ning; Wang, Wen-Jing; Zhao, Lei; Li, Hai-Ling; Diao, Hong-Wei
2009-08-01
Al2O3 films with a thickness of about 100 nm synthesized by spin coating and thermally treated are applied for field-induced surface passivation of p-type crystalline silicon. The level of surface passivation is determined by techniques based on photoconductance. An effective surface recombination velocity below 100 cm/s is obtained on 10Ω ·cm p-type c-Si wafers (Cz Si). A high density of negative fixed charges in the order of 1012 cm-2 is detected in the Al2O3 films and its impact on the level of surface passivation is demonstrated experimentally. Furthermore, a comparison between the surface passivation achieved for thermal SiO2 and plasma enhanced chemical vapor deposition SiNx:H films on the same c-Si is presented. The high negative fixed charge density explains the excellent passivation of p-type c-Si by Al2O3.
Li, Lester; Breedveld, Victor; Hess, Dennis W
2012-09-26
In this work, we present a method to render stainless steel surfaces superhydrophobic while maintaining their corrosion resistance. Creation of surface roughness on 304 and 316 grade stainless steels was performed using a hydrofluoric acid bath. New insight into the etch process is developed through a detailed analysis of the chemical and physical changes that occur on the stainless steel surfaces. As a result of intergranular corrosion, along with metallic oxide and fluoride redeposition, surface roughness was generated on the nano- and microscales. Differences in alloy composition between 304 and 316 grades of stainless steel led to variations in etch rate and different levels of surface roughness for similar etch times. After fluorocarbon film deposition to lower the surface energy, etched samples of 304 and 316 stainless steel displayed maximum static water contact angles of 159.9 and 146.6°, respectively. However, etching in HF also caused both grades of stainless steel to be susceptible to corrosion. By passivating the HF-etched samples in a nitric acid bath, the corrosion resistant properties of stainless steels were recovered. When a three step process was used, consisting of etching, passivation and fluorocarbon deposition, 304 and 316 stainless steel samples exhibited maximum contact angles of 157.3 and 134.9°, respectively, while maintaining corrosion resistance.
NASA Astrophysics Data System (ADS)
Tang, Hengjing; Wu, Xiaoli; Xu, Qinfei; Liu, Hongyang; Zhang, Kefeng; Wang, Yang; He, Xiangrong; Li, Xue; Gong, Hai Mei
2008-03-01
The fabrication of Au/SiNx/InP metal-insulator-semiconductor (MIS) diodes has been achieved by depositing a layer of SiNx on the (NH4)2Sx-treated n-InP. The SiNx layer was deposited at 200 °C using plasma-enhanced chemical vapor deposition (PECVD). The effect of passivation on the InP surface before and after annealing was evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements, and Auger electron spectroscopy (AES) analysis was used to investigate the depth profiles of several atoms. The results indicate that the SiNx passivation layer exhibits good insulative characteristics. The annealing process causes distinct inter-diffusion in the SiNx/InP interface and contributes to the decrease of the fixed charge density and minimum interface state density, which are 1.96 × 1012 cm-2 and 7.41 × 1011 cm-2 eV-1, respectively. A 256 × 1 InP/InGaAs/InP heterojunction photodiode, fabricated with sulfidation and SiNx passivation layer, has good response uniformity.
Apparatus and process for passivating an SRF cavity
Myneni, Ganapati Rao; Wallace, John P
2014-12-02
An apparatus and process for the production of a niobium cavity exhibiting high quality factors at high gradients is provided. The apparatus comprises a first chamber positioned within a second chamber, an RF generator and vacuum pumping systems. The process comprises placing the niobium cavity in a first chamber of the apparatus; thermally treating the cavity by high temperature in the first chamber while maintaining high vacuum in the first and second chambers; and applying a passivating thin film layer to a surface of the cavity in the presence of a gaseous mixture and an RF field. Further a niobium cavity exhibiting high quality factors at high gradients produced by the method of the invention is provided.
A new structure for comparing surface passivation materials of GaAs solar cells
NASA Technical Reports Server (NTRS)
Desalvo, Gregory C.; Barnett, Allen M.
1989-01-01
The surface recombination velocity (S sub rec) for bare GaAs is typically as high as 10 to the 6th power to 10 to the 7th power cm/sec, which dramatically lowers the efficiency of GaAs solar cells. Early attempts to circumvent this problem by making an ultra thin junction (xj less than .1 micron) proved unsuccessful when compared to lowering S sub rec by surface passivation. Present day GaAs solar cells use an GaAlAs window layer to passivate the top surface. The advantages of GaAlAs in surface passivation are its high bandgap energy and lattice matching to GaAs. Although GaAlAs is successful in reducing the surface recombination velocity, it has other inherent problems of chemical instability (Al readily oxidizes) and ohmic contact formation. The search for new, more stable window layer materials requires a means to compare their surface passivation ability. Therefore, a device structure is needed to easily test the performance of different passivating candidates. Such a test device is described.
Wet-chemical passivation of InAs: toward surfaces with high stability and low toxicity.
Jewett, Scott A; Ivanisevic, Albena
2012-09-18
In a variety of applications where the electronic and optical characteristics of traditional, siliconbased materials are inadequate, recently researchers have employed semiconductors made from combinations of group III and V elements such as InAs. InAs has a narrow band gap and very high electron mobility in the near-surface region, which makes it an attractive material for high performance transistors, optical applications, and chemical sensing. However, silicon-based materials remain the top semiconductors of choice for biological applications, in part because of their relatively low toxicity. In contrast to silicon, InAs forms an unstable oxide layer under ambient conditions, which can corrode over time and leach toxic indium and arsenic components. To make InAs more attractive for biological applications, researchers have investigated passivation, chemical and electronic stabilization, of the surface by adlayer adsorption. Because of the simplicity, low cost, and flexibility in the type of passivating molecule used, many researchers are currently exploring wet-chemical methods of passivation. This Account summarizes much of the recent work on the chemical passivation of InAs with a particular focus on the chemical stability of the surface and prevention of oxide regrowth. We review the various methods of surface preparation and discuss how crystal orientation affects the chemical properties of the surface. The correct etching of InAs is critical as researchers prepare the surface for subsequent adlayer adsorption. HCl etchants combined with a postetch annealing step allow the tuning of the chemical properties in the near-surface region to either arsenic- or indium-rich environments. Bromine etchants create indium-rich surfaces and do not require annealing after etching; however, bromine etchants are harsh and potentially destructive to the surface. The simultaneous use of NH(4)OH etchants with passivating molecules prevents contact with ambient air that can occur during sample transfer between solutions. The passivation of InAs is dominated by sulfur-based molecules, which form stable In-S bonds on the InAs surface. Both sulfides and alkanethiols form well-defined monolayers on InAs and are dominated by In-S interactions. Sulfur-passivated InAs surfaces prevent regrowth of the surface oxide layer and are more stable in air than unpassivated surfaces. Although functionalization of InAs with sulfur-based molecules effectively passivates the surface, future sensing applications may require the adsorption of functional biomolecules onto the InAs surface. Current research in this area focuses on the passivation abilities of biomolecules such as collagen binding peptides and amino acids. These biomolecules can physically adsorb onto InAs, and they demonstrate some passivation ability but not to the extent of sulfur-based molecules. Because these adsorbents do not form covalent bonds with the InAs surface, they do not effectively block oxide regrowth. A mixed adlayer containing a biomolecule and a thiol on the InAs surface provides one possible solution: these hybrid surfaces enhance passivation but also maintain the presence of a biomolecule on the surface. Such surface functionalization strategies on InAs could provide long-term stability and make these surfaces suitable for biological applications.
Atomic level characterization in corrosion studies
NASA Astrophysics Data System (ADS)
Marcus, Philippe; Maurice, Vincent
2017-06-01
Atomic level characterization brings fundamental insight into the mechanisms of self-protection against corrosion of metals and alloys by oxide passive films and into how localized corrosion is initiated on passivated metal surfaces. This is illustrated in this overview with selected data obtained at the subnanometre, i.e. atomic or molecular, scale and also at the nanometre scale on single-crystal copper, nickel, chromium and stainless steel surfaces passivated in well-controlled conditions and analysed in situ and/or ex situ by scanning tunnelling microscopy/spectroscopy and atomic force microscopy. A selected example of corrosion modelling by ab initio density functional theory is also presented. The discussed aspects include the surface reconstruction induced by hydroxide adsorption and formation of two-dimensional (hydr)oxide precursors, the atomic structure, orientation and surface hydroxylation of three-dimensional ultrathin oxide passive films, the effect of grain boundaries in polycrystalline passive films acting as preferential sites of passivity breakdown, the differences in local electronic properties measured at grain boundaries of passive films and the role of step edges at the exposed surface of oxide grains on the dissolution of the passive film. This article is part of the themed issue 'The challenges of hydrogen and metals'.
On the classification of active and passive seawater intrusion
NASA Astrophysics Data System (ADS)
Werner, A. D.
2017-12-01
Active and passive seawater intrusion (SWI) arise when the freshwater head gradient slopes downwards towards land and the sea, respectively. However, a third category exists (i.e., passive-active SWI), whereby active SWI occurs inland of a mound in piezometric surface, whereas passive SWI occurs on the seaward side of the mound. In this study, numerical modelling is used to characterize the three forms of SWI, including an overview of the transient features of active SWI. While only simple cross-sectional representations of coastal aquifer settings are considered, the analysis provides guidance on some of the key attributes of each SWI class, as an extension to previous SWI research that offers limited differentiation between the various SWI types. Threshold parameter combinations for the onset of each form of SWI are provided, as derived from sharp-interface, steady-state analytical solutions. Dispersive aspects of SWI are then explored using numerical simulation. Important differences between the various forms of SWI include the salinization of the watertable that occurs under active SWI and in the absence of recharge, and the formation of persistent freshwater lenses in aquifers experiencing active SWI but also subject to surface recharge. Attempts to characterize transient active SWI processes, in terms of buoyancy, advective and dispersive processes, using dimensionless ratios that are drawn from previous studies of steady-state SWI, highlight the complex, nonlinear relationships that govern active SWI, even for idealized circumstances.
Fabricating solar cells with silicon nanoparticles
Loscutoff, Paul; Molesa, Steve; Kim, Taeseok
2014-09-02
A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.
Multicolor pyrometer for materials processing in space, phase 2
NASA Technical Reports Server (NTRS)
Frish, Michael; Frank, Jonathan; Beerman, Henry
1988-01-01
The program goals were to design, construct, and program a prototype passive imaging pyrometer capable of measuring, as accurately as possible, the temperature distribution across the surface of a moving object suspended in space.
Surface passivation and aging of InGaAs/InP heterojunction phototransistors
NASA Astrophysics Data System (ADS)
Park, Min-Su; Razaei, Mohsen; Barnhart, Katie; Tan, Chee Leong; Mohseni, Hooman
2017-06-01
We report the effect of different surface treatment and passivation techniques on the stability of InGaAs/InP heterojunction phototransistors (HPTs). An In0.53Ga0.47As surface passivated with aqueous ammonium sulfide ((NH4)2S), aluminum oxide (Al2O3) grown by atomic layer deposition (ALD), and their combination is evaluated by using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). All samples were kept in the air ambient, and their performances were periodically measured to investigate their long-term stability. Raman spectroscopy revealed that the peak intensity of the GaAs-like longitudinal optical phonon of all passivated samples is decreased compared with that of the control sample. This is attributable to the diminution of the carriers near the passivated surfaces, which was proven by extracted surface potential (Vs). The Vs of all passivated samples was decreased to less than half of that for the control sample. XPS evaluation of As3d spectra showed that arsenic oxides (As2O3 and As2O5) on the surfaces of the samples can be removed by passivation. However, both Raman and XPS spectra show that the (NH4)2S passivated sample reverts back over time and will resemble the untreated control sample. When capped with ALD-grown Al2O3, passivated samples irrespective of the pretreatment show no degradation over the measured time of 4 weeks. Similar conclusions are made from our experimental measurement of the performance of differently passivated HPTs. The ALD-grown Al2O3 passivated devices show an improved optical gain at low optical powers and long-term stability.
Passive film growth on titanium alloys: physicochemical and biologic considerations.
Eliades, T
1997-01-01
The role of reactive oxygen derivatives (hydroxy peroxide, hydroxyl radical, and singlet oxygen) on the precipitation of inorganic and organic complexes onto the surface of titanium implant alloys is discussed in this review. In addition, the effect of possible implication of several biologic entities surrounding the implant on the implant-tissue interface constituents is described. Evidence from relevant studies suggests that local microenvironmental byproducts and factors associated with the inflammatory response resulting from the implant-induced tissue insult may enhance the expressivity of the inherent, clinically important property of titanium to form oxides. Growth of titanium oxide may be explained through several processes derived from biologic, thermodynamic, and electrochemical approaches. The models proposed to interpret this phenomenon are often contradictory, demonstrating inward or outward from the bulk material passive film growth, with increasing or self-limiting levels of oxide formation as a function of time. However, in vivo observations are consistent with aging-induced thickening of the complexes precipitated on the implant material surface. This review attempts to clarify several critical issues pertaining to passive film formation and kinetics on titanium-alloy surfaces.
Surface passivation of n-type doped black silicon by atomic-layer-deposited SiO2/Al2O3 stacks
NASA Astrophysics Data System (ADS)
van de Loo, B. W. H.; Ingenito, A.; Verheijen, M. A.; Isabella, O.; Zeman, M.; Kessels, W. M. M.
2017-06-01
Black silicon (b-Si) nanotextures can significantly enhance the light absorption of crystalline silicon solar cells. Nevertheless, for a successful application of b-Si textures in industrially relevant solar cell architectures, it is imperative that charge-carrier recombination at particularly highly n-type doped black Si surfaces is further suppressed. In this work, this issue is addressed through systematically studying lowly and highly doped b-Si surfaces, which are passivated by atomic-layer-deposited Al2O3 films or SiO2/Al2O3 stacks. In lowly doped b-Si textures, a very low surface recombination prefactor of 16 fA/cm2 was found after surface passivation by Al2O3. The excellent passivation was achieved after a dedicated wet-chemical treatment prior to surface passivation, which removed structural defects which resided below the b-Si surface. On highly n-type doped b-Si, the SiO2/Al2O3 stacks result in a considerable improvement in surface passivation compared to the Al2O3 single layers. The atomic-layer-deposited SiO2/Al2O3 stacks therefore provide a low-temperature, industrially viable passivation method, enabling the application of highly n- type doped b-Si nanotextures in industrial silicon solar cells.
NASA Astrophysics Data System (ADS)
Xin, Jia; Tang, Fenglin; Zheng, Xilai
2016-04-01
Application of microscale zero-valent iron (mZVI) is a promising technology for in-situ contaminated groundwater remediation. However, its longevity would be negatively impacted by surface passivation, especially in saline groundwater. In this study, the aging behaviors of mZVI particles were investigated in three media (milli-Q water, fresh groundwater and saline groundwater) using batch experiments to evaluate their potential corrosion and passivation performance in different field conditions. The results indicated that mZVI was reactive between 0-7 days exposure to water and then gradually lost reactivity over the next few hundred days. The patterns of kinetic curve were analogous among the three different media. In comparison, during the early phase (0-7 d), mZVI in saline groundwater showed a faster corrosion rate with a k value of 1.357, which was relatively higher than k values in milli-Q water and fresh groundwater. However, as the corrosion process further developed, the fastest corrosion rate was observed in milli-Q water followed with fresh groundwater and saline groundwater. These changes in reactivity provided evidence for different patterns and formation mechanisms of passive layers on mZVI in three media. The SEM-EDS analysis demonstrated that in the saline groundwater, a compact and even oxide film of carbonate green rust or Fe oxide (hydroxyl) species was formed immediately on the surface due to the high concentration and widely distributed bicarbonate and hardness, whereas in the fresh groundwater and milli-Q water, the passive layer was composed of loosely and unevenly distributed precipitates which much slowly formed as the iron corrosion proceeded. These findings provide insight into the molecular-scale mechanism of mZVI passivation by inorganic salts with particular implications in saline groundwater.
Late Maturation Steps Preceding Selective Nuclear Export and Egress of Progeny Parvovirus
Wolfisberg, Raphael; Kempf, Christoph
2016-01-01
ABSTRACT Although the mechanism is not well understood, growing evidence indicates that the nonenveloped parvovirus minute virus of mice (MVM) may actively egress before passive release through cell lysis. We have dissected the late maturation steps of the intranuclear progeny with the aims of confirming the existence of active prelytic egress and identifying critical capsid rearrangements required to initiate the process. By performing anion-exchange chromatography (AEX), we separated intranuclear progeny particles by their net surface charges. Apart from empty capsids (EC), two distinct populations of full capsids (FC) arose in the nuclei of infected cells. The earliest population of FC to appear was infectious but, like EC, could not be actively exported from the nucleus. Further maturation of this early population, involving the phosphorylation of surface residues, gave rise to a second, late population with nuclear export potential. While capsid surface phosphorylation was strictly associated with nuclear export capacity, mutational analysis revealed that the phosphoserine-rich N terminus of VP2 (N-VP2) was dispensable, although it contributed to passive release. The reverse situation was observed for the incoming particles, which were dephosphorylated in the endosomes. Our results confirm the existence of active prelytic egress and reveal a late phosphorylation event occurring in the nucleus as a selective factor for initiating the process. IMPORTANCE In general, the process of egress of enveloped viruses is active and involves host cell membranes. However, the release of nonenveloped viruses seems to rely more on cell lysis. At least for some nonenveloped viruses, an active process before passive release by cell lysis has been reported, although the underlying mechanism remains poorly understood. By using the nonenveloped model parvovirus minute virus of mice, we could confirm the existence of an active process of nuclear export and further characterize the associated capsid maturation steps. Following DNA packaging in the nucleus, capsids required further modifications, involving the phosphorylation of surface residues, to acquire nuclear export potential. Inversely, those surface residues were dephosphorylated on entering capsids. These spatially controlled phosphorylation-dephosphorylation events concurred with the nuclear export-import potential required to complete the infectious cycle. PMID:27009963
Late Maturation Steps Preceding Selective Nuclear Export and Egress of Progeny Parvovirus.
Wolfisberg, Raphael; Kempf, Christoph; Ros, Carlos
2016-06-01
Although the mechanism is not well understood, growing evidence indicates that the nonenveloped parvovirus minute virus of mice (MVM) may actively egress before passive release through cell lysis. We have dissected the late maturation steps of the intranuclear progeny with the aims of confirming the existence of active prelytic egress and identifying critical capsid rearrangements required to initiate the process. By performing anion-exchange chromatography (AEX), we separated intranuclear progeny particles by their net surface charges. Apart from empty capsids (EC), two distinct populations of full capsids (FC) arose in the nuclei of infected cells. The earliest population of FC to appear was infectious but, like EC, could not be actively exported from the nucleus. Further maturation of this early population, involving the phosphorylation of surface residues, gave rise to a second, late population with nuclear export potential. While capsid surface phosphorylation was strictly associated with nuclear export capacity, mutational analysis revealed that the phosphoserine-rich N terminus of VP2 (N-VP2) was dispensable, although it contributed to passive release. The reverse situation was observed for the incoming particles, which were dephosphorylated in the endosomes. Our results confirm the existence of active prelytic egress and reveal a late phosphorylation event occurring in the nucleus as a selective factor for initiating the process. In general, the process of egress of enveloped viruses is active and involves host cell membranes. However, the release of nonenveloped viruses seems to rely more on cell lysis. At least for some nonenveloped viruses, an active process before passive release by cell lysis has been reported, although the underlying mechanism remains poorly understood. By using the nonenveloped model parvovirus minute virus of mice, we could confirm the existence of an active process of nuclear export and further characterize the associated capsid maturation steps. Following DNA packaging in the nucleus, capsids required further modifications, involving the phosphorylation of surface residues, to acquire nuclear export potential. Inversely, those surface residues were dephosphorylated on entering capsids. These spatially controlled phosphorylation-dephosphorylation events concurred with the nuclear export-import potential required to complete the infectious cycle. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Lv, Mingshan
2015-10-01
The passive and photoelectrical jamming to anti-ship missile in the condition of network centric warship formation is an important research issue of fleet EW operation. An approach jamming method of shipborne surface-type infrared decoy countering the infrared image guided anti-ship missile is put forward. By analyzing the countering process the jamming effectiveness evaluation model is constructed. By simulation the method is proved t reasonable and effective. This method breaks through the traditional restrict that the passive and photoelectricity jamming measure can only be used in the end self-defence and provides a new method for network centric worship formation to support each other.
Efe, Turgay; Schofer, Markus D; Füglein, Alexander; Timmesfeld, Nina; Fuchs-Winkelmann, Susanne; Stein, Thomas; El-Zayat, Bilal Farouk; Paletta, Jürgen Rj; Heyse, Thomas J
2010-12-15
Primary stability of cartilage repair constructs is of the utmost importance in the clinical setting but few continuous passive motion (CPM) models are available. Our study aimed to establish a novel ex vivo CPM animal model and to evaluate the required motion cycles for testing the mechanical properties of a new cell-free collagen type I gel plug (CaReS®-1S). A novel ex vivo CPM device was developed. Full-thickness cartilage defects (11 mm diameter by 6 mm deep) were created on the medial femoral condyle of porcine knee specimens. CaReS®-1S was implanted in 16 animals and each knee underwent continuous passive motion. After 0, 2000, 4000, 6000, and 8000 motions, standardized digital pictures of the grafts were taken, focusing on the worn surfaces. The percentage of worn surface on the total CaReS®-1S surface was evaluated with image processing software. Significant differences in the worn surface were recorded between 0 and 2000 motion cycles (p < 0.0001). After 2000 motion cycles, there was no significant difference. No total delamination of CaReS®-1S with an empty defect site was recorded. The ex vivo CPM animal model is appropriate in investigating CaReS®-1S durability under continuous passive motion. 2000 motion cycles appear adequate to assess the primary stability of type I collagen gels used to repair focal chondral defects.
2010-01-01
Background Primary stability of cartilage repair constructs is of the utmost importance in the clinical setting but few continuous passive motion (CPM) models are available. Our study aimed to establish a novel ex vivo CPM animal model and to evaluate the required motion cycles for testing the mechanical properties of a new cell-free collagen type I gel plug (CaReS®-1S). Methods A novel ex vivo CPM device was developed. Full-thickness cartilage defects (11 mm diameter by 6 mm deep) were created on the medial femoral condyle of porcine knee specimens. CaReS®-1S was implanted in 16 animals and each knee underwent continuous passive motion. After 0, 2000, 4000, 6000, and 8000 motions, standardized digital pictures of the grafts were taken, focusing on the worn surfaces. The percentage of worn surface on the total CaReS®-1S surface was evaluated with image processing software. Results Significant differences in the worn surface were recorded between 0 and 2000 motion cycles (p < 0.0001). After 2000 motion cycles, there was no significant difference. No total delamination of CaReS®-1S with an empty defect site was recorded. Conclusion The ex vivo CPM animal model is appropriate in investigating CaReS®-1S durability under continuous passive motion. 2000 motion cycles appear adequate to assess the primary stability of type I collagen gels used to repair focal chondral defects. PMID:21159196
Handbook on passive thermal control coatings
NASA Technical Reports Server (NTRS)
Mookherji, T. K.; Hayes, J. D.
1973-01-01
A handbook of passive thermal control surfaces data pertaining to the heat transfer requirements of spacecraft is presented. Passive temperature control techniques and the selection of control surfaces are analyzed. The space environmental damage mechanisms in passive thermal control surfaces are examined. Data on the coatings for which technical information is available are presented in tabular form. Emphasis was placed on consulting only those references where the experimental simulation of the space environment appeared to be more appropriate.
Towards Understanding the Timing and Frequency of Rain-on-Snow (ROS) Events in Alaska
NASA Astrophysics Data System (ADS)
Pan, C.; Kirchner, P. B.; Kimball, J. S.; Kim, Y.; Kamp, U.
2017-12-01
Rain-on-snow (ROS) events affect ecosystem processes at multiple spatial and temporal scales including hydrology, carbon cycling, wildlife movement and human transportation and result in marked changes to snowpack processes including enhanced snow melt, surface albedo and energy balance. Changes in the surface structure of the snowpack are visible through optical remote sensing and changes in the relative content and distribution of water, air and ice in the snowpack are detectable using passive microwave remote sensing. This project aims to develop ROS products to elucidate changes in frequency and distribution in ROS events using satellite data products derived from both optical and passive microwave satellite records. To detect ROS events, we use downscaled brightness temperature measurements derived from vertical and horizontal polarizations at 19 and 37 GHz from the Advanced Microwave Scanning Radiometer (AMSR-E/2) passive microwave satellites. Preliminary results indicate an overall classification accuracy of 77.6% relative to in situ weather observations including surface air temperature, precipitation, and snow depth. ROS events are spatially distributed largely to elevations below 500 m and occur most frequently on northern to western aspects in addition to southeastern. Regional ROS hot spots occur in southwest Alaska characterized by warmer climates and transient snowcover. The seasonal timing of ROS events indicates increasing frequency during the fall and spring months.
Passivation Of High-Temperature Superconductors
NASA Technical Reports Server (NTRS)
Vasquez, Richard P.
1991-01-01
Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.
46 CFR 170.295 - Special consideration for free surface of passive roll stabilization tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Special consideration for free surface of passive roll stabilization tanks. 170.295 Section 170.295 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... consideration for free surface of passive roll stabilization tanks. (a) The virtual increase in the vertical...
Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Fa-Jun, E-mail: Fajun.Ma@nus.edu.sg; Duttagupta, Shubham; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576
2014-11-14
Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boronmore » diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed.« less
Passive Standoff Detection of Chemical Warfare Agents on Surfaces
NASA Astrophysics Data System (ADS)
Thériault, Jean-Marc; Puckrin, Eldon; Hancock, Jim; Lecavalier, Pierre; Lepage, Carmela Jackson; Jensen, James O.
2004-11-01
Results are presented on the passive standoff detection and identification of chemical warfare (CW) liquid agents on surfaces by the Fourier-transform IR radiometry. This study was performed during surface contamination trials at Defence Research and Development Canada-Suffield in September 2002. The goal was to verify that passive long-wave IR spectrometric sensors can potentially remotely detect surfaces contaminated with CW agents. The passive sensor, the Compact Atmospheric Sounding Interferometer, was used in the trial to obtain laboratory and field measurements of CW liquid agents, HD and VX. The agents were applied to high-reflectivity surfaces of aluminum, low-reflectivity surfaces of Mylar, and several other materials including an armored personnel carrier. The field measurements were obtained at a standoff distance of 60 m from the target surfaces. Results indicate that liquid contaminant agents deposited on high-reflectivity surfaces can be detected, identified, and possibly quantified with passive sensors. For low-reflectivity surfaces the presence of the contaminants can usually be detected; however, their identification based on simple correlations with the absorption spectrum of the pure contaminant is not possible.
Effect of surface pre-treatments on biocompatibility of magnesium.
Lorenz, Carla; Brunner, Johannes G; Kollmannsberger, Philip; Jaafar, Leila; Fabry, Ben; Virtanen, Sannakaisa
2009-09-01
This study reports the influence of Mg surface passivation on the survival rate of human HeLa cells and mouse fibroblasts in cell culture experiments. Polished samples of commercially pure Mg show high reactivity in the cell culture medium, leading to a pH shift in the alkaline direction, and therefore cell adhesion and survival is strongly impaired. Passivation of the Mg surface in 1M NaOH can strongly enhance cell survival. The best initial cell adhesion is observed for Mg samples incubated in simulated body fluid (M-SBF), which leads to the formation of a biomimetic, amorphous Ca/Mg-phosphate layer with high surface roughness. This surface layer, however, passivates and seals the Mg surface only partially. Subsequent Mg dissolution leads to a significantly stronger pH increase compared to NaOH-passivated samples, which prevents long-term cell survival. These results demonstrate that surface passivation with NaOH and M-SBF together with the associated changes of surface reactivity, chemistry and roughness provide a viable strategy to facilitate cell survival on otherwise non-biocompatible Mg surfaces.
Surface passivation of semiconducting oxides by self-assembled nanoparticles
Park, Dae-Sung; Wang, Haiyuan; Vasheghani Farahani, Sepehr K.; Walker, Marc; Bhatnagar, Akash; Seghier, Djelloul; Choi, Chel-Jong; Kang, Jie-Hun; McConville, Chris F.
2016-01-01
Physiochemical interactions which occur at the surfaces of oxide materials can significantly impair their performance in many device applications. As a result, surface passivation of oxide materials has been attempted via several deposition methods and with a number of different inert materials. Here, we demonstrate a novel approach to passivate the surface of a versatile semiconducting oxide, zinc oxide (ZnO), evoking a self-assembly methodology. This is achieved via thermodynamic phase transformation, to passivate the surface of ZnO thin films with BeO nanoparticles. Our unique approach involves the use of BexZn1-xO (BZO) alloy as a starting material that ultimately yields the required coverage of secondary phase BeO nanoparticles, and prevents thermally-induced lattice dissociation and defect-mediated chemisorption, which are undesirable features observed at the surface of undoped ZnO. This approach to surface passivation will allow the use of semiconducting oxides in a variety of different electronic applications, while maintaining the inherent properties of the materials. PMID:26757827
NASA Astrophysics Data System (ADS)
Black, Lachlan E.; Kessels, W. M. M. Erwin
2018-05-01
Thin-film stacks of phosphorus oxide (POx) and aluminium oxide (Al2O3) are shown to provide highly effective passivation of crystalline silicon (c-Si) surfaces. Surface recombination velocities as low as 1.7 cm s-1 and saturation current densities J0s as low as 3.3 fA cm-2 are obtained on n-type (100) c-Si surfaces passivated by 6 nm/14 nm thick POx/Al2O3 stacks deposited in an atomic layer deposition system and annealed at 450 °C. This excellent passivation can be attributed in part to an unusually large positive fixed charge density of up to 4.7 × 1012 cm-2, which makes such stacks especially suitable for passivation of n-type Si surfaces.
Hannah, Daniel C; Gezelter, J Daniel; Schaller, Richard D; Schatz, George C
2015-06-23
We examine the role played by surface structure and passivation in thermal transport at semiconductor/organic interfaces. Such interfaces dominate thermal transport in semiconductor nanomaterials owing to material dimensions much smaller than the bulk phonon mean free path. Utilizing reverse nonequilibrium molecular dynamics simulations, we calculate the interfacial thermal conductance (G) between a hexane solvent and chemically passivated wurtzite CdSe surfaces. In particular, we examine the dependence of G on the CdSe slab thickness, the particular exposed crystal facet, and the extent of surface passivation. Our results indicate a nonmonotonic dependence of G on ligand-grafting density, with interfaces generally exhibiting higher thermal conductance for increasing surface coverage up to ∼0.08 ligands/Å(2) (75-100% of a monolayer, depending on the particular exposed facet) and decreasing for still higher coverages. By analyzing orientational ordering and solvent penetration into the ligand layer, we show that a balance of competing effects is responsible for this nonmonotonic dependence. Although the various unpassivated CdSe surfaces exhibit similar G values, the crystal structure of an exposed facet nevertheless plays an important role in determining the interfacial thermal conductance of passivated surfaces, as the density of binding sites on a surface determines the ligand-grafting densities that may ultimately be achieved. We demonstrate that surface passivation can increase G relative to a bare surface by roughly 1 order of magnitude and that, for a given extent of passivation, thermal conductance can vary by up to a factor of ∼2 between different surfaces, suggesting that appropriately tailored nanostructures may direct heat flow in an anisotropic fashion for interface-limited thermal transport.
NASA Astrophysics Data System (ADS)
Kotulak, Nicole A.; Chen, Meixi; Schreiber, Nikolas; Jones, Kevin; Opila, Robert L.
2015-11-01
The surface passivation of p-benzoquinone (BQ) and hydroquinone (HQ) when dissolved in methanol (ME) has been examined through effective lifetime testing of crystalline silicon (c-Si) wafers treated with the aforementioned solutions. Changes in the availability of both photons and protons in the solutions were demonstrated to affect the level of passivation achieved. The requirement of both excess protons and ambient light exposure to maintain high effective lifetimes supports the presence of a free radical species that drives the surface passivation. Surface analysis suggests a 1:1 ratio of HQ-like bonds to methoxy bonds on the c-Si surface after treatment with a BQ/ME solution.
Active and Passive Remote Sensing Data Time Series for Flood Detection and Surface Water Mapping
NASA Astrophysics Data System (ADS)
Bioresita, Filsa; Puissant, Anne; Stumpf, André; Malet, Jean-Philippe
2017-04-01
As a consequence of environmental changes surface waters are undergoing changes in time and space. A better knowledge of the spatial and temporal distribution of surface waters resources becomes essential to support sustainable policies and development activities. Especially because surface waters, are not only a vital sweet water resource, but can also pose hazards to human settlements and infrastructures through flooding. Floods are a highly frequent disaster in the world and can caused huge material losses. Detecting and mapping their spatial distribution is fundamental to ascertain damages and for relief efforts. Spaceborne Synthetic Aperture Radar (SAR) is an effective way to monitor surface waters bodies over large areas since it provides excellent temporal coverage and, all-weather day-and-night imaging capabilities. However, emergent vegetation, trees, wind or flow turbulence can increase radar back-scatter returns and pose problems for the delineation of inundated areas. In such areas, passive remote sensing data can be used to identify vegetated areas and support the interpretation of SAR data. The availability of new Earth Observation products, for example Sentinel-1 (active) and Sentinel-2 (passive) imageries, with both high spatial and temporal resolution, have the potential to facilitate flood detection and monitoring of surface waters changes which are very dynamic in space and time. In this context, the research consists of two parts. In the first part, the objective is to propose generic and reproducible methodologies for the analysis of Sentinel-1 time series data for floods detection and surface waters mapping. The processing chain comprises a series of pre-processing steps and the statistical modeling of the pixel value distribution to produce probabilistic maps for the presence of surface waters. Images pre-processing for all Sentinel-1 images comprise the reduction SAR effect like orbit errors, speckle noise, and geometric effects. A modified Split Based Approach (MSBA) is used in order to focus on surface water areas automatically and facilitate the estimation of class models for water and non-water areas. A Finite Mixture Model is employed as the underlying statistical model to produce probabilistic maps. Subsequently, bilateral filtering is applied to take into account spatial neighborhood relationships in the generation of final map. The elimination of shadows effect is performed in a post-processing step. The processing chain is tested on three case studies. The first case is a flood event in central Ireland, the second case is located in Yorkshire county / Great Britain, and the third test case covers a recent flood event in northern Italy. The tests showed that the modified SBA step and the Finite Mixture Models can be applied for the automatic surface water detection in a variety of test cases. An evaluation again Copernicus products derived from very-high resolution imagery was performed, and showed a high overall accuracy and F-measure of the obtained maps. This evaluation also showed that the use of probability maps and bilateral filtering improved the accuracy of classification results significantly. Based on this quantitative evaluation, it is concluded that the processing chain can be applied for flood mapping from Sentinel-1 data. To estimate robust statistical distributions the method requires sufficient surface waters areas in the observed zone and sufficient contrast between surface waters and other land use classes. Ongoing research addresses the fusion of Sentinel-1 and passive remote sensing data (e.g. Sentinel-2) in order to reduce the current shortcomings in the developed processing chain. In this work, fusion is performed at the feature level to better account for the difference image properties of SAR and optical sensors. Further, the processing chain is currently being optimized in terms of calculation time for a further integration as a flood mapping service on the A2S (Alsace Aval Sentinel) high-performance computing infrastructure of University of Strasbourg.
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2016-01-01
National Aeronautics and Space Administration (NASA) Headquarters chartered the Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objectives of NASA TEERM are to: Reduce or eliminate the use of hazardous materials or hazardous processes at manufacturing, remanufacturing, and sustainment locations. Avoid duplication of effort in actions required to reduce or eliminate hazardous materials through joint center cooperation and technology sharing. Corrosion is an extensive problem that affects the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). The damaging effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. Consequently, it is vital to reduce corrosion costs and risks in a sustainable manner. NASA and ESA have numerous structures and equipment that are fabricated from stainless steel. The standard practice for protection of stainless steel is a process called passivation. Passivation is defined by The American Heritage Dictionary of the English Language as to treat or coat (a metal) in order to reduce the chemical reactivity of its surface. Passivation works by forming a shielding outer (metal oxide) layer that reduces the impact of destructive environmental factors such as air or water. Consequently, this process necessitates a final product that is very clean and free of iron and other contaminants. Typical passivation procedures call for the use of nitric acid; however, there are a number of environmental, worker safety, and operational issues associated with its use. Citric acid is an alternative to nitric acid for the passivation of stainless steels. Citric acid offers a variety of benefits including increased safety for personnel, reduced environmental impact, and reduced operational cost. The primary objective of this effort is to qualify citric acid as an environmentally-preferable alternative to nitric acid for the passivation of stainless steel alloys. While citric acid use has become more prominent in industry, there is little evidence that citric acid is a technically sound passivation agent, especially for the unique and critical applications encountered by NASA and ESA.
NASA Technical Reports Server (NTRS)
Spencer, Michael; Dunbar, Scott; Chen, Curtis
2013-01-01
The Soil Moisture Active/Passive (SMAP) mission is scheduled for a late 2014 launch date. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. In this paper, a focus will be places on the radar design and associated data products at high latitudes. The radar will employ synthetic-aperture processing to achieve a "moderate" resolution dual-pol product over a 1000 km swath. Because the radar is operating continuously, very frequent temporal coverage will be achieved at high latitudes. This data will be used, among other things, to produce a surface freeze/thaw state data product.
NASA Astrophysics Data System (ADS)
Maloney, Roger Andrew
This dissertation explores how the kinesin-1 and microtubule system is affected by surface passivation and water isotopes. Surface passivation was found to affect the gliding speed that microtubules exhibit in the gliding motility assay and the lengths of microtubules supported by the passivation. It was also found that gliding speeds of microtubules are very sensitive to temperature changes. Studies changing the water isotope were a first attempt to investigate if changing the solvent changed the osmotic pressure of the solution kinesin and microtubules were in. No osmotic pressure changes were observed, however, the experiments using different isotopes of water did illuminate the possibility that kinesin may be sensitive to viscosity changes in the solvent. This experiment also suggests further experiments that can be specifically designed to probe osmotic pressure changes. This thesis was also the first thesis ever, to the best of the author's knowledge, to be done in a completely open format. All information and notebook entries that are related to it, as well as the thesis itself, can be found on the website OpenWetWare. The thesis can also be found there including all the different versions that went into its editing. The philosophy and process of making data open and accessible to every one is also discussed.
Silicon surface passivation by PEDOT: PSS functionalized by SnO2 and TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
García-Tecedor, M.; Karazhanov, S. Zh; Vásquez, G. C.; Haug, H.; Maestre, D.; Cremades, A.; Taeño, M.; Ramírez-Castellanos, J.; González-Calbet, J. M.; Piqueras, J.; You, C. C.; Marstein, E. S.
2018-01-01
In this paper, we present a study of silicon surface passivation based on the use of spin-coated hybrid composite layers. We investigate both undoped poly(3,4-ethylenedioxythiophene)/poly-(styrenesulfonate) (PEDOT:PSS), as well as PEDOT:PSS functionalized with semiconducting oxide nanomaterials (TiO2 and SnO2). The hybrid compound was deposited at room temperature by spin coating—a potentially lower cost, lower processing time and higher throughput alternative compared with the commonly used vacuum-based techniques. Photoluminescence imaging was used to characterize the electronic properties of the Si/PEDOT:PSS interface. Good surface passivation was achieved by PEDOT:PSS functionalized by semiconducting oxides. We show that control of the concentration of semiconducting oxide nanoparticles in the polymer is crucial in determining the passivation performance. A charge carrier lifetime of about 275 μs has been achieved when using SnO2 nanoparticles at a concentration of 0.5 wt.% as a filler in the composite film. X-ray diffraction (XRD), scanning electron microscopy, high resolution transmission electron microscopy (HRTEM), energy dispersive x-ray in an SEM, and μ-Raman spectroscopy have been used for the morphological, chemical and structural characterization. Finally, a simple model of a photovoltaic device based on PEDOT:PSS functionalized with semiconducting oxide nanoparticles has been fabricated and electrically characterized.
Silicon surface passivation by PEDOT: PSS functionalized by SnO2 and TiO2 nanoparticles.
García-Tecedor, M; Karazhanov, S Zh; Vásquez, G C; Haug, H; Maestre, D; Cremades, A; Taeño, M; Ramírez-Castellanos, J; González-Calbet, J M; Piqueras, J; You, C C; Marstein, E S
2018-01-19
In this paper, we present a study of silicon surface passivation based on the use of spin-coated hybrid composite layers. We investigate both undoped poly(3,4-ethylenedioxythiophene)/poly-(styrenesulfonate) (PEDOT:PSS), as well as PEDOT:PSS functionalized with semiconducting oxide nanomaterials (TiO 2 and SnO 2 ). The hybrid compound was deposited at room temperature by spin coating-a potentially lower cost, lower processing time and higher throughput alternative compared with the commonly used vacuum-based techniques. Photoluminescence imaging was used to characterize the electronic properties of the Si/PEDOT:PSS interface. Good surface passivation was achieved by PEDOT:PSS functionalized by semiconducting oxides. We show that control of the concentration of semiconducting oxide nanoparticles in the polymer is crucial in determining the passivation performance. A charge carrier lifetime of about 275 μs has been achieved when using SnO 2 nanoparticles at a concentration of 0.5 wt.% as a filler in the composite film. X-ray diffraction (XRD), scanning electron microscopy, high resolution transmission electron microscopy (HRTEM), energy dispersive x-ray in an SEM, and μ-Raman spectroscopy have been used for the morphological, chemical and structural characterization. Finally, a simple model of a photovoltaic device based on PEDOT:PSS functionalized with semiconducting oxide nanoparticles has been fabricated and electrically characterized.
Analysis of RFI Statistics for Aquarius RFI Detection and Mitigation Improvements
NASA Technical Reports Server (NTRS)
de Matthaeis, Paolo; Soldo, Yan; Le Vine, David M.
2016-01-01
Aquarius is an L-band active/passive sensor designed to globally map sea surface salinity from space. Two instruments, a radar scatterometer and a radiometer, observe the same surface footprint almost simultaneously. The radiometer is the primary instrument for sensing sea surface salinity (SSS), while the scatterometer is included to provide a correction for sea surface roughness, which is a primary source of error in the salinity retrieval. Although the primary objective is the measurement of SSS, the instrument combination operates continuously, acquiring data over land and sea ice as well. An important feature of the data processing includes detection and mitigation of Radio Frequency Interference (RFI) which is done separately for both active and passive instruments. Correcting for RFI is particularly critical over ocean because of the high accuracy required in the brightness temperature measurements for SSS retrieval. It is also necessary for applications of the Aquarius data over land, where man-made interference is widespread, even though less accuracy is required in this case. This paper will provide an overview of the current status of the Aquarius RFI processing and an update on the ongoing work on the improvement of the RFI detection and mitigation performance.
Hydrogen passivation of silicon(100) used as templates for low-temperature epitaxy and oxidation
NASA Astrophysics Data System (ADS)
Atluri, Vasudeva Prasad
Epitaxial growth, oxidation and ohmic contacts require surfaces as free as possible of physical defects and chemical contaminants, especially, oxygen and hydrocarbons. Wet chemical cleaning typically involves a RCA clean to remove contaminants by stripping the native oxide and regrowing a chemical oxide with only trace levels of carbon and metallic impurities. Low temperature epitaxy, T<800sp° C, limits the thermal budget for the desorption of impurities and surface oxides, and can be performed on processed structures. But, silicon dioxide cannot be desorbed at temperatures lower than 800sp°C. Recently, hydrogen passivation of Si(111) has been reported to produce stable and ordered surfaces at low temperatures. Hydrogen can then be desorbed between 200sp°C and 600sp°C prior to deposition. In this work, Si(100) is passivated via a solution of hydrofluoric acid in alcohol (methanol, ethanol, or isopropyl alcohol) with HF concentrations between 0.5 to 10%. A rinse in water or alcohol is performed after etching to remove excess fluorine. This work investigates wet chemical cleaning of Si(100) to produce ordered, hydrogen-terminated, oxygen- and carbon-free surfaces to be used as templates for low temperature epitaxial growth and rapid thermal oxidation. Ion beam analysis, Tapping mode atomic force microscopy, Fourier transform infrared spectroscopy, Secondary ion mass spectroscopy, Chemical etching, Capacitance-voltage measurements and Ellipsometry are used to measure, at the surface and interface, impurities concentration, residual disorder, crystalline order, surface topography, roughness, chemical composition, defects density, electrical characteristics, thickness, and refractive index as a function of cleaning conditions for homoepitaxial silicon growth and oxidation. The wetting characteristics of the Si(100) surfaces are measured with a tilting plate technique. Different materials are analyzed by ion beam analysis for use as hydrogen standards in elastic recoil detection of hydrogen on sample surfaces. The results obtained in this study provide a quantitative optimization of passivation of Si(100) surfaces and their use as templates for low temperature epitaxy and rapid thermal oxidation. Ion beam analysis shows that the total coverage of H increases during passivation of Si(100) via HF in alcohol, while Fourier transform infrared spectroscopy indicates that more complex termination than the formation of simple silicon hydrides occurs.
NASA Technical Reports Server (NTRS)
Laymon, Charles; Srinivasan, Karthik; Limaye, Ashutosh
2011-01-01
Passive remote sensing of the Earth s surface and atmosphere from space has significant importance in operational and research environmental studies, in particular for the scientific understanding, monitoring and prediction of climate change and its impacts. Passive remote sensing requires the measurement of naturally occurring radiations, usually of very low power levels, which contain essential information on the physical process under investigation. As such, these sensed radio frequency bands are a unique natural resource enabling space borne passive sensing of the atmosphere and the Earth s surface that deserves adequate allocation to the Earth Exploration Satellite Service and absolute protection from interference. Unfortunately, radio frequency interference (RFI) is an increasing problem for Earth remote sensing, particularly for passive observations of natural emissions. Because these natural signals tend to be very weak, even low levels of interference received by a passive sensor may degrade the fidelity of scientific data. The characteristics of RFI (low-level interference and radar-pulse noise) are not well known because there has been no systematic surveillance, spectrum inventory or mapping of RFI. While conducting a flight experiment over central Tennessee in May 2010, RFI, a concern for any instrument operating in the passive L band frequency, was observed across 16 subbands between 1402-1427 MHz. Such a survey provides rare characterization data from which to further develop mitigation technologies as well as to identify bandwidths to avoid in future sensor formulation.
NASA Astrophysics Data System (ADS)
Sheremet, V.; Genç, M.; Gheshlaghi, N.; Elçi, M.; Sheremet, N.; Aydınlı, A.; Altuntaş, I.; Ding, K.; Avrutin, V.; Özgür, Ü.; Morkoç, H.
2018-01-01
Enhancement of InGaN/GaN based light emitting diode performance with step graded electron injectors through a two-step passivation is reported. Perimeter passivation of LED dies with SiO2 immediately following ICP mesa etch in addition to conventional Si3N4 dielectric surface passivation leads to decrease in the reverse bias leakage current by a factor of two as well as a decrease in the shunt current under forward bias by an order of magnitude. Mitigation of the leakage currents owing to the two-step passivation leads to significant increase in the radiant intensity of LEDs by more than a factor of two compared to the conventional single step surface passivation. Further, micro-dome patterned surface of Si3N4 passivation layer allow enhanced light extraction from LEDs.
Germanium oxide removal by citric acid and thiol passivation from citric acid-terminated Ge(100).
Collins, Gillian; Aureau, Damien; Holmes, Justin D; Etcheberry, Arnaud; O'Dwyer, Colm
2014-12-02
Many applications of germanium (Ge) are underpinned by effective oxide removal and surface passivation. This important surface treatment step often requires H-X (X = Cl, Br, I) or HF etchants. Here, we show that aqueous citric acid solutions are effective in the removal of GeOx. The stability of citric acid-treated Ge(100) is compared to HF and HCl treated surfaces and analyzed by X-ray photoelectron spectroscopy. Further Ge surface passivation was investigated by thiolation using alkane monothiols and dithiols. The organic passivation layers show good stability with no oxide regrowth observed after 3 days of ambient exposure.
Cross-coherent vector sensor processing for spatially distributed glider networks.
Nichols, Brendan; Sabra, Karim G
2015-09-01
Autonomous underwater gliders fitted with vector sensors can be used as a spatially distributed sensor array to passively locate underwater sources. However, to date, the positional accuracy required for robust array processing (especially coherent processing) is not achievable using dead-reckoning while the gliders remain submerged. To obtain such accuracy, the gliders can be temporarily surfaced to allow for global positioning system contact, but the acoustically active sea surface introduces locally additional sensor noise. This letter demonstrates that cross-coherent array processing, which inherently mitigates the effects of local noise, outperforms traditional incoherent processing source localization methods for this spatially distributed vector sensor network.
Analysis of passive microwave signatures over snow-covered mountainous area
NASA Astrophysics Data System (ADS)
Kim, R. S.; Durand, M. T.
2015-12-01
Accurate knowledge of snow distribution over mountainous area is critical for climate studies and the passive microwave(PM) measurements have been widely used and invested in order to obtain information about snowpack properties. Understanding and analyzing the signatures for the explicit inversion of the remote sensing data from land surfaces is required for successful using of passive microwave sensors but this task is often ambiguous due to the large variability of physical conditions and object types. In this paper, we discuss the pattern of measured brightness temperatures and emissivities at vertical and horizontal polarization over the frequency range of 10.7 to 89 GHz of land surfaces under various snow and vegetation conditions. The Multiband polarimetric Scanning Radiometer(PSR) imagery is used over NASA Cold Land Processes Field Experiment(CLPX) study area with ground-based measurements of snow depth and snow properties. Classification of snow under various conditions in mountainous area is implemented based on different patterns of microwave signatures.
Reveko, Valeriia; Lampert, Felix; Din, Rameez U; Thyssen, Jacob P; Møller, Per
2018-05-01
A colorimetric 1,5-diphenylcarbazide (DPC)-based spot test can be used to identify hexavalent chromium on various metallic and leather surfaces. DPC testing on trivalent chromium-passivated zinc surfaces has unexpectedly given positive results in some cases, apparently indicating the presence of hexavalent chromium; however, the presence of hexavalent chromium has never been confirmed with more sensitive and accurate test methods. To examine the presence of hexavalent chromium on trivalent chromium-passivated zinc surfaces with a DPC-based spot test. A colorimetric DPC spot test was used for the initial detection of hexavalent chromium on new and 1-year-aged trivalent chromium-passivated zinc surfaces. Then, X-ray photoelectron spectroscopy (XPS) was performed for all samples. The DPC spot test indicated the presence of hexavalent chromium in aged, but not new, trivalent chromium passivation on zinc; however, subsequent analysis by XPS could not confirm the presence of chromium in a hexavalent state. Unintended oxidation of DPC induced by atmospheric corrosion is suggested as a possible reason for the false-positive reaction of the DPC test on a trivalent chromium-passivated zinc surface. Further validation of the use of the DPC test for chromium-containing metallic surfaces is required. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Surface modification of Ni–Ti alloys for stent application after magnetoelectropolishing
Musaramthota, Vishal; Munroe, Norman; Datye, Amit; Dua, Rupak; Haider, Waseem; McGoron, Anthony; Rokicki, Ryszard
2015-01-01
The constant demand for new implant materials and the multidisciplinary design approaches for stent applications have expanded vastly over the past decade. The biocompatibility of these implant materials is a function of their surface characteristics such as morphology, surface chemistry, roughness, surface charge and wettability. These surface characteristics can directly influence the material's corrosion resistance and biological processes such as endothelialization. Surface morphology affects the thermodynamic stability of passivating oxides, which renders corrosion resistance to passivating alloys. Magnetoelectropolishing (MEP) is known to alter the morphology and composition of surface films, which assist in improving corrosion resistance of Nitinol alloys. This work aims at analyzing the surface characteristics of MEP Nitinol alloys by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the alloys was determined by contact angle measurements and the mechanical properties were assessed by Nanoindentation. Improved mechanical properties were observed with the addition of alloying elements. Cyclic potentiodynamic polarization tests were performed to determine the corrosion susceptibility. Further, the alloys were tested for their cytotoxicity and cellular growth with endothelial cells. Improved corrosion resistance and cellular viability were observed with MEP surface treated alloys. PMID:25746243
High resolution change estimation of soil moisture and its assimilation into a land surface model
NASA Astrophysics Data System (ADS)
Narayan, Ujjwal
Near surface soil moisture plays an important role in hydrological processes including infiltration, evapotranspiration and runoff. These processes depend non-linearly on soil moisture and hence sub-pixel scale soil moisture variability characterization is important for accurate modeling of water and energy fluxes at the pixel scale. Microwave remote sensing has evolved as an attractive technique for global monitoring of near surface soil moisture. A radiative transfer model has been tested and validated for soil moisture retrieval from passive microwave remote sensing data under a full range of vegetation water content conditions. It was demonstrated that soil moisture retrieval errors of approximately 0.04 g/g gravimetric soil moisture are attainable with vegetation water content as high as 5 kg/m2. Recognizing the limitation of low spatial resolution associated with passive sensors, an algorithm that uses low resolution passive microwave (radiometer) and high resolution active microwave (radar) data to estimate soil moisture change at the spatial resolution of radar operation has been developed and applied to coincident Passive and Active L and S band (PALS) and Airborne Synthetic Aperture Radar (AIRSAR) datasets acquired during the Soil Moisture Experiments in 2002 (SMEX02) campaign with root mean square error of 10% and a 4 times enhancement in spatial resolution. The change estimation algorithm has also been used to estimate soil moisture change at 5 km resolution using AMSR-E soil moisture product (50 km) in conjunction with the TRMM-PR data (5 km) for a 3 month period demonstrating the possibility of high resolution soil moisture change estimation using satellite based data. Soil moisture change is closely related to precipitation and soil hydraulic properties. A simple assimilation framework has been implemented to investigate whether assimilation of surface layer soil moisture change observations into a hydrologic model will potentially improve it performance. Results indicate an improvement in model prediction of near surface and deep layer soil moisture content when the update is performed to the model state as compared to free model runs. It is also seen that soil moisture change assimilation is able to mitigate the effect of erroneous precipitation input data.
NASA Astrophysics Data System (ADS)
Fu, Chen; Lin, Zhaojun; Cui, Peng; Lv, Yuanjie; Zhou, Yang; Dai, Gang; Luan, Chongbiao; Liu, Huan; Cheng, Aijie
2018-04-01
In this paper, the detailed device characteristics were investigated both before and after the Si3N4 passivation grown by plasma-enhanced chemical vapor deposition (PECVD). Better transport properties have been observed for the passivated devices compared with the same ones before passivation. The strain variation and the influence of the scattering mechanisms were analyzed and studied. The calculated results show that the non-uniform distribution of the additional polarization charges at the AlGaN/AlN/GaN interfaces has been weakened by the deposition of the Si3N4 layer. The numerical rise of the two-dimensional electron gas (2DEG) electron mobility and the decrease of the measured R on- A values were in a good consistency, and the weakening of the polarization Coulomb field (PCF) scattering after the passivation process is considered to be the main cause of these phenomena.
Surface Treatment And Protection Method For Cadium Zinc Telluride Crystals
Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.
2006-02-21
A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH4F and 10 w/o H2O2 in water.
Improved Energetic-Behaviors of Spontaneously Surface-Mediated Al Particles.
Kim, Dong Won; Kim, Kyung Tae; Min, Tae Sik; Kim, Kyung Ju; Kim, Soo Hyung
2017-07-05
Surface-mediated Al particles are synthesized by incorporating the stable fluoride reaction of Al-F on a pure Al surface in place of natural oxides. Al particles with fluoro-polymer directly adsorbed on the surface show a considerable capability to overcome limitations caused by the surface oxide. Here, we report that Al fluoride when spontaneously formed at the poly(vinylidene fluoride)/Al interface serves as an oxidation-protecting layer while also providing an efficient combustion path along which the internal Al rapidly reacts with external oxygen atoms. Both thermal oxidation and explosion tests of the poly(vinylidene fluoride)/Al particles show superior exothermic enthalpy energy and simultaneously rapid oxidation reactivity compared to those of Al 2 O 3 passivated Al particles. It is clearly elucidated that the enhanced energetic properties of Al particles mediated by poly(vinylidene fluoride) originate from the extraordinary pyrolytic process of Al fluoride occurring at a low temperature compared to Al 2 O 3 passivated Al. Hence, these results clarify that the surface mediation of Al particles can be significantly considered as advanced technology for many energetic applications.
Photovoltaic cell and production thereof
Narayanan, Srinivasamohan [Gaithersburg, MD; Kumar, Bikash [Bangalore, IN
2008-07-22
An efficient photovoltaic cell, and its process of manufacture, is disclosed wherein the back surface p-n junction is removed from a doped substrate having an oppositely doped emitter layer. A front surface and edges and optionally the back surface periphery are masked and a back surface etch is performed. The mask is not removed and acts as an anti-reflective coating, a passivating agent, or both. The photovoltaic cell retains an untextured back surface whether or not the front is textured and the dopant layer on the back surface is removed to enhance the cell efficiency. Optionally, a back surface field is formed.
Highly improved passivation of c-Si surfaces using a gradient i a-Si:H layer
NASA Astrophysics Data System (ADS)
Lee, Soonil; Ahn, Jaehyun; Mathew, Leo; Rao, Rajesh; Zhang, Zhongjian; Kim, Jae Hyun; Banerjee, Sanjay K.; Yu, Edward T.
2018-04-01
Surface passivation using intrinsic a-Si:H (i a-Si:H) films plays a key role in high efficiency c-Si heterojunction solar cells. In this study, we demonstrate improved passivation quality using i a-Si:H films with a gradient-layered structure consisting of interfacial, transition, and capping layers deposited on c-Si surfaces. The H2 dilution ratio (R) during deposition was optimized individually for the interfacial and capping layers, which were separated by a transition layer for which R changed gradually between its values for the interfacial and capping layers. This approach yielded a significant reduction in surface carrier recombination, resulting in improvement of the minority carrier lifetime from 1480 μs for mono-layered i a-Si:H passivation to 2550 μs for the gradient-layered passivation approach.
Method for producing highly reflective metal surfaces
Arnold, J.B.; Steger, P.J.; Wright, R.R.
1982-03-04
The invention is a novel method for producing mirror surfaces which are extremely smooth and which have high optical reflectivity. The method includes depositing, by electrolysis, an amorphous layer of nickel on an article and then diamond-machining the resulting nickel surface to increase its smoothness and reflectivity. The machined nickel surface then is passivated with respect to the formation of bonds with electrodeposited nickel. Nickel then is electrodeposited on the passivated surface to form a layer of electroplated nickel whose inside surface is a replica of the passivated surface. The mandrel then may be-re-passivated and provided with a layer of electrodeposited nickel, which is then recovered from the mandrel providing a second replica. The mandrel can be so re-used to provide many such replicas. As compared with producing each mirror-finished article by plating and diamond-machining, the new method is faster and less expensive.
NASA Astrophysics Data System (ADS)
Rokicki, Ryszard; Haider, Waseem; Maffi, Shivani Kaushal
2015-01-01
Research was undertaken to determine the influence of the increased content of chromium in the outermost passive layer of magneto-electrochemically refined Co-Cr alloy L-605 surface on its hemocompatibility. The chemistry, roughness, surface energy, and wettability of conventionally electropolished (EP) and magnetoelectropolished (MEP) samples were studied with x-ray photoelectron spectroscopy (XPS), open circuit potential, atomic force microscopy, and contact angle meter. In vitro hemocompatibility of tested material surfaces was assessed using two important indicators of vascular responses to biomaterial, namely endothelialization and platelets adhesion. The endothelialization was assessed by seeding and incubating samples with human umbilical vein endothelial cells (HUVEC) for 3 days before counting and observing them under a fluorescent microscope. The platelet (rich plasma blood) adhesion and activation test on EP and MEP L-605 alloy surfaces was assessed using a laser scanning confocal microscope. The XPS analysis of MEP samples showed significant enrichment of the passive layer with Cr and O when compared with the EP one. The amount of other elements in the passive layer did not show a significant difference between EP and MEP treatments. The adhesion of HUVEC cells shows remarkable affinity to surfaces enriched in Cr (MEP) with almost 100% confluency. In addition, the number of platelets that adhered to standard EP surfaces was higher compared to the MEP surface. The present study shows that the chromium-enriched surface of cobalt-chromium alloy L-605 by the magnetoelectropolishing process tremendously improves surface hemocompatibility with regard to stent functionality by enhanced endothelialization and lower platelet adhesion and should be taken under consideration as an alternative surface of biodegradable polymer drug-eluting stents, polymer-free drug-eluting stents as well as bare-metal stents.
The Transport of Salt and Water across Isolated Rat Ileum
Clarkson, T. W.
1967-01-01
The flows of sodium, potassium, and chloride under electrical and chemical gradients and of salt and water in the presence of osmotic pressure gradients are described by phenomenological equations based on the thermodynamics of irreversible processes. The aim was to give the simplest possible description, that is to postulate the least number of active transport processes and the least number of separate pathways across the intestine. On this basis, the results were consistent with the following picture of the intestine: Two channels exist across this tissue, one allowing only passive transport of ions and the other only active. In the passive channel, the predominant resistance to ion flow is friction with the water in the channel. The electroosmotic flow indicates that the passive channel is lined with negative fixed charged groups having a surface charge density of 3000 esu cm-2. The values of the ion-water frictional coefficients, and the relationship between ionic concentrations and flows indicate that the passive channel is extracellular. The active channel behaves as two membranes in series, the first membrane being semipermeable but allowing active transport of sodium, and the second membrane being similar to the passive channel. Friction with the ions in the second "membrane" is the predominant resistance to water flow. PMID:11526854
Chaudhary, Bhumika; Kulkarni, Ashish; Jena, Ajay Kumar; Ikegami, Masashi; Udagawa, Yosuke; Kunugita, Hideyuki; Ema, Kazuhiro; Miyasaka, Tsutomu
2017-06-09
It is well known that the surface trap states and electronic disorders in the solution-processed CH 3 NH 3 PbI 3 perovskite film affect the solar cell performance significantly and moisture sensitivity of photoactive perovskite material limits its practical applications. Herein, we show the surface modification of a perovskite film with a solution-processable hydrophobic polymer (poly(4-vinylpyridine), PVP), which passivates the undercoordinated lead (Pb) atoms (on the surface of perovskite) by its pyridine Lewis base side chains and thereby eliminates surface-trap states and non-radiative recombination. Moreover, it acts as an electron barrier between the perovskite and hole-transport layer (HTL) to reduce interfacial charge recombination, which led to improvement in open-circuit voltage (V oc ) by 120 to 160 mV whereas the standard cell fabricated in same conditions showed V oc as low as 0.9 V owing to dominating interfacial recombination processes. Consequently, the power conversion efficiency (PCE) increased by 3 to 5 % in the polymer-modified devices (PCE=15 %) with V oc more than 1.05 V and hysteresis-less J-V curves. Advantageously, hydrophobicity of the polymer chain was found to protect the perovskite surface from moisture and improved stability of the non-encapsulated cells, which retained their device performance up to 30 days of exposure to open atmosphere (50 % humidity). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solution-processed photodetectors from colloidal silicon nano/micro particle composite.
Tu, Chang-Ching; Tang, Liang; Huang, Jiangdong; Voutsas, Apostolos; Lin, Lih Y
2010-10-11
We demonstrate solution-processed photodetectors composed of heavy-metal-free Si nano/micro particle composite. The colloidal Si particles are synthesized by electrochemical etching of Si wafers, followed by ultra-sonication to pulverize the porous surface. With alkyl ligand surface passivation through hydrosilylation reaction, the particles can form a stable colloidal suspension which exhibits bright photoluminescence under ultraviolet excitation and a broadband extinction spectrum due to enhanced scattering from the micro-size particles. The efficiency of the thin film photodetectors has been substantially improved by preventing oxidation of the particles during the etching process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordihn, Stefan, E-mail: s.bordihn2@q-cells.com; Mertens, Verena; Müller, Jörg W.
2014-01-15
The material composition and the Si surface passivation of aluminum oxide (Al{sub 2}O{sub 3}) films prepared by atomic layer deposition using Al(CH{sub 3}){sub 3} and O{sub 3} as precursors were investigated for deposition temperatures (T{sub Dep}) between 200 °C and 500 °C. The growth per cycle decreased with increasing deposition temperature due to a lower Al deposition rate. In contrast the material composition was hardly affected except for the hydrogen concentration, which decreased from [H] = 3 at. % at 200 °C to [H] < 0.5 at. % at 400 °C and 500 °C. The surface passivation performance was investigated after annealing at 300 °C–450 °C and also after firing stepsmore » in the typical temperature range of 800 °C–925 °C. A similar high level of the surface passivation performance, i.e., surface recombination velocity values <10 cm/s, was obtained after annealing and firing. Investigations of Al{sub 2}O{sub 3}/SiN{sub x} stacks complemented the work and revealed similar levels of surface passivation as single-layer Al{sub 2}O{sub 3} films, both for the chemical and field-effect passivation. The fixed charge density in the Al{sub 2}O{sub 3}/SiN{sub x} stacks, reflecting the field-effect passivation, was reduced by one order of magnitude from 3·10{sup 12} cm{sup −2} to 3·10{sup 11} cm{sup −2} when T{sub Dep} was increased from 300 °C to 500 °C. The level of the chemical passivation changed as well, but the total level of the surface passivation was hardly affected by the value of T{sub Dep}. When firing films prepared at of low T{sub Dep}, blistering of the films occurred and this strongly reduced the surface passivation. These results presented in this work demonstrate that a high level of surface passivation can be achieved for Al{sub 2}O{sub 3}-based films and stacks over a wide range of conditions when the combination of deposition temperature and annealing or firing temperature is carefully chosen.« less
A fast passive and planar liquid sample micromixer.
Melin, Jessica; Gimenéz, Guillem; Roxhed, Niclas; van der Wijngaart, Wouter; Stemme, Göran
2004-06-01
A novel microdevice for passively mixing liquid samples based on surface tension and a geometrical mixing chamber is presented. Due to the laminar flow regime on the microscale, mixing becomes difficult if not impossible. We present a micromixer where a constantly changing time dependent flow pattern inside a two sample liquid plug is created as the plug simply passes through the planar mixer chamber. The device requires no actuation during mixing and is fabricated using a single etch process. The effective mixing of two coloured liquid samples is demonstrated.
Aluminum and gold deposition on cleaved single crystals of Bi2CaSr2Cu2O8 superconductor
NASA Astrophysics Data System (ADS)
Wells, B. O.; Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Kapitulnik, A.
1989-02-01
We have used photoelectron spectroscopy to study the changes in the electronic structure of cleaved, single crystal Bi2CaSr2Cu2O8 caused by deposition of aluminum and gold. Al reacts strongly with the superconductor surface. Even the lowest coverages of Al reduces the valency of Cu in the superconductor, draws oxygen out of the bulk, and strongly modifies the electronic states in the valence band. The Au shows little reaction with the superconductor surface. Underneath Au, the Cu valency is unchanged and the core peaks show no chemically shifted components. Au appears to passivate the surface of the superconductor and thus may aid in the processing of the Bi-Ca-Sr-Cu-O material. These results are consistent with earlier studies of Al and Au interfaces with other, polycrystalline oxide superconductors. Comparing with our own previous results, we conclude that Au is superior to Ag in passivating the Bi-Ca-Sr-Cu-O surface.
Optimization of the Surface Structure on Black Silicon for Surface Passivation
NASA Astrophysics Data System (ADS)
Jia, Xiaojie; Zhou, Chunlan; Wang, Wenjing
2017-03-01
Black silicon shows excellent anti-reflection and thus is extremely useful for photovoltaic applications. However, its high surface recombination velocity limits the efficiency of solar cells. In this paper, the effective minority carrier lifetime of black silicon is improved by optimizing metal-catalyzed chemical etching (MCCE) method, using an Al2O3 thin film deposited by atomic layer deposition (ALD) as a passivation layer. Using the spray method to eliminate the impact on the rear side, single-side black silicon was obtained on n-type solar grade silicon wafers. Post-etch treatment with NH4OH/H2O2/H2O mixed solution not only smoothes the surface but also increases the effective minority lifetime from 161 μs of as-prepared wafer to 333 μs after cleaning. Moreover, adding illumination during the etching process results in an improvement in both the numerical value and the uniformity of the effective minority carrier lifetime.
Optimization of the Surface Structure on Black Silicon for Surface Passivation.
Jia, Xiaojie; Zhou, Chunlan; Wang, Wenjing
2017-12-01
Black silicon shows excellent anti-reflection and thus is extremely useful for photovoltaic applications. However, its high surface recombination velocity limits the efficiency of solar cells. In this paper, the effective minority carrier lifetime of black silicon is improved by optimizing metal-catalyzed chemical etching (MCCE) method, using an Al 2 O 3 thin film deposited by atomic layer deposition (ALD) as a passivation layer. Using the spray method to eliminate the impact on the rear side, single-side black silicon was obtained on n-type solar grade silicon wafers. Post-etch treatment with NH 4 OH/H 2 O 2 /H 2 O mixed solution not only smoothes the surface but also increases the effective minority lifetime from 161 μs of as-prepared wafer to 333 μs after cleaning. Moreover, adding illumination during the etching process results in an improvement in both the numerical value and the uniformity of the effective minority carrier lifetime.
Super-hydrophobic coatings with nano-size roughness prepared with simple PECVD method
NASA Astrophysics Data System (ADS)
Choi, Yoon S.; Lee, Joon S.; Jin, Su B.; Han, Jeon G.
2013-08-01
A simple and conventional method to synthesize nearly flat super-hydrophobic coatings was studied. Conventional plasma enhanced chemical vapour deposition (PECVD) was adopted to synthesize hydrophobic coatings on plastic and glass substrates at room temperature. Hexamethyldisilane was used as a precursor, and hydrogen gas was added to modulate the surface roughness and passivate defects, such as dangling bond and electrically uncovered polar sites rendering non-hydrophobicity. The static water contact angle (WCA) was controlled in the range 120°-160° by adjusting process parameters, especially the hydrogen flow rate and power. AFM showed that the film with a WCA of 145° has as small as 2.5 nm roughness in rms value. In the resistance test of salt water and cosmetics, this film showed excellent results owing to super-hydrophobicity and defect passivation which keeps the surface isolated from external agents. In order to exploit these results, Rare gas analysis was used to examine the process plasma and Fourier transform infrared (FTIR) was used to analyse the chemical structures of the super-hydrophobic films. In the FTIR results, the remarkable increase in the modes of Si-Hx and Si-C bonds as well as Si-CH2-Si in the film was observed indicating the defect passivation and closely packed dense film structure.
Puniredd, Sreenivasa Reddy; Jayaraman, Sundaramurthy; Yeong, Sai Hooi; Troadec, Cedric; Srinivasan, M P
2013-05-02
Oxide-free Si and Ge surfaces have been passivated and modified with organic molecules by forming covalent bonds between the surfaces and reactive end groups of linear alkanes and aromatic species using single-step deposition in supercritical carbon dioxide (SCCO2). The process is suitable for large-scale manufacturing due to short processing times, simplicity, and high resistance to oxidation. It also allows the formation of monolayers with varying reactive terminal groups, thus enabling formation of nanostructures engineered at the molecular level. Ballistic electron emission microscopy (BEEM) spectra performed on the organic monolayer on oxide-free silicon capped by a thin gold layer reveals for the first time an increase in transmission of the ballistic current through the interface of up to three times compared to a control device, in contrast to similar studies reported in the literature suggestive of oxide-free passivation in SCCO2. The SCCO2 process combined with the preliminary BEEM results opens up new avenues for interface engineering, leading to molecular electronic devices.
Development of a passive sampler for gaseous mercury
NASA Astrophysics Data System (ADS)
Gustin, M. S.; Lyman, S. N.; Kilner, P.; Prestbo, E.
2011-10-01
Here we describe work toward development of the components of a cost effective passive sampling system for gaseous Hg that could be broadly deployed by nontechnical staff. The passive sampling system included an external shield to reduce turbulence and exposure to precipitation and dust, a diffusive housing that directly protects the collection surface during deployment and handling, and a collection surface. A protocol for cleaning and deploying the sampler and an analytical method were developed. Our final design consisted of a polycarbonate external shield enclosing a custom diffusive housing made from expanded PTFE tubing. Two collection surfaces were investigated, gold sputter-coated quartz plates and silver wires. Research showed the former would require extensive quality control for use, while the latter had interferences with other atmosphere constituents. Although the gold surface exhibited the best performance over space and time, gradual passivation would limit reuse. For both surfaces lack of contamination during shipping, deployment and storage indicated that the handling protocols developed worked well with nontechnical staff. We suggest that the basis for this passive sampling system is sound, but further exploration and development of a reliable collection surface is needed.
2013-01-01
We report on the passivation properties of molecularly modified, oxide-free Si(111) surfaces. The reaction of 1-alcohol with the H-passivated Si(111) surface can follow two possible paths, nucleophilic substitution (SN) and radical chain reaction (RCR), depending on adsorption conditions. Moderate heating leads to the SN reaction, whereas with UV irradiation RCR dominates, with SN as a secondary path. We show that the site-sensitive SN reaction leads to better electrical passivation, as indicated by smaller surface band bending and a longer lifetime of minority carriers. However, the surface-insensitive RCR reaction leads to more dense monolayers and, therefore, to much better chemical stability, with lasting protection of the Si surface against oxidation. Thus, our study reveals an inherent dissonance between electrical and chemical passivation. Alkoxy monolayers, formed under UV irradiation, benefit, though, from both chemical and electronic passivation because under these conditions both SN and RCR occur. This is reflected in longer minority carrier lifetimes, lower reverse currents in the dark, and improved photovoltaic performance, over what is obtained if only one of the mechanisms operates. These results show how chemical kinetics and reaction paths impact electronic properties at the device level. It further suggests an approach for effective passivation of other semiconductors. PMID:24205409
Enhanced Light Stability of InGaZnO Thin-Film Transistors by Atomic-Layer-Deposited Y2O3 with Ozone.
Jung, Hanearl; Kim, Woo-Hee; Park, Bo-Eun; Woo, Whang Je; Oh, Il-Kwon; Lee, Su Jeong; Kim, Yun Cheol; Myoung, Jae-Min; Gatineau, Satoko; Dussarrat, Christian; Kim, Hyungjun
2018-01-17
We report the effect of Y 2 O 3 passivation by atomic layer deposition (ALD) using various oxidants, such as H 2 O, O 2 plasma, and O 3 , on In-Ga-Zn-O thin-film transistors (IGZO TFTs). A large negative shift in the threshold voltage (V th ) was observed in the case of the TFT subjected to the H 2 O-ALD Y 2 O 3 process; this shift was caused by a donor effect of negatively charged chemisorbed H 2 O molecules. In addition, degradation of the IGZO TFT device performance after the O 2 plasma-ALD Y 2 O 3 process (field-effect mobility (μ) = 8.7 cm 2 /(V·s), subthreshold swing (SS) = 0.77 V/dec, and V th = 3.7 V) was observed, which was attributed to plasma damage on the IGZO surface adversely affecting the stability of the TFT under light illumination. In contrast, the O 3 -ALD Y 2 O 3 process led to enhanced device stability under light illumination (ΔV th = -1 V after 3 h of illumination) by passivating the subgap defect states in the IGZO surface region. In addition, TFTs with a thicker IGZO film (55 nm, which was the optimum thickness under the current investigation) showed more stable device performance than TFTs with a thinner IGZO film (30 nm) (ΔV th = -0.4 V after 3 h of light illumination) by triggering the recombination of holes diffusing from the IGZO surface to the insulator-channel interface. Therefore, we envisioned that the O 3 -ALD Y 2 O 3 passivation layer suggested in this paper can improve the photostability of TFTs under light illumination.
Surface cleaning and pure nitridation of GaSb by in-situ plasma processing
NASA Astrophysics Data System (ADS)
Gotow, Takahiro; Fujikawa, Sachie; Fujishiro, Hiroki I.; Ogura, Mutsuo; Chang, Wen Hsin; Yasuda, Tetsuji; Maeda, Tatsuro
2017-10-01
A clean and flat GaSb surface without native oxides has been attained by H2 plasma cleaning and subsequent in-situ N2 plasma nitridation process at 300 oC. The mechanisms of thermal desorption behavior of native oxides on GaSb have been studied by thermal desorption spectroscopy (TDS) analysis. The suitable heat treatment process window for preparing a clean GaSb surface is given. Auger electron spectroscopy (AES) analysis indicates that native oxides were completely removed on the GaSb surface after H2 plasma exposure and the pure nitridation of the clean GaSb surface was obtained at a relatively low temperature of 300 °C. This pure nitridation of GaSb have a possibility to be used as a passivation layer for high quality GaSb MOS devices.
Protective capping and surface passivation of III-V nanowires by atomic layer deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhaka, Veer, E-mail: veer.dhaka@aalto.fi; Perros, Alexander; Kakko, Joona-Pekko
2016-01-15
Low temperature (∼200 °C) grown atomic layer deposition (ALD) films of AlN, TiN, Al{sub 2}O{sub 3}, GaN, and TiO{sub 2} were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP) nanowires (NWs), and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL) at low temperatures (15K), and the best passivation was achieved with a few monolayer thick (2Å) film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL) was achieved with a capping of 2nm thick Al{sub 2}O{sub 3}. All othermore » ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al{sub 2}O{sub 3} layer increased the carrier decay time from 251 ps (as-etched nanopillars) to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al{sub 2}O{sub 3} provides moderate surface passivation as well as long term protection from oxidation and environmental attack.« less
Shanmugam, Mariyappan; Jacobs-Gedrim, Robin; Durcan, Chris; Yu, Bin
2013-11-21
A two-dimensional layered insulator, hexagonal boron nitride (h-BN), is demonstrated as a new class of surface passivation materials in dye-sensitized solar cells (DSSCs) to reduce interfacial carrier recombination. We observe ~57% enhancement in the photo-conversion efficiency of the DSSC utilizing h-BN coated semiconductor TiO2 as compared with the device without surface passivation. The h-BN coated TiO2 is characterized by Raman spectroscopy to confirm the presence of highly crystalline, mixed monolayer/few-layer h-BN nanoflakes on the surface of TiO2. The passivation helps to minimize electron-hole recombination at the TiO2/dye/electrolyte interfaces. The DSSC with h-BN passivation exhibits significantly lower dark saturation current in the low forward bias region and higher saturation in the high forward bias region, respectively, suggesting that the interface quality is largely improved without impeding carrier transport at the material interface. The experimental results reveal that the emerging 2D layered insulator could be used for effective surface passivation in solar cell applications attributed to desirable material features such as high crystallinity and self-terminated/dangling-bond-free atomic planes as compared with high-k thin-film dielectrics.
Surface passivation for CdTe devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reese, Matthew O.; Perkins, Craig L.; Burst, James M.
2017-08-01
In one embodiment, a method for surface passivation for CdTe devices is provided. The method includes adjusting a stoichiometry of a surface of a CdTe material layer such that the surface becomes at least one of stoichiometric or Cd-rich; and reconstructing a crystalline lattice at the surface of the CdTe material layer by annealing the adjusted surface.
Yang, Zai-Xing; Yin, Yanxue; Sun, Jiamin; Bian, Luozhen; Han, Ning; Zhou, Ziyao; Shu, Lei; Wang, Fengyun; Chen, Yunfa; Song, Aimin; Ho, Johnny C
2018-05-02
Recently, owing to the large surface-area-to-volume ratio of nanowires (NWs), manipulation of their surface states becomes technologically important and being investigated for various applications. Here, an in-situ surfactant-assisted chemical vapor deposition is developed with various chalcogens (e.g. S, Se and Te) as the passivators to enhance the NW growth and to manipulate the controllable p-n conductivity switching of fabricated NW devices. Due to the optimal size effect and electronegativity matching, Se is observed to provide the best NW surface passivation in diminishing the space charge depletion effect induced by the oxide shell and yielding the less p-type (i.e. inversion) or even insulating conductivity, as compared with S delivering the intense p-type conductivity for thin NWs with the diameter of ~30 nm. Te does not only provide the surface passivation, but also dopes the NW surface into n-type conductivity by donating electrons. All of the results can be extended to other kinds of NWs with similar surface effects, resulting in careful device design considerations with appropriate surface passivation for achieving the optimal NW device performances.
NASA Astrophysics Data System (ADS)
Guo, Yingnan; Ong, Thiam Min Brian; Levchenko, I.; Xu, Shuyan
2018-01-01
A comparative study on the application of two quite different plasma-based techniques to the preparation of amorphous/crystalline silicon (a-Si:H/c-Si) interfaces for solar cells is presented. The interfaces were fabricated and processed by hydrogen plasma treatment using the conventional plasma-enhanced chemical vacuum deposition (PECVD) and inductively coupled plasma chemical vapour deposition (ICP-CVD) methods The influence of processing temperature, radio-frequency power, treatment duration and other parameters on interface properties and degree of surface passivation were studied. It was found that passivation could be improved by post-deposition treatment using both ICP-CVD and PECVD, but PECVD treatment is more efficient for the improvement on passivation quality, whereas the minority carrier lifetime increased from 1.65 × 10-4 to 2.25 × 10-4 and 3.35 × 10-4 s after the hydrogen plasma treatment by ICP-CVD and PECVD, respectively. In addition to the improvement of carrier lifetimes at low temperatures, low RF powers and short processing times, both techniques are efficient in band gap adjustment at sophisticated interfaces.
Silicon solar cell process. Development, fabrication and analysis
NASA Technical Reports Server (NTRS)
Yoo, H. I.; Iles, P. A.; Tanner, D. P.
1978-01-01
Solar cells were fabricated from unconventional silicon sheets, and the performances were characterized with an emphasis on statistical evaluation. A number of solar cell fabrication processes were used and conversion efficiency was measured under AMO condition at 25 C. Silso solar cells using standard processing showed an average efficiency of about 9.6%. Solar cells with back surface field process showed about the same efficiency as the cells from standard process. Solar cells from grain boundary passivation process did not show any improvements in solar cell performance.
Veerbeek, Janneke; Firet, Nienke J; Vijselaar, Wouter; Elbersen, Rick; Gardeniers, Han; Huskens, Jurriaan
2017-01-11
Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based solar cells. Organic monolayers were coupled to silicon surfaces by hydrosilylation in order to avoid an insulating silicon oxide layer at the surface. Monolayers of 1-tetradecyne were shown to passivate silicon micropillar-based solar cells with radial junctions, by which the efficiency increased from 8.7% to 9.9% for n + /p junctions and from 7.8% to 8.8% for p + /n junctions. This electrical passivation of the surface, most likely by removal of dangling bonds, is reflected in a higher shunt resistance in the J-V measurements. Monolayers of 1,8-nonadiyne were still reactive for click chemistry with a model catalyst, thus enabling simultaneous passivation and future catalyst coupling.
Surface passivation of InGaP/GaAs HBT using silicon-nitride film deposited by ECR CVD plasma
NASA Astrophysics Data System (ADS)
Manera, L. T.; Zoccal, L. B.; Diniz, J. A.; Tatsch, P. J.; Doi, I.
2008-07-01
In this paper we have developed a passivation technique with silicon-nitride (SiN X) film that requires no surface pre-treatment, and is fully compatible to monolithic microwave integrated circuits (MMICs). The nitride depositions were carried out by ECR-CVD (electron cyclotron resonance-chemical vapor deposition) directly over InGaP/GaAs heterojunction structures, which are used for heterojunction bipolar transistors (HBTs). Optical emission spectrometry (OES) was used for plasma characterization, and low formation of H and NH molecules in the gas phase was detected at pressure of 2.5 mTorr. These molecules can degrade III-V semiconductor surfaces due to the preferential loss of As or P and hydrogen incorporation at the substrate. The substrates were cleaned with organic solvents using a Sox-let distillate. The ECR depositions were carried out at a fixed substrate temperature of 20 °C, SiH 4/N 2 flow ratio of 1, Ar flow of 5 sccm pressure of 2.5 mTorr and microwave (2.45 GHz) power of 250 W and RF (13.56 MHz) power of 4 W. We have applied this film for InGaP/GaAs HBT fabrication process with excellent results, where two major contribuiton is related to this passivation technique, the enhancement in the transistor dc gain β and the improvement in the signal-to-noise ratio when compared unpassivated and passivated devices.
NASA Astrophysics Data System (ADS)
Mirambet, F.; Reguer, S.; Rocca, E.; Hollner, S.; Testemale, D.
2010-05-01
Metallic artefacts of the cultural heritage are often stored in uncontrolled environmental conditions. They are very sensitive to atmospheric corrosion caused by a succession of wet and dry periods due to variations of relative humidity and temperature. To avoid the complete degradation of the metallic artefacts, new preventive strategies must be developed. In this context, we have studied new compounds based on sodium carboxylates solutions CH3(CH2) n-2COO-, Na+ hereafter called NaC n . They allow the formation of a passive layer at the metallic surface composed of a metal-carboxylate complex. To understand the action of those inhibitors in the passivation process of iron we have performed electrochemical measurements and surface characterisation. Moreover, to monitor in real time the growth of the coating, in situ X-ray absorption spectroscopy (XAS) experiments at iron K-edge were carried out in an electrochemical cell. These analyses have shown that in the case of NaC10 solution, the protection of iron surface is correlated to the precipitation of a well-organised layer of FeC10. These experiments confirmed that this compound is a fully oxidised trinuclear Fe(III) complex containing decanoate anions as ligands. Such information concerning the passive layer is a key factor to evaluate its stability and finally the long-term efficiency of the protection treatment.
NASA Astrophysics Data System (ADS)
Zheng, Yan-Zhen; Li, Xi-Tao; Zhao, Er-Fei; Lv, Xin-Ding; Meng, Fan-Li; Peng, Chao; Lai, Xue-Sen; Huang, Meilan; Cao, Guozhong; Tao, Xia; Chen, Jian-Feng
2018-02-01
Simultaneously achieving the long-term device stability and reproducibility has proven challenging in perovskite solar cells because solution-processing produced perovskite film with grain boundary is sensitive to moisture. Herein, we develop a hexamethylenetetramine (HMTA)-mediated one-step solution-processing deposition strategy that leads to the formation of high-purity and grain-boundary-passivation CH3NH3PbI3 film and thereby advances cell optoelectronic performance. Through morphological and structural characterizations and theoretical calculations, we demonstrate that HMTA fully occupies the moisture-exposed surface to build a bridge across grain boundary and coordinates with Pb ions to inhibit the formation of detrimental PbI2. Such HMTA-mediated grown CH3NH3PbI3 films achieves a decent augmentation of power conversion efficiency (PCE) from 12.70% to 17.87%. A full coverage of PbI2-free CH3NH3PbI3 surface on ZnO also boosts the device's stability and reproducibility.
Photoluminescence Probing of Complex H2O Adsorption on InGaN/GaN Nanowires.
Maier, Konrad; Helwig, Andreas; Müller, Gerhard; Hille, Pascal; Teubert, Jörg; Eickhoff, Martin
2017-02-08
We demonstrate that the complex adsorption behavior of H 2 O on InGaN/GaN nanowire arrays is directly revealed by their ambient-dependent photoluminescence properties. Under low-humidity, ambient-temperature, and low-excitation-light conditions, H 2 O adsorbates cause a quenching of the photoluminescence. In contrast, for high humidity levels, elevated temperature, and high excitation intensity, H 2 O adsorbates act as efficient photoluminescence enhancers. We show that this behavior, which can only be detected due to the low operation temperature of the InGaN/GaN nanowires, can be explained on the basis of single H 2 O adsorbates forming surface recombination centers and multiple H 2 O adsorbates forming surface passivation layers. Reversible creation of such passivation layers is induced by the photoelectrochemical splitting of adsorbed water molecules and by the interaction of reactive H 3 O + and OH - ions with photoactivated InGaN surfaces. Due to electronic coupling of adsorbing molecules with photoactivated surfaces, InGaN/GaN nanowires act as sensitive nanooptical probes for the analysis of photoelectrochemical surface processes.
Passivation of uranium towards air corrosion by N 2+ and C + ion implantation
NASA Astrophysics Data System (ADS)
Arkush, R.; Mintz, M. H.; Shamir, N.
2000-10-01
The passivation of uranium surfaces against air corrosion, by ion implantation processes was studied, using surface analysis methods. Implanting 45 keV N +2 and C + ions produces thin modified surface layers with gradual gradients of the corresponding compounds (i.e., nitrides and carbides, respectively), which avoid the formation of discontinuous interfaces typical to coatings. Such gradual interfaces impart excellent mechanical stability and adhesion to the modified layers, in spite of the large misfit between the metal substrate and the implantation on induced compounds. It turns out that these layers provide an almost absolute protection against air corrosion. A rapid initial stage of oxidation of the modified surface layers takes place, forming very thin protective oxidation zones (1-4 nm thick), which practically stop further air oxidation for years. The mechanism of the initial oxidation stage of the modified layers seems to vary with the type of surface (i.e., either nitrides or carbides). However, in any case the protection ability of the formed oxidation products is excellent, probably due to the close match between these compounds and the underlying nitrides or carbides.
Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.
2003-11-18
A CdZnTe (CZT) crystal provided with a native CdO dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals is disclosed. A two step process is provided for forming the dielectric coating which includes etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and passivating the CZT crystal surface with a solution of 10 w/o NH.sub.4 F and 10 w/o H.sub.2 O.sub.2 in water after attaching electrical contacts to the crystal surface.
NASA Technical Reports Server (NTRS)
Shogrin, Bradley A.; Jones, William R., Jr.; Herrera-Fierro, Pilar
1997-01-01
The boundary-lubrication performance of perfluoropolyether (PFPE) thin films in the presence of passivated 440 C stainless steel is presented. The study utilized a standard ball-on-disc tribometer. Stainless steel surfaces were passivated with one of four techniques: 1) submersion in a chromic acid bath for 30 minutes at 46 C, 2) submersion in a chromic acid bath for 60 minutes at 56 C, 3) submersion in a tricresyl phosphate (TCP) bath for 2 days at 107 C, or 4) UV/Ozone treated for 15 minutes. After passivation, each disc had a 400 A film of PFPE (hexafluoropropene oxide) applied to it reproducibly (+/- 20%) and uniformly (+/- 15%) using a film deposition device. The lifetimes of these films were quantified by measuring the number of sliding wear cycles required to induce an increase in the friction coefficient from an initial value characteristic of the lubricated wear couple to a final, or failure value, characteristic of an unlubricated, unpassivated wear couple. The lubricated lifetime of the 440 C couple was not altered as a result of the various passivation techniques. The resulting surface chemistry of each passivation technique was examined using X-ray Photoelectron Spectroscopy (XPS). It was found that chromic acid passivation altered the Cr to Fe ratio of the surface. TCP passivation resulted in a FePO4 layer on the surface, while UV/Ozone passivation only removed the carbonaceous contamination layer. None of the passivation techniques were found to dramatically increase the oxide film thickness.
HgCdTe Surface and Defect Study Program.
1985-01-01
LWIR (x 0.2) HgCdTe surface will be so depleted in cations that the resulting equivajqnt alloy will be metallic or semimetallic (x < 0.17), and hence...spectrometry (PES) results on MWIR are applicable to the first 10 to 15A of the surface. The point here is that LWIR material may respond to passivation...processes to produce a fundamentally different result than does MWIR material, and LWIR should in fact be treated as a completely different material. These
Li, Yuzhang; Li, Yanbin; Sun, Yongming; Butz, Benjamin; Yan, Kai; Koh, Ai Leen; Zhao, Jie; Pei, Allen; Cui, Yi
2017-08-09
Lithium (Li) metal is a high-capacity anode material (3860 mAh g -1 ) that can enable high-energy batteries for electric vehicles and grid-storage applications. However, Li metal is highly reactive and repeatedly consumed when exposed to liquid electrolyte (during battery operation) or the ambient environment (throughout battery manufacturing). Studying these corrosion reactions on the nanoscale is especially difficult due to the high chemical reactivity of both Li metal and its surface corrosion films. Here, we directly generate pure Li metal inside an environmental transmission electron microscope (TEM), revealing the nanoscale passivation and corrosion process of Li metal in oxygen (O 2 ), nitrogen (N 2 ), and water vapor (H 2 O). We find that while dry O 2 and N 2 (99.9999 vol %) form uniform passivation layers on Li, trace water vapor (∼1 mol %) disrupts this passivation and forms a porous film on Li metal that allows gas to penetrate and continuously react with Li. To exploit the self-passivating behavior of Li in dry conditions, we introduce a simple dry-N 2 pretreatment of Li metal to form a protective layer of Li nitride prior to battery assembly. The fast ionic conductivity and stable interface of Li nitride results in improved battery performance with dendrite-free cycling and low voltage hysteresis. Our work reveals the detailed process of Li metal passivation/corrosion and demonstrates how this mechanistic insight can guide engineering solutions for Li metal batteries.
NASA Technical Reports Server (NTRS)
Davies, A. G.; Matson, D. L.; Leone, G.; Wilson, L.; Keszthelyi, L. P.
2004-01-01
Studies of Galileo Near Infrared Mapping Spectrometer (NIMS) data and ground based data of volcanism at Prometheus and Loki Patera on Io reveal very different mechanisms of lava emplacement at these two volcanoes. Data analyses show that the periodic nature of Loki Patera s volcanism from 1990 to 2001 is strong evidence that Loki s resurfacing over this period resulted from the foundering of a crust on a lava lake. This process is designated passive , as there is no reliance on sub-surface processes: the foundering of the crust is inevitable. Prometheus, on the other hand, displays an episodicity in its activity which we designate active . Like Kilauea, a close analog, Prometheus s effusive volcanism is dominated by pulses of magma through the nearsurface plumbing system. Each system affords views of lava resurfacing processes through modelling.
Screen printed passive components for flexible power electronics
NASA Astrophysics Data System (ADS)
Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.
2015-10-01
Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.
Screen printed passive components for flexible power electronics
Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.
2015-01-01
Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application. PMID:26514331
NASA Astrophysics Data System (ADS)
Fattah-alhosseini, Arash; Naseri, Majid; Gashti, Seyed Omid; Vafaeian, Saeed; Keshavarz, Mohsen K.
2018-06-01
In the present work, influences of the cold deformation on electrochemical and passive response of pure nickel in three solutions with adjusted pH values of 8.5, 9.0, and 9.5 at 298 ± 1 K (25 ± 1 °C) were investigated. A cold deformation process was applied by means of cold rolling. Implementation of the cold deformation process resulted in samples having a finer microstructure. Also, the cold work and grain refinement led to increased hardness. In addition, open-circuit potential and potentiodynamic polarization tests were performed and results showed that corrosion current density was reduced by applying the cold deformation. Moreover, the results of the electrochemical impedance spectroscopy and Mott-Schottky analyses indicated higher corrosion resistance of pure nickel after cold deformation. This behavior is attributed to the growth of much thicker, with less point defects, passive layer on the surface of cold-deformed samples.
Screen printed passive components for flexible power electronics.
Ostfeld, Aminy E; Deckman, Igal; Gaikwad, Abhinav M; Lochner, Claire M; Arias, Ana C
2015-10-30
Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components-inductors, capacitors, and resistors-perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.
Surface treatment and protection method for cadmium zinc telluride crystals
Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.
2003-01-01
A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH.sub.4 F and 10 w/o H.sub.2 O.sub.2 in water.
NASA Astrophysics Data System (ADS)
Parada-Gamboa, N. J.; Pedraza-Avella, J. A.; Meléndez, A. M.
2017-01-01
To investigate whether different metal surface treatments, performed on meshes of stainless steel 304 and titanium, affect the photocatalytic activity (PCA) of supported modified anodic TiO2 films, metallic substrates were coated with titanium isopropoxide sol-gel precursor modified with thiourea. Substrates were pretreated by some of the following techniques: a) sandblasting, b) pickling, c) hydroxylation and d) passivation. The as-prepared electrode materials were characterized by X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and voltammetry in the dark and under light UVA irradiation. PCA of modified N-S-TiO2 electrodes was evaluated by electrochemically assisted photocatalytic degradation of methyl orange. The results of XPS revealed that N and S were incorporated into the lattice of TiO2. FESEM showed that surface roughness and thickness of films varies depending on surface treatment. Voltammetric and XPS characterization of N-S co-doped TiO2 films supported on stainless steel revealed that their surface contains alpha-Fe2O3/FeOOH. Accordingly, iron contamination of the films coming from stainless steel was detrimental to the degradation of methyl orange. Prior to sol-gel coating process, sandblasting followed by nitric acid passivation for stainless steel or hydrofluoric acid pickling process in the case of titanium improved the PCA of N-S co-doped TiO2 films.
NASA Astrophysics Data System (ADS)
Wang, Zhu; Zhang, Lei; Tang, Xian; Zhang, Ziru; Lu, Minxu
2017-11-01
The protectiveness and characterization of passive films formed at various potentials in H2S-containing environments were studied using electrochemical measurements and surface analysis method. The corrosion resistance of 316L in H2S-containing environment decreases with the applied potential. The Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) results indicate that Ni participates in the film formation, which results in the corresponding enrichment in the passive film. The oxidization degree analysis indicates that metallic elements are present in the passive film. Sulfide ions are significantly favored in the passive film at higher potentials, which is responsible for the breakdown of passive film.
Xia, Mengling; Liu, Chao; Zhao, Zhiyong; Wang, Jing; Lin, Changgui; Xu, Yinsheng; Heo, Jong; Dai, Shixun; Han, Jianjun; Zhao, Xiujian
2017-02-07
CdSe quantum dots (QDs) doped glasses have been widely investigated for optical filters, LED color converter and other optical emitters. Unlike CdSe QDs in solution, it is difficult to passivate the surface defects of CdSe QDs in glass matrix, which strongly suppress its intrinsic emission. In this study, surface passivation of CdSe quantum dots (QDs) by Cd 1-x Zn x Se shell in silicate glass was reported. An increase in the Se/Cd ratio can lead to the partial passivation of the surface states and appearance of the intrinsic emission of CdSe QDs. Optimizing the heat-treatment condition promotes the incorporation of Zn into CdSe QDs and results in the quenching of the defect emission. Formation of CdSe/Cd 1-x Zn x Se core/graded shell QDs is evidenced by the experimental results of TEM and Raman spectroscopy. Realization of the surface passivation and intrinsic emission of II-VI QDs may facilitate the wide applications of QDs doped all inorganic amorphous materials.
2012-01-01
We have investigated the characteristics of a silicon oxynitride/silver/silicon oxynitride [SiON/Ag/SiON] multilayer passivation grown using a specially designed roll-to-roll [R2R] sputtering system on a flexible polyethersulfone substrate. Optical, structural, and surface properties of the R2R grown SiON/Ag/SiON multilayer were investigated as a function of the SiON thickness at a constant Ag thickness of 12 nm. The flexible SiON/Ag/SiON multilayer has a high optical transmittance of 87.7% at optimized conditions due to the antireflection and surface plasmon effects in the oxide-metal-oxide structure. The water vapor transmission rate of the SiON/Ag/SiON multilayer is 0.031 g/m2 day at an optimized SiON thickness of 110 nm. This indicates that R2R grown SiON/Ag/SiON is a promising thin-film passivation for flexible organic light-emitting diodes and flexible organic photovoltaics due to its simple and low-temperature process. PMID:22221400
Annealing optimization of hydrogenated amorphous silicon suboxide film for solar cell application
NASA Astrophysics Data System (ADS)
Guangzhi, Jia; Honggang, Liu; Hudong, Chang
2011-05-01
We investigate a passivation scheme using hydrogenated amorphous silicon suboxide (a-SiOx:H) film for industrial solar cell application. The a-SiOx:H films were deposited using plasma-enhanced chemical vapor deposition (PECVD) by decomposing nitrous oxide, helium and silane at a substrate temperature of around 250 °C. An extensive study has been carried out on the effect of thermal annealing on carrier lifetime and surface recombination velocity, which affect the final output of the solar cell. Minority carrier lifetimes for the deposited a-SiOx:H films without and with the thermal annealing on 4 Ω·cm p-type float-zone silicon wafers are 270 μs and 670 μs, respectively, correlating to surface recombination velocities of 70 cm/s and 30 cm/s. Optical analysis has revealed a distinct decrease of blue light absorption in the a-SiOx:H films compared to the commonly used intrinsic amorphous silicon passivation used in solar cells. This paper also reports that the low cost and high quality passivation fabrication sequences employed in this study are suitable for industrial processes.
Excimer laser annealing: A gold process for CZ silicon junction formation
NASA Technical Reports Server (NTRS)
Wong, David C.; Bottenberg, William R.; Byron, Stanley; Alexander, Paul
1987-01-01
A cold process using an excimer laser for junction formation in silicon has been evaluated as a way to avoid problems associated with thermal diffusion. Conventional thermal diffusion can cause bulk precipitation of SiOx and SiC or fail to completely activate the dopant, leaving a degenerate layer at the surface. Experiments were conducted to determine the feasibility of fabricating high quality p-n junctions using a pulsed excimer laser for junction formation at remelt temperature with ion-implanted surfaces. Solar-cell efficiency exceeding 16 percent was obtained using Czochralski single-crystal silicon without benefit of back surface field or surface passivation. Characterization shows that the formation of uniform, shallow junctions (approximately 0.25 micron) by excimer laser scanning preserves the minority carrier lifetime that leads to high current collection. However, the process is sensitive to initial surface conditions and handling parameters that drive the cost up.
Analysis and suppression of passive noise in surface microseismic data
NASA Astrophysics Data System (ADS)
Forghani-Arani, Farnoush
Surface microseismic surveys are gaining popularity in monitoring the hydraulic fracturing process. The effectiveness of these surveys, however, is strongly dependent on the signal-to-noise ratio of the acquired data. Cultural and industrial noise generated during hydraulic fracturing operations usually dominate the data, thereby decreasing the effectiveness of using these data in identifying and locating microseismic events. Hence, noise suppression is a critical step in surface microseismic monitoring. In this thesis, I focus on two important aspects in using surface-recorded microseismic seismic data: first, I take advantage of the unwanted surface noise to understand the characteristics of these noise and extract information about the propagation medium from the noise; second, I propose effective techniques to suppress the surface noise while preserving the waveforms that contain information about the source of microseisms. Automated event identification on passive seismic data using only a few receivers is challenging especially when the record lengths span over long durations of time. I introduce an automatic event identification algorithm that is designed specifically for detecting events in passive data acquired with a small number of receivers. I demonstrate that the conventional STA/LTA (Short-term Average/Long-term Average) algorithm is not sufficiently effective in event detection in the common case of low signal-to-noise ratio. With a cross-correlation based method as an extension of the STA/LTA algorithm, even low signal-to-noise events (that were not detectable with conventional STA/LTA) were revealed. Surface microseismic data contains surface-waves (generated primarily from hydraulic fracturing activities) and body-waves in the form of microseismic events. It is challenging to analyze the surface-waves on the recorded data directly because of the randomness of their source and their unknown source signatures. I use seismic interferometry to extract the surface-wave arrivals. Interferometry is a powerful tool to extract waves (including body-wave and surface-waves) that propagate from any receiver in the array (called a pseudo source) to the other receivers across the array. Since most of the noise sources in surface microseismic data lie on the surface, seismic interferometry yields pseudo source gathers dominated by surface-wave energy. The dispersive characteristics of these surface-waves are important properties that can be used to extract information necessary for suppressing these waves. I demonstrate the application of interferometry to surface passive data recorded during the hydraulic fracturing operation of a tight gas reservoir and extract the dispersion properties of surface-waves corresponding to a pseudo-shot gather. Comparison of the dispersion characteristics of the surface waves from the pseudo-shot gather with that of an active shot-gather shows interesting similarities and differences. The dispersion character (e.g. velocity change with frequency) of the fundamental mode was observed to have the same behavior for both the active and passive data. However, for the higher mode surface-waves, the dispersion properties are extracted at different frequency ranges. Conventional noise suppression techniques in passive data are mostly stacking-based that rely on enforcing the amplitude of the signal by stacking the waveforms at the receivers and are unable to preserve the waveforms at the individual receivers necessary for estimating the microseismic source location and source mechanism. Here, I introduce a technique based on the tau - p transform, that effectively identifies and separates microseismic events from surface-wave noise in the tau -p domain. This technique is superior to conventional stacking-based noise suppression techniques, because it preserves the waveforms at individual receivers. Application of this methodology to microseismic events with isotropic and double-couple source mechanism, show substantial improvement in the signal-to-noise ratio. Imaging of the processed field data also show improved imaging of the hypocenter location of the microseismic source. In the case of double-couple source mechanism, I suggest two approaches for unifying the polarities at the receivers, a cross-correlation approach and a semblance-based prediction approach. The semblance-based approach is more effective at unifying the polarities, especially for low signal-to-noise ratio data.
Field application of passive SBSE for the monitoring of pesticides in surface waters.
Assoumani, A; Coquery, M; Liger, L; Mazzella, N; Margoum, C
2015-03-01
Spot sampling lacks representativeness for monitoring organic contaminants in most surface waters. Passive sampling has emerged as a cost-effective complementary sampling technique. We recently developed passive stir bar sorptive extraction (passive SBSE), with Twister from Gerstel, for monitoring moderately hydrophilic to hydrophobic pesticides (2.18 < log K ow < 5.11) in surface water. The aims of the present study were to assess this new passive sampler for the determination of representative average concentrations and to evaluate the contamination levels of two French rivers. Passive SBSE was evaluated for the monitoring of 16 pesticides in two rivers located in a small vineyard watershed during two 1-month field campaigns in spring 2010 and spring 2011. Passive SBSE was applied for periods of 1 or 2 weeks during the field campaigns and compared with spot sampling and weekly average automated sampling. The results showed that passive SBSE could achieve better time-representativeness than spot sampling and lower limits of quantification than automated sampling coupled with analytical SBSE for the pesticides studied. Finally, passive SBSE proved useful for revealing spatial and temporal variations in pesticide contamination of both rivers and the impact of rainfall and runoff on the river water quality.
A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys.
Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H Felix
2015-09-25
The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system's functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements.
NASA Astrophysics Data System (ADS)
Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu
2013-10-01
Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.
Ahkola, Heidi; Tuominen, Sirkku; Karlsson, Sanja; Perkola, Noora; Huttula, Timo; Saraperä, Sami; Artimo, Aki; Korpiharju, Taina; Äystö, Lauri; Fjäder, Päivi; Assmuth, Timo; Rosendahl, Kirsi; Nysten, Taina
2017-12-01
Anthropogenic chemicals in surface water and groundwater cause concern especially when the water is used in drinking water production. Due to their continuous release or spill-over at waste water treatment plants, active pharmaceutical ingredients (APIs) are constantly present in aquatic environment and despite their low concentrations, APIs can still cause effects on the organisms. In the present study, Chemcatcher passive sampling was applied in surface water, surface water intake site, and groundwater observation wells to estimate whether the selected APIs are able to end up in drinking water supply through an artificial groundwater recharge system. The API concentrations measured in conventional wastewater, surface water, and groundwater grab samples were assessed with the results obtained with passive samplers. Out of the 25 APIs studied with passive sampling, four were observed in groundwater and 21 in surface water. This suggests that many anthropogenic APIs released to waste water proceed downstream and can be detectable in groundwater recharge. Chemcatcher passive samplers have previously been used in monitoring several harmful chemicals in surface and wastewaters, but the path of chemicals to groundwater has not been studied. This study provides novel information on the suitability of the Chemcatcher passive samplers for detecting APIs in groundwater wells.
Solution-processed copper-nickel nanowire anodes for organic solar cells
NASA Astrophysics Data System (ADS)
Stewart, Ian E.; Rathmell, Aaron R.; Yan, Liang; Ye, Shengrong; Flowers, Patrick F.; You, Wei; Wiley, Benjamin J.
2014-05-01
This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%.This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01024h
Enhanced Charge Collection with Passivation Layers in Perovskite Solar Cells.
Lee, Yong Hui; Luo, Jingshan; Son, Min-Kyu; Gao, Peng; Cho, Kyung Taek; Seo, Jiyoun; Zakeeruddin, Shaik M; Grätzel, Michael; Nazeeruddin, Mohammad Khaja
2016-05-01
The Al2 O3 passivation layer is beneficial for mesoporous TiO2 -based perovskite solar cells when it is deposited selectively on the compact TiO2 surface. Such a passivation layer suppressing surface recombination can be formed by thermal decomposition of the perovskite layer during post-annealing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Potassium ions in SiO2: electrets for silicon surface passivation
NASA Astrophysics Data System (ADS)
Bonilla, Ruy S.; Wilshaw, Peter R.
2018-01-01
This manuscript reports an experimental and theoretical study of the transport of potassium ions in thin silicon dioxide films. While alkali contamination was largely researched in the context of MOSFET instability, recent reports indicate that potassium ions can be embedded into oxide films to produce dielectric materials with permanent electric charge, also known as electrets. These electrets are integral to a number of applications, including the passivation of silicon surfaces for optoelectronic devices. In this work, electric field assisted migration of ions is used to rapidly drive K+ into SiO2 and produce effective passivation of silicon surfaces. Charge concentrations of up to ~5 × 1012 e cm-2 have been achieved. This charge was seen to be stable for over 1500 d, with decay time constants as high as 17 000 d, producing an effectively passivated oxide-silicon interface with SRV < 7 cm s-1, in 1 Ω cm n-type material. This level of charge stability and passivation effectiveness has not been previously reported. Overall, this is a new and promising methodology to enhance surface passivation for the industrial manufacture of silicon optoelectronic devices.
Rylska, Dorota; Sokołowski, Grzegorz; Sokołowski, Jerzy; Łukomska-Szymańska, Monika
2017-01-01
The purpose of the study was to evaluate corrosion resistance of Wirobond C® alloy after chemical passivation treatment. The alloy surface undergone chemical passivation treatment in four different media. Corrosion studies were carried out by means of electrochemical methods in saline solution. Corrosion effects were determined using SEM. The greatest increase in the alloy polarization resistance was observed for passive layer produced in Na2SO4 solution with graphite. The same layer caused the highest increase in corrosion current. Generally speaking, the alloy passivation in Na2SO4 solution with graphite caused a substantial improvement of the corrosion resistance. The sample after passivation in Na2SO4 solution without graphite, contrary to others, lost its protective properties along with successive anodic polarization cycles. The alloy passivation in Na3PO4 solution with graphite was the only one that caused a decrease in the alloy corrosion properties. The SEM studies of all samples after chemical passivation revealed no pit corrosion - in contrast to the sample without any modification. Every successive polarization cycle in anodic direction of pure Wirobond C® alloy enhances corrosion resistance shifting corrosion potential in the positive direction and decreasing corrosion current value. The chemical passivation in solutions with low pH values decreases susceptibility to electrochemical corrosion of Co-Cr dental alloy. The best protection against corrosion was obtained after chemical passivation of Wirobond C® in Na2SO4 solution with graphite. Passivation with Na2SO4 in solution of high pH does not cause an increase in corrosion resistance of WIROBOND C. Passivation process increases alloy resistance to pit corrosion.
Investigation of passive films formed on the surface of alloy 690 in borate buffer solution
NASA Astrophysics Data System (ADS)
Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Wenli, Guo
2015-10-01
The passive film formed on the surface of the alloy 690 in borate buffer solution was studied by potentiodynamic curves and electrochemical impedance spectroscopy. With the increasing of the passivation potential, the corrosion resistance of the alloy 690 reduced. Moreover, the corrosion resistance of the passive film was the lowest in the vicinity of 0.6 VSCE. These results were supported by XPS and Mott-Schottky analyses. The corrosion resistance of the alloy 690 increased with the increasing of passivated potential in borate buffer solution with chloride ion. The chloride ion decreased corrosion resistance of the alloy 690 according to point defect model.
USDA-ARS?s Scientific Manuscript database
Two passive microwave missions are currently operating at L-band to monitor surface soil moisture (SM) over continental surfaces. The SMOS sensor, based on an innovative interferometric technology enabling multi-angular signatures of surfaces to be measured, was launched in November 2009....
Passive bottom reflection-loss estimation using ship noise and a vertical line array.
Muzi, Lanfranco; Siderius, Martin; Verlinden, Christopher M
2017-06-01
An existing technique for passive bottom-loss estimation from natural marine surface noise (generated by waves and wind) is adapted to use noise generated by ships. The original approach-based on beamforming of the noise field recorded by a vertical line array of hydrophones-is retained; however, additional processing is needed in order for the field generated by a passing ship to show features that are similar to those of the natural surface-noise field. A necessary requisite is that the ship position, relative to the array, varies over as wide a range of steering angles as possible, ideally passing directly over the array to ensure coverage of the steepest angles. The methodology is illustrated through simulation and applied to data from a field experiment conducted offshore of San Diego, CA in 2009.
Analysis of passive surface-wave noise in surface microseismic data and its implications
Forghani-Arani, F.; Willis, M.; Haines, S.; Batzle, M.; Davidson, M.
2011-01-01
Tight gas reservoirs are projected to be a major portion of future energy resources. Because of their low permeability, hydraulic fracturing of these reservoirs is required to improve the permeability and reservoir productivity. Passive seismic monitoring is one of the few tools that can be used to characterize the changes in the reservoir due to hydraulic fracturing. Although the majority of the studies monitoring hydraulic fracturing exploit down hole microseismic data, surface microseismic monitoring is receiving increased attention because it is potentially much less expensive to acquire. Due to a broader receiver aperture and spatial coverage, surface microseismic data may be more advantageous than down hole microseismic data. The effectiveness of this monitoring technique, however, is strongly dependent on the signal-to-noise ratio of the data. Cultural and ambient noise can mask parts of the waveform that carry information about the subsurface, thereby decreasing the effectiveness of surface microseismic analysis in identifying and locating the microseismic events. Hence, time and spatially varying suppression of the surface-wave noise ground roll is a critical step in surface microseismic monitoring. Here, we study a surface passive dataset that was acquired over a Barnett Shale Formation reservoir during two weeks of hydraulic fracturing, in order to characterize and suppress the surface noise in this data. We apply techniques to identify the characteristics of the passive ground roll. Exploiting those characteristics, we can apply effective noise suppression techniques to the passive data. ?? 2011 Society of Exploration Geophysicists.
A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys
Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H. Felix
2015-01-01
The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system’s functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements. PMID:26404270
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagraev, N. T., E-mail: Bagraev@mail.ioffe.ru; Chaikina, E. I.; Danilovskii, E. Yu.
The sulfur passivation of the semi-insulating GaAs bulk (SI GaAs) grown in an excess phase of arsenic is used to observe the transition from the Coulomb blockade to the weak localization regime at room temperature. The I–V characteristics of the SI GaAs device reveal nonlinear behavior that appears to be evidence of the Coulomb blockade process as well as the Coulomb oscillations. The sulfur passivation of the SI GaAs device surface results in enormous transformation of the I–V characteristics that demonstrate the strong increase of the resistance and Coulomb blockade regime is replaced by the electron tunneling processes. The resultsmore » obtained are analyzed within frameworks of disordering SI GaAs surface that is caused by inhomogeneous distribution of the donor and acceptor anti-site defects which affects the conditions of quantum- mechanical tunneling. Weak localization processes caused by the preservation of the Fermi level pinning are demonstrated by measuring the negative magnetoresistance in weak magnetic fields at room temperature. Finally, the studies of the magnetoresistance at higher magnetic fields reveal the h/2e Aharonov–Altshuler–Spivak oscillations with the complicated behavior due to possible statistical mismatch of the interference paths in the presence of different microdefects.« less
NASA Astrophysics Data System (ADS)
Lechaux, Y.; Fadjie-Djomkam, A. B.; Bollaert, S.; Wichmann, N.
2016-09-01
Capacitance-voltage (C-V) measurements and x-ray photoelectron spectroscopy (XPS) analysis were performed in order to investigate the effect of a oxygen (O2) plasma after oxide deposition on the Al2O3/n-In0.53Ga0.47As metal-oxide-semiconductor structure passivated with ammonia NH4OH solution. From C-V measurements, an improvement of charge control is observed using the O2 plasma postoxidation process on In0.53Ga0.47As, while the minimum of interface trap density remains at a good value lower than 1 × 1012 cm-2 eV-1. From XPS measurements, we found that NH4OH passivation removes drastically the Ga and As native oxides on the In0.53Ga0.47As surface and the O2 plasma postoxidation process enables the reduction of interface re-oxidation after post deposition annealing (PDA) of the oxide. The advanced hypothesis is the formation of interfacial barrier between Al2O3 and In0.53Ga0.47As which prevents the diffusion of oxygen species into the semiconductor surface during PDA.
Estimating surface soil moisture from SMAP observations using a neural network technique
USDA-ARS?s Scientific Manuscript database
A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to June 2016 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observ...
Passive Seismic Monitoring for Rockfall at Yucca Mountain: Concept Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, J; Twilley, K; Murvosh, H
2003-03-03
For the purpose of proof-testing a system intended to remotely monitor rockfall inside a potential radioactive waste repository at Yucca Mountain, a system of seismic sub-arrays will be deployed and tested on the surface of the mountain. The goal is to identify and locate rockfall events remotely using automated data collecting and processing techniques. We install seismometers on the ground surface, generate seismic energy to simulate rockfall in underground space beneath the array, and interpret the surface response to discriminate and locate the event. Data will be analyzed using matched-field processing, a generalized beam forming method for localizing discrete signals.more » Software is being developed to facilitate the processing. To date, a three-component sub-array has been installed and successfully tested.« less
Gui, Qunfang; Xu, Zhen; Zhang, Haifeng; Cheng, Chuanwei; Zhu, Xufei; Yin, Min; Song, Ye; Lu, Linfeng; Chen, Xiaoyuan; Li, Dongdong
2014-10-08
One-dimensional anodic titanium oxide nanotube (TONT) arrays provide a direct pathway for charge transport, and thus hold great potential as working electrodes for electrochemical energy conversion and storage devices. However, the prominent surface recombination due to the large amount surface defects hinders the performance improvement. In this work, the surface states of TONTs were passivated by conformal coating of high-quality Al2O3 onto the tubular structures using atomic layer deposition (ALD). The modified TONT films were subsequently employed as anodes for photoelectrochemical (PEC) water splitting. The photocurrent (0.5 V vs Ag/AgCl) recorded under air mass 1.5 global illumination presented 0.8 times enhancement on the electrode with passivation coating. The reduction of surface recombination rate is responsible for the substantially improved performance, which is proposed to have originated from a decreased interface defect density in combination with a field-effect passivation induced by a negative fixed charge in the Al2O3 shells. These results not only provide a physical insight into the passivation effect, but also can be utilized as a guideline to design other energy conversion devices.
Corrosion behavior of austenitic alloy 690 under anodic and cathodic potentials
NASA Astrophysics Data System (ADS)
Dutta, R. S.; Dey, G. K.; Lobo, A.; Purandare, R.; Kulkarni, S. K.
2002-05-01
The corrosion behavior of austenitic alloy 690 in a solution-annealed condition has been evaluated with the application of anodic as well as cathodic potentials in an acidic chloride solution at room temperature (RT). In a 0.5M H2SO4 + 0.5M NaCl solution, the alloy displayed active-passive pitting behavior with the application of an anodic potential. Surface films, formed at the onset and later stage of the passive region, were characterized using X-ray photoelectron spectroscopy (XPS). The XPS revealed that the surface film formed at the onset of passivity (+ 100 mV SCE) consisted of Cr(OH)3, without any Fe+3/Fe+2. The presence of nickel in the film was found in a transition state of Ni+2 and Ni0. The passive film formed at the higher anodic potential (+ 700 mV SCE) consisted of Cr2O3 without any Fe+3/Fe+2 or even Ni+2/Ni0. Microscopic studies of alloy 690 after anodic polarization in an acidic chloride solution revealed pitting, which was found to be initiated at large, faceted TiN-type inclusions. The susceptibility of the alloy to hydrogen embrittlement has been investigated by conducting cathodic charging of the tensile samples in a 0.5M H2SO4 solution at RT and by subsequent tensile testing of the charged samples in air at a strain rate of 1.3 × 10-4 s-1 up to fracture. An indication toward hydrogen-induced ductility loss was noticed for the samples of the alloy, which is believed to be attributable to a hydrogen-enhanced microvoid growth process. Since the microvoid growth process occurs at the last stage of fracture, the effect of hydrogen on the ductility of the alloy is little.
Thematic orders and the comprehension of subject-extracted relative clauses in Mandarin Chinese
Lin, Chien-Jer Charles
2015-01-01
This study investigates the comprehension of three kinds of subject-extracted relative clauses (SRs) in Mandarin Chinese: standard SRs, relative clauses involving the disposal ba construction (“disposal SRs”), and relative clauses involving the long passive bei constructions (“passive SRs”). In a self-paced reading experiment, the regions before the relativizer (where the sentential fragments are temporarily ambiguous) showed reading patterns consistent with expectation-based incremental processing: standard SRs, with the highest constructional frequency and the least complex syntactic structure, were processed faster than the other two variants. However, in the regions after the relativizer and the head noun where the existence of a relative clause is unambiguously indicated, a top-down global effect of thematic ordering was observed: passive SRs, whose thematic role order conforms to the canonical thematic order of Chinese, were read faster than both the standard SRs and the disposal SRs. Taken together, these results suggest that two expectation-based processing factors are involved in the comprehension of Chinese relative clauses, including both the structural probabilities of pre-relativizer constituents and the overall surface thematic orders in the relative clauses. PMID:26441697
A biologically relevant method for considering patterns of oceanic retention in the Southern Ocean
NASA Astrophysics Data System (ADS)
Mori, Mao; Corney, Stuart P.; Melbourne-Thomas, Jessica; Klocker, Andreas; Sumner, Michael; Constable, Andrew
2017-12-01
Many marine species have planktonic forms - either during a larval stage or throughout their lifecycle - that move passively or are strongly influenced by ocean currents. Understanding these patterns of movement is important for informing marine ecosystem management and for understanding ecological processes generally. Retention of biological particles in a particular area due to ocean currents has received less attention than transport pathways, particularly for the Southern Ocean. We present a method for modelling retention time, based on the half-life for particles in a particular region, that is relevant for biological processes. This method uses geostrophic velocities at the ocean surface, derived from 23 years of satellite altimetry data (1993-2016), to simulate the advection of passive particles during the Southern Hemisphere summer season (from December to March). We assess spatial patterns in the retention time of passive particles and evaluate the processes affecting these patterns for the Indian sector of the Southern Ocean. Our results indicate that the distribution of retention time is related to bathymetric features and the resulting ocean dynamics. Our analysis also reveals a moderate level of consistency between spatial patterns of retention time and observations of Antarctic krill (Euphausia superba) distribution.
Frequency-Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey
NASA Astrophysics Data System (ADS)
Cheng, Feng; Xia, Jianghai; Xu, Zongbo; Hu, Yue; Mi, Binbin
2018-04-01
Passive surface wave methods have gained much attention from geophysical and civil engineering communities because of the limited application of traditional seismic surveys in highly populated urban areas. Considering that they can provide high-frequency phase velocity information up to several tens of Hz, the active surface wave survey would be omitted and the amount of field work could be dramatically reduced. However, the measured dispersion energy image in the passive surface wave survey would usually be polluted by a type of "crossed" artifacts at high frequencies. It is common in the bidirectional noise distribution case with a linear receiver array deployed along roads or railways. We review several frequently used passive surface wave methods and derive the underlying physics for the existence of the "crossed" artifacts. We prove that the "crossed" artifacts would cross the true surface wave energy at fixed points in the f-v domain and propose a FK-based data selection technique to attenuate the artifacts in order to retrieve the high-frequency information. Numerical tests further demonstrate the existence of the "crossed" artifacts and indicate that the well-known wave field separation method, FK filter, does not work for the selection of directional noise data. Real-world applications manifest the feasibility of the proposed FK-based technique to improve passive surface wave methods by a priori data selection. Finally, we discuss the applicability of our approach.
Frequency-Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey
NASA Astrophysics Data System (ADS)
Cheng, Feng; Xia, Jianghai; Xu, Zongbo; Hu, Yue; Mi, Binbin
2018-07-01
Passive surface wave methods have gained much attention from geophysical and civil engineering communities because of the limited application of traditional seismic surveys in highly populated urban areas. Considering that they can provide high-frequency phase velocity information up to several tens of Hz, the active surface wave survey would be omitted and the amount of field work could be dramatically reduced. However, the measured dispersion energy image in the passive surface wave survey would usually be polluted by a type of "crossed" artifacts at high frequencies. It is common in the bidirectional noise distribution case with a linear receiver array deployed along roads or railways. We review several frequently used passive surface wave methods and derive the underlying physics for the existence of the "crossed" artifacts. We prove that the "crossed" artifacts would cross the true surface wave energy at fixed points in the f- v domain and propose a FK-based data selection technique to attenuate the artifacts in order to retrieve the high-frequency information. Numerical tests further demonstrate the existence of the "crossed" artifacts and indicate that the well-known wave field separation method, FK filter, does not work for the selection of directional noise data. Real-world applications manifest the feasibility of the proposed FK-based technique to improve passive surface wave methods by a priori data selection. Finally, we discuss the applicability of our approach.
Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision
NASA Astrophysics Data System (ADS)
Xiong, Jun; Zhang, Guangjun
2013-11-01
Additive manufacturing based on gas metal arc welding is an advanced technique for depositing fully dense components with low cost. Despite this fact, techniques to achieve accurate control and automation of the process have not yet been perfectly developed. The online measurement of the deposited bead geometry is a key problem for reliable control. In this work a passive vision-sensing system, comprising two cameras and composite filtering techniques, was proposed for real-time detection of the bead height and width through deposition of thin walls. The nozzle to the top surface distance was monitored for eliminating accumulated height errors during the multi-layer deposition process. Various image processing algorithms were applied and discussed for extracting feature parameters. A calibration procedure was presented for the monitoring system. Validation experiments confirmed the effectiveness of the online measurement system for bead geometry in layered additive manufacturing.
Melting Frozen Droplets Using Photo-Thermal Traps
NASA Astrophysics Data System (ADS)
Dash, Susmita; de Ruiter, Jolet; Varanasi, Kripa
2017-11-01
Ice buildup is an operational and safety hazard in wind turbines, power lines, and airplanes. While traditional de-icing methods are energy-intensive or environmentally unfriendly, passive anti-icing approach using superhydrophobic surfaces fails under humid conditions, which necessitates development of passive deicing methods. Here, we investigate a passive technique for deicing using a multi-layer surface design that can efficiently absorb and convert the incident solar radiation to heat. The corresponding increase in substrate temperature allows for easy removal of frozen droplets from the surface. We demonstrate the deicing performance of the designed surface both at very low temperatures, and under frost and snow coverage.
Passivation of high temperature superconductors
NASA Technical Reports Server (NTRS)
Vasquez, Richard P. (Inventor)
1991-01-01
The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.
Method for cleaning and passivating a metal surface
NASA Technical Reports Server (NTRS)
Alexander, George B. (Inventor); Carpenter, Norman F. (Inventor)
1976-01-01
A cleaning solvent useful in the cleaning of metal surfaces, e.g. nickle-iron alloys, contains sulfamic acid, citric acid, a solvent for hydrocarbon residues, and a surfactant. Metal surfaces are cleaned by contacting the surface with the cleaning solvent and then passivated by contact with aqueous solutions of citric acid or sodium nitrite or a combination of the two.
46 CFR 170.295 - Special consideration for free surface of passive roll stabilization tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the moment of inertia of the free surface in the roll tank; (ii) (d) is the density of the liquid in... 46 Shipping 7 2014-10-01 2014-10-01 false Special consideration for free surface of passive roll...) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Free Surface § 170.295 Special...
46 CFR 170.295 - Special consideration for free surface of passive roll stabilization tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the moment of inertia of the free surface in the roll tank; (ii) (d) is the density of the liquid in... 46 Shipping 7 2012-10-01 2012-10-01 false Special consideration for free surface of passive roll...) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Free Surface § 170.295 Special...
46 CFR 170.295 - Special consideration for free surface of passive roll stabilization tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the moment of inertia of the free surface in the roll tank; (ii) (d) is the density of the liquid in... 46 Shipping 7 2013-10-01 2013-10-01 false Special consideration for free surface of passive roll...) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Free Surface § 170.295 Special...
Effects of surface passivation on twin-free GaAs nanosheets.
Arab, Shermin; Chi, Chun-Yung; Shi, Teng; Wang, Yuda; Dapkus, Daniel P; Jackson, Howard E; Smith, Leigh M; Cronin, Stephen B
2015-02-24
Unlike nanowires, GaAs nanosheets exhibit no twin defects, stacking faults, or dislocations even when grown on lattice mismatched substrates. As such, they are excellent candidates for optoelectronic applications, including LEDs and solar cells. We report substantial enhancements in the photoluminescence efficiency and the lifetime of passivated GaAs nanosheets produced using the selected area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). Measurements are performed on individual GaAs nanosheets with and without an AlGaAs passivation layer. Both steady-state photoluminescence and time-resolved photoluminescence spectroscopy are performed to study the optoelectronic performance of these nanostructures. Our results show that AlGaAs passivation of GaAs nanosheets leads to a 30- to 40-fold enhancement in the photoluminescence intensity. The photoluminescence lifetime increases from less than 30 to 300 ps with passivation, indicating an order of magnitude improvement in the minority carrier lifetime. We attribute these enhancements to the reduction of nonradiative recombination due to the compensation of surface states after passivation. The surface recombination velocity decreases from an initial value of 2.5 × 10(5) to 2.7 × 10(4) cm/s with passivation.
NASA Astrophysics Data System (ADS)
Zhao, Jinlong; Xu, Dake; Shahzad, M. Babar; Kang, Qiang; Sun, Ying; Sun, Ziqing; Zhang, Shuyuan; Ren, Ling; Yang, Chunguang; Yang, Ke
2016-11-01
The resistance for pitting corrosion, passive film stability and antibacterial performance of 316L-Cu SS passivated by nitric acid solution containing certain concentration of copper sulfate, were studied by electrochemical cyclic polarization, electrochemical impedance spectroscopy (EIS) and co-culture with bacteria. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the Cu2+ ions release from 316L-Cu SS surface. XPS analysis proved that the enrichment of CuO, Cr2O3 and Cr(OH)3 on the surface of specimen could simultaneously guarantee a better corrosion resistance and stable antibacterial properties. The biocompatibility evaluation determined by RTCA assay also indicated that the 316L-Cu SS after antibacterial passivation was completely biocompatible.
NASA Astrophysics Data System (ADS)
Luo, Hong; Su, Huaizhi; Dong, Chaofang; Li, Xiaogang
2017-04-01
In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.
Alpha Background Discrimination in the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
Gruszko, Julieta; Majorana Collaboration
2017-09-01
The
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drabo, Mebougna L.; Egarievwe, Stephen U.; Okwechime, Ifechukwude O.
Surface defects caused during cutting and polishing in the fabrication of cadmium zinc telluride (CdZnTe) nuclear detectors limit their spectral performance. Chemical treatments are often used to remove surface damages and defects. In this paper, we present the analysis of Te and TeO 2 species on the surfaces of CdZnTe nuclear detectors treated with hydrogen bromide and ammonium-based solutions. The CdZnTe wafers were chemo-mechanically polished in a mixture of hydrogen bromide in hydrogen peroxide and ethylene glycol, followed by a chemical passivation in a mixture of ammonium fluoride and hydrogen peroxide solution. X-ray photoelectron spectroscopy showed significant conversion of Temore » to TeO 2, thus producing a more chemically stable surface. The resistivity of the CdZnTe samples is in the order of 1010 ohms-cm. The current for a given applied voltage increased following the passivation and decreased after a 3-hour period. Results from spectral response measurements showed that the 59.5-keV gamma-peak of Am-241 was stable under the same channel for the surface treatment processes.« less
Drabo, Mebougna L.; Egarievwe, Stephen U.; Okwechime, Ifechukwude O.; ...
2017-04-30
Surface defects caused during cutting and polishing in the fabrication of cadmium zinc telluride (CdZnTe) nuclear detectors limit their spectral performance. Chemical treatments are often used to remove surface damages and defects. In this paper, we present the analysis of Te and TeO 2 species on the surfaces of CdZnTe nuclear detectors treated with hydrogen bromide and ammonium-based solutions. The CdZnTe wafers were chemo-mechanically polished in a mixture of hydrogen bromide in hydrogen peroxide and ethylene glycol, followed by a chemical passivation in a mixture of ammonium fluoride and hydrogen peroxide solution. X-ray photoelectron spectroscopy showed significant conversion of Temore » to TeO 2, thus producing a more chemically stable surface. The resistivity of the CdZnTe samples is in the order of 1010 ohms-cm. The current for a given applied voltage increased following the passivation and decreased after a 3-hour period. Results from spectral response measurements showed that the 59.5-keV gamma-peak of Am-241 was stable under the same channel for the surface treatment processes.« less
Synthesis and colloidal properties of anisotropic hydrothermal barium titanate
NASA Astrophysics Data System (ADS)
Yosenick, Timothy James
2005-11-01
Nanoparticles of high dielectric constant materials, especially BaTiO3, are required to achieve decreased layer thickness in multilayer ceramic capacitors (MLCCs). Tabular metal nanoparticles can produce thin metal layers with low surface roughness via electrophoretic deposition (EPD). To achieve similar results with dielectric layers requires the synthesis and dispersion of tabular BaTiO3 nanoparticles. The goal of this study was to investigate the deposition of thin BaTiO3 layers using a colloidal process. The synthesis, interfacial chemistry and colloidal properties of hydrothermal BaTiO3 a model particle system, was investigated. After characterization of the material system particulates were deposited to form thin layers using EPD. In the current study, the synthesis of BaTiO3 has been investigated using a hydrothermal route. TEM and AFM analyses show that the synthesized particles are single crystal with a majority of the particle having a <111> zone axis and {111} large face. The particles have a median thickness of 5.8 +/- 3.1 nm and face diameter of 27.1 +/- 12.3 nm. Particle growth was likely controlled by the formation of {111} twins and the synthesis pH which stabilizes the {111} face during growth. With limited growth in the <111> direction, the particles developed a plate-like morphology. Physical property characterization shows the powder was suitable for further processing with high purity, low hydrothermal defect concentration, and controlled stoichiometry. TEM observations of thermally treated powders indicate that the particles begin to loose the plate-like morphology by 900 °C. The aqueous passivation, dispersion, and doping of nanoscale BaTiO 3 powders was investigated. Passivation BaTiO3 was achieved through the addition of oxalic acid. The oxalic acid selectively adsorbs onto the particle surface and forms a chemically stable 2-3 nm layer of barium oxalate. The negative surface charge of the oxalate effectively passivated the BaTiO3 providing a surface suitable for the use of a cationic dispersant, polyethylenimine (PEI). Rheological properties indicate the presence of an oxalate-PEI interaction which can be detrimental to dispersion. With a better understanding of the aqueous surface chemistry of BaTiO3 the surface chemistry was manipulated to control the adsorption of aqueous soluble complexes of Co, Nb, and Bi, three common dopants in the processing of BaTiO3 Surface charge, TEM, and EDS analysis showed that while in suspension the dopants selectively absorbed onto the particle surface forming an engineered coating. (Abstract shortened by UMI.)
Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR.
Shoffner, M A; Cheng, J; Hvichia, G E; Kricka, L J; Wilding, P
1996-01-01
The microreaction volumes of PCR chips (a microfabricated silicon chip bonded to a piece of flat glass to form a PCR reaction chamber) create a relatively high surface to volume ratio that increases the significance of the surface chemistry in the polymerase chain reaction (PCR). We investigated several surface passivations in an attempt to identify 'PCR friendly' surfaces and used those surfaces to obtain amplifications comparable with those obtained in conventional PCR amplification systems using polyethylene tubes. Surface passivations by a silanization procedure followed by a coating of a selected protein or polynucleotide and the deposition of a nitride or oxide layer onto the silicon surface were investigated. Native silicon was found to be an inhibitor of PCR and amplification in an untreated PCR chip (i.e. native slicon) had a high failure rate. A silicon nitride (Si(3)N(4) reaction surface also resulted in consistent inhibition of PCR. Passivating the PCR chip using a silanizing agent followed by a polymer treatment resulted in good amplification. However, amplification yields were inconsistent and were not always comparable with PCR in a conventional tube. An oxidized silicon (SiO(2) surface gave consistent amplifications comparable with reactions performed in a conventional PCR tube. PMID:8628665
Self-cleaning poly(dimethylsiloxane) film with functional micro/nano hierarchical structures.
Zhang, Xiao-Sheng; Zhu, Fu-Yun; Han, Meng-Di; Sun, Xu-Ming; Peng, Xu-Hua; Zhang, Hai-Xia
2013-08-27
This paper reports a novel single-step wafer-level fabrication of superhydrophobic micro/nano dual-scale (MNDS) poly(dimethylsiloxane) (PDMS) films. The MNDS PDMS films were replicated directly from an ultralow-surface-energy silicon substrate at high temperature without any surfactant coating, achieving high precision. An improved deep reactive ion etching (DRIE) process with enhanced passivation steps was proposed to easily realize the ultralow-surface-energy MNDS silicon substrate and also utilized as a post-treatment process to strengthen the hydrophobicity of the MNDS PDMS film. The chemical modification of this enhanced passivation step to the surface energy has been studied by density functional theory, which is also the first investigation of C4F8 plasma treatment at molecular level by using first-principle calculations. From the results of a systematic study on the effect of key process parameters (i.e., baking temperature and time) on PDMS replication, insight into the interaction of hierarchical multiscale structures of polymeric materials during the micro/nano integrated fabrication process is experimentally obtained for the first time. Finite element simulation has been employed to illustrate this new phenomenon. Additionally, hierarchical PDMS pyramid arrays and V-shaped grooves have been developed and are intended for applications as functional structures for a light-absorption coating layer and directional transport of liquid droplets, respectively. This stable, self-cleaning PDMS film with functional micro/nano hierarchical structures, which is fabricated through a wafer-level single-step fabrication process using a reusable silicon mold, shows attractive potential for future applications in micro/nanodevices, especially in micro/nanofluidics.
Effect of temperature on the passivation behavior of steel rebar
NASA Astrophysics Data System (ADS)
Chen, Shan-meng; Cao, Bei; Wu, Yin-shun; Ma, Ke
2014-05-01
Steel rebar normally forms an oxide or rusty skin before it is embedded into concrete and the passivation properties of this skin will be heavily influenced by temperature. To study the effect of temperature on the passivation properties of steel rebar under different surface conditions, we conducted scanning electron microscopy (SEM) observations and electrochemical measurements, such as measurements of the free corrosion potential and polarization curves of HPB235 steel rebar. These measurements identified three kinds of surfaces: polished, oxide skin, and rusty skin. Our results show that the passivation properties of all the surface types decrease with the increase of temperature. Temperature has the greatest effect on the rusty-skin rebar and least effect on the polished steel rebar, because of cracks and crevices on the mill scale on the steel rebar's surface. The rusty-skin rebar exhibits the highest corrosion rate because crevice corrosion can accelerate the corrosion of the steel rebar, particularly at high temperature. The results also indicate that the threshold temperatures of passivation for the oxide-skin rebar and the rusty-skin rebar are 37°C and 20°C, respectively.
NASA Astrophysics Data System (ADS)
Panigrahi, Asisa Kumar; Hemanth Kumar, C.; Bonam, Satish; Ghosh, Tamal; Rama Krishna Vanjari, Siva; Govind Singh, Shiv
2018-02-01
Enhanced Cu diffusion, Cu surface passivation, and smooth surface at the bonding interface are the key essentials for high quality Cu-Cu bonding. Previously, we have demonstrated optimized 3 nm thin Manganin metal-alloy passivation from oxidation and also helps to reduce the surface roughness to about 0.8 nm which substantially led to high quality Cu-Cu bonding. In this paper, we demonstrated an ultra fine-pitch (<25 µm) Cu-Cu bonding using an optimized Manganin metal-alloy passivation. This engineered surface passivation approach led to high quality bonding at sub 200 °C temperature and 0.4 MPa. Very low specific contact resistance of 1.4 × 10-7 Ω cm2 and the defect free bonded interface is clear indication of high quality bonding for future multilayer integrations. Furthermore, electrical characterization of the bonded structure was performed under various robust conditions as per International Technology Roadmap for Semiconductors (ITRS Roadmap) in order to satisfy the stability of the bonded structure.
NASA Astrophysics Data System (ADS)
Gasparac, Rahela
Chapter 1 provides background information on the template synthesis of nanomaterials. A description of the types of membranes used for template synthesis is given. Different chemistries that have been used to prepare template-synthesized structures are provided. Template synthesis has been used to prepare some important nanostructures. Polycarbonate membranes were used to prepare gold nanotubes using electroless gold template method. SiO2 nano-test-tubes were made by dipping the alumina template membrane in the sol and heating. An introduction to conductive is presented here as well. Chapter 2 describes the transport of DNA molecules through nanopore membranes. We are interested in how pore diameter of the membrane affects rate and selectivity of DNA transport of different size and charge. Commercially available microporous polycarbonate membrane filters were used. DNA chains can be driven through the nanopore via the electrokinetic transport processes of electrophoresis and electroolsmotic flow, as well as by diffusion. To our knowledge, there have been no quantitative studies of the relative importance of the electrokinetic and diffusive components for DNA transport in a nanopore system. Chapter 3 describes a sol-gel template synthesis process that is used to produce silica nano-test-tubes within the pores of alumina templates. These silica nano-test-tubes are important because of the ease with which nearly any desired chemical or biochemical reagent can be covalently attached to their inside and outside surfaces. Inner and outer surfaces of the silica nano-test-tubes were functionalized using well-known silane chemistry. Green fluorescent silane was attached to the inner surfaces. The outer SiO 2 nano-test-tube surfaces were antibody functionalized using aldehyde methoxysilane linker. One of our key long-range objective is to develop nanotube technology for delivering biomolecules (e.g., DNA) to living cells. Chapter 4 focuses on the mechanism by which polyaniline (PANI) films passivate stainless steel surfaces in highly corrosive H2SO 4 solution. A variety of experimental methods including measurements of the open circuit potential, Auger depth profiling, and the scanning reference electrode technique (SRET) was used. These studies have shown that passivation is achieved because the oxidized and protically-doped emeraldine-salt form of PANI holds the potential of the underlying stainless steel electrode in the passive region. Because of this electrostatic mechanism of corrosion inhibition, the entire stainless steel surface does not have to be coated with PANI in order to achieve passivation.
2013-09-30
remotely sensed data to be used for habitat modeling include sea surface temperature (SST), salinity, sea surface height, and chlorophyll a concentration...National Data Buoy Center for the parts of the SCB region with HARP deployments. Figure 1. Sixteen HARP deployment locations ( black squares...throughout the Southern California Bight between 2005 and 2012 from which data are processed for habitat modeling in this study. Light grey line
Surface Passivation and Junction Formation Using Low Energy Hydrogen Implants
NASA Technical Reports Server (NTRS)
Fonash, S. J.
1985-01-01
New applications for high current, low energy hydrogen ion implants on single crystal and polycrystal silicon grain boundaries are discussed. The effects of low energy hydrogen ion beams on crystalline Si surfaces are considered. The effect of these beams on bulk defects in crystalline Si is addressed. Specific applications of H+ implants to crystalline Si processing are discussed. In all of the situations reported on, the hydrogen beams were produced using a high current Kaufman ion source.
Yang, Zhenyu; Gonzalez, Christina M; Purkait, Tapas K; Iqbal, Muhammad; Meldrum, Al; Veinot, Jonathan G C
2015-09-29
Hydrosilylation is among the most common methods used for modifying silicon surface chemistry. It provides a wide range of surface functionalities and effective passivation of surface sites. Herein, we report a systematic study of radical initiated hydrosilylation of silicon nanocrystal (SiNC) surfaces using two common radical initiators (i.e., 2,2'-azobis(2-methylpropionitrile) and benzoyl peroxide). Compared to other widely applied hydrosilylation methods (e.g., thermal, photochemical, and catalytic), the radical initiator based approach is particle size independent, requires comparatively low reaction temperatures, and yields monolayer surface passivation after short reaction times. The effects of differing functional groups (i.e., alkene, alkyne, carboxylic acid, and ester) on the radical initiated hydrosilylation are also explored. The results indicate functionalization occurs and results in the formation of monolayer passivated surfaces.
Remote sensing of Earth terrain
NASA Technical Reports Server (NTRS)
Kong, J. A.
1993-01-01
Progress report on remote sensing of Earth terrain covering the period from Jan. to June 1993 is presented. Areas of research include: radiative transfer model for active and passive remote sensing of vegetation canopy; polarimetric thermal emission from rough ocean surfaces; polarimetric passive remote sensing of ocean wind vectors; polarimetric thermal emission from periodic water surfaces; layer model with tandom spheriodal scatterers for remote sensing of vegetation canopy; application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated mie scatterers with size distributions and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.
NASA Astrophysics Data System (ADS)
Luo, B.; Mehandru, R.; Kim, Jihyun; Ren, F.; Gila, B. P.; Onstine, A. H.; Abernathy, C. R.; Pearton, S. J.; Gotthold, D.; Birkhahn, R.; Peres, B.; Fitch, R. C.; Moser, N.; Gillespie, J. K.; Jessen, G. H.; Jenkins, T. J.; Yannuzi, M. J.; Via, G. D.; Crespo, A.
2003-10-01
The dc and power characteristics of AlGaN/GaN MOS-HEMTs with Sc 2O 3 gate dielectrics were compared with that of conventional metal-gate HEMTs fabricated on the same material. The MOS-HEMT shows higher saturated drain-source current (˜0.75 A/mm) and significantly better power-added efficiency (PAE, 27%) relative to the HEMT (˜0.6 A/mm and ˜5%). The Sc 2O 3 also provides effective surface passivation, with higher drain current, lower leakage currents and higher three-terminal breakdown voltage in passivated devices relative to unpassivated devices. The PAE also increases (from ˜5% to 12%) on the surface passivated HEMTs, showing that Sc 2O 3 is an attractive option for reducing gate and surface leakage in AlGaN/GaN heterostructure transistors.
NASA Astrophysics Data System (ADS)
Shuster, W.; Schifman, L. A.; Herrmann, D.
2017-12-01
Green infrastructure represents a broad set of site- to landscape-scale practices that can be flexibly implemented to increase sewershed retention capacity, and can thereby improve on the management of water quantity and quality. Although much green infrastructure presents as formal engineered designs, urbanized landscapes with highly-interspersed pervious surfaces (e.g., right-of-way, parks, lawns, vacant land) may offer ecosystem services as passive, infiltrative green infrastructure. Yet, infiltration and drainage processes are regulated by soil surface conditions, and then the layering of subsoil horizons, respectively. Drawing on a unique urban soil taxonomic and hydrologic dataset collected in 12 cities (each city representing a major soil order), we determined how urbanization processes altered the sequence of soil horizons (compared to pre-urbanized reference soil pedons) and modeled the hydrologic implications of these shifts in layering with an unsaturated zone code (HYDRUS2D). We found that the different layering sequences in urbanized soils render different types and extents of supporting (plant-available soil water), provisioning (productive vegetation), and regulating (runoff mitigation) ecosystem services.
Magma Vesiculation and Infrasonic Activity in Open Conduit Volcanoes
NASA Astrophysics Data System (ADS)
Colo', L.; Baker, D. R.; Polacci, M.; Ripepe, M.
2007-12-01
At persistently active basaltic volcanoes such as Stromboli, Italy degassing of the magma column can occur in "passive" and "active" conditions. Passive degassing is generally understood as a continuous, non explosive release of gas mainly from the open summit vents and subordinately from the conduit's wall or from fumaroles. In passive degassing generally gas is in equilibrium with atmospheric pressure, while in active degassing the gas approaches the surface at overpressurized conditions. During active degassing (or puffing), the magma column is interested by the bursting of small gas bubbles at the magma free surface and, as a consequence, the active degassing process generates infrasonic signals. We postulated, in this study, that the rate and the amplitude of infrasonic activity is somehow linked to the rate and the volume of the overpressured gas bubbles, which are generated in the magma column. Our hypothesis is that infrasound is controlled by the quantities of gas exsolved in the magma column and then, that a relationship between infrasound and the vesiculation process should exist. In order to achieve this goal, infrasonic records and bubble size distributions of scoria samples from normal explosive activity at Stromboli processed via X ray tomography have been compared. We observed that the cumulative distribution for both data sets follow similar power laws, indicating that both processes are controlled by a scale invariant phenomenon. However the power law is not stable but changes in different scoria clasts, reflecting when gas bubble nucleation is predominant over bubbles coalescence and viceversa. The power law also changes for the infrasonic activity from time to time, suggesting that infrasound may be controlled also by a different gas exsolution within the magma column. Changes in power law distributions are the same for infrasound and scoria indicating that they are linked to the same process acting in the magmatic system. We suggest that monitoring infrasound on an active volcano could represent an alternative way to monitor the vesiculation process of an open conduit system.
Method of drying passivated micromachines by dewetting from a liquid-based process
Houston, Michael R.; Howe, Roger T.; Maboudian, Roya; Srinivasan, Uthara
2000-01-01
A method of fabricating a micromachine includes the step of constructing a low surface energy film on the micromachine. The micromachine is then rinsed with a rinse liquid that has a high surface energy, relative to the low surface energy film, to produce a contact angle of greater than 90.degree. between the low surface energy film and the rinse liquid. This relatively large contact angle causes any rinse liquid on the micromachine to be displaced from the micromachine when the micromachine is removed from the rinse liquid. In other words, the micromachine is dried by dewetting from a liquid-based process. Thus, a separate evaporative drying step is not required, as the micromachine is removed from the liquid-based process in a dry state. The relatively large contact angle also operates to prevent attractive capillary forces between micromachine components, thereby preventing contact and adhesion between adjacent microstructure surfaces. The low surface energy film may be constructed with a fluorinated self-assembled monolayer film. The processing of the invention avoids the use of environmentally harmful, health-hazardous chemicals.
Wang, Lei; Liu, Chang-sheng; Shi, Lei; An, Cheng-qiang
2015-02-01
A composite silanes-V-Zr passive film was overlayed on hot-dip galvanized steel. Attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectrometer (XPS) and radio frequency glow discharge optical emission spectrometry (rf-GD-OES) were used to characterize the molecular structure of the silanes-V-Zr passive film. The mechanism of film formation was discussed: The results show that the silane molecules are crosslinked as the main film former and inorganic inhibitor is even distributed in the film. The fitting peak of 100.7 eV in XPS single Si2p energy range spectra of the composite silanes-V-Zr passive film and the widening and strengthening of the Si--O infrared absorption peak at 1100 cm(-1) indicate that the silanes were adsorbed on the surface of zinc with chemical bond of Si--O--Zn, and the silane molecules were connected with each other by bond of Si--O--Si. Two characteristic absorption peaks of amide at 1650 and 1560 cm(-1) appear in the infrared spectroscopy of the composite silanes-V-Zr passive film, and a characteristic absorption peak of epoxy groups at 910 cm(-1) disappears in the infrared spectroscopy of the passive film. The results indicate that gamma-APT can be prepared through nucleophilic ring-opening of ethylene oxide in gamma-GPT molecule to form C--N covalent bonds. The rf-GD-OES results indicate that there is a oxygen enriched layer in 0.3 microm depth of the composite silanes-V-Zr passive film. Moreover, ZrF4, ZrO2 and some inorganic matter obtained by the reaction during the forming processof the composite silanes-V-Zr passive film are distributed evenly throughout the film. According to the film composition, the physical processes and chemical reactions during the film forming process were studied by using ATR-FTIR. Based on this, the film forming mechanism was proposed.
Surface Structure and Surface Electronic States Related to Plasma Cleaning of Silicon and Germanium
NASA Astrophysics Data System (ADS)
Cho, Jaewon
This thesis discusses the surface structure and the surface electronic states of Si and Ge(100) surfaces as well as the effects of oxidation process on the silicon oxide/Si(100) interface structure. The H-plasma exposure was performed in situ at low temperatures. The active species, produced in the H-plasma by the rf-excitation of H_2 gas, not only remove microcontaminants such as oxygen and carbon from the surface, but also passivate the surface with atomic hydrogen by satisfying the dangling bonds of the surface atoms. The surfaces were characterized by Angle Resolved UV-Photoemission Spectroscopy (ARUPS) and Low Energy Electron Diffraction (LEED). In the case of Si(100), H-plasma exposure produced ordered H-terminated crystallographic structures with either a 2 x 1 or 1 x 1 LEED pattern. The hydride phases, found on the surfaces of the cleaned Si(100), were shown to depend on the temperature of the surface during H-plasma cleaning. The electronic states for the monohydride and dihydride phases were identified by ARUPS. When the plasma cleaned surface was annealed, the phase transition from the dihydride to monohydride was observed. The monohydride Si-H surface bond was stable up to 460^circC, and the dangling bond surface states were identified after annealing at 500^circC which was accompanied by the spectral shift. The H-terminated surface were characterized to have a flat band structure. For the Ge(100) surface, an ordered 2 x 1 monohydride phase was obtained from the surface cleaned at 180 ^circC. After plasma exposure at <=170^circC a 1 x 1 surface was observed, but the ARUPS indicated that the surface was predominantly composed of disordered monohydride structures. After annealing above the H-dissociation temperatures, the shift in the spectrum was shown to occur with the dangling bond surface states. The H-terminated surfaces were identified to be unpinned. The interface structure of silicon oxide/Si(100) was studied using ARUPS. Spectral shifts were observed, which were dependent on the processes of surface preparation and oxidation. The shift was characterized in association with the band bending. The origins of the spectral shifts were discussed, including defects at interface and H-passivation in Si. The interface structure is considered to be dependent on the surface preparation and oxidation process.
Hardening of steels and cast irons by passivation of their surface and heat treatment
NASA Astrophysics Data System (ADS)
Kulikov, A. I.
1994-01-01
Examples of the use of a casehardening (CH) method (surface passivation and standard heat treatment) developed to increase hardness and corrosion resistance and to lower the surface roughness of various components and tools — glass molds. piston rings and ball-bearing races — are presented in this paper.
Surface Passivation for Single-molecule Protein Studies
Chandradoss, Stanley D.; Haagsma, Anna C.; Lee, Young Kwang; Hwang, Jae-Ho; Nam, Jwa-Min; Joo, Chirlmin
2014-01-01
Single-molecule fluorescence spectroscopy has proven to be instrumental in understanding a wide range of biological phenomena at the nanoscale. Important examples of what this technique can yield to biological sciences are the mechanistic insights on protein-protein and protein-nucleic acid interactions. When interactions of proteins are probed at the single-molecule level, the proteins or their substrates are often immobilized on a glass surface, which allows for a long-term observation. This immobilization scheme may introduce unwanted surface artifacts. Therefore, it is essential to passivate the glass surface to make it inert. Surface coating using polyethylene glycol (PEG) stands out for its high performance in preventing proteins from non-specifically interacting with a glass surface. However, the polymer coating procedure is difficult, due to the complication arising from a series of surface treatments and the stringent requirement that a surface needs to be free of any fluorescent molecules at the end of the procedure. Here, we provide a robust protocol with step-by-step instructions. It covers surface cleaning including piranha etching, surface functionalization with amine groups, and finally PEG coating. To obtain a high density of a PEG layer, we introduce a new strategy of treating the surface with PEG molecules over two rounds, which remarkably improves the quality of passivation. We provide representative results as well as practical advice for each critical step so that anyone can achieve the high quality surface passivation. PMID:24797261
Polarimetric passive remote sensing of periodic surfaces
NASA Technical Reports Server (NTRS)
Veysoglu, Murat E.; Yueh, H. A.; Shin, R. T.; Kong, J. A.
1991-01-01
The concept of polarimetry in active remote sensing is extended to passive remote sensing. The potential use of the third and fourth Stokes parameters U and V, which play an important role in polarimetric active remote sensing, is demonstrated for passive remote sensing. It is shown that, by the use of the reciprocity principle, the polarimetric parameters of passive remote sensing can be obtained through the solution of the associated direct scattering problem. These ideas are applied to study polarimetric passive remote sensing of periodic surfaces. The solution of the direct scattering problem is obtained by an integral equation formulation which involves evaluation of periodic Green's functions and normal derivative of those on the surface. Rapid evaluation of the slowly convergent series associated with these functions is observed to be critical for the feasibility of the method. New formulas, which are rapidly convergent, are derived for the calculation of these series. The study has shown that the brightness temperature of the Stokes parameter U can be significant in passive remote sensing. Values as high as 50 K are observed for certain configurations.
Electrical and optical characterization of surface passivation in GaAs nanowires.
Chang, Chia-Chi; Chi, Chun-Yung; Yao, Maoqing; Huang, Ningfeng; Chen, Chun-Chung; Theiss, Jesse; Bushmaker, Adam W; Lalumondiere, Stephen; Yeh, Ting-Wei; Povinelli, Michelle L; Zhou, Chongwu; Dapkus, P Daniel; Cronin, Stephen B
2012-09-12
We report a systematic study of carrier dynamics in Al(x)Ga(1-x)As-passivated GaAs nanowires. With passivation, the minority carrier diffusion length (L(diff)) increases from 30 to 180 nm, as measured by electron beam induced current (EBIC) mapping, and the photoluminescence (PL) lifetime increases from sub-60 ps to 1.3 ns. A 48-fold enhancement in the continuous-wave PL intensity is observed on the same individual nanowire with and without the Al(x)Ga(1-x)As passivation layer, indicating a significant reduction in surface recombination. These results indicate that, in passivated nanowires, the minority carrier lifetime is not limited by twin stacking faults. From the PL lifetime and minority carrier diffusion length, we estimate the surface recombination velocity (SRV) to range from 1.7 × 10(3) to 1.1 × 10(4) cm·s(-1), and the minority carrier mobility μ is estimated to lie in the range from 10.3 to 67.5 cm(2) V(-1) s(-1) for the passivated nanowires.
Electroless Plated Nanodiamond Coating for Stainless Steel Passivation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, D.; Korinko, P.; Spencer, W.
Tritium gas sample bottles and manifold components require passivation surface treatments to minimize the interaction of the hydrogen isotopes with surface contamination on the stainless steel containment materials. This document summarizes the effort to evaluate electroless plated nanodiamond coatings as a passivation layer for stainless steel. In this work, we developed an electroless nanodiamond (ND)-copper (Cu) coating process to deposit ND on stainless steel parts with the diamond loadings of 0%, 25% and 50% v/v in a Cu matrix. The coated Conflat Flanged Vessel Assemblies (CFVAs) were evaluated on surface morphology, composition, ND distribution, residual hydrogen release, and surface reactivitymore » with deuterium. For as-received Cu and ND-Cu coated CFVAs, hydrogen off-gassing is rapid, and the off-gas rates of H 2 was one to two orders of magnitude higher than that for both untreated and electropolished stainless steel CFVAs, and hydrogen and deuterium reacted to form HD as well. These results indicated that residual H 2 was entrapped in the Cu and ND-Cu coated CFVAs during the coating process, and moisture was adsorbed on the surface, and ND and/or Cu might facilitate catalytic isotope exchange reaction for HD formation. However, hydrocarbons (i.e., CH 3) did not form, and did not appear to be an issue for the Cu and ND-Cu coated CFVAs. After vacuum heating, residual H 2 and adsorbed H 2O in the Cu and ND-Cu coated CFVAs were dramatically reduced. The H 2 off-gassing rate after the vacuum treatment of Cu and 50% ND-Cu coated CFVAs was on the level of 10 -14 l mbar/s cm 2, while H 2O off-gas rate was on the level of 10 -15 l mbar/s cm 2, consistent with the untreated or electropolished stainless steel CFVA, but the HD formation remained. The Restek EP bottle was used as a reference for this work. The Restek Electro-Polished (EP) bottle and their SilTek coated bottles tested under a different research project exhibited very little hydrogen off-gassing and unmeasurable HD formation. ND and Cu were initially chosen to develop improved passivation technology, because Cu has a lower permeability of hydrogen, and diamond is more inert than other materials under a hydrogen atmosphere. However, our tests demonstrated that even after an 8-18 day vacuum extraction heat treatment, the electroless plated Cu and ND-Cu coated stainless steel CFVAs exhibited H 2 off-gassing rates that were just comparable to those for the untreated or electropolished stainless steel CFVA, and the HD formation was still observed. Thus, the Restek Electro-Polished (EP) bottle outperformed the electroless plated Cu and ND-Cu coated stainless steel CFVAs, and the electroless plated nanodiamond coating is not promising as a surface passivation technology. However, the ND-Cu coating may be beneficial to another application in which catalyzing the H 2-D 2 exchange reaction is desired.« less
NASA Astrophysics Data System (ADS)
Bouaziz, Lamia; Dridi, Donia; Karyaoui, Mokhtar; Angelova, Todora; Sanchez Plaza, Guillermo; Chtourou, Radhouane
2017-03-01
In this work, a different SiNx passivation process of silicon nanowires has been opted for the deposition of a hydrogenated silicon nitride (SiNx:H) by a low-cost plasma enhanced chemical vapor deposition (PECVD) using silane ( SiH4 and nitrogen ( N2 as reactive gases. This study is focused on the effect of the gas flow ratio on chemical composition, morphological, optical and optoelectronic properties of silicon nanowires. The existence of Si-N and Si-H bonds was proven by the Fourier transmission infrared (FTIR) spectrum. Morphological structures were shown by scanning electron microscopy (SEM), and the roughness was investigated by atomic force microscopy (AFM). A low reflectivity less than 6% in the wavelength range 250-1200nm has been shown by UV-visible spectroscopy. Furthermore, the thickness and the refractive index of the passivation layer is determined by ellipsometry measurements. As a result, an improvement in minority carrier lifetime has been obtained by reducing surface recombination of silicon nanowires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Dian; Wang, Wei; Gong, Xiao, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org
2016-01-14
The effect of room temperature sulfur passivation of the surface of Ge{sub 0.83}Sn{sub 0.17} prior to high-k dielectric (HfO{sub 2}) deposition is investigated. X-ray photoelectron spectroscopy (XPS) was used to examine the chemical bonding at the interface of HfO{sub 2} and Ge{sub 0.83}Sn{sub 0.17}. Sulfur passivation is found to be effective in suppressing the formation of both Ge oxides and Sn oxides. A comparison of XPS results for sulfur-passivated and non-passivated Ge{sub 0.83}Sn{sub 0.17} samples shows that sulfur passivation of the GeSn surface could also suppress the surface segregation of Sn atoms. In addition, sulfur passivation reduces the interface trapmore » density D{sub it} at the high-k dielectric/Ge{sub 0.83}Sn{sub 0.17} interface from the valence band edge to the midgap of Ge{sub 0.83}Sn{sub 0.17}, as compared with a non-passivated control. The impact of the improved D{sub it} is demonstrated in Ge{sub 0.83}Sn{sub 0.17} p-channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs). Ge{sub 0.83}Sn{sub 0.17} p-MOSFETs with sulfur passivation show improved subthreshold swing S, intrinsic transconductance G{sub m,int}, and effective hole mobility μ{sub eff} as compared with the non-passivated control. At a high inversion carrier density N{sub inv} of 1 × 10{sup 13 }cm{sup −2}, sulfur passivation increases μ{sub eff} by 25% in Ge{sub 0.83}Sn{sub 0.17} p-MOSFETs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankelevich, Yu. A., E-mail: ymankelevich@mics.msu.su; Voronina, E. N.; Poroykov, A. Yu.
Plasmachemical and heterogeneous processes of generation and loss of ozone in the atmosphericpressure dielectric barrier discharge in oxygen are studied theoretically. Plasmachemical and electronic kinetics in the stage of development and decay of a single plasma filament (microdischarge) are calculated numerically with and without allowance for the effects of ozone vibrational excitation and high initial ozone concentration. The developed analytical approach is applied to determine the output ozone concentration taking into account ozone heterogeneous losses on the Al{sub 2}O{sub 3} dielectric surface. Using the results of quantummechanical calculations by the method of density functional theory, a multistage catalytic mechanism ofmore » heterogeneous ozone loss based on the initial passivation of a pure Al{sub 2}O{sub 3} surface by ozone and the subsequent interaction of O{sub 3} molecules with the passivated surface is proposed. It is shown that the conversion reaction 2O{sub 3} → 3O{sub 2} of a gas-phase ozone molecule with a physically adsorbed ozone molecule can result in the saturation of the maximum achievable ozone concentration at high specific energy depositions, the nonstationarity of the output ozone concentration, and its dependence on the prehistory of ozonizer operation.« less
Using Ozone To Clean and Passivate Oxygen-Handling Hardware
NASA Technical Reports Server (NTRS)
Torrance, Paul; Biesinger, Paul
2009-01-01
A proposed method of cleaning, passivating, and verifying the cleanliness of oxygen-handling hardware would extend the established art of cleaning by use of ozone. As used here, "cleaning" signifies ridding all exposed surfaces of combustible (in particular, carbon-based) contaminants. The method calls for exposing the surfaces of the hardware to ozone while monitoring the ozone effluent for carbon dioxide. The ozone would passivate the hardware while oxidizing carbon-based residues, converting the carbon in them to carbon dioxide. The exposure to ozone would be continued until no more carbon dioxide was detected, signifying that cleaning and passivation were complete.
Improving off-state leakage characteristics for high voltage AlGaN/GaN-HFETs on Si substrates
NASA Astrophysics Data System (ADS)
Moon, Sung-Woon; Twynam, John; Lee, Jongsub; Seo, Deokwon; Jung, Sungdal; Choi, Hong Goo; Shim, Heejae; Yim, Jeong Soon; Roh, Sungwon D.
2014-06-01
We present a reliable process and design technique for realizing high voltage AlGaN/GaN hetero-junction field effect transistors (HFETs) on Si substrates with very low and stable off-state leakage current characteristics. In this work, we have investigated the effects of the surface passivation layer, prepared by low pressure chemical vapor deposition (LPCVD) of silicon nitride (SiNx), and gate bus isolation design on the off-state leakage characteristics of metal-oxide-semiconductor (MOS) gate structure-based GaN HFETs. The surface passivated devices with gate bus isolation fully surrounding the source and drain regions showed extremely low off-state leakage currents of less than 20 nA/mm at 600 V, with very small variation. These techniques were successfully applied to high-current devices with 80-mm gate width, yielding excellent off-state leakage characteristics within a drain voltage range 0-700 V.
Ulman, Kanchan; Nguyen, Manh-Thuong; Seriani, Nicola; Gebauer, Ralph
2016-03-07
There is a big debate in the community regarding the role of surface states of hematite in the photoelectrochemical water splitting. Experimental studies on non-catalytic overlayers passivating the hematite surface states claim a favorable reduction in the overpotential for the water splitting reaction. As a first step towards understanding the effect of these overlayers, we have studied the system Ga2O3 overlayers on hematite (0001) surfaces using first principles computations in the PBE+U framework. Our computations suggest that stoichiometric terminations of Ga2O3 overlayers are energetically more favored than the bare surface, at ambient oxygen chemical potentials. Energetics suggest that the overlayers prefer to grow via a layer-plus-island (Stranski-Krastanov) growth mode with a critical layer thickness of 1-2 layers. Thus, a complete wetting of the hematite surface by an overlayer of gallium oxide is thermodynamically favored. We establish that the effect of deposition of the Ga2O3 overlayers on the bare hematite surface is to passivate the surface states for the stoichiometric termination. For the oxygen terminated surface which is the most stable termination under photoelectrochemical conditions, the effect of deposition of the Ga2O3 overlayer is to passivate the hole-trapping surface state.
Passivation effect of Cl, F and H atoms on CuIn0.75Ga0.25Se2 (1 1 2) surface
NASA Astrophysics Data System (ADS)
Qi, Rong-fei; Wang, Zhao-hui; Tang, Fu-ling; Agbonkina, Itohan C.; Xue, Hong-tao; Si, Feng-juan; Ma, Sheng-ling; Wang, Xiao-ka
2018-06-01
Using the first-principles calculations within the density functional-theory (DFT) framework, we theoretically investigated the surface reconstruction, surface states near the Fermi level and their passivation on CuIn0.75Ga0.25Se2 (1 1 2) (CIGS) surface by chlorine, fluorine and hydrogen. Surface reconstruction appears on CIG-terminated CIGS (1 1 2) surface and it is a self-passivation. For the locations of Cl, F and H atoms adsorbing on Se-terminated CIGS (1 1 2) surface, four high symmetry adsorption sites: top sites, bridge sites, hexagonal close-packed (hcp) sites and faced centered cubic (fcc) sites were studied respectively. With the coverage of 0.5 monolayer (ML), Cl, F and H adatoms energetically occupy the top sites on the CIGS (112) surface. The corresponding adsorption energies were -2.20 eV, -3.29 eV, -2.60 eV, respectively. The bond length and electronic properties were analyzed. We found that the surface state density near the Fermi level was markedly diminished for 0.5 ML Cl, F and H adsorption on Se-terminated CIGS (1 1 2) surface at top sites. It was also found that H can more efficiently passivate the surface state density than Cl and F atoms, and the effect of adsorption of Cl atoms is better than that of F.
Thin Sea-Ice Thickness as Inferred from Passive Microwave and In Situ Observations
NASA Technical Reports Server (NTRS)
Naoki, Kazuhiro; Ukita, Jinro; Nishio, Fumihiko; Nakayama, Masashige; Comiso, Josefino C.; Gasiewski, Al
2007-01-01
Since microwave radiometric signals from sea-ice strongly reflect physical conditions of a layer near the ice surface, a relationship of brightness temperature with thickness is possible especially during the early stages of ice growth. Sea ice is most saline during formation stage and as the salinity decreases with time while at the same time the thickness of the sea ice increases, a corresponding change in the dielectric properties and hence the brightness temperature may occur. This study examines the extent to which the relationships of thickness with brightness temperature (and with emissivity) hold for thin sea-ice, approximately less than 0.2 -0.3 m, using near concurrent measurements of sea-ice thickness in the Sea of Okhotsk from a ship and passive microwave brightness temperature data from an over-flying aircraft. The results show that the brightness temperature and emissivity increase with ice thickness for the frequency range of 10-37 GHz. The relationship is more pronounced at lower frequencies and at the horizontal polarization. We also established an empirical relationship between ice thickness and salinity in the layer near the ice surface from a field experiment, which qualitatively support the idea that changes in the near-surface brine characteristics contribute to the observed thickness-brightness temperature/emissivity relationship. Our results suggest that for thin ice, passive microwave radiometric signals contain, ice thickness information which can be utilized in polar process studies.
NASA Astrophysics Data System (ADS)
Hsieh, Yu-Lin; Lee, Chien-Chieh; Lu, Chia-Cheng; Fuh, Yiin-Kuen; Chang, Jenq-Yang; Lee, Ju-Yi; Li, Tomi T.
2017-07-01
A symmetrically stacked structure [(a-Si:H(n+)/a-Si:H(i)/CZ wafer (n)/a-Si:H(i)/a-Si:H(n+)] was used to optimize the growth process conditions of the n-type hydrogenated amorphous silicon [a-Si:H(n+)] thin films. Here a-Si:H(n+) film was used as back surface field (BSF) layer for the silicon heterojunction solar cell and all stacked films were prepared by conventional radio-frequency plasma-enhanced chemical vapor deposition. The characterizations of the effective carrier lifetime (τeff), electrical and structural properties, as well as correlation with the hydrogen dilution ratio (R=H2/SiH4) were systematically discussed with the emphasis on the effectiveness of the passivation layer using the lifetime tester, spectroscopic ellipsometry, and hall measurement. High quality of a stacked BSF layer (intrinsic/n-type a-Si:H layer) with effective carrier lifetime of 1.8 ms can be consistently obtained. This improved passivation layer can be primarily attributed to the synergy of chemical and field effect to significantly reduce the surface recombination.
Investigation of back surface fields effect on bifacial solar cells
NASA Astrophysics Data System (ADS)
Sepeai, Suhaila; Sulaiman, M. Y.; Sopian, Kamaruzzaman; Zaidi, Saleem H.
2012-11-01
A bifacial solar cell, in contrast with a conventional monofacial solar cell, produces photo-generated current from both front and back sides. Bifacial solar cell is an attractive candidate for enhancing photovoltaic (PV) market competitiveness as well as supporting the current efforts to increase efficiency and lower material costs. This paper reports on the fabrication of bifacial solar cells using phosphorus-oxytrichloride (POCl3) emitter formation on p-type, nanotextured silicon (Si) wafer. Backside surface field was formed through Al-diffusion using conventional screen-printing process. Bifacial solar cells with a structure of n+pp+ with and without back surface field (BSF) were fabricated in which silicon nitride (SiN) anti reflection and passivation films were coated on both sides, followed by screen printing of Argentum (Ag) and Argentum/Aluminum (Ag/Al) on front and back contacts, respectively. Bifacial solar cells without BSF exhibited open circuit voltage (VOC) of 535 mV for front and 480 mV for back surface. With Al-alloyed BSF bifacial solar cells, the VOC improved to 580 mV for the front surface and 560 mV for the back surface. Simulation of bifacial solar cells using PC1D and AFORS software demonstrated good agreement with experimental results. Simulations showed that best bifacial solar cells are achieved through a combination of high lifetime wafer, low recombination back surface field, reduced contact resistance, and superior surface passivation.
USDA-ARS?s Scientific Manuscript database
Passive microwave observations from various space borne sensors have been linked to soil moisture of the Earth’s surface layer. The new generation passive microwave sensors are dedicated to retrieving this variable and make observations in the single, theoretically optimal L-band frequency (1-2 GHz)...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, H. C.; Oh, J.; Zhang, Y.
2012-06-01
We report solar cells with both black Si antireflection and SiO2 surface passivation provided by inexpensive liquid-phase chemistry, rather than by conventional vacuum-based techniques. Preliminary cell efficiency has reached 16.4%. Nanoporous black Si antireflection on crystalline Si by aqueous etching promises low surface reflection for high photon utilization, together with lower manufacturing cost compared to vacuum-based antireflection coating. Ag-nanoparticle-assisted black Si etching and post-etching chemical treatment recently developed at NREL enables excellent control over the pore diameter and pore separation. Performance of black Si solar cells, including open-circuit voltage, short-circuit current density, and blue response, has benefited from these improvements.more » Prior to this study, our black Si solar cells were all passivated by thermal SiO2 produced in tube furnaces. Although this passivation is effective, it is not yet ideal for ultra-low-cost manufacturing. In this study, we report, for the first time, the integration of black Si with a proprietary liquid-phase deposition (LPD) passivation from Natcore Technology. The Natcore LPD forms a layer of <10-nm SiO2 on top of the black Si surface in a relatively mild chemical bath at room temperature. We demonstrate black Si solar cells with LPD SiO2 with a spectrum-weighted average reflection lower than 5%, similar to the more costly thermally grown SiO2 approach. However, LPD SiO2 provides somewhat better surface-passivation quality according to the lifetime analysis by the photo-conductivity decay measurement. Moreover, black Si solar cells with LPD SiO2 passivation exhibit higher spectral response at short wavelength compared to those passivated by thermally grown SiO2. With further optimization, the combination of aqueous black Si etching and LPD could provide a pathway for low-cost, high-efficiency crystalline Si solar cells.« less
Long term stability of c-Si surface passivation using corona charged SiO2
NASA Astrophysics Data System (ADS)
Bonilla, Ruy S.; Reichel, Christian; Hermle, Martin; Hamer, Phillip; Wilshaw, Peter R.
2017-08-01
Recombination at the semiconductor surface continues to be a major limit to optoelectronic device performance, in particular for solar cells. Passivation films reduce surface recombination by a combination of chemical and electric field effect components. Dielectric films used for this purpose, however, must also accomplish optical functions at the cell surface. In this paper, corona charge is seen as a potential method to enhance the passivation properties of a dielectric film while maintaining its optical characteristics. It is observed that corona charge can produce extreme reductions in surface recombination via field effect, in the best case leading to lifetimes exceeding 5 ms at an injection of 1015 cm-3. For a 200 μm n-type 1 Ω cm c-Si wafer, this equates to surface recombination velocities below 0.65 cm/s and J0e values of 0.92 fA/cm2. The average improvement in passivation after corona charging gave lifetimes of 1-3 ms. This was stabilised for a period of 3 years by chemically treating the films to prevent water absorption. Surface recombination was kept below 7 cm/s, and J0e < 16.28 fA/cm2 for 3 years, with a decay time constant of 8.7 years. Simulations of back-contacted n-type cells show that front surface recombination represents less than 2% of the total internally generated power in the cell (the loss in power output) when the passivation is kept better than 16 fA/cm2, and as high as 10% if front recombination is worse than 100 fA/cm2.
Interpretation of Passive Microwave Imagery of Surface Snow and Ice: Harding Lake, Alaska
1991-06-01
Circle conditions in microwave imagery depends on the char- (Fig. 1). The lake is roughly circular in shape and has a acteristics of the sensor system...local oscillator frequency 33.6 0Hz IF bandwidth Greaterthan 500 MHz cracks in the ice sheet. The incursion process is de - video bandwidth 1.7 kHz...using pas- surface snow had oct.urred on these similarly sized sive microwave sensors . IEEE/Transactions on Geo- lakes. Additional field verifications
NASA Astrophysics Data System (ADS)
Asif, Muhammad; Chen, Chen; Peng, Ding; Xi, Wang; Zhi, Jin
2018-04-01
Owing to the great influence of surface passivation on DC and RF performance of InP-based HEMTs, the DC and RF performance of InAlAs/InGaAs InP HEMTs were studied before and after passivation, using an ultra-thin 15 nm atomic layer deposition Al2O3 layer. Increase in Cgs and Cgd was significantly limited by scaling the thickness of the Al2O3 layer. For verification, an analytical small-signal equivalent circuit model was developed. A significant increase in maximum transconductance (gm) up to 1150 mS/mm, drain current (IDS) up to 820 mA/mm and fmax up to 369.7 GHz was observed, after passivation. Good agreement was obtained between the measured and the simulated results. This shows that the RF performance of InP-based HEMTs can be improved by using an ultra-thin ALD-Al2O3 surface passivation.
Electrical transport and low-frequency noise in chemical vapor deposited single-layer MoS2 devices.
Sharma, Deepak; Amani, Matin; Motayed, Abhishek; Shah, Pankaj B; Birdwell, A Glen; Najmaei, Sina; Ajayan, Pulickel M; Lou, Jun; Dubey, Madan; Li, Qiliang; Davydov, Albert V
2014-04-18
We have studied temperature-dependent (77-300 K) electrical characteristics and low-frequency noise (LFN) in chemical vapor deposited (CVD) single-layer molybdenum disulfide (MoS2) based back-gated field-effect transistors (FETs). Electrical characterization and LFN measurements were conducted on MoS2 FETs with Al2O3 top-surface passivation. We also studied the effect of top-surface passivation etching on the electrical characteristics of the device. Significant decrease in channel current and transconductance was observed in these devices after the Al2O3 passivation etching. For passivated devices, the two-terminal resistance variation with temperature showed a good fit to the activation energy model, whereas for the etched devices the trend indicated a hopping transport mechanism. A significant increase in the normalized drain current noise power spectral density (PSD) was observed after the etching of the top passivation layer. The observed channel current noise was explained using a standard unified model incorporating carrier number fluctuation and correlated surface mobility fluctuation mechanisms. Detailed analysis of the gate-referred noise voltage PSD indicated the presence of different trapping states in passivated devices when compared to the etched devices. Etched devices showed weak temperature dependence of the channel current noise, whereas passivated devices exhibited near-linear temperature dependence.
Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik
2017-01-01
Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance. PMID:28773067
Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik
2017-06-27
Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance.
Park, Jae Hyeon; Sut, Tun Naw; Jackman, Joshua A; Ferhan, Abdul Rahim; Yoon, Bo Kyeong; Cho, Nam-Joon
2017-03-29
Understanding the physicochemical factors that influence protein adsorption onto solid supports holds wide relevance for fundamental insights into protein structure and function as well as for applications such as surface passivation. Ionic strength is a key parameter that influences protein adsorption, although how its modulation might be utilized to prepare well-coated protein adlayers remains to be explored. Herein, we investigated how ionic strength can be utilized to control the adsorption and passivation properties of bovine serum albumin (BSA) on silica surfaces. As protein stability in solution can influence adsorption kinetics, the size distribution and secondary structure of proteins in solution were first characterized by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and circular dichroism (CD) spectroscopy. A non-monotonic correlation between ionic strength and protein aggregation was observed and attributed to colloidal agglomeration, while the primarily α-helical character of the protein in solution was maintained in all cases. Quartz crystal microbalance-dissipation (QCM-D) experiments were then conducted in order to track protein adsorption onto silica surfaces as a function of ionic strength, and the measurement responses indicated that total protein uptake at saturation coverage is lower with increasing ionic strength. In turn, the QCM-D data and the corresponding Voigt-Voinova model analysis support that the surface area per bound protein molecule is greater with increasing ionic strength. While higher protein uptake under lower ionic strengths by itself did not result in greater surface passivation under subsequent physiologically relevant conditions, the treatment of adsorbed protein layers with a gluteraldehyde cross-linking agent stabilized the bound protein in this case and significantly improved surface passivation. Collectively, our findings demonstrate that ionic strength modulation influences BSA adsorption uptake on account of protein spreading and can be utilized in conjunction with covalent cross-linking strategies to prepare well-coated protein adlayers for improved surface passivation.
Mechanisms of Ocean Heat Uptake
NASA Astrophysics Data System (ADS)
Garuba, Oluwayemi
An important parameter for the climate response to increased greenhouse gases or other radiative forcing is the speed at which heat anomalies propagate downward in the ocean. Ocean heat uptake occurs through passive advection/diffusion of surface heat anomalies and through the redistribution of existing temperature gradients due to circulation changes. Atlantic meridional overturning circulation (AMOC) weakens in a warming climate and this should slow the downward heat advection (compared to a case in which the circulation is unchanged). However, weakening AMOC also causes a deep warming through the redistributive effect, thus increasing the downward rate of heat propagation compared to unchanging circulation. Total heat uptake depends on the combined effect of these two mechanisms. Passive tracers in a perturbed CO2 quadrupling experiments are used to investigate the effect of passive advection and redistribution of temperature anomalies. A new passive tracer formulation is used to separate ocean heat uptake into contributions due to redistribution and passive advection-diffusion of surface heating during an ocean model experiment with abrupt increase in surface temperature. The spatial pattern and mechanisms of each component are examined. With further experiments, the effects of surface wind, salinity and temperature changes in changing circulation and the resulting effect on redistribution in the individual basins are isolated. Analysis of the passive advection and propagation path of the tracer show that the Southern ocean dominates heat uptake, largely through vertical and horizontal diffusion. Vertical diffusion transports the tracer across isopycnals down to about 1000m in 100 years in the Southern ocean. Advection is more important in the subtropical cells and in the Atlantic high latitudes, both with a short time scale of about 20 years. The shallow subtropical cells transport the tracer down to about 500m along isopycnal surfaces, below this vertical diffusion takes over transport in the tropics; in the Atlantic, the MOC transports heat as deep 2000m in about 30 years. Redistributive surface heat uptake alters the total amount surface heat uptake among the basins. Compared to the passive-only heat uptake, which is about the same among the basins, redistribution nearly doubles the surface heat input into the Atlantic but makes smaller increases in the Indian and Pacific oceans for a net global increase of about 25%, in the perturbation experiment with winds unchanged. The passive and redistributive heat uptake components are further distributed among the basins through the global conveyor belt. The Pacific gains twice the surface heat input into it through lateral transport from the other two basins, as a result, the Atlantic and Pacific gain similar amounts of heat even though surface heat input is in the Atlantic is much bigger. Of this heat transport, most of the passive component comes from the Indian and the redistributive component comes from the Atlantic. Different surface forcing perturbation gives different circulation change pattern and as a result yield different redistributive uptake. Ocean heat uptake is more sensitive to wind forcing perturbation than to thermohaline forcing perturbation. About 2% reduction in subtropical cells transport and southern ocean transport, in the wind-change perturbation experiment, resulted in about 10% reduction in the global ocean heat uptake of wind-unchanged experiment. The AMOC weakened by about 35% and resulted in a 25% increase in passive heat uptake in the wind-unchanged experiment. Surface winds weakening reduces heat uptake by warming the reservoir surface temperatures, while MOC weakening increases heat input by a cooling reservoir surface temperatures. Thermohaline forcing perturbation is combination of salinity and temperature perturbations, both weaken the AMOC, however, they have opposite redistributive effects. Ocean surface freshening gives positive redistributive effect, while surface temperature increase gives negative redistributive effect on heat uptake. The salinity effect dominates the redistributive effect for thermohaline perturbation.
van der Krogt, Marjolein M.; de Graaf, Wendy W.; Farley, Claire T.; Moritz, Chet T.; Richard Casius, L. J.; Bobbert, Maarten F.
2009-01-01
When human hoppers are surprised by a change in surface stiffness, they adapt almost instantly by changing leg stiffness, implying that neural feedback is not necessary. The goal of this simulation study was first to investigate whether leg stiffness can change without neural control adjustment when landing on an unexpected hard or unexpected compliant (soft) surface, and second to determine what underlying mechanisms are responsible for this change in leg stiffness. The muscle stimulation pattern of a forward dynamic musculoskeletal model was optimized to make the model match experimental hopping kinematics on hard and soft surfaces. Next, only surface stiffness was changed to determine how the mechanical interaction of the musculoskeletal model with the unexpected surface affected leg stiffness. It was found that leg stiffness adapted passively to both unexpected surfaces. On the unexpected hard surface, leg stiffness was lower than on the soft surface, resulting in close-to-normal center of mass displacement. This reduction in leg stiffness was a result of reduced joint stiffness caused by lower effective muscle stiffness. Faster flexion of the joints due to the interaction with the hard surface led to larger changes in muscle length, while the prescribed increase in active state and resulting muscle force remained nearly constant in time. Opposite effects were found on the unexpected soft surface, demonstrating the bidirectional stabilizing properties of passive dynamics. These passive adaptations to unexpected surfaces may be critical when negotiating disturbances during locomotion across variable terrain. PMID:19589956
A comparison between active and passive sensing of soil moisture from vegetated terrains
NASA Technical Reports Server (NTRS)
Fung, A. K.; Eom, H. J.
1985-01-01
A comparison between active and passive sensing of soil moisture over vegetated areas is studied via scattering models. In active sensing three contributing terms to radar backscattering can be identified: (1) the ground surface scatter term; (2) the volume scatter term representing scattering from the vegetation layer; and (3) the surface volume scatter term accounting for scattering from both surface and volume. In emission three sources of contribution can also be identified: (1) surface emission; (2) upward volume emission from the vegetation layer; and (3) downward volume emission scattered upward by the ground surface. As ground moisture increases, terms (1) and (3) increase due to increase in permittivity in the active case. However, in passive sensing, term (1) decreases but term (3) increases for the same reason. This self compensating effect produces a loss in sensitivity to change in ground moisture. Furthermore, emission from vegetation may be larger than that from the ground. Hence, the presence of vegetation layer causes a much greater loss of sensitivity to passive than active sensing of soil moisture.
A comparison between active and passive sensing of soil moisture from vegetated terrains
NASA Technical Reports Server (NTRS)
Fung, A. K.; Eom, H. J.
1984-01-01
A comparison between active and passive sensing of soil moisture over vegetated areas is studied via scattering models. In active sensing three contributing terms to radar backscattering can be identified: (1) the ground surface scatter term; (2) the volume scatter term representing scattering from the vegetation layer; and (3) the surface volume scatter term accounting for scattering from both surface and volume. In emission three sources of contribution can also be identified: (1) surface emission; (2) upward volume emission from the vegetation layer; and (3) downward volume emission scattered upward by the ground surface. As ground moisture increases, terms (1) and (3) increase due to increase in permittivity in the active case. However, in passive sensing, term (1) decreases but term (3) increases for the same reason. This self conpensating effect produces a loss in sensitivity to change in ground moisture. Furthermore, emission from vegetation may be larger than that from the ground. Hence, the presence of vegetation layer causes a much greater loss of sensitivity to passive than active sensing of soil moisture.
Noise suppression in surface microseismic data
Forghani-Arani, Farnoush; Batzle, Mike; Behura, Jyoti; Willis, Mark; Haines, Seth S.; Davidson, Michael
2012-01-01
We introduce a passive noise suppression technique, based on the τ − p transform. In the τ − p domain, one can separate microseismic events from surface noise based on distinct characteristics that are not visible in the time-offset domain. By applying the inverse τ − p transform to the separated microseismic event, we suppress the surface noise in the data. Our technique significantly improves the signal-to-noise ratios of the microseismic events and is superior to existing techniques for passive noise suppression in the sense that it preserves the waveform. We introduce a passive noise suppression technique, based on the τ − p transform. In the τ − p domain, one can separate microseismic events from surface noise based on distinct characteristics that are not visible in the time-offset domain. By applying the inverse τ − p transform to the separated microseismic event, we suppress the surface noise in the data. Our technique significantly improves the signal-to-noise ratios of the microseismic events and is superior to existing techniques for passive noise suppression in the sense that it preserves the waveform.
Malvindi, Maria Ada; De Matteis, Valeria; Galeone, Antonio; Brunetti, Virgilio; Anyfantis, George C.; Athanassiou, Athanassia; Cingolani, Roberto; Pompa, Pier Paolo
2014-01-01
We have studied in vitro toxicity of iron oxide nanoparticles (NPs) coated with a thin silica shell (Fe3O4/SiO2 NPs) on A549 and HeLa cells. We compared bare and surface passivated Fe3O4/SiO2 NPs to evaluate the effects of the coating on the particle stability and toxicity. NPs cytotoxicity was investigated by cell viability, membrane integrity, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) assays, and their genotoxicity by comet assay. Our results show that NPs surface passivation reduces the oxidative stress and alteration of iron homeostasis and, consequently, the overall toxicity, despite bare and passivated NPs show similar cell internalization efficiency. We found that the higher toxicity of bare NPs is due to their stronger in-situ degradation, with larger intracellular release of iron ions, as compared to surface passivated NPs. Our results indicate that surface engineering of Fe3O4/SiO2 NPs plays a key role in improving particles stability in biological environments reducing both cytotoxic and genotoxic effects. PMID:24465736
Carey, Graham H; Levina, Larissa; Comin, Riccardo; Voznyy, Oleksandr; Sargent, Edward H
2015-06-03
Through a combination of chemical and mutual dot-to-dot surface passivation, high-quality colloidal quantum dot solids are fabricated. The joint passivation techniques lead to a record diffusion length for colloidal quantum dots of 230 ± 20 nm. The technique is applied to create thick photovoltaic devices that exhibit high current density without losing fill factor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Highly effective electronic passivation of silicon surfaces by atomic layer deposited hafnium oxide
NASA Astrophysics Data System (ADS)
Cui, Jie; Wan, Yimao; Cui, Yanfeng; Chen, Yifeng; Verlinden, Pierre; Cuevas, Andres
2017-01-01
This paper investigates the application of hafnium oxide (HfO2) thin films to crystalline silicon (c-Si) solar cells. Excellent passivation of both n- and p-type crystalline silicon surfaces has been achieved by the application of thin HfO2 films prepared by atomic layer deposition. Effective surface recombination velocities as low as 3.3 and 9.9 cm s-1 have been recorded with 15 nm thick films on n- and p-type 1 Ω cm c-Si, respectively. The surface passivation by HfO2 is activated at 350 °C by a forming gas anneal. Capacitance voltage measurement shows an interface state density of 3.6 × 1010 cm-2 eV-1 and a positive charge density of 5 × 1011 cm-2 on annealed p-type 1 Ω cm c-Si. X-ray diffraction unveils a positive correlation between surface recombination and crystallinity of the HfO2 and a dependence of the crystallinity on both annealing temperature and film thickness. In summary, HfO2 is demonstrated to be an excellent candidate for surface passivation of crystalline silicon solar cells.
Woo Choi, Jin; Woo, Hee Chul; Huang, Xiaoguang; Jung, Wan-Gil; Kim, Bong-Joong; Jeon, Sie-Wook; Yim, Sang-Youp; Lee, Jae-Suk; Lee, Chang-Lyoul
2018-05-22
The photoluminescence quantum yield (PLQY) and charge carrier mobility of organic-inorganic perovskite QDs were enhanced by the optimization of crystallinity and surface passivation as well as solid-state ligand exchange. The crystallinity of perovskite QDs was determined by the Effective solvent field (Esol) of various solvents for precipitation. The solvent with high Esol could more quickly countervail the localized field generated by the polar solvent, and it causes fast crystallization of the dissolved precursor, which results in poor crystallinity. The post-ligand adding process (PLAP) and post-ligand exchange process (PLEP) increase the PLQY of perovskite QDs by reducing non-radiative recombination and the density of surface defect states through surface passivation. Particularly, the post ligand exchange process (PLEP) in the solid-state improved the charge carrier mobility of perovskite QDs in addition to the PLQY enhancement. The ligand exchange with short alkyl chain length ligands could improve the packing density of perovskite QDs in films by reducing the inter-particle distance between perovskite QDs. The maximum hole mobility of 6.2 × 10-3 cm2 V-1 s-1, one order higher than that of pristine QDs without the PLEP, is obtained at perovskite QDs with hexyl ligands. By using PLEP treatment, compared to the pristine device, a 2.5 times higher current efficiency in perovskite QD-LEDs was achieved due to the improved charge carrier mobility and PLQY.
Assimilation of Passive and Active Microwave Soil Moisture Retrievals
NASA Technical Reports Server (NTRS)
Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.
2012-01-01
Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.
Antireflection/Passivation Step For Silicon Cell
NASA Technical Reports Server (NTRS)
Crotty, Gerald T.; Kachare, Akaram H.; Daud, Taher
1988-01-01
New process excludes usual silicon oxide passivation. Changes in principal electrical parameters during two kinds of processing suggest antireflection treatment almost as effective as oxide treatment in passivating cells. Does so without disadvantages of SiOx passivation.
Planetary benchmarks. [structural design criteria for radar reference devices on planetary surfaces
NASA Technical Reports Server (NTRS)
Uphoff, C.; Staehle, R.; Kobrick, M.; Jurgens, R.; Price, H.; Slade, M.; Sonnabend, D.
1978-01-01
Design criteria and technology requirements for a system of radar reference devices to be fixed to the surfaces of the inner planets are discussed. Offshoot applications include the use of radar corner reflectors as landing beacons on the planetary surfaces and some deep space applications that may yield a greatly enhanced knowledge of the gravitational and electromagnetic structure of the solar system. Passive retroreflectors with dimensions of about 4 meters and weighing about 10 kg are feasible for use with orbiting radar at Venus and Mars. Earth-based observation of passive reflectors, however, would require very large and complex structures to be delivered to the surfaces. For Earth-based measurements, surface transponders offer a distinct advantage in accuracy over passive reflectors. A conceptual design for a high temperature transponder is presented. The design appears feasible for the Venus surface using existing electronics and power components.
Surface electrical properties of stainless steel fibres: An AFM-based study
NASA Astrophysics Data System (ADS)
Yin, Jun; D'Haese, Cécile; Nysten, Bernard
2015-03-01
Atomic force microscopy (AFM) electrical modes were used to study the surface electrical properties of stainless steel fibres. The surface electrical conductivity was studied by current sensing AFM and I-V spectroscopy. Kelvin probe force microscopy was used to measure the surface contact potential. The oxide film, known as passivation layer, covering the fibre surface gives rise to the observation of an apparently semiconducting behaviour. The passivation layer generally exhibits a p-type semiconducting behaviour, which is attributed to the predominant formation of chromium oxide on the surface of the stainless steel fibres. At the nanoscale, different behaviours are observed from points to points, which may be attributed to local variations of the chemical composition and/or thickness of the passivation layer. I-V curves are well fitted with an electron tunnelling model, indicating that electron tunnelling may be the predominant mechanism for electron transport.
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.
2015-01-01
This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project. The Soil Moisture Active Passive (SMAP) mission will enhance the accuracy and the resolution of space-based measurements of terrestrial soil moisture and freeze-thaw state. SMAP data products will have a noteworthy impact on multiple relevant and current Earth Science endeavors. These include: Understanding of the processes that link the terrestrial water, the energy and the carbon cycles, Estimations of global water and energy fluxes over the land surfaces, Quantification of the net carbon flux in boreal landscapes Forecast skill of both weather and climate, Predictions and monitoring of natural disasters including floods, landslides and droughts, and Predictions of agricultural productivity. To provide these data, the SMAP mission will deploy a satellite observatory in a near polar, sun synchronous orbit. The observatory will house an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments will share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath.
CIP (cleaning-in-place) stability of AlGaN/GaN pH sensors.
Linkohr, St; Pletschen, W; Schwarz, S U; Anzt, J; Cimalla, V; Ambacher, O
2013-02-20
The CIP stability of pH sensitive ion-sensitive field-effect transistors based on AlGaN/GaN heterostructures was investigated. For epitaxial AlGaN/GaN films with high structural quality, CIP tests did not degrade the sensor surface and pH sensitivities of 55-58 mV/pH were achieved. Several different passivation schemes based on SiO(x), SiN(x), AlN, and nanocrystalline diamond were compared with special attention given to compatibility to standard microelectronic device technologies as well as biocompatibility of the passivation films. The CIP stability was evaluated with a main focus on the morphological stability. All stacks containing a SiO₂ or an AlN layer were etched by the NaOH solution in the CIP process. Reliable passivations withstanding the NaOH solution were provided by stacks of ICP-CVD grown and sputtered SiN(x) as well as diamond reinforced passivations. Drift levels about 0.001 pH/h and stable sensitivity over several CIP cycles were achieved for optimized sensor structures. Copyright © 2012 Elsevier B.V. All rights reserved.
Berton, André; Brugnera, Michelle F; Dores, Eliana F G C
2018-04-03
In this study, the quality of surface water in the headwaters of São Lourenço River in Mato Grosso, Brazil, was evaluated in relation to contamination by pesticides. For this purpose, samples were collected between December 2015 and June 2016 by grab sampling and by passive sampling using an integrative polar organic compound sampler installed in the field during four 14-day cycles between March and June 2016. The analyses were performed by gas chromatography (CG/MS) and by liquid chromatography (UPLC-MS/MS). The results showed the detection of two pesticides (atrazine and pyraclostrobin) of the five analyzed by passive sampling and eight active principles among the 20 analyzed (malathion, diuron, carbofuran, carbendazim, trifluralin, imidacloprid, metolachlor, and acetamiprid) by grab sampling. The detection of 10 pesticides, even almost a decade after the beginning of a recovery process of the ciliary forest, confirms the headwaters' vulnerability to these contaminants and passive sampling proved to be an important tool in capturing small concentrations of pesticides constituting an interesting complement to grab sampling.
Passive micromixer using by convection and surface tension effects with air-liquid interface.
Ju, Jongil; Warrick, Jay
2013-12-01
This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15-20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation.
Passive micromixer using by convection and surface tension effects with air-liquid interface
Ju, Jongil; Warrick, Jay
2014-01-01
This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15–20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation. PMID:25104979
Fabrication of pseudo-spin-MOSFETs using a multi-project wafer CMOS chip
NASA Astrophysics Data System (ADS)
Nakane, R.; Shuto, Y.; Sukegawa, H.; Wen, Z. C.; Yamamoto, S.; Mitani, S.; Tanaka, M.; Inomata, K.; Sugahara, S.
2014-12-01
We demonstrate monolithic integration of pseudo-spin-MOSFETs (PS-MOSFETs) using vendor-made MOSFETs fabricated in a low-cost multi-project wafer (MPW) product and lab-made magnetic tunnel junctions (MTJs) formed on the topmost passivation film of the MPW chip. The tunneling magnetoresistance (TMR) ratio of the fabricated MTJs strongly depends on the surface roughness of the passivation film. Nevertheless, after the chip surface was atomically flattened by SiO2 deposition on it and successive chemical-mechanical polish (CMP) process for the surface, the fabricated MTJs on the chip exhibits a sufficiently large TMR ratio (>140%) adaptable to the PS-MOSFET application. The implemented PS-MOSFETs show clear modulation of the output current controlled by the magnetization configuration of the MTJs, and a maximum magnetocurrent ratio of 90% is achieved. These magnetocurrent behaviour is quantitatively consistent with those predicted by HSPICE simulations. The developed integration technique using a MPW CMOS chip would also be applied to monolithic integration of CMOS devices/circuits and other various functional devices/materials, which would open the door for exploring CMOS-based new functional hybrid circuits.
Very Hard Corrosion-Resistant Roll-Bonded Cr Coating on Mild Steel in Presence of Graphite
NASA Astrophysics Data System (ADS)
Kumar, Pankaj; Khara, S.; Shekhar, S.; Mondal, K.
2017-12-01
The present work discusses the development of very hard Cr and Cr-carbide coating by roll bonding of Cr powder on a mild steel followed by annealing at 800, 1000, 1100 and 1200 °C with and without the presence of graphite powder packing in argon environment. In addition, the effect of a roll skin pass of 5% prior to the application of coating was studied. The presence of graphite allows diffusion of both carbon and Cr in the mild steel substrate, leading to the formation of Cr-carbide on the outer surface, making the surface very hard (VHN 1800). Depending on the annealing temperature and processing condition, diffusion layer thickness of Cr is found to be in the range of 10-250 μm with Cr content of 12.5-15 wt.% across the diffusion layer. Excellent stable passivity of the coated surface is observed in 0.2 N H2SO4, which is comparable to a highly passivating 304 stainless steel, and very low corrosion rate of the coating is observed as compared to the substrate mild steel.
Zhang, Yuzhong; Deng, Shuxing; Liu, Yanan; Shen, Guofeng; Li, Xiqing; Cao, Jun; Wang, Xilong; Reid, Brian; Tao, Shu
2011-03-01
Air-soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the vertical concentration profile of 4 low molecular weight PAHs in gaseous phase (PAH(LMW4)) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. Vertical concentration gradients were revealed for PAH(LMW4) within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air-soil exchange of gaseous phase semi-volatile organic chemicals. Copyright © 2010 Elsevier Ltd. All rights reserved.
Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Yimao, E-mail: yimao.wan@anu.edu.au; Yan, Di; Bullock, James
2015-12-07
A sub-nm hydrogenated amorphous silicon (a-Si:H) film capped with silicon nitride (SiN{sub x}) is shown to provide a high level passivation to crystalline silicon (c-Si) surfaces. When passivated by a 0.8 nm a-Si:H/75 nm SiN{sub x} stack, recombination current density J{sub 0} values of 9, 11, 47, and 87 fA/cm{sup 2} are obtained on 10 Ω·cm n-type, 0.8 Ω·cm p-type, 160 Ω/sq phosphorus-diffused, and 120 Ω/sq boron-diffused silicon surfaces, respectively. The J{sub 0} on n-type 10 Ω·cm wafers is further reduced to 2.5 ± 0.5 fA/cm{sup 2} when the a-Si:H film thickness exceeds 2.5 nm. The passivation by the sub-nm a-Si:H/SiN{sub x} stack is thermally stable at 400 °C in N{sub 2} formore » 60 min on all four c-Si surfaces. Capacitance–voltage measurements reveal a reduction in interface defect density and film charge density with an increase in a-Si:H thickness. The nearly transparent sub-nm a-Si:H/SiN{sub x} stack is thus demonstrated to be a promising surface passivation and antireflection coating suitable for all types of surfaces encountered in high efficiency c-Si solar cells.« less
Effect of surface treatment on unalloyed titanium implants: spectroscopic analyses.
Kilpadi, D V; Raikar, G N; Liu, J; Lemons, J E; Vohra, Y; Gregory, J C
1998-06-15
Surgical implant finishing and sterilization procedures were investigated to determine surface characteristics of unalloyed titanium (Ti). All specimens initially were cleaned with phosphoric acid and divided into five groups for comparisons of different surface treatments (C = cleaned as above, no further treatment; CP = C and passivated in nitric acid; CPS = CP and dry-heat sterilized; CPSS = CPS and resterilized; CS = C and dry-heat sterilized). Auger (AES), X-ray photoelectron (XPS), and Raman spectroscopic methods were used to examine surface compositions. The surface oxides formed by all treatments primarily were TiO2, with some Ti2O3 and possibly TiO. Significant concentrations of carbonaceous substances also were observed. The cleaning procedure alone resulted in residual phosphorus, primarily as phosphate groups along with some hydrogen phosphates. A higher percentage of physisorbed water appeared to be associated with the phosphorus. Passivation (with HNO3) alone removed phosphorus from the surface; specimens sterilized without prior passivation showed the thickest oxide and phosphorus profiles, suggesting that passivation alters the oxide characteristics either directly by altering the oxide structure or indirectly by removing moieties that alter the oxide. Raman spectroscopy showed no crystalline order in the oxide. Carbon, oxygen, phosphorus, and nitrogen presence were found to correlate with previously determined surface energy.
Active/Passive Remote Sensing of the Ocean Surface at Microwave Frequencies
1999-09-30
This report summarizes research activities and results obtained under grant N000l4-99-1-0627 "Active/Passive Remote Sensing of the Ocean Surface at...Measurements were completed during April 1999 by the Microwave Remote Sensing Laboratory at the University of Massachusetts.
NASA Technical Reports Server (NTRS)
Hood, Robbie E.; Radley, C.D.; LaFontaine, F.J.
2008-01-01
Inland flooding from tropical cyclones can be a significant factor in storm-related deaths in the United States and other countries. Information collected during NASA tropical cyclone field studies suggest surface water and flooding induced by tropical cyclone precipitation can be detected and therefore monitored using passive microwave airborne radiometers. In particular, the 10.7 GHz frequency of the NASA Advanced Microwave Precipitation Radiometer (AMPR) flown on the NASA ER-2 has demonstrated high resolution detection of anomalous surface water and flooding in numerous situations. This presentation will highlight the analysis of three cases utilizing primarily satellite and airborne radiometer data. Radiometer data from the 1998 Third Convection and Moisture Experiment (CAMEX-3) are utilized to detect surface water during landfalling Hurricane Georges in both the Dominican Republic and Louisiana. A third case is landfalling Tropical Storm Gert in Eastern Mexico during the Tropical Cloud Systems and Processes (TCSP) experiment in 2005. AMPR data are compared to topographic data and vegetation indices to evaluate the significance of the surface water signature visible in the 10.7 GHz information. The results of this study suggest the benefit of an aircraft 10 GHz radiometer to provide real-time observations of surface water conditions as part of a multi-sensor flood monitoring network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boccard, Mathieu; Holman, Zachary C.
Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide beingmore » shown to surpass amorphous silicon for temperatures above 300 °C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boccard, Mathieu; Holman, Zachary C.
With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less
Boccard, Mathieu; Holman, Zachary C.
2015-08-14
With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less
Chang, Jin; Kuga, Yuki; Mora-Seró, Iván; Toyoda, Taro; Ogomi, Yuhei; Hayase, Shuzi; Bisquert, Juan; Shen, Qing
2015-03-12
Bulk heterojunction (BHJ) solar cells based on colloidal QDs and metal oxide nanowires (NWs) possess unique and outstanding advantages in enhancing light harvesting and charge collection in comparison to planar architectures. However, the high surface area of the NW structure often brings about a large amount of recombination (especially interfacial recombination) and limits the open-circuit voltage in BHJ solar cells. This problem is solved here by passivating the surface of the metal oxide component in PbS colloidal quantum dot solar cells (CQDSCs). By coating thin TiO2 layers onto ZnO-NW surfaces, the open-circuit voltage and power conversion efficiency have been improved by over 40% in PbS CQDSCs. Characterization by transient photovoltage decay and impedance spectroscopy indicated that the interfacial recombination was significantly reduced by the surface passivation strategy. An efficiency as high as 6.13% was achieved through the passivation approach and optimization for the length of the ZnO-NW arrays (device active area: 16 mm2). All solar cells were tested in air, and exhibited excellent air storage stability (without any performance decline over more than 130 days). This work highlights the significance of metal oxide passivation in achieving high performance BHJ solar cells. The charge recombination mechanism uncovered in this work could shed light on the further improvement of PbS CQDSCs and/or other types of solar cells.
Pan, Jiahong; Zheng, Zengyao; Yang, Jianying; Wu, Yaoyu; Lu, Fushen; Chen, Yaowen; Gao, Wenhua
2017-05-01
A novel fluorescence sensor based on controlling the surface passivation degree of carbon quantum dots (CQDs) was developed for glutathione (GSH) detection. First, we found that the fluorescence intensity of the CQDs which was obtained by directly pyrolyzing citric acid would increased largely after the surface passivation treatment by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). In the light of this phenomenon, we designed a simple, rapid and selective fluorescence sensor based on the surface passivated CQDs. A certain and excess amount of EDC were mixed with GSH, part of EDC would form a stable complex with GSH owing to the exposed sulfhydryl group of GSH. As the synthesized CQDs were added into the above mixture solution, the fluorescence intensity of the (EDC/GSH)/CQDs mixture solution could be directly related to the amount of GSH. Compared to other fluorescence analytical methods, the fluorescence sensor we design is neither the traditional fluorescent "turn on" probes nor "turn off" probes. It is a new fluorescence analytical method that target object indirectly control the surface passivation degree of CQDs so that it can realize the detection of the target object. Moreover, the proposed method manifested great advantages including short analysis time, low cost and ease of operation. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, T.Q.; Buczkowski, A.; Radzimski, Z.J.
The electrical activity of as-grown and intentionally decorated misfit dislocations in an epitaxial Si/Si(Ge) heterostructure was examined using the electron beam induced current (EBIC) technique in a scanning electron microscope. Misfit dislocations, which were not visible initially, were subsequently activated either by an unknown processing contaminant or a backside metallic impurity. Passivation of these contaminated dislocations was then studied using low energy deuterium ion implantation in a Kaufman ion source. EBIC results show that the recombination activity of the decorated misfit dislocations was dramatically reduced by the deuterium treatment. Although a front side passivation treatment was more effective than amore » backside treatment, a surface ion bombardment damage problem is still evident. 5 refs., 3 figs.« less
Combined active and passive microwave remote sensing of vegetated surfaces at l-band
USDA-ARS?s Scientific Manuscript database
In previous work the distorted Born approximation (DBA) of volume scattering was combined with the numerical solutions of Maxwell equations (NMM3D) for a rough surface to calculate the radar backscattering coefficient for the Soil Moisture Active Passive (SMAP) mission. The model results were valida...
Jing, Qiang; Zhang, Mian; Huang, Xiang; Ren, Xiaoming; Wang, Peng; Lu, Zhenda
2017-06-08
In recent years, there has been an unprecedented rise in the research of halide perovskites because of their important optoelectronic applications, including photovoltaic cells, light-emitting diodes, photodetectors and lasers. The most pressing question concerns the stability of these materials. Here faster degradation and PL quenching are observed at higher iodine content for mixed-halide perovskite CsPb(Br x I 1-x ) 3 nanocrystals, and a simple yet effective method is reported to significantly enhance their stability. After selective etching with acetone, surface iodine is partially etched away to form a bromine-rich surface passivation layer on mixed-halide perovskite nanocrystals. This passivation layer remarkably stabilizes the nanocrystals, making their PL intensity improved by almost three orders of magnitude. It is expected that a similar passivation layer can also be applied to various other kinds of perovskite materials with poor stability issues.
The effects of DRIE operational parameters on vertically aligned micropillar arrays
NASA Astrophysics Data System (ADS)
Miller, Kane; Li, Mingxiao; Walsh, Kevin M.; Fu, Xiao-An
2013-03-01
Vertically aligned silicon micropillar arrays have been created by deep reactive ion etching (DRIE) and used for a number of microfabricated devices including microfluidic devices, micropreconcentrators and photovoltaic cells. This paper delineates an experimental design performed on the Bosch process of DRIE of micropillar arrays. The arrays are fabricated with direct-write optical lithography without photomask, and the effects of DRIE process parameters, including etch cycle time, passivation cycle time, platen power and coil power on profile angle, scallop depth and scallop peak-to-peak distance are studied by statistical design of experiments. Scanning electron microscope images are used for measuring the resultant profile angles and characterizing the scalloping effect on the pillar sidewalls. The experimental results indicate the effects of the determining factors, etch cycle time, passivation cycle time and platen power, on the micropillar profile angles and scallop depths. An optimized DRIE process recipe for creating nearly 90° and smooth surface (invisible scalloping) has been obtained as a result of the statistical design of experiments.
Cowan, A E; Myles, D G; Koppel, D E
1991-03-01
The redistribution of membrane proteins on the surface of cells is a prevalent feature of differentiation in a variety of cells. In most cases the mechanism responsible for such redistribution is poorly understood. Two potential mechanisms for the redistribution of surface proteins are: (1) passive diffusion coupled with trapping, and (2) active translocation. We have studied the process of membrane protein redistribution for the PH-20 protein of guinea pig sperm, a surface protein required for sperm binding to the egg zona pellucida (P. Primakoff, H. Hyatt, and D. G. Myles (1985). J. Cell Biol. 101, 2239-2244). PH-20 protein is localized to the posterior head plasma menbrane of the mature sperm cell. Following the exocytotic acrosome reaction, PH-20 protein moves into the newly incorporated inner acrosomal membrane (IAM), placing it in a position favorable for a role in binding sperm to the egg zona pellucida (D. G. Myles, and P. Primakoff (1984), J. Cell Biol. 99, 1634-1641). To analyze the mechanistic basis for this protein migration, we have used fluorescence microscopy and digital image processing to characterize PH-20 protein migration in individual cells. PH-20 protein was observed to move against a concentration gradient in the posterior head plasma membrane. This result argues strongly against a model of passive diffusion followed by trapping in the IAM, and instead suggests that an active process serves to concentrate PH-20 protein toward the boundary separating the posterior head and IAM regions. A transient gradient of PH-20 concentration observed in the IAM suggests that once PH-20 protein reaches the IAM, it is freely diffusing. Additionally, we observed that migration of PH-20 protein was calcium dependent.
NASA Astrophysics Data System (ADS)
Xin, Zheng; Ling, Zhi Peng; Nandakumar, Naomi; Kaur, Gurleen; Ke, Cangming; Liao, Baochen; Aberle, Armin G.; Stangl, Rolf
2017-08-01
The surface passivation performance of atomic layer deposited ultra-thin aluminium oxide layers with different thickness in the tunnel layer regime, i.e., ranging from one atomic cycle (∼0.13 nm) to 11 atomic cycles (∼1.5 nm) on n-type silicon wafers is studied. The effect of thickness and thermal activation on passivation performance is investigated with corona-voltage metrology to measure the interface defect density D it(E) and the total interface charge Q tot. Furthermore, the bonding configuration variation of the AlO x films under various post-deposition thermal activation conditions is analyzed by Fourier transform infrared spectroscopy. Additionally, poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate) is used as capping layer on ultra-thin AlO x tunneling layers to further reduce the surface recombination current density to values as low as 42 fA/cm2. This work is a useful reference for using ultra-thin ALD AlO x layers as tunnel layers in order to form hole selective passivated contacts for silicon solar cells.
Microwave soil moisture estimation in humid and semiarid watersheds
NASA Technical Reports Server (NTRS)
O'Neill, P. E.; Jackson, T. J.; Chauhan, N. S.; Seyfried, M. S.
1993-01-01
Land surface hydrologic-atmospheric interactions in humid and semi-arid watersheds were investigated. Active and passive microwave sensors were used to estimate the spatial and temporal distribution of soil moisture at the catchment scale in four areas. Results are presented and discussed. The eventual use of this information in the analysis and prediction of associated hydrologic processes is examined.
Office of Naval Research Overview of Corrosion S&T Program
2010-12-02
a carbon induced passivity for LTCSS treated austenitic stainless steels - Low temp. allows interstitial C diffusion, but not substitutional...paraequilibrium carburization mechanism(s) that lead to the enhanced corrosion resistance seaw ater crevice corrosion on 316 Stainless Steel LTC...Treated 316 untreated LTC process TTT diagram LTCSS Surface Modification: • Carbon concentrations > 12 at. % in 316 stainless steel while maintaining
Laser doping of boron-doped Si paste for high-efficiency silicon solar cells
NASA Astrophysics Data System (ADS)
Tomizawa, Yuka; Imamura, Tetsuya; Soeda, Masaya; Ikeda, Yoshinori; Shiro, Takashi
2015-08-01
Boron laser doping (LD) is a promising technology for high-efficiency solar cells such as p-type passivated locally diffused solar cells and n-type Si-wafer-based solar cells. We produced a printable phosphorus- or boron-doped Si paste (NanoGram® Si paste/ink) for use as a diffuser in the LD process. We used the boron LD process to fabricate high-efficiency passivated emitter and rear locally diffused (PERL) solar cells. PERL solar cells on Czochralski Si (Cz-Si) wafers yielded a maximum efficiency of 19.7%, whereas the efficiency of a reference cell was 18.5%. Fill factors above 79% and open circuit voltages above 655 mV were measured. We found that the boron-doped area effectively performs as a local boron back surface field (BSF). The characteristics of the solar cell formed using NanoGram® Si paste/ink were better than those of the reference cell.
Han, Shuai; Chang, Tao; Zhao, Haiping; Du, Huanhuan; Liu, Shan; Wu, Baoshuang; Qin, Shenjun
2017-07-07
In this work, we present the fabrication of highly luminescent carbon dots (CDs) by a double passivation method with the assistance of Ca(OH)₂. In the reaction process, Ca 2+ protects the active functional groups from overconsumption during dehydration and carbonization, and the electron-withdrawing groups on the CD surface are converted to electron-donating groups by the hydroxyl ions. As a result, the fluorescence quantum yield of the CDs was found to increase with increasing Ca(OH)₂ content in the reaction process. A blue-shift optical spectrum of the CDs was also found with increasing Ca(OH)₂ content, which could be attributed to the increasing of the energy gaps for the CDs. The highly photoluminescent CDs obtained (quantum yield: 86%) were used to cultivate fluorescent carnations by a water culture method, while the results of fluorescence microscopy analysis indicated that the CDs had entered the plant tissue structure.
The effect of strain hardening on resistance to electrochemical corrosion of wires for orthopaedics
NASA Astrophysics Data System (ADS)
Przondziono, J.; Walke, W.; Hadasik, E.; Szymszal, J.
2012-05-01
The purpose of this research is to evaluate electrochemical corrosion resistance of wire with modified surface, made of stainless steel of Cr-Ni-Mo type, widely used in implants for orthopaedics, depending on hardening created in the process of drawing. Tests have been carried out in the environment imitating human osseous tissue. Pitting corrosion was determined on the ground of registered anodic polarisation curves by means of potentiodynamic method with application of electrochemical testing system VoltaLab® PGP 201. Wire corrosion tests were carried out in Tyrode solution on samples that were electrochemically polished as well as electrochemically polished and finally chemically passivated. Initial material for tests was wire rod made of X2CrNiMo17-12-2 steel with diameter of 5.5 mm in supersaturated condition. Wire rod was drawn up to diameter of 1.35 mm. This work shows the course of flow curve of wire made of this grade of steel and mathematical form of yield stress function. The study also presents exemplary curves showing the dependence of polarisation resistance in strain function in the drawing process of electrochemically passivated and electrochemically polished and then chemically passivated wire.
Forghani-Arani, Farnoush; Behura, Jyoti; Haines, Seth S.; Batzle, Mike
2013-01-01
In studies on heavy oil, shale reservoirs, tight gas and enhanced geothermal systems, the use of surface passive seismic data to monitor induced microseismicity due to the fluid flow in the subsurface is becoming more common. However, in most studies passive seismic records contain days and months of data and manually analysing the data can be expensive and inaccurate. Moreover, in the presence of noise, detecting the arrival of weak microseismic events becomes challenging. Hence, the use of an automated, accurate and computationally fast technique for event detection in passive seismic data is essential. The conventional automatic event identification algorithm computes a running-window energy ratio of the short-term average to the long-term average of the passive seismic data for each trace. We show that for the common case of a low signal-to-noise ratio in surface passive records, the conventional method is not sufficiently effective at event identification. Here, we extend the conventional algorithm by introducing a technique that is based on the cross-correlation of the energy ratios computed by the conventional method. With our technique we can measure the similarities amongst the computed energy ratios at different traces. Our approach is successful at improving the detectability of events with a low signal-to-noise ratio that are not detectable with the conventional algorithm. Also, our algorithm has the advantage to identify if an event is common to all stations (a regional event) or to a limited number of stations (a local event). We provide examples of applying our technique to synthetic data and a field surface passive data set recorded at a geothermal site.
Novel Heterongineered Detectors for Multi-Color Infrared Sensing
2012-01-30
barriers”. Appl. Phys. Lett. 98, 121106 (2011) 9. A. Khoshakhlagh, F. Jaeckel C. Hains J. B. Rodriguez , L. R. Dawson, K. Malloy, and S. Krishna...AlAs etch-stop layer. The detailed processing sequence is included in the Methods. b da c n + -GaAs 200 nm Mesa lndium bump 2.1 –2.1 FPA p d SP-FPA...FPA chip. The processing scheme of the plasmonic FPA chip consists of a dry etch to form the mesa , surface passivation, ohmic metal evaporation, under
Active and Passive Remote Sensing of Ice
1991-11-15
To demonstrate the use of polarimetry in passive remote sensing of azimuthally asymmetric features on a terrain surface, an experiment was designed...azimuthal asymmetry on the remotely sensed soil surface. It is also observed from the experiment that the brightness temperatures for all three Stokes...significant implication of this experiment is that the surface asymmetry can be detected with a measurement of U at a single azimuthal angle. -8
Investigation of silicon surface passivation by silicon nitride film deposition
NASA Technical Reports Server (NTRS)
Olsen, L. C.
1984-01-01
The use of Sin sub x grown by plasma enhanced chemical vapor deposition (PECVO) for passivating silicon surfaces was studied. The application of PECVO SiN sub x films for passivations of silicon N+/P or P+/N solar cells is of particular interest. This program has involved the following areas of investigation: (1) Establishment of PECVO system and development of procedures for growth of SiN sub x; (2) Optical characterization of SiN sub x films; (3) Characterization of the SiN sub x/Si interface; (4) Surface recombination velocity deduced from photoresponse; (5) Current-Voltage analyses of silicon N+/P cells; and (6) Gated diode device studies.
Microscale patterning of thermoplastic polymer surfaces by selective solvent swelling.
Rahmanian, Omid; Chen, Chien-Fu; DeVoe, Don L
2012-09-04
A new method for the fabrication of microscale features in thermoplastic substrates is presented. Unlike traditional thermoplastic microfabrication techniques, in which bulk polymer is displaced from the substrate by machining or embossing, a unique process termed orogenic microfabrication has been developed in which selected regions of a thermoplastic surface are raised from the substrate by an irreversible solvent swelling mechanism. The orogenic technique allows thermoplastic surfaces to be patterned using a variety of masking methods, resulting in three-dimensional features that would be difficult to achieve through traditional microfabrication methods. Using cyclic olefin copolymer as a model thermoplastic material, several variations of this process are described to realize growth heights ranging from several nanometers to tens of micrometers, with patterning techniques include direct photoresist masking, patterned UV/ozone surface passivation, elastomeric stamping, and noncontact spotting. Orogenic microfabrication is also demonstrated by direct inkjet printing as a facile photolithography-free masking method for rapid desktop thermoplastic microfabrication.
Passive Thermal Management of Foil Bearings
NASA Technical Reports Server (NTRS)
Bruckner, Robert J. (Inventor)
2015-01-01
Systems and methods for passive thermal management of foil bearing systems are disclosed herein. The flow of the hydrodynamic film across the surface of bearing compliant foils may be disrupted to provide passive cooling and to improve the performance and reliability of the foil bearing system.
Zhang, Xiao-Ying; Hsu, Chia-Hsun; Lien, Shui-Yang; Chen, Song-Yan; Huang, Wei; Yang, Chih-Hsiang; Kung, Chung-Yuan; Zhu, Wen-Zhang; Xiong, Fei-Bing; Meng, Xian-Guo
2017-12-01
Hafnium oxide (HfO 2 ) thin films have attracted much attention owing to their usefulness in equivalent oxide thickness scaling in microelectronics, which arises from their high dielectric constant and thermodynamic stability with silicon. However, the surface passivation properties of such films, particularly on crystalline silicon (c-Si), have rarely been reported upon. In this study, the HfO 2 thin films were deposited on c-Si substrates with and without oxygen plasma pretreatments, using a remote plasma atomic layer deposition system. Post-annealing was performed using a rapid thermal processing system at different temperatures in N 2 ambient for 10 min. The effects of oxygen plasma pretreatment and post-annealing on the properties of the HfO 2 thin films were investigated. They indicate that the in situ remote plasma pretreatment of Si substrate can result in the formation of better SiO 2 , resulting in a better chemical passivation. The deposited HfO 2 thin films with oxygen plasma pretreatment and post-annealing at 500 °C for 10 min were effective in improving the lifetime of c-Si (original lifetime of 1 μs) to up to 67 μs.
ENSO Precipitation Variations as Seen by GPM and TRMM Radar and Passive Microwave Observations
NASA Astrophysics Data System (ADS)
Adler, R. F.; Wang, J. J.
2017-12-01
Tropical precipitation variations related to ENSO are the largest-scale such variations both spatially and in magnitude and are also the main driver of surface temperature-surface rainfall relationships on the inter-annual scale. GPM (and TRMM before it) provide a unique capability to examine these relations with both the passive and active microwave approaches. Documenting the phase and magnitudes of these relationships are important to understand these large-scale processes and to validate climate models. However, as past research by the authors have shown, the results of these relations have been different for passive vs. radar retrievals. In this study we re-examine these relations with the new GPM Version 5 products, focusing on the 2015-2016 El Nino event. The recent El Nino peaked in Dec. 2015 through Feb. 2016 with the usual patterns of precipitation anomalies across the Tropics as evident in both the GPM GMI and the Near Surface (NS) DPR (single frequency) retrievals. Integrating both the rainfall anomalies and the SST anomalies over the entire tropical ocean area (25N-25S) and comparing how they vary as a function of time on a monthly scale during the GPM era (2014-2017), the radar-based results show contrasting results to those from the GMI-based (and GPCP) results. The passive microwave data (GMI and GPCP) indicates a slope of 17%/C for the precipitation variations, while the radar NS indicates about half that ( 8%/C). This NS slope is somewhat less than calculated before with GPM's V4 data, but is larger than obtained with TRMM PR data ( 0%/C) for an earlier period during the TRMM era. Very similar results as to the DPR NS calculations are also obtained for rainfall at 2km and 4km altitude and for the Combined (DPR + GMI) product. However, at 6km altitude, although the reflectivity and rainfall magnitudes are much less than at lower altitudes, the slope of the rainfall/SST relation is 17%/C, the same as calculated with the passive microwave data. The reasons for these differences are explored and lead to conclusions that the radar-based estimates of surface rainfall with GPM have limitations (and are negatively biased) in relatively intense rainfall and this leads to an underestimation of large-scale rainfall under El Nino conditions, where more oceanic rainfall, and more intense rainfall are prevalent.
NASA Astrophysics Data System (ADS)
Motevalli, Benyamin; Taherifar, Neda; Wu, Bisheng; Tang, Wenxin; Liu, Jefferson Zhe
2017-11-01
The adsorption of di-meta-cyano azobenzene (DMC) cis and trans isomers on non-passivated and passivated Si (111) (7 × 7) surfaces is studied using density functional theory (DFT) calculations. Our results reveal that on the non-passivated surface the 12 Si adatoms are accessible to form chemical bonds with DMC molecules. Interestingly, the trans isomer forms two chemical bonds near the corner hole atom in Si (111) (7 × 7) surface, which is not observed in the widely studied metallic surfaces. The DMC isomers show significant structural distortion in the chemisorption case. The strong chemical bonds (and high bonding energy) could be detrimental to conformation switching between these two isomers under external stimuli. The physisorption case is also examined. Monte Carlo (MC) simulations with empirical force fields were employed to search about 106 different adsorption positions and DMC molecule orientations to identify the stable adsorption sites (up to six). The DFT-PBE and DFT-D2 calculations were then carried out to obtain the relaxed atomistic structures and accurate adsorption energy. We find that it is imperative to take van der Waals (vdW) interaction into account in DFT calculations. Our results show that the adsorption sites generally are encompassed by either the Si adatoms or the passivated H atoms, which could enhance the long-range dispersion interaction between DMC molecules and Si surfaces. The molecular structures of both isomers remain unchanged compared with gas phase. The obtained adsorption energy results ΔEads are moderate (0.2-0.8 eV). At some adsorption sites on the passivated surface, both isomers have similar moderate ΔEads (0.4-0.6 eV), implying promises of molecular switching that should be examined in experiments.
Obermair, Christian; Kress, Marina; Wagner, Andreas; Schimmel, Thomas
2012-01-01
We recently introduced a method that allows the controlled deposition of nanoscale metallic patterns at defined locations using the tip of an atomic force microscope (AFM) as a "mechano-electrochemical pen", locally activating a passivated substrate surface for site-selective electrochemical deposition. Here, we demonstrate the reversibility of this process and study the long-term stability of the resulting metallic structures. The remarkable stability for more than 1.5 years under ambient air without any observable changes can be attributed to self-passivation. After AFM-activated electrochemical deposition of copper nanostructures on a polycrystalline gold film and subsequent AFM imaging, the copper nanostructures could be dissolved by reversing the electrochemical potential. Subsequent AFM-tip-activated deposition of different copper nanostructures at the same location where the previous structures were deleted, shows that there is no observable memory effect, i.e., no effect of the previous writing process on the subsequent writing process. Thus, the four processes required for reversible information storage, "write", "read", "delete" and "re-write", were successfully demonstrated on the nanometer scale.
Kress, Marina; Wagner, Andreas; Schimmel, Thomas
2012-01-01
Summary We recently introduced a method that allows the controlled deposition of nanoscale metallic patterns at defined locations using the tip of an atomic force microscope (AFM) as a “mechano-electrochemical pen”, locally activating a passivated substrate surface for site-selective electrochemical deposition. Here, we demonstrate the reversibility of this process and study the long-term stability of the resulting metallic structures. The remarkable stability for more than 1.5 years under ambient air without any observable changes can be attributed to self-passivation. After AFM-activated electrochemical deposition of copper nanostructures on a polycrystalline gold film and subsequent AFM imaging, the copper nanostructures could be dissolved by reversing the electrochemical potential. Subsequent AFM-tip-activated deposition of different copper nanostructures at the same location where the previous structures were deleted, shows that there is no observable memory effect, i.e., no effect of the previous writing process on the subsequent writing process. Thus, the four processes required for reversible information storage, “write”, “read”, “delete” and “re-write”, were successfully demonstrated on the nanometer scale. PMID:23365795
Passivated contact formation using ion implantation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, David L.; Stradins, Pauls; Nemeth, William
2018-05-29
Methods for forming passivated contacts include implanting compound-forming ions into a substrate to about a first depth below a surface of the substrate, and implanting dopant ions into the substrate to about a second depth below the surface. The second depth may be shallower than the first depth. The methods also include annealing the substrate.
NASA Technical Reports Server (NTRS)
Anderson, Mark; Rowe, Clinton; Kuivinen, Karl; Mote, Thomas
1996-01-01
The primary goals of this research were to identify and begin to comprehend the spatial and temporal variations in surface characteristics of the Greenland ice sheet using passive microwave observations, physically-based models of the snowpack and field observations of snowpack and firn properties.
Al-Harbi, Albandaree K.
2018-01-01
The electrochemical behavior of the oxide layers on two metal-metal glassy alloys, Fe78Co9Cr10Mo2Al1 (VX9)and Fe49Co49V2 (VX50) (at.%), were studied using electrochemical techniques including electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS) and cyclic polarization (CP) measurements. The morphology and composition of the alloy surfaces were investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The corrosion rate and surface roughness of both alloys increased as the concentration of NaOH in aqueous solution was raised. The presence of some protective elements in the composition of the alloys led to the formation of a spontaneous passive layer on the alloy surface. The higher resistance values of both alloys were associated with the magnitude of the dielectric properties of the passive films formed on their surfaces. Both alloys are classified as having outstanding resistance to corrosion, which results from the formation of a passive film that acts as an efficient barrier to corrosion in alkaline solution. PMID:29337992
Emran, Khadijah M; Al-Harbi, Albandaree K
2018-01-01
The electrochemical behavior of the oxide layers on two metal-metal glassy alloys, Fe78Co9Cr10Mo2Al1 (VX9)and Fe49Co49V2 (VX50) (at.%), were studied using electrochemical techniques including electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS) and cyclic polarization (CP) measurements. The morphology and composition of the alloy surfaces were investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The corrosion rate and surface roughness of both alloys increased as the concentration of NaOH in aqueous solution was raised. The presence of some protective elements in the composition of the alloys led to the formation of a spontaneous passive layer on the alloy surface. The higher resistance values of both alloys were associated with the magnitude of the dielectric properties of the passive films formed on their surfaces. Both alloys are classified as having outstanding resistance to corrosion, which results from the formation of a passive film that acts as an efficient barrier to corrosion in alkaline solution.
Improved passivation effect in multicrystalline black silicon by chemical solution pre-treatment
NASA Astrophysics Data System (ADS)
Jiang, Ye; Shen, Honglie; Pu, Tian; Zheng, Chaofan
2018-04-01
Though black silicon has excellent anti-reflectance property, its passivation is one of the main technical bottlenecks due to its large specific surface area. In this paper, multicrystalline black silicon is fabricated by metal assisted chemical etching, and is rebuilt in low concentration alkali solution. Different solution pre-treatment is followed to make surface modification on black silicon before Al2O3 passivation by atomic layer deposition. HNO3 and H2SO4 + H2O2 solution pre-treatment makes the silicon surface become hydrophilic, with contact angle decrease from 117.28° to about 30°. It is demonstrated that when the pre-treatment solution is nitric acid, formed ultrathin SiO x layer between Al2O3 layer and black silicon is found to increase effective carrier lifetime to 72.64 µs, which is obviously higher than that of the unpassivated black silicon. The passivation stacks of SiO x /Al2O3 are proved to be effective double layers for nanoscaled multicrystalline silicon surface.
Controlling the Local Electronic Properties of Si(553)-Au through Hydrogen Doping
NASA Astrophysics Data System (ADS)
Hogan, C.; Speiser, E.; Chandola, S.; Suchkova, S.; Aulbach, J.; Schäfer, J.; Meyer, S.; Claessen, R.; Esser, N.
2018-04-01
We propose a quantitative and reversible method for tuning the charge localization of Au-stabilized stepped Si surfaces by site-specific hydrogenation. This is demonstrated for Si(553)-Au as a model system by combining density functional theory simulations and reflectance anisotropy spectroscopy experiments. We find that controlled H passivation is a two-step process: step-edge adsorption drives excess charge into the conducting metal chain "reservoir" and renders it insulating, while surplus H recovers metallic behavior. Our approach illustrates a route towards microscopic manipulation of the local surface charge distribution and establishes a reversible switch of site-specific chemical reactivity and magnetic properties on vicinal surfaces.
Sulfur passivation techniques for III-V wafer bonding
NASA Astrophysics Data System (ADS)
Jackson, Michael James
The use of direct wafer bonding in a multijunction III-V solar cell structure requires the formation of a low resistance bonded interface with minimal thermal treatment. A wafer bonded interface behaves as two independent surfaces in close proximity, hence a major source of resistance is Fermi level pinning common in III-V surfaces. This study demonstrates the use of sulfur passivation in III-V wafer bonding to reduce the energy barrier at the interface. Two different sulfur passivation processes are addressed. A dry sulfur passivation method that utilizes elemental sulfur vapor activated by ultraviolet light in vacuum is compared with aqueous sulfide and native oxide etch treatments. Through the addition of a sulfur desorption step in vacuum, the UV-S treatment achieves bondable surfaces free of particles contamination or surface roughening. X-ray photoelectron spectroscopy measurements of the sulfur treated GaAs surfaces find lower levels of oxide and the appearance of sulfide species. After 4 hrs of air exposure, the UV-S treated GaAs actually showed an increase in the amount of sulfide bonded to the semiconductor, resulting in less oxidation compared to the aqueous sulfide treatment. Large area bonding is achieved for sulfur treated GaAs / GaAs and InP / InP with bulk fracture strength achieved after annealing at 400 °C and 300 °C respectively, without large compressive forces. The electrical conductivity across a sulfur treated 400 °C bonded n-GaAs/n-GaAs interface significantly increased with a short anneal (1-2 minutes) at elevated temperatures (50--600 °C). Interfaces treated with the NH4OH oxide etch, on the other hand, exhibited only mild improvement in accordance with previously published studies in this area. TEM and STEM images revealed similar interfacial microstructure changes with annealing for both sulfur treated and NH4OH interfaces, whereby some areas have direct semiconductor-semiconductor contact without any interfacial layer. Fitting the observed temperature dependence of zero bias conductance using a model for tunneling through a grain boundary reveals that the addition of sulfur at the interface lowered the interfacial energy barrier by 0.2 eV. The interface resistance for these sulfur-treated structures is less than 0.03 O·cm 2 at room temperature. These results emphasize that sulfur passivation techniques reduce interface states that otherwise limit the implementation of wafer bonding for high efficiency solar cells and other devices.
Development of high efficiency thin film polycrystalline silicon solar cells using VEST process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishihara, T.; Arimoto, S.; Morikawa, H.
1998-12-31
Thin film Si solar cell has been developed using Via-hole Etching for the Separation of Thin films (VEST) process. The process is based on SOI technology of zone-melting recrystallization (ZMR) followed by chemical vapor deposition (CVD), separation of thin film, and screen printing. Key points for achieving high efficiency are (1) quality of Si films, (2) back surface emitter (BSE), (3) front surface emitter etch-back process, (4) back surface field (BSF) layer thickness and its resistivity, and (5) defect passivation by hydrogen implantation. As a result of experiments, the authors have achieved 16% efficiency (V{sub oc}:0.589V, J{sub sc}:35.6mA/cm{sup 2}, F,F:0.763)more » with a cell size of 95.8cm{sup 2} and the thickness of 77 {micro}m. It is the highest efficiency ever reported for large area thin film Si solar cells.« less
Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.
Zu, Chenxi; Manthiram, Arumugam
2014-08-07
Lithium-metal anode degradation is one of the major challenges of lithium-sulfur (Li-S) batteries, hindering their practical utility as next-generation rechargeable battery chemistry. The polysulfide migration and shuttling associated with Li-S batteries can induce heterogeneities of the lithium-metal surface because it causes passivation by bulk insulating Li2S particles/electrolyte decomposition products on a lithium-metal surface. This promotes lithium dendrite formation and leads to poor lithium cycling efficiency with complicated lithium surface chemistry. Here, we show copper acetate as a surface stabilizer for lithium metal in a polysulfide-rich environment of Li-S batteries. The lithium surface is protected from parasitic reactions with the organic electrolyte and the migrating polysulfides by an in situ chemical formation of a passivation film consisting of mainly Li2S/Li2S2/CuS/Cu2S and electrolyte decomposition products. This passivation film also suppresses lithium dendrite formation by controlling the lithium deposition sites, leading to a stabilized lithium surface characterized by a dendrite-free morphology and improved surface chemistry.
Kim, Ji Young; Kim, A-Young; Liu, Guicheng; Woo, Jae-Young; Kim, Hansung; Lee, Joong Kee
2018-03-14
An amorphous SiO 2 (a-SiO 2 ) thin film was developed as an artificial passivation layer to stabilize Li metal anodes during electrochemical reactions. The thin film was prepared using an electron cyclotron resonance-chemical vapor deposition apparatus. The obtained passivation layer has a hierarchical structure, which is composed of lithium silicide, lithiated silicon oxide, and a-SiO 2 . The thickness of the a-SiO 2 passivation layer could be varied by changing the processing time, whereas that of the lithium silicide and lithiated silicon oxide layers was almost constant. During cycling, the surface of the a-SiO 2 passivation layer is converted into lithium silicate (Li 4 SiO 4 ), and the portion of Li 4 SiO 4 depends on the thickness of a-SiO 2 . A minimum overpotential of 21.7 mV was observed at the Li metal electrode at a current density of 3 mA cm -2 with flat voltage profiles, when an a-SiO 2 passivation layer of 92.5 nm was used. The Li metal with this optimized thin passivation layer also showed the lowest charge-transfer resistance (3.948 Ω cm) and the highest Li ion diffusivity (7.06 × 10 -14 cm 2 s -1 ) after cycling in a Li-S battery. The existence of the Li 4 SiO 4 artificial passivation layer prevents the corrosion of Li metal by suppressing Li dendritic growth and improving the ionic conductivity, which contribute to the low charge-transfer resistance and high Li ion diffusivity of the electrode.
Effect of PECVD SiNx/SiOyNx-Si interface property on surface passivation of silicon wafer
NASA Astrophysics Data System (ADS)
Jia, Xiao-Jie; Zhou, Chun-Lan; Zhu, Jun-Jie; Zhou, Su; Wang, Wen-Jing
2016-12-01
It is studied in this paper that the electrical characteristics of the interface between SiOyNx/SiNx stack and silicon wafer affect silicon surface passivation. The effects of precursor flow ratio and deposition temperature of the SiOyNx layer on interface parameters, such as interface state density Dit and fixed charge Qf, and the surface passivation quality of silicon are observed. Capacitance-voltage measurements reveal that inserting a thin SiOyNx layer between the SiNx and the silicon wafer can suppress Qf in the film and Dit at the interface. The positive Qf and Dit and a high surface recombination velocity in stacks are observed to increase with the introduced oxygen and minimal hydrogen in the SiOyNx film increasing. Prepared by deposition at a low temperature and a low ratio of N2O/SiH4 flow rate, the SiOyNx/SiNx stacks result in a low effective surface recombination velocity (Seff) of 6 cm/s on a p-type 1 Ω·cm-5 Ω·cm FZ silicon wafer. The positive relationship between Seff and Dit suggests that the saturation of the interface defect is the main passivation mechanism although the field-effect passivation provided by the fixed charges also make a contribution to it. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA050302) and the National Natural Science Foundation of China (Grant No. 61306076).
Excellent c-Si surface passivation by low-temperature atomic layer deposited titanium oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Baochen, E-mail: liaobaochen@nus.edu.sg; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576; A*STAR Institute of Materials Research and Engineering
2014-06-23
In this work, we demonstrate that thermal atomic layer deposited (ALD) titanium oxide (TiO{sub x}) films are able to provide a—up to now unprecedented—level of surface passivation on undiffused low-resistivity crystalline silicon (c-Si). The surface passivation provided by the ALD TiO{sub x} films is activated by a post-deposition anneal and subsequent light soaking treatment. Ultralow effective surface recombination velocities down to 2.8 cm/s and 8.3 cm/s, respectively, are achieved on n-type and p-type float-zone c-Si wafers. Detailed analysis confirms that the TiO{sub x} films are nearly stoichiometric, have no significant level of contaminants, and are of amorphous nature. The passivation is foundmore » to be stable after storage in the dark for eight months. These results demonstrate that TiO{sub x} films are also capable of providing excellent passivation of undiffused c-Si surfaces on a comparable level to thermal silicon oxide, silicon nitride, and aluminum oxide. In addition, it is well known that TiO{sub x} has an optimal refractive index of 2.4 in the visible range for glass encapsulated solar cells, as well as a low extinction coefficient. Thus, the results presented in this work could facilitate the re-emergence of TiO{sub x} in the field of high-efficiency silicon wafer solar cells.« less
Study of sulfur bonding on gallium arsenide (100) surfaces using supercritical fluid extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabauy, P.; Darici, Y.; Furton, K.G.
1995-12-01
In the last decades Gallium Arsenide (GaAs) has been considered the semiconductor that will replace silicon because of its direct band gap and high electron mobility. Problems with GaAs Fermi level pinning has halted its widespread use in the electronics industry. The formation of oxides on GaAs results in a high density of surface states that effectively pin the surface Fermi level at the midgap. Studies on sulfur passivation have eliminated oxidation and virtually unpinned the Fermi level on the GaAs surface. This has given rise to interest in sulfur-GaAs bonds. In this presentation, we will discuss the types ofmore » sulfur bonds extracted from a sulfur passivated GaAs (100) using Supercritical Fluid (CO2) Extraction (SFE). SFE can be a valuable tool in the study of chemical speciations on semiconductor surfaces. The variables evaluated to effectively study the sulfur species from the GaAs surface include passivation techniques, supercritical fluid temperatures, densities, and extraction times.« less
NASA Astrophysics Data System (ADS)
Bal, J. K.; Kundu, Sarathi
2013-03-01
Langmuir-Blodgett films of standard amphiphilic molecules like nickel arachidate and cadmium arachidate are grown on wet chemically passivated hydrophilic (OH-Si), hydrophobic (H-Si), and hydrophilic plus hydrophobic (Br-Si) Si(001) surfaces. Top surface morphologies and height-difference correlation functions g(r) with in-plane separation (r) are obtained from the atomic force microscopy studies. Our studies show that deposited bilayer and trilayer films have self-affine correlation behavior irrespective of different passivations and different types of amphiphilic molecules, however, liquid like correlation coexists only for a small part of r, which is located near the cutoff length (1/κ) or little below the correlation length ξ obtained from the liquid like and self-affine fitting, respectively. Thus, length scale dependent surface correlation behavior is observed for both types of Langmuir-Blodgett films. Metal ion specific interactions (ionic, covalent, etc.,) in the headgroup and the nature of the terminated bond (polar, nonpolar, etc.,) of Si surface are mainly responsible for having different correlation parameters.
NASA Astrophysics Data System (ADS)
Shi, Yunzhu; Collins, Liam; Balke, Nina; Liaw, Peter K.; Yang, Bin
2018-05-01
In-situ electrochemical (EC)-AFM is employed to investigate the localized corrosion of the AlxCoCrFeNi high-entropy alloys (HEAs). Surface topography changes on the micro/sub-micro scale are monitored at different applied anodizing potentials in a 3.5 wt% NaCl solution. The microstructural evolutions with the increased Al content in the alloys are characterized by SEM, TEM, EDS and EBSD. The results show that by increasing the Al content, the microstructure changes from single solid-solution to multi-phases, leading to the segregations of elements. Due to the microstructural variations in the AlxCoCrFeNi HEAs, localized corrosion processes in different ways after the breakdown of the passive film, which changes from pitting to phase boundary corrosion. The XPS results indicate that an increased Al content in the alloys/phases corresponds to a decreased corrosion resistance of the surface passive film.
Electrochemical behavior of Al in a non-aqueous alkyl carbonate solution containing LiBOB salt
NASA Astrophysics Data System (ADS)
Myung, Seung-Taek; Natsui, Hiroshi; Sun, Yang-Kook; Yashiro, Hitoshi
Aluminum was studied as a current collector for rechargeable lithium batteries to understand electrochemical and passivation behavior. Electrochemical polarization tests, in situ scratch polarization tests and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) analysis in lithium bis-oxalato borate (LiBOB)-containing alkyl carbonate solution were conducted. The Al foil did not follow the alloy and de-alloy process with the LiBOB salt in electrolyte at 0 V vs. Li/Li + in the cathodic sweep. During the anodic scan to the noble direction, the absence of an oxidation peak up to 3 V vs. Li/Li + indicated that the air-formed oxide layer of Al was not reduced to metal. Oxide-free Al surfaces made by the in situ scratch test during the electrochemical polarization resulted in abrupt alloy formation with Li at 0 V vs. Li/Li +, but the newly formed surface formed passive films at higher potential with oxygen, namely, Al-O compound, as confirmed by ToF-SIMS.
Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination
NASA Astrophysics Data System (ADS)
Li, Xiyan; Zhao, Yong-Biao; Fan, Fengjia; Levina, Larissa; Liu, Min; Quintero-Bermudez, Rafael; Gong, Xiwen; Quan, Li Na; Fan, James; Yang, Zhenyu; Hoogland, Sjoerd; Voznyy, Oleksandr; Lu, Zheng-Hong; Sargent, Edward H.
2018-03-01
The external quantum efficiencies of state-of-the-art colloidal quantum dot light-emitting diodes (QLEDs) are now approaching the limit set by the out-coupling efficiency. However, the brightness of these devices is constrained by the use of poorly conducting emitting layers, a consequence of the present-day reliance on long-chain organic capping ligands. Here, we report how conductive and passivating halides can be implemented in Zn chalcogenide-shelled colloidal quantum dots to enable high-brightness green QLEDs. We use a surface management reagent, thionyl chloride (SOCl2), to chlorinate the carboxylic group of oleic acid and graft the surfaces of the colloidal quantum dots with passivating chloride anions. This results in devices with an improved mobility that retain high external quantum efficiencies in the high-injection-current region and also feature a reduced turn-on voltage of 2.5 V. The treated QLEDs operate with a brightness of 460,000 cd m-2, significantly exceeding that of all previously reported solution-processed LEDs.
Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun
2016-05-01
Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.
NASA Astrophysics Data System (ADS)
Kiran, Rajni; Mallick, Shubhrangshu; Hahn, Suk-Ryong; Lee, T. S.; Sivananthan, Sivalingam; Ghosh, Siddhartha; Wijewarnasuriya, P. S.
2006-06-01
The effects of passivation with two different passivants, ZnS and CdTe, and two different passivation techniques, physical vapor deposition (PVD) and molecular beam epitaxy (MBE), were quantified in terms of the minority carrier lifetime and extracted surface recombination velocity on both MBE-grown medium-wavelength ir (MWIR) and long-wavelength ir HgCdTe samples. A gradual increment of the minority carrier lifetime was reported as the passivation technique was changed from PVD ZnS to PVD CdTe, and finally to MBE CdTe, especially at low temperatures. A corresponding reduction in the extracted surface recombination velocity in the same order was also reported for the first time. Initial data on the 1/ f noise values of as-grown MWIR samples showed a reduction of two orders of noise power after 1200-Å ZnS deposition.
Ibrahim Elmi, Omar; Cristini-Robbe, Odile; Chen, Minyu; Wei, Bin; Bernard, Rémy; Okada, Etienne; Yarekha, Dmitri A; Ouendi, Saliha; Portier, Xavier; Gourbilleau, Fabrice; Xu, Tao; Stievenard, Didier
2018-04-26
This paper describes an original design leading to the field effect passivation of Si n+-p junctions. Ordered Ag nanoparticle (Ag-NP) arrays with optimal size and coverage fabricated by means of nanosphere lithography and thermal evaporation, were embedded in ultrathin-Al2O3/SiNx:H stacks on the top of implanted Si n+-p junctions, to achieve effective surface passivation. One way to characterize surface passivation is to use photocurrent, sensitive to recombination centers. We evidenced an improvement of photocurrent by a factor of 5 with the presence of Ag nanoparticles. Finite-difference time-domain (FDTD) simulations combining with semi-quantitative calculations demonstrated that such gain was mainly due to the enhanced field effect passivation through the depleted region associated with the Ag-NPs/Si Schottky contacts. © 2018 IOP Publishing Ltd.
Swimming in an Unsteady World.
Koehl, M A R; Cooper, T
2015-10-01
When animals swim in aquatic habitats, the water through which they move is usually flowing. Therefore, an important part of understanding the physics of how animals swim in nature is determining how they interact with the fluctuating turbulent water currents in their environment. We addressed this issue using microscopic larvae of invertebrates in "fouling communities" growing on docks and ships to ask how swimming affects the transport of larvae between moving water and surfaces from which they disperse and onto which they recruit. Field measurements of the motion of water over fouling communities were used to design realistic turbulent wavy flow in a laboratory wave-flume over early-stage fouling communities. Fine-scale measurements of rapidly-varying water-velocity fields were made using particle-image velocimetry, and of dye-concentration fields (analog for chemical cues from the substratum) were made using planar laser-induced fluorescence. We used individual-based models of larvae that were swimming, passively sinking, passively rising, or were passive and neutrally buoyant to determine how their trajectories were affected by their motion through the water, rotation by local shear, and transport by ambient flow. Swimmers moved up and down in the turbulent flow more than did neutrally buoyant larvae. Although more of the passive sinkers landed on substrata below them, and more passive risers on surfaces above, swimming was the best strategy for landing on surfaces if their location was not predictable (as is true for fouling communities). When larvae moved within 5 mm of surfaces below them, passive sinkers and neutrally-buoyant larvae landed on the substratum, whereas many of the swimmers were carried away, suggesting that settling larvae should stop swimming as they near a surface. Swimming and passively-rising larvae were best at escaping from a surface below them, as precompetent larvae must do to disperse away. Velocities, vorticities, and odor-concentrations encountered by larvae fluctuated rapidly, with peaks much higher than mean values. Encounters with concentrations of odor or with vorticities above threshold increased as larvae neared the substratum. Although microscopic organisms swim slowly, their locomotory behavior can affect where they are transported by the movement of ambient water as well as the signals they encounter when they move within a few centimeters of surfaces. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni
2011-01-01
Surface mount electronic package test boards have been assembled using tin/lead (Sn/Pb) and lead-free (Pb-free or SnAgCu or SAC305) solders. The soldered surface mount packages include ball grid arrays (BGA), flat packs, various sizes of passive chip components, etc. They have been optically inspected after assembly and subsequently subjected to extreme temperature thermal cycling to assess their reliability or future deep space, long-term, extreme temperature environmental missions. In this study, the employed temperature range (-185oC to +125oC) covers military specifications (-55oC to +100oC), extreme old Martian (-120oC to +115oC), asteroid Nereus (-180oC to +25oC) and JUNO (-150oC to +120oC) environments. The boards were inspected at room temperature and at various intervals as a function of extreme temperature thermal cycling and bake duration. Electrical resistance measurements made at room temperature are reported and the tests to date have shown some change in resistance as a function of extreme temperature thermal cycling and some showed increase in resistance. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work will be carried out to understand the reliability of packages under extreme temperature applications (-185oC to +125oC) via continuously monitoring the daisy chain resistance for BGA, Flat-packs, lead less chip packages, etc. This paper will describe the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead and lead-free solder alloys under extreme temperature environments.
NASA Astrophysics Data System (ADS)
Ramesham, Rajeshuni
2011-02-01
Surface mount electronic package test boards have been assembled using tin/lead (Sn/Pb) and lead-free (Pb-free or SnAgCu or SAC305) solders. The soldered surface mount packages include ball grid arrays (BGA), flat packs, various sizes of passive chip components, etc. They have been optically inspected after assembly and subsequently subjected to extreme temperature thermal cycling to assess their reliability for future deep space, long-term, extreme temperature environmental missions. In this study, the employed temperature range (-185°C to +125°C) covers military specifications (-55°C to +100°C), extreme cold Martian (-120°C to +115°C), asteroid Nereus (-180°C to +25°C) and JUNO (-150°C to +120°C) environments. The boards were inspected at room temperature and at various intervals as a function of extreme temperature thermal cycling and bake duration. Electrical resistance measurements made at room temperature are reported and the tests to date have shown some change in resistance as a function of extreme temperature thermal cycling and some showed increase in resistance. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work will be carried out to understand the reliability of packages under extreme temperature applications (-185°C to +125°C) via continuously monitoring the daisy chain resistance for BGA, Flat-packs, lead less chip packages, etc. This paper will describe the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead and lead-free solder alloys under extreme temperature environments.
NASA Astrophysics Data System (ADS)
Ramanan, Narayanan; Lee, Bongmook; Misra, Veena
2016-03-01
Many passivation dielectrics are pursued for suppressing current collapse due to trapping/detrapping of access-region surface traps in AlGaN/GaN based metal oxide semiconductor heterojuction field effect transistors (MOS-HFETs). The suppression of current collapse can potentially be achieved either by reducing the interaction of surface traps with the gate via surface leakage current reduction, or by eliminating surface traps that can interact with the gate. But, the latter is undesirable since a high density of surface donor traps is required to sustain a high 2D electron gas density at the AlGaN/GaN heterointerface and provide a low ON-resistance. This presents a practical trade-off wherein a passivation dielectric with the optimal surface trap characteristics and minimal surface leakage is to be chosen. In this work, we compare MOS-HFETs fabricated with popular ALD gate/passivation dielectrics like SiO2, Al2O3, HfO2 and HfAlO along with an additional thick plasma-enhanced chemical vapor deposition SiO2 passivation. It is found that after annealing in N2 at 700 °C, the stack containing ALD HfAlO provides a combination of low surface leakage and a high density of shallow donor traps. Physics-based TCAD simulations confirm that this combination of properties helps quick de-trapping and minimal current collapse along with a low ON resistance.
Tommasino, L; Tokonami, S
2011-05-01
Four passive sampling elements (quatrefoil) have been recently developed, which transform airborne radionuclides into surface-bound radionuclides. These samplers, once exposed, result in thin radiation sources that can be detected by any real-time or passive detector. In particular, by using a large collecting-area sampler with a low surface density (g cm(-2)), it is possible to measure radon and its decay products by beta surface-contamination monitors, which are rarely used for these applications. The results obtained to date prove that it is finally possible to carry out the measurements of radon (and its decay products) indoors, in soil and in water simply by a Pancake Geiger-Muller counter. Emphasis will be given to those measurements, which are difficult, if not impossible, to carry out with existing technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hegedus, Steven S.
2015-09-08
An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerflessmore » techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to achieving millisecond lifetimes in kerfless silicon materials. Laser fired contacts to n-Si were developed for the first time using a Al/Sb/Ti metal stack giving contact resistances < 5 mOhm-cm2 when fired through several different dielectric layers. A new 2 step laser+chemical etch isolation technique was developed using a sacrificial top coating which avoids laser damage to Si passivation. Regarding the heterojunction emitter, analysis of front FHJ (1D) and IBC (2D) cells with range of p-layer conditions found that a 2-stage high/low doped p-layer was optimum: the low doped region has lower defects giving higher Voc and the high doped region gave a better contact to the metal. A significant effort was spent studying the patterning process and its contribution to degradation of passivation and reproducibility. Several promising new cleaning, contact and deposition patterning and processing approaches were implemented leading to fabrication of several runs with cells having 19-20% efficiency which were stable over several months. This program resulted in the training and support of 12 graduate students, publication of 21 journal papers and 14 conference papers.« less
Reactions of Persistent Carbenes with Hydrogen-Terminated Silicon Surfaces.
Zhukhovitskiy, Aleksandr V; Mavros, Michael G; Queeney, K T; Wu, Tony; Voorhis, Troy Van; Johnson, Jeremiah A
2016-07-13
Surface passivation has enabled the development of silicon-based solar cells and microelectronics. However, a number of emerging applications require a paradigm shift from passivation to functionalization, wherein surface functionality is installed proximal to the silicon surface. To address this need, we report here the use of persistent aminocarbenes to functionalize hydrogen-terminated silicon surfaces via Si-H insertion reactions. Through the use of model compounds (H-Si(TMS)3 and H-Si(OTMS)3), nanoparticles (H-SiNPs), and planar Si(111) wafers (H-Si(111)), we demonstrate that among different classes of persistent carbenes, the more electrophilic and nucleophilic ones, in particular, a cyclic (alkyl)(amino)carbene (CAAC) and an acyclic diaminocarbene (ADAC), are able to undergo insertion into Si-H bonds at the silicon surface, forming persistent C-Si linkages and simultaneously installing amine or aminal functionality in proximity to the surface. The CAAC (6) is particularly notable for its clean insertion reactivity under mild conditions that produces monolayers with 21 ± 3% coverage of Si(111) atop sites, commensurate with the expected maximum of ∼20%. Atomic force and transmission electron microscopy, nuclear magnetic resonance, X-ray photoelectron, and infrared spectroscopy, and time-of-flight secondary ion mass spectrometry provided evidence for the surface Si-H insertion process. Furthermore, computational studies shed light on the reaction energetics and indicated that CAAC 6 should be particularly effective at binding to silicon dihydride, trihydride, and coupled monohyride motifs, as well as oxidized surface sites. Our results pave the way for the further development of persistent carbenes as universal ligands for silicon and potentially other nonmetallic substrates.
NASA Astrophysics Data System (ADS)
Hardman, M.; Brodzik, M. J.; Long, D. G.
2017-12-01
Since 1978, the satellite passive microwave data record has been a mainstay of remote sensing of the cryosphere, providing twice-daily, near-global spatial coverage for monitoring changes in hydrologic and cryospheric parameters that include precipitation, soil moisture, surface water, vegetation, snow water equivalent, sea ice concentration and sea ice motion. Up until recently, the available global gridded passive microwave data sets have not been produced consistently. Various projections (equal-area, polar stereographic), a number of different gridding techniques were used, along with various temporal sampling as well as a mix of Level 2 source data versions. In addition, not all data from all sensors have been processed completely and they have not been processed in any one consistent way. Furthermore, the original gridding techniques were relatively primitive and were produced on 25 km grids using the original EASE-Grid definition that is not easily accommodated in modern software packages. As part of NASA MEaSUREs, we have re-processed all data from SMMR, all SSM/I-SSMIS and AMSR-E instruments, using the most mature Level 2 data. The Calibrated, Enhanced-Resolution Brightness Temperature (CETB) Earth System Data Record (ESDR) gridded data are now available from the NSIDC DAAC. The data are distributed as netCDF files that comply with CF-1.6 and ACDD-1.3 conventions. The data have been produced on EASE 2.0 projections at smoothed, 25 kilometer resolution and spatially-enhanced resolutions, up to 3.125 km depending on channel frequency, using the radiometer version of the Scatterometer Image Reconstruction (rSIR) method. We expect this newly produced data set to enable scientists to better analyze trends in coastal regions, marginal ice zones and in mountainous terrain that were not possible with the previous gridded passive microwave data. The use of the EASE-Grid 2.0 definition and netCDF-CF formatting allows users to extract compliant geotiff images and provides for easy importing and correct reprojection interoperability in many standard packages. As a consistently-processed, high-quality satellite passive microwave ESDR, we expect this data set to replace earlier gridded passive microwave data sets, and to pave the way for new insights from higher-resolution derived geophysical products.
NASA Technical Reports Server (NTRS)
Neukum, G.; Lehmann, F.; Regner, P.; Jaumann, R.
1988-01-01
Remote sensing of the Martian surface from the ground and from orbiting spacecraft has provided some first-order insight into the mineralogical-chemical composition and the weathering state of Martian surface materials. Much more detailed information can be gathered from performing such measurements in situ at the landing sites or from a rover in combination with analogous measurements from orbit. Measurements in the wavelength range of approximately 0.3 to 12.0 micrometers appear to be suitable to characterize much of the physical, mineralogical, petrological, and chemical properties of Martian surface materials and the weathering and other alteration processes that have acted on them. It is of particular importance to carry out measurements at the same time over a broad wavelength range since the reflectance signatures are caused by different effects and hence give different and complementing information. It appears particularly useful to employ a combination of active and passive methods because the use of active laser spectroscopy allows the obtaining of specific information on thermal infrared reflectance of surface materials. It seems to be evident that a spectrometric survey of Martian materials has to be focused on the analysis of altered and fresh mafic materials and rocks, water-bearing silicates, and possibly carbonates.
The Role of Surface Passivation in Controlling Ge Nanowire Faceting.
Gamalski, A D; Tersoff, J; Kodambaka, S; Zakharov, D N; Ross, F M; Stach, E A
2015-12-09
In situ transmission electron microscopy observations of nanowire morphologies indicate that during Au-catalyzed Ge nanowire growth, Ge facets can rapidly form along the nanowire sidewalls when the source gas (here, digermane) flux is decreased or the temperature is increased. This sidewall faceting is accompanied by continuous catalyst loss as Au diffuses from the droplet to the wire surface. We suggest that high digermane flux and low temperatures promote effective surface passivation of Ge nanowires with H or other digermane fragments inhibiting diffusion and attachment of Au and Ge on the sidewalls. These results illustrate the essential roles of the precursor gas and substrate temperature in maintaining nanowire sidewall passivation, necessary to ensure the growth of straight, untapered, ⟨111⟩-oriented nanowires.
Wang, Wei-Cheng; Tsai, Meng-Chen; Yang, Jason; Hsu, Chuck; Chen, Miin-Jang
2015-05-20
In this study, efficient nanotextured black silicon (NBSi) solar cells composed of silicon nanowire arrays and an Al2O3/TiO2 dual-layer passivation stack on the n(+) emitter were fabricated. The highly conformal Al2O3 and TiO2 surface passivation layers were deposited on the high-aspect-ratio surface of the NBSi wafers using atomic layer deposition. Instead of the single Al2O3 passivation layer with a negative oxide charge density, the Al2O3/TiO2 dual-layer passivation stack treated with forming gas annealing provides a high positive oxide charge density and a low interfacial state density, which are essential for the effective field-effect and chemical passivation of the n(+) emitter. In addition, the Al2O3/TiO2 dual-layer passivation stack suppresses the total reflectance over a broad range of wavelengths (400-1000 nm). Therefore, with the Al2O3/TiO2 dual-layer passivation stack, the short-circuit current density and efficiency of the NBSi solar cell were increased by 11% and 20%, respectively. In conclusion, a high efficiency of 18.5% was achieved with the NBSi solar cells by using the n(+)-emitter/p-base structure passivated with the Al2O3/TiO2 stack.
Parameters influencing the course of passive drug loading into lipid nanoemulsions.
Göke, Katrin; Bunjes, Heike
2018-05-01
Passive drug loading can be used to effectively identify suitable colloidal lipid carrier systems for poorly water-soluble drugs. This method comprises incubation of preformed carrier systems with drug powder and subsequent determination of the resulting drug load of the carrier particles. Until now, the passive loading mechanism is unknown, which complicates reliable routine use. In this work, the influence of drug characteristics on the course of passive loading was investigated systematically varying drug surface area and drug solubility. Fenofibrate and flufenamic acid were used as model drugs; the carrier system was a trimyristin nanodispersion. Loading progress was analyzed by UV spectroscopy or by a novel method based on differential scanning calorimetry. While increasing drug solubility by micelle incorporation did not speed up passive loading, a large drug surface area and high water solubility were key parameters for fast loading. Since both factors are crucial in drug dissolution as described by the Noyes-Whitney equation, these findings point to a dissolution-diffusion-based passive loading mechanism. Accordingly, passive loading also occurred when drug and carrier particles were separated by a dialysis membrane. Knowledge of the loading mechanism allows optimizing the conditions for future passive loading studies and assessing the limitations of the method. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of morphology parameters on anti-icing performance in superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Nguyen, Thanh-Binh; Park, Seungchul; Lim, Hyuneui
2018-03-01
In this paper, we report the contributions of actual ice-substrate contact area and nanopillar height to passive anti-icing performance in terms of adhesion force and freezing time. Well-textured nanopillars with various parameters were fabricated via colloidal lithography and a dry etching process. The nanostructured quartz surface was coated with low-energy material to confer water-repellent properties. These superhydrophobic surfaces were investigated to determine the parameters essential for reducing adhesion strength and delaying freezing time. A well-textured surface with nanopillars of very small top diameter, regardless of height, could reduce adhesion force and delay freezing time in a subsequent de-icing process. Small top diameters of nanopillars also ensured the metastable Cassie-Baxter state based on energy barrier calculations. The results demonstrated the important role of areal fraction in anti-icing efficiency, and the negligible contribution of texture height. This insight into icing phenomena should lead to design of improved ice-phobic surfaces in the future.
NASA Astrophysics Data System (ADS)
Yoshida, Naofumi; Bermundo, Juan Paolo; Ishikawa, Yasuaki; Nonaka, Toshiaki; Taniguchi, Katsuto; Uraoka, Yukiharu
2018-03-01
We investigated a fluorine-containing polysiloxane (Poly-SX) passivation layer fabricated by solution process for amorphous InGaZnO (a-IGZO) thin-film transistors (TFT). This passivation layer greatly improved the stability of the a-IGZO device even after being subjected to positive bias stress (PBS) and negative bias stress (NBS). The mobility (µ) of TFTs passivated by fluorine-containing Poly-SX increased by 31%-56% (10.50-12.54 cm2 V-1 s-1) compared with TFTs passivated by non-fluorinated Poly-SX (8.04 cm2 V-1 s-1). Increasing the amount of fluorine additives led to a higher µ in passivated TFTs. Aside from enhancing the performance, these passivation layers could increase the reliability of a-IGZO TFTs under PBS and NBS with a minimal threshold voltage shift (ΔV th) of up to +0.2 V and -0.1 V, respectively. Additionally, all TFTs passivated by the fluorinated passivation materials did not exhibit a hump effect after NBS. We also showed that fluorinated photosensitive Poly-SX, which can be fabricated without any dry etching process, had an effective passivation property. In this report, we demonstrated the photolithography of Poly-SX, and electrical properties of Poly-SX passivated TFTs, and analyzed the state of the a-IGZO layer to show the large potential of Poly-SX as an effective solution-processed passivation material.
NASA Astrophysics Data System (ADS)
Anantathanasarn, Sanguan; Hasegawa, Hideki
2002-05-01
A novel surface passivation technique for GaAs using an ultrathin GaN interface control layer (GaN ICL) formed by surface nitridation was characterized by ultrahigh vacuum (UHV) photoluminescence (PL) and capacitance-voltage ( C- V) measurements. The PL quantum efficiency was dramatically enhanced after being passivated by the GaN ICL structure, reaching as high as 30 times of the initial clean GaAs surface. Further analysis of PL data was done by the PL surface state spectroscopy (PLS 3) simulation technique. PL and C- V results are in good agreement indicating that ultrathin GaN ICL reduces the gap states and unpins the Fermi level, realizing a wide movement of Fermi level within the midgap region and reduction of the effective surface recombination velocity by a factor of 1/60. GaN layer also introduced a large negative surface fixed charge of about 10 12 cm -2. A further improvement took place by depositing a Si 3N 4 layer on GaN ICL/GaAs structure.
Consequences of atomic layer etching on wafer scale uniformity in inductively coupled plasmas
NASA Astrophysics Data System (ADS)
Huard, Chad M.; Lanham, Steven J.; Kushner, Mark J.
2018-04-01
Atomic layer etching (ALE) typically divides the etching process into two self-limited reactions. One reaction passivates a single layer of material while the second preferentially removes the passivated layer. As such, under ideal conditions the wafer scale uniformity of ALE should be independent of the uniformity of the reactant fluxes onto the wafers, provided all surface reactions are saturated. The passivation and etch steps should individually asymptotically saturate after a characteristic fluence of reactants has been delivered to each site. In this paper, results from a computational investigation are discussed regarding the uniformity of ALE of Si in Cl2 containing inductively coupled plasmas when the reactant fluxes are both non-uniform and non-ideal. In the parameter space investigated for inductively coupled plasmas, the local etch rate for continuous processing was proportional to the ion flux. When operated with saturated conditions (that is, both ALE steps are allowed to self-terminate), the ALE process is less sensitive to non-uniformities in the incoming ion flux than continuous etching. Operating ALE in a sub-saturation regime resulted in less uniform etching. It was also found that ALE processing with saturated steps requires a larger total ion fluence than continuous etching to achieve the same etch depth. This condition may result in increased resist erosion and/or damage to stopping layers using ALE. While these results demonstrate that ALE provides increased etch depth uniformity, they do not show an improved critical dimension uniformity in all cases. These possible limitations to ALE processing, as well as increased processing time, will be part of the process optimization that includes the benefits of atomic resolution and improved uniformity.
Han, Rowland H.; Yarbrough, Chester K.; Patterson, Edward E.; Yang, Xiao-Feng; Miller, John W.; Rothman, Steven M.; D'Ambrosio, Raimondo
2015-01-01
Focal cortical cooling inhibits seizures and prevents acquired epileptogenesis in rodents. To investigate the potential clinical utility of this treatment modality, we examined the thermal characteristics of canine and human brain undergoing active and passive surface cooling in intraoperative settings. Four patients with intractable epilepsy were treated in a standard manner. Before the resection of a neocortical epileptogenic focus, multiple intraoperative studies of active (custom-made cooled irrigation-perfused grid) and passive (stainless steel probe) cooling were performed. We also actively cooled the neocortices of two dogs with perfused grids implanted for 2 hours. Focal surface cooling of the human brain causes predictable depth-dependent cooling of the underlying brain tissue. Cooling of 0.6–2°C was achieved both actively and passively to a depth of 10–15 mm from the cortical surface. The perfused grid permitted comparable and persistent cooling of canine neocortex when the craniotomy was closed. Thus, the human cortex can easily be cooled with the use of simple devices such as a cooling grid or a small passive probe. These techniques provide pilot data for the design of a permanently implantable device to control intractable epilepsy. PMID:25902001
Berg, Nora G; Nolan, Michael W; Paskova, Tania; Ivanisevic, Albena
2014-12-30
An aqueous surface modification of gallium nitride was employed to attach biomolecules to the surface. The modification was a simple two-step process using a single linker molecule and mild temperatures. The presence of the peptide on the surface was confirmed with X-ray photoelectron spectroscopy. Subsequently, the samples were placed in water baths and exposed to ionizing radiation to examine the effects of the radiation on the material in an environment similar to the body. Surface analysis confirmed degradation of the surface of GaN after radiation exposure in water; however, the peptide molecules successfully remained on the surface following exposure to ionizing radiation. We hypothesize that during radiation exposure of the samples, the radiolysis of water produces peroxide and other reactive species on the sample surface. Peroxide exposure promotes the formation of a more stable layer of gallium oxyhydroxide which passivates the surface better than other oxide species.
Surface Passivation in Empirical Tight Binding
NASA Astrophysics Data System (ADS)
He, Yu; Tan, Yaohua; Jiang, Zhengping; Povolotskyi, Michael; Klimeck, Gerhard; Kubis, Tillmann
2016-03-01
Empirical Tight Binding (TB) methods are widely used in atomistic device simulations. Existing TB methods to passivate dangling bonds fall into two categories: 1) Method that explicitly includes passivation atoms is limited to passivation with atoms and small molecules only. 2) Method that implicitly incorporates passivation does not distinguish passivation atom types. This work introduces an implicit passivation method that is applicable to any passivation scenario with appropriate parameters. This method is applied to a Si quantum well and a Si ultra-thin body transistor oxidized with SiO2 in several oxidation configurations. Comparison with ab-initio results and experiments verifies the presented method. Oxidation configurations that severely hamper the transistor performance are identified. It is also shown that the commonly used implicit H atom passivation overestimates the transistor performance.
NASA Technical Reports Server (NTRS)
Shogrin, Bradley A.; Jones, William R., Jr.; Herrera-Fierro, Pilar; Jansen, Mark J.
2001-01-01
The boundary-lubrication performance of two perfluoropolyether (PFPE) thin films in the presence of passivated 440C stainless steel is presented. The study used a standard ball on disk (BoD) tribometer in dry nitrogen and a vacuum spiral orbit tribometer (SOT). Stainless steel surfaces were passivated with one of four techniques: high and low temperature chromic acid bath, a tricresyl phosphate (TCP) soak, or UV/Ozone treated for 15 min. After passivation, each BoD disk had a 400A film of Krytox 16256 (PFPE) applied to it. The lifetimes of these films were quantified by measuring the number of sliding cycles before an increase in friction occurred. The lubricated lifetime of the 440C couple was not altered as a result of the various passivation techniques. The resulting surface chemistry of each passivation technique was examined using X-ray photoelectron spectroscopy (XPS). The SOT was used to examine the effects of the TCP treatment on the lubricated lifetime of another PFPE, Brayco 815Z, under rolling conditions. None of the passivation techniques were found to dramatically increase the oxide film thickness or lubricated lifetimes.
Li, Hao; Tao, Leiming; Huang, Feihong; Sun, Qiang; Zhao, Xiaojuan; Han, Junbo; Shen, Yan; Wang, Mingkui
2017-11-08
Perovskite solar cells have been demonstrated as promising low-cost and highly efficient next-generation solar cells. Enhancing V OC by minimization the interfacial recombination kinetics can further improve device performance. In this work, we for the first time reported on surface passivation of perovskite layers with chemical modified graphene oxides, which act as efficient interlayer to reduce interfacial recombination and enhance hole extraction as well. Our modeling points out that the passivation effect mainly comes from the interaction between functional group (4-fluorophenyl) and under-coordinated Pb ions. The resulting perovskite solar cells achieved high efficient power conversion efficiency of 18.75% with enhanced high open circuit V OC of 1.11 V. Ultrafast spectroscopy, photovoltage/photocurrent transient decay, and electronic impedance spectroscopy characterizations reveal the effective passivation effect and the energy loss mechanism. This work sheds light on the importance of interfacial engineering on the surface of perovskite layers and provides possible ways to improve device efficiency.
Im, Ju-Hee; Kim, Hong-Rae; An, Byoung-Gi; Chang, Young Wook; Kang, Min-Jung; Lee, Tae-Geol; Son, Jin Gyeng; Park, Jae-Gwan; Pyun, Jae-Chul
2017-06-15
The direct in situ synthesis of cadmium sulfide (CdS) nanowires (NWs) was presented by direct synthesis of CdS NWs on the gold surface of an interdigitated electrode (IDE). In this work, we investigated the effect of a strong oxidant on the surfaces of the CdS NWs using X-ray photoelectron spectroscopy, transmission electron microscopy, and time-of-flight secondary ion mass spectrometry. We also fabricated a parylene-C film as a surface passivation layer for in situ-synthesized CdS NW photosensors and investigated the influence of the parylene-C passivation layer on the photoresponse during the coating of parylene-C under vacuum using a quartz crystal microbalance and a photoanalyzer. Finally, we used the in situ-synthesized CdS NW photosensor with the parylene-C passivation layer to detect the chemiluminescence of horseradish peroxidase and luminol and applied it to medical detection of carcinoembryonic antigen. Copyright © 2017 Elsevier B.V. All rights reserved.
Passivation of Si(111) surfaces with electrochemically grafted thin organic films
NASA Astrophysics Data System (ADS)
Roodenko, K.; Yang, F.; Hunger, R.; Esser, N.; Hinrichs, K.; Rappich, J.
2010-09-01
Ultra thin organic films (about 5 nm thick) of nitrobenzene and 4-methoxydiphenylamine were deposited electrochemically on p-Si(111) surfaces from benzene diazonium compounds. Studies based on atomic force microscopy, infrared spectroscopic ellipsometry and x-ray photoelectron spectroscopy showed that upon exposure to atmospheric conditions the oxidation of the silicon interface proceed slower on organically modified surfaces than on unmodified hydrogen passivated p-Si(111) surfaces. Effects of HF treatment on the oxidized organic/Si interface and on the organic layer itself are discussed.
NASA Astrophysics Data System (ADS)
Tong, Jingnan; To, Alexander; Lennon, Alison; Hoex, Bram
2017-08-01
Silicon nitride (SiN x ) synthesised by low-temperature plasma enhanced chemical vapour deposition (PECVD) is the most extensively used antireflection coating for crystalline silicon solar cells because of its tunable refractive index in combination with excellent levels of surface and bulk passivation. This has attracted a significant amount of research on developing SiN x films towards an optimal electrical and optical performance. Typically, recipes are first optimised in lab-scale reactors and subsequently, the best settings are transferred to high-throughput reactors. In this paper, we show that for one particular, but widely used, PECVD reactor configuration this upscaling is severely hampered by an important experimental artefact. Specifically, we report on the unintentional deposition of a dual layer structure in a dual mode AK 400 plasma reactor from Roth & Rau which has a significant impact on its surface passivation performance. It is found that the radio frequency (RF) substrate bias ignites an unintentional depositing plasma before the ignition of the main microwave (MW) plasma. This RF plasma deposits a Si-rich intervening SiN x layer (refractive index = 2.4) while using a recipe for stoichiometric SiN x . This layer was found to be 18 nm thick in our case and had an extraordinary impact on the Si surface passivation, witnessed by a reduction in effective surface recombination velocity from 22.5 to 6.2 cm/s. This experimental result may explain some “out of the ordinary” excellent surface passivation results reported recently for nearly stoichiometric SiN x films and has significant consequences when transferring these results to high-throughput deposition systems.
NASA Astrophysics Data System (ADS)
Hardman, M.; Brodzik, M. J.; Long, D. G.; Paget, A. C.; Armstrong, R. L.
2015-12-01
Beginning in 1978, the satellite passive microwave data record has been a mainstay of remote sensing of the cryosphere, providing twice-daily, near-global spatial coverage for monitoring changes in hydrologic and cryospheric parameters that include precipitation, soil moisture, surface water, vegetation, snow water equivalent, sea ice concentration and sea ice motion. Currently available global gridded passive microwave data sets serve a diverse community of hundreds of data users, but do not meet many requirements of modern Earth System Data Records (ESDRs) or Climate Data Records (CDRs), most notably in the areas of intersensor calibration, quality-control, provenance and consistent processing methods. The original gridding techniques were relatively primitive and were produced on 25 km grids using the original EASE-Grid definition that is not easily accommodated in modern software packages. Further, since the first Level 3 data sets were produced, the Level 2 passive microwave data on which they were based have been reprocessed as Fundamental CDRs (FCDRs) with improved calibration and documentation. We are funded by NASA MEaSUREs to reprocess the historical gridded data sets as EASE-Grid 2.0 ESDRs, using the most mature available Level 2 satellite passive microwave (SMMR, SSM/I-SSMIS, AMSR-E) records from 1978 to the present. We have produced prototype data from SSM/I and AMSR-E for the year 2003, for review and feedback from our Early Adopter user community. The prototype data set includes conventional, low-resolution ("drop-in-the-bucket" 25 km) grids and enhanced-resolution grids derived from the two candidate image reconstruction techniques we are evaluating: 1) Backus-Gilbert (BG) interpolation and 2) a radiometer version of Scatterometer Image Reconstruction (SIR). We summarize our temporal subsetting technique, algorithm tuning parameters and computational costs, and include sample SSM/I images at enhanced resolutions of up to 3 km. We are actively working with our Early Adopters to finalize content and format of this new, consistently-processed high-quality satellite passive microwave ESDR.
NASA Astrophysics Data System (ADS)
Jo, Jung-Ho; Kim, Min-Seok; Han, Chang-Yeol; Jang, Eun-Pyo; Do, Young Rag; Yang, Heesun
2018-01-01
Fluorescent efficiency of various visible quantum dots (QDs) has been incessantly improved to meet industrially high standard mainly through the advance in core/shell heterostructural design, however, their stability against degradable environments appears still lacking. The most viable strategy to cope with this issue was to exploit chemically inert oxide phases to passivate QD surface in the form of either individual overcoating or matrix embedding. Herein, we report a simple but effective means to passivate QD surface by complexing its organic ligands with a metal alkoxide of titanium isopropoxide (Ti(i-PrO)4). For this, highly efficient red-emitting InP QDs with a multi-shell structure of ZnSeS intermediate plus ZnS outer shell are first synthesized and then the surface of resulting InP/ZnSeS/ZnS QDs is in-situ decorated with Ti(i-PrO)4. The presence of Tisbnd O species from Ti(i-PrO)4 on QD surface is verified by x-ray photoelectron and Fourier transform infrared spectroscopic analyses. Two comparative dispersions of pristine versus Ti(i-PrO)4-complexed QDs are exposed for certain periods of time to UV photon and heat and their temporal changes in photoluminescence are monitored, resulting in a huge improvement in QD stability from the latter ones through Ti(i-PrO)4-mediated better surface passivation.
Local Fine Structural Insight into Mechanism of Electrochemical Passivation of Titanium.
Wang, Lu; Yu, Hongying; Wang, Ke; Xu, Haisong; Wang, Shaoyang; Sun, Dongbai
2016-07-20
Electrochemically formed passive film on titanium in 1.0 M H2SO4 solution and its thickness, composition, chemical state, and local fine structure are examined by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure. AES analysis reveals that the thickness and composition of oxide film are proportional to the reciprocal of current density in potentiodynamic polarization. XPS depth profiles of the chemical states of titanium exhibit the coexistence of various valences cations in the surface. Quantitative X-ray absorption near edge structure analysis of the local electronic structure of the topmost surface (∼5.0 nm) shows that the ratio of [TiO2]/[Ti2O3] is consistent with that of passivation/dissolution of electrochemical activity. Theoretical calculation and analysis of extended X-ray absorption fine structure spectra at Ti K-edge indicate that both the structures of passivation and dissolution are distorted caused by the appearance of two different sites of Ti-O and Ti-Ti. And the bound water in the topmost surface plays a vital role in structural disorder confirmed by XPS. Overall, the increase of average Ti-O coordination causes the electrochemical passivation, and the dissolution is due to the decrease of average Ti-Ti coordination. The structural variations of passivation in coordination number and interatomic distance are in good agreement with the prediction of point defect model.
NASA Astrophysics Data System (ADS)
Mlynarski, Amy
In order to optimize the chemical mechanical planarization (CMP) process, there is a need to further understand the synergistic relationship between chemical and mechanical parameters to enhance the polishing process. CMP chemistry is very complex, as it contains complexing agents, oxidizing agents, passivating agents, and abrasive particles. This variety of components ensues chaos within the system, which complicates the understanding of the direct impact each component has on the CMP process. In order for there to be efficiency in the polishing process, specifically for copper (Cu) polishing, the chemistry must create a softened passivation layer on the Cu surface that is able to be readily removed by applied mechanical abrasion. Focusing on Cu CMP, the oxidation of Cu to Cu2+ needs to be thoroughly understood in order to probe the formation of creating this ideal passivated layer, which protects recessed Cu regions. The type of film that is formed, the strength of the film, and even the efficiency of film removal will be altered depending on the chemistry of interaction at the Cu surface. This thesis focuses on understanding the working mechanism of the film formation on Cu, depending on the passivating agent added to the system. The different passivating agents used, more specifically benzotriazole (BTA), triazole (TAZ), salicylhydroxamic acid (SHA), and benzimidazole (BIA), have all been known to create a light coat of protection on the recessed metal, providing corrosion resistance. In order to study the differences in these films, many different techniques can be utilized to characterize the films, such as electrochemical scans, referred to as Tafel plots, which will be performed to compare the differences of the films. By altering the temperature within the system, the activation energy for each system can also be determined as another way to characterize the density of the passive film formed. Furthermore, the generation of *OH will be monitored since the formation of *OH is imperative for catalyzing the Cu-amino acid complexes, necessary for obtaining adequate removal rates. The amount of *OH generated from each system would have a direct correlation to the polishing performance for the different systems. Additionally, the effect of changing mechanical parameters or consumables used will alter the polish, more specifically the amount of friction generated during the polishes. This work discovered that when comparing all of the different types of inhibitors, there was a significant difference seen in the type of film formed as well as the stability of the film, strongly dependent on the concentration of the corrosion inhibitor. The calculated activation energy showed a direct correlation to the concentration of the corrosion inhibitor; more specifically, as the concentration of the inhibitor increases, so does the activation energy. By looking at the generated amount of *OH for the complexes, more specifically BTA and SHA, there is a minimal amount of *OH generated within the system compared to that of TAZ and BIA which resemble more like a system containing no inhibitor at all. This would once again show how the structure determines function of the inhibitor in regards to how the complex changes for the different molecules. The removal rates for these systems, both at 100 ppm and 500 ppm, show a strong correlation to the previously discussed activation energies. BTA shows extremely low removal rates, which seems to be diminished at even higher concentration, since the film created is so dense due to the pi-pi electron interactions. Similar trends are seen in the results from TAZ where the removal rates decrease as the concentration of the inhibitor increases. Furthermore, SHA shows significant material removal rates (MRR) at lower concentrations, but the rates are vastly different when increasing the concentration to 500 ppm. This could be because the complex that forms with the surface is a stable ring-like complex, but once enough inhibitor is added, the SHA complex covers the surface entirely, eliminating any chance of Cu-glycine interaction, which would promote removal rate. Unlike the other inhibitors, the removal rates for BIA show that as the concentration of the inhibitor increases, the removal rates significantly increase as well. Since this inhibitor forms a "weaker" complex, comparatively, the more inhibitor added would allow for more of the Cu-glycine interactions to take place.
Imparting Icephobicity with Substrate Flexibility
NASA Astrophysics Data System (ADS)
Schutzius, Thomas; Vasileiou, Thomas; Poulikakos, Dimos
2017-11-01
Ice accumulation poses serious safety and performance issues for modern infrastructure. Rationally designed superhydrophobic surfaces have demonstrated potential as a passive means to mitigate ice accretion; however, further studies on solutions that reduce impalement and contact time for impacting supercooled droplets are urgently needed. Here we demonstrate the collaborative effect of substrate flexibility and surface texture on enhancing icephobicity and repelling viscous droplets. We first investigate the influence of increased viscosity on impalement resistance and droplet-substrate contact time. Then we examine the effect of droplet partial solidification on recoil by impacting supercooled water droplets onto surfaces containing ice nucleation promoters. We demonstrate a passive method for shedding partially solidified droplets that does not rely on the classic recoil mechanism. Using an energy-based model, we identify a previously unexplored mechanism whereby the substrate oscillation governs the rebound process by efficiently absorbing the droplet kinetic energy and rectifying it back, allowing for droplet recoil. This mechanism applies for a range of droplet viscosities and ice slurries, which do not rebound from rigid superhydrophobic substrates. Partial support of the Swiss National Science Foundation under Grant No. 162565 and the European Research Council under Advanced Grant No. 669908 (INTICE) is acknowledged.
Effect of H2O2 and nonionic surfactant in alkaline copper slurry
NASA Astrophysics Data System (ADS)
Haobo, Yuan; Yuling, Liu; Mengting, Jiang; Guodong, Chen; Weijuan, Liu; Shengli, Wang
2015-01-01
For improving the polishing performance, in this article, the roles of a nonionic surfactant (Fatty alcohol polyoxyethylene ether) and H2O2 were investigated in the chemical mechanical planarization process, respectively. Firstly, the effects of the nonionic surfactant on the within-wafer non-uniformity (WIWNU) and the surface roughness were mainly analyzed. In addition, the passivation ability of the slurry, which had no addition of BTA, was also discussed from the viewpoint of the static etch rate, electrochemical curve and residual step height under different concentrations of H2O2. The experimental results distinctly revealed that the nonionic surfactant introduced in the slurry improved the WIWNU and surface roughness, and that a 2 vol% was considered as an appropriate concentration relatively. When the concentration of H2O2 surpasses 3 vol%, the slurry will possess a relatively preferable passivation ability, which can effectively decrease the step height and contribute to acquiring a flat and smooth surface. Hence, based on the result of these experiments, the influences of the nonionic surfactant and H2O2 are further understood, which means the properties of slurry can be improved.
Development of advanced silicon solar cells for Space Station Freedom
NASA Technical Reports Server (NTRS)
Lillington, David R.
1990-01-01
This report describes the development of large area high efficiency wrapthrough solar cells for Space Station Freedom. The goal of this contract was the development and fabrication of 8 x 8 cm coplanar back contact solar cells with a minimum output of 1.039 watts/cell. The first task in this program was a modeling study to determine the optimum configuration of the cell and to study the effects of surface passivation, substrate resistivity, and back surface field on the BOL and EOL performance. In addition, the optical stack, including the cell cover, AR coatings, and Kapton blanket, was modeled to optimize 'on orbit' operation. The second phase was a manufacturing development phase to develop high volume manufacturing processes for the reliable production of low recombination velocity boron back surface fields, techniques to produce smooth, low leakage wrapthrough holes, passivation, photoresist application methods, and metallization schemes. The final portion of this program was a pilot production phase. Seven hundred solar cells were delivered in this phase. At the end of the program, cells with average efficiencies over 13 percent were being produced with power output in excess of 1.139 watts/cell, thus substantially exceeding the program goal.
NASA Astrophysics Data System (ADS)
Smolander, Tuomo; Lemmetyinen, Juha; Rautiainen, Kimmo; Schwank, Mike; Pulliainen, Jouni
2017-04-01
Soil moisture and soil freezing are important for diverse hydrological, biogeochemical, and climatological applications. They affect surface energy balance, surface and subsurface water flow, and exchange rates of carbon with the atmosphere. Soil freezing controls important biogeochemical processes, like photosynthetic activity of plants and microbial activity within soils. Permafrost covers approximately 24% of the land surface in the Northern Hemisphere and seasonal freezing occurs on approximately 51% of the area. The retrieval method presented is based on an inversion technique and applies a semiempirical backscattering model that describes the dependence of radar backscattering of forest as a function of stem volume, soil permittivity, the extinction coefficient of forest canopy, surface roughness, incidence angle, and radar frequency. It gives an estimate of soil permittivity using active microwave measurements. Applying a Bayesian assimilation scheme, it is also possible to use other soil permittivity retrievals to regulate this estimate to combine for example low resolution passive observations with high resolution active observations for a synergistic retrieval. This way the higher variance in the active retrieval can be constricted with the passive retrieval when at the same time the spatial resolution of the product is improved compared to the passive-only retrieval. The retrieved soil permittivity estimate can be used to detect soil freeze/thaw state by considering the soil to be frozen when the estimate is below a threshold value. The permittivity retrieval can also be used to estimate the relative moisture of the soil. The method was tested using SAR (Synthetic Aperture Radar) measurements from ENVISAT ASAR instrument for the years 2010-2012 and from Sentinel-1 satellite for the years 2015-2016 in Sodankylä area in Northern Finland. The synergistic method was tested combining the SAR measurements with a SMOS (Soil Moisture Ocean Salinity) radiometer based retrieval. The results were validated using in situ measurements from automatic soil state observation stations in Sodankylä calibration and validation (CAL-VAL) site, which is a reference site for several EO (Earth Observation) data products.
Engineering Glass Passivation Layers -Model Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.
2011-08-08
The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting thatmore » the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and we plan to look more closely at Vivianite [Fe3(PO4)2-8(H2O)] and Siderite [FeCO3] in the next stage of the project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Netzel, Carsten; Jeschke, Jörg; Brunner, Frank
2016-09-07
We have studied the effect of continuous illumination with above band gap energy on the emission intensity of polar (Al)GaN bulk layers during the photoluminescence experiments. A temporal change in emission intensity on time scales from seconds to hours is based on the modification of the semiconductor surface states and the surface recombination by the incident light. The temporal behavior of the photoluminescence intensity varies with the parameters such as ambient atmosphere, pretreatment of the surface, doping density, threading dislocation density, excitation power density, and sample temperature. By means of temperature-dependent photoluminescence measurements, we observed that at least two differentmore » processes at the semiconductor surface affect the non-radiative surface recombination during illumination. The first process leads to an irreversible decrease in photoluminescence intensity and is dominant around room temperature, and the second process leads to a delayed increase in intensity and becomes dominant around T = 150–200 K. Both processes become slower when the sample temperature decreases from room temperature. They cease for T < 150 K. Stable photoluminescence intensity at arbitrary sample temperature was obtained by passivating the analyzed layer with an epitaxially grown AlN cap layer.« less
Effect of Ultraviolet Light Irradiation on Structure and Electrochemical Properties of Iron Surface
NASA Astrophysics Data System (ADS)
Nanjo, Hiroshi; Deng, Huihua; Oconer, Irmin S.; Ishikawa, Ikuo; Suzuki, Toshishige M.
2005-01-01
The effect of ultraviolet light (UV) irradiation (254 nm, 0.8 mW/cm2) on air-formed oxide films and passivated films on iron was investigated by electrochemical methods and scanning tunneling microscopy (STM), in particular with respect to surface micro/nanostructures and the surface protective property. An as-deposited film appeared uniformly flat after UV irradiation for 2-4 h, which is associated with a decrease in current density. UV irradiation for 1-4 h assisted N-dodecylhydroxamic acid (DHA) molecules to strongly bond to the air-formed oxide film. UV irradiation for 1 h led to the formation of a flat terrace of atomic resolution on a surface passivated at 800 mV for 15 min. However, it was difficult to observe a terrace wider than 3 nm on the passive film irradiated for 4 h.
Wireless SAW passive tag temperature measurement in the collision case
NASA Astrophysics Data System (ADS)
Sorokin, A.; Shepeta, A.; Wattimena, M.
2018-04-01
This paper describes temperature measurement in the multisensor systems based on the radio-frequency identification SAW passive tags which are currently applied in the electric power systems and the switchgears. Different approaches of temperature measurement in the collision case are shown here. The study is based on the tag model with specific topology, which allows us to determine temperature through the response signal with time-frequency information. This research considers the collision case for several passive tags as the temperature sensors which are placed in the switchgear. This research proposal is to analyze the possibility of using several SAW passive sensors in the collision case. We consider the using of the different typical elements for passive surface acoustic wave tag which applies as an anticollision passive sensor. These wireless sensors based on the surface acoustic waves tags contain specifically coded structures. This topology makes possible the reliability of increasing tag identification and the temperature measurement in the collision case. As the results for this case we illustrate simultaneous measurement of at least six sensors.
Ricker, R. E.; Myneni, G. R.
2010-01-01
During the fabrication of niobium superconducting radio frequency (SRF) particle accelerator cavities procedures are used that chemically or mechanically remove the passivating surface film of niobium pentoxide (Nb2O5). Removal of this film will expose the underlying niobium metal and allow it to react with the processing environment. If these reactions produce hydrogen at sufficient concentrations and rates, then hydrogen will be absorbed and diffuse into the metal. High hydrogen activities could result in supersaturation and the nucleation of hydride phases. If the metal repassivates at the conclusion of the processing step and the passive film blocks hydrogen egress, then the absorbed hydrogen or hydrides could be retained and alter the performance of the metal during subsequent processing steps or in-service. This report examines the feasibility of this hypothesis by first identifying the postulated events, conditions, and reactions and then determining if each is consistent with accepted scientific principles, literature, and data. Established precedent for similar events in other systems was found in the scientific literature and thermodynamic analysis found that the postulated reactions were not only energetically favorable, but produced large driving forces. The hydrogen activity or fugacity required for the reactions to be at equilibrium was determined to indicate the propensity for hydrogen evolution, absorption, and hydride nucleation. The influence of processing conditions and kinetics on the proximity of hydrogen surface coverage to these theoretical values is discussed. This examination found that the hypothesis of hydrogen absorption during SRF processing is consistent with published scientific literature and thermodynamic principles. PMID:27134791
Processes for producing low cost, high efficiency silicon solar cells
Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag
1996-01-01
Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaidi, Z. H., E-mail: zaffar.zaidi@sheffield.ac.uk; Lee, K. B.; Qian, H.
2014-12-28
In this work, we have compared SiN{sub x} passivation, hydrogen peroxide, and sulfuric acid treatment on AlGaN/GaN HEMTs surface after full device fabrication on Si substrate. Both the chemical treatments resulted in the suppression of device pinch-off gate leakage current below 1 μA/mm, which is much lower than that for SiN{sub x} passivation. The greatest suppression over the range of devices is observed with the sulfuric acid treatment. The device on/off current ratio is improved (from 10{sup 4}–10{sup 5} to 10{sup 7}) and a reduction in the device sub-threshold (S.S.) slope (from ∼215 to 90 mV/decade) is achieved. The sulfuric acid ismore » believed to work by oxidizing the surface which has a strong passivating effect on the gate leakage current. The interface trap charge density (D{sub it}) is reduced (from 4.86 to 0.90 × 10{sup 12 }cm{sup −2} eV{sup −1}), calculated from the change in the device S.S. The gate surface leakage current mechanism is explained by combined Mott hopping conduction and Poole Frenkel models for both untreated and sulfuric acid treated devices. Combining the sulfuric acid treatment underneath the gate with the SiN{sub x} passivation after full device fabrication results in the reduction of D{sub it} and improves the surface related current collapse.« less
A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite.
Li, Y; Kawashima, N; Li, J; Chandra, A P; Gerson, A R
2013-09-01
Most investigators regard CuFeS2 as having the formal oxidation states of Cu(+)Fe(3+)(S(2-))2. However, the spectroscopic characterisation of chalcopyrite is clearly influenced by the considerable degree of covalency between S and both Fe and Cu. The poor cleavage of CuFeS2 results in conchoidal surfaces. Reconstruction of the fractured surfaces to form, from what was previously bulk S(2-), a mixture of surface S(2-), S2(2) and S(n)(2-) (or metal deficient sulfide) takes place. Oxidation of chalcopyrite in air (i.e. 0.2 atm of O2 equilibrated with atmospheric water vapour) results in a Fe(III)-O-OH surface layer on top of a Cu rich sulfide layer overlying the bulk chalcopyrite with the formation of Cu(II) and Fe(III) sulfate, and Cu(I)-O on prolonged oxidation. Cu2O and Cu2S-like species have also been proposed to form on exposure of chalcopyrite to air. S2(2-), S(n)(2-) and S(0) form on the chalcopyrite surface upon aqueous leaching. The latter two of these species along with a jarosite-like species are frequently proposed to result in surface leaching passivation. However, some investigators have reported the formation of S(0) sufficiently porous to allow ion transportation to and from the chalcopyrite surface. Moreover, under some conditions both S(n)(2-) and S(0) were observed to increase in surface concentration for the duration of the leach with no resulting passivation. The effect of a number of oxidants, e.g. O2, H2O2, Cu(2+), Cr(6+) and Fe(3+), has been examined. However, this is often accompanied by poor control of leach parameters, principally pH and E(h). Nevertheless, there is general agreement in the literature that chalcopyrite leaching is significantly affected by solution redox potential with an optimum E(h) range suggesting the participation of leach steps that involve both oxidation and reduction. Three kinetic models have generally been suggested by researchers to be applicable: diffusion, chemical reaction and a mixed model containing diffusion and chemical components which occur at different stages of leaching. Passivation effects, due to surface diffusion rate control, may be affected by leach conditions such as pH or E(h). However, only initial conditions are generally described and these parameters are not controlled in most studies. However, at fixed pH, E(h) and temperature, it appears most likely that leaching in sulfuric acid media in the presence of added Fe(3+) is surface reaction rate controlled with some initial period, depending on leach conditions, where the leach rate is surface layer diffusion controlled. Although bioleaching of some copper ores has been adopted by industry, bioleaching has yet to be applied to predominantly chalcopyrite ores due to the slow resulting leach rates. Mixed microbial strains usually yield higher leach rates, as compared to single strains, as different bacterial strains are able to adapt to the changing leach conditions throughout the leach process. As for chemical leaching, passivation is also observed on bioleaching with jarosite being likely to be the main contributor. In summary, whilst much has been observed at the macro-scale regarding the chalcopyrite leach process it is clear that interpretation of these phenomena is hampered by lack of understanding at the molecular or atomic scale. Three primary questions that require elucidation, before the overall mechanism can be understood are: 1. How does the surface of chalcopyrite interact with solution or air borne oxidants? 2. How does the nature of these oxidants affect the surface products formed? 3. What determines whether the surface formed will be passivating or not? These can only realistically be tackled by the application of near atomic-scale analytical approaches, which may include quantum chemical modelling, PEEM/SPEM, TEM, AFM etc. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pariona, Moises Meza, E-mail: mmpariona@uepg.br; Teleginski, Viviane; Santos, Kelly dos
Laser beam welding has recently been incorporated into the fabrication process of aircraft and automobile structures. Surface roughness is an important parameter of product quality that strongly affects the performance of mechanical parts, as well as production costs. This parameter influences the mechanical properties such as fatigue behavior, corrosion resistance, creep life, etc., and other functional characteristics such as friction, wear, light reflection, heat transmission, lubrification, electrical conductivity, etc. The effects of laser surface remelting (LSR) on the morphology of Al-Fe aerospace alloys were examined before and after surface treatments, using optical microscopy (OM), scanning electron microscopy (SEM), low-angle X-raymore » diffraction (LA-XRD), atomic force microscopy (AFM), microhardness measurements (Vickers hardness), and cyclic voltammetry. This analysis was performed on both laser-treated and untreated sanded surfaces, revealing significant differences. The LA-XRD analysis revealed the presence of alumina, simple metals and metastable intermetallic phases, which considerably improved the microhardness of laser-remelted surfaces. The morphology produced by laser surface remelting enhanced the microstructure of the Al-Fe alloys by reducing their roughness and increasing their hardness. The treated surfaces showed passivity and stability characteristics in the electrolytic medium employed in this study. - Highlights: Black-Right-Pointing-Pointer The samples laser-treated and untreated showed significant differences. Black-Right-Pointing-Pointer The La-XRD revealed the presence of alumina in Al-1.5 wt.% Fe. Black-Right-Pointing-Pointer The laser-treated reducing the roughness and increasing the hardness. Black-Right-Pointing-Pointer The laser-treated surfaces showed characteristic passive in the electrolytic medium. Black-Right-Pointing-Pointer The laser-treated is a promising technique for applications technological.« less
Bhartia, Bhavesh; Puniredd, Sreenivasa Reddy; Jayaraman, Sundaramurthy; Gandhimathi, Chinnasamy; Sharma, Mohit; Kuo, Yen-Chien; Chen, Chia-Hao; Reddy, Venugopal Jayarama; Troadec, Cedric; Srinivasan, Madapusi Palavedu
2016-09-21
Oxide-free silicon chemistry has been widely studied using wet-chemistry methods, but for emerging applications such as molecular electronics on silicon, nanowire-based sensors, and biochips, these methods may not be suitable as they can give rise to defects due to surface contamination, residual solvents, which in turn can affect the grafted monolayer devices for practical applications. Therefore, there is a need for a cleaner, reproducible, scalable, and environmentally benign monolayer grafting process. In this work, monolayers of alkylthiols were deposited on oxide-free semiconductor surfaces using supercritical carbon dioxide (SCCO2) as a carrier fluid owing to its favorable physical properties. The identity of grafted monolayers was monitored with Fourier transform infrared (FTIR) spectroscopy, high-resolution X-ray photoelectron spectroscopy (HRXPS), XPS, atomic force microscopy (AFM), contact angle measurements, and ellipsometry. Monolayers on oxide-free silicon were able to passivate the surface for more than 50 days (10 times than the conventional methods) without any oxide formation in ambient atmosphere. Application of the SCCO2 process was further extended by depositing alkylthiol monolayers on fragile and brittle 1D silicon nanowires (SiNWs) and 2D germanium substrates. With the recent interest in SiNWs for biological applications, the thiol-passivated oxide-free silicon nanowire surfaces were also studied for their biological response. Alkylthiol-functionalized SiNWs showed a significant decrease in cell proliferation owing to their superhydrophobicity combined with the rough surface morphology. Furthermore, tribological studies showed a sharp decrease in the coefficient of friction, which was found to be dependent on the alkyl chain length and surface bond. These studies can be used for the development of cost-effective and highly stable monolayers for practical applications such as solar cells, biosensors, molecular electronics, micro- and nano- electromechanical systems, antifouling agents, and drug delivery.
A XPS Study of the Passivity of Stainless Steels Influenced by Sulfate-Reducing Bacteria.
NASA Astrophysics Data System (ADS)
Chen, Guocun
The influence of sulfate-reducing bacteria (SRB) on the passivity of type 304 and 317L stainless steels (SS) was investigated by x-ray photoelectron spectroscopy (XPS), microbiological and electrochemical techniques. Samples were exposed to SRB, and then the resultant surfaces were analyzed by XPS, and the corrosion resistance by potentiodynamic polarization in deaerated 0.1 M HCl. To further understand their passivity, the SRB-exposed samples were analyzed by XPS after potentiostatic polarization at a passive potential in the hydrochloric solution. The characterization was performed under two surface conditions: unrinsed and rinsed by deaerated alcohol and deionized water. Comparisons were made with control samples immersed in uninoculated medium. SRB caused a severe loss of the passivity of 304 SS through sulfide formation and possible additional activation to form hexavalent chromium. The sulfides included FeS, FeS_2, Cr_2S _3, NiS and possibly Fe_ {rm 1-x}S. The interaction took place nonuniformly, resulting in undercutting of the passive film and preferential hydration of inner surface layers. The bacterial activation of the Cr^{6+ }^ecies was magnified by subsequent potentiostatic polarization. In contrast, 317L SS exhibited a limited passivity. The sulfides were formed mainly in the outer layers. Although Cr^{6+}^ecies were observed after the exposure, they were dissolved upon polarization. Since 317L SS has a higher Mo content, its higher passivity was ascribed to Mo existing as molybdate on the surface and Mo^{5+} species in the biofilm. Consequently, the interaction of SRB with Mo was studied. It was observed that molybdate could be retained on the surfaces of Mo coupons by corrosion products. In the presence of SRB, however, a considerable portion of the molybdate interacted with intermediate sulfur -containing proteins, forming Mo(V)-S complexes and reducing bacterial growth and sulfate reduction. The limited insolubility of the Mo(V)-S complexes in 0.1 M HCl provided a certain protection so that the pitting potential of the SRB-exposed Mo coupons was not considerably decreased. The interaction of the sulfur-containing proteins with Mo also provided mechanistic information about the adhesion of biofilm to Mo-bearing steels. Additionally, the interactions of SRB with other alloying elements, Cr and Ni, were investigated.
Monolithically interconnected silicon-film™ module technology
NASA Astrophysics Data System (ADS)
DelleDonne, E. J.; Ford, D. H.; Hall, R. B.; Ingram, A. E.; Rand, J. A.; Barnett, A. M.
1999-03-01
AstroPower is developing an advanced thin-silicon-based, photovoltaic module product. A low-cost monolithic interconnected device is being integrated into a module that combines the design and process features of advanced light trapped, thin-silicon solar cells. This advanced product incorporates a low-cost substrate, a nominally 50-μm thick grown silicon layer with minority carrier diffusion lengths exceeding the active layer thickness, light trapping due to back-surface reflection, and back-surface passivation. The thin silicon layer enables high solar cell performance and can lead to a module conversion efficiency as high as 19%. These performance design features, combined with low-cost manufacturing using relatively low-cost capital equipment, continuous processing and a low-cost substrate, will lead to high-performance, low-cost photovoltaic panels.
Fabrication of Aligned Polyaniline Nanofiber Array via a Facile Wet Chemical Process.
Sun, Qunhui; Bi, Wu; Fuller, Thomas F; Ding, Yong; Deng, Yulin
2009-06-17
In this work, we demonstrate for the first time a template free approach to synthesize aligned polyaniline nanofiber (PN) array on a passivated gold (Au) substrate via a facile wet chemical process. The Au surface was first modified using 4-aminothiophenol (4-ATP) to afford the surface functionality, followed subsequently by an oxidation polymerization of aniline (AN) monomer in an aqueous medium using ammonium persulfate as the oxidant and tartaric acid as the doping agent. The results show that a vertically aligned PANI nanofiber array with individual fiber diameters of ca. 100 nm, heights of ca. 600 nm and a packing density of ca. 40 pieces·µm(-2) , was synthesized. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pulsed excimer laser processing
NASA Technical Reports Server (NTRS)
Wong, D.
1985-01-01
The status of pulsed excimer laser processing of PV cells is presented. The cost effective feasibility of fabricating high efficiency solar cells on Czochralski wafers using a pulsed excimer laser for junction formation, surface passivation, and front metallization. Laser annealing results were promising with the best AR coated cell having an efficiency of 16.1%. Better results would be expected with larger laser spot size because there was some degradation in open circuit voltage caused by laser spot overlap and edge effects. Surface heating and photolytic decomposition by the laser was used to deposit tungsten from the reaction of tungsten hexafluoride and hydrogen. The line widths were 5 to 10 mils, and the depositions passed the tape adhesion test. Thinner lines are practical using an optimized optical system.
NASA Astrophysics Data System (ADS)
Mancio, Mauricio
In reinforced concrete, a passive layer forms because of the alkaline conditions in the pores of the cement paste, where large concentrations of hydroxides create a solution with pH typically between 12 and 14. The corrosion resistance of the material depends on the characteristics and integrity of the passive film; however, currently very limited information is available about the passive films formed on carbon steel under such conditions. This work presents an electrochemical and in-situ Surface-Enhanced Raman Spectroscopic (SERS) study of passive films formed on low-carbon steel in highly alkaline environments. More specifically, the study focuses on the characterization of the films formed on ASTM A36 steel reinforcing bar exposed to aqueous solutions that aim to reproduce the chemistry of the environment typically found within the cement paste. Electrochemical techniques such as cyclic potentiodynamic polarization curves, galvanostatic cathodic polarization and linear polarization resistance were employed, in addition to in-situ Surface Enhanced Raman Spectroscopy (SERS). The experimental setup was built in a way that SERS experiments could be performed simultaneously with potentiodynamic polarization curves, enabling a detailed analysis of the formation and reduction of the surface films as a function of applied potential. Three solutions with different pH levels were used for the polarization and SERS experiments, namely 0.55M KOH + 0.16M NaOH ([OH-]=0.71), 0.08M KOH + 0.02M NaOH ([OH-]=0.10) and 0.008M KOH + 0.002M NaOH ([OH-]=0.01). Additional NaOH solutions in which the pH was varied from 13 to 9 and the ionic strength from 10 -5 to 10-1 were prepared for a pilot study using linear polarization resistance. Results show that the features observed in the cyclic potentiodynamic polarization curves correlated well with the potential arrests observed in the GCP plots as well as with the changes observed in the SERS spectra, providing valuable information about the formation of passive films on carbon steel in each of the environments studied in this research. Although there are key differences among the films formed in the different solutions tested---particularly regarding their thickness and protectiveness---once the film-formation processes had been completed, generally the films were characterized by an inner layer of Fe(II) and an outer layer of Fe(III). A Fe(OH)2-like species appears consistently as dominating the inner Fe(II) layer, while the outer typically composed mostly by gamma-Fe2O3 and/or gamma-FeOOH. Film thickness varied from about 22 nm to 266 nm depending on the pH of the solution, and decreased as pH was reduced.
Liu, Zhaolang; Yang, Zhenhai; Wu, Sudong; Zhu, Juye; Guo, Wei; Sheng, Jiang; Ye, Jichun; Cui, Yi
2017-12-26
Carrier recombination and light management of the dopant-free silicon/organic heterojunction solar cells (HSCs) based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) are the critical factors in developing high-efficiency photovoltaic devices. However, the traditional passivation technologies can hardly provide efficient surface passivation on the front surface of Si. In this study, a photoinduced electric field was induced in a bilayer antireflective coating (ARC) of polydimethylsiloxane (PDMS) and titanium oxide (TiO 2 ) films, due to formation of an accumulation layer of negative carriers (O 2 - species) under UV (sunlight) illumination. This photoinduced field not only suppressed the silicon surface recombination but also enhanced the built-in potential of HSCs with 84 mV increment. In addition, this photoactive ARC also displayed the outstanding light-trapping capability. The front PEDOT:PSS/Si HSC with the saturated O 2 - received a champion PCE of 15.51% under AM 1.5 simulated sunlight illumination. It was clearly demonstrated that the photoinduced electric field was a simple, efficient, and low-cost method for the surface passivation and contributed to achieve a high efficiency when applied in the Si/PEDOT:PSS HSCs.
Mantle updrafts and mechanisms of oceanic volcanism.
Anderson, Don L; Natland, James H
2014-10-14
Convection in an isolated planet is characterized by narrow downwellings and broad updrafts--consequences of Archimedes' principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism.
Mantle updrafts and mechanisms of oceanic volcanism
NASA Astrophysics Data System (ADS)
Anderson, Don L.; Natland, James H.
2014-10-01
Convection in an isolated planet is characterized by narrow downwellings and broad updrafts-consequences of Archimedes' principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism.
Mantle updrafts and mechanisms of oceanic volcanism
Anderson, Don L.; Natland, James H.
2014-01-01
Convection in an isolated planet is characterized by narrow downwellings and broad updrafts—consequences of Archimedes’ principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism. PMID:25201992
Ankle Joint Angle and Lower Leg Musculotendinous Unit Responses to Cryotherapy.
Akehi, Kazuma; Long, Blaine C; Warren, Aric J; Goad, Carla L
2016-09-01
Akehi, K, Long, BC, Warren, AJ, and Goad, CL. Ankle joint angle and lower leg musculotendinous unit responses to cryotherapy. J Strength Cond Res 30(9): 2482-2492, 2016-The use of cold application has been debated for its influence on joint range of motion (ROM) and stiffness. The purpose of this study was to determine whether a 30-minute ice bag application to the plantarflexor muscles or ankle influences passive ankle dorsiflexion ROM and lower leg musculotendinous stiffness (MTS). Thirty-five recreationally active college-aged individuals with no history of lower leg injury 6 months before data collection volunteered. On each testing day, we measured maximum passive ankle dorsiflexion ROM (°) and plantarflexor torque (N·m) on an isokinetic dynamometer to calculate the passive plantarflexor MTS (N·m per degree) at 4 joint angles before, during, and after a treatment. Surface electromyography amplitudes (μV), and skin surface and ambient air temperature (°C) were also measured. Subjects received an ice bag to the posterior lower leg, ankle joint, or nothing for 30 minutes in different days. Ice bag application to the lower leg and ankle did not influence passive ROM (F(12,396) = 0.67, p = 0.78). Passive torque increased after ice bag application to the lower leg (F(12,396) = 2.21, p = 0.011). Passive MTS at the initial joint angle increased after ice bag application to the lower leg (F(12,396) = 2.14, p = 0.014) but not at the other joint angles (p > 0.05). Surface electromyography amplitudes for gastrocnemius and soleus muscles increased after ice application to the lower leg (F(2,66) = 5.61, p = 0.006; F(12,396) = 3.60, p < 0.001). Ice bag application to the lower leg and ankle joint does not alter passive dorsiflexion ROM but increases passive ankle plantarflexor torque in addition to passive ankle plantarflexor MTS at the initial joint angle.
The role of surface passivation in controlling Ge nanowire faceting
Gamalski, A. D.; Tersoff, J.; Kodambaka, S.; ...
2015-11-05
In situ transmission electron microscopy observations of nanowire morphologies indicate that during Au-catalyzed Ge nanowire growth, Ge facets can rapidly form along the nanowire sidewalls when the source gas (here, digermane) flux is decreased or the temperature is increased. This sidewall faceting is accompanied by continuous catalyst loss as Au diffuses from the droplet to the wire surface. We suggest that high digermane flux and low temperatures promote effective surface passivation of Ge nanowires with H or other digermane fragments inhibiting diffusion and attachment of Au and Ge on the sidewalls. Furthermore, these results illustrate the essential roles of themore » precursor gas and substrate temperature in maintaining nanowire sidewall passivation, necessary to ensure the growth of straight, untapered, <111>-oriented nanowires.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Byungsu; Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741; Choi, Yonghyuk
We demonstrate an enhanced electrical stability through a Ti oxide (TiO{sub x}) layer on the amorphous InGaZnO (a-IGZO) back-channel; this layer acts as a surface polarity modifier. Ultrathin Ti deposited on the a-IGZO existed as a TiO{sub x} thin film, resulting in oxygen cross-binding with a-IGZO surface. The electrical properties of a-IGZO thin film transistors (TFTs) with TiO{sub x} depend on the surface polarity change and electronic band structure evolution. This result indicates that TiO{sub x} on the back-channel serves as not only a passivation layer protecting the channel from ambient molecules or process variables but also a control layermore » of TFT device parameters.« less
Electrochemical model of local corrosion at the tip of a loaded crack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreikiv, O.E.; Tym`yak, N.I.
1994-07-01
A model of electrochemical processes near a crack tip in a stressed metal subjected to corrosion with hydrogen depolarization is suggested. It is shown that, in order to describe the kinetics of hydrogenation of the prefracture area, it is necessary to take into account the type of passivation layer on the newly formed metal surface near the crack tip and the mechanism of its formation.
Improving Efficiency of Aluminium Sacrificial Anode Using Cold Work Process
NASA Astrophysics Data System (ADS)
Asmara, Y. P.; Siregar, J. P.; Tezara, C.; Ann, Chang Tai
2016-02-01
Aluminium is one of the preferred materials to be used as sacrificial anode for carbon steel protection. The efficiency of these can be low due to the formation of oxide layer which passivate the anodes. Currently, to improve its efficiency, there are efforts using a new technique called surface modifications. The objective of this research is to study corrosion mechanism of aluminium sacrificial anode which has been processed by cold work. The cold works are applied by reducing the thickness of aluminium sacrificial anodes at 20% and 40% of thickness reduction. The cathodic protection experiments were performed by immersion of aluminium connected to carbon steel cylinder in 3% NaCl solutions. Visual inspections using SEM had been conducted during the experiments and corrosion rate data were taken in every week for 8 weeks of immersion time. Corrosion rate data were measured using weight loss and linear polarization technique (LPR). From the results, it is observed that cold worked aluminium sacrificial anode have a better corrosion performance. It shows higher corrosion rate and lower corrosion potential. The anodes also provided a long functional for sacrificial anode before it stop working. From SEM investigation, it is shown that cold works have changed the microstructure of anodes which is suspected in increasing corrosion rate and cause de-passivate of the surface anodes.
Chao, Zhang; Yaomu, Xiao; Chufeng, Liu; Conghua, Liu
2017-06-01
In this study, Ni-Ti alloy and stainless steal were exposed to artificial saliva containing fibrinogen, IgG or mucin, and the resultant corrosion behavior was studied. The purpose was to determine the mechanisms by which different types of protein contribute to corrosion. The effect of different proteins on the electrochemical resistance of Ni-Ti and SS was tested by potentiodynamic polarization, and the repair capacity of passivation film was tested by cyclic polarization measurements. The dissolved corrosion products were determined by ICP-OES, and the surface was analyzed by SEM and AFM. The results showed fibrinogen, IgG or mucin could have different influences on the susceptibility to corrosion of the same alloy. Adding protein lead to the decrease of corrosion resistance of SS, whereas protein could slow down the corrosion process of Ni-Ti. For Ni-Ti, adding mucin could enhance the corrosion stability and repair capacity of passivation film. The susceptibility to pitting corrosion of Ni-Ti and stainless steal in fibrinogen AS is not as high as mucin and IgG AS. There are different patterns of deposition formation on the metal surface by different types of protein, which is associated with their effects on the corrosion process of the alloys.
Scintillation of rare earth doped fluoride nanoparticles
NASA Astrophysics Data System (ADS)
Jacobsohn, L. G.; McPherson, C. L.; Sprinkle, K. B.; Yukihara, E. G.; DeVol, T. A.; Ballato, J.
2011-09-01
The scintillation response of rare earth (RE) doped core/undoped (multi-)shell fluoride nanoparticles was investigated under x-ray and alpha particle irradiation. A significant enhancement of the scintillation response was observed with increasing shells due: (i) to the passivation of surface quenching defects together with the activation of the REs on the surface of the core nanoparticle after the growth of a shell, and (ii) to the increase of the volume of the nanoparticles. These results are expected to reflect a general aspect of the scintillation process in nanoparticles, and to impact radiation sensing technologies that make use of nanoparticles.
NASA Astrophysics Data System (ADS)
Lee, Yong Hwan; Cha, Hamchorom; Choi, Sunho; Chang, Hyo Sik; Jang, Boyun; Oh, Jihun
2018-05-01
A systematic characterization of sub-50-μm-thick, kerf-less monocrystalline Si wafers fabricated by a controlled fracture method is presented. The spalling process introduces various defects on the Si surface, which result in high surface roughness levels, residual stress, and low effective minority carrier lifetimes. In addition, metals used to induce fracturing in Si diffuse in the Si at room temperature and degrade the effective minority carrier lifetime. Selective removal of these defected Si regions improves the residual stress and effective lifetimes of spalled Si wafers.
NASA Astrophysics Data System (ADS)
Sasaki, Darryl Y.; Cox, Jimmy D.; Follstaedt, Susan C.; Curry, Mark S.; Skirboll, Steven K.; Gourley, Paul L.
2001-05-01
The development of microsystems that merge biological materials with microfabricated structures is highly dependent on the successful interfacial interactions between these innately incompatible materials. Surface passivation of semiconductor and glass surfaces with thin organic films can attenuate the adhesion of proteins and cells that lead to biofilm formation and biofouling of fluidic structures. We have examined the adhesion of glial cells and serum albumin proteins to microfabricated glass and semiconductor surfaces coated with self-assembled monolayers of octadecyltrimethoxysilane and N-(triethoxysilylpropyl)-O- polyethylene oxide urethane, to evaluate the biocompatibility and surface passivation those coatings provide.
The interaction of evaporative and convective instabilities
NASA Astrophysics Data System (ADS)
Ozen, O.
Evaporative convection arises in a variety of natural and industrial processes, such as drying of lakebeds, heat pipe technology and dry-eye syndrome. The phenomenon of evaporative convection leads to an interfacial instability where an erstwhile flat surface becomes undulated as a control variable, such as temperature drop, exceeds a critical value. This instability has been investigated by others assuming that the vapor phase is infinitely deep and passive, i.e. vapor fluid dynamics has been ignored. However, when we look at some engineering processes, such as distillation columns, heat pipes and drying technologies where phase change takes place we might imagine that the assumption of an infinitely deep vapor layer or at least that of a passive vapor is inappropriate. Previous work on convection in bilayer systems with no phase-change suggests that active vapor layers play a major role in determining the stability of an interface. Hence, for the case of convection with phase-change, we will address this issue and try to answer the question whether the infinitely deep and passive vapor layer is a valid assumption. We have also investigated, theoretically, the gravity and surface tension gradient-driven instabilities occurring during the evaporation of a liquid into its own vapor taking into account the fluid dynamics of both phases and the finiteness of the domains of each phase, i.e. the liquid and its vapor are assumed to be confined between two horizontal plates, and different heating arrangements are applied. The effects of fluid layer depths, the evaporation rate and the temperature gradient applied across the fluids on the stability of the interface are studied. The modes of the flow pattern are determined for each scenario. The physics of the instability are explained and a comparison is made with the results of similar, yet physically different problems.
ERIC Educational Resources Information Center
Messenger, Katherine; Branigan, Holly P.; McLean, Janet F.
2012-01-01
We report a syntactic priming experiment that examined whether children's acquisition of the passive is a staged process, with acquisition of constituent structure preceding acquisition of thematic role mappings. Six-year-olds and nine-year-olds described transitive actions after hearing active and passive prime descriptions involving the same or…
Shi, Jianwei; Boccard, Mathieu; Holman, Zachary
2016-07-19
The dehydrogenation of intrinsic hydrogenated amorphous silicon (a-Si:H) at temperatures above approximately 300°C degrades its ability to passivate silicon wafer surfaces. This limits the temperature of post-passivation processing steps during the fabrication of advanced silicon heterojunction or silicon-based tandem solar cells. We demonstrate that a hydrogen plasma can rehydrogenate intrinsic a-Si:H passivation layers that have been dehydrogenated by annealing. The hydrogen plasma treatment fully restores the effective carrier lifetime to several milliseconds in textured crystalline siliconwafers coated with 8-nm-thick intrinsic a-Si:H layers after annealing at temperatures of up to 450°C. Plasma-initiated rehydrogenation also translates to complete solar cells: A silicon heterojunction solar cell subjected to annealing at 450°C (following intrinsic a-Si:H deposition) had an open-circuit voltage of less than 600 mV, but an identical cell that received hydrogen plasma treatment reached a voltagemore » of over 710 mV and an efficiency of over 19%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Jianwei; Boccard, Mathieu; Holman, Zachary
The dehydrogenation of intrinsic hydrogenated amorphous silicon (a-Si:H) at temperatures above approximately 300°C degrades its ability to passivate silicon wafer surfaces. This limits the temperature of post-passivation processing steps during the fabrication of advanced silicon heterojunction or silicon-based tandem solar cells. We demonstrate that a hydrogen plasma can rehydrogenate intrinsic a-Si:H passivation layers that have been dehydrogenated by annealing. The hydrogen plasma treatment fully restores the effective carrier lifetime to several milliseconds in textured crystalline siliconwafers coated with 8-nm-thick intrinsic a-Si:H layers after annealing at temperatures of up to 450°C. Plasma-initiated rehydrogenation also translates to complete solar cells: A silicon heterojunction solar cell subjected to annealing at 450°C (following intrinsic a-Si:H deposition) had an open-circuit voltage of less than 600 mV, but an identical cell that received hydrogen plasma treatment reached a voltagemore » of over 710 mV and an efficiency of over 19%.« less
Xu, Fuyuan; Deng, Shubo; Xu, Jie; Zhang, Wang; Wu, Min; Wang, Bin; Huang, Jun; Yu, Gang
2012-04-17
A novel Ni-Fe bimetal with high dechlorination activity for 4-chlorophenol (4-CP) was prepared by ball milling (BM) in this study. Increasing Ni content and milling time greatly enhanced the dechlorination activity, which was mainly attributed to the homogeneous distribution of Ni nanoparticles (50-100 nm) in bulk Fe visualized by scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) with image mapping. In comparison with the Ni-Fe bimetal prepared by a chemical solution deposition (CSD) process, the ball milled Ni-Fe bimetal possessed high dechlorination activity and stability before being used up. Dechlorination kinetics indicated that the dechlorination rates of 4-CP increased with increasing Ni-Fe dose but decreased with increasing solution pH. Solution pH had a significant effect on the dechlorination of 4-CP and the passivation of the Ni-Fe bimetal. The enhanced pH during the dechlorination process significantly accelerated the formation of passivating film on the bimetallic surface. The Ni-Fe bimetal at the dose of 60 g/L was reused 10 times without losing dechlorination activity for 4-CP at initial pH less than 6.0, but the gradual passivation was observed at initial pH above 7.0.
NASA Astrophysics Data System (ADS)
Karthikeyan, L.; Pan, Ming; Wanders, Niko; Kumar, D. Nagesh; Wood, Eric F.
2017-11-01
Soil moisture is widely recognized as an important land surface variable that provides a deeper knowledge of land-atmosphere interactions and climate change. Space-borne passive and active microwave sensors have become valuable and essential sources of soil moisture observations at global scales. Over the past four decades, several active and passive microwave sensors have been deployed, along with the recent launch of two fully dedicated missions (SMOS and SMAP). Signifying the four decades of microwave remote sensing of soil moisture, this Part 2 of the two-part review series aims to present an overview of how our knowledge in this field has improved in terms of the design of sensors and their accuracy for retrieving soil moisture. The first part discusses the developments made in active and passive microwave soil moisture retrieval algorithms. We assess the evolution of the products of various sensors over the last four decades, in terms of daily coverage, temporal performance, and spatial performance, by comparing the products of eight passive sensors (SMMR, SSM/I, TMI, AMSR-E, WindSAT, AMSR2, SMOS and SMAP), two active sensors (ERS-Scatterometer, MetOp-ASCAT), and one active/passive merged soil moisture product (ESA-CCI combined product) with the International Soil Moisture Network (ISMN) in-situ stations and the Variable Infiltration Capacity (VIC) land surface model simulations over the Contiguous United States (CONUS). In the process, the regional impacts of vegetation conditions on the spatial and temporal performance of soil moisture products are investigated. We also carried out inter-satellite comparisons to study the roles of sensor design and algorithms on the retrieval accuracy. We find that substantial improvements have been made over recent years in this field in terms of daily coverage, retrieval accuracy, and temporal dynamics. We conclude that the microwave soil moisture products have significantly evolved in the last four decades and will continue to make key contributions to the progress of hydro-meteorological and climate sciences.
Scaling theory in a model of corrosion and passivation.
Aarão Reis, F D A; Stafiej, Janusz; Badiali, J-P
2006-09-07
We study a model for corrosion and passivation of a metallic surface after small damage of its protective layer using scaling arguments and simulation. We focus on the transition between an initial regime of slow corrosion rate (pit nucleation) to a regime of rapid corrosion (propagation of the pit), which takes place at the so-called incubation time. The model is defined in a lattice in which the states of the sites represent the possible states of the metal (bulk, reactive, and passive) and the solution (neutral, acidic, or basic). Simple probabilistic rules describe passivation of the metal surface, dissolution of the passive layer, which is enhanced in acidic media, and spatially separated electrochemical reactions, which may create pH inhomogeneities in the solution. On the basis of a suitable matching of characteristic times of creation and annihilation of pH inhomogeneities in the solution, our scaling theory estimates the average radius of the dissolved region at the incubation time as a function of the model parameters. Among the main consequences, that radius decreases with the rate of spatially separated reactions and the rate of dissolution in acidic media, and it increases with the diffusion coefficient of H(+) and OH(-) ions in solution. The average incubation time can be written as the sum of a series of characteristic times for the slow dissolution in neutral media, until significant pH inhomogeneities are observed in the dissolved cavity. Despite having a more complex dependence on the model parameters, it is shown that the average incubation time linearly increases with the rate of dissolution in neutral media, under the reasonable assumption that this is the slowest rate of the process. Our theoretical predictions are expected to apply in realistic ranges of values of the model parameters. They are confirmed by numerical simulation in two-dimensional lattices, and the expected extension of the theory to three dimensions is discussed.
White, A.F.; Peterson, M.L.
1998-01-01
The reduction of aqueous transition metal species at the surfaces of Fe(II)- containing oxides has important ramifications in predicting the transport behavior in ground water aquifers. Experimental studies using mineral suspensions and electrodes demonstrate that structural Fe(II) heterogeneously reduces aqueous ferric, cupric, vanadate and chromate ions on magnetite and ilmenite surfaces. The rates of metal reduction on natural oxides is strongly dependent on the extent of surface passivation and redox conditions in the weathering environment. Synchrotron studies show that surface oxidation of Fe(II)-containing oxide minerals decreases their capacity for Cr(VI) reduction at hazardous waste disposal sites.
Using passive seismology to study the sub-surface and internal structure of Didymoon
NASA Astrophysics Data System (ADS)
Murdoch, N.; Hempel, S.; Pou, L.; Cadu, A.; Garcia, R. F.; Mimoun, D.; Margerin, L.; Karatekin, O.
2017-09-01
As there is evidence to suggest that asteroids are seismically active, passive rather than active seismology could be performed thus simplifying the mission design. Here we discuss the possibility of performing a passive seismic experiment on Didymoon; the secondary component of asteroid (65803) Didymos and the target of the joint ESA-NASA mission AIDA
NASA Astrophysics Data System (ADS)
Du, X.; Savich, G. R.; Marozas, B. T.; Wicks, G. W.
2017-02-01
The conventional processing of the III-V nBn photodetectors defines mesa devices by etching the contact n-layer and stopping immediately above the barrier, i.e., a shallow etch. This processing enables great suppression of surface leakage currents without having to explore surface passivation techniques. However, devices that are made with this processing scheme are subject to lateral diffusion currents. To address the lateral diffusion current, we compare the effects of different processing approaches and epitaxial structures of nBn detectors. The conventional solution for eliminating lateral diffusion current, a deep etch through the barrier and the absorber, creates increased dark currents and an increased device failure rate. To avoid deep etch processing, a new device structure is proposed, the inverted-nBn structure. By comparing with the conventional nBn structure, the results show that the lateral diffusion current is effectively eliminated in the inverted-nBn structure without elevating the dark currents.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.; Chaubell, Mario J.
2012-01-01
Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed for warm waters (25 C). To achieve the required 0.2 psu accuracy, the impact of sea surface roughness (e.g. wind-generated ripples) on the observed brightness temperature has to be corrected to better than one tenth of a degree Kelvin. With this algorithm, the accuracy of retrieved wind speed will be high, varying from a few tenths to 0.6 m/s. The expected direction accuracy is also excellent (less than 10 ) for mid to high winds, but degrades for lower speeds (less than 7 m/s).
NASA Astrophysics Data System (ADS)
Kuwahara, Takuya; Moras, Gianpietro; Moseler, Michael
2017-09-01
Large-scale quantum molecular dynamics of water-lubricated diamond (111) surfaces in sliding contact reveals multiple friction regimes. While water starvation causes amorphization of the tribological interface, small H2O traces are sufficient to preserve crystallinity. This can result in high friction due to cold welding via ether groups or in ultralow friction due to aromatic surface passivation triggered by tribo-induced Pandey reconstruction. At higher water coverage, Grotthuss-type diffusion and H2O dissociation yield dense H /OH surface passivation leading to another ultralow friction regime.
Chen, Hong-Yan; Lu, Hong-Liang; Ren, Qing-Hua; Zhang, Yuan; Yang, Xiao-Feng; Ding, Shi-Jin; Zhang, David Wei
2015-10-07
Inverted pyramid-based nanostructured black-silicon (BS) solar cells with an Al2O3 passivation layer grown by atomic layer deposition (ALD) have been demonstrated. A multi-scale textured BS surface combining silicon nanowires (SiNWs) and inverted pyramids was obtained for the first time by lithography and metal catalyzed wet etching. The reflectance of the as-prepared BS surface was about 2% lower than that of the more commonly reported upright pyramid-based SiNW BS surface over the whole of the visible light spectrum, which led to a 1.7 mA cm(-2) increase in short circuit current density. Moreover, the as-prepared solar cells were further passivated by an ALD-Al2O3 layer. The effect of annealing temperature on the photovoltaic performance of the solar cells was investigated. It was found that the values of all solar cell parameters including short circuit current, open circuit voltage, and fill factor exhibit a further increase under an optimized annealing temperature. Minority carrier lifetime measurements indicate that the enhanced cell performance is due to the improved passivation quality of the Al2O3 layer after thermal annealing treatments. By combining these two refinements, the optimized SiNW BS solar cells achieved a maximum conversion efficiency enhancement of 7.6% compared to the cells with an upright pyramid-based SiNWs surface and conventional SiNx passivation.
Closed loop control of the induction heating process using miniature magnetic sensors
Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.
2003-05-20
A method and system for providing real-time, closed-loop control of the induction hardening process. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).
Use of miniature magnetic sensors for real-time control of the induction heating process
Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.
2002-01-01
A method of monitoring the process of induction heating a workpiece. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can also be used to measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).
NASA Astrophysics Data System (ADS)
Raghavan, Ashwin S.
The objective of this work is to develop a comprehensive understanding of the physical processes governing laser-fired contact (LFC) formation under microsecond pulse durations. Primary emphasis is placed on understanding how processing parameters influence contact morphology, passivation layer quality, alloying of Al and Si, and contact resistance. In addition, the research seeks to develop a quantitative method to accurately predict the contact geometry, thermal cycles, heat and mass transfer phenomena, and the influence of contact pitch distance on substrate temperatures in order to improve the physical understanding of the underlying processes. Finally, the work seeks to predict how geometry for LFCs produced with microsecond pulses will influence fabrication and performance factors, such as the rear side contacting scheme, rear surface series resistance and effective rear surface recombination rates. The characterization of LFC cross-sections reveals that the use of microsecond pulse durations results in the formation of three-dimensional hemispherical or half-ellipsoidal contact geometries. The LFC is heavily alloyed with Al and Si and is composed of a two-phase Al-Si microstructure that grows from the Si wafer during resolidification. As a result of forming a large three-dimensional contact geometry, the total contact resistance is governed by the interfacial contact area between the LFC and the wafer rather than the planar contact area at the original Al-Si interface within an opening in the passivation layer. By forming three-dimensional LFCs, the total contact resistance is significantly reduced in comparison to that predicted for planar contacts. In addition, despite the high energy densities associated with microsecond pulse durations, the passivation layer is well preserved outside of the immediate contact region. Therefore, the use of microsecond pulse durations can be used to improve device performance by leading to lower total contact resistances while preserving the passivation layer. A mathematical model was developed to accurately predict LFC geometry over a wide range of processing parameters by accounting for transient changes in Al and Si alloy composition within the LFC. Since LFC geometry plays a critical role in device performance, an accurate method to predict contact geometry is an important tool that can facilitate further process development. Dimensionless analysis was also conducted to evaluate the relative importance of heat and mass transfer mechanisms. It is shown that convection plays a dominant role in the heat and mass transfer within the molten pool. Due to convective mass transfer, the contacts are heavily doped with Al and Si within 10 is after contact formation, which contributes to the entire resolidified region behaving as the electrically active LFC. The validated model is also used to determine safe operating regimes during laser processing to avoid excessively high operating temperatures. By maintaining processing temperatures below a critical temperature threshold, the onset of liquid metal expulsion and loss of alloying elements can be avoided. The process maps provide a framework that can be used to tailor LFC geometry for device fabrication. Finally, using various geometric relationships for the rear side contacting scheme for photovoltaic devices, it is shown that by employing hemispherical contacts, the number of LFCs required on the rear side can be reduced 75% while doubling the pitch distance and increasing the passivation fraction. Reducing the number of backside contacts required can have a noteworthy impact of manufacturing throughput. In addition, the analytical models suggest that device performance can be maintained at levels comparable to those achieved for planar contacts when producing three-dimensional contacts. The materials and electrical characterization results, device simulations, and design considerations presented in this thesis indicate that by forming three-dimensional LFCs, performance levels of Si-based photovoltaic devices can be maintained while greatly enhancing manufacturing efficiency. The research lays a solid foundation for future development of the LFC process with microsecond pulse durations and indicates that device fabrication employing this method is a critical step moving forward.
USDA-ARS?s Scientific Manuscript database
This paper evaluates the retrieval of soil moisture in the top 5-cm layer at 3-km spatial resolution using L-band dual-copolarized Soil Moisture Active Passive (SMAP) synthetic aperture radar (SAR) data that mapped the globe every three days from mid-April to early July, 2015. Surface soil moisture ...
Nitric acid passivation does not affect in vitro biocompatibility of titanium.
Faria, Adriana C L; Beloti, Márcio M; Rosa, Adalberto L
2003-01-01
In general, both chemical composition and surface features of implants affect cell response. The aim of this study was to evaluate the effect of titanium (Ti) passivation on the response of rat bone marrow cells, considering cell attachment, cell morphology, cell proliferation, total protein content, alkaline phosphatase (ALP) activity, and bonelike nodule formation. Cells were cultured on both commercially pure titanium (cpTi) and titanium-aluminium-vanadium alloy (Ti-6Al-4V) discs, either passivated or not. For attachment evaluation, cells were cultured for 4 and 24 hours. Cell morphology was evaluated after 4 days. After 7, 14, and 21 days, cell proliferation, total protein content, and ALP activity were evaluated. Bonelike nodule formation was evaluated after 21 days. Data were compared by analysis of variance and the Duncan multiple range test. Cell attachment, cell morphology, cell proliferation, total protein content, ALP activity, and bonelike nodule formation all were unaffected by Ti composition or passivation. Although the protocol for passivation used here could interfere with the pattern of ions released from Ti-6Al-4V and cpTi surfaces, the present study did not show any effect of this surface treatment on in vitro biocompatibility of Ti as evaluated by osteoblast attachment, proliferation, and differentiation.
Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting.
Varadhan, Purushothaman; Fu, Hui-Chun; Priante, Davide; Retamal, Jose Ramon Duran; Zhao, Chao; Ebaid, Mohamed; Ng, Tien Khee; Ajia, Idirs; Mitra, Somak; Roqan, Iman S; Ooi, Boon S; He, Jr-Hau
2017-03-08
Hydrogen production via photoelectrochemical water-splitting is a key source of clean and sustainable energy. The use of one-dimensional nanostructures as photoelectrodes is desirable for photoelectrochemical water-splitting applications due to the ultralarge surface areas, lateral carrier extraction schemes, and superior light-harvesting capabilities. However, the unavoidable surface states of nanostructured materials create additional charge carrier trapping centers and energy barriers at the semiconductor-electrolyte interface, which severely reduce the solar-to-hydrogen conversion efficiency. In this work, we address the issue of surface states in GaN nanowire photoelectrodes by employing a simple and low-cost surface treatment method, which utilizes an organic thiol compound (i.e., 1,2-ethanedithiol). The surface-treated photocathode showed an enhanced photocurrent density of -31 mA/cm 2 at -0.2 V versus RHE with an incident photon-to-current conversion efficiency of 18.3%, whereas untreated nanowires yielded only 8.1% efficiency. Furthermore, the surface passivation provides enhanced photoelectrochemical stability as surface-treated nanowires retained ∼80% of their initial photocurrent value and produced 8000 μmol of gas molecules over 55 h at acidic conditions (pH ∼ 0), whereas the untreated nanowires demonstrated only <4 h of photoelectrochemical stability. These findings shed new light on the importance of surface passivation of nanostructured photoelectrodes for photoelectrochemical applications.
Ajo, Henry; Blankenship, Donnie; Clark, Elliot
2014-07-25
In this study, various commercially available surface treatments are being explored for use on stainless steel components in mass spectrometer inlet systems. Type A-286 stainless steel coupons, approximately 12.5 mm in diameter and 3 mm thick, were passivated with one of five different surface treatments; an untreated coupon served as a control. The surface and near-surface microstructure and chemistry of the coupons were investigated using sputter depth profiling using Auger electron spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy (SEM). All the surface treatments studied appeared to change the surface morphology dramatically, as evidenced by lack of tool marks onmore » the treated samples in SEM images. In terms of the passivation treatment, Vendors A-D appeared to have oxide layers that were very similar in thickness to each other (0.7–0.9 nm thick), as well as to the untreated samples (the untreated sample oxide layers appeared to be somewhat larger). Vendor E’s silicon coating appears to be on the order of 200 nm thick.« less
Passive anti-frosting surfaces using microscopic ice arrays
NASA Astrophysics Data System (ADS)
Ahmadi, Farzad; Nath, Saurabh; Iliff, Grady; Boreyko, Jonathan
2017-11-01
Despite exceptional advances in surface chemistry and micro/nanofabrication, no engineered surface has been able to passively suppress the in-plane growth of frost occurring in humid, subfreezing environments. Motivated by this, and inspired by the fact that ice itself can evaporate nearby liquid water droplets, we present a passive anti-frosting surface in which the majority of the surface remains dry indefinitely. We fabricated an aluminum surface exhibiting an array of small metallic fins, where a wicking micro-groove was laser-cut along the top of each fin to produce elevated water ``stripes'' that freeze into ice. As the saturation vapor pressure of ice is less than that of supercooled liquid water, the ice stripes serve as overlapping humidity sinks that siphon all nearby moisture from the air and prevent condensation and frost from forming anywhere else on the surface. Our experimental results show that regions between stripes remain dry even after 24 hours of operation under humid and supercooled conditions. We believe that the presented anti-frosting technology has the potential to help solve the world's multi-billion dollar frosting problem that adversely affects transportation, power generation, and HVAC systems.
Multistatic GNSS Receiver Array for Passive Air Surveillance
NASA Astrophysics Data System (ADS)
Wachtl, Stefan; Koch, Volker; Westphal, Robert; Schmidt, Lorenz-Peter
2016-03-01
The performance of a passive air surveillance sensor based on Global Navigation Satellite Systems (GNSS) is mainly limited by the receiver noise efficiency, the achievable signal processing gain and the radar cross section (RCS) of an airplane. For surveillance applications large detection ranges as well as a high probability of detection are crucial parameters. Due to the very low GNSS signal powers received on the earth's surface, high radar cross sections are mandatory to achieve detection ranges for airplanes at some kilometers distance. This paper will discuss a multistatic transmitter and receiver arrangement, which is indispensable to get a reasonable detection rate with respect to a hemispheric field of view. The strong performance dependency of such a sensor on the number of transmitters and receivers will be shown by means of some exemplary simulation results.
Chang, Tao; Zhao, Haiping; Du, Huanhuan; Liu, Shan; Wu, Baoshuang; Qin, Shenjun
2017-01-01
In this work, we present the fabrication of highly luminescent carbon dots (CDs) by a double passivation method with the assistance of Ca(OH)2. In the reaction process, Ca2+ protects the active functional groups from overconsumption during dehydration and carbonization, and the electron-withdrawing groups on the CD surface are converted to electron-donating groups by the hydroxyl ions. As a result, the fluorescence quantum yield of the CDs was found to increase with increasing Ca(OH)2 content in the reaction process. A blue-shift optical spectrum of the CDs was also found with increasing Ca(OH)2 content, which could be attributed to the increasing of the energy gaps for the CDs. The highly photoluminescent CDs obtained (quantum yield: 86%) were used to cultivate fluorescent carnations by a water culture method, while the results of fluorescence microscopy analysis indicated that the CDs had entered the plant tissue structure. PMID:28686178
NASA Technical Reports Server (NTRS)
Podwysocki, M. H.; Gold, D. P.
1974-01-01
Hypothetical models are considered for detecting subsurface structure from the fracture or joint pattern, which may be influenced by the structure and propagated to the surface. Various patterns of an initially orthogonal fracture grid are modeled according to active and passive deformation mechanisms. In the active periclinal structure with a vertical axis, fracture frequency increased both over the dome and basin, and remained constant with decreasing depth to the structure. For passive periclinal features such as a reef or sand body, fracture frequency is determined by the arc of curvature and showed a reduction over the reefmound and increased over the basin.
Remote sensing of Earth terrain
NASA Technical Reports Server (NTRS)
Kong, J. A.
1992-01-01
Research findings are summarized for projects dealing with the following: application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated Mie scatterers with size distribution and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; theoretical modeling for passive microwave remote sensing of earth terrain; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.
Extended Range Passive Wireless Tag System and Method
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor)
2013-01-01
A passive wireless tag assembly comprises a plurality of antennas and transmission lines interconnected with circuitry and constructed and arranged in a Van Atta array or configuration to reflect an interrogator signal in the direction from where it came. The circuitry may comprise at least one surface acoustic wave (SAW)-based circuit that functions as a signal reflector and is operatively connected with an information circuit. In another embodiment, at least one delay circuit and/or at least one passive modulation circuit(s) are utilized. In yet another embodiment, antennas connected to SAW-based devices are mounted to at least one of the orthogonal surfaces of a corner reflector.
Surface passivation of (100) GaSb using self-assembled monolayers of long-chain octadecanethiol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papis-Polakowska, E., E-mail: papis@ite.waw.pl; Kaniewski, J.; Jurenczyk, J.
2016-05-15
The passivation of (100) GaSb surface was investigated by means of the long-chain octadecanethiol (ODT) self-assembled monolayer (SAM). The properties of ODT SAM on (100) GaSb were characterized by the atomic force microscopy using Kelvin probe force microscopy mode and X-ray photoelectron spectroscopy. The chemical treatment of 10 mM ODT-C{sub 2}H{sub 5}OH has been applied to the passivation of a type-II superlattice InAs/GaSb photodetector. The electrical measurements indicate that the current density was reduced by one order of magnitude as compared to an unpassivated photodetector.
Matched Field Processing Based on Least Squares with a Small Aperture Hydrophone Array.
Wang, Qi; Wang, Yingmin; Zhu, Guolei
2016-12-30
The receiver hydrophone array is the signal front-end and plays an important role in matched field processing, which usually covers the whole water column from the sea surface to the bottom. Such a large aperture array is very difficult to realize. To solve this problem, an approach called matched field processing based on least squares with a small aperture hydrophone array is proposed, which decomposes the received acoustic fields into depth function matrix and amplitudes of the normal modes at the beginning. Then all the mode amplitudes are estimated using the least squares in the sense of minimum norm, and the amplitudes estimated are used to recalculate the received acoustic fields of the small aperture array, which means the recalculated ones contain more environmental information. In the end, lots of numerical experiments with three small aperture arrays are processed in the classical shallow water, and the performance of matched field passive localization is evaluated. The results show that the proposed method can make the recalculated fields contain more acoustic information of the source, and the performance of matched field passive localization with small aperture array is improved, so the proposed algorithm is proved to be effective.
Matched Field Processing Based on Least Squares with a Small Aperture Hydrophone Array
Wang, Qi; Wang, Yingmin; Zhu, Guolei
2016-01-01
The receiver hydrophone array is the signal front-end and plays an important role in matched field processing, which usually covers the whole water column from the sea surface to the bottom. Such a large aperture array is very difficult to realize. To solve this problem, an approach called matched field processing based on least squares with a small aperture hydrophone array is proposed, which decomposes the received acoustic fields into depth function matrix and amplitudes of the normal modes at the beginning. Then all the mode amplitudes are estimated using the least squares in the sense of minimum norm, and the amplitudes estimated are used to recalculate the received acoustic fields of the small aperture array, which means the recalculated ones contain more environmental information. In the end, lots of numerical experiments with three small aperture arrays are processed in the classical shallow water, and the performance of matched field passive localization is evaluated. The results show that the proposed method can make the recalculated fields contain more acoustic information of the source, and the performance of matched field passive localization with small aperture array is improved, so the proposed algorithm is proved to be effective. PMID:28042828
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hegedus, Steven S.
An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerflessmore » techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to achieving millisecond lifetimes in kerfless silicon materials. Laser fired contacts to n-Si were developed for the first time using a Al/Sb/Ti metal stack giving contact resistances < 5 mOhm-cm2 when fired through several different dielectric layers. A new 2 step laser+chemical etch isolation technique was developed using a sacrificial top coating which avoids laser damage to Si passivation. Regarding the heterojunction emitter, analysis of front FHJ (1D) and IBC (2D) cells with range of p-layer conditions found that a 2-stage high/low doped p-layer was optimum: the low doped region has lower defects giving higher Voc and the high doped region gave a better contact to the metal. A significant effort was spent studying the patterning process and its contribution to degradation of passivation and reproducibility. Several promising new cleaning, contact and deposition patterning and processing approaches were implemented leading to fabrication of several runs with cells having 19-20% efficiency which were stable over several months. This program resulted in the training and support of 12 graduate students, publication of 21 journal papers and 14 conference papers.« less
Microscale Patterning of Thermoplastic Polymer Surfaces by Selective Solvent Swelling
Rahmanian, Omid; Chen, Chien-Fu; DeVoe, Don L.
2012-01-01
A new method for the fabrication of microscale features in thermoplastic substrates is presented. Unlike traditional thermoplastic microfabrication techniques, in which bulk polymer is displaced from the substrate by machining or embossing, a unique process termed orogenic microfabrication has been developed in which selected regions of a thermoplastic surface are raised from the substrate by an irreversible solvent swelling mechanism. The orogenic technique allows thermoplastic surfaces to be patterned using a variety of masking methods, resulting in three-dimensional features that would be difficult to achieve through traditional microfabrication methods. Using cyclic olefin copolymer as a model thermoplastic material, several variations of this process are described to realize growth heights ranging from several nanometers to tens of microns, with patterning techniques include direct photoresist masking, patterned UV/ozone surface passivation, elastomeric stamping, and noncontact spotting. Orogenic microfabrication is also demonstrated by direct inkjet printing as a facile photolithography-free masking method for rapid desktop thermoplastic microfabrication. PMID:22900539
NASA Astrophysics Data System (ADS)
Arslan, Engin; Bütün, Serkan; Şafak, Yasemin; Ozbay, Ekmel
2010-12-01
We present a systematic study on the admittance characterization of surface trap states in unpassivated and SiN x -passivated Al0.83In0.17N/AlN/GaN heterostructures. C- V and G/ ω- V measurements were carried out in the frequency range of 1 kHz to 1 MHz, and an equivalent circuit model was used to analyze the experimental data. A detailed analysis of the frequency-dependent capacitance and conductance data was performed, assuming models in which traps are located at the metal-AlInN surface. The density ( D t) and time constant ( τ t) of the surface trap states have been determined as a function of energy separation from the conduction-band edge ( E c - E t). The D st and τ st values of the surface trap states for the unpassivated samples were found to be D_{{st}} \\cong (4 - 13) × 10^{12} {eV}^{ - 1} {cm}^{ - 2} and τ st ≈ 3 μs to 7 μs, respectively. For the passivated sample, D st decreased to 1.5 × 10^{12} {eV}^{ - 1} {cm}^{ - 2} and τ st to 1.8 μs to 2 μs. The density of surface trap states in Al0.83In0.17N/AlN/GaN heterostructures decreased by approximately one order of magnitude with SiN x passivation, indicating that the SiN x insulator layer between the metal contact and the surface of the Al0.83In0.17N layer can passivate surface states.
Erosion of Terrestrial Rift Flank Topography: A Quantitative Study
NASA Technical Reports Server (NTRS)
Weissel, Jeffrey K.
1999-01-01
Many rifted or passive continental margins feature a seaward-facing erosional escarpment which abruptly demarcates deeply weathered, low relief, interior uplands from a deeply incised, high relief coastal zone. It is generally accepted that these escarpments originate at the time of continental rifting and propagate inland through the elevated rift flank topography at rates on the order of 1 km/Myr over the course of a margin's history. Considering the length of passive margins worldwide and an average rift flank plateau height of several hundred meters, it is clear that sediment eroded from passive margins is an important component of the mass flux from continents to oceans through geologic time. The overall goal of the research reported here is to develop a quantitative understanding of the kinematics of escarpment propagation across passive margins and the underlying geological processes responsible for this behavior. Plateau-bounding escarpments in general exhibit two basic forms depending on the direction of surface water drainage on the plateau interior relative to the escarpment. Where surface water flows away from the escarpment, the escarpment takes the form of subdued embayments and promontories, such that its overall trend remains fairly straight as it evolves with time. Where upland streams flow across the escarpment, it takes the form of dramatic, narrow gorges whose heads appear to propagate up the plateau drainage systems as large-scale knickpoints. From work on the Colorado Plateau, Schmidt (1987) noted that the Colorado River is located much closer to the Grand Canyon's south rim, a drainage divide escarpment, than to the north rim, which is a gorge-like escarpment. The main implication is that the gorge-like form might be associated with higher long-term average erosion rates compared to the drainage divide escarpment type.
Chemical-mechanical planarization of aluminum and copper interconnects with magnetic liners
NASA Astrophysics Data System (ADS)
Wang, Bin
2000-10-01
Chemical Mechanical Planarization (CMP) has been employed to achieve Damascene patterning of aluminum and copper interconnects with unique magnetic liners. A one-step process was developed for each interconnect scheme, using a double-layered pad with mesh cells, pores, and perforations on a top hard layer. In a hydrogen peroxide-based slurry, aluminum CMP was a process of periodic removal and formation of a surface oxide layer. Cu CMP in the same slurry, however, was found to be a dissolution dominant process. In a potassium iodate-based slurry, copper removal was the result of two competing reactions: copper dissolution and a non-native surface layer formation. Guided by electrochemistry, slurries were developed to remove nickel in different regimes of the corrosion kinetics diagram. Nickel CMP in a ferric sulfate-based slurry resulted in periodic removal and formation of a passive surface layer. In a potassium permanganate-based slurry, nickel removal is a dissolution dominant process. Visible Al(Cu) surface damages obtained with copper-doped aluminum could be eliminated by understanding the interactions between the substrate, the pad, and the abrasive agglomerate. Increasing substrate hardness by annealing prior to CMP led to a surface finish free of visible scratches. A similar result was also obtained by preventing formation of abrasive agglomerates and minimizing their contact with the substrate.
Spatial Heterogeneities and Onset of Passivation Breakdown at Lithium Anode Interfaces
Leung, Kevin; Jungjohann, Katherine L.
2017-09-08
Effective passivation of lithium metal surfaces, and prevention of battery-shorting lithium dendrite growth, are critical for implementing lithium metal anodes for batteries with increased power densities. Nanoscale surface heterogeneities can be “hot spots” where anode passivation breaks down. Motivated by the observation of lithium dendrites in pores and grain boundaries in all-solid batteries, we examine lithium metal surfaces covered with Li 2O and/or LiF thin films with grain boundaries in them. Electronic structure calculations show that at >0.25 V computed equilibrium overpotential Li 2O grain boundaries with sufficiently large pores can accommodate Li0 atoms which aid e– leakage and passivationmore » breakdown. Strain often accompanies Li insertion; applying an ~1.7% strain already lowers the computed overpotential to 0.1 V. Lithium metal nanostructures as thin as 12 Å are thermodynamically favored inside cracks in Li 2O films, becoming “incipient lithium filaments”. LiF films are more resistant to lithium metal growth. Finally, the models used herein should in turn inform passivating strategies in all-solid-state batteries.« less
Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Zahidur R., E-mail: zr.chowdhury@utoronto.ca; Kherani, Nazir P., E-mail: kherani@ecf.utoronto.ca
2014-12-29
This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide–plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparentmore » passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666 mV, J{sub SC} of 29.5 mA-cm{sup −2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.« less
Spatial Heterogeneities and Onset of Passivation Breakdown at Lithium Anode Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Kevin; Jungjohann, Katherine L.
Effective passivation of lithium metal surfaces, and prevention of battery-shorting lithium dendrite growth, are critical for implementing lithium metal anodes for batteries with increased power densities. Nanoscale surface heterogeneities can be “hot spots” where anode passivation breaks down. Motivated by the observation of lithium dendrites in pores and grain boundaries in all-solid batteries, we examine lithium metal surfaces covered with Li 2O and/or LiF thin films with grain boundaries in them. Electronic structure calculations show that at >0.25 V computed equilibrium overpotential Li 2O grain boundaries with sufficiently large pores can accommodate Li0 atoms which aid e– leakage and passivationmore » breakdown. Strain often accompanies Li insertion; applying an ~1.7% strain already lowers the computed overpotential to 0.1 V. Lithium metal nanostructures as thin as 12 Å are thermodynamically favored inside cracks in Li 2O films, becoming “incipient lithium filaments”. LiF films are more resistant to lithium metal growth. Finally, the models used herein should in turn inform passivating strategies in all-solid-state batteries.« less
Silicon surface passivation by polystyrenesulfonate thin films
NASA Astrophysics Data System (ADS)
Chen, Jianhui; Shen, Yanjiao; Guo, Jianxin; Chen, Bingbing; Fan, Jiandong; Li, Feng; Liu, Haixu; Xu, Ying; Mai, Yaohua
2017-02-01
The use of polystyrenesulfonate (PSS) thin films in a high-quality passivation scheme involving the suppression of minority carrier recombination at the silicon surface is presented. PSS has been used as a dispersant for aqueous poly-3,4-ethylenedioxythiophene. In this work, PSS is coated as a form of thin film on a Si surface. A millisecond level minority carrier lifetime on a high resistivity Si wafer is obtained. The film thickness, oxygen content, and relative humidity are found to be important factors affecting the passivation quality. While applied to low resistivity silicon wafers, which are widely used for photovoltaic cell fabrication, this scheme yields relatively shorter lifetime, for example, 2.40 ms on n-type and 2.05 ms on p-type wafers with a resistivity of 1-5 Ω.cm. However, these lifetimes are still high enough to obtain high implied open circuit voltages (Voc) of 708 mV and 697 mV for n-type and p-type wafers, respectively. The formation of oxides at the PSS/Si interface is suggested to be responsible for the passivation mechanism.
Proton irradiation of MgO- or Sc 2O 3 passivated AlGaN/GaN high electron mobility transistors
NASA Astrophysics Data System (ADS)
Luo, B.; Ren, F.; Allums, K. K.; Gila, B. P.; Onstine, A. H.; Abernathy, C. R.; Pearton, S. J.; Dwivedi, R.; Fogarty, T. N.; Wilkins, R.; Fitch, R. C.; Gillespie, J. K.; Jenkins, T. J.; Dettmer, R.; Sewell, J.; Via, G. D.; Crespo, A.; Baca, A. G.; Shul, R. J.
2003-06-01
AlGaN/GaN high electron mobility transistors with either MgO or Sc 2O 3 surface passivation were irradiated with 40 MeV protons at a dose of 5×10 9 cm -2. While both forward and reverse bias current were decreased in the devices as a result of decreases in channel doping and introduction of generation-recombination centers, there was no significant change observed in gate lag measurements. By sharp contrast, unpassivated devices showed significant decreases in drain current under pulsed conditions for the same proton dose. These results show the effectiveness of the oxide passivation in mitigating the effects of surface states present in the as-grown structures and also of surface traps created by the proton irradiation.
Turbulent flow separation control through passive techniques
NASA Technical Reports Server (NTRS)
Lin, J. C.; Howard, F. G.; Selby, G. V.
1989-01-01
Several passive separation control techniques for controlling moderate two-dimensional turbulent flow separation over a backward-facing ramp are studied. Small transverse and swept grooves, passive porous surfaces, large longitudinal grooves, and vortex generators were among the techniques used. It was found that, unlike the transverse and longitudinal grooves of an equivalent size, the 45-deg swept-groove configurations tested tended to enhance separation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nairn, R.W.; Hare, L.; Mercer, M.
As part of a Fall 1998 Environmental Science graduate seminar in Ecological Engineering at the University of Oklahoma, students were asked to submit a proposal for the holistic and sustainable restoration of the Tar Creek Superfund Site, Ottawa county, Oklahoma. the Tar Creek site is a portion of an abandoned lead and zinc mining area known as the Tri-State Mining District (OL, KS and MO) and includes approximately 104 square kilometers of disturbed land surface and contaminated water resources in extreme northeastern Oklahoma. Approximately 94 million cubic meters of contaminated water currently exist in the underground voids. In 1979, acidic,more » metal-rich waters began to discharge into Tar Creek from natural springs, bore holes and mine shafts. In addition, approximately 37 million cubic meters of processed mine waste materials (chat) litter their surface in large piles. Approximately 324 hectares of contaminated tailings settling ponds also exist on site. Student submitted proposals addressed the following four subject areas: passive treatment options for stream water quality improvement, surface reclamation and revegetation, stream habitat restoration and joint ecological and economic sustainability. Proposed designs for passive treatment of the contaminated mine drainage included unique constructed wetland designs that relief on a combination of biological and geochemical processes, use of microbial mats for luxury metal uptake, enhanced iron oxidation via windmill-based aeration and fly ash injection. proposed surface reclamation methods included minimal regrading following by biosolid, ash and other organic amendment applications and several phytoremediation techniques, especially the use of hyperaccumulators. The stream and riparian restoration portion of the proposals focused on chat removal, phytoremediation and species reintroduction. proposed joint ecological and economic sustainability ventures included development of recreational facilities, mining-based tourism and an Ecotechnology Research Park.« less
NASA Technical Reports Server (NTRS)
Spitzer, M. B.
1983-01-01
The objective of this program is the investigation and evaluation of the capabilities of the ion implantation process for the production of photovoltaic cells from a variety of present-day, state-of-the-art, low-cost silicon sheet materials. Task 1 of the program concerns application of ion implantation and furnace annealing to fabrication of cells made from dendritic web silicon. Task 2 comprises the application of ion implantation and pulsed electron beam annealing (PEBA) to cells made from SEMIX, SILSO, heat-exchanger-method (HEM), edge-defined film-fed growth (EFG) and Czochralski (CZ) silicon. The goals of Task 1 comprise an investigation of implantation and anneal processes applied to dendritic web. A further goal is the evaluation of surface passivation and back surface reflector formation. In this way, processes yielding the very highest efficiency can be evaluated. Task 2 seeks to evaluate the use of PEBA for various sheet materials. A comparison of PEBA to thermal annealing will be made for a variety of ion implantation processes.
NASA Astrophysics Data System (ADS)
Sabra, K.
2006-12-01
The random nature of noise and scattered fields tends to suggest limited utility. Indeed, seismic or acoustic fields from random sources or scatterers are often considered to be incoherent, but there is some coherence between two sensors that receive signals from the same individual source or scatterer. An estimate of the Green's function (or impulse response) between two points can be obtained from the cross-correlation of random wavefields recorded at these two points. Recent theoretical and experimental studies in ultrasonics, underwater acoustics, structural monitoring and seismology have investigated this technique in various environments and frequency ranges. These results provide a means for passive imaging using only the random wavefields, without the use of active sources. The coherent wavefronts emerge from a correlation process that accumulates contributions over time from random sources whose propagation paths pass through both receivers. Results will be presented from experiments using ambient noise cross-correlations for the following applications: 1) passive surface waves tomography from ocean microseisms and 2) structural health monitoring of marine and airborne structures embedded in turbulent flow.
NASA Astrophysics Data System (ADS)
O'Shea, Peter; Laberge, Michel; Mossman, Alex; Reynolds, Meritt
2017-10-01
Magnetic reconstructions on lab based plasma injectors at General Fusion relies heavily on edge magnetic (``Bdot'') probes. On plasma experiments built for field compression (PCS) tests, the number and locations of Bdot probes is limited by mechanical constraints. Additional information about the q profiles near the core in our Spector plasmas is obtained using passive MHD spectroscopy. The coaxial helicity injection (CHI) formation process naturally generates hollow current profiles and reversed shear early in each discharge. Central Ohmic heating naturally peaks the current profiles as our plasmas evolve in time, simultaneously reducing the core safety factor, q(0), and reverse shear. As the central, non-monotonic q-profile crosses rational flux surfaces, we observe transient magnetic reconnection events (MRE's) due to the double tearing mode. Modal analysis allows us to infer the q surfaces involved in each burst. The parametric dependence of the timing of MRE's allows us to estimate the continuous time evolution of the core q profile. Combining core MHD spectroscopy with edge magnetic probe measurements greatly enhances our certainty of the overall q profile.
Recent Progress on Stability and Passivation of Black Phosphorus.
Abate, Yohannes; Akinwande, Deji; Gamage, Sampath; Wang, Han; Snure, Michael; Poudel, Nirakar; Cronin, Stephen B
2018-05-11
From a fundamental science perspective, black phosphorus (BP) is a canonical example of a material that possesses fascinating surface and electronic properties. It has extraordinary in-plane anisotropic electrical, optical, and vibrational states, as well as a tunable band gap. However, instability of the surface due to chemical degradation in ambient conditions remains a major impediment to its prospective applications. Early studies were limited by the degradation of black phosphorous surfaces in air. Recently, several robust strategies have been developed to mitigate these issues, and these novel developments can potentially allow researchers to exploit the extraordinary properties of this material and devices made out of it. Here, the fundamental chemistry of BP degradation and the tremendous progress made to address this issue are extensively reviewed. Device performances of encapsulated BP are also compared with nonencapsulated BP. In addition, BP possesses sensitive anisotropic photophysical surface properties such as excitons, surface plasmons/phonons, and topologically protected and Dirac semi-metallic surface states. Ambient degradation as well as any passivation method used to protect the surface could affect the intrinsic surface properties of BP. These properties and the extent of their modifications by both the degradation and passivation are reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Elastic thickness estimates at northeast passive margin of North America and its implications
NASA Astrophysics Data System (ADS)
Kumar, R. T. Ratheesh; Maji, Tanmay K.; Kandpal, Suresh Ch; Sengupta, D.; Nair, Rajesh R.
2011-06-01
Global estimates of the elastic thickness (Te) of the structure of passive continental margins show wide and varying results owing to the use of different methodologies. Earlier estimates of the elastic thickness of the North Atlantic passive continental margins that used flexural modelling yielded a Te value of ~20-100 km. Here, we compare these estimates with the Te value obtained using orthonormalized Hermite multitaper recovered isostatic coherence functions. We discuss how Te is correlated with heat flow distribution and depth of necking. The E-W segment in the southern study region comprising Nova Scotia and the Southern Grand Banks show low Te values, while the zones comprising the NE-SW zones, viz., Western Greenland, Labrador, Orphan Basin and the Northern Grand Bank show comparatively high Te values. As expected, Te broadly reflects the depth of the 200-400°C isotherm below the weak surface sediment layer at the time of loading, and at the margins most of the loading occurred during rifting. We infer that these low Te measurements indicate Te frozen into the lithosphere. This could be due to the passive nature of the margin when the loads were emplaced during the continental break-up process at high temperature gradients.
An effective noise-suppression technique for surface microseismic data
Forghani-Arani, Farnoush; Willis, Mark; Haines, Seth S.; Batzle, Mike; Behura, Jyoti; Davidson, Michael
2013-01-01
The presence of strong surface-wave noise in surface microseismic data may decrease the utility of these data. We implement a technique, based on the distinct characteristics that microseismic signal and noise show in the τ‐p domain, to suppress surface-wave noise in microseismic data. Because most microseismic source mechanisms are deviatoric, preprocessing is necessary to correct for the nonuniform radiation pattern prior to transforming the data to the τ‐p domain. We employ a scanning approach, similar to semblance analysis, to test all possible double-couple orientations to determine an estimated orientation that best accounts for the polarity pattern of any microseismic events. We then correct the polarity of the data traces according to this pattern, prior to conducting signal-noise separation in the τ‐p domain. We apply our noise-suppression technique to two surface passive-seismic data sets from different acquisition surveys. The first data set includes a synthetic microseismic event added to field passive noise recorded by an areal receiver array distributed over a Barnett Formation reservoir undergoing hydraulic fracturing. The second data set is field microseismic data recorded by receivers arranged in a star-shaped array, over a Bakken Shale reservoir during a hydraulic-fracturing process. Our technique significantly improves the signal-to-noise ratios of the microseismic events and preserves the waveforms at the individual traces. We illustrate that the enhancement in signal-to-noise ratio also results in improved imaging of the microseismic hypocenter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Guangtao; Ingenito, Andrea; Hameren, Nienke van
2016-01-18
Ion-implanted passivating contacts based on poly-crystalline silicon (polySi) are enabled by tunneling oxide, optimized, and used to fabricate interdigitated back contact (IBC) solar cells. Both n-type (phosphorous doped) and p-type (boron doped) passivating contacts are fabricated by ion-implantation of intrinsic polySi layers deposited via low-pressure chemical vapor deposition and subsequently annealed. The impact of doping profile on the passivation quality of the polySi doped contacts is studied for both polarities. It was found that an excellent surface passivation could be obtained by confining as much as possible the implanted-and-activated dopants within the polySi layers. The doping profile in the polySimore » was controlled by modifying the polySi thickness, the energy and dose of ion-implantation, and the temperature and time of annealing. An implied open-circuit voltage of 721 mV for n-type and 692 mV for p-type passivating contacts was achieved. Besides the high passivating quality, the developed passivating contacts exhibit reasonable high conductivity (R{sub sh n-type} = 95 Ω/□ and R{sub sh p-type} = 120 Ω/□). An efficiency of 19.2% (V{sub oc} = 673 mV, J{sub sc} = 38.0 mA/cm{sup 2}, FF = 75.2%, and pseudo-FF = 83.2%) was achieved on a front-textured IBC solar cell with polySi passivating contacts as both back surface field and emitter. By improving the front-side passivation, a V{sub OC} of 696 mV was also measured.« less
Leadership styles, emotion regulation, and burnout.
Arnold, Kara A; Connelly, Catherine E; Walsh, Megan M; Martin Ginis, Kathleen A
2015-10-01
This study investigated the potential impact of leadership style on leaders' emotional regulation strategies and burnout. Drawing on the full-range model of leadership and Conservation of Resources (COR) theory, we tested whether transformational, contingent reward, management by exception-active and -passive, or laissez-faire leadership exert direct effects on leaders' reported use of surface acting, deep acting, and genuine emotion. In turn, we hypothesized and tested the indirect effect of leadership on burnout through surface acting. Three waves of data from 205 leaders were analyzed using OLS regression. Transformational leadership predicted deep acting and genuine emotion. Contingent reward predicted both surface and deep acting. Management by exception-active and -passive predicted surface acting, and laissez faire predicted genuine emotion. The indirect effects of management by exception-active and -passive on burnout through surface acting were not significant. Indirect effects of transformational leadership and laissez-faire on burnout through genuine emotion, however, were significant. This study provides empirical evidence for the hypothesized relationships between leadership style, emotion regulation, and burnout, and provides the basis for future research and theory building on this topic. (c) 2015 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ching-Wei; Wu, Yung-Hsien; Hsieh, Ching-Heng
2014-11-17
Through the technique of solid phase epitaxy (SPE), an epitaxial Ge{sub 0.955}Sn{sub 0.045} film was formed on a Ge substrate by depositing an amorphous GeSn film followed by a rapid thermal annealing at 550 °C. A process that uses a SiO{sub 2} capping layer on the amorphous GeSn film during SPE was proposed and it prevents Sn precipitation from occurring while maintaining a smooth surface due to the reduced surface mobility of Sn atoms. The high-quality epitaxial GeSn film was observed to have single crystal structure, uniform thickness and composition, and tiny surface roughness with root mean square of 0.56 nm. Withmore » a SnO{sub x}-free surface, Yb{sub 2}O{sub 3}-gated GeSn metal-oxide-semiconductor (MOS) capacitors with equivalent oxide thickness (EOT) of 0.55 nm were developed. A small amount of traps inside the Yb{sub 2}O{sub 3} was verified by negligible hysteresis in capacitance measurement. Low leakage current of 0.4 A/cm{sup 2} at gate bias of flatband voltage (V{sub FB})-1 V suggests the high quality of the gate dielectric. In addition, the feasibility of using Yb{sub 2}O{sub 3} to well passivate GeSn surface was also evidenced by the small interface trap density (D{sub it}) of 4.02 × 10{sup 11} eV{sup −1} cm{sup −2}, which can be attributed to smooth GeSn surface and Yb{sub 2}O{sub 3} valency passivation. Both leakage current and D{sub it} performance outperform other passivation techniques at sub-nm EOT regime. The proposed epitaxial GeSn film along with Yb{sub 2}O{sub 3} dielectric paves an alternative way to enable high-performance GeSn MOS devices.« less
NASA Astrophysics Data System (ADS)
Yeh, Y. C.
2016-12-01
In the past decade, numerous multi-channel seismic surveys as well as near seafloor high resolution geophysical investigations were conducted in order to explore and estimate the reserves of gas hydrate southwestern offshore Taiwan. The previous object was focused on searching substitute energy (i.e. gas hydrate) rather than geo-hazards. However, it is suggested that most of the gas hydrate is generally distributed at slope area southwestern offshore Taiwan, which indicates the slope may be failed when steady state was disturbed by some factors, such as sea level or climate change. In addition, once gas hydrate was dissociated, this may induce submarine landslide that further cause devastated tsunami. Thus, it is of great urgency to investigate potential landslide area, particularly, the hydrate-rich continental slope (active and passive margins) in adjacent to populous city like Kaohsiung. In this study, we collected several high resolution multi-channel seismic data with ten seconds shooting rate and 3.125 meters group interval streamer by using R/V ORI and R/V ORV. The seismic data were processed in conventional data processing strategy: bad trace clean, geometry settings, band-pass filter, de-convolution, surface-related multiple rejection, radon filter, stacking,kirchhoff migration and time to depth conversion. Combine the results obtained from the MCS data and subbottom profiles, two major results could be raised in the active margin as followed: (1) Most of the surface creeping and landslide was occurred shallower than 500 meters in water depth, which should be related to the inter-bedded fluid activities. (2) The landslide distribution is lagly affected by the presence of diaper, suggesting the subsequent mud diapirism may destruct slope stability; (3) The submarine landslide deeper than 800 meters in water depth distributes in the thrust fold area, that is probably referred to active thrusting. In the passive margin, large volume mass transportation deposits (MTDs) were identified in deeper stratigraphic section below BSR. This indicated several big former submarine landslide events occurred. In summary, the passive margin often show typical submarine landslide features than active margin, which driven by gravity force.
Geophysical Inversion with Adaptive Array Processing of Ambient Noise
NASA Astrophysics Data System (ADS)
Traer, James
2011-12-01
Land-based seismic observations of microseisms generated during Tropical Storms Ernesto and Florence are dominated by signals in the 0.15--0.5Hz band. Data from seafloor hydrophones in shallow water (70m depth, 130 km off the New Jersey coast) show dominant signals in the gravity-wave frequency band, 0.02--0.18Hz and low amplitudes from 0.18--0.3Hz, suggesting significant opposing wave components necessary for DF microseism generation were negligible at the site. Both storms produced similar spectra, despite differing sizes, suggesting near-coastal shallow water as the dominant region for observed microseism generation. A mathematical explanation for a sign-inversion induced to the passive fathometer response by minimum variance distortionless response (MVDR) beamforming is presented. This shows that, in the region containing the bottom reflection, the MVDR fathometer response is identical to that obtained with conventional processing multiplied by a negative factor. A model is presented for the complete passive fathometer response to ocean surface noise, interfering discrete noise sources, and locally uncorrelated noise in an ideal waveguide. The leading order term of the ocean surface noise produces the cross-correlation of vertical multipaths and yields the depth of sub-bottom reflectors. Discrete noise incident on the array via multipaths give multiple peaks in the fathometer response. These peaks may obscure the sub-bottom reflections but can be attenuated with use of Minimum Variance Distortionless Response (MVDR) steering vectors. A theory is presented for the Signal-to-Noise-Ratio (SNR) for the seabed reflection peak in the passive fathometer response as a function of seabed depth, seabed reflection coefficient, averaging time, bandwidth and spatial directivity of the noise field. The passive fathometer algorithm was applied to data from two drifting array experiments in the Mediterranean, Boundary 2003 and 2004, with 0.34s of averaging time. In the 2004 experiment, the response showed the array depth varied periodically with an amplitude of 1 m and a period of 7 s consistent with wave driven motion of the array. This introduced a destructive interference which prevents the SNR growing with averaging time, unless the motion is removed by use of a peak tracker.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.
2004-01-01
Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.
Tuan, Chia-Chi; James, Nathan Pataki; Lin, Ziyin; Chen, Yun; Liu, Yan; Moon, Kyoung-Sik; Li, Zhuo; Wong, C P
2017-03-15
As microelectronics are trending toward smaller packages and integrated circuit (IC) stacks nowadays, underfill, the polymer composite filled in between the IC chip and the substrate, becomes increasingly important for interconnection reliability. However, traditional underfills cannot meet the requirements for low-profile and fine pitch in high density IC stacking packages. Post-applied underfills have difficulties in flowing into the small gaps between the chip and the substrate, while pre-applied underfills face filler entrapment at bond pads. In this report, we present a self-patterning underfilling technology that uses selective wetting of underfill on Cu bond pads and Si 3 N 4 passivation via surface energy engineering. This novel process, fully compatible with the conventional underfilling process, eliminates the issue of filler entrapment in typical pre-applied underfilling process, enabling high density and fine pitch IC die bonding.
Analytical and Numerical Studies of Active and Passive Microwave Ocean Remote Sensing
2001-09-30
of both analytical and efficient numerical methods for electromagnetics and hydrodynamics. New insights regarding these phenomena can then be applied to improve microwave active and passive remote sensing of the ocean surface.
Fuchs-Kliewer phonons of H-covered and clean GaN(1 1 bar 00)
NASA Astrophysics Data System (ADS)
Rink, M.; Himmerlich, M.; Krischok, S.; Kröger, J.
2018-01-01
Inelastic electron scattering is used to study surface phonon polaritons on H-covered and clean GaN(1 1 bar 00) surfaces. The Fuchs-Kliewer phonon of GaN(1 1 bar 00) -H gives rise to characteristic signatures of its single and multiple excitation in specular electron energy loss spectra. The loss intensities for multi-phonon scattering processes decrease according to a Poisson distribution. Vibrational spectra of this surface are invariant on the time scale of days reflecting its chemical passivation by the H layer. In contrast, vibrational spectra of pristine GaN(1 1 bar 00) are subject to a pronounced temporal evolution where spectroscopic weight is gradually shifted towards the multiple excitation of the Fuchs-Kliewer phonon. As a consequence, the monotonous decrease of the cross section for multiple quantum excitation as observed for the H-covered surface is not applicable. This remarkable effect is particularly strong in spectra acquired at low primary energies of incident electrons, which hints at processes occurring in the very surface region. Scenarios that may contribute to these observations are discussed.
NASA Astrophysics Data System (ADS)
Hwang, Jeongwoon; Oh, Young Jun; Kim, Jiyoung; Sung, Myung Mo; Cho, Kyeongjae
2018-04-01
We have performed first-principle calculations to explore the possibility of synthesizing atomically thin transition metal (TM) layers. Buckled structures as well as planar structures of elemental 2D TM layers result in significantly higher formation energies compared with sp-bonded elemental 2D materials with similar structures, such as silicene and phosphorene. It is shown that the TM layers can be stabilized by surface passivation with HS, C6H5S2, or O, and O passivation is most effective. The surface oxygen passivation can improve stability leading to thermodynamically stable TM monolayers except Au, which is the most non-reactive metal element. Such stabilized TM monolayers also show an electronic structure transition from metallic state of free-standing TM layer to semiconducting O-passivated Mo and W monolayers with band gaps of 0.20-1.38 eV.
Passive absolute age and temperature history sensor
Robinson, Alex; Vianco, Paul T.
2015-11-10
A passive sensor for historic age and temperature sensing, including a first member formed of a first material, the first material being either a metal or a semiconductor material and a second member formed of a second material, the second material being either a metal or a semiconductor material. A surface of the second member is in contact with a surface of the first member such that, over time, the second material of the second member diffuses into the first material of the first member. The rate of diffusion for the second material to diffuse into the first material depends on a temperature of the passive sensor. One of the electrical conductance, the electrical capacitance, the electrical inductance, the optical transmission, the optical reflectance, or the crystalline structure of the passive sensor depends on the amount of the second material that has diffused into the first member.
NASA Astrophysics Data System (ADS)
Paul, Subir; Mandal, Chandranath
2013-10-01
Surface treatments of 304 stainless steel by electro-coating and passivating in few inorganic electrolytes were found to be very effective in drastically reducing the corrosion rate of the material in stimulated body fluid (SBF) by several orders in comparison to that of 316L steel, presently being used for orthopedic implants. Polarization studies of electrodeposited hydroxyl apatite coating on 304 steel showed remarkably improved corrosion current. Cyclic polarization of the material in SBF reflected the broadened passivity region, much lower passive current, and narrower hysteresis loops. Similar effects were also found through the formation of inorganic coatings by passivation in NaF, CaNO3, and calcium phosphate buffer solutions. Surface characterization by XRD showed the peaks of the respective coating crystals. The morphology of the coatings studied by SEM showed a flake-type structure for hydroxyapatite coating and fine spherical-subspherical particles for other coatings.